WO2016080384A1 - (フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法 - Google Patents

(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法 Download PDF

Info

Publication number
WO2016080384A1
WO2016080384A1 PCT/JP2015/082231 JP2015082231W WO2016080384A1 WO 2016080384 A1 WO2016080384 A1 WO 2016080384A1 JP 2015082231 W JP2015082231 W JP 2015082231W WO 2016080384 A1 WO2016080384 A1 WO 2016080384A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
organic base
ammonia
fluorosulfonyl
perfluoroalkanesulfonamide
Prior art date
Application number
PCT/JP2015/082231
Other languages
English (en)
French (fr)
Inventor
崇 柏葉
悠万 原田
岡田 卓也
真太朗 佐々木
勉 南明
Original Assignee
セントラル硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セントラル硝子株式会社 filed Critical セントラル硝子株式会社
Priority to JP2016560233A priority Critical patent/JP6631534B2/ja
Priority to CN201580058448.1A priority patent/CN107074753B/zh
Priority to KR1020177010895A priority patent/KR101925482B1/ko
Publication of WO2016080384A1 publication Critical patent/WO2016080384A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C303/00Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides
    • C07C303/36Preparation of esters or amides of sulfuric acids; Preparation of sulfonic acids or of their esters, halides, anhydrides or amides of amides of sulfonic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C311/00Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
    • C07C311/48Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom

Definitions

  • the present invention relates to a method for producing a (fluorosulfonyl) perfluoroalkanesulfonylimide salt.
  • (Fluorosulfonyl) perfluoroalkanesulfonylimide salt is also a useful substance as a battery electrolyte solvent, acid catalyst, ionic liquid and antistatic agent.
  • (Fluorosulfonyl) Perfluoroalkanesulfonylimides are produced by a method of reacting perfluoroalkanesulfonamide with sulfuryl fluoride (Patent Document 1), a method of reacting perfluoroalkanesulfonamide with fluorosulfuric acid or sulfur trioxide.
  • Patent Document 2 a method of reacting perfluoroalkanesulfonamide with fluorosulfuric acid and thionyl chloride (Patent Document 3), or a method of reacting perfluoroalkane isocyanate with sulfur trioxide and ammonium fluoride salt (Patent Document 4) It has been known.
  • Patent Document 1 Although the method of Patent Document 1 is a preferable method, the yield is low (55%) and it is not always efficient.
  • the reaction solution becomes acidic by sulfuric acid or hydrochloric acid by-produced, and (fluorosulfonyl) perfluoroalkanesulfonylimide may be decomposed, so that it was not a preferable method.
  • patent document 2 since the method of patent document 2, patent document 3, and patent document 4 uses highly toxic fluorosulfuric acid and sulfur trioxide which is dangerous to handle, it is difficult to adopt as an industrial manufacturing method. there were.
  • the present invention provides the inventions described in [Invention 1]-[Invention 6] below.
  • [Third step] An organic base is added to the solution containing the perfluoroalkanesulfonamide ammonium salt obtained in the second step to obtain a solution containing “a salt of perfluoroalkanesulfonamide and an organic base” and ammonia, Separating and removing ammonia from the solution.
  • [Fourth step] By adding sulfuryl fluoride in the presence of an organic base to a solution containing “a salt of perfluoroalkanesulfonamide and an organic base” obtained by separating and removing ammonia in the third step, (fluorosulfonyl) par A step of obtaining a fluoroalkanesulfonylimide salt.
  • a (fluorosulfonyl) perfluoroalkanesulfonylimide salt is produced by any one of the methods of Inventions 1 to 5, and then an alkali metal hydroxide or carbonate, or alkali is added to the (fluorosulfonyl) perfluoroalkanesulfonylimide salt Formula [3], characterized by reacting a hydroxide or carbonate of an earth metal: [In Formula [3], R f is the same as Formula [1] of Invention 1.
  • M represents an alkali metal or an alkaline earth metal.
  • n represents an integer equal to the valence of the corresponding metal.
  • the manufacturing method of the (fluoro sulfonyl) perfluoro alkane sulfonyl imido metal salt represented by these.
  • the present invention is particularly characterized by combining the second step.
  • ammonium halide is included in the reaction system.
  • the fourth step which is the final step of the present invention, is performed under these conditions, a by-product bisfluorosulfonylimide is produced, and the target (fluorosulfonyl) perfluoroalkanesulfonylimide salt is obtained with high purity. It was found that there was no (see comparative example below).
  • the present inventors separated and removed ammonium halide contained in the solution by filtering the solution obtained in the first step (second step), and then added to the filtrate obtained in the second step.
  • an organic base By adding an organic base (third step), a “salt of perfluoroalkanesulfonamide and an organic base” is obtained, and the resulting salt is reacted with sulfuryl fluoride (fourth step). It was found that the product (fluorosulfonyl) perfluoroalkanesulfonylimide salt can be obtained in high yield.
  • the (fluorosulfonyl) perfluoroalkanesulfonylimide salt is easily represented by the formula [3] by reacting an alkali metal hydroxide or an alkaline earth metal hydroxide (fluorosulfonyl).
  • derived to the perfluoro alkane sulfonyl imido metal salt was also obtained.
  • the present invention can produce the target (fluorosulfonyl) perfluoroalkanesulfonylimide salt without isolating the intermediate perfluoroalkanesulfonamide salt, and the organic solvent used in the first step is used as it is. It can be said that it is a very advantageous method that can be easily adopted as an industrial production method in that it can be used without removing up to four steps.
  • the present invention has the effect of producing an industrially advantageous (fluorosulfonyl) perfluoroalkanesulfonylimide salt with little waste, without isolating perfluoroalkanesulfonamide for each step.
  • the present invention relates to a method for producing a (fluorosulfonyl) perfluoroalkanesulfonylimide salt, wherein perfluoroalkanesulfonamidoammonium salt and ammonium halide are reacted by reacting perfluoroalkanesulfonyl halide with ammonia in a solvent.
  • a solution containing the solution (first step) is obtained, and then the solution obtained in the first step is separated by filtration to separate and remove the ammonium halide contained in the solution, thereby containing a perfluoroalkanesulfonamide ammonium salt.
  • a solution is obtained (second step).
  • the first step is a step of obtaining a solution containing perfluoroalkanesulfonamide ammonium salt and ammonium halide by reacting perfluoroalkanesulfonyl halide with ammonia (NH 3 ) in the presence of a solvent (Scheme 1). ).
  • the perfluoroalkanesulfonyl halide used in this step is a linear or branched perfluoroalkanesulfonyl halide having 1 to 6 carbon atoms, preferably 1 to 4 carbon atoms, and 1 carbon atom (trifluoromethyl group). Is particularly preferred.
  • Specific compounds include trifluoromethanesulfonyl fluoride, pentafluoroethanesulfonyl fluoride, heptafluoropropanesulfonyl fluoride, nonafluorobutanesulfonyl fluoride, trifluoromethanesulfonyl chloride, pentafluoroethanesulfonyl chloride, heptafluoropropanesulfonyl chloride.
  • Nonafluorobutanesulfonyl chloride trifluoromethanesulfonyl bromide, pentafluoroethanesulfonyl bromide, heptafluoropropanesulfonyl bromide, nonafluorobutanesulfonyl bromide, trifluoromethanesulfonyl iodide, pentafluoroethanesulfonyl iodide, heptafluoropropanesulfonyl iodide, Nonafluorobutanesulfonyl iodide, etc. And the like.
  • trifluoromethanesulfonyl fluoride pentafluoroethanesulfonyl fluoride, heptafluoropropanesulfonyl fluoride, trifluoromethanesulfonyl chloride, pentafluoroethanesulfonyl chloride, heptafluoropropanesulfonyl chloride, trifluoromethanesulfonyl bromide, pentafluoroethanesulfonyl bromide , Heptafluoropropanesulfonyl bromide, trifluoromethanesulfonyl iodide, pentafluoroethanesulfonyl iodide, and heptafluoropropanesulfonyl iodide are preferable, trifluoromethanesulfonyl fluoride, pentafluoroethanesulfonyl flu
  • the amount of ammonia used in this step is 3 to 10 moles stoichiometrically per mole of perfluoroalkanesulfonyl halide, usually 3 to 10 moles, preferably 3 to 5 moles as appropriate. Selected. When the amount is less than 3 mol, the reaction yield is reduced. Even if it is used in excess of 10 moles, there is no problem with the progress of the reaction, but there is no particular merit in terms of reaction rate, yield, or economy.
  • the ammonia used in this step can itself be either simple substance (NH 3 ; anhydrous ammonia) or one dissolved in a solvent such as water (ammonia water or the like).
  • the solvent used in this step is usually a polar solvent that does not react with ammonia or perfluoroalkanesulfonyl halide, but acetonitrile, propionitrile, dimethyl sulfoxide, sultone, diglyme, tetrahydrofuran, dimethylformamide are preferred, and acetonitrile, propionitrile.
  • Nitrile solvents such as are particularly preferred.
  • the amount of the solvent used is not particularly limited, but 0.1 L (liter) or more may be used with respect to 1 mol of perfluoroalkanesulfonyl halide, and usually 0.1 to 20 L is preferable, particularly 0.1 ⁇ 10 L is more preferred.
  • the temperature condition is not particularly limited, but may be performed in the range of ⁇ 50 to 200 ° C. Usually, 0 to 100 ° C. is preferable, and 0 to 70 ° C. is more preferable. If the temperature is lower than ⁇ 50 ° C., the reaction rate is slow, and if the temperature exceeds 200 ° C., decomposition of the product may occur.
  • the pressure condition is not particularly limited, and may be performed, for example, under reduced pressure to increased pressure, that is, within a range of 0.02 MPa to 3 MPa (absolute pressure; the same shall apply hereinafter). In this case, 0.02 MPa to 2 MPa is preferable. In particular, 0.02 MPa to 1 MPa is more preferable.
  • reaction vessel used in the reaction examples include a pressure-resistant reaction vessel lined with Monel, Hastelloy, nickel, or a fluorine resin such as these metals, polytetrafluoroethylene, or perfluoropolyether resin.
  • the reaction time is not particularly limited, but may be in the range of 0.1 to 24 hours. Since the reaction time varies depending on the substrate and reaction conditions, the progress of the reaction can be performed by analytical means such as gas chromatography, liquid chromatography, and NMR. It is preferable that the end point is the point at which the perfluoroalkanesulfonyl halide is almost disappeared by tracking the situation.
  • centrifugal separation vacuum filtration, and pressure filtration are preferable, and centrifugal separation and pressure filtration are particularly preferable.
  • the temperature condition for carrying out the filtration is preferably 10-80 ° C, particularly preferably 30-60 ° C.
  • the temperature is lower than 10 ° C.
  • perfluoroalkanesulfonamidoammonium salt is also precipitated, resulting in a decrease in yield.
  • the temperature exceeds 80 ° C., the ammonium halide is dissolved in the solvent, making it difficult to separate, and the selectivity and yield of the target product are lowered in the fourth step described later.
  • the organic base used in the present invention is methylamine, dimethylamine, ethylamine, diethylamine, n-propylamine, di-n-propylamine, i-propylamine, diisopropylamine, n-butylamine, di-n-butylamine, sec.
  • a primary amine or secondary amine such as butylamine, di-sec-butylamine, tert-butylamine, di-tert-butylamine, phenylamine, diphenylamine, Following formula [Wherein, R 1 , R 2 and R 3 are the same or different and each represents a linear or branched alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, or an aryl group (hydrogen of an aryl group) Some or all of the atoms are halogen (fluorine, chlorine, bromine, iodine), an alkyl group having 1 to 10 carbon atoms, a haloalkyl group having 1 to 10 carbon atoms, a cycloalkyl group having 3 to 8 carbon atoms, an amino group, A nitro group, an acetyl group, a cyano group or a hydroxyl group, which may be substituted).
  • Imine bases such as 1,8-diazabicyclo [5.4.0] undec-7-ene and 1,5-diazabicyclo [4.3.0] non-5-ene; Is mentioned.
  • Specific examples of the tertiary amine include trimethylamine, triethylamine, N-ethyldiisopropylamine, tri-n-propylamine, triisopropylamine, tri-n-butylamine, trioctylamine, tridecylamine, triphenylamine.
  • Tribenzylamine tris (2-ethylhexyl) amine, N, N-dimethyldecylamine, N-benzyldimethylamine, N-butyldimethylamine, N, N-dimethylcyclohexylamine, N, N, N ′, N′-tetramethylethylenediamine, N, N-dimethylaniline, N, N-diethylaniline, 1,4-diazabicyclo [2.2.2] octane, N-methylpyrrolidine, N-methylpiperidine, N-methylmorpholine, N-ethylmorpholine, N, N'-dimethyl pipette Gin, N-methyl pipecoline, N-methyl pyrrolidone, N-vinyl pyrrolidone, bis (2-dimethylamino-ethyl) ether, N, N, N, N ′, N ′′ -pentamethyl-diethylenetriamine, triethanolamine
  • the amount of the organic base used in this step is usually 1 mol or more per mol of perfluoroalkanesulfonamidoammonium salt.
  • one stoichiometric amount of organic base per mole of perfluoroalkanesulfonamidoammonium salt is required, but in the fourth step described later, “perfluoroalkanesulfonamide and When the “salt with an organic base” is reacted with sulfuryl fluoride, 1 mol of the organic base is required per 1 mol of the salt. Therefore, in this step, an organic base may be used in an amount of 2 mol or more per mol of perfluoroalkanesulfonamidoammonium salt, assuming the fourth step described later.
  • the organic base is less than 1 mole, ammonia may not be sufficiently released or removed. Further, when the organic base is used in a stoichiometric amount or more, the reaction rate is increased and the time for the third step can be shortened. However, if it is used excessively more than necessary, it is economically disadvantageous. Therefore, the amount of the organic base used is preferably 2 to 10 moles, more preferably 2.5 to 5 moles per mole of perfluoroalkanesulfonamidoammonium salt.
  • the reaction temperature is usually 20 to 80 ° C., preferably 25 to 60 ° C.
  • the reaction temperature is lower than 20 ° C., ammonia cannot be sufficiently liberated and removed, and the time required for the process becomes long.
  • the reaction temperature exceeds 80 ° C., the solvent and the organic base may be scattered.
  • the pressure condition is usually 0.02 MPa to 0.1 MPa, preferably 0.04 MPa to 0.08 MPa. It is preferable to carry out under reduced pressure conditions exceeding this range because ammonia can be removed more efficiently. However, if the degree of reduced pressure is too large, the solvent and organic base are scattered, which is economically disadvantageous.
  • the reaction time is not particularly limited, but may be in the range of 0.1 to 24 hours. Since it varies depending on the substrate and reaction conditions, it can be analyzed by analytical means such as gas chromatography, liquid chromatography, ion chromatography, and NMR. The progress of the reaction is tracked, and the end point is preferably the point at which the perfluoroalkanesulfonamidoammonium salt has almost disappeared.
  • reaction vessel used in the reaction examples include a pressure-resistant reaction vessel lined with Monel, Hastelloy, nickel, or a fluorine resin such as these metals, polytetrafluoroethylene, or perfluoropolyether resin.
  • perfluoroalkanesulfonamide ammonium salt (R f SO 2 NH 2 .NH 3 ) is converted into a salt of perfluoroalkanesulfonamide and an organic base, and subjected to specific reaction conditions. It is possible to remove ammonia efficiently.
  • using the solution containing “perfluoroalkanesulfonamide and salt of organic base” obtained in this step as it is as a raw material in the fourth step is one of preferred embodiments from the viewpoint of productivity. It is. ⁇ 4th process> Next, the fourth step will be described.
  • the amount of sulfuryl fluoride used in this step is usually 1 mol or more since 1 mol is required stoichiometrically with respect to 1 mol of “salt of perfluoroalkanesulfonamide and organic base”. Use it. However, in practice, it is appropriately selected from 1 mol to 10 mol, preferably 1 to 5 mol.
  • the amount is less than 1 mol, the reaction yield may be reduced. Even if it is used in excess of 10 moles, there is no problem with the progress of the reaction, but there is no particular merit in terms of reaction rate, yield, or economy.
  • the organic base As for the organic base, the same kind as that used in the third step can be added separately in this step.
  • the amount of the organic base used is usually 1 mole as the stoichiometric amount with respect to 1 mole of the salt of perfluoroalkanesulfonamide and organic base, but as described in the third step, In 3 steps, when the organic base is used in a stoichiometric amount or more (specifically, when 2 mol or more per mol of perfluoroalkanesulfonamidoammonium salt is used), in this step, the organic base used in the previous step is It remains in the reaction system.
  • the amount of organic base can be reduced in this step, or a necessary amount of organic base can be newly added.
  • the reaction rate increases and the time of the third step can be shortened.
  • the amount of the organic base used is preferably 2 to 10 moles, more preferably 2.5 to 5 moles per mole of perfluoroalkanesulfonamide ammonium salt. If the organic base is less than 1 mol, ammonia may not be sufficiently liberated or removed.
  • reaction solvent used in this step can be the same as the solvent used in the first step. In the present invention, it is possible to carry out this step without going through the first to fourth steps described above and without particularly performing a solvent replacement operation.
  • the temperature condition there is no particular limitation on the temperature condition, but it may be performed in the range of ⁇ 50 to 200 ° C. Usually, 0 to 100 ° C. is preferable, and 0 to 70 ° C. is more preferable. If the temperature is lower than ⁇ 50 ° C., the reaction rate is slow, and if the temperature exceeds 200 ° C., decomposition of the product may occur.
  • the pressure condition is not particularly limited, but may be, for example, reduced pressure to increased pressure, that is, in the range of 0.02 MPa to 3 MPa. In this case, 0.02 MPa to 2 MPa is preferable, and 0.02 MPa to 1 MPa is more preferable. preferable.
  • reaction vessel used in the reaction examples include a pressure-resistant reaction vessel lined with Monel, Hastelloy, nickel, or a fluorine resin such as these metals, polytetrafluoroethylene, or perfluoropolyether resin.
  • the reaction time is not particularly limited, but may be in the range of 0.1 to 24 hours. Since it varies depending on the substrate and reaction conditions, it can be analyzed by analytical means such as gas chromatography, liquid chromatography, ion chromatography, and NMR. It is preferable that the progress of the reaction is tracked and the end point is the time when the raw material is almost lost.
  • the (fluorosulfonyl) perfluoroalkanesulfonylimide salt can be produced by an industrially advantageous production method through the first to fourth steps.
  • the obtained (fluorosulfonyl) perfluoroalkanesulfonylimide salt is reacted with an alkali metal hydroxide or carbonate, or an alkaline earth metal hydroxide or carbonate, and represented by the formula [3].
  • a method for obtaining (fluorosulfonyl) perfluoroalkanesulfonylimidic acid metal salt will be described.
  • M represents an alkali metal or an alkaline earth metal, which is an alkali metal hydroxide or carbonate described later, or an alkaline earth metal hydroxide or carbonate. Corresponds to alkali metals and alkaline earth metals. Further, in the formula [3], “n” represents an integer having the same number as the valence of the corresponding metal.
  • the alkali metal hydroxide used include lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), and cesium hydroxide (CsOH).
  • metal hydroxides include magnesium hydroxide (Mg (OH) 2 ), calcium hydroxide (Ca (OH) 2 ), barium hydroxide (Ba (OH) 2 ), and strontium hydroxide (Sr (OH) 2.
  • Alkaline earth metal carbonates such as magnesium carbonate (MgCO 3 ), calcium carbonate (CaCO 3 ), barium carbonate (BaCO 3 ) Strontium carbonate (SrCO 3 ), preferably lithium hydroxide (LiOH), sodium hydroxide (NaOH), potassium hydroxide (KOH), rubidium hydroxide (RbOH), cesium hydroxide (CsOH), hydroxide Examples thereof include magnesium (Mg (OH) 2 ), calcium hydroxide (Ca (OH) 2 ), barium hydroxide (Ba (OH) 2 ), and strontium hydroxide (Sr (OH) 2 ).
  • MgCO 3 magnesium carbonate
  • CaCO 3 calcium carbonate
  • BaCO 3 barium carbonate
  • SrCO 3 Strontium carbonate
  • LiOH lithium hydroxide
  • NaOH sodium hydroxide
  • KOH potassium hydroxide
  • RbOH rubidium hydroxide
  • CsOH cesium hydroxide
  • hydroxide Examples thereof include magnesium (Mg
  • alkali metal hydroxides or carbonates, or alkaline earth metal hydroxides or carbonates may be used alone or in combination of two or more.
  • a combination of the same alkali metal hydroxide and carbonate for example, potassium hydroxide and potassium carbonate
  • the same alkaline earth metal hydroxide and carbonate for example, hydroxide
  • the amount of alkali metal hydroxide or carbonate or alkaline earth metal hydroxide or carbonate used is preferably 1 to 5 mol, more preferably 1 mol per mol of (fluorosulfonyl) perfluoroalkanesulfonylimide salt. Is 1 mol to 3 mol.
  • water when water is used as a solvent, it is preferable to add water so that the concentration is usually 10% by mass to 70% by mass, preferably 20% by mass to 60% by mass, and more preferably 30% by mass to 60% by mass. If the amount of water is too small, stirring in the reaction system becomes difficult. If the amount is too large, processing after the reaction becomes complicated, and a reaction container larger than usual is required.
  • An organic solvent other than water can also be used. Solvents such as ethers such as diethyl ether, dioxane, tetrahydrofuran and ethylene glycol dimethyl ether can be used. It can also be used in combination with water.
  • the amount of the solvent used is appropriately selected from the range of usually 0.5 to 10 times, preferably 1 to 7 times the volume of the (fluorosulfonyl) perfluoroalkanesulfonylimide salt.
  • the reaction temperature is not particularly limited, but is usually ⁇ 10 ° C. to 110 ° C., preferably 25 to 80 ° C. If the temperature is lower than ⁇ 10 ° C., the reaction does not proceed sufficiently and causes a decrease in yield, which is economically disadvantageous, or causes a problem that the reaction rate decreases and it takes a long time to complete the reaction. There is a case.
  • the reaction time is not particularly limited, but it may usually be within a range of 24 hours.
  • the progress of the reaction is traced by an analytical means such as ion chromatography or NMR, and the end point when the raw material substrate has almost disappeared. Is preferable.
  • the reactor used in this process is made of metal containers such as stainless steel, Hastelloy, Monel, tetrafluoroethylene resin, chlorotrifluoroethylene resin, vinylidene fluoride resin, PFA resin, polypropylene resin, polyethylene resin, and glass.
  • a reactor capable of sufficiently performing a reaction under normal pressure or pressure can be used, such as one lined inside.
  • First step 300 g of acetonitrile was put into a 500 ml stainless steel autoclave reactor, the reactor was cooled, and the inside of the reactor was deaerated when the liquid temperature became 5 ° C. or lower. After deaeration, 24.7 g (1.45 mol) of anhydrous ammonia was added, and then 66.3 g (0.436 mol) of trifluoromethanesulfonyl fluoride was slowly added while maintaining the internal temperature at 0 to 5 ° C. When the introduction of trifluoromethanesulfonyl fluoride was completed, stirring was continued for 13 hours. After 13 hours, the reaction solution was quantified by 19 F NMR.
  • Second step The reaction solution obtained in the first step was heated to 40 ° C., and then filtered under reduced pressure using a Kiriyama funnel. After filtration, the content of ammonium fluoride in the filtrate was confirmed by ion chromatography. As a result, it was 0.0046 mol, and it was confirmed that 99% was removed.
  • Third step The solution obtained in the second step was transferred to a reactor equipped with a Dimroth condenser, 126 g (1.25 mol) of triethylamine was added, and the mixture was heated at 50 to 55 ° C.
  • First step 300 g of acetonitrile was put into a 500 ml stainless steel autoclave reactor, the reactor was cooled, and the inside of the reactor was deaerated when the liquid temperature became 5 ° C. or lower. After deaeration, 24.7 g (1.45 mol) of anhydrous ammonia was added, and then 88.1 g of pentafluoroethanesulfonyl fluoride (0.436 mol was slowly added while maintaining the internal temperature of 0 to 5 ° C. Pentafluoroethanesulfonyl).
  • First step 200 g of acetonitrile was put into a 500 ml stainless steel autoclave reactor, the reactor was cooled, and the inside of the reactor was deaerated when the liquid temperature became 5 ° C. or lower. After deaeration, 12.3 g (0.725 mol) of anhydrous ammonia was added, and then 65.9 g (0.218 mol) of nonafluorobutanesulfonyl fluoride was slowly added while maintaining the internal temperature of 0 to 5 ° C. When the introduction of nonafluorobutanesulfonyl fluoride was completed, stirring was continued for 22 hours. After 22 hours, the reaction solution was quantified by 19 F NMR.
  • Second to fourth steps After the second step, the reaction was carried out in the same manner as in Example 1. As a result, 0.157 mol of a target triethylammonium (fluorosulfonyl) nonafluorobutanesulfonylimide salt was obtained in a yield of 72.3%.
  • First step 300 g of acetonitrile was put into a 500 ml stainless steel autoclave reactor, the reactor was cooled, and the inside of the reactor was deaerated when the liquid temperature became 5 ° C. or lower. After deaeration, 24.7 g (1.45 mol) of anhydrous ammonia was added, and then 66.3 g (0.436 mol) of trifluoromethanesulfonyl fluoride was slowly added while maintaining the internal temperature at 0 to 5 ° C. When the introduction of trifluoromethanesulfonyl fluoride was completed, stirring was continued for 18 hours. After 18 hours, the reaction solution was quantified by 19 F NMR.
  • Second step The reaction solution obtained in the first step was filtered under reduced pressure using a Kiriyama funnel at room temperature to obtain 400 g of a filtrate. As a result of quantification by 19 F NMR, it was confirmed that 0.415 mol of trifluoromethanesulfonamide ammonium salt was contained in the filtrate. Moreover, as a result of confirming the content of ammonium fluoride in the filtered filtrate by ion chromatography, it was 0.0112 mol, and it was confirmed that 97% was removed.
  • Step 3 to Step 4 In the third and subsequent steps, the reaction was carried out in the same manner as in Example 1 except that 91.4 g (1.25 mol) of diethylamine was used instead of triethylamine, so that diethylammonium (fluorosulfonyl) trifluoride as the target product was obtained. 0.36 mol of lomethanesulfonylimide salt was obtained with a yield of 86.2%.
  • First step 300 g of acetonitrile was put into a 500 ml stainless steel autoclave reactor, the reactor was cooled, and the inside of the reactor was deaerated when the liquid temperature became 5 ° C. or lower. After deaeration, 24.7 g (1.45 mol) of anhydrous ammonia was added, and then 66.3 g (0.436 mol) of trifluoromethanesulfonyl fluoride was slowly added while maintaining the internal temperature at 0 to 5 ° C. When the introduction of trifluoromethanesulfonyl fluoride was completed, stirring was continued for 15 hours. After 15 hours, the reaction solution was quantified by 19 F NMR.
  • Second step The reaction solution obtained in the first step was filtered under reduced pressure with a Kiriyama funnel at room temperature to obtain 400 g of a filtrate. As a result of quantification by 19 F NMR, it was confirmed that 0.415 mol of trifluoromethanesulfonamide ammonium salt was contained in the filtrate. Moreover, as a result of confirming the content of ammonium fluoride in the filtered filtrate by ion chromatography, it was 0.0112 mol, and it was confirmed that 97% was removed.
  • Step 3 to Step 4 In the third and subsequent steps, the reaction was carried out in the same manner as in Example 1 except that 98.8 g (1.25 mol) of pyridine was used instead of triethylamine, so that the target pyridinium- (fluorosulfonyl) trifluoride was obtained. 0.35 mol of lomethanesulfonylimide salt was obtained with a yield of 82.1%.
  • the target product is obtained by carrying out the reaction in the same manner as in the third step and the fourth step of Example 1 except that 162 g (1.60 mol) of triethylamine is added to the solution obtained in the first step.
  • 162 g (1.60 mol) of triethylamine is added to the solution obtained in the first step.
  • 0.264 mol of a triethylammonium (fluorosulfonyl) trifluoromethanesulfonylimide salt was obtained in a yield of 60.6%.
  • the (fluorosulfonyl) perfluoroalkanesulfonylimide salt targeted in the present invention can be used as a pharmaceutical, an agrochemical intermediate, a battery electrolyte, and an acid catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

【課題】(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を、高選択率かつ高収率で提供する。 【解決手段】 パーフルオロアルカンスルホニルハライドに、溶媒中、アンモニアを反応させることにより、パーフルオロアルカンスルホンアミドアンモニウム塩とアンモニウムハライドとを含む溶液を得(第1工程)、得られた溶液を濾別することにより、該溶液に含まれているアンモニウムハライドを分離除去し(第2工程)、得られたパーフルオロアルカンスルホンアミドアンモニウム塩を含む溶液に対し、有機塩基を加えることで「パーフルオロアルカンスルホンアミドと有機塩基との塩」とアンモニアを含む溶液を得(第3工程)、得られた溶液にスルフリルフルオリドを加える(第4工程)ことで、(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を製造する。

Description

(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法
 本発明は、(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法に関する。
 (フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩は電池電解質用溶媒や酸触媒、イオン液体や帯電防止剤としても有用な物質である。
(フルオロスルホニル)パーフルオロアルカンスルホニルイミド類の製造方法として、パーフルオロアルカンスルホンアミドにスルフリルフルオリドを反応させる方法(特許文献1)、パーフルオロアルカンスルホンアミドとフルオロ硫酸、三酸化硫黄を反応させる方法(特許文献2)、パーフルオロアルカンスルホンアミドとフルオロ硫酸、塩化チオニルを反応させる方法(特許文献3)、またはパーフルオロアルカンイソシアネートと三酸化硫黄、フッ化アンモニウム塩を反応させる方法(特許文献4)が知られている。
Figure JPOXMLDOC01-appb-C000004
米国特許第5874616号明細書 国際公開2011/148961号公報 国際公開2011/148958号公報 特開2012-162470号公報
 特許文献1の方法は好ましい方法ではあるが、収率が中程度(55%)と低く、必ずしも効率的ではなかった。
 特許文献2や特許文献3の方法では、副生する硫酸や塩酸によって反応液が酸性となり、(フルオロスルホニル)パーフルオロアルカンスルホニルイミドが分解する可能性があるため、好ましい方法とは言えなかった。
 なお、特許文献2や特許文献3、および特許文献4の方法は、毒性の高いフルオロ硫酸や取り扱いが危険な三酸化硫黄を使用している為、工業的な製造方法としても採用し難いものであった。
 そこで本発明者らは、上記の課題を鑑み鋭意検討したところ、パーフルオロアルカンスルホンアミドを反応液中で発生させ、副生成物のフッ化アンモニウムを除去し、得られた溶液と有機塩基とスルフリルフルオリドを反応させることで(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を合成することが可能であることを見出し、本発明を完成させた。
 すなわち、本発明は以下の[発明1]-[発明6]に記載する発明を提供する。
[発明1]
式[1]:
Figure JPOXMLDOC01-appb-C000005
[式中、Rfは炭素数1~6の直鎖または分岐鎖のパーフルオロアルキル基を表し、Bは有機塩基を表す]
で表される(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法において、以下の工程を含むことを特徴とする、(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法。
[第1工程]
式[2]:
Figure JPOXMLDOC01-appb-C000006
[式中、Rfは炭素数1~6の直鎖または分岐鎖のパーフルオロアルキル基を表し、Xはハロゲン原子を表す]
で表されるパーフルオロアルカンスルホニルハライドに、溶媒の存在下、アンモニア(NH3)を反応させることにより、パーフルオロアルカンスルホンアミドアンモニウム塩とアンモニウムハライドとを含む溶液を得る工程。
[第2工程]
第1工程で得られた溶液を濾別することにより、該溶液に含まれているアンモニウムハライドを分離除去し、パーフルオロアルカンスルホンアミドアンモニウム塩を含む溶液を得る工程。
[第3工程]
第2工程で得られた、パーフルオロアルカンスルホンアミドアンモニウム塩を含む溶液に対し、有機塩基を加えて、「パーフルオロアルカンスルホンアミドと有機塩基との塩」とアンモニアを含む溶液を得、続いて該溶液からアンモニアを分離除去する工程。
[第4工程]
第3工程でアンモニアを分離除去して得られた「パーフルオロアルカンスルホンアミドと有機塩基との塩」を含む溶液に対し、有機塩基の存在下、スルフリルフルオリドを加えることで(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を得る工程。
[発明2]
第1工程において、溶媒がアセトニトリル、プロピオニトリル、ジメチルスルホキシド、スルトン、ジグリム、テトラヒドロフランまたはジメチルホルムアミドである、発明1に記載の製造方法。
[発明3]
第1工程において、反応温度が0℃~100℃である、発明1または2に記載の製造方法。
[発明4]
第2工程において、濾別する際の温度が10℃~80℃である、発明1に記載の製造方法。
[発明5]
第3工程において、「パーフルオロアルカンスルホンアミドと有機塩基との塩」とアンモニアを含む溶液に対し、該溶液からアンモニアを分離除去する際、0.02MPa~0.1MPaの圧力条件下、20℃~80℃で加熱することで行うことを特徴とする、発明1に記載の製造方法。
[発明6]
発明1乃至5の何れかの方法で(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を製造し、次いで、該(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩にアルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させることを特徴とする、式[3]:
Figure JPOXMLDOC01-appb-C000007
[式[3]中、Rfは発明1の式[1]と同じ。Mはアルカリ金属又はアルカリ土類金属を表す。nは該当する金属の価数と同数の整数を示す。]
で表される(フルオロスルホニル)パーフルオロアルカンスルホニルイミド酸金属塩の製造方法。
 本発明は、特に第2工程を組み合わせることに特徴がある。第2工程を行わない条件で、続く第3工程及び第4工程を行った場合、反応系にアンモニウムハライドが含まれることとなる。この条件で本発明の最終工程である第4工程を行った場合、副生成物であるビスフルオロスルホニルイミドが生成し、目的物である(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩が純度良く得られないことが判った(後述の比較例参照)。
 そこで本発明者らは、第1工程で得られた溶液を濾過することで、該溶液に含まれているアンモニウムハライドを分離除去し(第2工程)、次いで第2工程で得られた濾液に有機塩基を加える(第3工程)ことにより、「パーフルオロアルカンスルホンアミドと有機塩基との塩」とし、この得られた塩に対してスルフリルフルオリドを反応させる(第4工程)ことで、目的物である(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を高収率で得られることを見出した。
また、(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩は、アルカリ金属の水酸化物、又はアルカリ土類金属の水酸化物を反応させることにより、容易に式[3]で表される(フルオロスルホニル)パーフルオロアルカンスルホニルイミド酸金属塩に誘導できる知見も得た。
 本発明は、中間体であるパーフルオロアルカンスルホンアミド塩を単離せずに、目的物である(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を製造できる点、第1工程で用いた有機溶媒をそのまま第4工程まで除去することなく使用できる点等、工業的な製造方法として採用し易い、きわめて有利な方法であると言える。
 本発明は、工程毎のパーフルオロアルカンスルホンアミドの単離を行うことなく、廃棄物の少ない、工業的に有利な(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を製造できるという効果を奏する。
 以下、本発明を詳細に説明する。以下、本発明の実施態様について説明するが、本発明は以下の実施の態様に限定されるものではなく、本発明の趣旨を損なわない範囲で、当業者の通常の知識に基づいて、適宜実施することができる。
 本発明は、(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法であって、パーフルオロアルカンスルホニルハライドに、溶媒中、アンモニアを反応させることにより、パーフルオロアルカンスルホンアミドアンモニウム塩とアンモニウムハライドとを含む溶液を得(第1工程)、続いて第1工程で得られた溶液を濾別することにより、該溶液に含まれているアンモニウムハライドを分離除去し、パーフルオロアルカンスルホンアミドアンモニウム塩を含む溶液を得(第2工程)、続いて第2工程で得られた、パーフルオロアルカンスルホンアミドアンモニウム塩を含む溶液に対し、有機塩基を加えることで、「パーフルオロアルカンスルホンアミドと有機塩基との塩」とアンモニアを含む溶液を得、続いて該溶液からアンモニアを分離除去し(第3工程)、続いて第3工程で得られた溶液に対し、有機塩基の存在下、にスルフリルフルオリドを加えることで(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を得る(第4工程)工程を含んでなる。
続いて、第1~4工程の方法で製造した(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩にアルカリ金属の水酸化物、又はアルカリ土類金属の水酸化物を反応させることにより、式[3]で表される(フルオロスルホニル)パーフルオロアルカンスルホニルイミド酸金属塩を得る製造方法も含め、以下、詳細に説明する。
<第1工程>
 まず、第1工程について説明する。第1工程は、パーフルオロアルカンスルホニルハライドに、溶媒の存在下、アンモニア(NH3)を反応させることにより、パーフルオロアルカンスルホンアミドアンモニウム塩とアンモニウムハライドとを含む溶液を得る工程である(スキーム1)。
Figure JPOXMLDOC01-appb-C000008
 本工程で用いられるパーフルオロアルカンスルホニルハライドは炭素数1~6の直鎖または分岐鎖のパーフルオロアルカンスルホニルハライドが用いられるが、炭素数1~4が好ましく、炭素数1(トリフルオロメチル基)が特に好ましい。具体的な化合物としては、トリフルオロメタンスルホニルフルオリド、ペンタフルオロエタンスルホニルフルオリド、ヘプタフルオロプロパンスルホニルフルオリド、ノナフルオロブタンスルホニルフルオリド、トリフルオロメタンスルホニルクロリド、ペンタフルオロエタンスルホニルクロリド、ヘプタフルオロプロパンスルホニルクロリド、ノナフルオロブタンスルホニルクロリド、トリフルオロメタンスルホニルブロミド、ペンタフルオロエタンスルホニルブロミド、ヘプタフルオロプロパンスルホニルブロミド、ノナフルオロブタンスルホニルブロミド、トリフルオロメタンスルホニルヨージド、ペンタフルオロエタンスルホニルヨージド、ヘプタフルオロプロパンスルホニルヨージド、ノナフルオロブタンスルホニルヨージドなどが挙げられる。
 このうち、トリフルオロメタンスルホニルフルオリド、ペンタフルオロエタンスルホニルフルオリド、ヘプタフルオロプロパンスルホニルフルオリド、トリフルオロメタンスルホニルクロリド、ペンタフルオロエタンスルホニルクロリド、ヘプタフルオロプロパンスルホニルクロリド、トリフルオロメタンスルホニルブロミド、ペンタフルオロエタンスルホニルブロミド、ヘプタフルオロプロパンスルホニルブロミド、トリフルオロメタンスルホニルヨージド、ペンタフルオロエタンスルホニルヨージド、ヘプタフルオロプロパンスルホニルヨージドが好ましく、トリフルオロメタンスルホニルフルオリド、ペンタフルオロエタンスルホニルフルオリド、トリフルオロメタンスルホニルクロリド、ペンタフルオロエタンスルホニルクロリド、トリフルオロメタンスルホニルブロミド、ペンタフルオロエタンスルホニルブロミド、トリフルオロメタンスルホニルヨージド、ペンタフルオロエタンスルホニルヨージドが特に好ましい(スキーム1)。
 本工程で用いられるアンモニアの使用量は、パーフルオロアルカンスルホニルハライド1モルに対して、化学量論的には3モル必要とし、通常3~10モルであるが、好ましくは3~5モルから適宜選択される。3モルより少ないと反応収率が低下する原因となる。また、10モルを超えて用いても反応の進行について問題は無いが、反応速度、収率、または経済性の点で特にメリットが無い。なお、本工程で用いられるアンモニアはそれ自身、単体(NH3;無水アンモニア)または水等の溶媒に溶解したもの(アンモニア水等)、いずれも用いることが可能である。
 本工程で用いられる溶媒はアンモニアやパーフルオロアルカンスルホニルハライドと反応しない極性溶媒が通常用いられるが、アセトニトリル、プロピオニトリル、ジメチルスルホキシド、スルトン、ジグリム、テトラヒドロフラン、ジメチルホルムアミドが好ましく、アセトニトリル、プロピオニトリルなどのニトリル系溶媒が特に好ましい。
 溶媒の使用量としては、特に制限はないが、パーフルオロアルカンスルホニルハライド1モルに対して0.1L(リットル)以上を使用すればよく、通常は0.1~20Lが好ましく、特に0.1~10Lがより好ましい。
温度条件としては、特に制限はないが、-50~200℃の範囲で行えばよい。通常は0~100℃が好ましく、特に0~70℃がより好ましい。
-50℃よりも低い温度であれば反応速度が遅くなり、200℃を超える温度であれば、生成物の分解等が生じることもある。
 圧力条件としては、特に制限はないが、例えば、減圧~加圧下、すなわち0.02MPa~3MPa(絶対圧。以下同じ。)の範囲で行えばよく、この場合、0.02MPa~2MPaが好ましく、特に0.02MPa~1MPaがより好ましい。
 反応に使われる反応容器としては、モネル、ハステロイ、ニッケル、又はこれらの金属やポリテトラフルオロエチレン、パーフルオロポリエーテル樹脂などのフッ素樹脂でライニングされた耐圧反応容器などが挙げられる。
 反応時間としては、特に制限はないが、0.1~24時間の範囲で行えばよく、基質および反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、NMR等の分析手段により、反応の進行状況を追跡して原料であるがパーフルオロアルカンスルホニルハライドが殆ど消失した時点を終点とすることが好ましい。
 本工程では、パーフルオロアルカンスルホンアミドアンモニウム塩の生成と同時にアンモニウムハライド(NH4・X)も反応系内に生成する為、反応後は目的物である該アンモニウム塩、アンモニウムハライド、および溶媒とを含む溶液として得られる。この溶液から目的物を本工程で単離せずに、そのまま第2工程の原料として使用することは、生産性という観点からも好ましい態様の一つである。
<第2工程>
 次に第2工程について説明する。第2工程は第1工程で得られた溶液を濾別することにより、該溶液に含まれているアンモニウムハライドを分離除去し、パーフルオロアルカンスルホンアミドアンモニウム塩を含む溶液を得る工程である(スキーム2)。
Figure JPOXMLDOC01-appb-C000009
 濾別(濾過とも言う)を実施する実施態様としては、特に制限は無く、有機化学の通常の操作でもって行えば良い。例えば、遠心分離や減圧濾過、加圧濾過が好ましく、特に遠心分離、加圧濾過が好ましい。
 濾過を実施する温度条件は10-80℃が好ましく、30-60℃が特に好ましい。温度が10℃より低いとパーフルオロアルカンスルホンアミドアンモニウム塩も析出し、収率が低下してしまう。また80℃を超える温度では、アンモニウムハライドが溶媒中に溶解してしまい、分離が困難となり、後述する第4工程で目的物の選択率や収率が低下してしまう原因ともなる。
 本工程後、アンモニウムハライドが分離除去された、パーフルオロアルカンスルホンアミドアンモニウム塩を含む溶液が得られるが、この溶液をこの段階で精製操作を行わずに、そのまま第3工程の原料として使用することができる。
<第3工程>
 次に、第3工程について説明する。第3工程は第2工程で得られた、パーフルオロアルカンスルホンアミドアンモニウム塩を含む溶液に対し、有機塩基を加えることで、「パーフルオロアルカンスルホンアミドと有機塩基との塩」とアンモニアを含む溶液を得、続いて該溶液からアンモニアを分離除去する工程である(スキーム3)。
Figure JPOXMLDOC01-appb-C000010
本発明で使用する有機塩基は、メチルアミン、ジメチルアミン、エチルアミン、ジエチルアミン、n-プロピルアミン、ジ-n-プロピルアミン、i-プロピルアミン、ジイソプロピルアミン、n-ブチルアミン、ジ-n-ブチルアミン、sec-ブチルアミン、ジ-sec-ブチルアミン、tert-ブチルアミン、ジ-tert-ブチルアミン、フェニルアミン、ジフェニルアミン等の第1級アミンもしくは第2級アミン、
下記式
Figure JPOXMLDOC01-appb-C000011
[式中、R1、R2、R3は同一又は異なり、炭素数1~8の直鎖又は分岐鎖のアルキル基、炭素数3~8のシクロアルキル基、又はアリール基(アリール基の水素原子の一部又は全てが、ハロゲン(フッ素、塩素、臭素、ヨウ素)、炭素数1~10のアルキル基、炭素数1~10のハロアルキル基、炭素数3~8のシクロアルキル基、アミノ基、ニトロ基、アセチル基、シアノ基もしくはヒドロキシル基で置換されていても良い。)を示す。]
で表される3級アミン、
ピリジン、2,4,6-トリメチルピリジン、4-ジメチルアミノピリジン、ルチジン、ピリミジン、ピリダジン、ピラジン、オキサゾール、イソオキサゾール、チアゾール、イソチアゾール、イミダゾール、1,2-ジメチルイミダゾール、3-(ジメチルアミノ)プロピルイミダゾール、ピラゾール,フラザン、キノリン、イソキノリン、プリン、1H-インダゾール、キナゾリン、シンノリン、キノキサリン、フタラジン、プテリジン、フェナントリジン、2,6-ジ-t-ブチルピリジン、2,2'-ビピリジン、4,4'-ジメチル-2,2'-ビピリジル、4,4'-ジメチル-2,2'-ビピリジル、5,5'-ジメチル-2,2'-ビピリジル、6,6'-t-ブチル-2,2'-ジピリジル、4,4'-ジフェニル-2,2'-ビピリジル、1,10-フェナントロリン、2,7-ジメチル-1,10-フェナントロリン、5,6-ジメチル-1,10-フェナントロリン、4,7-ジフェニル-1,10-フェナントロリン等の含窒素芳香族複素環式化合物、
1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エン、1,5-ジアザビシクロ[4.3.0]ノン-5-エン等のイミン系塩基、
が挙げられる。
前記第3級アミンの具体的な例は、トリメチルアミン、トリエチルアミン、N-エチルジイソプロピルアミン、トリ-n-プロピルアミン、トリイソプロピルアミン、トリ-n-ブチルアミン、トリオクチルアミン、トリデシルアミン、トリフェニルアミン、トリベンジルアミン、トリス(2-エチルへキシル)アミン、N,N-ジメチルデシルアミン、N-ベンジルジメチルアミン、N-ブチルジメチルアミン、N,N-ジメチルシクロヘキシルアミン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N-ジメチルアニリン、N,N-ジエチルアニリン、1,4-ジアザビシクロ[2.2.2]オクタン、N-メチルピロリジン、N-メチルピペリジン、N-メチルモルホリン、N-エチルモルホリン、N,N′-ジメチルピペラジン、N-メチルピペコリン、N-メチルピロリドン、N-ビニル-ピロリドン、ビス(2-ジメチルアミノ-エチル)エーテル、N,N,N,N',N''-ペンタメチル-ジエチレントリアミン、トリエタノールアミン、トリプロパノールアミン、ジメチルエタノールアミン、ジメチルアミノエトキシエタノール、N,N-ジメチルアミノプロピルアミン、N,N,N',N',N''-ペンタメチルジプロピレントリアミン、トリス(3-ジメチルアミノプロピル)アミン、テトラメチルイミノ-ビス(プロピルアミン)、N-ジエチル-エタノールアミン等である。
 これらの中でもジメチルアミン、ジエチルアミン、ジ-n-プロピルアミン、ジイソプロピルアミン、ジ-n-ブチルアミン、ジフェニルアミン、トリメチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-プロピルアミン、トリ-n-ブチルアミン、ピリジン、2,4,6-トリメチルピリジン、4-ジメチルアミノピリジン、ルチジン、ピリミジン、ピリダジン、ピラジン、1,8-ジアザビシクロ[5.4.0]ウンデカ-7-エンが好ましく、ジエチルアミン、トリエチルアミン、ジイソプロピルエチルアミン、トリ-n-ブチルアミン、ピリジンがより好ましい。
 本工程において使用する有機塩基の使用量は、通常、パーフルオロアルカンスルホンアミドアンモニウム塩1モルあたり1モル以上である。本工程を円滑に進行させるには、パーフルオロアルカンスルホンアミドアンモニウム塩1モルあたり有機塩基が化学量論的に1モル必要であるが、後述する第4工程についても、「パーフルオロアルカンスルホンアミドと有機塩基との塩」とスルフリルフルオリドとを反応させる際、該塩1モルあたり有機塩基が1モル必要となる。そこで本工程では、後述する第4工程を想定し、有機塩基をパーフルオロアルカンスルホンアミドアンモニウム塩1モル当たり2モル以上使用しても良い。
 なお、有機塩基が1モルより少ないとアンモニアの遊離、除去が十分に行えないことがある。また、有機塩基を化学量論量以上使用すると、反応速度が速くなり、第3工程の時間を短縮することが可能であるが、必要以上に過剰に用いると経済的に不利である。したがって、有機塩基の使用量としては、パーフルオロアルカンスルホンアミドアンモニウム塩1モルあたり好ましくは2モル~10モル、より好ましくは2.5~5モルである。
 有機塩基を加え、反応が進行するにつれて反応系内にアンモニアが発生する為、本工程では、例えば冷却器を付けた反応容器で反応を行い、反応の進行と共に発生するアンモニアを冷却器で回収する方法が挙げられる。その方法については特に制限はなく、当業者が適宜調整できる。
 なお、アンモニアを回収する際、後述する反応条件(温度条件、圧力条件)を採用することで、効率的にアンモニアを回収することが可能である。
 反応温度は、通常20から80℃、好ましくは25~60℃である。反応温度が20℃より低いとアンモニアの遊離、除去が十分に行えず、工程に掛かる時間が長くなってしまう。一方、80℃を超える反応温度の場合、溶媒や有機塩基が飛散する恐れがある。
 圧力条件は、通常0.02MPaから0.1MPa、好ましくは0.04MPaから0.08MPaである。この範囲を超える減圧条件下で実施するとより効率よくアンモニアを除去できるので好ましいが、減圧度が大きすぎると溶媒や有機塩基が飛散してしまい、経済的に不利である。
 本工程において、「パーフルオロアルカンスルホンアミドと有機塩基との塩」とアンモニア(NH3)を含む溶液に対し、該溶液からアンモニアを分離除去する際、0.02MPa~0.1MPaの圧力条件下、20℃~80℃で加熱することで行うことは、好ましい態様の一つである。
 反応時間としては、特に制限はないが、0.1~24時間の範囲で行えばよく、基質および反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、イオンクロマトグラフィー、NMR等の分析手段により、反応の進行状況を追跡して、パーフルオロアルカンスルホンアミドアンモニウム塩が殆ど消失した時点を終点とすることが好ましい。
 第4工程において該アンモニウム塩が反応液内に大量に残っている状態でスルフリルフルオリドと反応させたとき、副反応が起こり、第4工程における目的物の収率が低下するので、未反応のパーフルオロアルカンスルホンアミドアンモニウムは少ないほうが好ましい。
 反応に使われる反応容器としては、モネル、ハステロイ、ニッケル、又はこれらの金属やポリテトラフルオロエチレン、パーフルオロポリエーテル樹脂などのフッ素樹脂でライニングされた耐圧反応容器などが挙げられる。
 このように、本工程でパーフルオロアルカンスルホンアミドアンモニウム塩(RfSO2NH2・NH3)をパーフルオロアルカンスルホンアミドと有機塩基との塩に変換し、特定の反応条件に付すことで、効率よくアンモニアを除去することが可能である。
なお、本工程で得られた「パーフルオロアルカンスルホンアミドと有機塩基との塩」を含む溶液に対し、そのまま第4工程の原料として使用することは、生産性という観点からも好ましい態様の一つである。
<第4工程>
 次に第4工程について説明する。第4工程は第3工程で得られた「パーフルオロアルカンスルホンアミドと有機塩基との塩」を含む溶液に、有機塩基の存在下、スルフリルフルオリドを加えて(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を合成する工程である(スキーム4)。
Figure JPOXMLDOC01-appb-C000012
 本工程で用いられるスルフリルフルオリドの使用量は、「パーフルオロアルカンスルホンアミドと有機塩基との塩」1モルに対して、化学量論的には1モル必要であることから、通常1モル以上用いれば良い。しかしながら実際は1モル~10モル、好ましくは1~5モルから適宜選択される。
 1モルより少ないと反応収率が低下する原因となる。また、10モルを超えて用いても反応の進行について問題は無いが、反応速度、収率、または経済性の点で特にメリットは無い。
 有機塩基については、第3工程で用いたそれと同様の種類のものを、本工程でも別途加えることができる。有機塩基の使用量は、「パーフルオロアルカンスルホンアミドと有機塩基との塩」1モルに対し、化学量論量としては通常1モルであるが、先の第3工程で述べたように、第3工程において、有機塩基を化学量論量以上使用した場合(具体的にはパーフルオロアルカンスルホンアミドアンモニウム塩1モル当たり2モル以上使用した場合)、本工程では、前工程で用いた有機塩基が反応系に残存していることとなる。従って、前工程における有機塩基の加える量に応じ、本工程において有機塩基の量を削減するか、または必要量の有機塩基を新たに加えることができる。但し、有機塩基に対して化学量論量を超える量を使用すると、反応速度が速くなり、第3工程の時間を短縮することが可能である一方、必要以上に過剰に用いると経済的に不利である。従って、有機塩基の使用量としては、パーフルオロアルカンスルホンアミドアンモニウム塩1モルあたり好ましくは2モル~10モル、より好ましくは2.5~5モルである。なお、有機塩基が1モルより少ないとアンモニアの遊離、除去が十分に行えないことがある。
 本工程で使用する反応溶媒は、第1工程で使用した溶媒と同じものを用いることができる。なお、本発明については、前述した第1工程~第4工程にかけ、特に溶媒の置換作業などを行わなくとも、本工程を実施することが可能である。
 なお、本工程で別途溶媒を加える際の溶媒の種類と使用量については第1工程に記載のそれと同様の条件を採用することができ、本工程では特に記載を繰り返さない。
 温度条件としては、特に制限はないが、-50~200℃の範囲で行えばよい。通常は0~100℃が好ましく、特に0~70℃がより好ましい。-50℃よりも低い温度であれば反応速度が遅くなり、200℃を超える温度であれば、生成物の分解等が生じることもある。
 圧力条件としては、特に制限はないが、例えば、減圧~加圧下、すなわち0.02MPa~3MPaの範囲で行えばよく、この場合、0.02MPa~2MPaが好ましく、特に0.02MPa~1MPaがより好ましい。
 反応に使われる反応容器としては、モネル、ハステロイ、ニッケル、又はこれらの金属やポリテトラフルオロエチレン、パーフルオロポリエーテル樹脂などのフッ素樹脂でライニングされた耐圧反応容器などが挙げられる。
 反応時間としては、特に制限はないが、0.1~24時間の範囲で行えばよく、基質および反応条件により異なるため、ガスクロマトグラフィー、液体クロマトグラフィー、イオンクロマトグラフィー、NMR等の分析手段により、反応の進行状況を追跡して原料が殆ど消失した時点を終点とすることが好ましい。
 以上、第1工程から第4工程を経ることにより、工業的に有利な製造方法で(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を製造することが可能である。
 次に、得られた(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩にアルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させ、式[3]で表される(フルオロスルホニル)パーフルオロアルカンスルホニルイミド酸金属塩を得る方法について説明する。
ここで、式[3]のうち、“M”はアルカリ金属又はアルカリ土類金属を表し、これは後述するアルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩におけるアルカリ金属、アルカリ土類金属に対応する。さらに、式[3]のうち、“n”はその該当する金属の価数と同数の整数を表す。
 用いるアルカリ金属の水酸化物としては、水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化ルビジウム(RbOH)、水酸化セシウム(CsOH)が、アルカリ金属の炭酸塩としては炭酸リチウム(Li2CO3)、炭酸ナトリウム(Na2CO3)、炭酸カリウム(K2CO3)、炭酸ルビジウム(Rb2CO3)、炭酸セシウム(Cs2CO3)が、アルカリ土類金属の水酸化物としては、水酸化マグネシウム(Mg(OH)2)、水酸化カルシウム(Ca(OH)2)、水酸化バリウム(Ba(OH)2)、水酸化ストロンチウム(Sr(OH)2)、アルカリ土類金属の炭酸塩としては炭酸マグネシウム(MgCO3)、炭酸カルシウム(CaCO3)、炭酸バリウム(BaCO3)、炭酸ストロンチウム(SrCO3)が挙げられ、好ましくは水酸化リチウム(LiOH)、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化ルビジウム(RbOH)、水酸化セシウム(CsOH)、水酸化マグネシウム(Mg(OH)2)、水酸化カルシウム(Ca(OH)2)、水酸化バリウム(Ba(OH)2)、水酸化ストロンチウム(Sr(OH)2)が挙げられる。
また、これらのアルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩は1種または2種以上を組み合わせて用いることもできる。2種以上を用いる場合、同一のアルカリ金属の水酸化物と炭酸塩(例えば、水酸化カリウムと炭酸カリウム)の組み合わせ、又は同一のアルカリ土類金属の水酸化物と炭酸塩(例えば、水酸化マグネシウムと炭酸マグネシウム)の組み合わせを用いることが好ましい。
 アルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩の使用量は、(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩1モルあたり1モル~5モルが好ましく、より好ましくは1モル~3モルである。5モルを超える量、すなわち過剰量の塩基を反応させた場合、反応は進行するが前記(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩等の「イミド酸と有機塩基からなる塩又は錯体」が分解してしまい、収率が低下してしまうことがある。一方、1モルよりも少ないと、変換率が低下することがある。
 アルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させる際、溶媒を用いることができる。例えば水を溶媒として用いた場合、濃度を通常10質量%~70質量%、好ましくは20質量%~60質量%、より好ましくは30質量%~60質量%となるように水を加えると良い。水の量が少なすぎると反応系内における攪拌が困難になり、また多すぎる場合は、反応後の処理が煩雑になることや、通常よりも大きな反応容器が必要となる。
なお、水以外の有機溶媒を用いることもできる。ジエチルエーテル、ジオキサン、テトラヒドロフラン、エチレングリコールジメチルエーテルなどのエーテル類等の溶媒が使用できる。また、水と共に組み合わせて使用することもできる。溶媒の使用量としては、(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩に対して通常0.5~10倍容量、好ましくは1~7倍容量の範囲から適宜選択される。しかしながら、水を用いても十分反応が進行する為、水以外の有機溶媒を特に用いるメリットは少ない。
 反応温度に特別に制限はないが、通常-10℃~110℃、好ましくは25~80℃である。-10℃未満であると反応が充分に進行せず、収率低下の原因となり、経済的に不利となる、あるいは、反応速度が低下して反応終了までに長時間を要するなどの問題を生ずる場合がある。一方、110℃を超えると、副生物が生じやすく、また過剰な加熱はエネルギー効率が悪い。
 反応時間としては、特に制限はないが、通常は24時間以内の範囲で行えばよく、イオンクロマトグラフィー、NMR等の分析手段により反応の進行状況を追跡し、原料基質が殆ど消失した時点を終点とするのが好ましい。
 本工程に用いられる反応器は、ステンレス鋼、ハステロイ、モネルなどの金属製容器や、四フッ化エチレン樹脂、クロロトリフルオロエチレン樹脂、フッ化ビニリデン樹脂、PFA樹脂、ポリプロピレン樹脂、ポリエチレン樹脂、そしてガラスなどを内部にライニングしたもの等、常圧又は加圧下で十分反応を行うことができる反応器を使用することができる。
[実施例]
以下、実施例により本発明を詳細に説明するが、これらの実施態様に限られない。
第1工程:
500mlのステンレス製オートクレーブ反応器にアセトニトリル300gを入れ、反応器を冷却し、液温が5℃以下になったら反応器内を脱気した。脱気後、無水アンモニアを24.7g(1.45mol)入れ、次にトリフルオロメタンスルホニルフルオリド66.3g(0.436mol)を内温0~5℃を保ちながらゆっくり加えた。トリフルオロメタンスルホニルフルオリドの導入が終了したらそのまま攪拌を13時間続けた。13時間後、反応液を19F NMRで定量した結果、トリフルオロメタンスルホンアミドアンモニウム塩は0.415mol(収率95.1%)であった。
第2工程:
第1工程で得られた反応液を40℃に加温した後、桐山ロートを用いて減圧濾過を実施した。ろ過後、濾液中のフッ化アンモニウムの含量をイオンクロマトグラフィーで確認した結果、0.0046molであり、99%除去できていることを確認した。
第3工程:
第2工程で得られた溶液を、ジムロート冷却管を取り付けた反応器に移し、トリエチルアミン126g(1.25mol)を加えて0.064~0.068MPaの減圧下、50~55℃で12時間加熱し、アンモニアを遊離させた。反応後、イオンクロマトグラフィーでアンモニウムイオンの含量を確認した結果、0.42molから0.0007molまで低下したことを確認した(減少率99.8%)。
第4工程:
第3工程で得られた溶液を、1000mlのステンレス製オートクレーブ反応器に入れ、反応器を冷却し、液温が5℃以下になったら反応器内を脱気した。脱気後、スルフリルフルオリド63.15g(0.623mol)を内温0~5℃に保ちながらゆっくり加えた。スルフリルフルオリドの導入が終了したらそのまま攪拌を17時間続けた。17時間後、反応液を19F NMRで定量した結果、目的物とするトリエチルアンモニウム (フルオロスルホニル)トリフルオロメタンスルホニルイミド塩を0.404mol、収率92.3%で得た。
第1工程:
500mlのステンレス製オートクレーブ反応器にアセトニトリル300gを入れ、反応器を冷却し、液温が5℃以下になったら反応器内を脱気した。脱気後、無水アンモニアを24.7g (1.45mol)入れ、次にペンタフルオロエタンスルホニルフルオリド88.1g(0.436molを内温0~5℃を保ちながらゆっくり加えた。ペンタフルオロエタンスルホニルフルオリドの導入が終了したらそのまま攪拌を69時間続けた。69時間後、反応液を19F NMRで定量した結果、トリフルオロメタンスルホンアミドアンモニウム塩は0.369mol(収率84.7%)であった。
第2工程~第4工程:
第2工程以降は、実施例1と同様の方法にて反応を行った。その結果、目的物とするトリエチルアンモニウム (フルオロスルホニル)ペンタフルオロエタンスルホニルイミド塩を0.337mol、収率77.3%で得た。
第1工程:
500mlのステンレス製オートクレーブ反応器にアセトニトリル200gを入れ、反応器を冷却し、液温が5℃以下になったら反応器内を脱気した。脱気後、無水アンモニアを12.3g (0.725mol)入れ、次にノナフルオロブタンスルホニルフルオリド65.9g(0.218mol)を内温0~5℃を保ちながらゆっくり加えた。ノナフルオロブタンスルホニルフルオリドの導入が終了したらそのまま攪拌を22時間続けた。22時間後、反応液を19F NMRで定量した結果、ノナフルオロブタンスルホンアミドアンモニウム塩は0.177mol(収率81.2%)であった。
第2工程~第4工程:
第2工程以降は、実施例1と同様の方法にて反応を行った。その結果、目的物とするトリエチルアンモニウム (フルオロスルホニル)ノナフルオロブタンスルホニルイミド塩を0.157mol、収率72.3%で得た。
第1工程:
500mlのステンレス製オートクレーブ反応器にアセトニトリル300gを入れ、反応器を冷却し、液温が5℃以下になったら反応器内を脱気した。脱気後、無水アンモニアを24.7g(1.45mol)入れ、次にトリフルオロメタンスルホニルフルオリド66.3g(0.436mol)を内温0~5℃を保ちながらゆっくり加えた。トリフルオロメタンスルホニルフルオリドの導入が終了したらそのまま攪拌を18時間続けた。18時間後、反応液を19F NMRで定量した結果、トリフルオロメタンスルホンアミドアンモニウム塩は0.415mol(収率95.1%)であった。
第2工程:
第1工程で得られた反応液に対し、室温下、桐山ロートを用いて減圧濾過を実施し、濾液を400g得た。19F NMRで定量した結果、トリフルオロメタンスルホンアミドアンモニウム塩はろ過した濾液中に0.415mol含まれていることを確認した。また、ろ過した濾液中のフッ化アンモニウムの含量をイオンクロマトグラフィーで確認した結果、0.0112molであり、97%除去できていることを確認した。
第3工程~第4工程:
第3工程以降は、トリエチルアミンの代わりにジエチルアミン91.4g(1.25mol)を使用した以外は実施例1と同様の方法にて反応を行うことにより、目的物とするジエチルアンモニウム (フルオロスルホニル)トリフルオロメタンスルホニルイミド塩を0.376mol、収率86.2%で得た。
第1工程:
500mlのステンレス製オートクレーブ反応器にアセトニトリル300gを入れ、反応器を冷却し、液温が5℃以下になったら反応器内を脱気した。脱気後、無水アンモニアを24.7g(1.45mol)入れ、次にトリフルオロメタンスルホニルフルオリド66.3g(0.436mol)を内温0~5℃を保ちながらゆっくり加えた。トリフルオロメタンスルホニルフルオリドの導入が終了したらそのまま攪拌を15時間続けた。15時間後、反応液を19F NMRで定量した結果、トリフルオロメタンスルホンアミドアンモニウム塩は0.415mol(収率95.1%)であった。
第2工程:
第1工程で得られた反応液を、室温下、桐山ロートで減圧濾過を実施し、濾液を400g得た。19F NMRで定量した結果、トリフルオロメタンスルホンアミドアンモニウム塩はろ過した濾液中に0.415mol含まれていることを確認した。また、ろ過した濾液中のフッ化アンモニウムの含量をイオンクロマトグラフィーで確認した結果、0.0112molであり、97%除去できていることを確認した。
第3工程~第4工程:
第3工程以降は、トリエチルアミンの代わりにピリジン98.8g(1.25mol)を使用した以外は実施例1と同様の方法にて反応を行うことにより、目的物とするピリジニウム―(フルオロスルホニル)トリフルオロメタンスルホニルイミド塩を0.358mol、収率82.1%で得た。
[比較例1]
第1工程:
500mlのステンレス製オートクレーブ反応器にアセトニトリル300gを入れ、反応器を冷却し、液温が5℃以下になったら反応器内を脱気した。脱気後、無水アンモニアを24.7g(1.45mol)入れ、次にトリフルオロメタンスルホニルフルオリド66.3g(0.436mol)を内温0~5℃を保ちながらゆっくり加えた。トリフルオロメタンスルホニルフルオリドの導入が終了したらそのまま攪拌を15時間続けた。15時間後、反応液を19F NMRで定量した結果、トリフルオロメタンスルホンアミドアンモニウム塩は0.415mol(収率95.1%)であった。
 次に、第1工程で得られた溶液に対し、トリエチルアミン162g (1.60mol)を加える以外は、実施例1の第3工程、第4工程と同様の方法で反応を行うことにより、目的物とするトリエチルアンモニウム (フルオロスルホニル)トリフルオロメタンスルホニルイミド塩を0.264mol、収率60.6%で得た。
 即ち、第2工程を行わずに第3工程及び第4工程を行った場合、 (フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の収率が著しく低下することがわかる。このことは、反応系でアンモニウムカチオンが大量に存在することで、副反応が生じやすくなったものと推測される。
 次に、実施例1で得られたトリエチルアンモニウム (フルオロスルホニル)トリフルオロメタンスルホニルイミド塩0.404mol(134.2g)と、水酸化カリウム24.9gを含む水溶液とを室温で混合し、1時間攪拌した。攪拌後、反応混合物中に含まれるトリエチルアミンおよび水を留去して、(フルオロスルホニル)トリフルオロメタンスルホニルイミドカリウムを得た。さらにこれにアセトニトリルを加えて未溶解成分をろ別し、アセトニトリルを留去させて、純度99%以上の(フルオロスルホニル)トリフルオロメタンスルホニルイミドカリウムを87.0g、収率80%で得た。
 次に、実施例2で得られたトリエチルアンモニウム (フルオロスルホニル)ペンタフルオロエタンスルホニルイミド塩を0.337mol(128.8g)と、水酸化リチウム8.9gを含む水溶液とを室温で混合したほかは、実施例6と同様の操作を行った。その結果、純度99%の(フルオロスルホニル)ペンタフルオロメタンスルホニルイミドリチウムを75.5g、収率78%で得た。
本発明で対象とする(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩は、医薬、農薬の中間体、電池電解質、そして酸触媒として利用できる。

Claims (6)

  1. 式[1]:
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rfは炭素数1~6の直鎖または分岐鎖のパーフルオロアルキル基を表し、Bは有機塩基を表す]
    で表される(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法において、以下の工程を含むことを特徴とする、(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法。
    [第1工程]
    式[2]:
    Figure JPOXMLDOC01-appb-C000002
    [式中、Rfは炭素数1~6の直鎖または分岐鎖のパーフルオロアルキル基を表し、Xはハロゲン原子を表す]
    で表されるパーフルオロアルカンスルホニルハライドに、溶媒の存在下、アンモニア(NH3)を反応させることにより、パーフルオロアルカンスルホンアミドアンモニウム塩とアンモニウムハライドとを含む溶液を得る工程。
    [第2工程]
    第1工程で得られた溶液を濾別することにより、該溶液に含まれているアンモニウムハライドを分離除去し、パーフルオロアルカンスルホンアミドアンモニウム塩を含む溶液を得る工程。
    [第3工程]
    第2工程で得られた、パーフルオロアルカンスルホンアミドアンモニウム塩を含む溶液に対し、有機塩基を加えて、「パーフルオロアルカンスルホンアミドと有機塩基との塩」とアンモニアを含む溶液を得、続いて該溶液からアンモニアを分離除去する工程。
    [第4工程]
    第3工程でアンモニアを分離除去して得られた「パーフルオロアルカンスルホンアミドと有機塩基との塩」を含む溶液に対し、有機塩基の存在下、スルフリルフルオリドを加えることで(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を得る工程。
  2. 第1工程において、溶媒がアセトニトリル、プロピオニトリル、ジメチルスルホキシド、スルトン、ジグリム、テトラヒドロフランまたはジメチルホルムアミドである、請求項1に記載の製造方法。
  3. 第1工程において、反応温度が0℃~100℃である、請求項1または2に記載の製造方法。
  4. 第2工程において、濾別する際の温度が10℃~80℃である、請求項1に記載の製造方法。
  5. 第3工程において、「パーフルオロアルカンスルホンアミドと有機塩基との塩」とアンモニアを含む溶液に対し、該溶液からアンモニアを分離除去する際、0.02MPa~0.1MPaの圧力条件下、20℃~80℃で加熱することで行うことを特徴とする、請求項1に記載の製造方法。
  6. 請求項1乃至5の何れかの方法で(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩を製造し、次いで、該(フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩にアルカリ金属の水酸化物もしくは炭酸塩、又はアルカリ土類金属の水酸化物もしくは炭酸塩を反応させることを特徴とする、式[3]:
    Figure JPOXMLDOC01-appb-C000003
    [式[3]中、Rfは請求項1の式[1]と同じ。Mはアルカリ金属又はアルカリ土類金属を表す。nは該当する金属の価数と同数の整数を示す。]
    で表される(フルオロスルホニル)パーフルオロアルカンスルホニルイミド酸金属塩の製造方法。
PCT/JP2015/082231 2014-11-20 2015-11-17 (フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法 WO2016080384A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016560233A JP6631534B2 (ja) 2014-11-20 2015-11-17 (フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法
CN201580058448.1A CN107074753B (zh) 2014-11-20 2015-11-17 (氟磺酰)全氟烷烃磺酰亚胺盐的制造方法
KR1020177010895A KR101925482B1 (ko) 2014-11-20 2015-11-17 (플루오로술포닐)퍼플루오로알칸술포닐이미드염의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-235157 2014-11-20
JP2014235157 2014-11-20

Publications (1)

Publication Number Publication Date
WO2016080384A1 true WO2016080384A1 (ja) 2016-05-26

Family

ID=56013919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082231 WO2016080384A1 (ja) 2014-11-20 2015-11-17 (フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法

Country Status (4)

Country Link
JP (1) JP6631534B2 (ja)
KR (1) KR101925482B1 (ja)
CN (1) CN107074753B (ja)
WO (1) WO2016080384A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500159A (ja) * 2016-10-19 2020-01-09 ハイドロ−ケベック スルファミン酸誘導体およびその調製のためのプロセス
EP3782982A1 (en) 2019-08-22 2021-02-24 Fujian Yongjing Technology Co., Ltd. Process for the synthesis of fluorinated conductive salts for lithium ion batteries

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108422127B (zh) * 2017-11-13 2020-06-16 天能集团(河南)能源科技有限公司 一种铅酸蓄电池用水性助焊剂
CN115490619B (zh) * 2022-09-02 2023-08-18 衢州市九洲化工有限公司 一种双(三氟甲基磺酰基)亚胺盐的制备方法
CN115784945B (zh) * 2022-11-25 2023-11-14 九江天赐高新材料有限公司 一种双全氟烷基磺酰亚胺盐的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753504A (ja) * 1993-07-29 1995-02-28 Bayer Ag フツ素含有アミドの液体アミン付加物の製造法
US5874616A (en) * 1995-03-06 1999-02-23 Minnesota Mining And Manufacturing Company Preparation of bis (fluoroalkylenesulfonyl) imides and (fluoroalkysulfony) (fluorosulfonyl) imides
JPH11209338A (ja) * 1998-01-20 1999-08-03 Central Glass Co Ltd スルホンイミドの製造方法
JP2011001370A (ja) * 1998-11-04 2011-01-06 Rhodia Chimie スルホニル化法およびパーハロゲン化スルファニリドの合成に有用な試薬
WO2011027867A1 (ja) * 2009-09-04 2011-03-10 旭硝子株式会社 ビススルホニルイミドアンモニウム塩、ビススルホニルイミドおよびビススルホニルイミドリチウム塩の製造方法
JP2011057666A (ja) * 2009-08-13 2011-03-24 Mitsubishi Materials Corp 含フッ素スルホニルイミド化合物の製造方法
JP2013241353A (ja) * 2012-05-18 2013-12-05 Central Glass Co Ltd イミド酸化合物の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2921142A1 (de) * 1979-05-25 1980-12-11 Bayer Ag Verwendung von perfluoralkansulfonamid- salzen als tenside
JP3117369B2 (ja) * 1994-09-12 2000-12-11 セントラル硝子株式会社 スルホンイミドの製造方法
CN102731348A (zh) * 2012-05-29 2012-10-17 湖北恒新化工有限公司 一种双全氟烷基磺酰亚胺基丙烯酸乙酯单体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0753504A (ja) * 1993-07-29 1995-02-28 Bayer Ag フツ素含有アミドの液体アミン付加物の製造法
US5874616A (en) * 1995-03-06 1999-02-23 Minnesota Mining And Manufacturing Company Preparation of bis (fluoroalkylenesulfonyl) imides and (fluoroalkysulfony) (fluorosulfonyl) imides
JPH11209338A (ja) * 1998-01-20 1999-08-03 Central Glass Co Ltd スルホンイミドの製造方法
JP2011001370A (ja) * 1998-11-04 2011-01-06 Rhodia Chimie スルホニル化法およびパーハロゲン化スルファニリドの合成に有用な試薬
JP2011057666A (ja) * 2009-08-13 2011-03-24 Mitsubishi Materials Corp 含フッ素スルホニルイミド化合物の製造方法
WO2011027867A1 (ja) * 2009-09-04 2011-03-10 旭硝子株式会社 ビススルホニルイミドアンモニウム塩、ビススルホニルイミドおよびビススルホニルイミドリチウム塩の製造方法
JP2013241353A (ja) * 2012-05-18 2013-12-05 Central Glass Co Ltd イミド酸化合物の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FOROPOULOS, JR. J. ET AL.: "Synthesis, Properties, and Reactions of Bis ((trifluoromethyl)sulfonyl) Imide, (CF3SO2)2NH", INORGANIC CHEMISTRY, vol. 23, no. 23, 1984, pages 3720 - 3723, XP000196672, DOI: doi:10.1021/ic00191a011 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020500159A (ja) * 2016-10-19 2020-01-09 ハイドロ−ケベック スルファミン酸誘導体およびその調製のためのプロセス
US11345657B2 (en) 2016-10-19 2022-05-31 Hydro-Quebec Sulfamic acid derivatives and processes for their preparation
JP7171555B2 (ja) 2016-10-19 2022-11-15 ハイドロ-ケベック スルファミン酸誘導体およびその調製のためのプロセス
EP3782982A1 (en) 2019-08-22 2021-02-24 Fujian Yongjing Technology Co., Ltd. Process for the synthesis of fluorinated conductive salts for lithium ion batteries

Also Published As

Publication number Publication date
KR101925482B1 (ko) 2018-12-05
KR20170058994A (ko) 2017-05-29
JP6631534B2 (ja) 2020-01-15
CN107074753B (zh) 2019-09-06
JPWO2016080384A1 (ja) 2017-08-31
CN107074753A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
JP5630048B2 (ja) イミド酸化合物の製造方法
JP6631534B2 (ja) (フルオロスルホニル)パーフルオロアルカンスルホニルイミド塩の製造方法
US11718524B2 (en) Method for manufacturing sulfur tetrafluoride
WO2017169874A1 (ja) ビス(ハロゲン化スルホニル)イミド酸金属塩の製造方法
JP5928149B2 (ja) イミド酸化合物の製造方法
JP5471121B2 (ja) パーフルオロアルカンスルフィン酸塩の製造方法
JP5146149B2 (ja) トリフルオロメタンスルホニルフルオリドの精製方法
JP5655633B2 (ja) パーフルオロアルカンスルフィン酸塩の製造方法
JP5538534B2 (ja) フッ素含有イミド化合物の製造方法
CN111051278B (zh) 全氟烷基磺酰亚胺酸金属盐的制造方法
TW201512150A (zh) 用於氟化磺醯鹵化合物的方法
WO2017150244A1 (ja) パーフルオロアルカンスルホニルイミド酸金属塩の製造方法
WO2012039025A1 (ja) ペルフルオロアルキルスルホンアミドの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862116

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560233

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177010895

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862116

Country of ref document: EP

Kind code of ref document: A1