WO2016079975A1 - バルブ装置 - Google Patents

バルブ装置 Download PDF

Info

Publication number
WO2016079975A1
WO2016079975A1 PCT/JP2015/005698 JP2015005698W WO2016079975A1 WO 2016079975 A1 WO2016079975 A1 WO 2016079975A1 JP 2015005698 W JP2015005698 W JP 2015005698W WO 2016079975 A1 WO2016079975 A1 WO 2016079975A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
intermediate position
spring
fully closed
open
Prior art date
Application number
PCT/JP2015/005698
Other languages
English (en)
French (fr)
Inventor
勇多 藤中
高史 小林
一司 佐々木
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201580059625.8A priority Critical patent/CN107076034B/zh
Priority to US15/523,816 priority patent/US10036332B2/en
Priority to DE112015005256.9T priority patent/DE112015005256B4/de
Publication of WO2016079975A1 publication Critical patent/WO2016079975A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1493Details
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/04Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10373Sensors for intake systems
    • F02M35/10393Sensors for intake systems for characterising a multi-component mixture, e.g. for the composition such as humidity, density or viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/16Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members
    • F16K1/18Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps
    • F16K1/22Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with pivoted closure-members with pivoted discs or flaps with axis of rotation crossing the valve member, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/04Actuating devices; Operating means; Releasing devices electric; magnetic using a motor
    • F16K31/041Actuating devices; Operating means; Releasing devices electric; magnetic using a motor for rotating valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0213Electronic or electric governor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/101Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles
    • F02D2011/103Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the means for actuating the throttles at least one throttle being alternatively mechanically linked to the pedal or moved by an electric actuator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D2011/108Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type with means for detecting or resolving a stuck throttle, e.g. when being frozen in a position

Definitions

  • the present disclosure relates to a valve device for opening and closing a fluid flow path communicating with a combustion chamber of an internal combustion engine.
  • a valve device that includes a body that forms a fluid flow path that communicates with a combustion chamber of an internal combustion engine, and a valve that is rotatably supported in the body and driven by an actuator.
  • Such valve devices include a throttle valve device that varies the amount of intake air into the combustion chamber, and an EGR valve device that varies the amount of exhaust gas recirculated from the exhaust passage to the intake passage.
  • a W spring structure having a spring (hereinafter referred to as an open spring) that exerts an opening side biasing force on the valve and a spring (hereinafter referred to as a closing spring) that exerts a closing side biasing force on the valve.
  • a valve apparatus for example, refer patent document 1.
  • the biasing force of the open spring is applied to the valve shaft closer to the valve shaft than the predetermined intermediate position (the predetermined valve position set between the fully closed position and the fully open position).
  • the biasing force of the closing spring is applied to the valve shaft.
  • the valve In a state where there is no driving force of the actuator, the valve remains in an intermediate position by the urging force of the spring (see, for example, Patent Document 1 for details of the structure).
  • a resistance force (friction force or motor detent torque) is applied to the valve shaft in a direction that prevents the spring biasing force from returning to the intermediate position. The Therefore, the intermediate position is returned to the torque obtained by subtracting the resistance from the biasing force of the spring.
  • the set loads of the open spring and the closed spring are set to set loads that can be returned to the intermediate position only with their own urging force even when there is resistance. That is, the position where the actuator can return by itself without the driving force of the actuator (self-feedback position) from the open side or the closed side is the intermediate position.
  • valve device having such a structure, in order to move the valve from the intermediate position to the open side, it is necessary to apply a torque exceeding the biasing force of the closing spring and the resistance force (frictional force, etc.) that hinders the rotation of the valve by the actuator. Yes (see the thick solid line from the middle position in FIG. 10 to the fully open position). Further, in order to move the valve from the intermediate position to the closing side, it is necessary to apply torque exceeding the urging force and resistance force of the open spring by the actuator (see the thick solid line from the intermediate position toward the fully closed state in FIG. 10). .
  • the greater the required torque the greater the power supplied to the actuator. That is, the greater the biasing force or resistance of the spring, the greater the power supplied to the actuator.
  • the actuator may burn out. This is because the torque necessary for maintaining the fully closed state to maintain the valve in the fully closed position increases. For this reason, there is a desire to reduce the biasing force of the open spring to prevent actuator burnout.
  • the intermediate position When the intermediate position is set as a position that can prevent the valve from freezing and sticking, if the valve can only return to the closing side of the intermediate position, the valve will freeze and freeze. Note that the valve is frozen and fixed, after the IG switch (ignition switch) is turned off, moisture contained in the intake or exhaust in the fluid flow path is condensed in a low temperature environment, and the moisture is frozen between the valve and the body. That is, the phenomenon that the valve stops moving.
  • IG switch ignition switch
  • the present disclosure has been made to solve the above-described problems.
  • the purpose of the present disclosure is to prevent actuator burnout in the valve device and to set the valve position after turning off the IG switch to an intermediate position as much as possible. It is to satisfy both the desire to do.
  • a valve device includes a body that forms a fluid passage communicating with a combustion chamber of an internal combustion engine, and a fluid passage that is rotatably accommodated in the fluid passage.
  • An intermediate position that is a predetermined valve position between the valve and the fully closed position, an electric actuator that rotates the valve toward the closed side or the open side, and a valve that urges the valve from the fully closed position toward the open side
  • An urging unit and an ACT control unit that controls driving of the electric actuator are provided.
  • the set load of the valve urging unit is smaller than the set load that can be returned from the fully closed position to the intermediate position only by the urging force of the valve urging unit, and the ACT control unit turns off the IG switch that stops the operation of the internal combustion engine.
  • the valve position at the time of the operation is closer to the intermediate position, the valve is moved to the intermediate position by the electric actuator after the IG switch is turned OFF.
  • the set load of the valve urging portion can be made smaller than before, it is possible to reduce the power supplied to the electric actuator that is required when the valve is held in the fully closed position. Therefore, burning of the electric actuator can be prevented.
  • the valve cannot be returned to the intermediate position only by the valve urging portion. Therefore, in this aspect, the valve is moved to the intermediate position by the electric actuator after the IG switch is turned off.
  • the drawing It is sectional drawing which shows the whole structure of a valve apparatus (Example). It is a figure which shows the internal structure of the state which removed the housing cover of the valve apparatus (Example). It is explanatory drawing explaining the intermediate position of a valve
  • the valve device 1 according to the present embodiment is a throttle valve device for a diesel engine, and is a valve device for adjusting an intake air amount into a combustion chamber of an internal combustion engine.
  • the valve device 1 forms a butterfly valve type valve 2 that is driven according to a driver's accelerator operation amount, an intake passage 3 to the internal combustion engine, a body 4 that accommodates the valve 2, and the valve 2. And a motor 5 for controlling the driving of the motor 5.
  • the body 4 is made of metal, and forms a suction passage 3 and accommodates a cylinder portion 8 that accommodates the valve 2 and a gear housing portion that accommodates a gear reduction device 9 that transmits the driving force of the motor 5 to the valve 2. 10
  • a resin housing cover 11 is joined to the opening end surface of the gear housing portion 10, and a gear chamber 12 that houses the gear reduction device 9 is formed between the housing cover 11 and the gear housing portion 10.
  • the gear chamber 12 houses a position sensor 13 for detecting the opening degree (valve position) of the valve 2.
  • the valve 2 is a butterfly valve fixed to the valve shaft 16 and is formed in a disk shape from a metal material or a resin material.
  • the valve shaft 16 is made of a metal material and is rotatably supported by the body 4 with the radial direction of the cylindrical portion 8 as an axial direction.
  • the motor 5 is an electric actuator that can rotate the valve shaft 16 forward and backward when energized.
  • the gear reduction device 9 reduces the rotational speed of the motor 5 to a predetermined rotational speed of the valve shaft 16, a valve gear 18 fixed to the valve shaft 16, an intermediate gear 19 that rotates in mesh with the valve gear 18, And a pinion gear 20 fixed to the output shaft of the motor 5 to rotate the valve 2.
  • the valve shaft 16 has one end side (the side far from the valve 2) protruding into the gear chamber 12, and a valve gear 18 is fixed to one end of the valve shaft 16. That is, when the valve gear 18 receives driving force from the motor 5 and rotates, the valve gear 18, the valve shaft 16 and the valve 2 rotate together.
  • the body 4 has a fully open stopper (not shown) that contacts the valve gear 18 to restrict the movement limit position of the valve shaft 16 to the open side, and the movement limit of the valve shaft 16 to the close side that contacts the valve gear 18.
  • a fully closed stopper 22 (see FIG. 6) that restricts the position is provided, and the movable range of the valve 2 is set by each stopper.
  • the motor 5 is energized and controlled by the ACT control unit 6.
  • the engine control device engine control unit (ECU)
  • the ACT control unit 6 performs energization control of the motor 5 in response to inputs from the IG switch 24, the position sensor 13, and the like.
  • valve device 1 includes a closing spring 27, an opening spring (valve urging portion) 28, spring seats 30, 31, 32, and an opener 33 for each spring.
  • the closing spring 27 applies a closing biasing force to the valve 2. That is, the valve 2 is urged in the direction of moving from the fully open position to the close side.
  • the opening spring 28 applies an opening-side urging force to the valve 2. That is, the valve 2 is urged in a direction to move from the fully closed position to the open side.
  • the fully open position is a valve position where the flow area is maximum in the movable range of the valve 2
  • the fully closed position is a valve position where the flow area is minimum in the movable range of the valve 2. It is.
  • a predetermined valve position between the fully closed position and the fully opened position is set as an intermediate position (see FIG. 3).
  • this intermediate position is a position that is set as a valve position that can avoid icing and sticking between the valve and the body, which is caused by condensation of moisture contained in the intake air in a low temperature environment.
  • the closing spring 27 and the opening spring 28 are torsion springs, respectively.
  • the closing spring 27 and the opening spring 28 are coaxially arranged on the outer periphery of the valve shaft 16.
  • An opening spring 28 and a closing spring 27 are arranged in order from one end side (the side far from the valve 2) of the valve shaft 16 in the axial direction.
  • the closing spring 27 and the opening spring 28 are disposed on the outer periphery of the first guide portion 37 and the second guide portion 38 provided on the outer periphery of the valve shaft 16.
  • the first guide portion 37 is a cylindrical portion provided in the body 4 so as to be formed inside the gear chamber 12 and to have a bearing 39 for bearing the valve shaft 16 therein.
  • the second guide part 38 is a cylinder part provided in the valve gear 18. The cylindrical portion protrudes toward the other axial end of the gear portion 40 where the gear teeth of the valve gear 18 are formed, and surrounds the valve shaft 16.
  • the coupling part 42 is bent outward and protrudes radially outward (see FIG. 4).
  • the coupling portion 42 is disposed between the closing spring 27 and the opening spring 28, but the relationship between the closing spring 27 and the opening spring 28 is not limited to the structure having the coupling portion 42.
  • the closing spring 27 and the opening spring 28 may be formed separately, and each end may be pressed by an opener 33 described later.
  • the spring seat 30 is provided on the valve gear 18 and locks one end 28a of the open spring 28 (see FIG. 4).
  • the spring seat 31 is provided on the body 4 and locks the other end 27a of the closing spring 27 (see FIG. 4).
  • the spring seat 32 is provided on the body 4 and locks the coupling portion 42 when the valve 2 is closer to the intermediate position.
  • the coupling portion 42 is locked by an opener 33 described later.
  • the coupling portion 42 is locked to both the spring seat 32 (hereinafter referred to as the intermediate stopper 32) and the opener 33.
  • the opener 33 is provided in the valve gear 18 and rotates the valve 2 from the intermediate position to the open side against the urging force of the closing spring 27.
  • the opener 33 is provided so as to rotate integrally with the valve gear 18.
  • the opener 33 is locked to the coupling portion 42 on the open side of the intermediate position, and the coupling portion 42 is connected to the closing spring 27 as the valve gear 18 rotates.
  • the valve 2 is driven in the opening direction by pressing against the urging force.
  • valve 2 The drive of valve 2 is described below.
  • the driving force of the motor 5 is transmitted to the valve gear 18.
  • the valve gear 18 and the valve 2 rotate.
  • the opener 33 presses the coupling portion 42 against the urging force of the closing spring 27.
  • the biasing force of the open spring 28 is not involved in the valve 2. This is because one end 28a of the open spring 28 is locked to the spring seat 30 of the valve gear 18, and the other end (the coupling portion 42) of the open spring 28 remains locked to the opener 33, and there is no relative rotation therebetween. This is because the open spring 28 is not twisted.
  • the ACT control unit 6 controls the energization so that the valve 2 can be maintained in the fully closed position or the fully open position in addition to the rotation of the valve 2.
  • the valve device of the present embodiment has the following two features.
  • the set load of the open spring 28 is smaller than the set load that can be returned from the fully closed position to the intermediate position only by the urging force of the open spring 28.
  • the ACT control unit 6 sets the motor after the OFF operation of the IG switch 24 when the valve position at the time of the OFF operation of the IG switch 24 that stops the operation of the internal combustion engine is closer to the intermediate position. 5 moves the valve 2 to an intermediate position.
  • the closing spring 27 is released.
  • the coupling portion 42 returns to the intermediate position where it abuts against the intermediate stopper 32 by the torque generated by the urging force.
  • the driving force of the motor 5 is released from the state in which the valve gear 18 is turned to the closing side from the intermediate position by the driving force of the motor 5 while the coupling portion 42 is locked to the intermediate stopper 32, the opening is released. Due to the torque generated by the biasing force of the spring 28, the opener 33 returns to an intermediate position where it abuts against the coupling portion 42.
  • the urging force of the open spring 28 is smaller than that of the prior art, and the urging force of the open spring 28 alone cannot overcome the resistance force and cannot return from the fully closed position to the intermediate position.
  • the urging force of the open spring 28 is applied to the valve shaft 16 from the fully closed position to the intermediate position.
  • the resistance force Therefore, the torque obtained by subtracting the resistance force from the urging force of the open spring 28 becomes the torque for returning the valve 2 generated by the open spring 28 to the open side (from the fully closed position in FIG. 5 toward the intermediate position).
  • the set load of the open spring 28 is set so that this torque cannot be returned to the intermediate position. That is, the set load of the open spring 28 is set so that the open spring set load is smaller than the resistance force when returning from the fully closed position toward the intermediate position.
  • the rotational torque to the open side from the position where the load torque around the valve shaft becomes zero is the plus side (upward on the vertical axis), and the rotational torque to the close side from the self-feedback position is This is shown as the minus side (downward on the vertical axis).
  • the magnitude of the absolute value is described as the magnitude of the torque in each direction regardless of the plus side minus side.
  • FIG. 6 shows a state in which the motor 5 is loaded with a torque greater than the necessary torque for maintaining the fully closed state and the valve 2 is in the fully closed position.
  • the coupling portion 42 is locked to the intermediate stopper 32 and the one end 28a of the opening spring 28 is rotated together with the valve gear 18, the opening spring 28 is twisted to generate a biasing force toward the opening side.
  • the fully closed maintenance required torque is a torque required to maintain the valve 2 in the fully closed position, and is determined by the urging force and the resistance force of the open spring 28.
  • FIG. 7 shows a state where the driving force of the motor 5 is released from the state of FIG.
  • the valve 2 moves along a two-dot chain line from the fully closed position to the intermediate position in FIG.
  • the load torque around the valve shaft becomes zero before the intermediate position. That is, it stops at a position (self-return position) closer to the intermediate position.
  • the feature (2) is for compensating for an event caused by the feature (1). That is, since the torque generated by the urging force of the open spring 28 cannot be returned to the intermediate position, the motor 5 is used to return to the intermediate position.
  • S1 it is determined whether or not the IG switch has been turned OFF. If this determination is YES, the process proceeds to S2, and the valve position at that time is confirmed. If the valve position is closer to the intermediate position, the motor 5 is controlled to move the valve 2 to the intermediate position. To move.
  • the valve 2 when the IG switch 24 is turned off, the valve 2 is in the fully closed position as shown in FIG. In that case, the power supply to the motor 5 is continued even after the IG switch 24 is turned OFF, and the valve 2 is driven to the intermediate position by the motor 5 (see FIG. 8). Thereafter, power supply to the motor 5 is stopped.
  • the intermediate position is stopped at the intermediate position due to the balance between the biasing force and the resistance force of the closing spring 27.
  • the set load of the open spring 28 is smaller than the set load that can be returned from the fully closed position to the intermediate position only by the urging force of the open spring 28.
  • the motor 5 In order to move the valve 2 from the intermediate position to the closing side, it is necessary to apply a torque exceeding the urging force and resistance force of the open spring 28 by the motor 5 (see the solid line from the intermediate position toward the fully closed state in FIG. 5). .
  • the electric power supplied to the motor 5 increases as the required torque increases. That is, the greater the biasing force or resistance force of the open spring, the greater the power supplied to the motor 5.
  • the motor 5 may be burned out if the biasing force or resistance force of the open spring 28 is large.
  • the urging force of the open spring 28 can be made smaller than before, the torque necessary for maintaining the valve 2 in the fully closed position (the torque required for maintaining the fully closed position) is reduced. For this reason, the burning of the motor 5 can be prevented.
  • the ACT control unit 6 moves the valve 2 to the intermediate position by the motor 5 after the OFF operation of the IG switch 24 when the valve position at the time of the OFF operation of the IG switch 24 is closer to the intermediate position. Move.
  • the valve position in the OFF state of the IG switch 24 can be surely set to the intermediate position.
  • the intermediate position is set as a valve position capable of avoiding icing adhesion between the valve 2 and the body 4, the valve position in the OFF state of the IG switch 24 is surely set to the intermediate position, It is possible to reliably prevent freezing and sticking.
  • the valve 2 is urged to the closing side by the closing spring 27, and the urging force of the closing spring 27 can be returned from the fully opened position to the intermediate position when the driving force of the motor 5 is released.
  • the size is set. For this reason, when the valve position at the time of turning off the IG switch 24 is on the open side with respect to the intermediate position, the power supply to the motor 5 may be stopped simultaneously with the turning off of the IG switch 24.
  • both the closing spring 27 and the opening spring 28 are provided, but a structure having only the opening spring 28 may be used.
  • the valve device 1 is a throttle valve device, but is not limited to this, and may be, for example, an EGR valve device that varies the amount of exhaust gas recirculated from the exhaust passage to the intake passage.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Analytical Chemistry (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

 バルブ装置は、内燃機関の燃焼室に連通する流体流路(3)を形成するボディ(4)と、流体流路内に回転自在に収容されて流体流路の開度を可変するバルブ(2)と、全開位置と、全閉位置と、全開位置と全閉位置との間の所定のバルブ位置である中間位置と、バルブを閉側または開側に向かって回転駆動させる電動アクチュエータ(5)と、バルブを全閉位置から開側に向かって付勢するバルブ付勢部(28)と、電動アクチュエータの駆動を制御するACT制御部(6)とを備える。バルブ付勢部のセット荷重は、バルブ付勢部の付勢力だけで全閉位置から中間位置に帰還可能なセット荷重よりも小さく、ACT制御部は、内燃機関の運転を停止するIGスイッチ(24)のOFF操作をした時点でのバルブ位置が中間位置よりも閉側にある場合に、IGスイッチのOFF操作後に、電動アクチュエータによって、バルブを中間位置に移動させる。

Description

バルブ装置 関連出願の相互参照
 本出願は、2014年11月20日に出願された日本特許出願番号2014-235685号に基づくもので、ここにその記載内容を援用する。
 本開示は、内燃機関の燃焼室に連通する流体流路を開閉するためのバルブ装置に関する。
 従来より、内燃機関の燃焼室に連通する流体流路を形成するボディと、ボディ内に回動自在に支持されるとともにアクチュエータにより駆動されるバルブとを備えるバルブ装置が知られている。このようなバルブ装置には、燃焼室への吸入空気量を可変するスロットルバルブ装置や、排気通路から吸気通路へ再循環させる排気ガス量を可変するEGRバルブ装置等がある。
 そして、バルブ装置として、バルブに開側付勢力を及ぼすスプリング(以下、開スプリングと呼ぶ)と、バルブに閉側付勢力を及ぼすスプリング(以下、閉スプリングと呼ぶ)とを備えたWスプリング構造のバルブ装置がある(例えば、特許文献1参照)。
 このバルブ装置では、所定の中間位置(全閉位置と全開位置との間に設定された所定のバルブ位置)よりも閉側では開スプリングの付勢力がバルブ軸に加わっており、中間位置よりも開側では閉スプリングの付勢力がバルブ軸に加わっている。そして、アクチュエータの駆動力がない状態では、バルブはスプリングの付勢力によって中間位置に留まる構造となっている(構造の詳細は、例えば特許文献1を参照)。
 すなわち、図10に示すように、閉スプリングの付勢力が負荷されている領域でアクチュエータの駆動力が解除された場合には、バルブが閉スプリングの付勢力によって生じるトルクのみによって中間位置に帰還する(図10の全開位置から中間位置に向かう二点鎖線を参照)。また、開スプリングの付勢力が負荷されている領域でアクチュエータの駆動力が解除された場合には、バルブが開スプリングの付勢力によって生じるトルクのみによって中間位置に帰還する(図10の全閉位置から中間位置に向かう二点鎖線を参照)。
 なお、図10ではバルブ軸周りの負荷トルクがゼロとなる位置よりも開側への回転トルクをプラス側(縦軸上方)、閉側への回転トルクをマイナス側(縦軸下方)として表記している。本明細書においては、プラス側マイナス側関係なく、絶対値の大きさを各方向へのトルクの大きさとして説明している。
 アクチュエータの駆動力が解除によってバルブが中間位置へ帰還する場合には、スプリングの付勢力で中間位置へ戻ろうとするのを妨げる方向に抵抗力(摩擦力やモータディテントトルク)がバルブ軸に負荷される。したがって、スプリングの付勢力から抵抗力を減じたトルクで中間位置に戻ることになる。
 このため、開スプリング及び閉スプリングのセット荷重は、それぞれ、抵抗力があった場合でも、自身の付勢力だけで中間位置に帰還できるようなセット荷重に設定されている。つまり、開側からも閉側からもアクチュエータの駆動力なしで自力で帰還できる位置(自力帰還位置)は、中間位置である。
 このような構造のバルブ装置では、バルブを中間位置から開側に動かすためには、閉スプリングの付勢力及びバルブの回転を妨げる抵抗力(摩擦力等)を上回るトルクをアクチュエータによって負荷する必要がある(図10の中間位置から全開に向かう太い実線を参照)。また、バルブを中間位置から閉側に動かすためには、開スプリングの付勢力及び抵抗力を上回るトルクをアクチュエータによって負荷する必要がある(図10の中間位置から全閉に向かう太い実線を参照)。
 そして、必要なトルクが大きければ大きいほどアクチュエータに供給する電力は大きくなる。つまり、スプリングの付勢力や抵抗力が大きくなればなるほど、アクチュエータに供給する電力が大きくなる。特にバルブを全閉位置で長時間保持しなければならないバルブ装置の場合には、開スプリングの付勢力や抵抗力が大きいと、アクチュエータが焼損する虞がある。バルブを全閉位置に維持するために必要な全閉維持必要トルクが大きくなるからである。このため、開スプリングの付勢力を小さくして、アクチュエータ焼損を防止したいという要望がある。
 しかし、開スプリングの付勢力を小さくすると、開スプリングの付勢力だけでは所定の中間位置に帰還できず、中間位置よりも閉側で止まってしまう。
 中間位置が、バルブの氷結固着を防止可能な位置として設定されたものである場合、中間位置よりも閉側までしか帰還できないと、バルブの氷結固着が生じてしまう。なお、バルブの氷結固着とは、IGスイッチ(イグニッションスイッチ)OFF後に、低温環境下において流体流路内の吸気もしくは排気に含まれる水分が凝縮し、その水分がバルブとボディとの間で凍結することで、バルブが動かなくなる現象のことを言う。
 このため、IGスイッチOFF後に、バルブが中間位置よりも閉側で停止する状況を可能な限り回避したい。すなわち、IGスイッチOFF指令があった時点でバルブが中間位置よりも閉側にある場合でも、IGスイッチOFF後にはバルブが必ず中間位置に帰還するようにしたい。
 従って、アクチュエータ焼損を防止したいという要望がある一方で、IGスイッチOFF後のバルブ位置を可能な限り中間位置にしたいとの要望があり、この両方を実現可能な構造が求められている。
特開2008-19825号公報
 本開示は、上記の問題点を解決するためになされたものであり、その目的は、バルブ装置において、アクチュエータ焼損を防止したいという要望と、IGスイッチOFF後のバルブ位置を可能な限り中間位置にしたいという要望との両方を満たすことにある。
 上記目的を達成するため、本開示の1つの態様のバルブ装置は、内燃機関の燃焼室に連通する流体流路を形成するボディと、流体流路内に回転自在に収容されて前記流体流路の開度を可変するバルブと、流体流路の流路面積が最大となるバルブ位置である全開位置と、流体流路の流路面積が最小となるバルブ位置である全閉位置と、全開位置と全閉位置との間の所定のバルブ位置である中間位置と、バルブを閉側または開側に向かって回転駆動させる電動アクチュエータと、バルブを全閉位置から開側に向かって付勢するバルブ付勢部と、電動アクチュエータの駆動を制御するACT制御部とを備える。
 バルブ付勢部のセット荷重は、バルブ付勢部の付勢力だけで全閉位置から中間位置に帰還可能なセット荷重よりも小さく、ACT制御部は、内燃機関の運転を停止するIGスイッチのOFF操作をした時点でのバルブ位置が中間位置よりも閉側にある場合に、IGスイッチのOFF操作後に、電動アクチュエータによって、バルブを中間位置に移動させる。
 これによれば、バルブ付勢部のセット荷重を従来よりも小さくできるため、バルブを全閉位置で保持する場合に必要な電動アクチュエータへの供給電力を低減することができる。したがって、電動アクチュエータの焼損を防止できる。しかし、その背反として、本態様では、バルブ付勢部だけではバルブが中間位置へ帰還できない構成となっている。そこで、本態様では、IGスイッチのOFF操作後に、電動アクチュエータによって、バルブを中間位置に移動させる構成とした。
 このため、本態様では、アクチュエータ焼損を防止したいという要望と、IGスイッチOFF後のバルブ位置を可能な限り中間位置にしたいという要望との両方を満たすことができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
バルブ装置の全体構成を示す断面図である(実施例)。 バルブ装置のハウジングカバーを外した状態の内部構造を示す図である(実施例)。 バルブの中間位置を説明する説明図である(実施例)。 バルブ装置のスプリング支持構造を示す斜視図である(実施例)。 バルブ位置とバルブ軸周りの負荷トルクとの相関を示す相関図である(実施例)。 バルブ装置の模式図である(実施例)。 バルブ装置の模式図である(実施例)。 バルブ装置の模式図である(実施例)。 バルブ装置の制御フロー図である(実施例)。 バルブ位置とバルブ軸周りの負荷トルクとの相関を示す相関図である(従来例)。
 本開示を以下の実施例により詳細に説明する。
 実施例の構成について以下に述べる。本実施例のバルブ装置1を、図1ないし図9を用いて説明する。本実施例のバルブ装置1は、ディーゼルエンジン用スロットルバルブ装置であり、内燃機関の燃焼室への吸入空気量を調整するためのバルブ装置である。
 バルブ装置1は、運転者のアクセル操作量に応じて駆動されるバタフライ弁方式のバルブ2と、内燃機関への吸気通路3を形成するとともに、バルブ2を収容するボディ4と、バルブ2を駆動するモータ5と、モータ5の駆動を制御するACT制御部6とを備える。
 ボディ4は金属により形成されており、吸気通路3を形成するとともにバルブ2を収容する筒部8と、モータ5の駆動力をバルブ2に伝達する歯車減速装置9を収納するためのギヤハウジング部10を有する。
 そして、ギヤハウジング部10の開口端面には、樹脂製のハウジングカバー11が接合され、ハウジングカバー11とギヤハウジング部10との間に歯車減速装置9を収容するギヤ室12が形成されている。なお、ギヤ室12には、バルブ2の開度(バルブ位置)を検出するポジションセンサ13が収容されている。
 バルブ2は、バルブ軸16に固定されたバタフライ弁であり、金属材料もしくは樹脂材料によって円板状に形成されている。バルブ軸16は、金属材料により形成されており、筒部8の径方向を軸方向として、ボディ4に回動自在に支持されている。
 モータ5は、通電されるとバルブ軸16が正逆に回転可能な電動式のアクチュエータである。歯車減速装置9は、モータ5の回転速度を所定のバルブ軸16の回転速度に減速するもので、バルブ軸16に固定されたバルブギヤ18と、このバルブギヤ18と噛み合って回転する中間ギヤ19と、モータ5の出力軸に固定されたピニオンギヤ20とを有し、バルブ2を回転駆動する。
 バルブ軸16は一端側(バルブ2から遠い側)がギヤ室12内に突出しており、バルブ軸16の一端にバルブギヤ18が固定されている。すなわち、バルブギヤ18がモータ5から駆動力を受けて回転することにより、バルブギヤ18、バルブ軸16及びバルブ2が一体となって回転する。
 ボディ4には、バルブギヤ18に当接して開側へのバルブ軸16の移動限界位置を規制する全開ストッパ(図示せず)と、バルブギヤ18に当接して閉側へのバルブ軸16の移動限界位置を規制する全閉ストッパ22(図6参照)が設けられており、各ストッパによって、バルブ2の可動範囲が設定されている。
 モータ5はACT制御部6によって通電制御される。本実施例では、エンジン制御装置(エンジン制御ユニット(ECU))が、ACT制御部6として機能する。ACT制御部6は、IGスイッチ24、ポジションセンサ13等からの入力を受けて、モータ5の通電制御を行う。
 また、バルブ装置1は、閉スプリング27、開スプリング(バルブ付勢部)28、各スプリングのスプリング座30、31、32、オープナ33を備える。
 閉スプリング27は、バルブ2に閉側の付勢力を与える。すなわち、全開位置から閉側に動かす方向にバルブ2を付勢する。開スプリング28は、バルブ2に開側の付勢力を与える。すなわち、全閉位置から開側に動かす方向にバルブ2を付勢する。
 なお、全開位置とは、バルブ2の可動範囲の中で、流量面積が最大となるバルブ位置であり、全閉位置とは、バルブ2の可動範囲の中で、流量面積が最小となるバルブ位置である。また、このバルブ装置1では、全閉位置と全開位置との間の所定のバルブ位置を中間位置として設定している(図3参照)。
 本実施例では、この中間位置が、低温環境下において吸気に含まれる水分が凝縮することにより生じるバルブとボディとの間の氷結固着を回避可能なバルブ位置として設定された位置となっている。
 閉スプリング27と開スプリング28とは、それぞれ、捩りばねである。閉スプリング27と開スプリング28は、バルブ軸16の外周に同軸的に配されている。バルブ軸16の軸方向の一端側(バルブ2から遠い側)から順に開スプリング28、閉スプリング27が配されている。
 さらに具体的には、閉スプリング27と開スプリング28は、バルブ軸16の外周に設けられた第1ガイド部37及び第2ガイド部38の外周に配されている。第1ガイド部37は、ギヤ室12内に形成され、バルブ軸16を軸受けする軸受39を内部に配するようにボディ4に設けられた筒部である。第2ガイド部38は、バルブギヤ18に設けられた筒部である。この筒部は、バルブギヤ18のギヤ歯が形成されるギヤ部40の軸方向他端側に向かって突出しており、バルブ軸16を囲っている。
 閉スプリング27の一端と開スプリング28の他端とは結合してU字状の結合部42を形成している。結合部42は外周側に曲げられて径方向外側に突出している(図4参照)。なお、本実施例では、閉スプリング27と開スプリング28との間に結合部42が配置されているが、閉スプリング27と開スプリング28との関係は結合部42を有する構造に限定されない。例えば、閉スプリング27と開スプリング28とが別々に形成され、それぞれの端部が後述するオープナー33により押圧される構造としてもよい。
 スプリング座30は、バルブギヤ18に設けられており、開スプリング28の一端28aを係止する(図4参照)。スプリング座31は、ボディ4に設けられており、閉スプリング27の他端27aを係止する(図4参照)。
 スプリング座32は、ボディ4に設けられており、バルブ2が中間位置よりも閉側にある際に結合部42を係止する。そして、バルブ2が中間位置よりも開側にある際には、結合部42は後述するオープナ33により係止される。中間位置では、結合部42がスプリング座32(以下、中間ストッパ32と呼ぶ)及びオープナ33の両方に係止された状態となる。
 オープナ33は、バルブギヤ18に設けられており、閉スプリング27の付勢力に抗してバルブ2を中間位置よりも開側へ回転させるものである。オープナ33は、バルブギヤ18と一体的回転するように設けられており、中間位置よりも開側で結合部42に係止して、バルブギヤ18の回転に伴って、結合部42を閉スプリング27の付勢力に抗して押圧し、バルブ2を開方向に駆動する。
 バルブ2の駆動について以下に述べる。バルブ2を中間位置から全開位置へ動かす場合には、モータ5の駆動力がバルブギヤ18に伝達される。これにより、バルブギヤ18とバルブ2が回動する。このとき、オープナ33は、閉スプリング27の付勢力に抗して結合部42を押圧する。この間、開スプリング28の付勢力はバルブ2に関与しない。なぜならば、開スプリング28の一端28aはバルブギヤ18のスプリング座30に係止され、開スプリング28の他端(結合部42)はオープナ33に係止されたままであって、その間に相対回転がなく、開スプリング28が捻られないためである。
 バルブ2を中間位置から全閉位置へ動かす場合には、モータ5の駆動力がバルブギヤ18に伝達される。これにより、バルブギヤ18とバルブ2が回動する。このとき、結合部42は中間ストッパ32に係止されたまま、バルブギヤ18が閉側に回動するため、開スプリング28が捻られて、バルブ軸16には開スプリング28の付勢力が作用する。なお、オープナ33はバルブギヤ18と一体に閉側に回転するため、結合部42から離れる。この間、閉スプリング27の付勢力はバルブ2に関与しない。なぜならば、閉スプリング27の一端27a及び他端(結合部42)はともにボディ4に係止された状態で捻られないためである。
 本実施例では、ACT制御部6によって通電制御することで、バルブ2の回動に加えて、バルブ2を全閉位置もしくは全開位置で維持することも可能となっている。
 本実施例の特徴を図5~図9を用いて説明する。本実施例のバルブ装置は、以下の2つの特徴を有する。(1)開スプリング28のセット荷重は、開スプリング28の付勢力だけで全閉位置から中間位置に帰還可能なセット荷重よりも小さい。(2)ACT制御部6は、内燃機関の運転を停止するIGスイッチ24のOFF操作をした時点でのバルブ位置が中間位置よりも閉側にある場合に、IGスイッチ24のOFF操作後に、モータ5によって、バルブ2を中間位置に移動させる。
 まず、(1)の特徴について説明する。モータ5の駆動力の解除によってスプリング27、28で中間位置へ帰還する場合には、スプリング27、28の付勢力で中間位置へ戻ろうとするのを妨げる方向に抵抗力(摩擦力やモータディテントトルク)がバルブ軸16に負荷される。このため、開スプリング28及び閉スプリング27のセット荷重は、それぞれ、抵抗力があった場合でも、自身の付勢力によって生じるトルクだけで中間位置に帰還できるようなセット荷重に設定されているのが一般的である(図10参照)。
 すなわち、モータ5の駆動力によって、オープナ33が結合部42を押圧して、バルブ2が中間位置よりも開側に回された状態から、モータ5の駆動力が解除されると、閉スプリング27の付勢力によって生じるトルクによって、結合部42が中間ストッパ32に当接する中間位置まで帰還する。また、結合部42が中間ストッパ32に係止されたまま、モータ5の駆動力によってバルブギヤ18が中間位置よりも閉側に回された状態から、モータ5の駆動力が解除されると、開スプリング28の付勢力によって生じるトルクによって、オープナ33が結合部42に当接する中間位置まで帰還する。
 しかし、本実施例では、開スプリング28の付勢力が従来よりも小さく、開スプリング28の付勢力だけでは抵抗力に打ち勝てず、全閉位置から中間位置に帰還できない大きさとなっている。
 図5に示すように、開スプリング28の付勢力は全閉位置から中間位置に至るまでバルブ軸16に負荷されているが、開スプリング28の付勢力で中間位置の方向へ戻ろうとすると抵抗力が発生するため、開スプリング28の付勢力から抵抗力を減じたトルクが、開スプリング28によって生じるバルブ2を開側へ戻そうとするトルクとなる(図5の全閉位置から中間位置に向かう二点鎖線を参照)。本実施例では、このトルクでは中間位置に帰還できないように、開スプリング28のセット荷重が設定されている。すなわち開スプリングセット荷重が、全閉位置から中間位置方向に戻る際の抵抗力よりも小さくなるように開スプリング28のセット荷重が設定されている。
 このため、図5に示すように、開スプリング28によって生じるバルブ2を開側へ戻そうとするトルクにより全閉位置から開側へ向かう際、中間位置よりも手前でバルブ軸周りの負荷トルクがゼロとなり、バルブ2が中間位置まで帰還できない。つまり、全閉位置からモータ5の駆動力なしで自力で帰還できる位置(自力帰還位置)が、中間位置よりも閉側になる。
 なお、図5ではバルブ軸周りの負荷トルクがゼロとなる位置(自力帰還位置)よりも開側への回転トルクをプラス側(縦軸上方)、自力帰還位置よりも閉側への回転トルクをマイナス側(縦軸下方)として表記している。本明細書においては、プラス側マイナス側関係なく、絶対値の大きさを各方向へのトルクの大きさとして説明している。
 以上のことを、実際のバルブ2の動きと照らして説明する。図6~8は、バルブ装置1のバルブ軸周りのスプリング構造を示した模式図である。図6は、モータ5によって全閉維持必要トルク以上のトルクが負荷されて、バルブ2が全閉位置にある状態を示す。このとき、結合部42が中間ストッパ32に係止され、開スプリング28の一端28aがバルブギヤ18とともに回転した状態であるため、開スプリング28は捻られ、開側への付勢力が発生している。なお、全閉維持必要トルクとは、バルブ2を全閉位置に維持するのに必要なトルクであり、開スプリング28の付勢力と抵抗力とによって決まる。
 図7は、図6の状態から、モータ5の駆動力が解除された場合の状態を示す。バルブ2は図5の全閉位置から中間位置に向かう二点鎖線に沿って動く。しかし、中間位置の手前でバルブ軸周りの負荷トルクがゼロになる。つまり、中間位置よりも閉側の位置(自力帰還位置)で止まってしまう。
 次に、(2)の特徴について説明する。(2)の特徴は、(1)の特徴によって生じる事象を補うためのものである。すなわち、開スプリング28の付勢力によって生じるトルクだけでは中間位置まで帰還できないため、モータ5によって中間位置まで帰還させようというものである。
 具体的な制御フローを図9を用いて説明する。まず、S1では、IGスイッチのOFF操作があったか否かを判定する。この判定がYESの場合には、S2に進み、その時点でのバルブ位置を確認するとともに、バルブ位置が中間位置よりも閉側にある場合には、モータ5を制御してバルブ2を中間位置まで移動させる。
 そして、S3に進み、バルブ2が中間位置に到達したか否かをチェックし、中間位置に到達したならば、S4に進み、モータ5への電力供給を停止する。
 例えば、IGスイッチ24のOFF操作があったときに、図6に示すように、バルブ2が全閉位置にあったとする。その場合は、IGスイッチ24のOFF操作後も、モータ5への電力供給を継続し、モータ5によってバルブ2を中間位置まで駆動させる(図8参照)。その後、モータ5への電力供給を停止する。
 なお、モータ5の電力供給停止後は、中間位置では、閉スプリング27の付勢力と抵抗力とのバランスによって、中間位置に停止した状態となる。
 本実施例の作用効果について以下に述べる。本実施例では、開スプリング28のセット荷重は、開スプリング28の付勢力だけで全閉位置から中間位置に帰還可能なセット荷重よりも小さい。バルブ2を中間位置から閉側に動かすためには、開スプリング28の付勢力及び抵抗力を上回るトルクをモータ5によって負荷する必要がある(図5の中間位置から全閉に向かう実線を参照)。
 モータ5に供給する電力は必要なトルクが大きければ大きいほど大きくなる。つまり、開スプリングの付勢力や抵抗力が大きくなればなるほど、モータ5に供給する電力が大きくなる。特にバルブ2を全閉位置で長時間保持しなければならないバルブ装置1の場合には、開スプリング28の付勢力や抵抗力が大きいと、モータ5が焼損する虞がある。
 本実施例では、開スプリング28の付勢力を従来よりも小さくできるため、バルブ2を全閉位置に維持するのに必要なトルク(全閉維持必要トルク)が小さくなる。このため、モータ5の焼損を防止できる。
 また、ACT制御部6は、IGスイッチ24のOFF操作をした時点でのバルブ位置が中間位置よりも閉側にある場合に、IGスイッチ24のOFF操作後に、モータ5によってバルブ2を中間位置に移動させる。
 これによれば、開スプリング28の付勢力が小さくなっても、確実にIGスイッチ24のOFF状態でのバルブ位置を中間位置にすることができる。
 特に、中間位置が、バルブ2とボディ4との間の氷結固着を回避可能なバルブ位置として設定されている場合、IGスイッチ24のOFF状態でのバルブ位置を確実に中間位置にすることによって、氷結固着を確実に防止できる。
 以上のように、本実施例によれば、開スプリング28の付勢力を小さくしてモータ5の焼損を防止したいという要望と、IGスイッチ24OFF後のバルブ位置を可能な限り中間位置にしたいという要望との両方を満たすことができる。
 なお、万が一、IGスイッチ24のOFF操作をした時点でのバルブ位置が中間位置よりも閉側にある場合で、IGスイッチ24のOFF操作後にモータ5を駆動することが不可能な異常事態に陥ったとしても、全閉位置と中間位置との間の所定のバルブ位置である自力帰還位置にバルブ2が帰還することになるため、最低限、退避走行は可能な状態となる。
 なお、本実施例では、閉スプリング27によりバルブ2が閉側に付勢されており、閉スプリング27の付勢力はモータ5の駆動力が解除された際に全開位置から中間位置に帰還可能な大きさに設定されている。このため、IGスイッチ24のOFF操作をした時点でのバルブ位置が中間位置よりも開側にある場合には、IGスイッチ24のOFF操作と同時にモータ5への電力供給を停止してもよい。
 上記実施例の変形例について以下に述べる。本実施例では、閉スプリング27と開スプリング28の両方を備えていたが、開スプリング28のみを有する構造であってもよい。
 また、バルブ装置1はスロットルバルブ装置であったが、これに限られたものではなく、例えば、排気通路から吸気通路へ再循環させる排気ガス量を可変するEGRバルブ装置であってもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

 

Claims (2)

  1.  内燃機関の燃焼室に連通する流体流路(3)を形成するボディ(4)と、
     前記流体流路(3)内に回転自在に収容されて前記流体流路(3)の開度を可変するバルブ(2)と、
     前記流体流路(3)の流路面積が最大となるバルブ位置である全開位置と、
     前記流体流路(3)の流路面積が最小となるバルブ位置である全閉位置と、
     前記全開位置と前記全閉位置との間の所定のバルブ位置である中間位置と、
     前記バルブ(2)を閉側または開側に向かって回転駆動させる電動アクチュエータ(5)と、
     前記バルブ(2)を前記全閉位置から開側に向かって付勢するバルブ付勢部(28)と、
     前記電動アクチュエータ(5)の駆動を制御するACT制御部(6)と
    を備え、
     前記バルブ付勢部(28)のセット荷重は、前記バルブ付勢部(28)の付勢力だけで前記全閉位置から前記中間位置に帰還可能なセット荷重よりも小さく、
     前記ACT制御部(6)は、前記内燃機関の運転を停止するIGスイッチ(24)のOFF操作をした時点でのバルブ位置が前記中間位置よりも閉側にある場合に、前記IGスイッチ(24)のOFF操作後に、前記電動アクチュエータ(5)によって、前記バルブ(2)を前記中間位置に移動させることを特徴とするバルブ装置。
  2.  請求項1に記載のバルブ装置において、
     前記流体流路(3)とは、前記燃焼室からの吸気もしくは排気が流通する流路であり、
     前記中間位置とは、低温環境下において前記流体流路(3)内の吸気もしくは排気に含まれる水分が凝縮することにより生じる前記バルブ(2)と前記ボディ(4)との間の氷結固着を回避可能なバルブ位置として設定された位置であることを特徴とするバルブ装置。
     

     
PCT/JP2015/005698 2014-11-20 2015-11-16 バルブ装置 WO2016079975A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580059625.8A CN107076034B (zh) 2014-11-20 2015-11-16 阀装置
US15/523,816 US10036332B2 (en) 2014-11-20 2015-11-16 Valve device
DE112015005256.9T DE112015005256B4 (de) 2014-11-20 2015-11-16 Ventilvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014235685A JP6299566B2 (ja) 2014-11-20 2014-11-20 バルブ装置
JP2014-235685 2014-11-20

Publications (1)

Publication Number Publication Date
WO2016079975A1 true WO2016079975A1 (ja) 2016-05-26

Family

ID=56013548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005698 WO2016079975A1 (ja) 2014-11-20 2015-11-16 バルブ装置

Country Status (5)

Country Link
US (1) US10036332B2 (ja)
JP (1) JP6299566B2 (ja)
CN (1) CN107076034B (ja)
DE (1) DE112015005256B4 (ja)
WO (1) WO2016079975A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112016006437T5 (de) * 2016-02-15 2018-10-31 Futaba Industrial Co., Ltd. Wellendichtungseinrichtung
DE102018205226A1 (de) * 2018-04-06 2019-10-10 Mahle International Gmbh Stelleinrichtung mit einem in einer Motoraufnahnme fixierten Elektromotor
JP2021099205A (ja) * 2019-12-23 2021-07-01 株式会社パロマ 給湯器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203218A (ja) * 1990-11-28 1992-07-23 Aisan Ind Co Ltd エンジンのスロットル弁制御装置
JP2003206760A (ja) * 2002-01-16 2003-07-25 Denso Corp スロットル装置
JP2005098178A (ja) * 2003-09-24 2005-04-14 Keihin Corp スロットル弁制御装置
JP2009074375A (ja) * 2007-09-19 2009-04-09 Hitachi Ltd 内燃機関の制御装置
JP2009162073A (ja) * 2007-12-28 2009-07-23 Denso Corp 内燃機関用の電子式スロットル装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5429090A (en) * 1994-02-28 1995-07-04 Coltec Industries Inc. Fail safe throttle positioning system
JP2001090559A (ja) * 1999-09-22 2001-04-03 Denso Corp 内燃機関のスロットル制御装置
JP3872743B2 (ja) * 2002-03-28 2007-01-24 株式会社日立製作所 スロットルバルブ開閉装置
JP2004150324A (ja) * 2002-10-30 2004-05-27 Denso Corp 電子制御式スロットル制御装置
JP2004169626A (ja) * 2002-11-20 2004-06-17 Keihin Corp エンジンの絞り弁制御装置
JP4285267B2 (ja) * 2004-02-19 2009-06-24 株式会社デンソー 排気ガス再循環装置
DE102005040140A1 (de) 2005-08-25 2007-03-01 Daimlerchrysler Ag Vorrichtung und Verfahren zur Vermeidung von HC-Emissionen während des Stillstandes einer Brennkraftmaschine
JP4651588B2 (ja) 2006-07-14 2011-03-16 株式会社デンソー バルブ開閉制御装置
JP4315192B2 (ja) * 2006-12-13 2009-08-19 株式会社日立製作所 内燃機関の絞り弁制御装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04203218A (ja) * 1990-11-28 1992-07-23 Aisan Ind Co Ltd エンジンのスロットル弁制御装置
JP2003206760A (ja) * 2002-01-16 2003-07-25 Denso Corp スロットル装置
JP2005098178A (ja) * 2003-09-24 2005-04-14 Keihin Corp スロットル弁制御装置
JP2009074375A (ja) * 2007-09-19 2009-04-09 Hitachi Ltd 内燃機関の制御装置
JP2009162073A (ja) * 2007-12-28 2009-07-23 Denso Corp 内燃機関用の電子式スロットル装置

Also Published As

Publication number Publication date
CN107076034A (zh) 2017-08-18
JP2016098713A (ja) 2016-05-30
CN107076034B (zh) 2020-05-19
DE112015005256B4 (de) 2022-03-03
JP6299566B2 (ja) 2018-03-28
DE112015005256T5 (de) 2017-08-17
US10036332B2 (en) 2018-07-31
US20170321612A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
RU2686972C1 (ru) Устройство управления клапаном
CN101072940A (zh) 电动机式提升阀及使用该提升阀的内燃机egr装置
JPH07324636A (ja) スロットル弁制御装置
JP5673602B2 (ja) バルブ装置
KR20070108948A (ko) 대기 위치를 갖는 egr 밸브
WO2016079975A1 (ja) バルブ装置
BRPI0400600A (pt) Válvula borboleta servo-assistida para um motor de combustão interna provido de um sistema de regulagem para a posição parcialmente aberta (limp-home)
JPH03271528A (ja) スロットル弁制御装置
JP2009162073A (ja) 内燃機関用の電子式スロットル装置
JP5626270B2 (ja) Egrバルブ
JP3363176B2 (ja) 駆動機械のための負荷調節装置
US9169906B2 (en) Link apparatus
WO2013137349A1 (ja) 内燃機関の可変吸気装置
JP2005098178A (ja) スロットル弁制御装置
US6089208A (en) Throttle valve opening and closing apparatus for a vehicle, and vehicle internal combustion engine using the apparatus
JP7260894B2 (ja) 内燃機関の電子制御スロットル装置
JP3286231B2 (ja) スロットルバルブ装置
JPS63295825A (ja) エンジンの吸入空気量制御装置
JPH09170440A (ja) 内燃機関の出力制御装置
JP2006307868A5 (ja)
JP4698696B2 (ja) 内燃機関のバルブタイミング制御装置及びそのコントローラ
JPH01113524A (ja) スロットル弁開閉制御機構の安全装置
JP4801710B2 (ja) 内燃機関のスロットル制御装置
JP2002295270A (ja) 内燃機関用スロットル装置
JP2018168743A (ja) 吸気制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860902

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15523816

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015005256

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860902

Country of ref document: EP

Kind code of ref document: A1