WO2016084474A1 - 車両用駆動装置の制御装置 - Google Patents

車両用駆動装置の制御装置 Download PDF

Info

Publication number
WO2016084474A1
WO2016084474A1 PCT/JP2015/077867 JP2015077867W WO2016084474A1 WO 2016084474 A1 WO2016084474 A1 WO 2016084474A1 JP 2015077867 W JP2015077867 W JP 2015077867W WO 2016084474 A1 WO2016084474 A1 WO 2016084474A1
Authority
WO
WIPO (PCT)
Prior art keywords
engagement
torque
electrical machine
rotating electrical
combustion engine
Prior art date
Application number
PCT/JP2015/077867
Other languages
English (en)
French (fr)
Inventor
小林弘和
草部圭一郎
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to US15/517,797 priority Critical patent/US10279687B2/en
Priority to CN201580058033.4A priority patent/CN107107900B/zh
Priority to DE112015004109.5T priority patent/DE112015004109T5/de
Priority to JP2016561438A priority patent/JP6350676B2/ja
Publication of WO2016084474A1 publication Critical patent/WO2016084474A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/38Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the driveline clutches
    • B60K6/387Actuated clutches, i.e. clutches engaged or disengaged by electric, hydraulic or mechanical actuating means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • B60L50/62Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles charged by low-power generators primarily intended to support the batteries, e.g. range extenders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/46Series type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/543Transmission for changing ratio the transmission being a continuously variable transmission
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/40Controlling the engagement or disengagement of prime movers, e.g. for transition between prime movers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/02Control by fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • B60K2006/4825Electric machine connected or connectable to gearbox input shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • B60W10/024Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters
    • B60W10/026Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches including control of torque converters of lock-up clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/02Clutches
    • B60W2710/027Clutch torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/081Speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/10System to be controlled
    • F16D2500/106Engine
    • F16D2500/1066Hybrid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/30406Clutch slip
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/304Signal inputs from the clutch
    • F16D2500/3041Signal inputs from the clutch from the input shaft
    • F16D2500/30412Torque of the input shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/30Signal inputs
    • F16D2500/306Signal inputs from the engine
    • F16D2500/3067Speed of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/70406Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70402Actuator parameters
    • F16D2500/7041Position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2500/00External control of clutches by electric or electronic means
    • F16D2500/70Details about the implementation of the control system
    • F16D2500/704Output parameters from the control unit; Target parameters to be controlled
    • F16D2500/70422Clutch parameters
    • F16D2500/70426Clutch slip
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention controls a vehicle drive device in which a first engagement device, a rotating electrical machine, and a second engagement device are provided in order from the side of the internal combustion engine on a power transmission path connecting the internal combustion engine and wheels. It relates to a control device.
  • Patent Document 1 the technique described in Patent Document 1 below is already known.
  • the first engagement device in order to start the internal combustion engine, the first engagement device is controlled to the slip engagement state, and the output torque of the rotating electrical machine is transmitted to the internal combustion engine via the first engagement device. The rotational speed of the internal combustion engine was increased.
  • a vehicle drive device in which a first engagement device, a rotating electrical machine, and a second engagement device are provided in order from the side of the internal combustion engine on a power transmission path connecting the internal combustion engine and wheels is controlled.
  • Second slip control for controlling the second engagement device to the slip engagement state is executed, and the first engagement device in the released state is controlled to the slip engagement state during execution of the second slip control.
  • One slip control is executed, and in the first slip control, the engagement pressure of the first engagement device is controlled so as to reduce the rotation speed of the rotating electrical machine.
  • the rotational speed of the rotating electrical machine is reduced by the first slip control.
  • the inertia torque as a reaction force with respect to the fall of the rotational speed of such a rotary electric machine is transmitted to the internal combustion engine side via the first engagement device. That is, by converting the rotational energy of the rotating electrical machine into torque and transmitting it to the internal combustion engine side, a torque larger than the output torque of the rotating electrical machine can be transmitted to the internal combustion engine side. Therefore, the torque of the rotating electrical machine that needs to be secured separately from the torque transmitted to the wheels as the torque necessary for starting the internal combustion engine can be reduced by that amount. As a result, a large torque that can be transmitted from the rotating electrical machine to the wheel side during the execution of the electric mode can be secured, and as a result, a torque region in which the electric mode can be executed can be expanded.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a vehicle drive device 1 and a control device 30 according to the present embodiment.
  • the solid line indicates the driving force transmission path
  • the broken line indicates the hydraulic oil supply path
  • the alternate long and short dash line indicates the signal transmission path.
  • the vehicle drive apparatus 1 according to the present embodiment schematically includes an internal combustion engine ENG and a rotating electrical machine MG as drive force sources, and the drive forces of these drive force sources are transmitted as power. It is the structure which transmits to the wheel W via a mechanism.
  • the vehicle drive device 1 includes a first engagement device CL1, a rotating electrical machine MG, and a second engagement device CL2 in order from the internal combustion engine ENG side to a power transmission path 2 that connects the internal combustion engine ENG and the wheels W. Is provided.
  • the transmission TM is provided in the power transmission path 2 between the rotating electrical machine MG and the wheels W
  • the second engagement device CL2 is provided in the transmission TM.
  • the “rotary electric machine” is used as a concept including any of a motor (electric motor), a generator (generator), and a motor / generator that functions as both a motor and a generator as necessary.
  • the hybrid vehicle includes a control device 30 that controls the vehicle drive device 1.
  • the control device 30 includes a rotating electrical machine control unit 32 that controls the rotating electrical machine MG, and a power transmission control unit that controls the transmission TM, the first engagement device CL1, and the second engagement device CL2. 33 and a vehicle control unit 34 that integrates these control devices and controls the vehicle drive device 1.
  • the hybrid vehicle is also provided with an internal combustion engine control device 31 that controls the internal combustion engine ENG.
  • the control device 30 includes functional units such as a start control unit 47 that performs start control of the internal combustion engine ENG.
  • the start control unit 47 transmits the output torque of the rotating electrical machine MG to the wheels W and executes the acceleration start control for starting the internal combustion engine ENG by the rotating electrical machine MG.
  • the second slip control for controlling the second engagement device CL2 to the slip engagement state is executed.
  • the start control unit 47 performs the first slip control for controlling the first engagement device CL1 in the released state to the slip engagement state during the execution of the second slip control.
  • the start control unit 47 controls the engagement pressure of the first engagement device CL1 so as to decrease the rotation speed of the rotating electrical machine MG in the first slip control.
  • the hybrid vehicle includes an internal combustion engine ENG and a rotating electrical machine MG as drive power sources of the vehicle, and a parallel hybrid vehicle in which the internal combustion engine ENG and the rotating electrical machine MG are connected in series. It has become.
  • the hybrid vehicle includes a transmission TM, and the transmission TM shifts the rotational speed of the internal combustion engine ENG and the rotating electrical machine MG transmitted to the input shaft I and converts the torque to transmit to the output shaft O. .
  • driving connection refers to a state where two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or It is used as a concept including a state in which two rotating elements are connected so as to be able to transmit a driving force via one or more transmission members.
  • a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a belt, a chain, and the like.
  • an engagement device that selectively transmits rotation and driving force, for example, a friction engagement device or a meshing engagement device may be included.
  • the internal combustion engine ENG is a heat engine that is driven by the combustion of fuel.
  • various known internal combustion engines such as a gasoline engine and a diesel engine can be used.
  • an internal combustion engine output shaft Eo such as a crankshaft of the internal combustion engine ENG is selectively connected to the input shaft I via the first engagement device CL1.
  • Rotating electric machine MG has a stator fixed to a case as a non-rotating member and a rotor supported rotatably at a position corresponding to the stator.
  • the rotor of the rotating electrical machine MG is drivingly connected so as to rotate integrally with the input shaft I. That is, in the present embodiment, both the internal combustion engine ENG and the rotating electrical machine MG are drivingly connected to the input shaft I.
  • the rotating electrical machine MG is electrically connected to a battery as a power storage device via an inverter that performs direct current to alternating current conversion.
  • the rotating electrical machine MG can perform a function as a motor (electric motor) that generates power upon receiving power supply and a function as a generator (generator) that generates power upon receiving power supply.
  • the rotating electrical machine MG is powered by receiving power supply from the battery via the inverter, or generates power by the rotational driving force transmitted from the internal combustion engine ENG or the wheel W, and the generated power is transmitted via the inverter. It is stored in the battery.
  • the transmission shaft TM is drivingly connected to the input shaft I.
  • the transmission apparatus TM is a stepped automatic transmission apparatus having a plurality of shift stages having different speed ratios.
  • the transmission device TM includes a gear mechanism such as a planetary gear mechanism and a plurality of engagement devices in order to form the plurality of gear positions.
  • one of the plurality of engagement devices is the second engagement device CL2.
  • the second engagement device CL2 is a clutch.
  • symbol "R1" of a 1st rotation member is attached
  • subjected to the rotation member which rotates integrally with the engagement member by the side of the rotary electric machine MG of 2nd engagement apparatus CL2, and the wheel W of 2nd engagement apparatus CL2 is provided.
  • the reference numeral “R2” of the second rotating member is attached to the rotating member that rotates integrally with the engaging member on the side.
  • the first rotating member R1 is a rotating member on the rotating electrical machine MG side with respect to the second engaging device CL2, and is a rotating member that does not interpose another engaging device with the second engaging device CL2. Any rotating member may be used.
  • the second rotation member R2 is a rotation member on the wheel W side with respect to the second engagement device CL2, and is a rotation member that does not interpose another engagement device with the second engagement device CL2. Any rotating member may be used.
  • the transmission TM shifts the rotational speed of the input shaft I at the gear ratio of each gear, converts the torque, and transmits the torque to the output shaft O.
  • Torque transmitted from the transmission TM to the output shaft O is distributed and transmitted to the two left and right axles AX via the differential gear unit DF, and is transmitted to the wheels W that are drivingly connected to the respective axles AX.
  • the gear ratio is the ratio of the rotational speed of the input shaft I to the rotational speed of the output shaft O when each gear stage is formed in the transmission apparatus TM.
  • the rotational speed of the input shaft I is defined as the output shaft. The value divided by the rotation speed of O.
  • the rotational speed obtained by dividing the rotational speed of the input shaft I by the gear ratio becomes the rotational speed of the output shaft O. Further, torque obtained by multiplying the torque transmitted from the input shaft I to the transmission device TM by the transmission ratio becomes the torque transmitted from the transmission device TM to the output shaft O.
  • the plurality of engagement devices (second engagement device CL2) and the first engagement device CL1 of the transmission apparatus TM each include a friction engagement element such as a clutch or a brake that includes a friction material. It is.
  • These frictional engagement elements can control the engagement pressure by controlling the hydraulic pressure supplied to continuously increase or decrease the transmission torque capacity.
  • a friction engagement element for example, a wet multi-plate clutch or a wet multi-plate brake is preferably used.
  • the friction engagement element transmits torque between the engagement members by friction between the engagement members.
  • torque slip torque
  • slip torque slip torque
  • the friction engagement element acts between the engagement members of the friction engagement element by static friction up to the size of the transmission torque capacity. Torque is transmitted.
  • the transmission torque capacity is the maximum torque that the friction engagement element can transmit by friction. The magnitude of the transmission torque capacity changes in proportion to the engagement pressure of the friction engagement element.
  • the engagement pressure is a pressure (or force) that presses the input side engagement member (friction plate) and the output side engagement member (friction plate) against each other.
  • the engagement pressure changes in proportion to the magnitude of the supplied hydraulic pressure. That is, in the present embodiment, the magnitude of the transmission torque capacity changes in proportion to the magnitude of the hydraulic pressure supplied to the friction engagement element.
  • Each friction engagement element is provided with a return spring and is biased to the release side by the reaction force of the spring.
  • a transmission torque capacity starts to be generated in each friction engagement element, and each friction engagement element is released from the released state. Change to engaged state.
  • the hydraulic pressure at which this transmission torque capacity begins to occur is called the stroke end pressure.
  • Each friction engagement element is configured such that, after the supplied hydraulic pressure exceeds the stroke end pressure, the transmission torque capacity increases in proportion to the increase in the hydraulic pressure. Note that the friction engagement element may not be provided with a return spring, and may be configured to be controlled by a differential pressure of the hydraulic pressure applied to both sides of the piston of the hydraulic cylinder.
  • the engagement state is a state in which a transmission torque capacity is generated in the friction engagement element, and includes a slip engagement state and a direct engagement state.
  • the released state is a state in which no transmission torque capacity is generated in the friction engagement element.
  • the slip engagement state is an engagement state in which there is a rotational speed difference (slip) between the engagement members of the friction engagement element, and the direct engagement state is between the engagement members of the friction engagement element.
  • the engaged state has no rotational speed difference (slip).
  • the non-directly coupled state is an engaged state other than the directly coupled state, and includes a released state and a sliding engaged state.
  • the friction engagement element may generate a transmission torque capacity due to dragging between the engagement members (friction members) even when the command for generating the transmission torque capacity is not issued by the control device 30.
  • the friction members may be in contact with each other, and the transmission torque capacity may be generated by dragging the friction members. Therefore, the “released state” includes a state in which the transmission torque capacity is generated by dragging between the friction members when the control device 30 does not issue a command to generate the transmission torque capacity to the friction engagement device.
  • the hydraulic control system of the vehicle drive device 1 is a hydraulic control device for adjusting the hydraulic pressure of hydraulic fluid supplied from a hydraulic pump driven by a vehicle driving force source or a dedicated motor to a predetermined pressure.
  • a PC is provided. Although detailed explanation is omitted here, the hydraulic control device PC adjusts the opening degree of one or two or more adjusting valves based on the signal pressure from the hydraulic control valve such as a linear solenoid valve for adjusting hydraulic pressure. The amount of hydraulic oil drained from the regulating valve is adjusted to adjust the hydraulic pressure of the hydraulic oil to one or more predetermined pressures.
  • the hydraulic oil adjusted to a predetermined pressure is supplied to the transmission TM and the friction engagement elements such as the first engagement device CL1 and the second engagement device CL2 at a required hydraulic pressure. .
  • the control units 32 to 34 and the internal combustion engine control device 31 of the control device 30 include an arithmetic processing device (computer) such as a CPU as a core member, and a RAM configured to be able to read and write data from the arithmetic processing device. (Random access memory) and a storage device such as a ROM (read-only memory) configured to be able to read data from the arithmetic processing unit.
  • arithmetic processing device such as a CPU as a core member
  • RAM random access memory
  • a storage device such as a ROM (read-only memory) configured to be able to read data from the arithmetic processing unit.
  • Each function unit 41 to 47 of the control device 30 is configured by software (program) stored in the ROM of the control device, hardware such as a separately provided arithmetic circuit, or both.
  • the control units 32 to 34 and the internal combustion engine control device 31 of the control device 30 are configured to communicate with each other, share various information such as sensor detection information and control parameters, and perform cooperative control.
  • the functions of the function units 41 to 47 are realized.
  • the vehicle drive device 1 includes sensors such as sensors Se1 to Se5, and electric signals output from the sensors are input to the control device 30 and the internal combustion engine control device 31.
  • the control device 30 and the internal combustion engine control device 31 calculate detection information of each sensor based on the input electric signal.
  • the input rotation speed sensor Se1 is a sensor for detecting the rotation speed of the input shaft I.
  • the control device 30 detects the rotational speed (angular speed) of the input shaft I based on the input signal of the input rotational speed sensor Se1.
  • the output rotation speed sensor Se2 is a sensor for detecting the rotation speed of the output shaft O.
  • the control device 30 detects the rotational speed (angular speed) of the output shaft O based on the input signal of the output rotational speed sensor Se2.
  • the control device 30 calculates the vehicle speed based on the input signal of the output rotation speed sensor Se2.
  • the engine rotation speed sensor Se3 is a sensor for detecting the rotation speed of the internal combustion engine output shaft Eo (internal combustion engine ENG).
  • the internal combustion engine control device 31 detects the rotational speed (angular speed) of the internal combustion engine ENG based on the input signal of the engine rotational speed sensor Se3.
  • the shift position sensor Se4 is a sensor for detecting the selected position (shift position) of the shift lever operated by the driver.
  • the control device 30 detects the shift position based on the input signal of the shift position sensor Se4.
  • the shift lever can be selected from a parking range (P range), a reverse travel range (R range), a neutral range (N range), a forward travel range (D range), and the like.
  • the accelerator opening sensor Se5 is a sensor for detecting the operation amount of the accelerator pedal. The control device 30 detects the accelerator opening based on the input signal of the accelerator opening sensor Se5.
  • the internal combustion engine control device 31 includes an internal combustion engine control unit 41 that controls the operation of the internal combustion engine ENG.
  • the internal combustion engine control unit 41 performs torque control for controlling the internal combustion engine ENG to output the internal combustion engine required torque when the internal control engine required torque is commanded from the integrated control unit 46.
  • the internal combustion engine control unit 41 performs control to start combustion of the internal combustion engine ENG by starting fuel supply and ignition to the internal combustion engine ENG when there is a request to start combustion of the internal combustion engine. Further, when there is a rotation stop command for the internal combustion engine ENG from the integrated control unit 46 or the like, the internal combustion engine control unit 41 stops the fuel supply to the internal combustion engine ENG, ignition, etc., and stops the internal combustion engine ENG from rotating. To.
  • Rotating electrical machine control unit 32 The rotating electrical machine control unit 32 includes a rotating electrical machine control unit 42 that controls the operation of the rotating electrical machine MG.
  • the rotating electrical machine control unit 42 controls the rotating electrical machine MG to output the rotating electrical machine required torque when the rotating electrical machine required torque is commanded from the integrated control unit 46.
  • the rotating electrical machine control unit 42 controls the output torque of the rotating electrical machine MG by performing on / off control of a plurality of switching elements included in the inverter.
  • Power transmission control unit 33 The power transmission control unit 33 controls the transmission control unit 43 that controls the transmission device TM, the first engagement device control unit 44 that controls the first engagement device CL1, and the second engagement device CL2. A second engagement device control unit 45.
  • Shift control unit 43 The shift control unit 43 performs control for forming a shift stage in the transmission apparatus TM.
  • the shift control unit 43 determines a target shift stage in the transmission apparatus TM based on sensor detection information such as the vehicle speed, the accelerator opening, and the shift position. Then, the transmission control unit 43 engages or releases each engagement device by controlling the hydraulic pressure supplied to the plurality of engagement devices provided in the transmission device TM via the hydraulic control device PC.
  • the shift stage TM is formed in the transmission apparatus TM.
  • the shift control unit 43 instructs the target hydraulic pressure (hydraulic pressure command) of each engagement device to the hydraulic pressure control device PC, and the hydraulic pressure control device PC sets the hydraulic pressure of the commanded target hydraulic pressure (hydraulic pressure command) to each Supply to the engagement device.
  • the shift control unit 43 is configured to control the hydraulic pressure supplied to each engagement device by controlling the signal value supplied to each hydraulic control valve provided in the hydraulic control device PC. ing.
  • First engagement device controller 44 The first engagement device controller 44 controls the state of engagement of the first engagement device CL1. In the present embodiment, the first engagement device controller 44 causes the hydraulic pressure supplied to the first engagement device CL1 to match the hydraulic pressure command of the first engagement device CL1 commanded from the integrated control unit 46. The signal value supplied to each hydraulic control valve provided in the hydraulic control device PC is controlled.
  • Second engagement device controller 45 The second engagement device control unit 45 controls the state of engagement of the second engagement device CL2. In the present embodiment, the second engagement device controller 45 causes the hydraulic pressure supplied to the second engagement device CL2 to match the hydraulic pressure command of the second engagement device CL2 commanded from the integrated control unit 46. The signal value supplied to each hydraulic control valve provided in the hydraulic control device PC is controlled.
  • Vehicle control unit 34 The vehicle control unit 34 includes an integrated control unit 46, and the integrated control unit 46 includes a start control unit 47.
  • Integrated control unit 46 The integrated control unit 46 performs various torque controls performed on the internal combustion engine ENG, the rotating electrical machine MG, the transmission TM, the first engagement device CL1, the second engagement device CL2, and the like, and the engagement of each engagement device. Control that integrates control and the like as the entire vehicle is performed.
  • the integrated control unit 46 is a torque required for driving the wheel W according to the accelerator opening, the vehicle speed, the battery charge amount, and the like, and is transmitted from the driving force source side to the wheel W side. While calculating
  • the operation mode includes an electric mode in which the internal combustion engine ENG is separated from the wheels W and travels using the rotating electrical machine MG as a driving force source for the wheels W, and a parallel mode in which at least the internal combustion engine ENG travels as a driving force source.
  • the electric mode is determined as the operation mode, and in other cases, that is, when the accelerator opening is large or the battery charge is small.
  • the parallel mode is determined as the mode.
  • the electric mode is a mode in which only the rotating electrical machine MG is used as a driving force source for the wheels W.
  • Such an electric mode is generally called an EV (electric vehicle) mode.
  • the integrated control unit 46 requests the internal combustion engine required torque, which is the output torque required for the internal combustion engine ENG, and the rotating electrical machine MG based on the vehicle required torque, the operation mode, the battery charge amount, and the like.
  • the internal combustion engine required torque which is the output torque required for the internal combustion engine ENG
  • the rotating electrical machine MG based on the vehicle required torque, the operation mode, the battery charge amount, and the like.
  • the control units 41 to 45 are instructed to perform integrated control.
  • the start control unit 47 calculates the internal combustion engine required torque, the rotating electrical machine required torque, the hydraulic pressure command of the first engagement device CL1, and the hydraulic pressure command of the second engagement device CL2. Then, they are commanded to the other control units 41 to 45.
  • the start control unit 47 executes acceleration start control for starting the internal combustion engine ENG by the rotating electrical machine MG while transmitting the output torque of the rotating electrical machine MG to the wheels W from the state in which the internal combustion engine ENG is stopped. In doing so, second slip control for controlling the second engagement device CL2 to the slip engagement state is executed.
  • the start control unit 47 controls the rotating electrical machine MG so that torque in a direction for rotating the wheel W in the forward direction is transmitted via the second engagement device CL2 during execution of the second slip control.
  • the start control unit 47 performs the first rotation member on the rotating electrical machine MG side with respect to the second engagement device CL2 during execution of the second slip control.
  • the rotation speed of R1 and the rotation speed of the second rotation member R2 on the wheel W side with respect to the second engagement device CL2 are converted into the rotation speed of the same rotation member, the rotation of the first rotation member R1
  • the rotating electrical machine MG is controlled so that the speed is higher than the rotational speed of the second rotary member R2.
  • the start controller 47 determines that the rotational speed of the rotating electrical machine MG is the rotational speed of the rotating electrical machine MG that eliminates the rotational speed difference of the second engagement device CL2 during execution of the second slip control.
  • the rotating electrical machine MG is controlled so that the rotational speed becomes high.
  • the start controller 47 controls the rotating electrical machine MG so that the rotational speed of the rotating electrical machine MG approaches the target rotational speed higher than the synchronous rotational speed during the execution of the second slip control. Execute control. Further, the start control unit 47 performs the first slip control for controlling the first engagement device CL1 in the released state to the slip engagement state during the execution of the second slip control.
  • the “torque in the direction in which the wheel W is rotated in the forward direction” is torque in the same direction as the rotational direction of the wheel W in the forward state of the vehicle.
  • “Transmitted via the device CL2” means that when transmitted to the wheel W, the torque in the direction is transmitted via the second engagement device CL2.
  • the above “converted to the rotational speed of the same rotational member” means that the rotational speed of each rotational member is determined in consideration of the gear ratio of the power transmission mechanism between the first rotational member R1 and the second rotational member R2. In other words, conversion to a rotational speed at the same position (rotating member) in the power transmission path.
  • the first rotation member is obtained by multiplying one rotation speed by the speed ratio of the speed change mechanism.
  • the rotation speeds of both R1 and the second rotation member R2 can be converted into the rotation speed of the same rotation member.
  • the second engagement device CL2 is controlled to be in the slip engagement state in order to suppress the torque fluctuation due to the start of the internal combustion engine ENG from being transmitted to the wheels W via the second engagement device CL2. Is done. Further, when the vehicle speed is low, the second engagement device CL2 is controlled to be in a sliding engagement state in order to increase the rotation speed of the rotating electrical machine MG to be higher than the rotation speed of the internal combustion engine ENG that can start the internal combustion engine ENG. Is done. In the slip engagement state, torque (slip torque) corresponding to the transmission torque capacity (engagement pressure) of the second engagement device CL2 is transmitted from the rotating electrical machine MG side to the wheel W side via the second engagement device CL2. Is done. That is, the torque transmitted from the rotating electrical machine MG side to the wheel W side is a slip torque corresponding to the transmission torque capacity (engagement pressure) of the second engagement device CL2, regardless of the torque fluctuation generated on the internal combustion engine ENG side. It becomes.
  • the first engagement device CL1 in order to increase the rotation speed of the internal combustion engine ENG, the first engagement device CL1 is controlled to be in a sliding engagement state, and torque is transmitted from the rotating electrical machine MG side to the internal combustion engine ENG side.
  • torque slip torque
  • torque corresponding to the transmission torque capacity (engagement pressure) of the first engagement device CL1
  • the first engagement is performed with respect to the maximum torque Tmgmx of the rotating electrical machine MG.
  • Tmgmx the maximum torque transmitted to the internal combustion engine ENG via the device CL1.
  • the start control unit 47 controls the engagement pressure of the first engagement device CL1 so as to reduce the rotation speed of the rotating electrical machine in the first slip control. For this reason, in the present embodiment, the start control unit 47 uses the maximum torque Tmgmx that can be output from the rotating electrical machine MG in the first slip control via the second engaging device CL2 in the slipping engagement state.
  • a torque larger than a torque (hereinafter referred to as margin torque) obtained by subtracting a transmission torque (absolute value) transmitted from the wheel to the wheel W side (hereinafter also referred to as slip torque of the second engagement device CL2) is applied to the first engagement.
  • the maximum torque excess control for controlling the engagement pressure of the first engagement device CL1 is executed so that the device CL1 transmits from the rotating electrical machine MG side to the internal combustion engine ENG side.
  • the maximum torque Tmgmx of the rotating electrical machine MG is the maximum value of the torque range output under each operation condition in normal operation.
  • the total slip torque transmitted from the rotating electrical machine MG side to the internal combustion engine ENG side and the wheel W side via the first and second engaging devices CL1, CL2 exceeds the maximum torque Tmgmx of the rotating electrical machine MG.
  • the output torque of the rotating electrical machine MG is insufficient.
  • the rotational speed of the rotary electric machine MG falls.
  • torque due to the inertia of the rotating electrical machine MG is transmitted to the internal combustion engine ENG side via the first engagement device CL1, and as a result, the transmission torque to the internal combustion engine ENG side can be increased. . That is, the rotational energy of the rotating electrical machine MG can be converted into torque and transmitted to the internal combustion engine ENG side.
  • the torque of the rotating electrical machine MG that needs to be secured separately from the torque transmitted to the wheels W as the torque necessary for starting the internal combustion engine ENG can be reduced by that amount.
  • the transmission torque to the internal combustion engine ENG side is increased, so that the internal combustion engine ENG is started while maintaining the acceleration of the vehicle.
  • torque exceeding the limit of the output performance of the rotating electrical machine MG can be transmitted to the internal combustion engine ENG, and the start of the internal combustion engine ENG can be accelerated.
  • the start control unit 47 controls the engagement pressure of the first engagement device CL1 within the range in which the rotation speed of the rotating electrical machine MG can be maintained at a rotation speed larger than the synchronous rotation speed in the first slip control. It is configured.
  • the start control unit 47 is configured to increase the engagement pressure of the first engagement device CL1 so that the insufficient torque of the rotating electrical machine MG becomes a preset allowable insufficient torque.
  • the allowable insufficient torque is set in advance by experiments or the like to such a value that the rotational speed of the rotating electrical machine MG can be maintained at a rotational speed higher than the synchronous rotational speed.
  • the starting control unit 47 has a torque magnitude obtained by adding a preset allowable insufficient torque to a margin torque obtained by subtracting the slip torque (absolute value) of the second engagement device CL2 from the maximum torque Tmgmx of the rotating electrical machine MG.
  • the engagement pressure of the first engagement device CL1 is increased so that the transmission torque capacity of the one engagement device CL1 is obtained.
  • the start control unit 47 uses the output characteristics of the rotating electrical machine MG and calculates the maximum torque Tmgmx of the rotating electrical machine MG based on operating conditions such as the rotational speed of the rotating electrical machine MG and the charge amount of the battery. Further, the start control unit 47 calculates the slip torque of the second engagement device CL2 according to the engagement pressure of the second engagement device CL2. In this example, the start control unit 47 calculates the vehicle request torque as the slip torque of the second engagement device CL2.
  • FIG. 3 shows a time chart of the comparative example.
  • the slip torque (absolute value) of the second engagement device CL2 from the maximum torque Tmgmx of the rotating electrical machine MG. ) Is subtracted, and the engagement pressure of the first engagement device CL1 is controlled so that the first engagement device CL1 transmits the torque from the rotating electrical machine MG side to the internal combustion engine ENG side. (From time T03 to time T04).
  • the total slip torque (absolute value) of the first and second engagement devices CL1 and CL2 does not exceed the maximum torque Tmgmx of the rotating electrical machine MG, and the output torque of the rotating electrical machine MG is the maximum torque of the rotating electrical machine MG. It is controlled to be less than Tmgmx (from time T03 to time T04).
  • the accelerator opening is large, and the output torque of the rotating electrical machine MG (slip torque of the second engagement device CL2) transmitted to the wheel W side via the second engagement device CL2 is large.
  • the increase in the engagement pressure of the first engagement device CL1 is restricted within the range of the margin torque, and the increase in the magnitude of the slip torque of the first engagement device CL1 is restricted. Therefore, there is a limit to an increase in the rotational speed of the internal combustion engine ENG, and there is a limit to the early start-up of the internal combustion engine ENG.
  • the torque that can be transmitted to the wheels by the rotating electrical machine must be lower than the maximum torque that can be output by the rotating electrical machine by a torque that is necessary for starting the internal combustion engine.
  • the torque region where the electric mode can be executed is set to be narrow.
  • FIG. 4 shows a time chart of the present embodiment.
  • a torque larger than the margin torque obtained by subtracting the slip torque (absolute value) of the second engagement device CL2 from the maximum torque Tmgmx of the rotating electrical machine MG is set to the first slip engagement control.
  • the maximum torque excess control for controlling the engagement pressure of the first engagement device CL1 is executed so that one engagement device CL1 transmits from the rotating electrical machine MG side to the internal combustion engine ENG side (time T13). To time T15).
  • the total slip torque (absolute value) of the first and second engagement devices CL1, CL2 exceeds the maximum torque Tmgmx of the rotating electrical machine MG, and the output torque of the rotating electrical machine MG is the maximum torque Tmgmx of the rotating electrical machine MG. It is controlled in the vicinity (from time T14 to time T15).
  • the accelerator opening is large, and the output torque of the rotating electrical machine MG transmitted to the wheel W side via the second engagement device CL ⁇ b> 2 (of the second engagement device CL ⁇ b> 2).
  • This is a case where the magnitude of the slip torque) is large.
  • the engagement pressure of the first engagement device CL1 is increased beyond the range of the margin torque, and the magnitude of the slip torque of the first engagement device CL1 is increased compared to the case of the comparative example.
  • the torque of the rotating electrical machine MG that needs to be secured separately from the torque transmitted to the wheels W as the torque necessary for starting the internal combustion engine ENG is made smaller than that in the comparative example. Is done. As a result, it is possible to secure a large torque that can be transmitted from the rotating electrical machine MG to the wheel W side during the execution of the electric mode, and as a result, it is possible to expand the torque region in which the electric mode can be executed.
  • the start control unit 47 is configured to control the engagement pressure of the first engagement device CL1 within a range in which the rotation speed of the rotating electrical machine MG can be maintained at a rotation speed larger than the synchronous rotation speed. Therefore, the rotational speed of the rotating electrical machine MG is maintained at a rotational speed higher than the synchronous rotational speed, and the first engagement device CL1 is maintained in the sliding engagement state (from time T14 to time T16).
  • the first engagement device CL1 shifts to the direct engagement state (time T15), and the decrease in the rotational speed of the rotating electrical machine MG stops.
  • the rotational speeds of the internal combustion engine ENG and the rotating electrical machine MG are increased integrally (time T15 to T16).
  • the rotation speed of the rotating electrical machine MG is reduced to the rotation speed of the internal combustion engine ENG.
  • the acceleration start control will be described in detail with reference to an example of a time chart shown in FIG.
  • the start control unit 47 operates in the electric mode when the accelerator opening is increased beyond the determination opening or the battery charge is decreased below the determination charge.
  • the mode is changed to the parallel mode, it is determined that the start condition for the acceleration start control is satisfied.
  • the internal combustion engine ENG in the initial state up to time T11, the vehicle speed and the rotation speed of the rotating electrical machine MG are zero, the internal combustion engine ENG is stopped rotating, the first engagement device CL1 is in the released state, The two-engagement device CL2 is in a directly coupled state.
  • the accelerator opening increases beyond the determination opening, and the operation mode changes from the electric mode to the parallel mode, so the acceleration start control is started.
  • the start control unit 47 sets the torque corresponding to the vehicle required torque increased by increasing the accelerator opening to the rotating electrical machine required torque, and sets the torque corresponding to the vehicle required torque to the rotating electrical machine MG (equal to the vehicle required torque in this example). Torque control for outputting torque) is performed (after time T11). Thereafter, the vehicle speed (the rotational speed of the output shaft O, the synchronous rotational speed) starts to increase from zero.
  • the start control unit 47 starts the second slip control for controlling the second engagement device CL2 to the slip engagement state after the start of the acceleration start control (after time T11).
  • the start control unit 47 sets one of a plurality of engagement devices of the transmission device TM that forms the target gear position as the second engagement device CL2.
  • the start control unit 47 controls the engagement devices other than the second engagement device CL2 among the plurality of engagement devices of the transmission apparatus TM that form the target shift speed (not shown).
  • the start controller 47 lowers the engagement pressure of the second engagement device CL2 from the complete engagement pressure in order to shift the second engagement device CL2 from the direct engagement state to the slip engagement state.
  • the complete engagement pressure is an engagement pressure that can maintain an engagement state without slipping even if the torque transmitted from the driving force source to the engagement device varies.
  • the start control unit 47 is configured such that the slip torque transmitted from the rotating electrical machine MG side to the wheel W side via the second engagement device CL2 in the slipping engagement state is a torque corresponding to the vehicle required torque (in this example, the vehicle required torque).
  • the hydraulic pressure command of the second engagement device CL2 is set according to the vehicle required torque (time T11 to time T19) so that the torque becomes equal to the torque (time T11 to time T19).
  • FIG. 4 shows the torque acting on the inertial system of the rotating electrical machine MG as the rotating electrical machine operating torque so that the behavior of the rotational speed of the rotating electrical machine MG can be easily understood.
  • the inertial system of the rotating electrical machine MG is an inertial system of a rotating member that rotates integrally with the rotating electrical machine MG when the first engagement device CL1 and the second engagement device CL2 are in the sliding engagement state.
  • the start control unit 47 determines that the rotational speed difference between the rotational speed of the rotating electrical machine MG and the synchronous rotational speed, which corresponds to the rotational speed difference of the second engagement device CL2, exceeds the determination value, and the second engagement device CL2 After determining that the state has shifted to the combined state, the rotational speed control for controlling the rotating electrical machine MG is started so that the rotational speed of the rotating electrical machine MG is higher than the synchronous rotational speed (from time T12 to time T19). In the rotational speed control, the start control unit 47 changes the output torque (rotary electrical machine required torque) of the rotating electrical machine MG so that the rotational speed of the rotating electrical machine MG approaches the target rotational speed set higher than the synchronous rotational speed. The feedback control is performed.
  • the synchronous rotational speed is the rotational speed of the rotating electrical machine MG that eliminates the rotational speed difference of the second engagement device CL2.
  • the start control unit 47 calculates a synchronous rotation speed by multiplying the rotation speed of the output shaft O by the gear ratio of the gear stage formed in the transmission apparatus TM.
  • the start control unit 47 sets the target rotation speed of the rotating electrical machine MG to be equal to or higher than the rotation speed of the internal combustion engine ENG that can start the internal combustion engine ENG.
  • the start control unit 47 sets the target rotation speed of the rotating electrical machine MG to be equal to or higher than the rotation speed at which the internal combustion engine ENG can be started and equal to or higher than the rotation speed obtained by adding a preset target rotation speed difference to the synchronous rotation speed.
  • the start control unit 47 performs a sweep-up to gradually increase the target rotation speed from the synchronous rotation speed after the start of the rotation speed control (from time T12 to time T13).
  • the output torque of the rotating electrical machine MG is increased by an inertia torque corresponding to the moment of inertia of the rotating member that rotates integrally with the rotating electrical machine MG (from time T12 to time T13).
  • the start control unit 47 starts the first slip control for controlling the first engagement device CL1 from the released state to the slip engagement state after the start of the acceleration start control (after time T11).
  • the start control unit 47 performs preliminary filling to increase the engagement pressure of the first engagement device CL1 to near the stroke end pressure after the start of the first slip control (from time T11 to time T13).
  • the start control unit 47 immediately increases the hydraulic pressure command of the first engagement device CL1 more than the stroke end pressure immediately after the start of the preliminary filling, thereby speeding up the rise of the actual pressure.
  • the start control unit 47 finishes sweeping up the target rotational speed, and after the rotational speed of the rotating electrical machine MG increases to the target rotational speed, increases the hydraulic pressure command of the first engagement device CL1 from the stroke end pressure, One engagement device CL1 is shifted to the sliding engagement state (after time T13).
  • the start control unit 47 causes the first engagement device CL1 to generate a torque larger than a margin torque obtained by subtracting the slip torque (absolute value) of the second engagement device CL2 from the maximum torque Tmgmx of the rotating electrical machine MG by the maximum torque excess control.
  • the engagement pressure (hydraulic pressure command) of the first engagement device CL1 is increased so as to transmit from the rotating electrical machine MG side to the internal combustion engine ENG side (from time T13 to time T15). As a result, the start control unit 47 reduces the rotation speed of the rotating electrical machine MG in the first slip control.
  • the start control unit 47 sets the allowable insufficient torque that is set in advance to the margin torque obtained by subtracting the slip torque (absolute value) of the second engagement device CL2 from the maximum torque Tmgmx of the rotating electrical machine MG. Is configured to increase the engagement pressure (hydraulic pressure command) of the first engagement device CL1 so that the magnitude of the torque becomes the transmission torque capacity (slip torque) of the first engagement device CL1. Yes.
  • the actual engagement pressure (hydraulic pressure) of the first engagement device CL1 increases with a delay, and the first engagement device The slip torque of CL1 increases with a delay (from time T13 to time T15).
  • the output torque of the rotating electrical machine MG is increased by the rotational speed control so as to compensate for the increase in the magnitude of the slip torque of the first engagement device CL1 (from time T13 to time T14).
  • the output torque of the rotating electrical machine MG reaches the maximum torque Tmgmx at time T14, the increase in the output torque of the rotating electrical machine MG is limited by the maximum torque Tmgmx. Thereafter, since the magnitude of the slip torque of the first engagement device CL1 increases, the output torque of the rotating electrical machine MG is insufficient and insufficient with respect to the total slip torque of the first and second engagement devices CL1, CL2. The amount increases. Therefore, the total torque (specifically, the total torque of the slip torque of the first engagement device CL1, the slip torque of the second engagement device CL2, and the output torque of the rotary electric machine MG) acting on the inertial system of the rotary electric machine MG is obtained. The rotational speed of the rotating electrical machine MG decreases from the target rotational speed (from time T14 to time T15).
  • the rotational speed of the internal combustion engine ENG increases from zero (from time T13 to time T15). ). Since the magnitude of the slip torque of the first engagement device CL1 is increased until the output torque of the rotating electrical machine MG is insufficient, the speed of increase in the rotational speed of the internal combustion engine ENG is made higher than in the comparative example of FIG. It is possible to increase the rotational speed of the internal combustion engine ENG. Since the rise of the rotational speed of the internal combustion engine ENG is advanced, the start timing of the combustion start control of the internal combustion engine ENG such as fuel injection can be advanced, and the combustion start of the internal combustion engine ENG can be advanced.
  • the start control unit 47 ends the first slip control when the rotational speed difference between the rotational speed of the rotating electrical machine MG and the rotational speed of the internal combustion engine ENG is equal to or less than a determination threshold value, and engages the first engagement device CL1.
  • the combined pressure hydroaulic pressure command
  • the first engagement device CL1 When the first engagement device CL1 shifts to the direct engagement state, the first engagement device CL1 does not transmit the slip torque having the magnitude of the transmission torque capacity, and transmits the predetermined torque within the range of the transmission torque capacity. As a result, the magnitude of the transmission torque of the first engagement device CL1 decreases. Specifically, the total torque (specifically, the magnitude of the slip torque of the second engagement device CL2 from the output torque of the rotating electrical machine MG) acting on the inertial system of the internal combustion engine ENG that rotates integrally and the inertial system of the rotating electrical machine MG. The torque obtained by subtracting the torque from the inertial system of the internal combustion engine ENG and the inertial system of the rotating electrical machine MG is transmitted via the first engagement device CL1. become.
  • the rotational speeds of the internal combustion engine ENG and the rotating electrical machine MG are integrally increased to the target rotational speed (from time T15 to time T16).
  • the rotational speed of the rotating electrical machine MG increases to the target rotational speed, so the inertia torque of the internal combustion engine ENG and the rotating electrical machine MG decreases, so the output torque of the rotating electrical machine MG decreases from the maximum torque Tmgmx (from time T16 to time T17).
  • the transmission torque of the first engagement device CL1 in the direct engagement state increases in accordance with the increase in the output torque of the internal combustion engine ENG (after time T17).
  • the transmission torque of the first engagement device CL1 increases, the rotational speed of the rotating electrical machine MG tends to increase. Therefore, the output torque of the rotating electrical machine MG decreases so as to compensate for the increase in the transmission torque of the first engagement device CL1 by the rotational speed control (from time T17 to time T18).
  • the start control unit 47 performs a sweep down that gradually decreases the target rotational speed to the synchronous rotational speed (from time T18 to time T19).
  • the start control unit 47 sets the engagement pressure (hydraulic pressure command) of the second engagement device CL2 to the full engagement pressure after the rotation speed difference between the rotation speed of the rotating electrical machine MG and the synchronous rotation speed is equal to or less than the determination threshold value.
  • the second engagement device CL2 is shifted to the direct engagement state, and the rotation speed control of the rotating electrical machine MG is finished.
  • torque control for causing the rotating electrical machine MG to output the rotating electrical machine required torque calculated based on the vehicle required torque or the like is started (after time T19).
  • the start control unit 47 performs torque control for causing the internal combustion engine ENG to output the internal combustion engine required torque calculated based on the vehicle required torque after the combustion of the internal combustion engine ENG is started (after time T17).
  • the start control unit 47 ends the acceleration start control after shifting the second engagement device CL2 to the direct engagement state.
  • step # 01 the start control unit 47 determines whether or not the acceleration start control start condition is satisfied as described above, and determines that the start condition is satisfied (step # 01: Yes). Then, a series of acceleration start control is started. After starting the acceleration start control, the start control unit 47 starts the second slip control for controlling the second engagement device CL2 to the slip engagement state as described above (step # 02). Further, as described above, the start control unit 47 starts the first slip control for controlling the first engagement device CL1 from the released state to the slip engagement state, and the maximum torque excess control (step # 03).
  • start control unit 47 starts the rotational speed control of rotating electrical machine MG as described above (step # 04).
  • the start control unit 47 starts the combustion start control of the internal combustion engine ENG after the start of the first slip control (step # 05).
  • the start control unit 47 ends the first slip control and shifts the first engagement device CL1 to the direct engagement state.
  • Step # 07 When it is determined that the combustion start of the internal combustion engine ENG has been completed (step # 08: Yes), the start control unit 47 shifts the second engagement device CL2 to the direct engagement state, and performs the second slip control and the rotation speed.
  • the control is terminated (step # 09), and the acceleration start control is terminated.
  • the vehicle drive device 1 further includes an engagement device in the power transmission path 2 between the rotating electrical machine MG and the transmission device TM, and the engagement device is a second engagement device CL2. It may be configured to be set to.
  • the vehicle drive device 1 further includes an engagement device in the power transmission path 2 between the transmission device TM and the wheel W, and the engagement device is set to the second engagement device CL2. May be.
  • the vehicle drive device 1 shown in FIG. 6 may be configured not to include the transmission device TM.
  • FIG. 6 may be configured not to include the transmission device TM.
  • the vehicle drive device 1 further includes a torque converter TC in the power transmission path 2 between the rotating electrical machine MG and the transmission device TM, and directly connects the input / output members of the torque converter TC.
  • the lock-up clutch to be brought into a state may be configured to be set in the second engagement device CL2.
  • first engagement device CL1 and the second engagement device CL2 are engagement devices controlled by hydraulic pressure
  • the present invention is not limited to this. That is, one or both of the first engagement device CL1 and the second engagement device CL2 is an engagement device controlled by a driving force other than hydraulic pressure, for example, an electromagnet driving force, a servo motor driving force, or the like. May be.
  • the transmission apparatus TM may be configured to be a transmission apparatus other than the stepped automatic transmission apparatus, such as a continuously variable automatic transmission apparatus capable of continuously changing the transmission gear ratio.
  • the engagement device provided in the transmission device TM is set to the second engagement device CL2 whose engagement state is controlled during the start control of the internal combustion engine ENG, or provided separately from the transmission device TM.
  • the engagement device may be the second engagement device CL2.
  • the second engagement device CL2 is a clutch
  • the present invention is not limited to this. That is, the second engagement device CL2 may be a brake.
  • the first rotating member R1 is a rotating member on the rotating electrical machine MG side relative to the member selectively stopped by the second engaging device CL2, and is between the second engaging device CL2. Any rotating member may be used as long as the rotating member does not pass through another engaging device.
  • the second rotating member R2 is a rotating member on the wheel W side with respect to a member that is selectively stopped by the second engaging device CL2, and the second rotating member R2 is another member between the second engaging device CL2 and the other member. Any rotating member may be used as long as it is not a rotating member.
  • the control device 30 includes a plurality of control units 32 to 34, and a case where the plurality of control units 32 to 34 share a plurality of function units 41 to 47 will be described as an example. However, it is not limited to this. That is, the control device 30 may be provided as a control device in which the plurality of control units 32 to 34 described above are integrated or separated in any combination, and the assignment of the plurality of functional units 41 to 47 is also arbitrarily set. Can do.
  • the start control unit 47 has been described as an example in which the output torque of the rotating electrical machine MG is increased to the maximum torque Tmgmx during execution of the maximum torque excess control, but the present invention is not limited to this. That is, the start control unit 47 may be configured to increase the output torque of the rotating electrical machine MG to a torque smaller than the maximum torque Tmgmx during execution of the maximum torque excess control.
  • the initial condition before the start of acceleration start control is the vehicle stop state (rotation stop state of the wheel W) has been described as an example in the example of the time chart of FIG.
  • the initial condition before starting the acceleration start control is that the operation mode is set to the electric mode, the first engagement device CL1 is in the released state, the internal combustion engine ENG has stopped rotating, and the second engagement The device CL2 may be in a directly connected state and the vehicle is traveling by the output torque of the rotating electrical machine MG (the state where the wheels W are rotating).
  • the first engagement device CL1 is described as an example in which the transmission torque capacity (engagement pressure) is increased by increasing the supply hydraulic pressure (hydraulic pressure command).
  • the first engagement device CL1 may be configured to increase the transmission torque capacity (engagement pressure) by reducing the supply oil pressure (hydraulic pressure command).
  • the return spring may be biased toward the engagement side, and the supply hydraulic pressure to the first engagement device CL1 may be pressed toward the release side.
  • the start controller 47 increases the engagement pressure of the first engagement device CL1 by decreasing the supply hydraulic pressure (hydraulic pressure command) of the first engagement device CL1 in the first slip control. Composed.
  • the above-described embodiment includes at least the following configuration.
  • the first engagement device (CL1), the rotating electrical machine (MG), and the second engagement A control device (30) whose control target is a vehicle drive device (1) provided with a combined device (CL2), in which the internal combustion engine (ENG) is stopped from rotating.
  • the second slip control is performed to control the second engagement device (CL2) to the slip engagement state.
  • the first slip control for controlling the disengaged first engagement device (CL1) to the slip engagement state is executed, and in the first slip control, the rotating electrical machine (MG ) To reduce the rotation speed of the first engagement device (CL1). Control to.
  • the rotational speed of the rotating electrical machine (MG) is decreased by the first slip control.
  • the inertia torque as a reaction force against the decrease in the rotational speed of the rotating electrical machine (MG) is transmitted to the internal combustion engine (ENG) side through the first engagement device (CL1). That is, by converting the rotational energy of the rotating electrical machine (MG) into torque and transmitting it to the internal combustion engine (ENG) side, a torque larger than the output torque of the rotating electrical machine (MG) is transmitted to the internal combustion engine (ENG) side. be able to.
  • the control of the engagement pressure of the first engagement device in the first slip control is performed from the maximum torque (Tmgmx) that can be output by the rotating electrical machine (MG) via the second engagement device (CL2).
  • Tmgmx maximum torque
  • a torque larger than the torque obtained by subtracting the transmission torque transmitted from the rotating electrical machine (MG) side to the wheel (W) side is transferred from the rotating electrical machine (MG) side to the internal combustion engine (ENG) side.
  • the engagement pressure of the first engagement device (CL1) is controlled so as to transmit.
  • the output torque of the electric machine (MG) is insufficient. Therefore, in the first slip control, the engagement pressure of the first engagement device (CL1) is controlled so as to reduce the rotation speed of the rotating electrical machine (MG). Thereby, the inertia torque as a reaction force with respect to the fall of the rotational speed of a rotary electric machine (MG) can be transmitted to the internal combustion engine (ENG) side.
  • the first slip control it is preferable to control the engagement pressure of the first engagement device (CL1) within a range in which the second engagement device (CL2) can be maintained in the slip engagement state.
  • the increase in the engagement pressure of the first engagement device (CL1) decreases the rotation speed of the rotating electrical machine (MG), and the second engagement device (CL2) shifts to the direct engagement state. Can be suppressed. Therefore, it can suppress that a torque shock is transmitted to a wheel (W) when a 2nd engagement apparatus (CL2) transfers to a direct connection engagement state.
  • the rotational speed of the rotating electrical machine (MG) is set to a synchronous rotational speed that is the rotational speed of the rotating electrical machine (MG) that eliminates the rotational speed difference of the second engagement device (CL2).
  • Rotational speed control for controlling the rotating electrical machine (MG) is executed so that the target rotational speed approaches a higher target rotational speed, and the target rotational speed is higher than the rotational speed of the internal combustion engine (ENG) that can start the internal combustion engine (ENG). It is preferable that it is set.
  • the rotational speed of the rotating electrical machine (MG) temporarily decreases below the rotational speed at which the internal combustion engine (ENG) can be started.
  • the internal combustion engine (ENG) can be started by finally increasing the rotational speed of the rotating electrical machine (MG) to a rotational speed at which the internal combustion engine (ENG) can be started.
  • the technology according to the present disclosure provides a vehicle drive device in which a first engagement device, a rotating electrical machine, and a second engagement device are provided in order from the side of the internal combustion engine on a power transmission path that connects the internal combustion engine and wheels.
  • a control device that controls the target.
  • Vehicle drive device 2 Power transmission path 30: Vehicle drive device control device (control device) 47: Start control unit CL1: First engagement device CL2: Second engagement device ENG: Internal combustion engine MG: Rotating electrical machine O: Output shaft Tmgmx: Maximum torque W of the rotating electrical machine: Wheel

Abstract

 電動モード(EVモード)を実行可能なトルク領域を拡大することができる車両用駆動装置の制御装置が望まれる。 内燃機関(ENG)を始動させる際に、第二係合装置(CL2)を滑り係合状態に制御する第二滑り制御の実行中に、解放状態である第一係合装置(CL1)を滑り係合状態に制御する第一滑り制御を実行し、この第一滑り制御において、回転電機(MG)の回転速度を低下させるように、第一係合装置(CL1)の係合圧を制御する車両用駆動装置の制御装置。

Description

車両用駆動装置の制御装置
 本発明は、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、及び第二係合装置が設けられた車両用駆動装置を制御対象とする制御装置に関する。
 上記のような制御装置に関して、例えば下記の特許文献1に記載された技術が既に知られている。特許文献1の技術では、内燃機関を始動するために、第一係合装置を滑り係合状態に制御して、第一係合装置を介して回転電機の出力トルクを内燃機関に伝達し、内燃機関の回転速度を上昇させていた。
特開2014-73747号公報
 しかしながら、特許文献1の技術では、内燃機関を車輪から切り離して回転電機を車輪の駆動力源として走行する電動モード(EVモード)において、回転電機には、車輪に伝達するトルクとは別に、内燃機関を始動するために必要なトルクを常に確保しておく必要がある。そのため、電動モードにおいて回転電機が車輪に伝達可能なトルクは、回転電機が出力可能な最大トルクに対して、内燃機関の始動に必要なトルク分だけ低いトルクとならざるを得ず、その分だけ、電動モードを実行可能なトルク領域が狭く設定されていた。
 そこで、電動モードを実行可能なトルク領域を拡大することができる車両用駆動装置の制御装置が望まれる。
 上記に鑑みた、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、及び第二係合装置が設けられた車両用駆動装置を制御対象とする制御装置の特徴構成は、前記内燃機関が回転停止している状態から、前記回転電機の出力トルクを前記車輪に伝達しつつ、前記回転電機によって前記内燃機関を始動させる際に、前記第二係合装置を滑り係合状態に制御する第二滑り制御を実行し、前記第二滑り制御の実行中に、解放状態である前記第一係合装置を滑り係合状態に制御する第一滑り制御を実行し、前記第一滑り制御において、前記回転電機の回転速度を低下させるように、前記第一係合装置の係合圧を制御する点にある。
 上記の特徴構成によれば、第二滑り制御の実行中に、回転電機の回転速度が、第一滑り制御により低下する。そして、このような回転電機の回転速度の低下に対する反力としてのイナーシャトルクが、第一係合装置を介して内燃機関側に伝達される。すなわち、回転電機の回転エネルギをトルクに変換して内燃機関側に伝達することで、回転電機の出力トルクよりも大きいトルクを内燃機関側へ伝達することができる。従って、内燃機関を始動するために必要なトルクとして、車輪に伝達するトルクとは別に確保しておく必要がある回転電機のトルクを、その分だけ小さくすることができる。これにより、電動モードの実行中に回転電機から車輪側へ伝達することができるトルクを大きく確保することが可能となり、その結果、電動モードを実行可能なトルク領域を拡大することができる。
実施形態に係る車両用駆動装置及び制御装置の概略構成を示す模式図である。 実施形態に係る制御装置の概略構成を示すブロック図である。 比較例に係る、内燃機関の始動制御の制御挙動を説明するタイムチャートである。 実施形態に係る、内燃機関の始動制御の制御挙動を説明するタイムチャートである。 実施形態に係る、内燃機関の始動制御の処理を説明するフローチャートである。 その他の実施形態に係る車両用駆動装置及び制御装置の概略構成を示す模式図である。 その他の実施形態に係る車両用駆動装置及び制御装置の概略構成を示す模式図である。
1.実施形態
 車両用駆動装置1の制御装置30(以下、単に制御装置30と称す)の実施形態について、図面を参照して説明する。図1は、本実施形態に係る車両用駆動装置1及び制御装置30の概略構成を示す模式図である。この図において、実線は駆動力の伝達経路を示し、破線は作動油の供給経路を示し、一点鎖線は信号の伝達経路を示している。この図に示すように、本実施形態に係る車両用駆動装置1は、概略的には、内燃機関ENG及び回転電機MGを駆動力源として備え、これらの駆動力源の駆動力を、動力伝達機構を介して車輪Wへ伝達する構成となっている。車両用駆動装置1には、内燃機関ENGと車輪Wとを結ぶ動力伝達経路2に、内燃機関ENGの側から順に、第一係合装置CL1、回転電機MG、及び第二係合装置CL2が設けられている。
 本実施形態に係る車両用駆動装置1には、回転電機MGと車輪Wとの間の動力伝達経路2に変速装置TMが備えられており、第二係合装置CL2は、変速装置TMに備えられた複数の係合装置の中の1つとされる。
 なお、本願において「回転電機」は、モータ(電動機)、ジェネレータ(発電機)、及び必要に応じてモータ及びジェネレータの双方の機能を果たすモータ・ジェネレータのいずれをも含む概念として用いている。
 ハイブリッド車両には、車両用駆動装置1を制御対象とする制御装置30が備えられている。本実施形態に係わる制御装置30は、回転電機MGの制御を行う回転電機制御ユニット32と、変速装置TM、第一係合装置CL1、及び第二係合装置CL2の制御を行う動力伝達制御ユニット33と、これらの制御装置を統合して車両用駆動装置1の制御を行う車両制御ユニット34と、を有している。また、ハイブリッド車両には、内燃機関ENGの制御を行う内燃機関制御装置31も備えられている。
 制御装置30は、図2に示すように、内燃機関ENGの始動制御を行う始動制御部47などの機能部を備えている。
 始動制御部47は、内燃機関ENGが回転停止している状態から、回転電機MGの出力トルクを車輪Wに伝達しつつ、回転電機MGによって内燃機関ENGを始動させる加速始動制御を実行する際に、第二係合装置CL2を滑り係合状態に制御する第二滑り制御を実行する。始動制御部47は、第二滑り制御の実行中に、解放状態である第一係合装置CL1を滑り係合状態に制御する第一滑り制御を実行する。始動制御部47は、第一滑り制御において、回転電機MGの回転速度を低下させるように、第一係合装置CL1の係合圧を制御する。
 以下、本実施形態に係る車両用駆動装置1及び制御装置30について、詳細に説明する。
1-1.車両用駆動装置1の構成
 まず、本実施形態に係るハイブリッド車両の車両用駆動装置1の構成について説明する。図1に示すように、ハイブリッド車両は、車両の駆動力源として内燃機関ENG及び回転電機MGを備え、これらの内燃機関ENGと回転電機MGとが直列に駆動連結されるパラレル方式のハイブリッド車両となっている。ハイブリッド車両は、変速装置TMを備えており、当該変速装置TMにより、入力軸Iに伝達された内燃機関ENG及び回転電機MGの回転速度を変速すると共にトルクを変換して出力軸Oに伝達する。
 なお、本願において、「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、ベルト、チェーン等が含まれる。また、このような伝動部材として、回転及び駆動力を選択的に伝達する係合装置、例えば摩擦係合装置や噛み合い式係合装置等が含まれていてもよい。
 内燃機関ENGは、燃料の燃焼により駆動される熱機関であり、例えば、ガソリンエンジンやディーゼルエンジンなどの公知の各種内燃機関を用いることができる。本例では、内燃機関ENGのクランクシャフト等の内燃機関出力軸Eoが、第一係合装置CL1を介して入力軸Iと選択的に駆動連結される。
 回転電機MGは、非回転部材としてのケースに固定されたステータと、このステータと対応する位置で回転自在に支持されたロータと、を有している。この回転電機MGのロータは、入力軸Iと一体回転するように駆動連結されている。すなわち、本実施形態においては、入力軸Iに内燃機関ENG及び回転電機MGの双方が駆動連結される構成となっている。回転電機MGは、直流交流変換を行うインバータを介して蓄電装置としてのバッテリに電気的に接続されている。そして、回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能と、を果たすことが可能とされている。すなわち、回転電機MGは、インバータを介してバッテリからの電力供給を受けて力行し、或いは内燃機関ENGや車輪Wから伝達される回転駆動力により発電し、発電された電力は、インバータを介してバッテリに蓄電される。
 入力軸Iには、変速装置TMが駆動連結されている。本実施形態では、変速装置TMは、変速比の異なる複数の変速段を有する有段の自動変速装置である。変速装置TMは、これら複数の変速段を形成するため、遊星歯車機構等の歯車機構と複数の係合装置とを備えている。本実施形態では、複数の係合装置の中の一つが、第二係合装置CL2とされる。本例では、第二係合装置CL2はクラッチとされている。また、図1では、第二係合装置CL2の回転電機MG側の係合部材と一体回転する回転部材に第一回転部材の符号「R1」を付し、第二係合装置CL2の車輪W側の係合部材と一体回転する回転部材に第二回転部材の符号「R2」を付している。なお、第一回転部材R1は、第二係合装置CL2に対して回転電機MG側の回転部材であって第二係合装置CL2との間に他の係合装置を介していない回転部材であれば、いずれの回転部材であってもよい。同様に、第二回転部材R2は、第二係合装置CL2に対して車輪W側の回転部材であって第二係合装置CL2との間に他の係合装置を介していない回転部材であれば、いずれの回転部材であってもよい。
 この変速装置TMは、各変速段の変速比で、入力軸Iの回転速度を変速するとともにトルクを変換して、出力軸Oへ伝達する。変速装置TMから出力軸Oへ伝達されたトルクは、差動歯車装置DFを介して左右2つの車軸AXに分配されて伝達され、各車軸AXに駆動連結された車輪Wに伝達される。ここで、変速比は、変速装置TMにおいて各変速段が形成された場合の、出力軸Oの回転速度に対する入力軸Iの回転速度の比であり、本願では入力軸Iの回転速度を出力軸Oの回転速度で除算した値である。すなわち、入力軸Iの回転速度を変速比で除算した回転速度が、出力軸Oの回転速度になる。また、入力軸Iから変速装置TMに伝達されるトルクに、変速比を乗算したトルクが、変速装置TMから出力軸Oに伝達されるトルクになる。
 本例では、変速装置TMの複数の係合装置(第二係合装置CL2)、及び第一係合装置CL1は、それぞれ摩擦材を有して構成されるクラッチやブレーキ等の摩擦係合要素である。これらの摩擦係合要素は、供給される油圧を制御することによりその係合圧を制御して伝達トルク容量の増減を連続的に制御することが可能とされている。このような摩擦係合要素としては、例えば湿式多板クラッチや湿式多板ブレーキ等が好適に用いられる。
 摩擦係合要素は、その係合部材間の摩擦により、係合部材間でトルクを伝達する。摩擦係合要素の係合部材間に回転速度差(滑り)がある場合は、動摩擦により回転速度の大きい方の部材から小さい方の部材に伝達トルク容量の大きさのトルク(スリップトルク)が伝達される。摩擦係合要素の係合部材間に回転速度差(滑り)がない場合は、摩擦係合要素は、伝達トルク容量の大きさを上限として、静摩擦により摩擦係合要素の係合部材間に作用するトルクを伝達する。ここで、伝達トルク容量とは、摩擦係合要素が摩擦により伝達することができる最大のトルクの大きさである。伝達トルク容量の大きさは、摩擦係合要素の係合圧に比例して変化する。係合圧とは、入力側係合部材(摩擦板)と出力側係合部材(摩擦板)とを相互に押し付け合う圧力(又は力)である。本実施形態では、係合圧は、供給されている油圧の大きさに比例して変化する。すなわち、本実施形態では、伝達トルク容量の大きさは、摩擦係合要素に供給されている油圧の大きさに比例して変化する。
 各摩擦係合要素は、リターンばねを備えており、ばねの反力により解放側に付勢されている。そして、各摩擦係合要素の油圧シリンダに供給される油圧により生じる力がばねの反力を上回ると、各摩擦係合要素に伝達トルク容量が生じ始め、各摩擦係合要素は、解放状態から係合状態に変化する。この伝達トルク容量が生じ始めるときの油圧を、ストロークエンド圧と称す。各摩擦係合要素は、供給される油圧がストロークエンド圧を上回った後、油圧の増加に比例して、その伝達トルク容量が増加するように構成されている。なお、摩擦係合要素は、リターンばねを備えておらず、油圧シリンダのピストンの両側にかかる油圧の差圧によって制御させる構造でもよい。
 本実施形態において、係合状態とは、摩擦係合要素に伝達トルク容量が生じている状態であり滑り係合状態と直結係合状態とが含まれる。解放状態とは、摩擦係合要素に伝達トルク容量が生じていない状態である。また、滑り係合状態とは、摩擦係合要素の係合部材間に回転速度差(滑り)がある係合状態であり、直結係合状態とは、摩擦係合要素の係合部材間に回転速度差(滑り)がない係合状態である。また、非直結係合状態とは、直結係合状態以外の係合状態であり、解放状態と滑り係合状態とが含まれる。
 なお、摩擦係合要素には、制御装置30により伝達トルク容量を生じさせる指令が出されていない場合でも、係合部材(摩擦部材)同士の引き摺りによって伝達トルク容量が生じる場合がある。例えば、ピストンにより摩擦部材同士が押圧されていない場合でも、摩擦部材同士が接触し、摩擦部材同士の引き摺りによって伝達トルク容量が生じる場合がある。そこで、「解放状態」には、制御装置30が摩擦係合装置に伝達トルク容量を生じさせる指令を出していない場合に、摩擦部材同士の引き摺りにより、伝達トルク容量が生じている状態も含まれるものとする。
1-2.油圧制御系の構成
 車両用駆動装置1の油圧制御系は、車両の駆動力源や専用のモータによって駆動される油圧ポンプから供給される作動油の油圧を所定圧に調整するための油圧制御装置PCを備えている。ここでは詳しい説明を省略するが、油圧制御装置PCは、油圧調整用のリニアソレノイド弁などの油圧制御弁からの信号圧に基づき一又は二以上の調整弁の開度を調整することにより、当該調整弁からドレインする作動油の量を調整して作動油の油圧を一又は二以上の所定圧に調整する。所定圧に調整された作動油は、それぞれ必要とされるレベルの油圧で、変速装置TM、並びに第一係合装置CL1や第二係合装置CL2等の各摩擦係合要素等に供給される。
1-3.制御装置の構成
 次に、車両用駆動装置1の制御を行う制御装置30及び内燃機関制御装置31の構成について、図2を参照して説明する。
 制御装置30の制御ユニット32~34及び内燃機関制御装置31は、CPU等の演算処理装置(コンピュータ)を中核部材として備えるとともに、当該演算処理装置からデータを読み出し及び書き込みが可能に構成されたRAM(ランダム・アクセス・メモリ)や、演算処理装置からデータを読み出し可能に構成されたROM(リード・オンリ・メモリ)等の記憶装置等を有して構成されている。そして、制御装置のROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御装置30の各機能部41~47などが構成されている。また、制御装置30の制御ユニット32~34及び内燃機関制御装置31は、互いに通信を行うように構成されており、センサの検出情報及び制御パラメータ等の各種情報を共有するとともに協調制御を行い、各機能部41~47の機能が実現される。
 また、車両用駆動装置1は、センサSe1~Se5などのセンサを備えており、各センサから出力される電気信号は制御装置30及び内燃機関制御装置31に入力される。制御装置30及び内燃機関制御装置31は、入力された電気信号に基づき各センサの検出情報を算出する。入力回転速度センサSe1は、入力軸Iの回転速度を検出するためのセンサである。制御装置30は、入力回転速度センサSe1の入力信号に基づいて入力軸Iの回転速度(角速度)を検出する。出力回転速度センサSe2は、出力軸Oの回転速度を検出するためのセンサである。制御装置30は、出力回転速度センサSe2の入力信号に基づいて出力軸Oの回転速度(角速度)を検出する。また、出力軸Oの回転速度は車速に比例するため、制御装置30は、出力回転速度センサSe2の入力信号に基づいて車速を算出する。機関回転速度センサSe3は、内燃機関出力軸Eo(内燃機関ENG)の回転速度を検出するためのセンサである。内燃機関制御装置31は、機関回転速度センサSe3の入力信号に基づいて内燃機関ENGの回転速度(角速度)を検出する。
 シフト位置センサSe4は、運転者により操作されるシフトレバーの選択位置(シフト位置)を検出するためのセンサである。制御装置30は、シフト位置センサSe4の入力信号に基づいてシフト位置を検出する。シフトレバーは、パーキングレンジ(Pレンジ)、後進走行レンジ(Rレンジ)、ニュートラルレンジ(Nレンジ)、前進走行レンジ(Dレンジ)などに選択可能とされている。
 アクセル開度センサSe5は、アクセルペダルの操作量を検出するためのセンサである。制御装置30は、アクセル開度センサSe5の入力信号に基づいてアクセル開度を検出する。
1-3-1.内燃機関制御装置31
 内燃機関制御装置31は、内燃機関ENGの動作制御を行う内燃機関制御部41を備えている。本実施形態では、内燃機関制御部41は、統合制御部46から内燃機関要求トルクが指令されている場合は、内燃機関ENGが内燃機関要求トルクを出力するように制御するトルク制御を行う。
 内燃機関制御部41は、内燃機関の燃焼開始要求があった場合は、内燃機関ENGへの燃料供給及び点火を開始するなどして、内燃機関ENGの燃焼を開始する制御を行う。また、内燃機関制御部41は、統合制御部46などから内燃機関ENGの回転停止指令があった場合は、内燃機関ENGへの燃料供給や点火などを停止して、内燃機関ENGを回転停止状態にする。
1-3-2.回転電機制御ユニット32
 回転電機制御ユニット32は、回転電機MGの動作制御を行う回転電機制御部42を備えている。本実施形態では、回転電機制御部42は、統合制御部46から回転電機要求トルクが指令されている場合は、回転電機MGが回転電機要求トルクを出力するように制御する。具体的には、回転電機制御部42は、インバータが備える複数のスイッチング素子をオンオフ制御することにより、回転電機MGの出力トルクを制御する。
1-3-3.動力伝達制御ユニット33
 動力伝達制御ユニット33は、変速装置TMの制御を行う変速制御部43と、第一係合装置CL1の制御を行う第一係合装置制御部44と、第二係合装置CL2の制御を行う第二係合装置制御部45と、を備えている。
1-3-3-1.変速制御部43
 変速制御部43は、変速装置TMに変速段を形成する制御を行う。変速制御部43は、車速、アクセル開度、及びシフト位置などのセンサ検出情報に基づいて変速装置TMにおける目標変速段を決定する。そして、変速制御部43は、油圧制御装置PCを介して変速装置TMに備えられた複数の係合装置に供給される油圧を制御することにより、各係合装置を係合又は解放して目標とされた変速段を変速装置TMに形成させる。具体的には、変速制御部43は、油圧制御装置PCに各係合装置の目標油圧(油圧指令)を指令し、油圧制御装置PCは、指令された目標油圧(油圧指令)の油圧を各係合装置に供給する。本実施形態では、変速制御部43は、油圧制御装置PCが備えた各油圧制御弁に供給される信号値を制御することにより、各係合装置に供給される油圧を制御するように構成されている。
1-3-3-2.第一係合装置制御部44
 第一係合装置制御部44は、第一係合装置CL1の係合の状態を制御する。本実施形態では、第一係合装置制御部44は、第一係合装置CL1に供給される油圧が、統合制御部46から指令された第一係合装置CL1の油圧指令に一致するように、油圧制御装置PCに備えられた各油圧制御弁に供給される信号値を制御する。
1-3-3-3.第二係合装置制御部45
 第二係合装置制御部45は、第二係合装置CL2の係合の状態を制御する。本実施形態では、第二係合装置制御部45は、第二係合装置CL2に供給される油圧が、統合制御部46から指令された第二係合装置CL2の油圧指令に一致するように、油圧制御装置PCに備えられた各油圧制御弁に供給される信号値を制御する。
1-3-4.車両制御ユニット34
 車両制御ユニット34は統合制御部46を備えており、統合制御部46は始動制御部47を備えている。
1-3-4-1.統合制御部46
 統合制御部46は、内燃機関ENG、回転電機MG、変速装置TM、第一係合装置CL1、及び第二係合装置CL2等に対して行われる各種トルク制御、及び各係合装置の係合制御等を車両全体として統合する制御を行う。
 統合制御部46は、アクセル開度、車速、及びバッテリの充電量等に応じて、車輪Wの駆動のために要求されているトルクであって、駆動力源側から車輪W側に伝達される目標駆動力である車両要求トルクを算出するとともに、内燃機関ENG及び回転電機MGの運転モードを決定する。運転モードとして、内燃機関ENGを車輪Wから切り離して回転電機MGを車輪Wの駆動力源として走行する電動モードと、少なくとも内燃機関ENGを駆動力源として走行するパラレルモードと、を有する。例えば、アクセル開度が小さく、バッテリの充電量が大きい場合に、運転モードとして電動モードが決定され、それ以外の場合、すなわち、アクセル開度が大きい、もしくはバッテリの充電量が小さい場合に、運転モードとしてパラレルモードが決定される。なお、本実施形態では、電動モードは、回転電機MGのみを車輪Wの駆動力源として走行するモードとなっている。このような電動モードは、一般的にEV(電気自動車)モードとも呼ばれる。
 そして、統合制御部46は、車両要求トルク、運転モード、及びバッテリの充電量等に基づいて、内燃機関ENGに対して要求する出力トルクである内燃機関要求トルク、回転電機MGに対して要求する出力トルクである回転電機要求トルク、第一係合装置CL1に供給する油圧の目標である油圧指令、及び第二係合装置CL2に供給する油圧の目標である油圧指令を算出し、それらを他の制御部41~45に指令して統合制御を行う。なお、加速始動制御を行っている場合は、始動制御部47が、内燃機関要求トルク、回転電機要求トルク、第一係合装置CL1の油圧指令、及び第二係合装置CL2の油圧指令を算出し、それらを他の制御部41~45に指令する。
1-3-4-2.始動制御部47
1-3-4-2-1.加速始動制御
 始動制御部47は、内燃機関ENGが回転停止している状態から、回転電機MGの出力トルクを車輪Wに伝達しつつ、回転電機MGにより内燃機関ENGを始動させる加速始動制御を実行する際に、第二係合装置CL2を滑り係合状態に制御する第二滑り制御を実行する。始動制御部47は、第二滑り制御の実行中に、車輪Wを前進方向に回転させる向きのトルクが第二係合装置CL2を介して伝達されるように、回転電機MGを制御する。このような第二係合装置CL2によるトルク伝達を実現するため、始動制御部47は、第二滑り制御の実行中に、第二係合装置CL2に対して回転電機MG側の第一回転部材R1の回転速度と、第二係合装置CL2に対して車輪W側の第二回転部材R2の回転速度と、を同じ回転部材での回転速度に換算した場合に、第一回転部材R1の回転速度が第二回転部材R2の回転速度よりも高い回転速度になるように、回転電機MGを制御する。言い換えると、始動制御部47は、第二滑り制御の実行中に、回転電機MGの回転速度が、第二係合装置CL2の回転速度差がなくなる回転電機MGの回転速度である同期回転速度よりも高い回転速度になるように、回転電機MGを制御する。本実施形態では、始動制御部47は、この第二滑り制御の実行中に、回転電機MGの回転速度を同期回転速度よりも高い目標回転速度に近づけるように、回転電機MGを制御する回転速度制御を実行する。また、始動制御部47は、解放状態である第一係合装置CL1を、第二滑り制御の実行中に、滑り係合状態に制御する第一滑り制御を実行する。
 なお、上記「車輪Wを前進方向に回転させる向きのトルク」とは、車両の前進状態での車輪Wの回転方向と同じ方向のトルクであり、そのような向きのトルクが「第二係合装置CL2を介して伝達される」とは、車輪Wに伝達された際に、その向きとなるトルクが第二係合装置CL2を介して伝達されることである。また、上記「同じ回転部材での回転速度に換算」とは、第一回転部材R1と第二回転部材R2との間の動力伝達機構の変速比を考慮して、各回転部材の回転速度を、動力伝達経路における同じ位置(回転部材)での回転速度に換算することを指す。例えば、第一回転部材R1と第二回転部材R2との間に歯車機構等の変速機構がある場合には、当該変速機構の変速比を一方の回転速度に乗算することで、第一回転部材R1と第二回転部材R2との双方の回転速度を同じ回転部材での回転速度に換算することができる。
 加速始動制御では、内燃機関ENGの始動によるトルク変動が、第二係合装置CL2を介して車輪Wに伝達されることを抑制するために、第二係合装置CL2が滑り係合状態に制御される。また、車速が低い場合に、回転電機MGの回転速度を、内燃機関ENGが始動可能な内燃機関ENGの回転速度以上に上昇させるためにも、第二係合装置CL2が滑り係合状態に制御される。滑り係合状態では、第二係合装置CL2の伝達トルク容量(係合圧)に応じたトルク(スリップトルク)が、第二係合装置CL2を介して回転電機MG側から車輪W側に伝達される。すなわち、回転電機MG側から車輪W側に伝達されるトルクは、内燃機関ENG側で生じたトルク変動に関わらず、第二係合装置CL2の伝達トルク容量(係合圧)に応じたスリップトルクとなる。
 また、加速始動制御では、内燃機関ENGの回転速度を上昇させるために、第一係合装置CL1を滑り係合状態に制御して、回転電機MG側から内燃機関ENG側にトルクを伝達させる。滑り係合状態では、第一係合装置CL1の伝達トルク容量(係合圧)に応じたトルク(スリップトルク)が、第一係合装置CL1を介して回転電機MG側から内燃機関ENG側に伝達される。すなわち、回転電機MG側から内燃機関ENG側に伝達されるスリップトルクは、第一係合装置CL1の伝達トルク容量(係合圧)に応じたトルクとなる。
<最大トルク超過制御>
 回転電機MGの回転速度の変動を抑制するためには、第二係合装置CL2のスリップトルク(絶対値)及び第一係合装置CL1のスリップトルク(絶対値)の合計スリップトルクと、回転電機MGの出力トルクとが釣り合うように、回転電機MGの出力トルクを制御することが考えられる。そのため、回転電機MGの出力トルクを、第一係合装置CL1のスリップトルクの増加分、第二係合装置CL2を介して車輪W側に伝達されているトルクから増加させることが考えられる。しかし、アクセル開度が大きく、第二係合装置CL2を介して車輪W側に伝達される回転電機MGの出力トルクが大きい場合は、回転電機MGの最大トルクTmgmxに対して、第一係合装置CL1を介して内燃機関ENG側に伝達されるスリップトルクのために増加させることができる回転電機MGの出力トルクの余裕が小さい場合がある。しかし、内燃機関ENGの始動を早めるためには、第一係合装置CL1を介して内燃機関ENGに伝達されるスリップトルクをできるだけ増加させることが望ましい。
 そこで、始動制御部47は、第一滑り制御において、回転電機の回転速度を低下させるように、第一係合装置CL1の係合圧を制御する。そのために、本実施形態では、始動制御部47は、第一滑り制御において、回転電機MGが出力可能な最大トルクTmgmxから、滑り係合状態の第二係合装置CL2を介して回転電機MG側から車輪W側に伝達される伝達トルク(絶対値)(以下、第二係合装置CL2のスリップトルクとも称す)を減算したトルク(以下、余裕トルクと称す)より大きいトルクを、第一係合装置CL1が回転電機MG側から内燃機関ENG側に伝達するように、第一係合装置CL1の係合圧を制御する最大トルク超過制御を実行するように構成されている。ここで、回転電機MGの最大トルクTmgmxは、通常の運転における各運転条件において出力されるトルク範囲の最大値である。
 このように、回転電機MG側から第一及び第二係合装置CL1、CL2を介して、内燃機関ENG側及び車輪W側に伝達される合計スリップトルクが、回転電機MGの最大トルクTmgmxを上回り、回転電機MGの出力トルクが不足する。これにより、第一滑り制御において、回転電機MGの回転速度が低下する。そして、それと引き換えに、回転電機MGのイナーシャによるトルクが第一係合装置CL1を介して内燃機関ENG側に伝達されることとなり、結果として内燃機関ENG側への伝達トルクを増加させることができる。すなわち、回転電機MGの回転エネルギを、トルクに変換し、内燃機関ENG側に伝達することができる。従って、内燃機関ENGを始動するために必要なトルクとして、車輪Wに伝達するトルクとは別に確保しておく必要がある回転電機MGのトルクを、その分だけ小さくすることができる。これにより、電動モードの実行中に回転電機MGから車輪W側へ伝達することができるトルクを大きく確保することが可能となり、その結果、電動モードを実行可能なトルク領域を拡大することができる。
 また、回転電機MGの回転速度の低下に対する反力としてのイナーシャトルクを利用して、内燃機関ENG側への伝達トルクを増加させることにより、車両の加速を維持しつつ、内燃機関ENGの始動を早めることができる。すなわち、回転電機MGの出力トルクが不足して回転電機MGの回転速度が低下するまで、第一係合装置CL1を介して内燃機関ENG側に伝達されるトルクを増加させることにより、回転電機MGのイナーシャを利用して、回転電機MGの出力性能の限界を超えたトルクを内燃機関ENG側に伝達でき、内燃機関ENGの始動を早めることができる。
 一方、第一係合装置CL1を介して内燃機関ENG側に伝達されるスリップトルクを無制限に増加させると、回転電機MGの回転速度の低下量が大きくなり、回転電機MGの回転速度が同期回転速度まで低下すると第二係合装置CL2が直結係合状態に移行してしまう。第二係合装置CL2が直結係合状態に移行すると、トルク変動が車輪Wに伝達される状態になる。そこで、始動制御部47は、第一滑り制御において、回転電機MGの回転速度を同期回転速度より大きい回転速度に維持できる範囲内で、第一係合装置CL1の係合圧を制御するように構成されている。
 第一及び第二係合装置CL1、CL2の合計スリップトルク(絶対値)から回転電機MGの最大トルクTmgmxを減算して求めた回転電機MGの不足トルクが大きいほど、回転電機MGの回転速度の低下量が大きくなる。そこで、始動制御部47は、回転電機MGの不足トルクが、予め設定した許容不足トルクになるように、第一係合装置CL1の係合圧を増加させるように構成されている。許容不足トルクは、回転電機MGの回転速度を同期回転速度より大きい回転速度に維持できるような値に、実験などにより予め設定されている。始動制御部47は、回転電機MGの最大トルクTmgmxから第二係合装置CL2のスリップトルク(絶対値)を減算した余裕トルクに、予め設定した許容不足トルクを加算したトルクの大きさが、第一係合装置CL1の伝達トルク容量になるように、第一係合装置CL1の係合圧を増加させる。始動制御部47は、回転電機MGの出力特性を用い、回転電機MGの回転速度やバッテリの充電量などの運転条件に基づいて、回転電機MGの最大トルクTmgmxを算出する。また、始動制御部47は、第二係合装置CL2の係合圧に応じて第二係合装置CL2のスリップトルクを算出する。本例では、始動制御部47は、車両要求トルクを第二係合装置CL2のスリップトルクとして算出する。
<比較例のタイムチャート>
 図3に、比較例のタイムチャートを示す。図3の例では、本実施形態とは異なり、第一係合装置CL1を滑り係合状態に制御する制御において、回転電機MGの最大トルクTmgmxから第二係合装置CL2のスリップトルク(絶対値)を減算した余裕トルクより小さいトルクを、第一係合装置CL1が回転電機MG側から内燃機関ENG側に伝達するように、第一係合装置CL1の係合圧を制御するように構成されている(時刻T03から時刻T04)。そのため、第一及び第二係合装置CL1、CL2の合計スリップトルク(絶対値)は、回転電機MGの最大トルクTmgmxを上回っておらず、回転電機MGの出力トルクは、回転電機MGの最大トルクTmgmx未満に制御されている(時刻T03から時刻T04)。
 図3に示す例のように、アクセル開度が大きく、第二係合装置CL2を介して車輪W側に伝達される回転電機MGの出力トルク(第二係合装置CL2のスリップトルク)が大きい場合は、余裕トルクの範囲内に第一係合装置CL1の係合圧の増加が制限され、第一係合装置CL1のスリップトルクの大きさの増加が制限される。そのため、内燃機関ENGの回転速度の上昇速度の増加には限界があり、内燃機関ENGの始動の早期化には限界がある。一方、第一及び第二係合装置CL1、CL2の合計スリップトルクに対して、回転電機MGの出力トルクが不足していないので、回転電機MGの回転速度は低下しておらず、目標回転速度に維持されている(時刻T03から時刻T04)。このような比較例において、第一係合装置CL1のスリップトルクの大きさを制限せず、内燃機関ENGの始動の早さを確保しようとすると、余裕トルクを大きく確保するために電動モードにおける回転電機MGの出力トルクの上限を低く制限する必要がある。すなわち、電動モードにおいて回転電機が車輪に伝達可能なトルクが、回転電機が出力可能な最大トルクに対して、内燃機関の始動に必要なトルク分だけ低いトルクとならざるを得ず、その分だけ、電動モードを実行可能なトルク領域が狭く設定されることになる。
<本実施形態のタイムチャート>
 図4に、本実施形態のタイムチャートを示す。本実施形態では、上記したように、第一滑り係合制御において、回転電機MGの最大トルクTmgmxから第二係合装置CL2のスリップトルク(絶対値)を減算した余裕トルクより大きいトルクを、第一係合装置CL1が回転電機MG側から内燃機関ENG側に伝達するように、第一係合装置CL1の係合圧を制御する最大トルク超過制御を実行するように構成されている(時刻T13から時刻T15)。そのため、第一及び第二係合装置CL1、CL2の合計スリップトルク(絶対値)は、回転電機MGの最大トルクTmgmxを上回っており、回転電機MGの出力トルクは、回転電機MGの最大トルクTmgmx付近に制御されている(時刻T14から時刻T15)。
 図4の例も、図3の例と同様に、アクセル開度が大きく、第二係合装置CL2を介して車輪W側に伝達される回転電機MGの出力トルク(第二係合装置CL2のスリップトルクの大きさ)が大きい場合である。但し、本例では、余裕トルクの範囲を超えて第一係合装置CL1の係合圧が増加されており、比較例の場合よりも、第一係合装置CL1のスリップトルクの大きさを増加させることができている。そのため、比較例の場合よりも、内燃機関ENGの回転速度の上昇速度を高くすることができており、内燃機関ENGの始動を早期化させることができている。別の観点では、内燃機関ENGを始動するために必要なトルクとして、車輪Wに伝達するトルクとは別に確保しておく必要がある回転電機MGのトルクを、比較例の場合よりも小さくすることができている。これにより、電動モードの実行中に回転電機MGから車輪W側へ伝達することができるトルクを大きく確保することが可能となり、その結果、電動モードを実行可能なトルク領域を拡大することができる。
 一方、第一及び第二係合装置CL1、CL2の合計スリップトルクに対して、回転電機MGの出力トルクが不足しているので、回転電機MGの回転速度が、目標回転速度から低下している(時刻T14から時刻T15)。しかし、始動制御部47は、上記したように、回転電機MGの回転速度を同期回転速度より大きい回転速度に維持できる範囲内で、第一係合装置CL1の係合圧を制御するように構成されているので、回転電機MGの回転速度は、同期回転速度より大きい回転速度に維持され、第一係合装置CL1は滑り係合状態に維持されている(時刻T14から時刻T16)。回転電機MGの回転速度が、内燃機関ENGの回転速度まで低下すると、第一係合装置CL1が直結係合状態に移行し(時刻T15)、回転電機MGの回転速度の低下が止まり、その後、内燃機関ENG及び回転電機MGの回転速度が、一体的に上昇する(時刻T15からT16)。このように、最大トルク超過制御により、回転電機MGの回転速度は、内燃機関ENGの回転速度まで低下する。
 次に、図4に示すタイムチャートの例を参照して、加速始動制御について、詳細に説明する。
 始動制御部47は、内燃機関ENGが回転停止している状態において、アクセル開度が判定開度以上に増加した、又はバッテリの充電量が判定充電量以下に減少した等により、運転モードが電動モードからパラレルモードに変化した場合に、加速始動制御の開始条件が成立したと判定するように構成されている。図4の例では、時刻T11までの初期状態では、車速及び回転電機MGの回転速度がゼロであり、内燃機関ENGが回転停止しており、第一係合装置CL1が解放状態であり、第二係合装置CL2が直結係合状態である。時刻T11で、アクセル開度が判定開度以上に増加し、運転モードが電動モードからパラレルモードに変化しため、加速始動制御が開始されている。始動制御部47は、アクセル開度の増加により増加した車両要求トルクに応じたトルクを回転電機要求トルクに設定し、回転電機MGに車両要求トルクに応じたトルク(本例では車両要求トルクに等しいトルク)を出力させるトルク制御を行う(時刻T11以降)。その後、車速(出力軸Oの回転速度、同期回転速度)がゼロから増加し始める。
 始動制御部47は、加速始動制御の開始後、第二係合装置CL2を滑り係合状態に制御する第二滑り制御を開始している(時刻T11以降)。始動制御部47は、目標変速段を形成する変速装置TMの複数の係合装置の1つを、第二係合装置CL2に設定する。一方、始動制御部47は、目標変速段を形成する変速装置TMの複数の係合装置の内、第二係合装置CL2以外の係合装置を直結係合状態に制御する(不図示)。始動制御部47は、第二係合装置CL2を直結係合状態から滑り係合状態に移行させるために、第二係合装置CL2の係合圧を完全係合圧から低下させる。完全係合圧とは、駆動力源から係合装置に伝達されるトルクが変動しても滑りのない係合状態を維持できる係合圧である。始動制御部47は、滑り係合状態の第二係合装置CL2を介して回転電機MG側から車輪W側に伝達されるスリップトルクが、車両要求トルクに応じたトルク(本例では車両要求トルクに等しいトルク)になるように、第二係合装置CL2の油圧指令を、車両要求トルクに応じて設定している(時刻T11~時刻T19)。図4には、回転電機MGの回転速度の挙動を理解し易いように、回転電機MGの慣性系に作用するトルクを、回転電機作用トルクとして示している。ここで、回転電機MGの慣性系とは、第一係合装置CL1及び第二係合装置CL2が滑り係合状態である場合に、回転電機MGと一体的に回転する回転部材の慣性系であり、第一係合装置CL1と第二係合装置CL2との間の回転部材の慣性系である。
 始動制御部47は、第二係合装置CL2の回転速度差に対応する、回転電機MGの回転速度と同期回転速度との回転速度差が判定値を上回り、第二係合装置CL2が滑り係合状態に移行したと判定した後、回転電機MGの回転速度が、同期回転速度よりも高い回転速度になるように、回転電機MGを制御する回転速度制御を開始している(時刻T12から時刻T19)。始動制御部47は、回転速度制御において、回転電機MGの回転速度が、同期回転速度よりも高く設定された目標回転速度に近づくように、回転電機MGの出力トルク(回転電機要求トルク)を変化させるフィードバック制御を行うように構成されている。同期回転速度は、第二係合装置CL2の回転速度差がなくなる回転電機MGの回転速度である。始動制御部47は、出力軸Oの回転速度に、変速装置TMに形成されている変速段の変速比を乗算して、同期回転速度を算出する。始動制御部47は、回転電機MGの目標回転速度を、内燃機関ENGが始動可能な内燃機関ENGの回転速度以上に設定している。本実施形態では、始動制御部47は、回転電機MGの目標回転速度を、内燃機関ENGの始動可能な回転速度以上で且つ、予め設定した目標回転速度差を同期回転速度に加算した回転速度以上になるように設定している。始動制御部47は、回転速度制御の開始後、目標回転速度を同期回転速度から次第に増加させるスイープアップを行っている(時刻T12から時刻T13)。回転電機MGの回転速度を増加させるため、回転電機MGと一体回転する回転部材の慣性モーメントに応じたイナーシャトルク分、回転電機MGの出力トルクが増加している(時刻T12から時刻T13)。
 始動制御部47は、加速始動制御の開始後、第一係合装置CL1を解放状態から滑り係合状態に制御する第一滑り制御を開始している(時刻T11以降)。始動制御部47は、第一滑り制御の開始後、第一係合装置CL1の係合圧をストロークエンド圧付近まで増加させる予備充填を行っている(時刻T11からT13)。始動制御部47は、予備充填の開始直後、第一係合装置CL1の油圧指令を、ストロークエンド圧よりも一時的に増加させ、実圧の立ち上がりを速めている。始動制御部47は、目標回転速度のスイープアップを終了し、回転電機MGの回転速度が目標回転速度まで増加した後、第一係合装置CL1の油圧指令をストロークエンド圧から増加させて、第一係合装置CL1を滑り係合状態に移行させている(時刻T13以降)。
 始動制御部47は、最大トルク超過制御により、回転電機MGの最大トルクTmgmxから第二係合装置CL2のスリップトルク(絶対値)を減算した余裕トルクより大きいトルクを、第一係合装置CL1が回転電機MG側から内燃機関ENG側に伝達するように、第一係合装置CL1の係合圧(油圧指令)を増加させている(時刻T13から時刻T15)。これにより、始動制御部47は、第一滑り制御において、回転電機MGの回転速度を低下させている。本実施形態では、上記したように、始動制御部47は、回転電機MGの最大トルクTmgmxから第二係合装置CL2のスリップトルク(絶対値)を減算した余裕トルクに、予め設定した許容不足トルクを加算したトルクの大きさが、第一係合装置CL1の伝達トルク容量(スリップトルク)になるように、第一係合装置CL1の係合圧(油圧指令)を増加させるように構成されている。
 時刻T13で第一係合装置CL1の油圧指令がステップ的に増加された後、第一係合装置CL1の実際の係合圧(油圧)は遅れを有して増加し、第一係合装置CL1のスリップトルクの大きさは遅れを有して増加する(時刻T13から時刻T15)。第一係合装置CL1のスリップトルクの大きさが増加すると、回転電機MGの回転速度が低下しようとする。そのため、回転速度制御によって、第一係合装置CL1のスリップトルクの大きさの増加を補償するように、回転電機MGの出力トルクが増加されていく(時刻T13から時刻T14)。時刻T14で、回転電機MGの出力トルクが、最大トルクTmgmxに到達すると、回転電機MGの出力トルクの増加が最大トルクTmgmxで上限制限される。その後も、第一係合装置CL1のスリップトルクの大きさが増加するので、第一及び第二係合装置CL1、CL2の合計スリップトルクに対して、回転電機MGの出力トルクが不足し、不足量が増加していく。そのため、回転電機MGの慣性系に作用する合計トルク(詳細には、第一係合装置CL1のスリップトルク、第二係合装置CL2のスリップトルク、及び回転電機MGの出力トルクの合計トルク)が、ゼロよりも低下していき、回転電機MGの回転速度が、目標回転速度から低下していく(時刻T14から時刻T15)。
 一方、第一係合装置CL1のスリップトルクの大きさが増加していき、内燃機関ENGのフリクショントルクを上回ると、内燃機関ENGの回転速度が、ゼロから上昇していく(時刻T13から時刻T15)。回転電機MGの出力トルクが不足するまで、第一係合装置CL1のスリップトルクの大きさが増加されているので、図3の比較例の場合よりも、内燃機関ENGの回転速度の上昇速度を増加させることができ、内燃機関ENGの回転速度の上昇を速めることができている。内燃機関ENGの回転速度の立ち上がりが早められているので、燃料噴射等の内燃機関ENGの燃焼開始制御の開始時期を早めることができ、内燃機関ENGの燃焼開始を早められる。
 回転電機MGの回転速度が、上昇している内燃機関ENGの回転速度まで低下すると、第一係合装置CL1の回転速度差がなくなり、直結係合状態に移行する(時刻T15)。始動制御部47は、回転電機MGの回転速度と内燃機関ENGの回転速度との回転速度差が判定閾値以下になった場合に、第一滑り制御を終了し、第一係合装置CL1の係合圧(油圧指令)を、完全係合圧まで増加させる(時刻T15以降)。第一係合装置CL1が直結係合状態に移行すると、第一係合装置CL1は、伝達トルク容量の大きさのスリップトルクを伝達しなくなり、伝達トルク容量の範囲内の所定のトルクを伝達するようになるため、第一係合装置CL1の伝達トルクの大きさが減少する。具体的には、一体回転する内燃機関ENGの慣性系及び回転電機MGの慣性系に作用する合計トルク(具体的には、回転電機MGの出力トルクから第二係合装置CL2のスリップトルクの大きさなどを減算したトルク)を、内燃機関ENGの慣性系の慣性モーメントと回転電機MGの慣性系の慣性モーメントとの比で分配したトルクが、第一係合装置CL1を介して伝達されるようになる。その後、内燃機関ENG及び回転電機MGの回転速度が、目標回転速度まで一体的に上昇していく(時刻T15からT16)。回転電機MGの回転速度が、目標回転速度まで上昇すると、内燃機関ENG及び回転電機MGのイナーシャトルクが減少するので、回転電機MGの出力トルクが最大トルクTmgmxから減少している(時刻T16から時刻T17)。
 時刻T17で内燃機関ENGの燃焼が開始すると、内燃機関ENGの出力トルクの増加に応じて、直結係合状態の第一係合装置CL1の伝達トルクが増加していく(時刻T17以降)。第一係合装置CL1の伝達トルクが増加すると、回転電機MGの回転速度が上昇しようとする。そのため、回転速度制御によって、第一係合装置CL1の伝達トルクの増加を補償するように、回転電機MGの出力トルクが減少していく(時刻T17から時刻T18)。始動制御部47は、内燃機関ENGの燃焼開始が完了すると、目標回転速度を同期回転速度まで次第に減少させるスイープダウンを行う(時刻T18から時刻T19)。始動制御部47は、回転電機MGの回転速度と同期回転速度との回転速度差が判定閾値以下になった後、第二係合装置CL2の係合圧(油圧指令)を完全係合圧まで増加させ、第二係合装置CL2を直結係合状態に移行させると共に、回転電機MGの回転速度制御を終了する。そして、車両要求トルク等に基づいて算出された回転電機要求トルクを回転電機MGに出力させるトルク制御を開始する(時刻T19以降)。また、始動制御部47は、内燃機関ENGの燃焼開始後、車両要求トルク等に基づいて算出された内燃機関要求トルクを内燃機関ENGに出力させるトルク制御を行っている(時刻T17以降)。始動制御部47は、第二係合装置CL2を直結係合状態に移行させた後、加速始動制御を終了する。
<加速始動制御のフローチャート>
 次に、加速始動制御の処理について、図5のフローチャートを参照して説明する。
 まず、始動制御部47は、ステップ♯01で、上記のように、加速始動制御の開始条件が成立したか否かを判定し、開始条件が成立したと判定した場合(ステップ♯01:Yes)に、一連の加速始動制御を開始する。始動制御部47は、加速始動制御の開始後、上記したように、第二係合装置CL2を滑り係合状態に制御する第二滑り制御を開始する(ステップ♯02)。また、始動制御部47は、上記したように、第一係合装置CL1を解放状態から滑り係合状態に制御する第一滑り制御、及び最大トルク超過制御を開始する(ステップ♯03)。また、始動制御部47は、第二滑り制御の開始後、上記したように、回転電機MGの回転速度制御を開始する(ステップ♯04)。始動制御部47は、第一滑り制御の開始後、内燃機関ENGの燃焼開始制御を開始する(ステップ♯05)。始動制御部47は、第一係合装置CL1の回転速度差が減少した場合(ステップ♯06:Yes)に、第一滑り制御を終了し、第一係合装置CL1を直結係合状態に移行させる(ステップ♯07)。始動制御部47は、内燃機関ENGの燃焼開始が完了したと判定した場合(ステップ♯08:Yes)に、第二係合装置CL2を直結係合状態に移行させ、第二滑り制御及び回転速度制御を終了し(ステップ♯09)、加速始動制御を終了する。
2.その他の実施形態
 次に、その他の実施形態について説明する。なお、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
(1)上記の実施形態においては、変速装置TMの複数の係合装置の中の1つが、第二係合装置CL2に設定されている場合を例として説明したが、これに限定されない。すなわち、車両用駆動装置1は、図6に示すように、回転電機MGと変速装置TMと間の動力伝達経路2に更に係合装置を備え、当該係合装置が、第二係合装置CL2に設定されるように構成されてもよい。或いは、車両用駆動装置1は、変速装置TMと車輪Wと間の動力伝達経路2に更に係合装置を備え、当該係合装置が、第二係合装置CL2に設定されるように構成されてもよい。或いは、図6に示す車両用駆動装置1において、変速装置TMが備えられないように構成されてもよい。
 或いは、車両用駆動装置1は、図7に示すように、回転電機MGと変速装置TMと間の動力伝達経路2に更にトルクコンバータTCを備え、トルクコンバータTCの入出力部材間を直結係合状態にするロックアップクラッチが、第二係合装置CL2に設定されるように構成されてもよい。
(2)上記の実施形態においては、第一係合装置CL1及び第二係合装置CL2が油圧により制御される係合装置である場合を例として説明したが、これに限定されない。すなわち、第一係合装置CL1及び第二係合装置CL2の一方又は双方は、油圧以外の駆動力、例えば、電磁石の駆動力、サーボモータの駆動力など、により制御される係合装置であってもよい。
(3)上記の実施形態においては、変速装置TMが有段の自動変速装置である場合を例として説明したが、これに限定されない。すなわち、変速装置TMが、連続的に変速比を変更可能な無段の自動変速装置など、有段の自動変速装置以外の変速装置にされるように構成されてもよい。この場合も、変速装置TMに備えられた係合装置が、内燃機関ENGの始動制御中に係合状態が制御される第二係合装置CL2に設定され、或いは変速装置TMとは別に設けられた係合装置が第二係合装置CL2とされてもよい。
(4)上記の実施形態においては、第二係合装置CL2がクラッチである場合を例として説明したが、これに限定されない。すなわち、第二係合装置CL2がブレーキであってもよい。この場合において、第一回転部材R1は、第二係合装置CL2により選択的に回転が停止される部材に対して回転電機MG側の回転部材であって第二係合装置CL2との間に他の係合装置を介していない回転部材であれば、いずれの回転部材であってもよい。同様に、第二回転部材R2は、第二係合装置CL2により選択的に回転が停止される部材に対して車輪W側の回転部材であって第二係合装置CL2との間に他の係合装置を介していない回転部材であれば、いずれの回転部材であってもよい。
(5)上記の実施形態において、制御装置30は、複数の制御ユニット32~34を備え、これら複数の制御ユニット32~34が分担して複数の機能部41~47を備える場合を例として説明したが、これに限定されない。すなわち、制御装置30は、上述した複数の制御ユニット32~34を任意の組み合わせで統合又は分離した制御装置として備えるようにしてもよく、複数の機能部41~47の分担も任意に設定することができる。
(6)上記の実施形態において、始動制御部47は、最大トルク超過制御の実行中に、回転電機MGの出力トルクを最大トルクTmgmxまで増加させる場合を例として説明したが、これに限定されない。すなわち、始動制御部47は、最大トルク超過制御の実行中に、回転電機MGの出力トルクを、最大トルクTmgmxよりも小さいトルクまで増加させるように構成されてもよい。
(7)上記の実施形態において、図4のタイムチャートの例において、加速始動制御を開始する前の初期条件が、車両の停止状態(車輪Wの回転停止状態)である場合を例として説明したが、これに限定されない。例えば、加速始動制御を開始する前の初期条件が、運転モードが電動モードに設定されており、第一係合装置CL1が解放状態で、内燃機関ENGが回転停止しており、第二係合装置CL2が直結係合状態で、回転電機MGの出力トルクにより車両が走行している状態(車輪Wが回転している状態)であってもよい。
(8)上記の実施形態においては、第一係合装置CL1は供給油圧(油圧指令)を増加させることで伝達トルク容量(係合圧)が増加するように構成されている場合を例として説明したが、これに限定されない。すなわち、第一係合装置CL1は供給油圧(油圧指令)を減少させることで伝達トルク容量(係合圧)が増加するように構成されてもよい。この場合は、例えば、リターンばねが係合側に付勢しており、第一係合装置CL1への供給油圧が解放側に押圧するように構成されてもよい。この場合は、始動制御部47は、第一滑り制御において、第一係合装置CL1の供給油圧(油圧指令)を減少させることで、第一係合装置CL1の係合圧を増加させるように構成される。
3.上記実施形態の概要
 以上で説明した実施形態は、少なくとも以下の構成を備えている。
 内燃機関(ENG)と車輪(W)とを結ぶ動力伝達経路(2)に、内燃機関(ENG)の側から順に、第一係合装置(CL1)、回転電機(MG)、及び第二係合装置(CL2)が設けられた車両用駆動装置(1)を制御対象とする制御装置(30)であって、内燃機関(ENG)が回転停止している状態から、回転電機(MG)の出力トルクを車輪(W)に伝達しつつ、回転電機(MG)によって内燃機関(ENG)を始動させる際に、第二係合装置(CL2)を滑り係合状態に制御する第二滑り制御を実行し、第二滑り制御の実行中に、解放状態である第一係合装置(CL1)を滑り係合状態に制御する第一滑り制御を実行し、第一滑り制御において、回転電機(MG)の回転速度を低下させるように、第一係合装置(CL1)の係合圧を制御する。
 このような構成により、前記第二滑り制御の実行中に、回転電機(MG)の回転速度が、前記第一滑り制御により低下する。そして、このような回転電機(MG)の回転速度の低下に対する反力としてのイナーシャトルクが、第一係合装置(CL1)を介して内燃機関(ENG)側に伝達される。すなわち、回転電機(MG)の回転エネルギをトルクに変換して内燃機関(ENG)側に伝達することで、回転電機(MG)の出力トルクよりも大きいトルクを内燃機関(ENG)側へ伝達することができる。従って、内燃機関(ENG)を始動するために必要なトルクとして、車輪(W)に伝達するトルクとは別に確保しておく必要がある回転電機(MG)のトルクを、その分だけ小さくすることができる。これにより、電動モード(EVモード)の実行中に回転電機(MG)から車輪(W)側へ伝達することができるトルクを大きく確保することが可能となり、その結果、電動モードを実行可能なトルク領域を拡大することができる。
 ここで、前記第一滑り制御における前記第一係合装置の係合圧の制御は、回転電機(MG)が出力可能な最大トルク(Tmgmx)から、第二係合装置(CL2)を介して回転電機(MG)側から車輪(W)側に伝達される伝達トルクを減算したトルクより大きいトルクを、第一係合装置(CL1)が回転電機(MG)側から内燃機関(ENG)側に伝達するように、第一係合装置(CL1)の係合圧を制御するものであると好適である。
 この構成によれば、滑り係合状態の第一係合装置(CL1)を介して回転電機(MG)側から内燃機関(ENG)側に伝達される伝達トルクと、滑り係合状態の第二係合装置(CL2)を介して回転電機(MG)側から車輪(W)側に伝達される伝達トルクと、の合計伝達トルクが、回転電機(MG)の最大トルク(Tmgmx)を上回り、回転電機(MG)の出力トルクが不足する。従って、前記第一滑り制御において、回転電機(MG)の回転速度を低下させるように、第一係合装置(CL1)の係合圧が制御されることになる。これにより、回転電機(MG)の回転速度の低下に対する反力としてのイナーシャトルクを、内燃機関(ENG)側に伝達することができる。
 また、前記第一滑り制御において、第二係合装置(CL2)を滑り係合状態に維持できる範囲内で、第一係合装置(CL1)の係合圧を制御すると好適である。
 この構成によれば、第一係合装置(CL1)の係合圧の増加により、回転電機(MG)の回転速度が低下して、第二係合装置(CL2)が直結係合状態に移行することを抑制できる。よって、第二係合装置(CL2)が直結係合状態に移行することにより、トルクショックが車輪(W)に伝達されることを抑制できる。
 また、前記第二滑り制御の実行中に、回転電機(MG)の回転速度を、第二係合装置(CL2)の回転速度差がなくなる回転電機(MG)の回転速度である同期回転速度よりも高い目標回転速度に近づけるように、回転電機(MG)を制御する回転速度制御を実行し、前記目標回転速度が、内燃機関(ENG)が始動可能な内燃機関(ENG)の回転速度以上に設定されていると好適である。
 この構成によれば、第一係合装置(CL1)の係合圧の増加により、回転電機(MG)の回転速度が、内燃機関(ENG)が始動可能な回転速度未満に一時的に低下しても、最終的に回転電機(MG)の回転速度を内燃機関(ENG)が始動可能な回転速度まで上昇させて、内燃機関(ENG)を始動させることができる。
 本開示に係る技術は、内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、及び第二係合装置が設けられた車両用駆動装置を制御対象とする制御装置に好適に利用することができる。
1    :車両用駆動装置
2    :動力伝達経路
30   :車両用駆動装置の制御装置(制御装置)
47   :始動制御部
CL1  :第一係合装置
CL2  :第二係合装置
ENG  :内燃機関
MG   :回転電機
O    :出力軸
Tmgmx:回転電機の最大トルク
W    :車輪

Claims (4)

  1.  内燃機関と車輪とを結ぶ動力伝達経路に、前記内燃機関の側から順に、第一係合装置、回転電機、及び第二係合装置が設けられた車両用駆動装置を制御対象とする制御装置であって、
     前記内燃機関が回転停止している状態から、前記回転電機の出力トルクを前記車輪に伝達しつつ、前記回転電機によって前記内燃機関を始動させる際に、
     前記第二係合装置を滑り係合状態に制御する第二滑り制御を実行し、
     前記第二滑り制御の実行中に、解放状態である前記第一係合装置を滑り係合状態に制御する第一滑り制御を実行し、
     前記第一滑り制御において、前記回転電機の回転速度を低下させるように、前記第一係合装置の係合圧を制御する車両用駆動装置の制御装置。
  2.  前記第一滑り制御における前記第一係合装置の係合圧の制御は、前記回転電機が出力可能な最大トルクから、前記第二係合装置を介して前記回転電機側から前記車輪側に伝達される伝達トルクを減算したトルクより大きいトルクを、前記第一係合装置が前記回転電機側から前記内燃機関側に伝達するように、前記第一係合装置の係合圧を制御するものである請求項1に記載の車両用駆動装置の制御装置。
  3.  前記第一滑り制御において、前記第二係合装置を滑り係合状態に維持できる範囲内で、前記第一係合装置の係合圧を制御する請求項1又は2に記載の車両用駆動装置の制御装置。
  4.  前記第二滑り制御の実行中に、前記回転電機の回転速度を、前記第二係合装置の回転速度差がなくなる前記回転電機の回転速度である同期回転速度よりも高い目標回転速度に近づけるように、前記回転電機を制御する回転速度制御を実行し、
     前記目標回転速度が、前記内燃機関が始動可能な前記内燃機関の回転速度以上に設定されている請求項1から3のいずれか一項に記載の車両用駆動装置の制御装置。
PCT/JP2015/077867 2014-11-27 2015-09-30 車両用駆動装置の制御装置 WO2016084474A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/517,797 US10279687B2 (en) 2014-11-27 2015-09-30 Control device for vehicle drive device
CN201580058033.4A CN107107900B (zh) 2014-11-27 2015-09-30 车辆用驱动装置的控制装置
DE112015004109.5T DE112015004109T5 (de) 2014-11-27 2015-09-30 Steuerungsvorrichtung für eine fahrzeugantriebsvorrichtung
JP2016561438A JP6350676B2 (ja) 2014-11-27 2015-09-30 車両用駆動装置の制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-240099 2014-11-27
JP2014240099 2014-11-27

Publications (1)

Publication Number Publication Date
WO2016084474A1 true WO2016084474A1 (ja) 2016-06-02

Family

ID=56074053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077867 WO2016084474A1 (ja) 2014-11-27 2015-09-30 車両用駆動装置の制御装置

Country Status (5)

Country Link
US (1) US10279687B2 (ja)
JP (1) JP6350676B2 (ja)
CN (1) CN107107900B (ja)
DE (1) DE112015004109T5 (ja)
WO (1) WO2016084474A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045217A1 (ja) 2018-08-31 2020-03-05 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の制御装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221073A (ja) * 2004-01-15 2005-08-18 Zahnradfab Friedrichshafen Ag ハイブリッド車の動力伝達系の制御・調整方法とハイブリッド車の動力伝達系
JP2006306207A (ja) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd ハイブリッド駆動装置のエンジン始動方法
JP2009512589A (ja) * 2005-10-20 2009-03-26 プジョー シトロエン オートモビル エス アー ハイブリッド自動車の熱機関を始動させるための方法
JP2010202153A (ja) * 2009-03-06 2010-09-16 Nissan Motor Co Ltd 車両用クラッチ制御装置
US20120083385A1 (en) * 2010-09-30 2012-04-05 GM Global Technology Operations LLC Control of a powertrain for a hybrid system
WO2013077161A1 (ja) * 2011-11-25 2013-05-30 日産自動車株式会社 ハイブリッド車両の制御装置
JP2014073747A (ja) * 2012-10-04 2014-04-24 Nissan Motor Co Ltd ハイブリッド車両の始動制御装置
JP2014101051A (ja) * 2012-11-21 2014-06-05 Hitachi Automotive Systems Ltd ハイブリッド車両の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4409122C2 (de) * 1993-08-10 1998-12-24 Porsche Ag Vorrichtung und Verfahren zum Regeln einer Kupplung eines Fahrzeugantriebes
DE19653855C1 (de) * 1996-12-21 1998-04-23 Mannesmann Sachs Ag Vorrichtung zur Steuerung eines Anfahrvorganges
JP3458795B2 (ja) * 1999-10-08 2003-10-20 トヨタ自動車株式会社 ハイブリッド駆動装置
JP2007069804A (ja) * 2005-09-08 2007-03-22 Nissan Motor Co Ltd ハイブリッド車両のエンジン始動応答改善装置
JP5012227B2 (ja) * 2006-07-21 2012-08-29 日産自動車株式会社 ハイブリッド車両の制御装置
CN103237704B (zh) * 2010-10-21 2016-04-20 日产自动车株式会社 混合动力车辆的急减速控制装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005221073A (ja) * 2004-01-15 2005-08-18 Zahnradfab Friedrichshafen Ag ハイブリッド車の動力伝達系の制御・調整方法とハイブリッド車の動力伝達系
JP2006306207A (ja) * 2005-04-27 2006-11-09 Nissan Motor Co Ltd ハイブリッド駆動装置のエンジン始動方法
JP2009512589A (ja) * 2005-10-20 2009-03-26 プジョー シトロエン オートモビル エス アー ハイブリッド自動車の熱機関を始動させるための方法
JP2010202153A (ja) * 2009-03-06 2010-09-16 Nissan Motor Co Ltd 車両用クラッチ制御装置
US20120083385A1 (en) * 2010-09-30 2012-04-05 GM Global Technology Operations LLC Control of a powertrain for a hybrid system
WO2013077161A1 (ja) * 2011-11-25 2013-05-30 日産自動車株式会社 ハイブリッド車両の制御装置
JP2014073747A (ja) * 2012-10-04 2014-04-24 Nissan Motor Co Ltd ハイブリッド車両の始動制御装置
JP2014101051A (ja) * 2012-11-21 2014-06-05 Hitachi Automotive Systems Ltd ハイブリッド車両の制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020045217A1 (ja) 2018-08-31 2020-03-05 アイシン・エィ・ダブリュ株式会社 車両用駆動装置の制御装置

Also Published As

Publication number Publication date
US10279687B2 (en) 2019-05-07
CN107107900B (zh) 2019-08-06
CN107107900A (zh) 2017-08-29
DE112015004109T5 (de) 2017-06-14
JP6350676B2 (ja) 2018-07-04
JPWO2016084474A1 (ja) 2017-08-03
US20170305277A1 (en) 2017-10-26

Similar Documents

Publication Publication Date Title
JP5083638B2 (ja) 制御装置
JP5168600B2 (ja) 制御装置
JP6562001B2 (ja) 車両用駆動伝達装置の制御装置
WO2012120972A1 (ja) 制御装置
JP5915666B2 (ja) 車両用駆動装置の制御装置
WO2011122533A1 (ja) 車両用変速装置
JP5920476B2 (ja) 車両用駆動装置の制御装置
JP5565637B2 (ja) 制御装置
WO2013022039A1 (ja) 制御装置
JP5803736B2 (ja) 制御装置
JP5967190B2 (ja) 制御装置
US10279795B2 (en) Control device
JP6465204B2 (ja) 車両用駆動装置の制御装置
JP6350676B2 (ja) 車両用駆動装置の制御装置
JP5557026B2 (ja) 変速制御装置
JP5578362B2 (ja) 制御装置
JP5445867B2 (ja) 車両用駆動装置の制御装置
JP6414499B2 (ja) 車両用駆動装置の制御装置
JP5765579B2 (ja) 制御装置
EP4316897A1 (en) Vehicle drive device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864100

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561438

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015004109

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15517797

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15864100

Country of ref document: EP

Kind code of ref document: A1