WO2011122533A1 - 車両用変速装置 - Google Patents

車両用変速装置 Download PDF

Info

Publication number
WO2011122533A1
WO2011122533A1 PCT/JP2011/057557 JP2011057557W WO2011122533A1 WO 2011122533 A1 WO2011122533 A1 WO 2011122533A1 JP 2011057557 W JP2011057557 W JP 2011057557W WO 2011122533 A1 WO2011122533 A1 WO 2011122533A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
engagement
transmission
torque capacity
side element
Prior art date
Application number
PCT/JP2011/057557
Other languages
English (en)
French (fr)
Inventor
稲垣伸晃
上野博也
長谷重和
祝伸広
筒井洋
Original Assignee
アイシン・エィ・ダブリュ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アイシン・エィ・ダブリュ株式会社 filed Critical アイシン・エィ・ダブリュ株式会社
Priority to DE112011100259.9T priority Critical patent/DE112011100259B4/de
Priority to CN201180010995.4A priority patent/CN102770320B/zh
Priority to JP2012508296A priority patent/JP5365889B2/ja
Priority to US13/576,768 priority patent/US8935062B2/en
Publication of WO2011122533A1 publication Critical patent/WO2011122533A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/18Controlling the braking effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/02Conjoint control of vehicle sub-units of different type or different function including control of driveline clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/04Smoothing ratio shift
    • F16H61/06Smoothing ratio shift by controlling rate of change of fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/18Propelling the vehicle
    • B60Y2300/18008Propelling the vehicle related to particular drive situations
    • B60Y2300/18108Braking
    • B60Y2300/18125Regenerative braking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention includes a plurality of input members that are driven and connected to an internal combustion engine and a rotating electrical machine, an output member that is driven and connected to a wheel, and a plurality of friction engagement elements that are controlled to engage and release.
  • the present invention relates to a transmission for a vehicle including a transmission mechanism including a shift stage and a control device that controls the transmission mechanism.
  • Patent Document 1 As a transmission for a hybrid vehicle including an internal combustion engine and a rotating electrical machine as a driving force source, for example, a device described in Patent Document 1 below is already known.
  • this transmission when the vehicle is decelerated, the regenerative torque is output to the rotating electrical machine, and the vehicle is decelerated at a desired deceleration to brake the vehicle while recovering kinetic energy as electric energy to improve fuel efficiency. ing.
  • Patent Document 1 when downshifting the shift stage of the transmission mechanism during the output of the regenerative torque, the torque that can be transmitted by the transmission mechanism is temporarily reduced by replacing the friction engagement element.
  • the “transmission ratio” means the rotational speed of the input member and the output member defined by the number of teeth of each gear forming each shift stage when each shift stage is formed in the transmission mechanism. It is a ratio to the rotational speed, and in this application, is a value obtained by dividing the rotational speed of the input member by the rotational speed of the output member.
  • driving connection refers to a state in which two rotating elements are connected so as to be able to transmit a driving force, and the two rotating elements are connected so as to rotate integrally, or the two This is used as a concept including a state in which two rotating elements are connected so as to be able to transmit a driving force via one or more transmission members. Examples of such a transmission member include various members that transmit rotation at the same speed or a variable speed, and include, for example, a shaft, a gear mechanism, a friction engagement element, a belt, a chain, and the like.
  • the torque capacity increase period for increasing the transmission torque capacity of the engagement side element and the torque capacity decrease period for decreasing the transmission torque capacity of the disengagement side element overlap at least partially. Even during downshifting during regeneration, regenerative torque can be transmitted to the wheel side by either or both of the engagement side element and the release side element. Therefore, it is possible to prevent a period in which the regenerative torque is not transmitted to the wheel side.
  • the target increase capacity which is the target value after the increase of the transmission torque capacity of the engagement side element, is set according to the regenerative torque, the friction engagement element that transmits the regenerative torque is changed from the disengagement side element to the engagement side element. Even after shifting to, the regenerative torque can be properly transmitted to the wheel side.
  • the engagement and release of the friction engagement element are controlled by the hydraulic pressure of the hydraulic oil supplied to the friction engagement element, and the transmission torque capacity is continuously controlled to increase or decrease by controlling the hydraulic pressure. It is preferable to adopt the configuration.
  • the transmission torque capacity can be continuously changed by controlling the hydraulic pressure supplied to the friction engagement element. Therefore, the regenerative torque transmitted to the wheel side can be continuously changed during the downshift during regeneration, and the vehicle can be braked with the regenerative torque with high accuracy.
  • control device sets the target increase capacity of the engagement side element to a minimum at which the transmission mechanism transmits all the regenerative torque to the output member side when the release side element is released. It is preferable that the transmission torque capacity is set to the above.
  • control device is configured to synchronize the start timing of the predetermined torque capacity decrease period with the start timing of the predetermined torque capacity increase period.
  • control device synchronizes an end timing of the predetermined torque capacity decrease period with an end timing of the predetermined torque capacity increase period.
  • the decrease of the regenerative torque transmitted by the release side element can be finished.
  • control device before starting the predetermined torque capacity reduction period, transmits the transmission torque capacity of the disengagement side element to the minimum that the transmission mechanism transmits all the regenerative torque to the output member side. It is preferable to reduce the transmission torque capacity by a predetermined value higher than the transmission torque capacity.
  • the transmission torque capacity of the disengagement element is reduced in the vicinity of the minimum transmission torque capacity in advance, the transmission torque capacity of the disengagement element is minimized immediately after the start of the torque capacity reduction period.
  • the transmission torque capacity can be reduced from the limit, and the transmission of the regenerative torque can be accurately transferred to the engagement side element. Therefore, smooth downshift control during regeneration that suppresses fluctuations in torque transmitted to the wheel side can be realized.
  • the control device after the end of the predetermined torque capacity increase period, the transmission torque capacity of the engagement side element, so that the difference in rotational speed between the input and output members in the engagement side element decreases, After the target increase capacity is increased with a gentler slope than the predetermined torque capacity increase period, the rotation speed of the engagement side element is reduced after the difference of the rotation speed of the engagement side element becomes a predetermined value or less. It is preferable to change the transmission torque capacity of the engagement side element so as to synchronize the rotation speed of the input member and the rotation speed of the output member in the engagement side element while decreasing the decrease speed of the difference.
  • control device changes a transmission torque capacity of the engagement side element in accordance with a change in the regenerative torque.
  • the transmission torque capacity of the engagement side element can be changed according to the change of the regenerative torque. Therefore, even when the regenerative torque changes during execution of the downshift during regeneration, it is possible to maintain a state where the regenerative torque can be transmitted to the output member side.
  • the present invention includes an input member that is drivingly connected to the internal combustion engine and the rotating electrical machine, an output member that is drivingly connected to the wheels, and a plurality of friction engagement elements that are controlled by the hydraulic pressure of the supplied hydraulic oil. And a transmission mechanism having a plurality of shift speeds formed by controlling engagement and release of the plurality of friction engagement elements, and a control device for controlling the transmission mechanism.
  • the characteristic configuration is that the control device controls the engagement and disengagement of the friction engagement element while the rotating electric machine outputs the regenerative torque to perform the downshift during the regenerative operation.
  • a target increased hydraulic pressure that is a target value after an increase in the hydraulic pressure of the engagement side element that is the combined element is set according to the regenerative torque, and the hydraulic pressure of the engagement side element is set to the target increased hydraulic pressure during a predetermined hydraulic pressure increase period.
  • Increase and release The hydraulic pressure of the disengagement element is a frictional engagement element on the side, the hydraulic increase period and at least partially lies in reducing a predetermined hydraulic decrease period overlap.
  • the hydraulic pressure increase period for increasing the hydraulic pressure of the engagement side element and the hydraulic pressure decrease period for decreasing the hydraulic pressure of the disengagement side element overlap at least partially.
  • the regenerative torque can be transmitted to the wheel side by both or one of the combination side element and the release side element. Therefore, it is possible to prevent a period in which the regenerative torque is not transmitted to the wheel side.
  • the target increased hydraulic pressure which is the target value after the increase of the hydraulic pressure of the engagement side element, is set according to the regenerative torque, the friction engagement element that transmits the regenerative torque shifts from the release side element to the engagement side element. After that, the regenerative torque can be properly transmitted to the wheel side.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a vehicle transmission device 1 according to the present embodiment.
  • the vehicle equipped with the vehicle transmission 1 is a hybrid vehicle including both an engine E as an internal combustion engine and a rotating electrical machine MG as driving force sources.
  • the solid line indicates the driving force transmission path
  • the broken line indicates the hydraulic oil supply path
  • the alternate long and short dash line indicates the power supply path.
  • the vehicle transmission device 1 schematically includes an engine E and a rotating electrical machine MG as driving force sources, and the driving force of these driving force sources is converted to a torque converter TC and It is configured to transmit to the wheels W via the speed change mechanism TM.
  • the vehicle transmission device 1 includes an intermediate shaft M as an input member that is drivingly connected to the engine E and the rotating electrical machine MG, an output shaft O as an output member that is drivingly connected to the wheels W, and a plurality of friction engagement elements C1. , B1... And a transmission mechanism TM having a plurality of shift speeds formed by controlling engagement and release of the plurality of friction engagement elements, and a control device 31 for controlling the transmission mechanism TM. It is equipped with.
  • the vehicle transmission device 1 includes a hydraulic control device PC for supplying hydraulic oil of a predetermined hydraulic pressure to each part such as the torque converter TC and the transmission device TM.
  • the vehicle transmission device 1 includes an input shaft rotational speed sensor Se1, an intermediate shaft rotational speed sensor Se2, and an output shaft rotational speed sensor Se3 that detect rotational speeds of the input shaft I, the intermediate shaft M, and the output shaft O. .
  • the control device 31 performs a downshift during regeneration by controlling the engagement and disengagement of the plurality of friction engagement elements while the rotating electrical machine MG outputs the regeneration torque Tg.
  • the downshift is a shift that shifts to a gear stage having a large gear ratio. That is, at the time of downshift during regeneration, the control device 31 first sets the target increased capacity Tf, which is the target value after the increase in the transmission torque capacity of the engagement side element that is the friction engagement element to be engaged, as the regenerative torque. Set according to Tg.
  • the transmission torque capacity of the engagement side element is increased to the target increase capacity Tf in a predetermined torque capacity increase period, and the transmission torque capacity of the release side element that is the friction engagement element to be released is The torque capacity is increased in a predetermined torque capacity decrease period at least partially overlapping with the torque capacity increase period.
  • the vehicle transmission device 1 includes an engine E and a rotating electrical machine MG as driving force sources for driving the vehicle, and a parallel system in which the engine E and the rotating electrical machine MG are connected in series. This is a drive device for a hybrid vehicle. Further, the vehicle transmission device 1 includes a torque converter TC and a speed change mechanism TM. The torque converter TC and the speed change mechanism TM change the rotational speeds of the engine E and the rotating electrical machine MG as driving force sources. Torque is converted and transmitted to the output shaft O.
  • Engine E is an internal combustion engine that is driven by the combustion of fuel.
  • various known engines such as a gasoline engine and a diesel engine can be used.
  • an output rotation shaft such as a crankshaft of the engine E is drivingly connected to the input shaft I via the transmission clutch EC.
  • the transmission clutch EC is a friction engagement element that receives supply of hydraulic oil regulated by the hydraulic control device PC and is engaged or released by being controlled by a hydraulic control valve (not shown). It is also preferable that the output rotation shaft of the engine E is drivingly connected integrally with the input shaft I, or drivingly connected via another member such as a damper.
  • the rotating electrical machine MG includes a stator 12a fixed to a case (not shown) and a rotor 12b that is rotatably supported on the radially inner side of the stator 12a.
  • the rotor 12b of the rotating electrical machine MG is drivingly connected so as to rotate integrally with the input shaft I. That is, in the present embodiment, both the engine E and the rotating electrical machine MG are drivingly connected to the input shaft I.
  • the rotating electrical machine MG is electrically connected to a battery 26 as a power storage device.
  • the rotating electrical machine MG can perform a function as a motor (electric motor) that generates power upon receiving power supply and a function as a generator (generator) that generates power upon receiving power supply. It is possible.
  • the rotating electrical machine MG is powered by receiving power supplied from the battery 26, or stores in the battery 26 the power generated by the rotational driving force transmitted from the engine E or the wheels W.
  • the battery 26 is an example of a power storage device, and another power storage device such as a capacitor may be used, or a plurality of types of power storage devices may be used in combination.
  • power generation by the rotating electrical machine MG is referred to as regeneration
  • negative torque output by the rotating electrical machine MG during power generation is referred to as regeneration torque Tg.
  • the transmission clutch EC is released, the engine E is stopped, and the lockup clutch LC of the torque converter TC is engaged. Then, the rotating electrical machine MG is in a state of outputting the regenerative torque Tg while generating electric power with the rotational driving force transmitted from the wheels W.
  • the torque converter TC is drivingly connected to the input shaft I.
  • the torque converter TC is a device that transmits the rotational driving force of the input shaft I that is drivingly connected to the engine E and the rotating electrical machine MG as a driving force source to the speed change mechanism TM via the intermediate shaft M.
  • the torque converter TC is provided between a pump impeller TCa as an input side rotating member that is drivingly connected to the input shaft I, and a turbine runner TCb as an output side rotating member that is drivingly connected to the intermediate shaft M.
  • a stator TCc provided with a one-way clutch.
  • the torque converter TC transmits driving force between the driving-side pump impeller TCa and the driven-side turbine runner TCb via hydraulic oil filled therein.
  • the torque converter TC includes a lock-up clutch LC as a lock-up friction engagement element.
  • the lock-up clutch LC connects the pump impeller TCa and the turbine runner TCb so as to rotate together in order to eliminate the rotational speed difference (slip) between the pump impeller TCa and the turbine runner TCb and increase the transmission efficiency. It is a clutch. Therefore, the torque converter TC directly transmits the driving force of the driving force source (input shaft I) to the speed change mechanism TM (intermediate shaft M) without using hydraulic fluid when the lockup clutch LC is engaged.
  • the lockup clutch LC is basically in an engaged state, and operates in a state where the input shaft I and the intermediate shaft M rotate together. Accordingly, in the present embodiment, the input shaft I and the intermediate shaft M rotate at basically the same rotational speed.
  • the hydraulic fluid regulated by the hydraulic control device PC is supplied to the torque converter TC including the lockup clutch LC.
  • a transmission mechanism TM is drivingly connected to an intermediate shaft M as an output shaft of the torque converter TC. That is, the intermediate shaft M functions as an input shaft of the speed change mechanism TM.
  • the speed change mechanism TM is a stepped automatic transmission having a plurality of speed stages with different speed ratios.
  • the speed change mechanism TM includes a gear mechanism such as a planetary gear mechanism and a plurality of friction engagement elements B1, C1,.
  • the plurality of friction engagement elements B1, C1,... Are engagement elements such as clutches and brakes each having a friction material.
  • the engagement and release of these friction engagement elements B1, C1,... are configured to be controlled by the hydraulic pressure of the hydraulic oil supplied to each friction engagement element. Further, these friction engagement elements B1, C1,...
  • a clutch for example, a wet multi-plate clutch or the like is preferably used.
  • the friction engagement element transmits torque between the input / output members by friction between the input / output members.
  • the transmission torque capacity is the maximum torque that the friction engagement element can transmit by friction.
  • a rotational speed difference (slip) between the input and output members of the friction engagement element a torque having a transmission torque capacity is transmitted from a member having a higher rotational speed to a member having a lower rotational speed.
  • torque acting on the input / output member of the frictional engagement element is transmitted with the magnitude of the transmission torque capacity as the upper limit.
  • the magnitude of the transmission torque capacity changes in proportion to the magnitude of the hydraulic pressure supplied to the friction engagement element.
  • Each friction engagement element of the speed change mechanism TM is provided with a return spring and is urged to the release side by the reaction force of the spring.
  • a transmission torque capacity starts to be generated in each friction engagement element, and each friction engagement element is engaged from the released state.
  • the hydraulic pressure at which this transmission torque capacity begins to occur is called the stroke end pressure.
  • Each friction engagement element is configured such that, after the supplied hydraulic pressure exceeds the stroke end pressure, the transmission torque capacity increases in proportion to the increase in the hydraulic pressure.
  • FIG. 1 schematically shows a first clutch C1 and a first brake B1 as an example of a plurality of friction engagement elements.
  • the rotation state of the plurality of rotation elements included in the gear mechanism is switched, and the gear position is switched.
  • a release side element one of the friction engagement elements engaged before the shift
  • the friction engagement element released before the shift is released.
  • a so-called crossover shift is performed in which one of them (hereinafter referred to as an engagement side element) is engaged.
  • the speed change mechanism TM shifts the rotational speed of the intermediate shaft M at a predetermined speed ratio set for each shift speed, converts the torque, and transmits the torque to the output shaft O. Torque transmitted from the speed change mechanism TM to the output shaft O is distributed and transmitted to the two left and right wheels W via the differential device DF.
  • the vehicle transmission device 1 has a single-shaft configuration in which the intermediate shaft M and the output shaft O are arranged coaxially.
  • the input shaft I, the intermediate shaft M, and the output shaft O are all arranged coaxially.
  • the hydraulic control system serves as a hydraulic source for sucking hydraulic oil stored in an oil pan (not shown) and supplying hydraulic oil to each part of the vehicle transmission 1.
  • Two types of electric pumps 24 are provided.
  • the mechanical pump 23 is drivingly connected to the input shaft I via the pump impeller TCa of the torque converter TC, and is driven by the rotational driving force of one or both of the engine E and the rotating electrical machine MG.
  • the electric pump 24 is an oil pump that operates by the driving force of the electric motor 25 for driving the pump.
  • the electric motor 25 that drives the electric pump 24 is electrically connected to the battery 26 and receives a supply of electric power from the battery 26 to generate a driving force.
  • the electric pump 24 is a pump for assisting the mechanical pump 23, and operates in a state where a necessary amount of oil is not supplied from the mechanical pump 23 such as when the vehicle is stopped or traveling at a low speed.
  • the hydraulic control system includes a hydraulic control device PC for adjusting the hydraulic pressure of the hydraulic oil supplied from the mechanical pump 23 and the electric pump 24 to a predetermined pressure.
  • the hydraulic control device PC drains from the regulating valve by adjusting the opening of one or more regulating valves based on the signal pressure from the linear solenoid valve for hydraulic regulation.
  • the hydraulic oil pressure is adjusted to one or more predetermined pressures by adjusting the amount of hydraulic oil.
  • the hydraulic oil adjusted to a predetermined pressure has a required level of hydraulic pressure, and the plurality of friction engagement elements C1, B1,... Of the transmission clutch EC, the lockup clutch LC, the torque converter TC, and the speed change mechanism TM. ⁇ Supplied to
  • the control device 31 functions as a core member that controls the operation of each part of the vehicle transmission 1.
  • the control device 31 includes an arithmetic processing device such as a CPU as a core member, and is configured to be able to read and write data from the arithmetic processing device. Is configured to have a storage device such as a ROM (Read Only Memory) configured to be able to read (not shown).
  • the functional units 41 to 46 of the control device 31 are configured by software (program) stored in the ROM or the like, hardware such as a separately provided arithmetic circuit, or both. Each of these functional units 41 to 46 is configured to be able to exchange information with each other.
  • the vehicle transmission device 1 includes sensors Se1 to Se5, and electric signals output from the sensors are input to the control device 31.
  • the control device 31 calculates detection information of each sensor based on the input electrical signal.
  • the input shaft rotational speed sensor Se1 is a sensor that detects the rotational speed of the input shaft I. Since the rotor 12b of the rotating electrical machine MG is integrally connected to the input shaft I, the control device 31 calculates the rotational speeds of the input shaft I and the rotating electrical machine MG from the input signal of the input shaft rotational speed sensor Se1. To do.
  • the intermediate shaft rotation speed sensor Se2 is a sensor that detects the rotation speed of the intermediate shaft M. The control device 31 calculates the rotational speed of the intermediate shaft M from the input signal of the intermediate shaft rotational speed sensor Se2.
  • the output shaft rotation speed sensor Se3 is a sensor that detects the rotation speed of the output shaft O.
  • the control device 31 calculates the rotational speed on the output side of the speed change mechanism TM from the input signal of the output shaft rotational speed sensor Se3. Further, since the rotation speed of the output shaft O is proportional to the vehicle speed, the control device 31 calculates the vehicle speed from the input signal of the output shaft rotation speed sensor Se3.
  • the accelerator opening sensor Se4 is a sensor that detects the accelerator opening by detecting the operation amount of the accelerator pedal operated by the driver. The control device 31 calculates the accelerator opening from the input signal of the accelerator opening sensor Se4.
  • the shift position sensor Se5 is a sensor for detecting a selection position (shift position) of the shift lever. Based on the input information from the shift position sensor Se5, the control device 31 detects which travel range such as “drive range”, “second range”, “low range”, or the like has been designated by the driver.
  • the control device 31 includes an engine control unit 42, a rotating electrical machine control unit 43, a lockup clutch control unit 44, a transmission clutch control unit 45, and a transmission mechanism control unit 46. Further, the speed change mechanism control unit 46 includes a regenerative downshift control unit 41 as a lower functional unit.
  • the functional units 41 to 46 of the control device 31 will be described in detail.
  • the engine control unit 42 is a functional unit that controls the operation of the engine E.
  • the engine control unit 42 performs a process of determining an engine operating point and controlling the engine E to operate at the engine operating point.
  • the engine operating point is a control command value representing a control target point of the engine E, and is determined by the rotational speed and torque.
  • the engine control unit 42 controls the engine E so as to operate at a torque and a rotational speed indicated by the engine operating point.
  • the engine control unit 42 stops the fuel supply to the engine E and controls the engine E to a stopped state.
  • the rotating electrical machine control unit 43 is a functional unit that controls the operation of the rotating electrical machine MG.
  • the rotating electrical machine control unit 43 performs a process of determining a rotating electrical machine operating point and controlling the rotating electrical machine MG to operate at the rotating electrical machine operating point.
  • the rotating electrical machine operating point is a control command value representing a control target point of the rotating electrical machine MG, and is determined by the rotational speed and torque. More specifically, the rotating electrical machine operating point is a command value representing a control target point of the rotating electrical machine MG determined in consideration of the vehicle required output and the engine operating point, and is based on the rotational speed command value and the torque command value. Determined.
  • the rotating electrical machine control unit 43 controls the rotating electrical machine MG so as to operate at the torque and the rotational speed indicated by the rotating electrical machine operating point.
  • the rotating electrical machine control unit 43 sets the torque command value to be negative during regenerative power generation such as during deceleration. Thereby, the rotating electrical machine MG generates electric power by outputting the regenerative torque Tg in the negative direction while rotating in the positive direction.
  • Lock-up clutch control unit This is a functional unit that controls the lock-up clutch control unit 44 and the lock-up clutch LC.
  • the lockup clutch control unit 44 controls the engagement or release of the lockup clutch LC by controlling the hydraulic pressure supplied to the lockup clutch LC via the hydraulic control device PC.
  • the lockup clutch control unit 44 controls the lockup clutch LC to be in an engaged state during regenerative power generation such as during deceleration.
  • the transmission clutch control unit 45 is a functional unit that controls the transmission clutch EC.
  • the transmission clutch control unit 45 controls the engagement or release of the transmission clutch EC by controlling the hydraulic pressure supplied to the transmission clutch EC via the hydraulic control device PC.
  • the transmission clutch control unit 45 controls the transmission clutch EC to a released state during regenerative power generation such as during deceleration.
  • Transmission mechanism control unit The transmission mechanism control unit 46 is a functional unit that controls the transmission mechanism TM.
  • the transmission mechanism control unit 46 determines a target shift stage in the transmission mechanism TM based on sensor detection information such as the vehicle speed, the accelerator opening, and the shift position. Then, the transmission mechanism control unit 46 engages or releases each friction engagement element by controlling the hydraulic pressure supplied to each friction engagement element provided in the transmission mechanism TM via the hydraulic control device PC. Thus, the target gear stage is formed in the speed change mechanism TM.
  • the speed change mechanism control unit 46 refers to a speed change map stored in a memory (not shown) and determines a target speed stage.
  • the shift map is a map that defines the relationship between the accelerator opening and the vehicle speed and the target shift stage in the speed change mechanism TM.
  • a plurality of upshift lines and a plurality of downshift lines are set in the shift map.
  • the shift mechanism control unit 46 determines a new target gear position in the speed change mechanism TM.
  • the target gear position is changed.
  • upshift means switching from a gear stage having a large gear ratio to a gear stage having a small gear ratio
  • downshifting means switching from a gear stage having a small gear ratio to a gear stage having a large gear ratio.
  • the transmission mechanism control unit 46 switches the gear stage in the transmission mechanism TM by controlling the hydraulic pressure supplied to the plurality of friction engagement elements C1, B1,... According to the new target gear stage. At this time, the transmission mechanism control unit 46 releases the disengagement side element and engages the engagement side element. For example, when downshifting is performed, the speed change mechanism control unit 46 releases the disengagement side element that is one of the friction engagement elements that form the high speed stage and the friction engagement element that forms the low speed stage. Downshift control for engaging one engagement side element is performed.
  • Downshift controller during regeneration When the rotating electrical machine MG outputs the regenerative torque Tg, such as when the vehicle is decelerating, when downshifting is performed by straddling the downshift line or changing the shift position due to a decrease in vehicle speed.
  • a regenerative downshift control unit 41 which is a lower-order function unit of the transmission mechanism control unit 46, performs a downshift during regeneration.
  • the regenerative downshift control unit 41 first sets a target increase capacity Tf, which is a target value after an increase in the transmission torque capacity of the engagement side element, according to the regenerative torque Tg.
  • the transmission torque capacity of the engagement side element is increased to the target increase capacity Tf in a predetermined torque capacity increase period, and the transmission torque capacity of the release side element that is the friction engagement element on the released side is Control is performed to decrease the torque capacity during a predetermined torque capacity decrease period at least partially overlapping with the torque capacity increase period. Further, the regenerative downshift control unit 41 sets the transmission torque capacity of the engagement side element so that the difference in rotational speed between the input and output members of the engagement side element decreases after the end of the predetermined torque capacity increase period.
  • the target increase capacity Tf is increased at a gentler slope than the predetermined torque capacity increase period.
  • the engagement side element is decreased while decreasing the decrease in the rotational speed difference between the input / output members in the engagement side element Control is performed to change the transmission torque capacity of the engagement side element so that the rotation speed of the input member and the rotation speed of the output member are synchronized.
  • the regenerative downshift control performed by the regenerative downshift control unit 41 will be described with reference to FIG.
  • Pre-control phase When the rotating electrical machine MG outputs the regenerative torque Tg when the vehicle is decelerating, etc., when the target shift speed is changed from the high speed to the low speed and there is a downshift request, the regenerative downshift control unit 41 The control phase is shifted from the normal control phase to the pre-control phase (time t11 in FIG. 3).
  • the pre-control phase is a phase in which the transmission torque capacity or the supply hydraulic pressure of the disengagement side element and the engagement side element is changed in advance. By providing this pre-control phase, it is possible to improve the control response of the transmission torque capacity of the engagement side element and the release side element.
  • the transmission torque capacity of the disengagement side element can be started to decrease in synchronization with the start of increase of the transmission torque capacity of the engagement side element.
  • the friction engagement element that has transmitted the regenerative torque Tg to the wheel W side can be shifted from the disengagement side element to the engagement side element in an overlapping manner.
  • the regenerative downshift control unit 41 after shifting to the pre-control phase (time t11), causes the engagement side element to start generating a transmission torque capacity.
  • the control for supplying the hydraulic fluid of the engagement side preliminary pressure is started.
  • This engagement side preliminary pressure is set to a pressure necessary for filling the hydraulic cylinder of the engagement side element with the working oil.
  • the engagement-side preliminary pressure is set to a stroke end pressure that is a pressure at which a transmission torque capacity starts to occur in the friction engagement element.
  • the regenerative downshift control unit 41 instructs the hydraulic control device PC using the engagement side preliminary pressure as a command pressure, and the hydraulic control device PC supplies hydraulic oil of the command pressure to the engagement side element.
  • the regenerative downshift control unit 41 instantaneously sets a command pressure higher than the engagement side preliminary pressure after starting the supply of hydraulic oil, Control to speed up the start-up.
  • the regenerative downshift control unit 41 After shifting to the pre-control phase, the regenerative downshift control unit 41 starts control to reduce the transmission torque capacity of the disengagement side element to the disengagement side reserve capacity that is set according to the regeneration torque Tg.
  • the disengagement side reserve capacity is set to be larger by a predetermined capacity than the minimum transmission torque capacity at which the disengagement element can transmit all the regenerative torque Tg to the wheel W side.
  • the regenerative downshift control unit 41 calculates a release side input torque Tif that is a torque acting on the release side element, based on the input torque and the gear ratio of each gear forming the high speed stage.
  • the regenerative downshift control unit 41 uses the regenerative torque Tg, which is the input torque, as shown in the following equation (1), the release-side transmission ratio Rf obtained based on the gear ratio of each gear forming the high speed stage.
  • the multiplied value is calculated as the release side input torque Tif.
  • the release-side input torque Tif is always calculated while the downshift control during regeneration is being performed, and the calculated value is reflected in each control.
  • Tif Tg ⁇ Rf (1)
  • the regenerative downshift control unit 41 calculates a minimum transmission torque capacity that allows the disengagement side element to transmit all the disengagement input torque Tif to the wheel W side by friction between its input and output members. Then, the release side reserve capacity is set based on the release side input torque Tif.
  • a value obtained by adding a predetermined safety value to the magnitude of the release side input torque Tif is set as the release side reserve capacity.
  • the predetermined safety value is set to a value that does not cause slippage between the input / output members of the disengagement element due to error factors or disturbance.
  • the regenerative downshift control unit 41 calculates the release side reserve hydraulic pressure according to the release side reserve capacity, and reduces the hydraulic pressure supplied to the release side engagement element to the release side reserve hydraulic pressure.
  • the characteristics between the transmission torque capacity and the supply hydraulic pressure in each friction engagement element are roughly calculated based on the friction plate area, friction coefficient, piston area, return spring force, friction plate radius, and the like.
  • the characteristic between the transmission torque capacity and the supply hydraulic pressure is stored in the map for each friction engagement element, and the transmission torque capacity is converted from the transmission torque capacity to the hydraulic pressure as appropriate based on the characteristic map.
  • the regenerative downshift control unit 41 shifts the control phase from the pre-control phase to the torque control phase when a predetermined pre-control period has elapsed after the start of the pre-control phase (time t12).
  • This pre-control period is a period from the start of supplying the engagement side preliminary pressure to the engagement side element until the transmission torque capacity starts to be generated in the engagement side element, that is, the actual hydraulic pressure reaches the engagement side preliminary pressure. It is set in the period until. Since the viscosity of the hydraulic oil changes due to the change in the oil temperature, the period until the engagement side preliminary pressure is reached varies depending on the oil temperature. In order to adapt to the fluctuation of this period, the pre-control period is set according to the oil temperature of the hydraulic oil.
  • Torque control phase The regenerative downshift control unit 41 shifts the control phase from the pre-control phase to the torque control phase when the engagement side element starts to have a transmission torque capacity.
  • the torque control phase the torque relationship is shifted from the high speed stage to the low speed stage, but the rotational speed relation remains unchanged and remains at the high speed stage rotation speed, and the engagement side element is The sliding element is brought into a sliding state while transmitting torque by friction, and the releasing element is released. That is, in the torque control phase, the rotational speed relationship remains the same as that of the high speed stage and does not change, and only the torque sharing is shifted from the high speed stage to the low speed stage.
  • the regenerative downshift control unit 41 sets a target increase capacity Tf, which is a target value after the increase of the transmission torque capacity of the engagement side element increased in the torque control phase after the start of the torque control phase, according to the regenerative torque Tg. To set. At the end of the torque control phase, the torque sharing is shifted from the high speed stage to the low speed stage, and all the input torque to the speed change mechanism TM acts on the engagement side element via each gear forming the low speed stage. Therefore, the regenerative downshift control unit 41 calculates an engagement side input torque Tie, which is a torque acting on the engagement side element, based on the input torque and the gear ratio of each gear forming the low speed stage.
  • the engagement-side input torque Tie and the target increase capacity Tf are always calculated during the downshift control during regeneration, and the calculated values are reflected in each control.
  • the regenerative downshift control unit 41 increases the transmission torque capacity of the engagement side element to the target increase capacity Tf in a predetermined torque capacity increase period, and sets the transmission torque capacity of the release side element to the torque capacity increase period. Decrease in a predetermined torque capacity reduction period at least partially overlapping.
  • the start time (time t12) of the torque capacity decrease period is synchronized with the start time (time t12) of the torque capacity increase period
  • the end time (time t13) of the torque capacity decrease period is the torque capacity. It is synchronized with the end time of the increase period (time t13). That is, the torque capacity increase period (time t12 to t13) and the torque capacity decrease period (time t12 to t13) coincide.
  • the period of the torque control phase coincides with the torque capacity increase period and the torque capacity decrease period.
  • the regenerative downshift control unit 41 sets a value obtained by multiplying the regenerative torque Tg by the engagement-side sharing ratio A as an engagement-side shared regenerative torque Tge that is a regenerative torque Tg that is shared and transmitted by the engagement-side element.
  • the value obtained by multiplying the regenerative torque Tg by the disengagement side sharing ratio B is set as the disengagement side regenerative torque Tgr that is the regenerative torque Tg that is shared by the disengagement side element and transmitted.
  • the disengagement side share ratio B is set so that the sum of the engagement side share ratio A and the disengagement side share ratio B becomes 1.0, and the engagement side share regenerative torque Tge and the release side share regenerative torque Tgr The total is set to be the regenerative torque Tg. Therefore, all the regenerative torque Tg is shared by the engagement side element and the disengagement side element and transmitted to the wheel W side.
  • the downshift control unit 41 increases the engagement-side sharing ratio A from zero to 1.0 in the torque capacity increase period (torque control phase period).
  • the engagement-side sharing ratio A is gradually increased with a predetermined first inclination, and this predetermined first inclination is set to a value obtained by dividing 1.0 by the torque capacity increase period. Therefore, the torque sharing for transmitting the regenerative torque Tg is gradually shifted from the disengagement side element to the engagement side element during the torque capacity increase period (torque control phase period).
  • the regenerative downshift control unit 41 controls the transmission torque capacity of the engagement side element so that the engagement side element transmits the engagement side shared regeneration torque Tge of all the regeneration torques Tg to the wheel W side. To do. In other words, the regenerative downshift control unit 41 causes the engagement side element to transmit the torque obtained by multiplying the engagement side input torque Tie by the engagement side sharing ratio A to the wheel W side. To control the transmission torque capacity. Specifically, the regenerative downshift control unit 41 calculates a value obtained by multiplying the regenerative torque Tg by the engagement-side transmission ratio Re and the engagement-side sharing ratio A as shown in the following equation (4).
  • the element is set as an engagement-side frictional transmission torque that is transmitted by friction between the input / output members, and the magnitude of the engagement-side frictional transmission torque is set to the target transmission torque capacity Tc of the engagement-side element.
  • Tc
  • the regenerative downshift control unit 41 converts the target transmission torque capacity Tc of the engagement side element into a target hydraulic pressure based on the characteristic map of the engagement side element, and the engagement side element via the hydraulic control device PC. Supply hydraulic fluid with target hydraulic pressure.
  • the regenerative downshift control unit 41 sets a value obtained by multiplying the regenerative torque Tg by a predetermined safety factor in addition to the engagement-side transmission ratio Re and the engagement-side sharing ratio A as the engagement-side friction transmission torque. You may make it do.
  • This predetermined safety factor is set to a minimum value (for example, 1.1) that can transmit all the regenerative torque Tg to the wheel W side even if there is an error factor or disturbance.
  • the regenerative downshift control unit 41 controls the transmission torque capacity of the release-side element so that the release-side element transmits the release-side shared regeneration torque Tgr to all the regeneration torques Tg to the wheel W side. To do. That is, the regenerative downshift control unit 41 transmits the torque corresponding to the release-side input torque Tif multiplied by the release-side sharing ratio B, so that the release-side element transmits the torque to the wheel W side. To control. Specifically, the regenerative downshift control unit 41 calculates a value obtained by multiplying the regenerative torque Tg by the disengagement side sharing ratio B and the disengagement side transmission ratio Rf as shown in the following equation (5).
  • the release side frictional transmission torque transmitted by the friction between the input and output members is set, and the magnitude of the release side frictional transmission torque is set to the target transmission torque capacity Tr of the release side element.
  • Inertia control phase The regenerative downshift control unit 41 increases the transmission torque capacity of the engagement side element to the target increase capacity Tf, and then shifts the control phase from the torque control phase to the inertia control phase (time t13).
  • the transmission torque capacity of the engagement side element is made larger than the regenerative torque Tg acting via the gears, thereby causing the transmission torque of the engagement side element to exceed the regenerative torque Tg.
  • the rotational speed on the input member side of the engagement side element is increased to the rotational speed on the output member side, and the rotational speed difference (slip) between the input and output members of the engagement side element is increased. Transition to a state where there is no.
  • the increasing speed of the rotational speed on the input member side is proportional to the surplus torque and inversely proportional to the inertia (moment of inertia) on the input member side.
  • the regenerative downshift control unit 41 sets the transmission torque capacity of the engagement side element from the target increase capacity Tf to a value smaller than the first inclination after the start of the inertia control phase. Control to increase gradually with inclination.
  • the regenerative downshift control unit 41 sets the target transmission torque capacity Tc of the engagement side element to the magnitude of the engagement side input torque Tie used for setting the target increase capacity Tf as shown in the following equation (6).
  • the value obtained by multiplying the second inclination K2 and the elapsed time T2 after the start of the inertia control phase is set to the added value.
  • the regenerative downshift control unit 41 converts the target transmission torque capacity Tc of the engagement side element into a target hydraulic pressure based on the characteristic map of the engagement side element, and supplies the target side to the engagement side element via the hydraulic control device PC. Supply hydraulic fluid.
  • the transmission torque capacity of the engagement side element that exceeds the magnitude of the engagement side input torque Tie becomes a surplus torque, and the rotation speed on the input member side (intermediate shaft M) of the engagement side element increases.
  • the engagement-side input torque Tie is always calculated and changes according to the change in the regenerative torque Tg, so the target transmission torque capacity Tc also changes according to the change in the regenerative torque Tg. It is configured as follows. For example, in FIG. 3, when the magnitude of the regenerative torque Tg increases or decreases as indicated by a broken line after time t14, the target transmission torque of the engagement side element is increased according to the increase or decrease in the magnitude of the regenerative torque Tg. Capacity increases or decreases.
  • the regenerative downshift control unit 41 increases the rotational speed of the intermediate shaft M, and a differential rotational speed W1 that is a rotational speed difference obtained by subtracting the rotational speed of the intermediate shaft M from the target input rotational speed of the low speed stage is obtained as follows: When the value becomes equal to or smaller than the predetermined value ⁇ W (time t15), the control shifts to feedback control that synchronizes the rotational speed of the intermediate shaft M and the target input rotational speed of the low speed stage while decreasing the decreasing speed DW2 of the differential rotational speed W1. .
  • the regenerative downshift control unit 41 decreases the differential rotational speed W1 when the differential rotational speed W1 decreases, and decreases the differential rotational speed W1 when the differential rotational speed W1 becomes zero.
  • the transmission torque capacity of the engagement side element is feedback-controlled so that the decrease speed DW2 becomes zero.
  • the target input rotational speed of the low speed stage is such that the rotational speed of the input member of the engagement side element matches the rotational speed of the output member of the engagement side element, and the rotational speed difference between the input members of the engagement side element
  • the rotational speed of the intermediate shaft M in a state in which (slip) is eliminated, and the differential rotational speed W1 on the intermediate shaft M is proportional to the rotational speed difference between the input and output members of the engagement side element.
  • the target input rotational speed at the low speed stage is a rotational speed obtained by multiplying the rotational speed of the output shaft O by the speed ratio of the low speed stage.
  • the regenerative downshift control unit 41 sets a target reduction speed DW2 that is a target value of a reduction speed of the differential rotation speed W1 according to the differential rotation speed W1.
  • the downshift control unit 41 during regeneration decreases the target decrease speed DW2 of the differential rotation speed W1 as the differential rotation speed W1 decreases according to the map as shown in FIG.
  • the regenerative downshift control unit 41 feedback-controls the transmission torque capacity of the engagement side element so that the actual decrease speed of the differential rotation speed W1 becomes the target decrease speed DW2.
  • the regenerative downshift control unit 41 decreases the target transmission torque capacity Tc when the actual reduction speed is greater than the target reduction speed DW2, and reduces the target transmission torque capacity when the actual reduction speed is less than the target reduction speed DW2.
  • Feedback control for increasing Tc is performed. This feedback control acts to reduce the surplus torque to near zero and reduce the target transmission torque capacity to near the magnitude of the engagement side input torque Tie as the differential rotational speed W1 decreases.
  • the surplus torque when the differential rotational speed W1 becomes zero becomes slightly larger than zero by the reduction speed of the rotational speed of the output shaft O, and the target transmission torque capacity is also correspondingly increased. Only slightly larger than the magnitude of the engagement side input torque Tie.
  • the regenerative downshift control unit 41 fully engages the transmission torque capacity of the engagement side element after the rotation speed of the input member and the rotation speed of the output member of the engagement side element are synchronized (after time t16). Control to increase the capacity.
  • the regenerative downshift control unit 41 determines whether or not the rotational speed of the intermediate shaft M and the target input rotational speed of the low speed stage are synchronized. The regenerative downshift control unit 41 determines that the differential rotational speed W1 and the differential rotational speed W1 have decreased sufficiently when the differential rotational speed W1 and the differential rotational speed W1 have decreased sufficiently. In the present embodiment, when the differential rotation speed W1 is equal to or less than a predetermined value and the acceleration of the differential rotation speed ⁇ W is equal to or less than the predetermined value (time t16), it is determined that synchronization has occurred.
  • the target transmission torque capacity Tc of the engagement side element is gradually increased to the complete engagement capacity.
  • this complete engagement capacity is such that even if the input torque from the rotating electrical machine MG or the engine E increases, a rotational speed difference (slip) does not occur between the input / output members of the engagement side element.
  • the target transmission torque capacity Tc of the engagement side element is increased by the third inclination (time t16 to t17), and then the complete engagement capacity is stepwise. (Time t17).
  • the regenerative downshift control unit 41 converts the target transmission torque capacity Tc of the engagement side element into a target hydraulic pressure based on the characteristic map of the engagement side element, and supplies the target side to the engagement side element via the hydraulic control device PC. Supply hydraulic fluid.
  • the regenerative downshift control unit 41 increases the target transmission torque capacity Tc to the full engagement capacity (time t17), then shifts the control phase from the inertia control phase to the normal control phase, and ends the regenerative downshift control. .
  • FIG. 5 is a flowchart showing a processing procedure of control for controlling the transmission torque capacity of the engagement side element and the disengagement side element in the downshift control during regeneration.
  • step # 11 when there is a downshift request during regeneration (step # 11: Yes), the regenerative downshift control unit 41 starts the downshift control process during regeneration, and as described above, In order to start generating the transmission torque capacity of the element, control for supplying hydraulic oil with a predetermined engagement-side preliminary pressure to the engagement-side element is started (step # 12). Subsequently, as described above, control for reducing the transmission torque capacity of the disengagement side element to the disengagement side reserve capacity set according to the regenerative torque Tg is started (step # 13). Thereafter, when the downshift control unit 41 during regeneration determines that the engagement side element has started to have the transmission torque capacity as described above (step # 14: Yes), the target increase capacity according to the regenerative torque Tg.
  • step # 15 control for increasing the transmission torque capacity of the engagement side element to the target increase capacity Tf in a predetermined torque capacity increase period is started.
  • control is started to decrease the transmission torque capacity of the release side element from the release side reserve capacity during a predetermined torque capacity reduction period (step # 16).
  • step # 17: Yes the regenerative downshift control unit 41 determines the transmission torque capacity of the engaging side element as the target. From the increased capacity Tf, control for increasing with a gentler slope is started (step # 18).
  • step # 19: Yes the regenerative downshift control unit 41 performs the rotational speed.
  • Control for changing the transmission torque capacity of the engagement side element is started so as to synchronize the rotation speed of the input member of the engagement side element and the rotation speed of the output member while decreasing the reduction rate of the difference (step #). 20).
  • step # 21: Yes the regenerative downshift control unit 41 transmits the transmission torque capacity of the engagement side element as described above. Is started to increase to the full engagement capacity (step # 22).
  • step # 23: Yes the regenerative downshift control unit 41 ends the regenerative downshift control process.
  • the target increase capacity Tf is the minimum transmission torque capacity that can transmit all the engagement side input torque Tie to the wheel W by the friction between the input and output members of the engagement side element.
  • the case where the magnitude of the engagement side input torque Tie is set has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the target increase capacity Tf is configured to be set based on the magnitude of the engagement side input torque Tie.
  • the target increase capacity Tf increases by a predetermined value from the magnitude of the engagement side input torque Tie.
  • the embodiment of the present invention is not limited to this. That is, the start time of the torque capacity decrease period may be set so as not to coincide with the start time of the torque capacity increase period. Further, the end time of the torque capacity decrease period may be set so as not to coincide with the end time of the torque capacity increase period. Alternatively, both decrease and increase may not match. In any case, the torque capacity decrease period and the torque capacity increase period may be set to overlap at least partially.
  • the engagement-side sharing ratio A is increased from 0.0 to 1.0 with a first slope
  • the release-side sharing ratio B is 1.0 with a first slope.
  • the transmission torque capacity of the engagement side element is increased with a constant slope and the transmission torque capacity of the disengagement side element is decreased with a constant slope.
  • the embodiment of the present invention is not limited to this. That is, the engagement side sharing ratio A is increased from 0.0 to 1.0 in an arbitrary waveform, and the release side sharing ratio B is decreased from 1.0 to 0.0 in an arbitrary waveform. It is one of the preferred embodiments of the present invention. Also in this case, the sum of the engagement side sharing ratio A and the release side sharing ratio B may be set to 1.0.
  • the engagement-side sharing ratio A is increased from 0.0 to 1.0 so that the total value of the engagement-side sharing ratio A and the release-side sharing ratio B does not become 1.0, and the release-side sharing ratio is increased.
  • B may be decreased from 1.0 to 0.0.
  • the transmission torque capacity of the disengagement side element is the minimum transmission torque capacity at which the transmission mechanism TM transmits all the regenerative torque to the wheel W side.
  • the case where the transmission torque capacity is increased by a predetermined value has been described as an example.
  • the embodiment of the present invention is not limited to this. That is, the predetermined value is set to zero, in other words, before starting the torque capacity reduction period, the transmission torque capacity of the disengagement side element is reduced to the minimum at which the speed change mechanism TM transmits all regenerative torque to the wheel W side. It is one of the preferred embodiments of the present invention to reduce the transmission torque capacity.
  • the embodiment of the present invention is not limited to this. That is, after the differential rotational speed W1 becomes equal to or less than the predetermined value ⁇ W, feedback control is not performed, and the transfer torque capacity of the engagement side element is input to the engagement side with a predetermined inclination as shown in the behavior shown in FIG.
  • One preferred embodiment of the present invention is to reduce the torque Tie to the magnitude.
  • control may be performed by feedback control, and a target reduction speed W2 is set according to the differential rotation speed W1 using a map as shown in FIG. 4, and the actual reduction speed matches the target reduction speed W2.
  • feedback control for changing the transmission torque capacity of the engagement side element may be performed.
  • the target transmission torque capacity Tc of the engagement side element increases or decreases according to the change of the regenerative torque Tg.
  • the embodiment of the present invention is not limited to this.
  • the target transmission torque capacity Tc of the engagement side element may be changed in accordance with the change in the regenerative torque Tg over the execution period of the downshift during regeneration.
  • the target transmission torque capacity Tc of the engagement side element is changed according to the change of the regenerative torque Tg.
  • the target transmission torque capacity of the disengagement side element may be configured to change according to the change of the regenerative torque Tg over the execution period of the downshift during regeneration, similarly to the engagement side element.
  • the target transmission torque capacity Tr of the disengagement side element is changed according to the change of the regenerative torque Tg according to the equation (5). It is.
  • the regenerative downshift control unit 41 calculates the target transmission torque capacities Tc, Tr of the engagement side element and the disengagement side element, and engages the target transmission torque capacities Tc, Tr.
  • the case where the target oil pressure is converted to the target oil pressure based on the characteristic map of the side element and the release side element and the working oil of the target oil pressure is supplied has been described as an example.
  • the control device 31 substantially controls the engagement and release of the plurality of friction engagement elements while the rotating electrical machine MG outputs the regenerative torque Tg, and performs the downshift during regeneration.
  • the target increased oil pressure Pf which is the target value after the element oil pressure is increased, is set according to the regenerative torque Tg, and the oil pressure of the engagement side element is set to the target increased oil pressure Pf in a predetermined oil pressure increasing period (torque capacity increasing period)
  • control is performed to decrease the hydraulic pressure of the disengagement element in a predetermined hydraulic pressure decrease period (torque capacity decrease period) at least partially overlapping with the hydraulic pressure increase period.
  • this embodiment of the present invention is not limited to this.
  • the regenerative downshift control unit 41 directly calculates the target hydraulic pressure of the engagement side element and the disengagement side element without calculating the target transmission torque capacities Tc and Tr that are intermediate variables, and the hydraulic oil of the target hydraulic pressure May be provided.
  • the regenerative downshift control unit 41 sets a target increased hydraulic pressure Pf, which is a target value after the increase of the hydraulic pressure of the engagement side element, according to the regenerative torque Tg when performing a downshift during regeneration.
  • the oil pressure of the combined element may be configured to increase to the target increase oil pressure Pf in a predetermined oil pressure increase period.
  • the regenerative downshift control unit 41 replaces the expressions (2) and (3) with a value obtained by multiplying the magnitude of the regenerative torque Tg by the engagement-side transmission ratio Re as in the following expression: Based on the characteristic map Fc () of the engagement side element, the target increase hydraulic pressure Pf is converted.
  • the regenerative downshift control unit 41 increases the target hydraulic pressure Pc of the engagement side element to the target increased hydraulic pressure Pf in a predetermined hydraulic pressure increase period (torque capacity increase period) and the target hydraulic pressure Pr of the release side element.
  • the hydraulic pressure increase period (torque capacity increase period) is decreased in a predetermined oil pressure decrease period (torque capacity decrease period) at least partially overlapping.
  • the regenerative downshift control unit 41 sets the target hydraulic pressure Pc of the engagement side element using the engagement side sharing ratio A described above instead of the equation (4) as in the following equation.
  • the regenerative downshift control unit 41 uses the release side element characteristic map Fr () and the release side sharing ratio B as shown in the following expression instead of the expression (5).
  • the regenerative downshift control unit 41 sets the target hydraulic pressure Pc of the engagement side element from the target increased hydraulic pressure Pf to a value smaller than the first inclination after the start of the inertia control phase. You may comprise so that it may increase gradually with inclination.
  • the regenerative downshift control unit 41 replaces the target hydraulic pressure Pc of the engagement side element with the target increased hydraulic pressure Pf as shown in the following formula instead of the formula (6), the second slope K2 and the inertia control phase. A value obtained by multiplying the elapsed time T2 after the start is set to the added value.
  • the target increase hydraulic pressure Pf is always calculated according to the regenerative torque Tg during the regenerative downshift control, and the change in the regenerative torque Tg becomes the target hydraulic pressure Pc based on the equations (8) and (10). It may be configured to be reflected.
  • the regenerative downshift control unit 41 changes the target hydraulic pressure Pc of the engagement element to the differential rotation speed instead of the transmission torque capacity of the engagement side element after the differential rotation speed W1 becomes equal to or less than the predetermined value ⁇ W.
  • the feedback control may be performed based on W1.
  • the regenerative downshift control unit 41 may be configured to increase the target hydraulic pressure Pc of the engagement side element to the full engagement hydraulic pressure after the input / output members of the engagement side element are synchronized.
  • the fully engaged hydraulic pressure is set sufficiently large so that even if the input torque from the rotating electrical machine MG or the engine E increases, a rotational speed difference (slip) does not occur between the input / output members of the engagement side element. .
  • the present invention includes a plurality of input members that are driven and connected to an internal combustion engine and a rotating electrical machine, an output member that is driven and connected to a wheel, and a plurality of friction engagement elements that are controlled to engage and release.
  • the present invention can be suitably used in a vehicle transmission device that includes a transmission mechanism that includes a gear stage and a control device that controls the transmission mechanism.
  • E Engine (internal combustion engine) MG: rotating electric machine M: intermediate shaft (input member) O: Output shaft (output member) W: Wheel DF: Differential device EC: Transmission clutch TM: Transmission mechanism PC: Hydraulic control device Se2: Intermediate shaft rotation speed sensor Se3: Output rotation speed sensor 1: Vehicle transmission device 31: Control device 41: Downshift control during regeneration Unit 42: engine control unit 43: rotating electrical machine control unit 44: lock-up clutch control unit 45: transmission clutch control unit

Abstract

 回生トルクの出力中にダウンシフトを行なう際に、変速機構の入力回転数の低下を抑制しつつ、回生トルクを制限せずに車輪側に伝達する。内燃機関及び回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、変速機構と、制御装置と、を備えた車両用変速装置であって、制御装置は、回転電機が回生トルクを出力中にダウンシフトを行なう際に、係合される側の摩擦係合要素である係合側要素の伝達トルク容量を、トルク容量増加期間で回生トルクに応じて設定された目標増加容量まで増加させるとともに、解放される側の摩擦係合要素である解放側要素の伝達トルク容量を、トルク容量増加期間と少なくとも一部が重複するトルク容量減少期間で減少させる。

Description

車両用変速装置
 本発明は、内燃機関及び回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の摩擦係合要素の係合及び解放が制御されることにより形成される複数の変速段を備える変速機構と、前記変速機構を制御する制御装置と、を備えた車両用変速装置に関する。
 内燃機関と回転電機とを駆動力源として備えるハイブリッド車両用の変速装置として、例えば、下記の特許文献1に記載された装置が既に知られている。この変速装置では、車両の減速時に、回転電機に回生トルクを出力させ、所望の減速度で車両を減速させて車両の制動を行ないつつ、運動エネルギを電気エネルギとして回収し、燃費の向上を図っている。
 特許文献1の技術では、回生トルクの出力中に変速機構の変速段のダウンシフトを行なう際に、摩擦係合要素の架け替えにより、変速機構が伝達可能なトルクが一時的に低下する。そこで、特許文献1の技術では、この伝達可能トルクの低下に応答させ、回転電機に出力させる回生トルクを一時的に制限することにより、変速機構の入力回転数の低下を防止し、入力回転数を上昇させてダウンシフトを完了するまでの期間を短縮している。
特開2008-94332号公報
 しかし、特許文献1に記載の技術では、回生トルクの出力中にダウンシフトを行なう際に回転電機の回生トルクを制限するため、車輪側に伝達される回生トルクが低下し、車両の制動力が一時的に低下するという問題があった。
 また、特許文献1に記載の技術では、ダウンシフトを行なう際に、摩擦係合要素の架け替えにより変速機構の伝達可能トルクが低下する構成となっているため、回転電機に回生トルクを低下させずに出力させたとしても、変速機構は回生トルクを車輪側に伝達できない。そのため、ダウンシフトを行なう際に、回生トルクによる車両の制動力を十分に確保できないという問題があった。
 そこで、回生トルクの出力中にダウンシフトを行なう際に、変速機構の入力回転数の低下を抑制しつつ、回生トルクを制限せずに車輪側に伝達できる車両用変速装置の実現が望まれる。
 本発明に係る、内燃機関及び回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の摩擦係合要素を備えると共に当該複数の摩擦係合要素の係合及び解放が制御されることにより形成される複数の変速段を備える変速機構と、前記変速機構を制御する制御装置と、を備えた車両用変速装置の特徴構成は、前記制御装置は、前記回転電機が回生トルクを出力中に前記摩擦係合要素の係合及び解放を制御して回生中ダウンシフトを行なう際に、係合される側の摩擦係合要素である係合側要素の伝達トルク容量の増加後の目標値である目標増加容量を前記回生トルクに応じて設定し、前記係合側要素の伝達トルク容量を、所定のトルク容量増加期間で前記目標増加容量まで増加させるとともに、解放される側の摩擦係合要素である解放側要素の伝達トルク容量を、前記トルク容量増加期間と少なくとも一部が重複する所定のトルク容量減少期間で減少させる点にある。
 なお、本願において「変速比」とは、変速機構に各変速段が形成された場合の、各変速段を形成する各歯車の歯数等により規定される、入力部材の回転速度と出力部材の回転速度との比であり、本願では入力部材の回転速度を出力部材の回転速度で除算した値である。
 また、本願において「駆動連結」とは、2つの回転要素が駆動力を伝達可能に連結された状態を指し、当該2つの回転要素が一体的に回転するように連結された状態、或いは当該2つの回転要素が一又は二以上の伝動部材を介して駆動力を伝達可能に連結された状態を含む概念として用いている。このような伝動部材としては、回転を同速で又は変速して伝達する各種の部材が含まれ、例えば、軸、歯車機構、摩擦係合要素、ベルト、チェーン等が含まれる。
 上記の特徴構成によれば、係合側要素の伝達トルク容量を増加させるトルク容量増加期間と、解放側要素の伝達トルク容量を減少させるトルク容量減少期間とが、少なくとも一部で重複するので、回生中ダウンシフト中でも、係合側要素及び解放側要素の双方、又は何れか一方により、回生トルクを車輪側に伝達させることができる。よって、回生トルクが車輪側に伝達されない期間が生じないようにすることができる。また、係合側要素の伝達トルク容量の増加後の目標値である目標増加容量が回生トルクに応じて設定されるので、回生トルクを伝達する摩擦係合要素が解放側要素から係合側要素に移行した後も、回生トルクを適切に車輪側に伝達できる。従って、回生中ダウンシフトを行なう際に、回生トルクによる車両の制動が一時的に低下することを防止することができ、回生トルクによる車両の制動を維持できる。
 また、ダウンシフトを完了させるためには、入力部材の回転速度を増加させる必要があるが、この特徴構成によれば、回生中ダウンシフトを行なう際に、回転電機と車輪との駆動力の伝達が確保されるので、回生トルクが車輪側に伝達されずに入力部材の回転速度を減少させる力として作用することを抑制できる。よって、回生中ダウンシフトを行なう際に、入力部材を回転速度の落ち込みを抑制することができるので、ダウンシフトの完了までの期間を短縮することができる。
 また、この特徴構成によれば、係合側要素により伝達される回生トルクを増加させながら、オーバラップさせて解放側要素により伝達される回生トルクを減少させることができる。これにより、回生トルクの伝達を担当する摩擦係合要素を、解放側要素から係合側要素にオーバラップさせて滑らかに移行させることができる。よって、車輪側へ伝達されるトルクの変動を抑えることができる。
 ここで、前記摩擦係合要素の係合及び解放は、前記摩擦係合要素に供給される作動油の油圧により制御され、前記伝達トルク容量は前記油圧を制御することにより増減が連続的に制御される構成とすると好適である。
 この構成によれば、摩擦係合要素に供給される油圧を制御することにより、伝達トルク容量を連続的に変化させることができる。よって、回生中ダウンシフト中に、車輪側に伝達される回生トルクを連続的に変化させることができ、精度良く回生トルクによる車両の制動を行うことができる。
 ここで、前記制御装置は、前記係合側要素の前記目標増加容量を、前記解放側要素が解放された場合に、前記変速機構が全ての前記回生トルクを前記出力部材側に伝達する最小限の伝達トルク容量に設定する構成とすると好適である。
 この構成によれば、係合側要素を介して全ての回生トルクを出力部材側に伝達しつつ、当該係合側要素の入出力部材間に回転速度差(滑り)を生じさせることができる。このため、係合側要素の伝達トルク容量の急増によって入力部材の回転速度が急激に変化することを抑制でき、係合側要素の伝達トルク容量の急増に起因するトルク変動が出力部材に伝達されることを抑制できる。従って、車輪側へ伝達されるトルクの変動を抑えた滑らかな回生中ダウンシフト制御が実現できる。
 ここで、前記制御装置は、前記所定のトルク容量減少期間の開始時期を、前記所定のトルク容量増加期間の開始時期に同期させる構成とすると好適である。
 この構成によれば、係合側要素により伝達される回生トルクの増加を開始するのと同時に、解放側要素により伝達される回生トルクの減少を開始させることができる。これにより、車輪側へ伝達されるトルクの変動をより確実に抑えつつ、回生トルクの伝達を担当する摩擦係合要素の解放側要素から係合側要素への移行を開始することができる。
 また、前記制御装置は、前記所定のトルク容量減少期間の終了時期を、前記所定のトルク容量増加期間の終了時期に同期させると好適である。
 この構成によれば、係合側要素により伝達される回生トルクの増加を終了するのと同時に、解放側要素により伝達される回生トルクの減少を終了させることができる。これにより、車輪側へ伝達されるトルクの変動をより確実に抑えつつ、回生トルクの伝達を担当する摩擦係合要素の解放側要素から係合側要素への移行を完了することができる。
 また、前記制御装置は、前記所定のトルク容量減少期間を開始する前に、前記解放側要素の伝達トルク容量を、前記変速機構が全ての前記回生トルクを前記出力部材側に伝達する最小限の伝達トルク容量より所定値だけ高い伝達トルク容量まで減少させると好適である。
 この構成によれば、解放側要素の伝達トルク容量は、予め、最小限の伝達トルク容量付近に減少されているので、トルク容量減少期間の開始後迅速に、解放側要素の伝達トルク容量を最小限の伝達トルク容量から減少させることができ、回生トルクの伝達を係合側要素に精度良く移行させることができる。従って、車輪側へ伝達されるトルクの変動を抑えた滑らかな回生中ダウンシフト制御が実現できる。
 また、前記制御装置は、前記所定のトルク容量増加期間の終了後に、前記係合側要素における入出力部材間の回転速度の差が減少するように、前記係合側要素の伝達トルク容量を、前記目標増加容量から、前記所定のトルク容量増加期間より緩やかな傾きで増加させ、前記係合側要素の前記回転速度の差が所定値以下になった後に、前記係合側要素の前記回転速度の差の減少速度を減少させながら前記係合側要素における入力部材の回転速度と出力部材の回転速度とを同期させるように、前記係合側要素の伝達トルク容量を変化させると好適である。
 この構成によれば、係合側要素を介して全ての回生トルクを出力部材側に伝達しつつ、当該係合側要素の入出力部材間の回転速度差(滑り)を次第に減少させ、係合側要素を完全係合状態に移行させることができる。従って係合側要素の伝達トルク容量の急増に起因するトルク変動が出力部材に伝達されることを抑制し、車輪側へ伝達されるトルクの変動を抑えた滑らかな回生中ダウンシフト制御が実現できる。
 また、この構成によれば、係合側要素が同期する直前までに、係合側要素の伝達トルク容量が減少されているので、同期前後のトルク変動を減少させることができる。
 また、前記制御装置は、前記係合側要素の伝達トルク容量を、前記回生トルクの変化に応じて変化させると好適である。
 この構成によれば、回生中ダウンシフトの実行中に回生トルクが変化しても、係合側要素の伝達トルク容量を当該回生トルクの変化に応じて変化させることができる。従って、回生中ダウンシフトの実行中に回生トルクが変化した場合にも、その回生トルクを出力部材側に伝達可能な状態を維持することができる。
 また、本発明に係る、内燃機関及び回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、供給される作動油の油圧により制御される複数の摩擦係合要素を備えると共に当該複数の摩擦係合要素の係合及び解放が制御されることにより形成される複数の変速段を備える変速機構と、前記変速機構を制御する制御装置と、を備えた車両用変速装置の特徴構成は、前記制御装置は、前記回転電機が回生トルクを出力中に前記摩擦係合要素の係合及び解放を制御して回生中ダウンシフトを行なう際に、係合される側の摩擦係合要素である係合側要素の油圧の増加後の目標値である目標増加油圧を前記回生トルクに応じて設定し、前記係合側要素の油圧を、所定の油圧増加期間で前記目標増加油圧まで増加させるとともに、解放される側の摩擦係合要素である解放側要素の油圧を、前記油圧増加期間と少なくとも一部が重複する所定の油圧減少期間で減少させる点にある。
 この特徴構成によれば、係合側要素の油圧を増加させる油圧増加期間と、解放側要素の油圧を減少させる油圧減少期間とが、少なくとも一部で重複するので、回生中ダウンシフト中でも、係合側要素及び解放側要素の双方、又は何れか一方により、回生トルクを車輪側に伝達させることができる。よって、回生トルクが車輪側に伝達されない期間が生じないようにすることができる。また、係合側要素の油圧の増加後の目標値である目標増加油圧が回生トルクに応じて設定されるので、回生トルクを伝達する摩擦係合要素が解放側要素から係合側要素に移行した後も、回生トルクを適切に車輪側に伝達できる。従って、回生中ダウンシフトを行なう際に、回生トルクによる車両の制動が一時的に低下することを防止することができ、回生トルクによる車両の制動を維持できる。
 また、ダウンシフトを完了させるためには、入力部材の回転速度を増加させる必要があるが、この特徴構成によれば、回生中ダウンシフトを行なう際に、回転電機と車輪との駆動力の伝達が確保されるので、回生トルクが車輪側に伝達されずに入力部材の回転速度を減少させる力として作用することを抑制できる。よって、回生中ダウンシフトを行なう際に、入力部材を回転速度の落ち込みを抑制することができるので、ダウンシフトの完了までの期間を短縮することができる。
 また、この特徴構成によれば、係合側要素により伝達される回生トルクを増加させながら、オーバラップさせて解放側要素により伝達される回生トルクを減少させることができる。これにより、回生トルクの伝達を担当する摩擦係合要素を、解放側要素から係合側要素にオーバラップさせて滑らかに移行させることができる。よって、車輪側へ伝達されるトルクの変動を抑えることができる。
本発明の実施形態に係る車両用変速装置の構成を示す模式図である。 本発明の実施形態に係る制御装置の構成を示すブロック図である。 本発明の本実施形態に係る制御装置の処理を示すタイミングチャートである。 本発明の本実施形態に係る制御装置の処理に用いられるマップである。 本発明の本実施形態に係る制御装置の処理を示すフローチャートである。
 本発明に係る車両用変速装置1の実施形態について、図面を参照して説明する。図1は、本実施形態に係る車両用変速装置1の概略構成を示す模式図である。この図に示すように、車両用変速装置1を搭載した車両は、駆動力源として内燃機関としてのエンジンE及び回転電機MGの双方を備えたハイブリッド車両とされている。この図において、実線は駆動力の伝達経路を示し、破線は作動油の供給経路を示し、一点鎖線は電力の供給経路を示している。この図に示すように、本実施形態に係る車両用変速装置1は、概略的には、エンジンE及び回転電機MGを駆動力源として備え、これらの駆動力源の駆動力をトルクコンバータTC及び変速機構TMを介して車輪Wへ伝達する構成となっている。車両用変速装置1は、エンジンE及び回転電機MGに駆動連結される入力部材としての中間軸Mと、車輪Wに駆動連結される出力部材としての出力軸Oと、複数の摩擦係合要素C1、B1・・・を備えると共に当該複数の摩擦係合要素の係合及び解放が制御されることにより形成される複数の変速段を備える変速機構TMと、変速機構TMを制御する制御装置31と、を備えている。また、この車両用変速装置1は、トルクコンバータTCや変速装置TM等の各部に所定油圧の作動油を供給するための油圧制御装置PCを備えている。車両用変速装置1は、入力軸I、中間軸M、出力軸Oのそれぞれの回転速度を検出する入力軸回転速度センサSe1、中間軸回転速度センサSe2、出力軸回転速度センサSe3を備えている。
 このような構成において、本実施形態に係る制御装置31は、回転電機MGが回生トルクTgを出力中に複数の摩擦係合要素の係合及び解放を制御して回生中ダウンシフトを行う際の制御に特徴を有している。なお、ダウンシフトとは、変速比が大きい変速段に移行させる変速である。すなわち、この制御装置31は、回生中ダウンシフトに際してまず、係合される側の摩擦係合要素である係合側要素の伝達トルク容量の増加後の目標値である目標増加容量Tfを回生トルクTgに応じて設定する。次に、係合側要素の伝達トルク容量を、所定のトルク容量増加期間で前記目標増加容量Tfまで増加させるとともに、解放される側の摩擦係合要素である解放側要素の伝達トルク容量を、トルク容量増加期間と少なくとも一部が重複する所定のトルク容量減少期間で減少させる。以下、本実施形態に係る車両用変速装置1及び制御装置31について、詳細に説明する。
1.車両用変速装置の駆動伝達系の構成
 まず、本実施形態に係る車両用変速装置1の駆動伝達系の構成について説明する。図1に示すように、車両用変速装置1は、車両駆動用の駆動力源としてエンジンE及び回転電機MGを備え、これらのエンジンEと回転電機MGとが直列に駆動連結されるパラレル方式のハイブリッド車両用の駆動装置となっている。また、車両用変速装置1は、トルクコンバータTCと変速機構TMとを備えており、当該トルクコンバータTC及び変速機構TMにより、駆動力源としてのエンジンE及び回転電機MGの回転速度を変速すると共にトルクを変換して出力軸Oに伝達する。
 エンジンEは、燃料の燃焼により駆動される内燃機関であり、例えば、ガソリンエンジンやディーゼルエンジンなどの公知の各種エンジンを用いることができる。本例では、エンジンEのクランクシャフト等の出力回転軸が、伝達クラッチECを介して入力軸Iに駆動連結されている。これにより、入力軸Iは伝達クラッチECを介してエンジンEと選択的に駆動連結される。この伝達クラッチECは、油圧制御装置PCにより調圧された作動油の供給を受けて、図示しない油圧制御弁により制御されて、係合又は解放する摩擦係合要素である。なお、エンジンEの出力回転軸が、入力軸Iと一体的に駆動連結され、或いはダンパ等の他の部材を介して駆動連結された構成としても好適である。
 回転電機MGは、図示しないケースに固定されたステータ12aと、このステータ12aの径方向内側に回転自在に支持されたロータ12bと、を有している。この回転電機MGのロータ12bは、入力軸Iと一体回転するように駆動連結されている。すなわち、本実施形態においては、入力軸IにエンジンE及び回転電機MGの双方が駆動連結される構成となっている。回転電機MGは、蓄電装置としてのバッテリ26に電気的に接続されている。そして、回転電機MGは、電力の供給を受けて動力を発生するモータ(電動機)としての機能と、動力の供給を受けて電力を発生するジェネレータ(発電機)としての機能と、を果たすことが可能とされている。すなわち、回転電機MGは、バッテリ26からの電力供給を受けて力行し、或いはエンジンEや車輪Wから伝達される回転駆動力により発電した電力をバッテリ26に蓄電する。なお、バッテリ26は蓄電装置の一例であり、キャパシタなどの他の蓄電装置を用い、或いは複数種類の蓄電装置を併用することも可能である。なお、以下では回転電機MGによる発電を回生と称し、発電中に回転電機MGが出力する負トルクを回生トルクTgと称する。
 この車両用変速装置1では、車両の減速時には、伝達クラッチECが解放されると共に、エンジンEが停止状態とされ、トルクコンバータTCのロックアップクラッチLCが係合される。そして、回転電機MGは、車輪Wから伝達される回転駆動力により発電しつつ回生トルクTgを出力する状態となる。
 入力軸Iには、トルクコンバータTCが駆動連結されている。トルクコンバータTCは、駆動力源としてのエンジンE及び回転電機MGに駆動連結された入力軸Iの回転駆動力を、中間軸Mを介して変速機構TMに伝達する装置である。このトルクコンバータTCは、入力軸Iに駆動連結された入力側回転部材としてのポンプインペラTCaと、中間軸Mに駆動連結された出力側回転部材としてのタービンランナTCbと、これらの間に設けられ、ワンウェイクラッチを備えたステータTCcと、を備えている。そして、トルクコンバータTCは、内部に充填された作動油を介して、駆動側のポンプインペラTCaと従動側のタービンランナTCbとの間で駆動力の伝達を行う。
 ここで、トルクコンバータTCは、ロックアップ用の摩擦係合要素として、ロックアップクラッチLCを備えている。このロックアップクラッチLCは、ポンプインペラTCaとタービンランナTCbとの間の回転速度差(滑り)を無くして伝達効率を高めるために、ポンプインペラTCaとタービンランナTCbとを一体回転させるように連結するクラッチである。従って、トルクコンバータTCは、ロックアップクラッチLCの係合状態では、作動油を介さずに、駆動力源(入力軸I)の駆動力を直接変速機構TM(中間軸M)に伝達する。本実施形態においては、このロックアップクラッチLCは、基本的には係合状態とされ、入力軸Iと中間軸Mとが一体回転する状態で動作する。従って、本実施形態では、入力軸Iと中間軸Mとは基本的には互いに等しい回転速度で回転する。ロックアップクラッチLCを含むトルクコンバータTCには、油圧制御装置PCにより調圧された作動油が供給される。
 トルクコンバータTCの出力軸としての中間軸Mには、変速機構TMが駆動連結されている。すなわち、中間軸Mは変速機構TMの入力軸として機能する。変速機構TMは、変速比の異なる複数の変速段を有する有段の自動変速装置である。変速機構TMは、これら複数の変速段を形成するため、遊星歯車機構等の歯車機構と複数の摩擦係合要素B1、C1、・・・とを備えている。本例では、複数の摩擦係合要素B1、C1、・・・は、それぞれ摩擦材を有して構成されるクラッチやブレーキ等の係合要素である。これらの摩擦係合要素B1、C1、・・・の係合及び解放は、各摩擦係合要素に供給される作動油の油圧により制御されるように構成されている。また、これらの摩擦係合要素B1、C1、・・・は、供給される油圧を制御することによりその伝達トルク容量の増減を連続的に制御することが可能なものとされている。すなわち、複数の摩擦係合要素B1、C1、・・・の伝達トルク容量は、各摩擦係合要素に供給される油圧を制御することにより増減が連続的に制御される。このようなクラッチとしては、例えば湿式多板クラッチ等が好適に用いられる。
 摩擦係合要素は、その入出力部材間の摩擦により、入出力部材間でトルクを伝達する。伝達トルク容量とは、摩擦係合要素が摩擦により伝達することができる最大のトルクの大きさである。摩擦係合要素の入出力部材間に回転速度差(滑り)がある場合は、回転速度の大きい方の部材から小さい方の部材に伝達トルク容量の大きさのトルクが伝達される。摩擦係合要素の入出力部材間に回転速度差(滑り)がない場合は、伝達トルク容量の大きさを上限として、摩擦係合要素の入出力部材に作用するトルクを伝達する。伝達トルク容量の大きさは、摩擦係合要素に供給されている油圧の大きさに比例して変化する。
 変速機構TMの各摩擦係合要素は、リターンばねを備えており、ばねの反力により解放側に付勢されている。そして、各摩擦係合要素に供給される油圧により生じる力がばねの反力を上回ると、各摩擦係合要素に伝達トルク容量が生じ始め、各摩擦係合要素は、解放状態から係合状態に変化する。この伝達トルク容量が生じ始めるときの油圧を、ストロークエンド圧と称す。各摩擦係合要素は、供給される油圧がストロークエンド圧を上回った後、油圧の増加に比例して、その伝達トルク容量が増加するように構成されている。
 図1には、複数の摩擦係合要素の一例として、第一クラッチC1及び第一ブレーキB1が模式的に示されている。複数の摩擦係合要素の係合又は解放を切り替えることにより、歯車機構が有する複数の回転要素の回転状態が切り替えられて、変速段の切り替えが行われる。
 変速段の切り替えに際しては、変速前において係合している摩擦係合要素のうちの一つ(以下、解放側要素と称す)を解放させると共に、変速前において解放されている摩擦係合要素のうちの一つ(以下、係合側要素と称す)を係合させる、いわゆる架け替え変速が行われる。以下では、変速機構TMに形成されている変速段を、変速比が小さい低速段(例えば、第三速段)から変速比が大きい高速段(例えば、第二速段)へ移行させるダウンシフトが行われる場合を説明する。
 変速機構TMは、各変速段について設定された所定の変速比で、中間軸Mの回転速度を変速すると共にトルクを変換して、出力軸Oへ伝達する。変速機構TMから出力軸Oへ伝達されたトルクは、ディファレンシャル装置DFを介して左右二つの車輪Wに分配されて伝達される。なお本例では、車両用変速装置1は、中間軸M及び出力軸Oが同軸上に配置された一軸構成とされている。なお本例では、入力軸I、中間軸M、及び出力軸Oの全てが同軸上に配置された一軸構成とされている。
2.油圧制御系の構成
 次に、上述した車両用変速装置1の油圧制御系について説明する。油圧制御系は、図示しないオイルパンに蓄えられた作動油を吸引し、車両用変速装置1の各部に作動油を供給するための油圧源として、図1に示すように、機械式ポンプ23及び電動ポンプ24の二種類のポンプを備えている。機械式ポンプ23は、トルクコンバータTCのポンプインペラTCaを介して入力軸Iに駆動連結され、エンジンE及び回転電機MGの一方又は双方の回転駆動力により駆動される。電動ポンプ24は、ポンプ駆動用の電動モータ25の駆動力により動作するオイルポンプである。電動ポンプ24を駆動する電動モータ25は、バッテリ26と電気的に接続され、バッテリ26からの電力の供給を受けて駆動力を発生する。この電動ポンプ24は、機械式ポンプ23を補助するためのポンプであって、車両の停止中や低速走行中など、機械式ポンプ23から必要な油量が供給されない状態で動作する。
 また、油圧制御系は、機械式ポンプ23及び電動ポンプ24から供給される作動油の油圧を所定圧に調整するための油圧制御装置PCを備えている。ここでは詳しい説明を省略するが、油圧制御装置PCは、油圧調整用のリニアソレノイド弁からの信号圧に基づき一又は二以上の調整弁の開度を調整することにより、当該調整弁からドレインする作動油の量を調整して作動油の油圧を一又は二以上の所定圧に調整する。所定圧に調整された作動油は、それぞれ必要とされるレベルの油圧で、伝達クラッチEC、ロックアップクラッチLC、トルクコンバータTC、及び変速機構TMの複数の摩擦係合要素C1、B1、・・・に供給される。
3.制御装置の構成
 次に、本実施形態に係る制御装置31の構成について説明する。制御装置31は、図2に示すように、車両用変速装置1の各部の動作制御を行う中核部材としての機能を果たしている。この制御装置31は、CPU等の演算処理装置を中核部材として備えると共に、当該演算処理装置からデータを読み出し及び書き込みが可能に構成されたRAM(ランダム・アクセス・メモリ)や、演算処理装置からデータを読み出し可能に構成されたROM(リード・オンリ・メモリ)等の記憶装置等を有して構成されている(不図示)。そして、ROM等に記憶されたソフトウェア(プログラム)又は別途設けられた演算回路等のハードウェア、或いはそれらの両方により、制御装置31の各機能部41~46が構成される。これらの各機能部41~46は、互いに情報の受け渡しを行うことができるように構成されている。
 また、車両用変速装置1は、センサSe1~Se5を備えており、各センサから出力される電気信号は制御装置31に入力される。制御装置31は、入力された電気信号に基づき各センサの検出情報を算出する。
 入力軸回転速度センサSe1は、入力軸Iの回転速度を検出するセンサである。入力軸Iには回転電機MGのロータ12bが一体的に駆動連結されているので、制御装置31は、入力軸回転速度センサSe1の入力信号から、入力軸I及び回転電機MGの回転速度を算出する。中間軸回転速度センサSe2は、中間軸Mの回転速度を検出するセンサである。制御装置31は、中間軸回転速度センサSe2の入力信号から、中間軸Mの回転速度を算出する。出力軸回転速度センサSe3は、出力軸Oの回転速度を検出するセンサである。制御装置31は、出力軸回転速度センサSe3の入力信号から、変速機構TMの出力側の回転速度を算出する。また、出力軸Oの回転速度は車速に比例するため、制御装置31は、出力軸回転速度センサSe3の入力信号から、車速を算出する。
 また、アクセル開度センサSe4は、運転者により操作されるアクセルペダルの操作量を検出することによりアクセル開度を検出するセンサである。制御装置31は、アクセル開度センサSe4の入力信号から、アクセル開度を算出する。シフト位置センサSe5は、シフトレバーの選択位置(シフト位置)を検出するためのセンサである。制御装置31は、シフト位置センサSe5からの入力情報に基づいて、「ドライブレンジ」、「セカンドレンジ」、「ローレンジ」等のいずれの走行レンジが運転者により指定されたかを検出する。
 図2に示すように、制御装置31は、エンジン制御部42、回転電機制御部43、ロックアップクラッチ制御部44、伝達クラッチ制御部45、変速機構制御部46を備えている。また、変速機構制御部46は、その下位の機能部として回生中ダウンシフト制御部41を備えている。以下では、制御装置31の各機能部41~46について詳細に説明する。
3-1.エンジン制御部
 エンジン制御部42は、エンジンEの動作制御を行なう機能部である。エンジン制御部42は、エンジン動作点を決定し、当該エンジン動作点でエンジンEを動作させるように制御する処理を行う。ここで、エンジン動作点は、エンジンEの制御目標点を表す制御指令値であって、回転速度及びトルクにより定まる。そして、エンジン制御部42は、エンジン動作点に示されるトルク及び回転速度で動作するようにエンジンEを制御する。本実施形態では、減速時などの回生発電中は、エンジン制御部42は、エンジンEへの燃料供給を停止して、エンジンEを停止状態に制御している。
3-2.回転電機制御部
 回転電機制御部43は、回転電機MGの動作制御を行なう機能部である。回転電機制御部43は、回転電機動作点を決定し、当該回転電機動作点で回転電機MGを動作させるように制御する処理を行う。ここで、回転電機動作点は、回転電機MGの制御目標点を表す制御指令値であって、回転速度及びトルクにより定まる。より詳細には、回転電機動作点は、車両要求出力とエンジン動作点とを考慮して決定される回転電機MGの制御目標点を表す指令値であって、回転速度指令値とトルク指令値により定まる。そして、回転電機制御部43は、回転電機動作点に示されるトルク及び回転速度で動作するように回転電機MGを制御する。本実施形態では、回転電機制御部43は、減速時などの回生発電中には、トルク指令値を負に設定する。これにより、回転電機MGは正方向に回転しつつ負方向の回生トルクTgを出力して発電する。
3-3.ロックアップクラッチ制御部
 ロックアップクラッチ制御部44、ロックアップクラッチLCを制御する機能部である。ここで、ロックアップクラッチ制御部44は、油圧制御装置PCを介してロックアップクラッチLCに供給される油圧を制御することにより、ロックアップクラッチLCの係合又は解放を制御する。本実施形態では、ロックアップクラッチ制御部44は、減速時などの回生発電中には、ロックアップクラッチLCを係合状態に制御する。
3-4.伝達クラッチ制御部
 伝達クラッチ制御部45は、伝達クラッチECを制御する機能部である。ここで、伝達クラッチ制御部45は、油圧制御装置PCを介して伝達クラッチECに供給される油圧を制御することにより、伝達クラッチECの係合又は解放を制御する。本実施形態では、伝達クラッチ制御部45は、減速時などの回生発電中には、伝達クラッチECを解放状態に制御する。
3-5.変速機構制御部
 変速機構制御部46は、変速機構TMを制御する機能部である。変速機構制御部46は、車速、アクセル開度、及びシフト位置などのセンサ検出情報に基づいて変速機構TMにおける目標変速段を決定する。そして、変速機構制御部46は、油圧制御装置PCを介して変速機構TMに備えられた各摩擦係合要素に供給される油圧を制御することにより、各摩擦係合要素を係合又は解放して変速機構TMにおいて目標変速段を形成する。
 変速機構制御部46は、不図示のメモリに格納された変速マップを参照し、目標変速段を決定する。変速マップは、アクセル開度及び車速と、変速機構TMにおける目標変速段との関係を規定したマップである。変速マップには複数のアップシフト線と複数のダウンシフト線とが設定されており、車速及びアクセル開度が変化して変速マップ上でアップシフト線又はダウンシフト線を跨ぐと、変速機構制御部46は、変速機構TMにおける新たな目標変速段を決定する。また、シフト位置の変更があった場合も、目標変速段が変更される。例えば、セカンドレンジ、又はローレンジに変更されたと検出した場合にも、目標変速段が変更される場合がある。なお、ここでは、アップシフトとは変速比の大きい変速段から変速比の小さい変速段への切り替えを意味し、ダウンシフトとは変速比の小さい変速段から変速比の大きい変速段への切り替えを意味する。
 変速機構制御部46は、新たな目標変速段に応じて複数の摩擦係合要素C1、B1、・・・への供給油圧を制御することにより、変速機構TMにおける変速段を切り替える。この際、変速機構制御部46は、解放側要素を解放させると共に、係合側要素を係合させる。例えば、ダウンシフトが行われる場合には、変速機構制御部46は、高速段を形成する摩擦係合要素の1つである解放側要素を解放させるとともに、低速段を形成する摩擦係合要素の1つである係合側要素を係合させるダウンシフト制御を行う。
3-6.回生中ダウンシフト制御部
 車両の減速時等、回転電機MGが回生トルクTgを出力中に、車速の低下によりダウンシフト線を跨ぐ、もしくはシフト位置が変更される等して、ダウンシフトを行う場合は、変速機構制御部46の下位機能部である回生中ダウンシフト制御部41が、回生中ダウンシフトを行うように構成されている。
 回生中ダウンシフト制御部41は、回生中ダウンシフトを行う際に、まず係合側要素の伝達トルク容量の増加後の目標値である目標増加容量Tfを回生トルクTgに応じて設定する。次に、係合側要素の伝達トルク容量を、所定のトルク容量増加期間で目標増加容量Tfまで増加させるとともに、解放される側の摩擦係合要素である解放側要素の伝達トルク容量を、前記トルク容量増加期間と少なくとも一部が重複する所定のトルク容量減少期間で減少させる制御を行う。
 また、回生中ダウンシフト制御部41は、所定のトルク容量増加期間の終了後に、係合側要素における入出力部材間の回転速度の差が減少するように、係合側要素の伝達トルク容量を、目標増加容量Tfから、所定のトルク容量増加期間より緩やかな傾きで増加させる。そして、係合側要素における入出力部材間の回転速度の差が所定値以下になった後に、係合側要素における入出力部材間の回転速度の差の減少速度を減少させながら係合側要素における入力部材の回転速度と出力部材の回転速度とを同期させるように、係合側要素の伝達トルク容量を変化させる制御を行う。以下の実施形態では、回生中ダウンシフト制御部41によって行われる回生ダウンシフト制御について、図3を参照して説明する。
3-6-1.プレ制御相
 車両の減速時等に回転電機MGが回生トルクTgを出力中に、目標変速段が高速段から低速段に変更され、ダウンシフト要求があると、回生中ダウンシフト制御部41は、制御フェーズを通常制御相からプレ制御相に移行させる(図3の時刻t11)。
 プレ制御相は、解放側要素及び係合側要素の伝達トルク容量又は供給油圧を、予め変化させておくフェーズである。このプレ制御相を設けることにより、係合側要素及び解放側要素の伝達トルク容量の制御応答性を高めておくことができる。よって、係合側要素の伝達トルク容量の増加開始に同期させ、解放側要素の伝達トルク容量の減少を開始させることができる。そして、回生トルクTgを車輪W側へ伝達していた摩擦係合要素を、解放側要素から、係合側要素へ、オーバラップさせて移行させることができる。
 本実施形態では、回生中ダウンシフト制御部41は、プレ制御相に移行した後(時刻t11)に、係合側要素に、伝達トルク容量を生じ始めさせるために、係合側要素に、所定の係合側予備圧の作動油を供給する制御を開始する。この係合側予備圧は、係合側要素の油圧シリンダーに作動油を満たすために必要な圧力に設定される。本例では、係合側予備圧は、摩擦係合要素に伝達トルク容量が生じ始める圧力であるストロークエンド圧に設定される。そして、回生中ダウンシフト制御部41は、この係合側予備圧を指令圧として、油圧制御装置PCに指令し、油圧制御装置PCは、係合側要素に指令圧の作動油を供給する。また、本例では、回生中ダウンシフト制御部41は、図3の例に示すように、作動油の供給開始後、瞬間的に係合側予備圧より高い指令圧を設定し、実圧の立ち上がりを早める制御を行っている。
 回生中ダウンシフト制御部41は、プレ制御相に移行した後に、解放側要素の伝達トルク容量を、回生トルクTgに応じて設定される解放側予備容量まで減少させる制御を開始する。解放側予備容量は、解放側要素が全ての回生トルクTgを車輪W側に伝達できる最小限の伝達トルク容量より所定容量だけ大きくなるように設定される。
 ダウンシフト前の高速段にあっては、変速機構TMへの入力トルクは、全て、高速段を形成する各歯車を介して解放側要素に作用している。そこで、回生中ダウンシフト制御部41は、入力トルクと、高速段を形成する各歯車の歯数比とに基づき、解放側要素に作用しているトルクである解放側入力トルクTifを算出する。すなわち、回生中ダウンシフト制御部41は、次式(1)のように、入力トルクである回生トルクTgに、高速段を形成する各歯車の歯数比に基づき求めた解放側伝達比Rfを乗算した値を、解放側入力トルクTifとして算出する。なお、この解放側入力トルクTifは、回生中ダウンシフトの制御を行なっている間、常に算出されており、算出値が各制御に反映される。
 Tif=Tg×Rf ・・・(1)
 回生中ダウンシフト制御部41は、解放側要素が、その入出力部材間の摩擦により全ての解放側入力トルクTifを車輪W側に伝達できる最小限の伝達トルク容量を算出する。そして、解放側入力トルクTifに基づいて解放側予備容量を設定する。本例では、解放側入力トルクTifの大きさに、所定の安全値が加算された値が解放側予備容量に設定される。この所定の安全値は、誤差要因や外乱により解放側要素の入出力部材間に滑りが生じない程度の値に設定される。
 回生中ダウンシフト制御部41は、解放側予備容量に応じて解放側予備油圧を算出し、解放側係合要素に供給されている油圧を解放側予備油圧まで減少させる。
 なお、各摩擦係合要素における、伝達トルク容量と供給油圧との間の特性は、摩擦板の面積、摩擦係数、ピストン面積、リターンばね力、摩擦板の半径等に基づき概略算出される特性となり、本例では、摩擦係合要素毎に、伝達トルク容量と供給油圧との間の特性がマップに記憶されており、適宜、特性マップに基づき伝達トルク容量から油圧へ変換される。
 本実施形態では、回生中ダウンシフト制御部41は、プレ制御相の開始後、所定のプレ制御期間が経過した場合(時刻t12)に、制御フェーズをプレ制御相からトルク制御相に移行させる。このプレ制御期間は、係合側要素に係合側予備圧の供給開始後、係合側要素に伝達トルク容量が生じ始めるまでの期間、すなわち、実際の油圧が係合側予備圧に到達するまでの期間に設定される。油温の変化により作動油の粘性が変化するため、係合側予備圧に到達するまでの期間は、油温により変動する。この期間の変動に適応するため、プレ制御期間は、作動油の油温に応じて設定される。
3-6-2.トルク制御相
 回生中ダウンシフト制御部41は、係合側要素が伝達トルク容量を持ち始めた場合に、制御フェーズをプレ制御相からトルク制御相に移行させる。
 トルク制御相では、トルクの関係は、高速段から低速段の状態に移行されるが、回転速度の関係は、変化せず高速段の状態の回転速度のままに維持され、係合側要素はトルクを摩擦により伝達しながら滑っている状態にされ、解放側要素は解放状態にされる。つまり、トルク制御相では、回転速度の関係は、高速段の関係のままで変化がなく、トルク分担だけが高速段から低速段の関係に移行される。
 回生中ダウンシフト制御部41は、トルク制御相の開始後、トルク制御相において増加される係合側要素の伝達トルク容量の増加後の目標値である目標増加容量Tfを、回生トルクTgに応じて設定する。
 トルク制御相の終了時では、トルク分担は、高速段から低速段に移行され、変速機構TMへの入力トルクは、全て、低速段を形成する各歯車を介して係合側要素に作用する。そこで、回生中ダウンシフト制御部41は、入力トルクと、低速段を形成する各歯車の歯数比とに基づき、係合側要素に作用するトルクである係合側入力トルクTieを算出する。すなわち、回生中ダウンシフト制御部41は、次式(2)のように、入力トルクである回生トルクTgに、低速段を形成する各歯車の歯数比に基づき求めた係合側伝達比Reを乗算した値を、係合側入力トルクTieとして算出する。
 Tie=Tg×Re ・・・(2)
 回生中ダウンシフト制御部41は、係合側要素が、その入出力部材間の摩擦により全ての係合側入力トルクTieを車輪Wに伝達できる最小限の伝達トルク容量を算出し、目標増加容量Tfに設定する。すなわち、次式(3)のように、係合側入力トルクTieの大きさが目標増加容量Tfに設定される。
 Tf=|Tie| ・・・(3)
 なお、この係合側入力トルクTie及び目標増加容量Tfは、回生中ダウンシフトの制御を行っている間、常に算出されており、算出値が各制御に反映される。
 回生中ダウンシフト制御部41は、係合側要素の伝達トルク容量を、所定のトルク容量増加期間で目標増加容量Tfまで増加させるとともに、解放側要素の伝達トルク容量を、前記トルク容量増加期間と少なくとも一部が重複する所定のトルク容量減少期間で減少させる。
 本実施形態では、トルク容量減少期間の開始時期(時刻t12)は、トルク容量増加期間の開始時期(時刻t12)に同期されており、トルク容量減少期間の終了時期(時刻t13)は、トルク容量増加期間の終了時期(時刻t13)に同期されている。つまり、トルク容量増加期間(時刻t12~t13)とトルク容量減少期間(時刻t12~t13)は一致している。また、トルク制御相の期間は、トルク容量増加期間及びトルク容量減少期間と一致している。
 回生中ダウンシフト制御部41は、回生トルクTgに係合側分担比Aを乗じた値を、係合側要素が分担して伝達する回生トルクTgである係合側分担回生トルクTgeと設定し、回生トルクTgに解放側分担比Bを乗じた値を、解放側要素が分担して伝達する回生トルクTgである解放側分担回生トルクTgrと設定する。解放側分担比Bは、係合側分担比Aと解放側分担比Bとを合計した値が1.0になるように設定され、係合側分担回生トルクTgeと解放側分担回生トルクTgrの合計が回生トルクTgとなるように設定される。よって、全ての回生トルクTgは、係合側要素と解放側要素とで分担されて車輪W側に伝達される。
 回生中ダウンシフト制御部41は、トルク容量増加期間(トルク制御相の期間)で、係合側分担比Aを、ゼロから1.0まで増加させる。本実施形態では、係合側分担比Aは、所定の第一傾きで次第に増加され、この所定の第一傾きは、1.0をトルク容量増加期間で除算した値に設定される。よって、回生トルクTgを伝達するトルク分担は、トルク容量増加期間(トルク制御相の期間)で、解放側要素から係合側要素に次第に移行される。
 回生中ダウンシフト制御部41は、係合側要素が、全ての回生トルクTgのうち、係合側分担回生トルクTgeを車輪W側に伝達するように、係合側要素の伝達トルク容量を制御する。すなわち、回生中ダウンシフト制御部41は、係合側入力トルクTieに係合側分担比Aを乗じた分のトルクを、係合側要素が車輪W側に伝達するように、係合側要素の伝達トルク容量を制御する。
 具体的には、回生中ダウンシフト制御部41は、次式(4)のように、回生トルクTgに、係合側伝達比Reと係合側分担比Aを乗じた値を、係合側要素がその入出力部材間の摩擦により伝達する係合側摩擦伝達トルクと設定し、係合側摩擦伝達トルクの大きさを係合側要素の目標伝達トルク容量Tcに設定する。
 Tc=|Tg×Re×A|=|Tie×A| ・・・(4)
 そして、回生中ダウンシフト制御部41は、係合側要素の目標伝達トルク容量Tcを、係合側要素の特性マップに基づき目標油圧に変換し、油圧制御装置PCを介して、係合側要素に目標油圧の作動油を供給する。なお、回生中ダウンシフト制御部41は、係合側伝達比Reと係合側分担比Aに加えて所定の安全率を、回生トルクTgに乗算した値を、係合側摩擦伝達トルクと設定するようにしてもよい。この所定の安全率は、誤差要因や外乱があっても、全ての回生トルクTgを車輪W側に伝達できる最小限度の値(例えば1.1)に設定される。
 同様に、回生中ダウンシフト制御部41は、解放側要素が、全ての回生トルクTgのうち、解放側分担回生トルクTgrを車輪W側に伝達するように、解放側要素の伝達トルク容量を制御する。すなわち、回生中ダウンシフト制御部41は、解放側入力トルクTifに解放側分担比Bを乗じた分のトルクを、解放側要素が車輪W側に伝達するように、解放側要素の伝達トルク容量を制御する。
 具体的には、回生中ダウンシフト制御部41は、次式(5)のように、回生トルクTgに、解放側分担比Bと解放側伝達比Rfを乗じた値を、解放側要素がその入出力部材間の摩擦により伝達する解放側摩擦伝達トルクと設定し、解放側摩擦伝達トルクの大きさを解放側要素の目標伝達トルク容量Trに設定する。そして、回生中ダウンシフト制御部41は、解放側要素の目標伝達トルク容量Trを、解放側要素の特性マップに基づき目標油圧に変換し、油圧制御装置PCを介して、解放側要素に目標油圧の作動油を供給する。
 Tr=|Tg×Rf×B|=|Tif×B| ・・・(5)
3-6-3.イナーシャ制御相
 回生中ダウンシフト制御部41は、係合側要素の伝達トルク容量を目標増加容量Tfまで増加させた後、制御フェーズをトルク制御相からイナーシャ制御相に移行させる(時刻t13)。
 イナーシャ制御相では、係合側要素の伝達トルク容量を、歯車を介して作用している回生トルクTgの大きさより大きくすることにより、係合側要素の伝達トルクを、回生トルクTgより上回らせる。そして、上回ったトルクである余剰トルクにより、係合側要素の入力部材側の回転速度を出力部材側の回転速度まで増加させ、係合側要素の入出力部材間の回転速度差(滑り)がない状態に移行させる。この入力部材側の回転速度の増加速度は、余剰トルクに比例し、入力部材側のイナーシャ(慣性モーメント)に反比例する。
 本実施形態では、回生中ダウンシフト制御部41は、イナーシャ制御相の開始後、係合側要素の伝達トルク容量を、目標増加容量Tfから、第一傾きより小さい大きさに設定された第二傾きで次第に増加させる制御を行う。回生中ダウンシフト制御部41は、係合側要素の目標伝達トルク容量Tcを、次式(6)のように、目標増加容量Tfの設定に用いられた係合側入力トルクTieの大きさに、第二傾きK2とイナーシャ制御相の開始後経過時間T2とを乗算した値を加算した値に設定する。
 Tc=|Tie|+K2×T2 ・・・(6)
 回生中ダウンシフト制御部41は、係合側要素の目標伝達トルク容量Tcを、係合側要素の特性マップに基づき目標油圧に変換し、油圧制御装置PCを介して、係合側要素に目標油圧の作動油を供給する。
 係合側入力トルクTieの大きさを上回った係合側要素の伝達トルク容量は、余剰トルクとなり、係合側要素の入力部材側(中間軸M)の回転速度が増加する。
 ここで、上記のように、係合側入力トルクTieは、常に算出されており、回生トルクTgの変化に応じて変化するため、目標伝達トルク容量Tcも回生トルクTgの変化に応じて変化するように構成されている。例えば、図3において、時刻t14以降に破線で示されているように、回生トルクTgの大きさが増減した場合、回生トルクTgの大きさの増減に応じて、係合側要素の目標伝達トルク容量が増減する。
 回生中ダウンシフト制御部41は、中間軸Mの回転速度が増加し、低速段の目標入力回転速度から中間軸Mの回転速度を減算して求めた回転速度差である差回転速度W1が、所定値ΔW以下となった際(時刻t15)に、差回転速度W1の減少速度DW2を減少させながら、中間軸Mの回転速度と低速段の目標入力回転速度とを同期させるフィードバック制御に移行する。具体的には、回生中ダウンシフト制御部41は、差回転速度W1が減少するにつれ、差回転速度W1の減少速度DW2を減少させ、差回転速度W1がゼロになる時の差回転速度W1の減少速度DW2がゼロになるように、係合側要素の伝達トルク容量をフィードバック制御する。
 ここで、低速段の目標入力回転速度は、係合側要素の入力部材の回転速度が、係合側要素の出力部材の回転速度に一致し、係合側要素の入力部材間の回転速度差(滑り)がなくなった状態での中間軸Mの回転速度であり、中間軸Mにおける差回転速度W1は、係合側要素の入出力部材間の回転速度差に比例する。低速段の目標入力回転速度は、出力軸Oの回転速度に低速段の変速比を乗算した回転速度となる。
 本実施形態では、回生中ダウンシフト制御部41は、差回転速度W1に応じて差回転速度W1の減少速度の目標値である目標減少速度DW2を設定する。回生中ダウンシフト制御部41は、図4に示すようなマップにより、差回転速度W1が減少するにつれ、差回転速度W1の目標減少速度DW2を減少させる。そして、回生中ダウンシフト制御部41は、実際の差回転速度W1の減少速度が目標減少速度DW2になるように、係合側要素の伝達トルク容量をフィードバック制御する。回生中ダウンシフト制御部41は、実減少速度が、目標減少速度DW2より大きい場合は、目標伝達トルク容量Tcを減少させ、実減少速度が、目標減少速度DW2より小さい場合は、目標伝達トルク容量Tcを増加させるフィードバック制御を行う。このフィードバック制御は、差回転速度W1が減少するにつれ、余剰トルクをゼロ付近まで減少させ、目標伝達トルク容量を係合側入力トルクTieの大きさ付近まで減少させるように作用する。ここで、車両は減速しているので、差回転速度W1がゼロになった時の余剰トルクは、出力軸Oの回転速度の減少速度分だけゼロより若干大きくなり、目標伝達トルク容量もその分だけ係合側入力トルクTieの大きさより若干大きくなる。
 回生中ダウンシフト制御部41は、係合側要素における入力部材の回転速度と出力部材の回転速度とが同期した後(時刻t16以降)に、係合側要素の伝達トルク容量を、完全係合容量まで増加させる制御を行う。
 まず、回生中ダウンシフト制御部41は、中間軸Mの回転速度と、低速段の目標入力回転速度が同期したか否かを判定する。回生中ダウンシフト制御部41は、差回転速度W1及び差回転速度W1の減少速度が十分小さくなった場合、同期したと判定する。本実施形態では、差回転速度W1が所定値以下になり、差回転速度ΔWの加速度が所定値以下になった際(時刻t16)に、同期したと判定する。
 回生中ダウンシフト制御部41は、同期したと判定した場合は、係合側要素の目標伝達トルク容量Tcを、完全係合容量まで次第に増加させる。本実施形態では、この完全係合容量は、回転電機MG又はエンジンEからの入力トルクが増加しても、係合側要素の入出力部材間に回転速度差(滑り)が生じないように、十分大きく設定される。回生中ダウンシフト制御部41は、同期したと判定した後、係合側要素の目標伝達トルク容量Tcを、第三傾きで増加させた後(時刻t16~t17)、ステップ的に完全係合容量まで増加させる(時刻t17)。回生中ダウンシフト制御部41は、係合側要素の目標伝達トルク容量Tcを、係合側要素の特性マップに基づき目標油圧に変換し、油圧制御装置PCを介して、係合側要素に目標油圧の作動油を供給する。このように、伝達トルク容量をしばらくの間次第に増加させているので、同期したと判定した場合に、差回転速度ΔWが生じていたとしても、差回転速度ΔWがゼロまで減少し、係合側要素が完全係合状態に移行する際の、係合側要素における伝達トルクの変動を緩やかにすることができ、トルクショックの発生を抑制することができる。
 回生中ダウンシフト制御部41は、目標伝達トルク容量Tcを完全係合容量まで増加させた後(時刻t17)、制御フェーズをイナーシャ制御相から通常制御相に移行させ、回生ダウンシフト制御を終了する。
3-6-4.回生中ダウンシフト制御部における制御処理の手順
 次に、回生中ダウンシフト制御部41における制御の処理について、図5のフローチャートを参照して説明する。図5は、回生中ダウンシフト制御における係合側要素及び解放側要素の伝達トルク容量を制御する制御の処理手順を示すフローチャートである。
 まず、回生中ダウンシフト制御部41は、回生中のダウンシフト要求があった場合には(ステップ#11:Yes)、回生中ダウンシフト制御の処理を開始し、上記のように、係合側要素の伝達トルク容量を発生させ始めさせるために、係合側要素に、所定の係合側予備圧の作動油を供給する制御を開始する(ステップ#12)。続いて、上記のように、解放側要素の伝達トルク容量を、回生トルクTgに応じて設定される解放側予備容量まで減少させる制御を開始する(ステップ#13)。その後、回生中ダウンシフト制御部41は、上記のように、係合側要素が伝達トルク容量を持ち始めたと判定した場合には(ステップ#14:Yes)、回生トルクTgに応じて目標増加容量Tfを設定し、係合側要素の伝達トルク容量を、所定のトルク容量増加期間で目標増加容量Tfまで増加させる制御を開始する(ステップ#15)。同時に、解放側要素の伝達トルク容量を、所定のトルク容量減少期間で解放側予備容量から減少させる制御を開始する(ステップ#16)。その後、回生中ダウンシフト制御部41は、上記のように、係合側要素が目標増加容量Tfまで増加した場合には(ステップ#17:Yes)、係合側要素の伝達トルク容量を、目標増加容量Tfから、より緩やかな傾きで増加させる制御を開始する(ステップ#18)。その後、回生中ダウンシフト制御部41は、上記のように、係合側要素の入出力部材間の回転速度差が所定値以下となった場合には(ステップ#19:Yes)、当該回転速度差の減少速度を減少させながら、係合側要素の入力部材の回転速度と出力部材の回転速度とを同期させるように、係合側要素の伝達トルク容量を変化させる制御を開始する(ステップ#20)。その後、回生中ダウンシフト制御部41は、上記のように、係合側要素の入出力部材間の回転速度が同期した場合には(ステップ#21:Yes)、係合側要素の伝達トルク容量を、完全係合容量まで増加させる制御を開始する(ステップ#22)。その後、回生中ダウンシフト制御部41は、係合側要素の伝達トルク容量が完全係合容量まで増加した場合に(ステップ#23:Yes)、回生中ダウンシフト制御の処理を終了する。
〔その他の実施形態〕
 最後に、本発明のその他の実施形態について説明する。なお、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
(1)上記の実施形態においては、目標増加容量Tfは、係合側要素の入出力部材間の摩擦により全ての係合側入力トルクTieを車輪Wに伝達できる最小限の伝達トルク容量である係合側入力トルクTieの大きさに設定される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、目標増加容量Tfは、係合側入力トルクTieの大きさに基づいて設定されるように構成し、例えば、目標増加容量Tfは、係合側入力トルクTieの大きさから所定値だけ増加又は減少された値に設定されるようにすることも本発明の好適な実施形態の一つである。
(2)上記の実施形態においては、トルク容量減少期間をトルク容量増加期間に一致させる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、トルク容量減少期間の開始時期がトルク容量増加期間の開始時期に一致しないように設定してもよい。また、トルク容量減少期間の終了時期がトルク容量増加期間の終了時期に一致しないように設定してもよい。或いは、減少と増加の双方が一致しないようにしてもよい。いずれにしても、トルク容量減少期間とトルク容量増加期間とが少なくとも一部で重複するように設定するとよい。
(3)上記の実施形態においては、トルク制御相において、係合側分担比Aが第一傾きで0.0から1.0まで増加され、解放側分担比Bが第一傾きで1.0から0.0まで減少されることにより、係合側要素の伝達トルク容量が一定の傾きで増加され、解放側要素の伝達トルク容量が一定の傾きで減少される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、係合側分担比Aが、任意の波形で、0.0から1.0まで増加され、解放側分担比Bが、任意の波形で、1.0から0.0まで減少されるようにすることも本発明の好適な実施形態の一つである。この場合も、係合側分担比Aと解放側分担比Bとを合計した値が1.0になるように設定されるようにしてもよい。
 また、係合側分担比Aと解放側分担比Bとを合計した値が1.0にならないように、係合側分担比Aが0.0から1.0まで増加され、解放側分担比Bが1.0から0.0まで減少されるようにしてもよい。
(4)上記の実施形態においては、トルク容量減少期間を開始する前に、解放側要素の伝達トルク容量を、変速機構TMが全ての回生トルクを車輪W側に伝達する最小限の伝達トルク容量より所定値だけ高い伝達トルク容量まで減少させる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、前記所定値をゼロにする、言い換えれば、トルク容量減少期間を開始する前に、解放側要素の伝達トルク容量を、変速機構TMが全ての回生トルクを車輪W側に伝達する最小限の伝達トルク容量まで減少させるようにすることも本発明の好適な実施形態の一つである。
(5)上記の実施形態においては、差回転速度W1が、所定値ΔW以下となった後に、フィードバック制御により、差回転速度W1の減少速度DW2を減少させながら、中間軸Mの回転速度と低速段の目標入力回転速度とを同期させる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、差回転速度W1が、所定値ΔW以下となった後に、フィードバック制御を行なわず、図3に示す挙動のように、係合側要素の伝達トルク容量を、所定の傾きで係合側入力トルクTieの大きさまで減少させるようにすることも本発明の好適な実施形態の一つである。この場合、係合側要素の伝達トルク容量が、係合側入力トルクTieの大きさまで減少した時点で、係合側要素の伝達トルク容量を、完全係合容量まで増加させる制御を開始させてもよい。このように構成しても、差回転速度W1が減少するにつれ、余剰トルクを減少させることができ、差回転速度W1の減少速度DW2を減少させることができる。また、この場合にも、係合側入力トルクTieの大きさが変化した場合、その変化量に応じて、係合側要素の伝達トルク容量を変化させ、図3の破線に示すような挙動を実現させると好適である。
(6)上記の実施形態においては、イナーシャ制御相の開始後、差回転速度W1が所定値ΔW以下になるまで、係合側要素の伝達トルク容量を所定の傾きで増加させる場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、イナーシャ制御相の開始後、差回転速度W1が所定値ΔW以下になるまで、差回転速度W1の減少速度DW2を増加させながら、差回転速度W1を減少させるようにすることも本発明の好適な実施形態の一つである。この場合、フィードバック制御により行なうようにしてもよく、図4に示すようなマップを用いて、差回転速度W1に応じて目標減少速度W2を設定し、実減少速度が目標減少速度W2に一致するように、係合側要素の伝達トルク容量を変化させるフィードバック制御を行なうようにしてもよい。
(7)上記の実施形態においては、図3の時刻t14以降に破線で示したように、イナーシャ制御相において、回生トルクTgの変化に応じて、係合側要素の目標伝達トルク容量Tcが増減される場合を例として説明した。しかし、本発明の実施形態はこれに限定されない。すなわち、回生中ダウンシフトの実行期間に亘って、回生トルクTgの変化に応じて、係合側要素の目標伝達トルク容量Tcを変化させるように構成してもよく、例えば、トルク制御相において、式(4)に従い、回生トルクTgの変化に応じて、係合側要素の目標伝達トルク容量Tcを変化させるように構成することも本発明の好適な実施形態の一つである。
 また、解放側要素の目標伝達トルク容量を、係合側要素と同様に、回生中ダウンシフトの実行期間に亘って、回生トルクTgの変化に応じて、変化させるように構成してもよく、例えば、トルク制御相において、式(5)に従い、回生トルクTgの変化に応じて、解放側要素の目標伝達トルク容量Trを変化させるように構成することも本発明の好適な実施形態の一つである。
(8)上記の実施形態においては、回生中ダウンシフト制御部41は、係合側要素及び解放側要素の目標伝達トルク容量Tc、Trを算出し、当該目標伝達トルク容量Tc、Trを係合側要素及び解放側要素の特性マップに基づき目標油圧に変換し、目標油圧の作動油を供給する場合を例として説明した。これにより、制御装置31は、実質的に、回転電機MGが回生トルクTgを出力中に複数の摩擦係合要素の係合及び解放を制御して回生中ダウンシフトを行なう際に、係合側要素の油圧の増加後の目標値である目標増加油圧Pfを回生トルクTgに応じて設定し、係合側要素の油圧を、所定の油圧増加期間(トルク容量増加期間)で目標増加油圧Pfまで増加させるとともに、解放側要素の油圧を、油圧増加期間と少なくとも一部が重複する所定の油圧減少期間(トルク容量減少期間)で減少させる制御を実行している。しかし、本発明の本実施形態はこれに限定されない。例えば、回生中ダウンシフト制御部41は、中間変数である目標伝達トルク容量Tc、Trを演算せずに、直接、係合側要素及び解放側要素の目標油圧を算出し、目標油圧の作動油を供給するように構成されてもよい。
 この場合、回生中ダウンシフト制御部41は、回生中ダウンシフトを行なう際に、係合側要素の油圧の増加後の目標値である目標増加油圧Pfを回生トルクTgに応じて設定し、係合側要素の油圧を、所定の油圧増加期間で目標増加油圧Pfまで増加させるように構成されてもよい。例えば、回生中ダウンシフト制御部41は、式(2)、式(3)に代えて、次式のように、回生トルクTgの大きさに、係合側伝達比Reを乗算した値を、係合側要素の特性マップFc()に基づき目標増加油圧Pfに変換するように構成される。
 Pf=Fc(|Tg|×Re)  ・・・(7)
 そして、回生中ダウンシフト制御部41は、係合側要素の目標油圧Pcを、所定の油圧増加期間(トルク容量増加期間)で目標増加油圧Pfまで増加させるとともに、解放側要素の目標油圧Prを、油圧増加期間(トルク容量増加期間)と少なくとも一部が重複する所定の油圧減少期間(トルク容量減少期間)で減少させる。例えば、回生中ダウンシフト制御部41は、式(4)に代えて、次式のように、上記した係合側分担比Aを用いて、係合側要素の目標油圧Pcを設定する。
 Pc=Pf×A   ・・・(8)
 また、回生中ダウンシフト制御部41は、式(5)に代えて、次式のように、解放側要素の特性マップFr()及び上記した解放側分担比Bを用いて、解放側要素の目標油圧Prを設定する。
 Pr=Fr(|Tg|×Rf)×B   ・・・(9)
 また、この場合、回生中ダウンシフト制御部41は、イナーシャ制御相の開始後、係合側要素の目標油圧Pcを、目標増加油圧Pfから、第一傾きより小さい大きさに設定された第二傾きで次第に増加させるように構成されてもよい。例えば、回生中ダウンシフト制御部41は、係合側要素の目標油圧Pcを、式(6)に代えて、次式のように、目標増加油圧Pfに、第二傾きK2とイナーシャ制御相の開始後経過時間T2とを乗算した値を加算した値に設定する。
 Pc=Pf+K2×T2 ・・・(10)
 ここで、目標増加油圧Pfは、回生中ダウンシフト制御中、常に、回生トルクTgに応じて算出され、回生トルクTgの変化が、式(8)及び式(10)に基づき、目標油圧Pcに反映されるように構成されてもよい。
 また、回生中ダウンシフト制御部41は、差回転速度W1が、所定値ΔW以下となった後に、係合側要素の伝達トルク容量に代えて、係合要素の目標油圧Pcを、差回転速度W1に基づいてフィードバック制御するように構成されてもよい。
 そして、回生中ダウンシフト制御部41は、係合側要素の入出力部材が同期した後に、係合側要素の目標油圧Pcを、完全係合油圧まで増加させるように構成されてもよい。この完全係合油圧は、回転電機MG又はエンジンEからの入力トルクが増加しても、係合側要素の入出力部材間に回転速度差(滑り)が生じないように、十分大きく設定される。
 本発明は、内燃機関及び回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の摩擦係合要素の係合及び解放が制御されることにより形成される複数の変速段を備える変速機構と、前記変速機構を制御する制御装置と、を備えた車両用変速装置に好適に利用することができる。
E:エンジン(内燃機関)
MG:回転電機
M:中間軸(入力部材)
O:出力軸(出力部材)
W:車輪
DF:ディファレンシャル装置
EC:伝達クラッチ
TM:変速機構
PC:油圧制御装置
Se2:中間軸回転速度センサ
Se3:出力回転速度センサ
1:車両用変速装置
31:制御装置
41:回生中ダウンシフト制御部
42:エンジン制御部
43:回転電機制御部
44:ロックアップクラッチ制御部
45:伝達クラッチ制御部

Claims (9)

  1.  内燃機関及び回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、複数の摩擦係合要素を備えると共に当該複数の摩擦係合要素の係合及び解放が制御されることにより形成される複数の変速段を備える変速機構と、前記変速機構を制御する制御装置と、を備えた車両用変速装置であって、
     前記制御装置は、前記回転電機が回生トルクを出力中に前記摩擦係合要素の係合及び解放を制御して回生中ダウンシフトを行なう際に、係合される側の摩擦係合要素である係合側要素の伝達トルク容量の増加後の目標値である目標増加容量を前記回生トルクに応じて設定し、前記係合側要素の伝達トルク容量を、所定のトルク容量増加期間で前記目標増加容量まで増加させるとともに、解放される側の摩擦係合要素である解放側要素の伝達トルク容量を、前記トルク容量増加期間と少なくとも一部が重複する所定のトルク容量減少期間で減少させる車両用変速装置。
  2.  前記摩擦係合要素の係合及び解放は、前記摩擦係合要素に供給される作動油の油圧により制御され、前記伝達トルク容量は前記油圧を制御することにより増減が連続的に制御される請求項1に記載の車両用変速装置。
  3.  前記制御装置は、前記係合側要素の前記目標増加容量を、前記解放側要素が解放された場合に、前記変速機構が全ての前記回生トルクを前記出力部材側に伝達する最小限の伝達トルク容量に設定する請求項1又は2に記載の車両用変速装置。
  4.  前記制御装置は、前記所定のトルク容量減少期間の開始時期を、前記所定のトルク容量増加期間の開始時期に同期させる請求項1から3のいずれか一項に記載の車両用変速装置。
  5.  前記制御装置は、前記所定のトルク容量減少期間の終了時期を、前記所定のトルク容量増加期間の終了時期に同期させる請求項1から4のいずれか一項に記載の車両用変速装置。
  6.  前記制御装置は、前記所定のトルク容量減少期間を開始する前に、前記解放側要素の伝達トルク容量を、前記変速機構が全ての前記回生トルクを前記出力部材側に伝達する最小限の伝達トルク容量より所定値だけ高い伝達トルク容量まで減少させる請求項1から5のいずれか一項に記載の車両用変速装置。
  7.  前記制御装置は、前記所定のトルク容量増加期間の終了後に、前記係合側要素における入出力部材間の回転速度の差が減少するように、前記係合側要素の伝達トルク容量を、前記目標増加容量から、前記所定のトルク容量増加期間より緩やかな傾きで増加させ、前記係合側要素の前記回転速度の差が所定値以下になった後に、前記係合側要素の前記回転速度の差の減少速度を減少させながら前記係合側要素における入力部材の回転速度と出力部材の回転速度とを同期させるように、前記係合側要素の伝達トルク容量を変化させる請求項1から6のいずれか一項に記載の車両用変速装置。
  8.  前記制御装置は、前記係合側要素の伝達トルク容量を、前記回生トルクの変化に応じて変化させる請求項1から7のいずれか一項に記載の車両用変速装置。
  9.  内燃機関及び回転電機に駆動連結される入力部材と、車輪に駆動連結される出力部材と、供給される作動油の油圧により制御される複数の摩擦係合要素を備えると共に当該複数の摩擦係合要素の係合及び解放が制御されることにより形成される複数の変速段を備える変速機構と、前記変速機構を制御する制御装置と、を備えた車両用変速装置であって、
     前記制御装置は、前記回転電機が回生トルクを出力中に前記摩擦係合要素の係合及び解放を制御して回生中ダウンシフトを行なう際に、係合される側の摩擦係合要素である係合側要素の油圧の増加後の目標値である目標増加油圧を前記回生トルクに応じて設定し、前記係合側要素の油圧を、所定の油圧増加期間で前記目標増加油圧まで増加させるとともに、解放される側の摩擦係合要素である解放側要素の油圧を、前記油圧増加期間と少なくとも一部が重複する所定の油圧減少期間で減少させる車両用変速装置。
PCT/JP2011/057557 2010-03-30 2011-03-28 車両用変速装置 WO2011122533A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112011100259.9T DE112011100259B4 (de) 2010-03-30 2011-03-28 Fahrzeuggetriebevorrichtung
CN201180010995.4A CN102770320B (zh) 2010-03-30 2011-03-28 车辆用变速装置
JP2012508296A JP5365889B2 (ja) 2010-03-30 2011-03-28 車両用変速装置
US13/576,768 US8935062B2 (en) 2010-03-30 2011-03-28 Vehicle transmission device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010076713 2010-03-30
JP2010-076713 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122533A1 true WO2011122533A1 (ja) 2011-10-06

Family

ID=44712229

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057557 WO2011122533A1 (ja) 2010-03-30 2011-03-28 車両用変速装置

Country Status (5)

Country Link
US (1) US8935062B2 (ja)
JP (1) JP5365889B2 (ja)
CN (1) CN102770320B (ja)
DE (1) DE112011100259B4 (ja)
WO (1) WO2011122533A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013169925A (ja) * 2012-02-22 2013-09-02 Nissan Motor Co Ltd ハイブリッド車両の制御装置
US20130296100A1 (en) * 2012-05-07 2013-11-07 Ford Global Technologies, Llc Controlled Regenerative Braking Torque Incrementing in Hybrid Vehicle Downshift
JPWO2013088467A1 (ja) * 2011-12-12 2015-04-27 トヨタ自動車株式会社 車両の制御装置
JP2015221660A (ja) * 2014-05-23 2015-12-10 日産自動車株式会社 電動車両の制御装置
JP2019162979A (ja) * 2018-03-20 2019-09-26 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011105550B4 (de) * 2011-08-24 2018-01-11 Toyota Jidosha Kabushiki Kaisha Fahrzeug-Fahrsteuervorrichtung
JP5786734B2 (ja) * 2012-01-27 2015-09-30 アイシン・エィ・ダブリュ株式会社 ハイブリッド駆動装置
JP5724966B2 (ja) * 2012-08-07 2015-05-27 トヨタ自動車株式会社 車両の変速制御装置
US9028365B2 (en) * 2013-03-13 2015-05-12 Ford Global Technologies, Llc Method of shifting a transmission
US9302674B2 (en) * 2013-09-05 2016-04-05 GM Global Technology Operations LLC Method to maximize available regeneration while maintaining linear vehicle deceleration rate
US9592832B2 (en) 2014-03-18 2017-03-14 Ford Global Technologie,S Llc Extending hybrid electric vehicle regenerative braking
US9475495B2 (en) * 2015-01-07 2016-10-25 Ford Global Technologies, Llc Torque converter clutch capacity based on regenerative braking request
KR101683516B1 (ko) * 2015-09-25 2016-12-07 현대자동차 주식회사 하이브리드 차량의 엔진 클러치 전달토크 학습방법 및 그 학습장치
JP2017178142A (ja) * 2016-03-31 2017-10-05 株式会社小松製作所 作業車両
DE112017005794B4 (de) * 2016-12-27 2023-06-07 Aisin Corporation Leistungsübertragungssteuerungsvorrichtung
DE102017215172A1 (de) 2017-08-30 2019-02-28 Zf Friedrichshafen Ag Verfahren zum Betrieb eines Antriebsstranges eines Kraftfahrzeugs, und Antriebsstrangmodul eines solchen Kraftfahrzeugs
JP7234792B2 (ja) * 2019-05-16 2023-03-08 株式会社アイシン 自動変速装置の変速制御装置
CN114909469B (zh) * 2021-02-07 2024-04-16 广汽埃安新能源汽车有限公司 一种车辆升挡控制方法、装置及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370464A (ja) * 1991-06-17 1992-12-22 Toyota Motor Corp 自動変速機の変速制御装置
JPH09303542A (ja) * 1996-03-13 1997-11-25 Hitachi Ltd 自動変速機の制御装置及び制御方法
JP2007205514A (ja) * 2006-02-03 2007-08-16 Jatco Ltd 自動変速機の回転合わせ変速制御装置
JP2008104306A (ja) * 2006-10-20 2008-05-01 Nissan Motor Co Ltd 車両の制御装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR970066220A (ko) 1996-03-13 1997-10-13 가나이 쯔도무 자동 변속기의 제어 장치 및 제어 방법
JP3468051B2 (ja) * 1997-09-04 2003-11-17 アイシン・エィ・ダブリュ株式会社 自動変速機の油圧制御装置
JP2003278910A (ja) * 2002-03-27 2003-10-02 Honda Motor Co Ltd ハイブリッド車両
JP4501790B2 (ja) * 2005-06-15 2010-07-14 トヨタ自動車株式会社 車両の減速度制御装置
JP5305576B2 (ja) 2006-10-16 2013-10-02 日産自動車株式会社 車両の制御装置
US7637842B2 (en) * 2007-01-23 2009-12-29 Gm Global Technology Operations, Inc. Method and apparatus for control of a transmission torque converter clutch
JP4274268B2 (ja) * 2007-06-19 2009-06-03 トヨタ自動車株式会社 動力伝達装置
US8145397B2 (en) * 2007-11-04 2012-03-27 GM Global Technology Operations LLC Optimal selection of blended braking capacity for a hybrid electric vehicle
US7908067B2 (en) * 2007-12-05 2011-03-15 Ford Global Technologies, Llc Hybrid electric vehicle braking downshift control
JP4998562B2 (ja) * 2007-12-27 2012-08-15 アイシン・エィ・ダブリュ株式会社 自動変速機の制御装置
JP5292807B2 (ja) * 2007-12-28 2013-09-18 アイシン・エィ・ダブリュ株式会社 自動変速機の変速制御装置
JP4630355B2 (ja) * 2008-06-19 2011-02-09 ジヤトコ株式会社 自動変速機の変速制御装置
US8430789B2 (en) * 2009-01-08 2013-04-30 Aisin Aw Co., Ltd. Vehicle control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04370464A (ja) * 1991-06-17 1992-12-22 Toyota Motor Corp 自動変速機の変速制御装置
JPH09303542A (ja) * 1996-03-13 1997-11-25 Hitachi Ltd 自動変速機の制御装置及び制御方法
JP2007205514A (ja) * 2006-02-03 2007-08-16 Jatco Ltd 自動変速機の回転合わせ変速制御装置
JP2008104306A (ja) * 2006-10-20 2008-05-01 Nissan Motor Co Ltd 車両の制御装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013088467A1 (ja) * 2011-12-12 2015-04-27 トヨタ自動車株式会社 車両の制御装置
US9296386B2 (en) 2011-12-12 2016-03-29 Toyota Jidosha Kabushiki Kaisha Vehicle control apparatus
JP2013169925A (ja) * 2012-02-22 2013-09-02 Nissan Motor Co Ltd ハイブリッド車両の制御装置
US20130296100A1 (en) * 2012-05-07 2013-11-07 Ford Global Technologies, Llc Controlled Regenerative Braking Torque Incrementing in Hybrid Vehicle Downshift
CN103386968A (zh) * 2012-05-07 2013-11-13 福特全球技术公司 动力传动系统
CN103386968B (zh) * 2012-05-07 2017-03-01 福特全球技术公司 动力传动系统
US9616895B2 (en) * 2012-05-07 2017-04-11 Ford Global Technologies, Llc Controlled regenerative braking torque incrementing in hybrid vehicle downshift
JP2015221660A (ja) * 2014-05-23 2015-12-10 日産自動車株式会社 電動車両の制御装置
JP2019162979A (ja) * 2018-03-20 2019-09-26 トヨタ自動車株式会社 ハイブリッド車両の制御装置

Also Published As

Publication number Publication date
CN102770320A (zh) 2012-11-07
DE112011100259B4 (de) 2020-09-24
DE112011100259T5 (de) 2012-11-08
US20120290163A1 (en) 2012-11-15
JP5365889B2 (ja) 2013-12-11
JPWO2011122533A1 (ja) 2013-07-08
CN102770320B (zh) 2015-02-18
US8935062B2 (en) 2015-01-13

Similar Documents

Publication Publication Date Title
JP5365889B2 (ja) 車両用変速装置
JP5083638B2 (ja) 制御装置
US8506449B2 (en) Control system
US8744653B2 (en) Control apparatus
US10507837B2 (en) Control device for vehicle drive transfer device
US9919698B2 (en) Control device for vehicle driving device
JP5408500B2 (ja) 制御装置
US10414403B2 (en) Control device
US10300908B2 (en) Control device for starting an internal combustion engine during a shifting operation
JP5803736B2 (ja) 制御装置
JP6465204B2 (ja) 車両用駆動装置の制御装置
JP5557026B2 (ja) 変速制御装置
JP5578362B2 (ja) 制御装置
JP6414499B2 (ja) 車両用駆動装置の制御装置
JP6414489B2 (ja) 車両用駆動装置の制御装置
JP6350676B2 (ja) 車両用駆動装置の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180010995.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762757

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012508296

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13576768

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120111002599

Country of ref document: DE

Ref document number: 112011100259

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762757

Country of ref document: EP

Kind code of ref document: A1