WO2016079980A1 - SiC基板処理方法 - Google Patents

SiC基板処理方法 Download PDF

Info

Publication number
WO2016079980A1
WO2016079980A1 PCT/JP2015/005739 JP2015005739W WO2016079980A1 WO 2016079980 A1 WO2016079980 A1 WO 2016079980A1 JP 2015005739 W JP2015005739 W JP 2015005739W WO 2016079980 A1 WO2016079980 A1 WO 2016079980A1
Authority
WO
WIPO (PCT)
Prior art keywords
sic substrate
processing method
substrate processing
groove
sic
Prior art date
Application number
PCT/JP2015/005739
Other languages
English (en)
French (fr)
Inventor
紀人 矢吹
聡 鳥見
暁 野上
Original Assignee
東洋炭素株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋炭素株式会社 filed Critical 東洋炭素株式会社
Priority to KR1020177016191A priority Critical patent/KR102549160B1/ko
Priority to JP2016560057A priority patent/JP6310571B2/ja
Priority to CN201580062667.7A priority patent/CN107004585B/zh
Priority to US15/527,602 priority patent/US10014176B2/en
Priority to EP15861199.6A priority patent/EP3223302B1/en
Publication of WO2016079980A1 publication Critical patent/WO2016079980A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/0445Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
    • H01L21/0455Making n or p doped regions or layers, e.g. using diffusion
    • H01L21/046Making n or p doped regions or layers, e.g. using diffusion using ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02378Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • H01L21/3247Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering for altering the shape, e.g. smoothing the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/673Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders
    • H01L21/67346Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere using specially adapted carriers or holders; Fixing the workpieces on such carriers or holders characterized by being specially adapted for supporting a single substrate or by comprising a stack of such individual supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/7602Making of isolation regions between components between components manufactured in an active substrate comprising SiC compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • H01L21/67115Apparatus for thermal treatment mainly by radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Definitions

  • the present invention relates to a method for heat-treating a grooved SiC substrate used for manufacturing a semiconductor element.
  • SiC is attracting attention as a new semiconductor material because it is superior in heat resistance and electrical characteristics as compared to Si and the like.
  • the SiC semiconductor element is manufactured using, for example, a SiC substrate having a diameter of 4 inches or 6 inches.
  • a method of manufacturing a plurality of semiconductor elements from one SiC substrate for example, a groove is formed in the SiC substrate in advance, and after performing ion implantation, ion activation, electrode formation, and the like, the groove is used.
  • a method for separating a semiconductor element is known.
  • a groove may be formed in the SiC substrate to bury the gate of the MOSFET (see trench gate type MOSFET, Non-Patent Document 1).
  • the SiC substrate needs to be heat-treated in order to activate the ions.
  • This heat treatment ion activation treatment
  • ion activation treatment needs to be performed at a high temperature of, for example, 1500 ° C. or higher.
  • the ion implantation process and the ion activation process are performed on the SiC substrate, the surface of the SiC substrate is roughened.
  • a carbon cap method is used in which a carbon cap is formed on the SiC substrate to prevent the surface of the SiC substrate from being rough.
  • a resist is applied to the surface of the SiC substrate, and the SiC substrate is rotated about the surface normal as a rotation axis, thereby making the resist uniform (spin coating method).
  • a carbon cap is formed by carbonizing the resist.
  • the grooves become an obstacle, so that the resist is not uniformly applied even if the spin coating method is used.
  • the surface of the SiC substrate is roughened by the ion implantation and the ion activation treatment, and an appropriate semiconductor element may not be manufactured. is there.
  • the carbon cap method requires a process for forming and removing the carbon cap, which complicates the manufacturing process of the semiconductor element.
  • the present invention has been made in view of the above circumstances, and a main object thereof is an SiC substrate that activates ions while preventing the surface from being roughened against an SiC substrate on which grooves are formed. It is to provide a processing method.
  • an ion activation process is performed in which an SiC substrate having an ion implanted region into which ions are implanted and having a groove formed at least in a portion including the ion implanted region is heated under Si vapor pressure.
  • the ion activation treatment according to the present invention does not require the step of forming and removing the carbon cap, and thus the manufacturing process can be simplified. Furthermore, since the surface of the SiC substrate can be etched by performing the ion activation process of the present invention, the region where the implanted ions are insufficient can be removed by the same process.
  • the groove formed in the SiC substrate is preferably a groove for separating the SiC substrate.
  • an ion implantation process for implanting ions into a SiC substrate having a single crystal SiC epitaxial layer on the surface and having a groove formed in at least the epitaxial layer is performed by the ion activation process. Preferably it is done before.
  • the surface of the SiC substrate can be removed by a necessary and sufficient amount.
  • the ion activation process is preferably performed in an atmosphere of Si and an inert gas, and the pressure is preferably 10 Pa or more and 100 kPa or less.
  • the etching rate can be suppressed by increasing the pressure using an inert gas, the etching amount of the surface of the SiC substrate can be controlled with high accuracy.
  • the ion activation processing is preferably performed at 10 ⁇ 7 Pa or more and 10 ⁇ 2 Pa or less.
  • the processing time can be shortened, for example, when the implanted ions are present at a deep position in the SiC substrate. .
  • the ion activation treatment is preferably performed in an atmosphere of Si and an inert gas, and is performed at a pressure of 10 ⁇ 2 Pa to 10 Pa.
  • the etching rate can be adjusted by adjusting the pressure of the inert gas, the etching amount on the surface of the SiC substrate can be controlled to an appropriate amount.
  • the ion activation process is performed in a state where the SiC substrate is positioned in the internal space of the heat treatment container.
  • the heat treatment container includes tantalum metal, a tantalum carbide layer is provided on the inner space side of the tantalum metal, and a tantalum silicide layer is further provided on the inner space side of the tantalum carbide layer.
  • the pressure of Si inside the container can be made uniform, the surface of the SiC substrate can be uniformly etched.
  • the microscope picture which shows the mode of the surface of the SiC substrate before and behind spin coat.
  • FIG. 1 is a diagram for explaining the outline of a high-temperature vacuum furnace 10 used in the surface treatment method of the present invention.
  • FIG. 2 is an end view of the heat treatment container 3.
  • the high-temperature vacuum furnace 10 includes a main heating chamber 21 and a preheating chamber 22.
  • the main heating chamber 21 can heat a SiC substrate having at least a surface made of single crystal SiC to a temperature of 1000 ° C. or higher and 2300 ° C. or lower.
  • the preheating chamber 22 is a space for performing preheating before heating the SiC substrate in the main heating chamber 21.
  • a vacuum forming valve 23, an inert gas injection valve 24, and a vacuum gauge 25 are connected to the main heating chamber 21.
  • the vacuum forming valve 23 can adjust the degree of vacuum of the main heating chamber 21.
  • the inert gas injection valve 24 can adjust the pressure of the inert gas (for example, Ar gas) in the main heating chamber 21.
  • the vacuum gauge 25 can measure the degree of vacuum in the main heating chamber 21.
  • a heater 26 is provided inside the heating chamber 21.
  • a heat reflecting metal plate (not shown) is fixed to the side wall and ceiling of the main heating chamber 21, and the heat reflecting metal plate reflects the heat of the heater 26 toward the center of the main heating chamber 21. It is configured. Thereby, SiC substrate 40 can be heated strongly and evenly, and the temperature can be raised to a temperature of 1000 ° C. or higher and 2300 ° C. or lower.
  • the heater 26 for example, a resistance heating type heater or a high frequency induction heating type heater can be used.
  • the SiC substrate 40 is accommodated in the heat treatment container 3.
  • the heat treatment container 3 is composed of accommodating portions 3a to 3f. Each of accommodating portions 3a to 3f supports SiC substrate 40 one by one.
  • the heat treatment container 3 is placed on the treatment table 27.
  • the processing table 27 is configured to be movable from at least the preheating chamber 22 to the main heating chamber 21 by a driving device and a transmission mechanism (not shown).
  • the heat-treatment container 3 When heat-treating the SiC substrate 40, first, as shown by a chain line in FIG. 1, the heat-treatment container 3 is disposed in the preheating chamber 22 of the high-temperature vacuum furnace 10 and is appropriately heated (for example, about 800 ° C.). Preheat with. Next, the heat treatment container 3 is moved to the main heating chamber 21 that has been heated to a preset temperature (for example, about 1800 ° C.) in advance. Thereafter, SiC substrate 40 is heated while adjusting the pressure and the like. Note that preheating may be omitted.
  • the heat treatment container 3 As shown in FIG. 2, the heat treatment container 3 is configured by stacking the accommodating portions 3a to 3f in the vertical direction. Since the accommodating portions 3a to 3f are all the same shape, the accommodating portion 3a will be described below as a representative.
  • the accommodating part 3a is a part for supporting one SiC substrate 40 and heating the SiC substrate 40 under Si vapor pressure.
  • the accommodating part 3 a includes a container part 30 and a substrate support part 50.
  • the container part 30 is a bottomed cylindrical container whose axial length is shorter than the radial length.
  • the container part 30 has an internal space 33 formed by the inner wall of the bottom part 31 and the inner wall of the side part 32.
  • the internal space 33 is a space whose upper side is open.
  • a first step 34 for supporting the outer edge portion of the substrate support portion 50 and a second step 35 for supporting the accommodating portion stacked on the side surface portion 32 are formed.
  • the substrate support unit 50 is supported by the first step 34 of the container unit 30.
  • the substrate support unit 50 supports the SiC substrate 40 so that the surface to be processed of the SiC substrate 40 faces the internal space (that is, the surface to be processed faces downward).
  • the internal space 33 can be a sealed space. Therefore, the operation
  • FIG. 3 is a schematic view showing the composition of the wall surface of the heat treatment container 3.
  • the heat treatment container 3 has a composition shown in FIG. 3 at least in the part constituting the wall surface of the internal space 33. Specifically, it is composed of a tantalum layer (Ta), a tantalum carbide layer (TaC and Ta 2 C), and a tantalum silicide layer (TaSi 2 ) in order from the outside toward the internal space 33 side.
  • a tantalum layer Ti
  • TaC and Ta 2 C tantalum carbide layer
  • TaSi 2 tantalum silicide layer
  • a crucible composed of a tantalum layer and a tantalum carbide layer is conventionally known, but in this embodiment, a tantalum silicide layer is further formed.
  • This tantalum silicide layer is for making the internal space 33 have Si vapor pressure.
  • solid Si may be disposed in the heat treatment container 3.
  • the tantalum silicide layer is formed by bringing molten Si into contact with the inner wall surface of the crucible and heating at about 1800 ° C. or more and 2000 ° C. or less. Thereby, a tantalum silicide layer composed of TaSi 2 can be realized.
  • a tantalum silicide layer having a thickness of about 30 ⁇ m to 50 ⁇ m is formed. However, the thickness may be, for example, 1 ⁇ m to 300 ⁇ m depending on the volume of the internal space.
  • a tantalum silicide layer can be formed.
  • TaSi 2 is formed as tantalum silicide, but tantalum silicide represented by another chemical formula may be formed. Further, a plurality of types of tantalum silicide may be formed in an overlapping manner.
  • a tantalum silicide layer is formed over the entire wall surface (side wall, bottom surface, and top surface other than the SiC substrate 40) constituting the internal space 33. Thereby, the pressure of Si in the internal space 33 can be made uniform.
  • FIG. 4 is a perspective view and a schematic sectional view of the SiC substrate 40 in which the groove 41 is formed.
  • the SiC substrate 40 has a disk shape, and a plurality of grooves 41 are formed.
  • Groove 41 is formed vertically and horizontally so as to divide the surface of SiC substrate 40 into a plurality of squares.
  • the interval at which the grooves are formed is arbitrary because it depends on the size of the semiconductor element, but may be 4 mm, for example.
  • SiC substrate 40 may be a substrate having an off angle, or the off angle may be 0 °.
  • the groove 41 may have an arbitrary shape such as a rectangular cross section or a ⁇ cross section as long as an opening is formed.
  • the depth of the groove 41 and the ratio of the opening to the depth (aspect ratio) are also arbitrary, and the preferred aspect ratio (depth of the opening / length of the opening) is 0.5 to 20.
  • the groove 41 of this embodiment is V-shaped, and the angle ⁇ formed by the surface of the SiC substrate 40 and the groove 41 is 45 °.
  • the shape of the groove and the value of ⁇ are arbitrary.
  • an epitaxial layer made of single crystal SiC is formed on the surface of the SiC substrate 40 (for example, (0001) Si surface or (000-1) C surface).
  • the thickness of the epitaxial layer is indicated by a symbol L1.
  • a distance from the surface of the SiC substrate 40 to the deepest portion of the groove 41 is indicated by a symbol L2.
  • the depth (L2) of the groove is several times the thickness (L1) of the epitaxial layer.
  • the thickness of the SiC substrate 40 is shown with the code
  • the depth (L2) of the groove is a fraction of the thickness (L3) of the SiC substrate 40.
  • FIG. 5 is a diagram schematically showing the state of the SiC substrate in each step. Note that the trench 41, the epitaxial layer 45, and the ion implantation region 46 of the SiC substrate in FIG. 5 are shown in a size different from the actual thickness (depth) for easy understanding of the drawing.
  • FIG. 5A shows the SiC substrate 40 before processing.
  • SiC substrate 40 has a plurality of grooves 41 and an epitaxial layer 45 formed thereon.
  • a CVD method chemical vapor deposition method
  • an MSE method metalastable solvent epitaxy method
  • the groove 41 is formed by a diamond tool or a laser.
  • ion implantation is performed on the SiC substrate 40.
  • This ion implantation is performed using an ion implantation apparatus having a function of irradiating an object with ions.
  • Ions (such as aluminum ions) are selectively implanted into the entire surface or a part of the surface of the epitaxial layer 45 by an ion implantation apparatus.
  • an ion implantation region 46 is formed in the SiC substrate 40 by ion implantation.
  • a desired region of the semiconductor element is formed based on the ion implantation region 46.
  • the surface of the epitaxial layer 45 including the ion implantation region 46 becomes rough (the surface of the SiC substrate 40 is damaged and the flatness is deteriorated).
  • both processes can be performed in one step. Specifically, heating is performed in an environment of 1500 to 2200 ° C., preferably 1600 to 2000 ° C. under Si vapor pressure. Thereby, the implanted ions can be activated.
  • the ion activation process of this embodiment is performed in Si and inert gas atmosphere.
  • the surface is etched and the roughened portion of ion implantation region 46 is flattened (see FIG. 5E).
  • the following reaction is performed. Briefly, when the SiC substrate 40 is heated under Si vapor pressure, the SiC of the SiC substrate 40 is sublimated as Si 2 C, SiC 2 or the like, and Si in the Si atmosphere is changed to the surface of the SiC substrate 40. In combination with C, self-organization occurs and the surface is flattened. Furthermore, Si released by heating from the inner wall surface of the heat treatment container 3 whose inner wall surface is a tantalum silicide layer also contributes to the reaction.
  • ion activation treatment heat treatment
  • ion activation by heating at a high temperature removal of a region with insufficient ion concentration on the surface of the ion implantation region 46, and planarization of the surface of the SiC substrate 40 are performed. It can be performed.
  • gaseous Si acts on the SiC substrate 40.
  • Gaseous Si acts uniformly to the inside of the groove 41 of the SiC substrate 40, unlike the resist used in the spin coating method. Therefore, even the SiC substrate 40 in which the groove 41 is formed can be etched and planarized without any problem.
  • FIG. 6 is a graph showing the etching rate when the heating temperature is 1600 ° C., 1700 ° C., 1750 ° C., and 1800 ° C. in a predetermined environment. From this graph, it can be seen that the higher the heating temperature, the faster the etching rate. Also, the horizontal axis of this graph is the reciprocal of temperature, and the vertical axis of this graph represents the etching rate logarithmically. Since this graph is a straight line as shown in FIG. 6, for example, the etching rate when the heating temperature is changed can be estimated.
  • FIG. 7 is a graph showing the relationship between the pressure of the inert gas and the etching rate. From this graph, it can be seen that the etching rate decreases as the pressure of the inert gas is increased.
  • the etching amount can be accurately grasped by increasing the inert gas pressure and decreasing the etching rate. For example, when the heating temperature is 1800 ° C., the etching rate can be reduced to about 300 nm / min or less by setting the pressure to 10 Pa or higher. Moreover, an etching rate can be made into about 100 nm / min or less by making a pressure into 100 Pa or more.
  • the etching rate is also different, but even if this is taken into consideration, the etching amount can be accurately grasped by setting the pressure to 10 Pa or more. Therefore, it is possible to accurately remove only the region where the ion concentration is insufficient.
  • the process of this embodiment is not performed above normal pressure, it is preferable that it is 100 kPa or less.
  • the inflow amount of the inert gas is reduced, for example, the pressure is set to 10 ⁇ 2 Pa or more and 10 Pa or less.
  • the etching rate is relatively high, it is possible to reduce the time required for the process of removing the region where the ion concentration is insufficient.
  • the SiC substrate 40 used in the experiment is formed with a V-shaped groove 41, and an angle ⁇ formed by the surface of the SiC substrate 40 and the groove 41 is 45 °. Further, the depth (L2) of the groove 41 is 100 ⁇ m, and the thickness (L3) of the SiC substrate 40 is 380 ⁇ m. The interval between the grooves 41 is 4 mm to 5 mm.
  • FIG. 8A shows the state before spin-coating the resist
  • FIG. 8B shows the state after spin-coating the resist.
  • the black portion is the groove 41.
  • the ions implanted into the SiC substrate 40 are activated while etching the surface of the SiC substrate 40.
  • the groove 41 is hardly obstructed (because it is a gas, it acts evenly even if there is a groove). Therefore, even in the SiC substrate 40 in which the groove 41 is formed, ions can be activated while preventing the surface from being rough (rather flattened). Therefore, a high-quality semiconductor element can be manufactured using the SiC substrate 40 in which the groove 41 is formed.
  • the ion activation process does not require the process of forming and removing the carbon cap, so that the manufacturing process can be simplified. Furthermore, since the surface of SiC substrate 40 can be etched by performing the ion activation treatment of the present invention, a region with an insufficient ion concentration can be removed at the same time.
  • the groove 41 formed in the SiC substrate 40 is a groove for separating the SiC substrate 40.
  • ion implantation is performed for implanting ions into the SiC substrate 40 having the epitaxial layer 45 of single crystal SiC on the surface and in which the groove 41 is formed in at least the epitaxial layer 45.
  • the treatment is performed before the ion activation treatment.
  • the surface of the SiC substrate 40 can be removed by a necessary and sufficient amount.
  • the SiC substrate 40 in which the trench 41 for separating the semiconductor elements is formed is processed, but the method of this embodiment can be applied even if the trench is formed for other purposes.
  • a groove formed for other purposes a groove formed to bury the gate of the MOSFET (a groove smaller than the groove 41 of the present embodiment) can be cited.
  • the ion activation treatment is performed in an atmosphere of Si and inert gas.
  • the ion activation treatment may be performed in an Si atmosphere without flowing an inert gas.
  • the ion activation treatment can be performed at a general etching rate by setting the pressure to 10 ⁇ 7 Pa to 10 ⁇ 2 Pa (preferably 10 ⁇ 4 Pa or less).
  • the heat treatment container configured to stack the accommodating portions is used, but a heat treatment container configured to be unable to be stacked can be used. Further, the direction in which the SiC substrate is arranged is arbitrary, and the surface to be processed may be upward.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Drying Of Semiconductors (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 溝(41)が形成されたSiC基板(40)に対して、表面に荒れが発生することを防止しつつイオンを活性化させるSiC基板処理方法を提供する。イオンが注入されたイオン注入領域(46)を表面に有し、少なくとも当該イオン注入領域(46)を含む部分に溝(41)が形成されたSiC基板(40)をSi蒸気圧下で加熱するイオン活性化処理を行うことで、SiC基板(40)に注入されたイオンを活性化させるとともに、エッチングを行って表面を平坦化する。

Description

SiC基板処理方法
 本発明は、半導体素子を製造するために用いられる溝付きのSiC基板を加熱処理する方法に関する。
 SiCは、Si等と比較して耐熱性及び電気的特性等に優れるため、新たな半導体材料として注目されている。
 SiC製の半導体素子は、例えば直径が4インチ又は6インチのSiC基板を用いて製造される。1枚のSiC基板から複数の半導体素子を製造する方法としては、例えばSiC基板に予め溝を形成しておき、イオン注入、イオン活性化、及び電極の形成等を行った後に、当該溝を利用して半導体素子の分離を行う方法が知られている。
 また、SiC基板には、半導体素子を分離する目的の他、MOSFETのゲートを埋め込むために溝を形成することがある(トレンチゲート型MOSFET、非特許文献1を参照)。
 ここで、SiC基板は、Al等のイオンの注入後、当該イオンを活性化させるために加熱処理を行う必要がある。この加熱処理(イオン活性化処理)は、例えば1500℃以上の高温で行う必要がある。しかし、SiC基板にイオン注入処理及びイオン活性化処理を行った場合、SiC基板の表面が荒れてしまう。
 そのため、SiC基板にカーボンキャップを形成してSiC基板の表面の荒れを防止するカーボンキャップ法が用いられている。カーボンキャップ法では、SiC基板の表面にレジストを塗布し、表面の垂線を回転軸としてSiC基板を回転させることで、レジストを均一にする(スピンコート法)。そして、このレジストを炭化させることでカーボンキャップを形成する。カーボンキャップが形成されることにより、イオン活性化処理時に発生するSiC基板の表面の荒れを抑えることができる。なお、イオン活性化処理の後には、カーボンキャップを除去する処理が必要となる。
「高閾値電圧を有する耐圧1700V特性オン抵抗3.5mΩcm2 V溝トレンチMOSFET」、SiC及び関連半導体研究会第22回講演会予稿集、公益社団法人応用物理学会、平成25年12月9日、p.21-22
 しかし、溝が形成されたSiC基板の場合、溝が障害となるため、スピンコート法を用いてもレジストが均一に塗布されない。そのため、溝が形成されたSiC基板では、カーボンキャップ法を用いた場合であっても、イオン注入及びイオン活性化処理によりSiC基板の表面が荒れてしまい、適切な半導体素子が製造できない可能性がある。なお、カーボンキャップ法では、カーボンキャップを形成及び除去する処理が必要となるため、半導体素子の製造工程が複雑化してしまう。
 本発明は以上の事情に鑑みてされたものであり、その主要な目的は、溝が形成されたSiC基板に対して、表面に荒れが発生することを防止しつつイオンを活性化させるSiC基板処理方法を提供することにある。
課題を解決するための手段及び効果
 本発明の解決しようとする課題は以上の如くであり、次にこの課題を解決するための手段とその効果を説明する。
 本発明の観点によれば、イオンが注入されたイオン注入領域を表面に有し、少なくとも当該イオン注入領域を含む部分に溝が形成されたSiC基板をSi蒸気圧下で加熱するイオン活性化処理を行うことで、前記SiC基板の表面をエッチングしつつ前記SiC基板に注入されたイオンを活性化させるSiC基板処理方法が提供される。
 これにより、Si蒸気圧下で加熱する場合はスピンコート法を用いる場合と異なり溝が障害となりにくい(気体なので溝があっても均一に作用する)。そのため、溝が形成されたSiC基板であっても、表面の荒れを防止しつつ(むしろ平坦化しつつ)イオンを活性化することができる。従って、溝が形成されたSiC基板を用いて高品質の半導体素子を製造することができる。また、本発明のイオン活性化処理ではスピンコート法と異なりカーボンキャップを形成及び除去する工程が不要なため、製造工程を単純化することができる。更に、本発明のイオン活性化処理を行うことでSiC基板の表面をエッチングすることができるので、注入されたイオンが不足している領域も同じ処理で除去することができる。
 前記のSiC基板処理方法においては、前記SiC基板に形成された溝は、当該SiC基板を分離するための溝であることが好ましい。
 これにより、溝が形成されたSiC基板を用いて、高品質の半導体素子を複数製造することができる。
 前記のSiC基板処理方法においては、単結晶SiCのエピタキシャル層を表面に有し、少なくとも当該エピタキシャル層に溝が形成されたSiC基板に対してイオンを注入するイオン注入処理を前記イオン活性化処理の前に行うことが好ましい。
 これにより、イオン注入条件に応じてイオンの分布が推測できるので、SiC基板の表面を必要かつ十分な量だけ除去することができる。
 前記のSiC基板処理方法においては、前記イオン活性化処理は、Si及び不活性ガス雰囲気下で行われ、圧力が10Pa以上100kPa以下であることが好ましい。
 これにより、不活性ガスを用いて圧力を上げることでエッチング速度を抑えることができるので、SiC基板の表面のエッチング量を精度良く制御することができる。
 前記のSiC基板処理方法においては、前記イオン活性化処理は、10-7Pa以上10-2Pa以下で行われることが好ましい。
 これにより、高真空下でイオン活性化処理を行うことでエッチング速度を上げることができるので、例えば注入されたイオンがSiC基板の深い位置に存在する場合等において、処理時間を短くすることができる。
 また、前記イオン活性化処理は、Si及び不活性ガス雰囲気下で行われ、圧力が10-2Pa以上10Pa以下で行われることが好ましい。
 これにより、不活性ガスの圧力を調整してエッチング速度を調整することができるので、SiC基板の表面のエッチング量を適正な量に制御することができる。
 前記のSiC基板処理方法においては、以下のようにすることが好ましい。即ち、前記イオン活性化処理は、前記SiC基板を加熱処理容器の内部空間に位置させた状態で行われる。前記加熱処理容器は、タンタル金属を含み、当該タンタル金属よりも前記内部空間側に炭化タンタル層が設けられ、当該炭化タンタル層の更に内部空間側にタンタルシリサイド層が設けられる。
 これにより、収容容器の内部のSiの圧力を均一にすることができるので、SiC基板の表面のエッチングを均一に行うことができる。
本発明の加熱処理で用いる高温真空炉の概要を説明する図。 加熱処理容器の端面図。 加熱処理容器の壁面の組成を示す概略図。 溝が形成されたSiC基板の斜視図及び概略断面図。 各工程におけるSiC基板の様子を概略的に示す図。 加熱温度と、エッチング速度と、の関係性を示すグラフ。 不活性ガスの圧力と、エッチング速度と、の関係性を示すグラフ。 スピンコート前後のSiC基板の表面の様子を示す顕微鏡写真。
 次に、図面を参照して本発明の実施形態を説明する。
 初めに、図1を参照して、本実施形態の加熱処理で用いる高温真空炉10について説明する。図1は、本発明の表面処理方法に用いる高温真空炉10の概要を説明する図である。図2は、加熱処理容器3の端面図である。
 図1に示すように、高温真空炉10は、本加熱室21と、予備加熱室22と、を備えている。本加熱室21は、少なくとも表面が単結晶SiCで構成されるSiC基板を1000℃以上2300℃以下の温度に加熱することができる。予備加熱室22は、SiC基板を本加熱室21で加熱する前に予備加熱を行うための空間である。
 本加熱室21には、真空形成用バルブ23と、不活性ガス注入用バルブ24と、真空計25と、が接続されている。真空形成用バルブ23は、本加熱室21の真空度を調整することができる。不活性ガス注入用バルブ24は、本加熱室21内の不活性ガス(例えばArガス)の圧力を調整することができる。真空計25は、本加熱室21内の真空度を測定することができる。
 本加熱室21の内部には、ヒータ26が備えられている。また、本加熱室21の側壁や天井には図略の熱反射金属板が固定されており、この熱反射金属板は、ヒータ26の熱を本加熱室21の中央部に向けて反射させるように構成されている。これにより、SiC基板40を強力かつ均等に加熱し、1000℃以上2300℃以下の温度まで昇温させることができる。なお、ヒータ26としては、例えば、抵抗加熱式のヒータや高周波誘導加熱式のヒータを用いることができる。
 また、SiC基板40は、加熱処理容器3に収容される。加熱処理容器3は、収容部3a~3fから構成されている。収容部3a~3fは、それぞれ1枚ずつSiC基板40を支持する。また、加熱処理容器3は、処理台27に載せられている。処理台27は、図略の駆動装置及び伝達機構によって、少なくとも予備加熱室22から本加熱室21まで移動可能に構成されている。
 SiC基板40を加熱処理する際には、初めに、図1の鎖線で示すように加熱処理容器3を高温真空炉10の予備加熱室22に配置して、適宜の温度(例えば約800℃)で予備加熱する。次に、予め設定温度(例えば、約1800℃)まで昇温させておいた本加熱室21へ加熱処理容器3を移動させる。その後、圧力等を調整しつつSiC基板40を加熱する。なお、予備加熱を省略しても良い。
 次に、加熱処理容器3について説明する。図2に示すように、加熱処理容器3は、収容部3a~3fを上下方向に重ねることで構成されている。収容部3a~3fは、全て同一形状なので、以下では代表して収容部3aについて説明する。
 図2に示すように、収容部3aは、1枚のSiC基板40を支持するとともに、当該SiC基板40をSi蒸気圧下で加熱するための部分である。収容部3aは、容器部30と、基板支持部50と、を備えている。
 容器部30は、軸方向の長さが径方向の長さよりも短い有底筒状の容器である。容器部30は、底面部31の内壁と、側面部32の内壁と、により形成される内部空間33を有している。なお、この内部空間33は上方が開放された空間である。
 側面部32には、基板支持部50の外縁部分を支持する第1ステップ34と、上に積み重ねられる収容部を支持する第2ステップ35と、が形成されている。
 基板支持部50は、容器部30の第1ステップ34に支持される。基板支持部50は、SiC基板40の被処理面を内部空間に対面させるように(即ち被処理面が下側を向くように)、当該SiC基板40を支持する。
 これにより、基板支持部50及びSiC基板40によって、内部空間33の上方の開放部分を覆うことができるので、内部空間33を密閉空間とすることができる。従って、蓋等で容器部30を密閉する作業が不要となる。また、被処理面を下向きにすることで、微小な不純物が落下してSiC基板40の被処理面に付着することを防止できる。
 次に、加熱処理容器3の壁面の組成について図3を参照して説明する。図3は、加熱処理容器3の壁面の組成を示す概略図である。
 加熱処理容器3は、少なくとも内部空間33の壁面を構成する部分において、図3に示す組成となっている。具体的には、外側から内部空間33側の順に、タンタル層(Ta)、タンタルカーバイド層(TaC及びTa2C)、及びタンタルシリサイド層(TaSi2)から構成されている。
 タンタル層及びタンタルカーバイド層から構成される坩堝は従来から知られているが、本実施形態では、更にタンタルシリサイド層が形成されている。このタンタルシリサイド層は、内部空間33をSi蒸気圧にするためのものである。なお、加熱処理容器3の内壁面をタンタルシリサイド層とすることに代えて、加熱処理容器3内に固形のSiを配置しても良い。
 以下、タンタルシリサイド層の形成方法について簡単に説明する。タンタルシリサイド層は、溶融させたSiを坩堝の内壁面に接触させて、1800℃以上2000℃以下程度で加熱することで形成される。これにより、TaSi2から構成されるタンタルシリサイド層が実現できる。なお、本実施形態では、30μmから50μm程度のタンタルシリサイド層を形成するが、内部空間の体積等に応じて、例えば1μmから300μmの厚みであっても良い。
 以上のように処理を行うことで、タンタルシリサイド層を形成することができる。なお、本実施形態ではタンタルシリサイドとしてTaSi2が形成される構成であるが、他の化学式で表されるタンタルシリサイドが形成されていても良い。また、複数種類のタンタルシリサイドが重ねて形成されていても良い。
 本実施形態では、内部空間33を構成する壁面(側壁、底面、及びSiC基板40以外の上面)の全体にわたって、タンタルシリサイド層が形成されている。これにより、内部空間33内のSiの圧力を均一にすることができる。
 次に、図4を参照して、本実施形態の被処理物である、溝付きのSiC基板40について説明する。図4は、溝41が形成されたSiC基板40の斜視図及び概略断面図である。
 図4(a)に示すように、SiC基板40は円板状であり、複数本の溝41が形成されている。溝41は、SiC基板40の表面を複数の正方形に区切るように縦横に形成されている。溝が形成される間隔は半導体素子のサイズによるため任意であるが、例えば4mmとすることができる。また、SiC基板40は、オフ角を有する基板であっても良いし、オフ角が0°であっても良い。なお、溝41については開口部分が形成されていれば、断面矩形状、断面Ω状など任意の形状であっても良い。また、溝41の深さや、開口部分と深さの比率(アスペクト比)も任意であり、好適なアスペクト比(開口部分の深さ/開口部分の長さ)は0.5~20である。
 図4(b)に示すように、本実施形態の溝41はV字状であり、SiC基板40の表面と溝41とがなす角θは45°である。なお、溝の形状及びθの値は任意である。また、SiC基板40の表面(例えば(0001)Si面又は(000-1)C面)には、単結晶SiCからなるエピタキシャル層が形成されている。図4(b)では、エピタキシャル層の厚さを符号L1で示している。また、SiC基板40の表面から溝41の最深部までの距離を符号L2で示している。本実施形態では、溝の深さ(L2)は、エピタキシャル層の厚さ(L1)の数倍である。また、図4(b)では、SiC基板40の厚さを符号L3で示している。本実施形態では、溝の深さ(L2)は、SiC基板40の厚さ(L3)の数分の1である。
 次に、図5を参照して、上記で説明した高温真空炉10及び加熱処理容器3を利用してSiC基板40から半導体素子を製造する処理について説明する。図5は、各工程におけるSiC基板の様子を概略的に示す図である。なお、図5におけるSiC基板の溝41、エピタキシャル層45、及びイオン注入領域46は、図面を分かり易くするために、実際の厚さ(深さ)と異なるサイズで記載している。
 図5(a)は、処理前のSiC基板40を示している。上記で説明したように、SiC基板40には、複数の溝41が形成されるとともに、エピタキシャル層45が形成されている。なお、エピタキシャル層45を形成する方法としては、CVD法(化学気相蒸着法)やMSE法(準安定溶媒エピタキシー法)を用いることができる。また、溝41は、ダイヤモンド工具又はレーザ等により形成される。
 初めに、図5(b)に示すように、このSiC基板40に対してイオン注入を行う。このイオン注入は、対象物にイオンを照射する機能を有するイオン注入装置を用いて行う。イオン注入装置によって、エピタキシャル層45の表面の全面又は一部に選択的に不純物としてのイオン(アルミニウムイオン等)が注入される。
 図5(c)に示すように、SiC基板40には、イオンが注入されることでイオン注入領域46が形成される。SiC基板40は、イオン注入領域46に基づいて半導体素子の所望の領域が形成される。なお、イオンが注入されることによって、イオン注入領域46を含むエピタキシャル層45の表面が荒れた状態になる(SiC基板40の表面が損傷し、平坦度が悪化する)。また、注入されるイオンのエネルギー等にも依存するが、一般的にはイオン注入領域46の表面近傍には、イオン濃度が不十分な領域が存在する。
 次に、図5(d)に示すように、注入したイオンの活性化、及び、イオン注入領域46の表面のエッチングを行う。本実施形態では、両方の処理を1つの工程で行うことができる。具体的には、Si蒸気圧下で1500℃以上2200℃以下、望ましくは1600℃以上2000℃以下の環境で加熱を行う。これにより、注入されたイオンを活性化することができる。本実施形態のイオン活性化処理は、Si及び不活性ガス雰囲気下で行われる。
 また、上記の条件でSiC基板40が加熱されることで、表面がエッチングされてイオン注入領域46の荒れた部分が平坦化されていく(図5(e)を参照)。このエッチング(平坦化)の際には、以下に示す反応が行われる。簡単に説明すると、SiC基板40がSi蒸気圧下で加熱されることで、SiC基板40のSiCがSi2C又はSiC2等になって昇華するとともに、Si雰囲気下のSiがSiC基板40の表面でCと結合して自己組織化が起こり平坦化される。更に、内壁面がタンタルシリサイド層とされた加熱処理容器3の内壁面から加熱によって放出されたSiも上記反応に寄与する。
(1) SiC(s)   → Si(v)I + C(s)I
(2) 2SiC(s)  → Si(v)II + SiC2(v)
(3) TaxSiy(s) → TaxSiy-1(s)+ Si(v)III
(4) SiC(s) + Si(v)I+II+III → Si2C(v)
(5) C(s)I + 2Si(v)I+II+III → Si2C(v)
 以上により、イオン活性化処理(加熱処理)を行うことで、高温での加熱によるイオン活性化、イオン注入領域46の表面のイオン濃度が不十分な領域の除去、SiC基板40の表面の平坦化を行うことができる。
 また、本実施形態では気体のSiがSiC基板40に作用する。気体のSiは、スピンコート法で用いられるレジストと異なり、SiC基板40の溝41の内部まで均一に作用する。従って、溝41が形成されたSiC基板40であっても問題なくエッチング及び平坦化を行うことができる。
 次に、図6及び図7を参照して、不活性ガスの圧力とエッチング速度との関係性等について説明する。
 従来から知られているように、SiC基板のエッチング速度は、加熱温度に依存する。図6は、所定の環境下において、加熱温度を1600℃、1700℃、1750℃、及び1800℃としたときのエッチング速度を示すグラフである。このグラフからは、加熱温度が高くなるほど、エッチング速度が速くなることが分かる。また、このグラフの横軸は温度の逆数であり、このグラフの縦軸はエッチング速度を対数表示している。なお、図6に示すように、このグラフは直線となっているため、例えば加熱温度を変更したときのエッチング速度を見積もることができる。
 図7は、不活性ガスの圧力とエッチング速度との関係を示すグラフである。このグラフからは、不活性ガスの圧力を高くするほどエッチング速度が低下することが分かる。不活性ガス圧を高くしてエッチング速度を低下させることで、エッチング量を正確に把握できる。例えば、加熱温度が1800℃の場合においては、圧力を10Pa以上にすることでエッチング速度を300nm/min程度以下にすることができる。また、圧力を100Pa以上にすることで、エッチング速度を100nm/min程度以下にすることができる。加熱温度が1800℃と異なる場合はエッチング速度も異なるが、それを考慮しても、圧力を10Pa以上にすることでエッチング量を正確に把握できる。従って、イオン濃度が不十分な領域のみを精度良く除去することができる。なお、本実施形態の処理は常圧以上では行われないため、100kPa以下であることが好ましい。一方、例えば注入されたイオンのエネルギーが高い場合はイオン濃度が不十分な領域が比較的深くなるため、不活性ガスの流入量を下げて、例えば圧力を10-2Pa以上10Pa以下とすることで、エッチング速度が比較的速くなるため、イオン濃度が不十分な領域を除去する処理に掛かる時間を抑えることができる。
 次に、本発明の効果を確かめるために出願人が行った実験について説明する。実験に用いたSiC基板40には、V字状の溝41が形成されており、SiC基板40の表面と溝41とがなす角θは45°である。また、溝41の深さ(L2)は100μmであり、SiC基板40の厚さ(L3)は380μmである。また、溝41の間隔は4mmから5mmである。
 このSiC基板40に、レジスト(東京応化工業社製OFPR-800)を膜厚1μm塗布し、5000rpmでスピンコートを行った。このときのSiC基板40の表面写真を図8に示す。レジストをスピンコートする前が図8(a)に示されており、レジストをスピンコートした後が図8(b)に示されている。また、図8において黒い部分が溝41である。レジストの塗布後(図8(b))ではレジストの塗布ムラが顕著に表れており、実用に用い得るものとはなり得なかった。
 以上に説明したように、本実施形態のSiC基板処理方法では、イオンが注入されたイオン注入領域46を表面に有し、少なくとも当該イオン注入領域46を含む部分に溝41が形成されたSiC基板40をSi蒸気圧下で加熱するイオン活性化処理を行うことで、SiC基板40の表面をエッチングしつつSiC基板40に注入されたイオンを活性化させる。
 これにより、Si蒸気圧下で加熱する場合はスピンコート法を用いる場合と異なり溝41が障害となりにくい(気体なので溝があっても均一に作用する)。そのため、溝41が形成されたSiC基板40であっても、表面の荒れを防止しつつ(むしろ平坦化しつつ)イオンを活性化することができる。従って、溝41が形成されたSiC基板40を用いて高品質の半導体素子を製造することができる。また、イオン活性化処理ではスピンコート法と異なりカーボンキャップを形成及び除去する工程が不要なため、製造工程を単純化することができる。更に、本発明のイオン活性化処理を行うことでSiC基板40の表面をエッチングすることができるので、イオン濃度が不十分な領域も同時に除去することができる。
 また、本実施形態のSiC基板処理方法においては、SiC基板40に形成された溝41は、当該SiC基板40を分離するための溝である。
 これにより、溝41が形成されたSiC基板40を用いて、高品質の半導体素子を複数製造することができる。
 また、本実施形態のSiC基板処理方法においては、単結晶SiCのエピタキシャル層45を表面に有し、少なくとも当該エピタキシャル層45に溝41が形成されたSiC基板40に対してイオンを注入するイオン注入処理をイオン活性化処理の前に行う。
 これにより、イオン注入条件に応じてイオンの分布が推測できるので、SiC基板40の表面を必要かつ十分な量だけ除去することができる。
 以上に本発明の好適な実施の形態を説明したが、上記の構成は例えば以下のように変更することができる。
 上記では、半導体素子の分離のための溝41が形成されたSiC基板40に処理を行ったが、他の目的で溝が形成されていても本実施形態の方法を適用することができる。他の目的で形成された溝の例としては、MOSFETのゲートを埋め込むために形成された溝(本実施形態の溝41よりも更に小さい溝)を挙げることができる。
 上記では、Si及び不活性ガス雰囲気下でイオン活性化処理を行ったが、不活性ガスを流入せず、Si雰囲気下でイオン活性化処理を行っても良い。この場合、圧力を10-7Pa以上10-2Pa以下(好ましくは10-4Pa以下)とすることで、一般的なエッチング速度でイオン活性化処理を行うことができる。
 上記では、収容部を積層する構成の加熱処理容器を用いたが、積層できない構成の加熱処理容器を用いることができる。また、SiC基板を配置する向きも任意であり、被処理面が上向きであっても良い。
 3 加熱処理容器
 10 高温真空炉
 40 SiC基板
 41 溝
 45 エピタキシャル層
 46 イオン注入領域

Claims (7)

  1.  イオンが注入されたイオン注入領域を表面に有し、少なくとも当該イオン注入領域を含む部分に溝が形成されたSiC基板をSi蒸気圧下で加熱するイオン活性化処理を行うことで、前記SiC基板の表面をエッチングしつつ前記SiC基板に注入されたイオンを活性化させることを特徴とするSiC基板処理方法。
  2.  請求項1に記載のSiC基板処理方法であって、
     前記SiC基板に形成された溝は、当該SiC基板を分離するための溝であることを特徴とするSiC基板処理方法。
  3.  請求項1に記載のSiC基板処理方法であって、
     単結晶SiCのエピタキシャル層を表面に有し、少なくとも当該エピタキシャル層に溝が形成されたSiC基板に対してイオンを注入するイオン注入処理を前記イオン活性化処理の前に行うことを特徴とするSiC基板処理方法。
  4.  請求項1に記載のSiC基板処理方法であって、
     前記イオン活性化処理は、Si及び不活性ガス雰囲気下で行われ、圧力が10Pa以上100kPa以下であることを特徴とするSiC基板処理方法。
  5.  請求項1に記載のSiC基板処理方法であって、
     前記イオン活性化処理は、10-7Pa以上10-2Pa以下で行われることを特徴とするSiC基板処理方法。
  6.  請求項1に記載のSiC基板処理方法であって、
     前記イオン活性化処理は、Si及び不活性ガス雰囲気下で行われ、圧力が10-2Pa以上10Pa以下であることを特徴とするSiC基板処理方法。
  7.  請求項1に記載のSiC基板処理方法であって、
     前記イオン活性化処理は、前記SiC基板を加熱処理容器の内部空間に位置させた状態で行われ、
     前記加熱処理容器は、タンタル金属を含み、当該タンタル金属よりも前記内部空間側に炭化タンタル層が設けられ、当該炭化タンタル層の更に内部空間側にタンタルシリサイド層が設けられることを特徴とするSiC基板処理方法。
PCT/JP2015/005739 2014-11-18 2015-11-17 SiC基板処理方法 WO2016079980A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177016191A KR102549160B1 (ko) 2014-11-18 2015-11-17 SiC 기판 처리 방법
JP2016560057A JP6310571B2 (ja) 2014-11-18 2015-11-17 SiC基板処理方法
CN201580062667.7A CN107004585B (zh) 2014-11-18 2015-11-17 碳化硅基板处理方法
US15/527,602 US10014176B2 (en) 2014-11-18 2015-11-17 SiC substrate treatment method
EP15861199.6A EP3223302B1 (en) 2014-11-18 2015-11-17 Sic substrate treatment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014233233 2014-11-18
JP2014-233233 2014-11-18

Publications (1)

Publication Number Publication Date
WO2016079980A1 true WO2016079980A1 (ja) 2016-05-26

Family

ID=56013553

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005739 WO2016079980A1 (ja) 2014-11-18 2015-11-17 SiC基板処理方法

Country Status (7)

Country Link
US (1) US10014176B2 (ja)
EP (1) EP3223302B1 (ja)
JP (1) JP6310571B2 (ja)
KR (1) KR102549160B1 (ja)
CN (1) CN107004585B (ja)
TW (1) TWI677603B (ja)
WO (1) WO2016079980A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021522676A (ja) * 2018-05-04 2021-08-30 ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー オブ ザ ネイビー ワイドバンドギャップ半導体エレクトロニクスのための注入ドーパント活性化
WO2023189056A1 (ja) * 2022-03-31 2023-10-05 ローム株式会社 炉心管、熱処理装置および支持ユニット

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6751874B2 (ja) * 2014-11-18 2020-09-09 東洋炭素株式会社 SiC基板のエッチング方法
JP7389239B2 (ja) * 2019-09-10 2023-11-29 コリア エレクトロテクノロジー リサーチ インスティテュート トレンチゲート型SiCMOSFETデバイス及びその製造方法
CN112408394B (zh) * 2020-11-23 2023-07-07 武汉科技大学 一种二硅化钽纳米粉末的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187257A (ja) * 1997-09-11 1999-03-30 Fuji Electric Co Ltd 炭化けい素基板の熱処理方法
JP2008016691A (ja) * 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
JP2009188117A (ja) * 2008-02-05 2009-08-20 Kwansei Gakuin 表面改質単結晶SiC基板、エピ成長層付き単結晶SiC基板、半導体チップ、単結晶SiC成長用種基板及び単結晶成長層付き多結晶SiC基板の製造方法
JP2012209415A (ja) * 2011-03-29 2012-10-25 Kwansei Gakuin 半導体素子の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6547877B2 (en) * 1996-01-22 2003-04-15 The Fox Group, Inc. Tantalum crucible fabrication and treatment
JP2001332508A (ja) * 2000-05-23 2001-11-30 Matsushita Electric Ind Co Ltd 半導体素子の製造方法
DE102005017814B4 (de) * 2004-04-19 2016-08-11 Denso Corporation Siliziumkarbid-Halbleiterbauelement und Verfahren zu dessen Herstellung
JP5135879B2 (ja) * 2007-05-21 2013-02-06 富士電機株式会社 炭化珪素半導体装置の製造方法
JP5564682B2 (ja) * 2010-04-28 2014-07-30 学校法人関西学院 半導体素子の製造方法
JP2011243619A (ja) * 2010-05-14 2011-12-01 Sumitomo Electric Ind Ltd 炭化珪素基板の製造方法、半導体装置の製造方法、炭化珪素基板および半導体装置
JP5759393B2 (ja) * 2012-01-12 2015-08-05 住友電気工業株式会社 炭化珪素半導体装置の製造方法
JP6093154B2 (ja) * 2012-11-16 2017-03-08 東洋炭素株式会社 収容容器の製造方法
TWI600081B (zh) * 2012-11-16 2017-09-21 Toyo Tanso Co Ltd Surface treatment method of single crystal silicon carbide substrate and single crystal silicon carbide substrate
TW201517133A (zh) * 2013-10-07 2015-05-01 Applied Materials Inc 使用熱佈植與奈秒退火致使銦鋁鎵氮化物材料系統中摻雜劑的高活化

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187257A (ja) * 1997-09-11 1999-03-30 Fuji Electric Co Ltd 炭化けい素基板の熱処理方法
JP2008016691A (ja) * 2006-07-07 2008-01-24 Kwansei Gakuin 単結晶炭化ケイ素基板の表面改質方法、単結晶炭化ケイ素薄膜の形成方法、イオン注入アニール方法及び単結晶炭化ケイ素基板、単結晶炭化ケイ素半導体基板
JP2009188117A (ja) * 2008-02-05 2009-08-20 Kwansei Gakuin 表面改質単結晶SiC基板、エピ成長層付き単結晶SiC基板、半導体チップ、単結晶SiC成長用種基板及び単結晶成長層付き多結晶SiC基板の製造方法
JP2012209415A (ja) * 2011-03-29 2012-10-25 Kwansei Gakuin 半導体素子の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021522676A (ja) * 2018-05-04 2021-08-30 ザ ガバメント オブ ザ ユナイテッド ステイツ オブ アメリカ, アズ リプレゼンテッド バイ ザ セクレタリー オブ ザ ネイビー ワイドバンドギャップ半導体エレクトロニクスのための注入ドーパント活性化
WO2023189056A1 (ja) * 2022-03-31 2023-10-05 ローム株式会社 炉心管、熱処理装置および支持ユニット

Also Published As

Publication number Publication date
TWI677603B (zh) 2019-11-21
JP6310571B2 (ja) 2018-04-11
EP3223302A1 (en) 2017-09-27
CN107004585A (zh) 2017-08-01
KR102549160B1 (ko) 2023-06-30
EP3223302A4 (en) 2018-07-25
US10014176B2 (en) 2018-07-03
KR20170086561A (ko) 2017-07-26
CN107004585B (zh) 2020-02-11
EP3223302B1 (en) 2021-01-06
TW201627543A (zh) 2016-08-01
JPWO2016079980A1 (ja) 2017-09-28
US20170323792A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
JP6310571B2 (ja) SiC基板処理方法
WO2014076963A1 (ja) 単結晶SiC基板の表面処理方法及び単結晶SiC基板
TWI746468B (zh) 薄型SiC晶圓之製造方法及薄型SiC晶圓
JP5564682B2 (ja) 半導体素子の製造方法
WO2015151413A1 (ja) SiC基板の表面処理方法、SiC基板、及び半導体の製造方法
KR102488490B1 (ko) 가스 분배 플레이트 열을 이용한 온도 램핑
US9620407B2 (en) 3D material modification for advanced processing
US20150249025A1 (en) Semiconductor device manufacturing apparatus
US10388536B2 (en) Etching method for SiC substrate and holding container
JP2006339396A (ja) イオン注入アニール方法、半導体素子の製造方法、及び半導体素子
WO2016079984A1 (ja) SiC基板の表面処理方法
US9704733B2 (en) Storing container, storing container manufacturing method, semiconductor manufacturing method, and semiconductor manufacturing apparatus
US8501630B2 (en) Selective etch process for silicon nitride
TWI658525B (zh) SiC(碳化矽)基板之潛傷深度推斷方法
JP6151581B2 (ja) 単結晶SiC基板の表面処理方法及び単結晶SiC基板の製造方法
KR20190109176A (ko) 콜리메이터, 그를 포함하는 반도체 소자의 제조장치 및 반도체 소자의 제조방법
JP7220455B2 (ja) SiCトレンチ型MOSFETのトレンチ作製方法
TWI801594B (zh) 半導體晶圓處理中最小化晶圓背側損傷的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861199

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560057

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015861199

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15527602

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177016191

Country of ref document: KR

Kind code of ref document: A