WO2016075787A1 - 半導体装置の製造方法及びガラス被膜形成装置 - Google Patents

半導体装置の製造方法及びガラス被膜形成装置 Download PDF

Info

Publication number
WO2016075787A1
WO2016075787A1 PCT/JP2014/080041 JP2014080041W WO2016075787A1 WO 2016075787 A1 WO2016075787 A1 WO 2016075787A1 JP 2014080041 W JP2014080041 W JP 2014080041W WO 2016075787 A1 WO2016075787 A1 WO 2016075787A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
semiconductor wafer
glass
potential
semiconductor device
Prior art date
Application number
PCT/JP2014/080041
Other languages
English (en)
French (fr)
Inventor
真一 長瀬
小笠原 淳
浩二 伊東
Original Assignee
新電元工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新電元工業株式会社 filed Critical 新電元工業株式会社
Priority to US15/108,554 priority Critical patent/US9978882B2/en
Priority to JP2015549701A priority patent/JP6029771B2/ja
Priority to CN201480075169.1A priority patent/CN105981141B/zh
Priority to DE112014005031.8T priority patent/DE112014005031B4/de
Priority to PCT/JP2014/080041 priority patent/WO2016075787A1/ja
Priority to KR1020167012251A priority patent/KR101851884B1/ko
Priority to TW104133355A priority patent/TWI584381B/zh
Publication of WO2016075787A1 publication Critical patent/WO2016075787A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02422Non-crystalline insulating materials, e.g. glass, polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/22Servicing or operating apparatus or multistep processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
    • H01L21/02129Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC the material being boron or phosphorus doped silicon oxides, e.g. BPSG, BSG or PSG
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02145Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing aluminium, e.g. AlSiOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02142Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides
    • H01L21/02161Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing silicon and at least one metal element, e.g. metal silicate based insulators or metal silicon oxynitrides the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67126Apparatus for sealing, encapsulating, glassing, decapsulating or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66128Planar diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66083Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
    • H01L29/6609Diodes
    • H01L29/66136PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8611Planar PN junction diodes

Definitions

  • the present invention relates to a semiconductor device manufacturing method and a glass film forming apparatus.
  • the conventional method for manufacturing a semiconductor device includes a “semiconductor wafer preparation step”, a “glass film formation step”, an “oxide film removal step”, a “roughened region formation step”, “ The "electrode forming step” and the “semiconductor wafer cutting step” are included in this order.
  • a conventional method for manufacturing a semiconductor device will be described in the order of steps.
  • a p + -type diffusion layer 912 is formed by diffusion of p-type impurities from one surface of an n ⁇ -type semiconductor wafer (n ⁇ -type silicon wafer) 910.
  • An n + -type diffusion layer 914 is formed by n-type impurity diffusion to form a semiconductor wafer in which a pn junction parallel to the main surface is formed.
  • oxide films 916 and 918 are formed on the surfaces of the p + type diffusion layer 912 and the n + type diffusion layer 914 by thermal oxidation (see FIG. 15A).
  • a predetermined opening is formed in a predetermined portion of the oxide film 916 by a photoetching method.
  • the semiconductor wafer is subsequently etched to form a groove 920 having a depth exceeding the pn junction from one surface of the semiconductor wafer (see FIG. 15B).
  • the tank 10 storing the suspension 12 in which glass fine particles are suspended in a solvent is stored inside, the first electrode plate 14 connected to the negative terminal and the second electrode plate 16 connected to the positive terminal are placed facing each other while being immersed in the suspension 12, and the first electrode plate 14
  • the glass film is formed by electrophoresis with the semiconductor wafer W disposed between the first electrode plate 16 and the second electrode plate 16 with the glass film formation planned surface (inner surface of the groove in FIG. 17) facing the first electrode plate 14 side.
  • a glass coating 924 is formed on the planned surface.
  • the glass fine particles for example, lead borosilicate glass mainly containing PbO, B 2 O 3 and SiO 2 is used.
  • Electrode formation step Ni plating is performed on the semiconductor wafer to form the anode electrode 934 on the roughened region 932, and the cathode electrode 936 is formed on the other surface of the semiconductor wafer (FIG. 16C). )reference.).
  • a highly reliable mesa semiconductor device can be manufactured by forming a glass coating 924 inside the groove 920 and then cutting the semiconductor wafer.
  • the present invention has been made to solve the above-described problems, and is a case where a glass film forming process is performed using a semiconductor wafer having a base insulating film formed on a glass film forming scheduled surface as a semiconductor wafer.
  • Another object of the present invention is to provide a method of manufacturing a semiconductor device and a glass film forming apparatus capable of manufacturing a highly reliable semiconductor device with high productivity.
  • a method of manufacturing a semiconductor device includes a semiconductor wafer preparation step of preparing a semiconductor wafer having a base insulating film formed on a glass film formation scheduled surface, and a suspension in which glass fine particles are suspended in a solvent.
  • the first electrode plate and the second electrode plate are placed facing each other in a state of being immersed in the suspension, and the first electrode plate and the second electrode plate are disposed between the first electrode plate and the second electrode plate.
  • a ring electrode plate having an opening having a diameter smaller than the diameter of the semiconductor wafer is installed between the first electrode plate and the second electrode plate.
  • the semiconductor wafer is disposed between the ring-shaped electrode plate and the second electrode plate, and the ring-shaped electrode plate is biased toward the potential side of the first electrode plate with respect to the potential of the second electrode plate.
  • a glass film is formed on the surface on which the glass film is to be formed in a state where an electric potential is applied.
  • a glass coating is formed on the glass coating formation planned surface in a state where the same potential as that of the first electrode plate is applied to the ring electrode plate.
  • the glass coating is scheduled to be formed in a state where a potential between the potential of the first electrode plate and the potential of the second electrode plate is applied to the ring electrode plate. It is preferable to form a glass film on the surface.
  • D2 is expressed as “D1 ( mm) ⁇ 50 mm ⁇ D2 (mm) ⁇ D1 (mm) ⁇ 1 mm ”.
  • the ring-shaped electrode plate has an outer shape that encloses a virtual circle having a diameter D3 (mm) that satisfies a relationship of “D1 (mm) ⁇ D3 (mm)”. It is preferable to have.
  • the semiconductor wafer preparation step includes a step of preparing a semiconductor wafer having a pn junction parallel to a main surface, and the pn junction from one surface of the semiconductor wafer. Forming the pn junction exposed portion on the inner surface of the groove by forming a groove having a depth exceeding, and forming the base insulating film on the inner surface of the groove so as to cover the pn junction exposed portion; It is preferable to contain.
  • the semiconductor wafer preparation step includes a step of forming the pn junction exposed portion on the surface of the semiconductor wafer, and a step of forming the pn junction exposed portion of the semiconductor wafer so as to cover the pn junction exposed portion. And forming a base insulating film on the surface.
  • the thickness of the base insulating film is preferably in the range of 5 nm to 60 nm.
  • a glass film forming apparatus of the present invention is a glass film forming apparatus for forming a glass film on a surface of a semiconductor wafer having a base insulating film formed on a glass film formation planned surface by electrophoresis.
  • a potential applied to the ring electrode plate is applied to the semiconductor wafer disposition jig for disposing the semiconductor wafer, the first electrode plate, the second electrode plate, and the ring electrode plate.
  • the first electrode plate than the potential of Such that the potential offset in position side, characterized in that it comprises a power supply for applying a potential.
  • a ring electrode plate having an opening having a diameter smaller than the diameter of the semiconductor wafer is installed between the first electrode plate and the second electrode plate, and the ring electrode A semiconductor wafer is arranged between the plate and the second electrode plate, and a glass coating is to be formed in a state where a potential biased to the potential side of the first electrode plate is applied to the ring-shaped electrode plate from the potential of the second electrode plate Since the glass coating is formed on the surface (see FIGS. 3 and 6 to be described later), the flow of the glass particles toward the outside in the radial direction of the semiconductor wafer is observed at the outer peripheral portion of the semiconductor wafer.
  • the ring-shaped electrode plate having an opening having a diameter smaller than the diameter of the semiconductor wafer is installed between the first electrode plate and the second electrode plate, A semiconductor wafer is placed between the electrode plate and the second electrode plate, and a glass coating is formed on the ring-shaped electrode plate with a potential biased to the potential side of the first electrode plate relative to the potential of the second electrode plate. Since a glass film can be formed on the planned surface (see FIGS. 3 and 6 described later), the flow of the glass particles toward the radially outer side of the semiconductor wafer is observed at the outer peripheral portion of the semiconductor wafer. It is possible to correct the flow of the glass fine particles toward the glass coating formation planned surface (see the portion indicated by reference character C in FIGS.
  • the glass film forming apparatus of the present invention even when a glass film forming process is performed using a semiconductor wafer in which a base insulating film is formed on a glass film forming planned surface as a semiconductor wafer, It is possible to suppress a decrease in the deposition efficiency of the glass fine particles at the outer peripheral portion, and thus it is possible to manufacture a highly reliable semiconductor device with high productivity.
  • FIG. 6 is a view for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 1A to FIG. 1D are diagrams showing respective steps of the semiconductor device manufacturing method according to the first embodiment.
  • FIG. 6 is a view for explaining the method for manufacturing the semiconductor device according to the first embodiment.
  • FIG. 2A to FIG. 2D are diagrams showing respective steps of the semiconductor device manufacturing method according to the first embodiment. It is a figure shown in order to demonstrate the glass film formation process in the manufacturing method of the semiconductor device which concerns on Embodiment 1.
  • FIG. 3A is a cross-sectional view of the glass film forming apparatus 1 as viewed from the lateral direction
  • FIG. 3B is a cross-sectional view of the glass film forming apparatus 1 as viewed from the line AA in FIG.
  • FIG. 3 is a view for explaining the structure of a ring-shaped electrode plate 18.
  • 4A is a diagram showing the diameter D1 of the semiconductor wafer W
  • FIG. 4B is a diagram showing the diameter D2 of the opening of the ring-shaped electrode body 18 and the outer diameter D3 of the ring-shaped electrode body 18.
  • FIG. 4C is a diagram showing the diameter D4 of the second electrode plate 16. It is a figure shown in order to demonstrate the flow of the glass microparticles in Comparative Examples 1 and 2 and Embodiment 1.
  • FIG. 5A is a diagram showing the flow of glass particles in Comparative Example 1
  • FIG. 5B is a diagram showing the flow of glass particles in Comparative Example 2
  • FIG. It is a figure which shows the flow of glass particulates.
  • FIG. 6 (a) is a cross-sectional view of the glass film forming apparatus 2 as viewed from the lateral direction
  • FIG. 6 (b) is a cross-sectional view of the glass film forming apparatus 2 as viewed from the line AA in FIG. 6 (a). is there.
  • FIG. 6 is a view for explaining the method for manufacturing the semiconductor device according to the third embodiment.
  • FIG. 7A to FIG. 7D are diagrams showing respective steps of the semiconductor device manufacturing method according to the third embodiment.
  • FIG. 6 is a view for explaining the method for manufacturing the semiconductor device according to the third embodiment.
  • FIG. 8D are views showing respective steps of the semiconductor device manufacturing method according to the third embodiment. It is a figure shown in order to demonstrate the flow of the glass microparticles in Comparative Examples 3 and 4 and Embodiment 3.
  • FIG. 9A is a view showing the flow of glass particles in Comparative Example 3
  • FIG. 9B is a view showing the flow of glass particles in Comparative Example 4
  • FIG. It is a figure which shows the flow of glass particulates. It shows the result of a test example.
  • FIG. 10A is a diagram showing the results of Sample 1 (Example)
  • FIG. 10B is a diagram showing the results of Sample 2 (Comparative Example). It shows the result of a test example.
  • FIG. 11A is a diagram showing the results of Sample 3 (Example), and FIG.
  • FIG. 11B is a diagram showing the results of Sample 4 (Comparative Example). It is a figure shown in order to demonstrate the modification of a ring-shaped electrode plate.
  • FIG. 12A and FIG. 12B are diagrams showing respective modifications (Modifications 1 and 2). It is a figure shown in order to demonstrate the range of the electric potential V3 given to a ring-shaped electrode plate.
  • FIG. 13A is a diagram showing a range of the potential V3 when the potential V1 of the first electrode plate is a negative potential and the potential V2 of the second electrode plate is a positive potential
  • FIG. 13B is a diagram of the first electrode.
  • FIG. 14 (a) to 14 (d) are diagrams showing each step of the semiconductor device manufacturing method according to Modification 3. It is a figure shown in order to demonstrate the manufacturing method of the conventional semiconductor device.
  • FIG. 15A to FIG. 15D are diagrams showing respective steps of a conventional semiconductor device manufacturing method. It is a figure shown in order to demonstrate the manufacturing method of the conventional semiconductor device.
  • 16 (a) to 16 (d) are diagrams showing respective steps of a conventional method for manufacturing a semiconductor device.
  • FIG. 17A is a cross-sectional view of the glass film forming apparatus 9 as viewed from the lateral direction
  • FIG. 17B is a cross-sectional view of the glass film forming apparatus 9 as viewed from the line AA in FIG. 17A. is there.
  • the semiconductor device manufacturing method according to the first embodiment includes a “semiconductor wafer preparation step”, a “glass film formation step”, an “oxide film removal step”, and a “roughened region formation step”. ”,“ Electrode formation step ”and“ semiconductor wafer cutting step ”are performed in this order.
  • the manufacturing method of the semiconductor device according to the first embodiment will be described in the order of steps.
  • a p + type diffusion layer 112 is formed by diffusion of p type impurities from one surface of an n ⁇ type semiconductor wafer (for example, an n ⁇ type silicon wafer having a diameter of 4 inches) 110,
  • An n + -type diffusion layer 114 is formed by diffusion of n-type impurities from the other surface to prepare a semiconductor wafer in which a pn junction parallel to the main surface is formed.
  • oxide films 116 and 118 are formed on the surfaces of the p + type diffusion layer 112 and the n + type diffusion layer 114 by thermal oxidation (see FIG. 1A).
  • a predetermined opening is formed in a predetermined portion of the oxide film 116 by a photoetching method.
  • the semiconductor wafer is subsequently etched to form a groove 120 having a depth exceeding the pn junction from one surface of the semiconductor wafer (see FIG. 1B).
  • a pn junction exposed portion A is formed on the inner surface of the groove.
  • a base insulating film 121 made of a silicon oxide film is formed on the inner surface of the groove 120 by a thermal oxidation method using dry oxygen (DryO 2 ) (see FIG. 1C).
  • the thickness of the base insulating film 121 is set in a range of 5 nm to 60 nm (for example, 20 nm).
  • the base insulating film 121 is formed by placing the semiconductor wafer in a diffusion furnace and then treating it at a temperature of 900 ° C. for 10 minutes while flowing an oxygen gas. If the thickness of the base insulating film 121 is less than 5 nm, the effect of reducing the BT resistance may not be obtained. On the other hand, if the thickness of the base insulating film 121 exceeds 60 nm, the glass film may not be formed by electrophoresis in the next glass film forming step.
  • the electrophoresis method is used in the same manner as in the conventional manufacturing method of the semiconductor device.
  • a glass coating 124 is formed on the surface on which the glass coating is to be formed. That is, as shown in FIG. 3, the first electrode plate 14 connected to the minus terminal and the first terminal connected to the plus terminal are placed inside the tank 10 in which the suspension 12 in which the glass particles are suspended in the solvent is stored. The two electrode plates 16 are placed facing each other while being immersed in the suspension 12, and the semiconductor wafer W is formed between the first electrode plate 14 and the second electrode plate 16 on the surface on which the glass film is to be formed (FIG. 3). Then, the glass coating 124 is formed on the surface on which the glass coating is to be formed by electrophoresis in a state where the inner surface of the groove is arranged in a posture facing the first electrode plate 14 side.
  • the diameter of the semiconductor wafer W is between the first electrode plate 14 and the second electrode plate 16.
  • a ring-shaped electrode plate 18 having an opening with a small diameter is installed, a semiconductor wafer W is disposed between the ring-shaped electrode plate 18 and the second electrode plate 16, and the second electrode plate is disposed on the ring-shaped electrode plate 18.
  • a glass film is formed on the glass film formation planned surface in a state where a potential (potential lower than the potential V2 of the second electrode plate 16) biased to the potential V1 side of the first electrode plate 14 from the potential V2 of 16 is applied.
  • glass fine particles for example, lead borosilicate glass mainly containing PbO, B 2 O 3 and SiO 2 is used.
  • solvent for example, a solution obtained by adding nitric acid to acetone is used.
  • a voltage applied between the first electrode plate 14 and the second electrode plate 16 a voltage of 10V to 800V (for example, 400V) is applied.
  • the glass film is formed on the surface on which the glass film is to be formed in a state where the same potential as the potential V1 of the first electrode plate 14 is applied to the ring electrode plate 18.
  • the opening of the ring-shaped electrode plate 18 has the diameter of the semiconductor wafer W set to D1 (mm) (see FIG. 4A), and the ring-shaped electrode plate 18.
  • D2 is a value satisfying the relationship of “D1 (mm) ⁇ 50 mm ⁇ D2 (mm) ⁇ D1 (mm) ⁇ 1 mm” where D2 (mm) is the diameter of the opening of D2 (see FIG. 4B).
  • the radial width of the ring electrode plate (the outer diameter D3 of the ring electrode plate 18—the diameter D2 of the opening of the ring electrode plate 18) is set within a range of 5 mm to 15 mm.
  • the outer diameter D3 of the ring-shaped electrode plate 18 is set smaller than the diameter D4 of the second electrode plate 16 (see FIG. 4C).
  • a glass film forming apparatus having the following configuration, that is, a tank 10 for storing a suspension 12 in which glass fine particles are suspended in a solvent, and a tank in a state of facing each other. 10, the first electrode plate 14 and the second electrode plate 16 installed in the first electrode plate 14, the first electrode plate 14 and the second electrode plate 16, and having a diameter smaller than the diameter of the semiconductor wafer W.
  • a ring-shaped electrode plate 18 having an opening, and a semiconductor wafer placement jig (not shown) for placing the semiconductor wafer W at a predetermined position between the ring-shaped electrode plate 18 and the second electrode plate 16.
  • the first electrode plate 14, the second electrode plate 16, and the ring-shaped electrode plate 18, and the potential applied to the ring-shaped electrode plate 18 is biased to the potential side of the first electrode plate with respect to the potential of the second electrode plate.
  • the semiconductor device (mesa type pn diode) 100 can be manufactured.
  • the effects of the method for manufacturing a semiconductor device and the glass film forming apparatus according to the first embodiment will be described with reference to FIG.
  • the arrows indicate the flow of glass particles.
  • a glass film is formed on the inner surface of the groove of the semiconductor wafer without forming a base insulating film on the inner surface of the groove of the semiconductor wafer (see FIG. 5A).
  • a glass film is formed on the base insulating film.
  • a glass film is formed without installing a ring-shaped electrode plate (see FIG. 5B).
  • the glass film is formed with the ring-shaped electrode plate installed (see FIG. 5C).
  • the flow of glass particles toward the outside in the radial direction of the semiconductor wafer W is formed on the outer periphery of the semiconductor wafer W by the action of the ring-shaped electrode plate.
  • the flow is corrected to the flow of glass fine particles toward the planned surface (refer to the portion indicated by the symbol C in FIGS. 5B and 5C).
  • a glass film is formed on the glass film formation planned surface in a state where a biased potential (potential lower than the potential V2 of the second electrode plate 16) is applied to the potential V1 side of the electrode plate 14 (see FIG. 3).
  • the flow of the glass fine particles toward the outside in the radial direction of the semiconductor wafer W can be corrected to the flow of the glass fine particles toward the glass film formation planned surface of the semiconductor wafer W (see FIG. (B) and partial reference shown in FIG. 5 (c) Medium code C.).
  • the manufacturing method of the semiconductor device according to the first embodiment as the semiconductor wafer, even when the glass film forming process is performed using the semiconductor wafer in which the base insulating film is formed on the glass film forming scheduled surface, It is possible to suppress a decrease in the deposition efficiency of the glass fine particles in the outer peripheral portion of the semiconductor wafer, and thus it is possible to manufacture a highly reliable semiconductor device with high productivity.
  • a glass coating can be formed using a simple power supply device.
  • the diameter D2 of the opening of the ring-shaped electrode plate 18 has a relationship of “D1 (mm) ⁇ 50 mm ⁇ D2 (mm) ⁇ D1 (mm) ⁇ 1 mm”. Since the size is set to satisfy the size, the flow of the glass fine particles on the outer peripheral portion of the semiconductor wafer W can be effectively corrected.
  • the ring-shaped electrode plate 18 having an opening having a diameter smaller than the diameter of the semiconductor wafer W is installed between the first electrode plate 14 and the second electrode plate 16.
  • the semiconductor wafer W is disposed between the ring-shaped electrode plate 18 and the second electrode plate 16, and the potential V 1 of the first electrode plate 14 is higher than the potential V 2 of the second electrode plate 16 on the ring-shaped electrode plate 18.
  • a glass film can be formed on the glass film formation planned surface in a state where a potential biased to the side (potential lower than the potential V2 of the second electrode plate 16) is applied (see FIG. 3), the semiconductor.
  • the manufacturing method of the semiconductor device according to the second embodiment basically includes the same steps as those of the manufacturing method of the semiconductor device according to the first embodiment, but the contents of the glass film forming step are the same as those of the semiconductor device according to the first embodiment. Different from the manufacturing method. That is, in the method of manufacturing a semiconductor device according to the second embodiment, as shown in FIG. 6, in the glass film forming step, the potential V1 (minus potential) of the first electrode plate 14 and the second potential are applied to the ring electrode plate 18. A glass coating is formed on the glass coating formation planned surface in a state where a potential V3 (for example, a minus potential slightly higher than V1) between the potential V2 (plus potential) of the electrode plate 16 is applied.
  • a potential V3 for example, a minus potential slightly higher than V1 between the potential V2 (plus potential) of the electrode plate 16 is applied.
  • the manufacturing method of the semiconductor device according to the second embodiment differs from the manufacturing method of the semiconductor device according to the first embodiment in the content of the glass film forming step, but the ring-shaped electrode plate 18 and the second electrode plate.
  • the semiconductor wafer W is arranged between the first electrode plate 14 and the ring electrode plate 18, which is biased to the potential V 1 side of the first electrode plate 14 relative to the potential V 2 of the second electrode plate 16 (the potential of the second electrode plate 16. Since the glass film is formed on the glass film formation planned surface in a state where a potential lower than V2 is applied, the glass film formation planned surface as a semiconductor wafer is formed in the same manner as in the semiconductor device manufacturing method according to the first embodiment.
  • the ring-shaped electrode plate 18 is applied with the potential V3 between the potential V1 of the first electrode plate 14 and the potential V2 of the second electrode plate 16. Since the glass film is to be formed on the surface on which the glass film is to be formed, the potential V3 applied to the ring electrode plate 18 is controlled to an appropriate voltage, thereby further reducing the deposition efficiency at the outer peripheral portion of the semiconductor wafer. Therefore, a highly reliable semiconductor device can be manufactured with higher productivity.
  • the power supply device 20 of the glass film forming apparatus 1 used in the first embodiment is applied to the ring electrode plate 18 with the potential V1 of the first electrode plate 14 and the potential of the second electrode plate 16.
  • the glass film forming apparatus 2 (the glass film forming apparatus 2 according to the second embodiment) is used instead of the power supply apparatus 22 that applies an arbitrary potential V3 between V2.
  • the manufacturing method of the semiconductor device according to the third embodiment basically includes the same steps as the manufacturing method of the semiconductor device according to the first embodiment. However, unlike the manufacturing method of the semiconductor device according to the first embodiment, A planar pn diode is manufactured as a semiconductor device.
  • the semiconductor wafer preparation step includes a step of forming a pn junction exposed portion on the surface of the semiconductor wafer W and a semiconductor so as to cover the pn junction exposed portion. Forming a base insulating film 218 on the surface of the wafer W.
  • the semiconductor device manufacturing method according to the third embodiment includes a “semiconductor wafer preparation step”, a “glass film formation step”, an “etching step”, an “electrode formation step”, and a “semiconductor wafer”.
  • the “cutting step” is performed in this order.
  • the semiconductor device manufacturing method according to the third embodiment will be described below in the order of steps.
  • p-type impurities for example, boron ions
  • p + type diffusion layer 214 is formed by thermal diffusion (see FIG. 7B).
  • a pn junction exposed portion A is formed on the surface of the semiconductor wafer W.
  • an n-type impurity for example, arsenic ions
  • an n + -type diffusion layer 216 is formed by thermal diffusion (see FIG. 7C).
  • the surface of the n ⁇ -type epitaxial layer 212 (and the back surface of the n + -type silicon substrate 210) is made of a silicon oxide film.
  • An insulating film 218 is formed (see FIG. 7D).
  • the thickness of the base insulating film 218 is in the range of 5 nm to 60 nm (for example, 20 nm).
  • the formation of the base insulating film 218 is performed by placing the semiconductor wafer W in a diffusion furnace and then treating it at a temperature of 900 ° C. for 10 minutes while flowing an oxygen gas. If the thickness of the base insulating film 218 is less than 5 nm, the effect of reducing the BT resistance may not be obtained. On the other hand, if the thickness of the base insulating film 218 exceeds 60 nm, it may be impossible to form a glass film by electrophoresis in the next glass layer forming step.
  • the glass film 220 is formed on the surface of the base insulating film 218 by electrophoresis as in the case of the first embodiment, and then the glass film 220 is fired.
  • the glass coating 220 is densified (see FIG. 8A).
  • the semiconductor device (planar type pn diode) 200 can be manufactured as described above.
  • the arrows indicate the flow of glass particles.
  • a glass film is formed on the inner surface of the groove of the semiconductor wafer without forming a base insulating film on the surface of the semiconductor wafer (see FIG. 9A).
  • a glass film is formed on the base insulating film.
  • a glass film is formed without installing a ring-shaped electrode plate (see FIG. 9B).
  • a glass film is formed with a ring-shaped electrode plate installed (see FIG. 9C).
  • the flow of the glass particles flowing at a steep angle toward the radially outer side of the semiconductor wafer W in the outer peripheral portion of the semiconductor wafer W by the action of the ring-shaped electrode plate is corrected to the flow of glass fine particles flowing toward the glass film formation planned surface of the semiconductor wafer W (see the portion indicated by the symbol C in FIGS. 9B and 9C).
  • the semiconductor device manufacturing method according to the third embodiment is different from the semiconductor device manufacturing method according to the first embodiment in that a planar pn diode is manufactured as a semiconductor device.
  • a semiconductor wafer W is disposed between the electrode plate 18 and the second electrode plate 16, and the potential biased to the ring-shaped electrode plate 18 from the potential V2 of the second electrode plate 16 to the potential V1 side of the first electrode plate 14. Since the glass film is formed on the glass film formation planned surface in a state where (the potential V2 of the second electrode plate 16 is lower), the outer peripheral portion of the semiconductor wafer W is radially outward of the semiconductor wafer W.
  • a semiconductor wafer is formed by forming a base insulating film on a surface on which a glass film is to be formed. Even when a glass coating process is performed using a wafer, it is possible to suppress a decrease in the deposition efficiency of glass particles on the outer periphery of the semiconductor wafer, and to manufacture a highly reliable semiconductor device with high productivity. It becomes possible to do.
  • the manufacturing method of the semiconductor device according to the fourth embodiment basically includes the same steps as the manufacturing method of the semiconductor device according to the first embodiment, but the composition of the glass fine particles used in the glass film forming step is the same as that of the first embodiment. This is different from the method of manufacturing the semiconductor device. That is, in the method for manufacturing a semiconductor device according to the fourth embodiment, glass particles made of lead-free glass are used as glass particles used in the glass film forming step instead of glass particles made of lead borosilicate glass. Accordingly, a positive potential is applied to the first electrode plate 14, a negative potential is applied to the second electrode plate 16, and the ring-shaped electrode plate 18 has a second potential higher than the potential V 2 of the second electrode plate 16. In a state where a biased potential (potential higher than the potential V2 of the second electrode plate 16) is applied to the potential V1 side of the first electrode plate 14, a glass coating is formed on the glass coating formation planned surface.
  • a biased potential potential higher than the potential V2 of the second electrode plate 16
  • the manufacturing method of the semiconductor device according to the fourth embodiment is different from the method of manufacturing the semiconductor device according to the first embodiment in the composition of the glass fine particles used in the glass film forming step.
  • a semiconductor wafer W is disposed between the second electrode plate 16 and a potential (second electrode) that is biased to the ring-shaped electrode plate 18 from the potential V2 of the second electrode plate 16 to the potential V1 side of the first electrode plate 14. Since a glass film is formed on the glass film formation planned surface in a state where a potential higher than the potential V2 of the plate 16 is applied, as in the case of the semiconductor device manufacturing method according to the first embodiment, a glass is used as a semiconductor wafer.
  • the glass coating film is fired by using lead-free glass instead of lead borosilicate glass as the glass fine particles used in the glass coating forming step.
  • the generation of bubbles from the interface between the semiconductor wafer and the glass coating is suppressed, and a semiconductor device having a low reverse leakage current can be stably manufactured.
  • glass fine particles made of lead-free glass for example, the following glass fine particles, that is, at least SiO 2 , Al 2 O 3 , and B 2 O 3 are used.
  • the content of SiO 2 is in the range of 41.1 mol% to 61.1 mol%
  • the content of Al 2 O 3 is in the range of 7.4 mol% to 17.4 mol%.
  • the content of B 2 O 3 is in the range of 5.8 mol% to 15.8 mol%
  • the content of ZnO is in the range of 3.0 mol% to 24.8 mol%
  • the alkaline earth metal An oxide having an oxide content in the range of 5.5 mol% to 15.5 mol% and a nickel oxide content in the range of 0.01 mol% to 2.0 mol% can be suitably used. .
  • the CaO content is in the range of 2.8 mol% to 7.8 mol%
  • the MgO content is in the range of 1.1 mol% to 3.1 mol%
  • BaO Those having a content in the range of 1.7 mol% to 4.7 mol% can be suitably used.
  • the solvent for example, a mixed solvent of isopropyl alcohol and ethyl acetate to which nitric acid is added is used.
  • the glass film forming apparatus 1 used in the first embodiment is used as the glass film forming apparatus when performing the glass film forming step.
  • a positive potential is applied to the first electrode plate 14.
  • a negative potential is applied to the second electrode plate 16
  • a potential (second electrode) that is biased toward the ring electrode plate 18 from the potential V2 of the second electrode plate 16 toward the potential V1 of the first electrode plate 14 is applied.
  • a glass coating is formed on the glass coating formation planned surface.
  • test example is an example showing the effect of the ring-shaped electrode plate.
  • Sample preparation (1) Sample 1 First, the surface of a 4-inch silicon wafer was thermally oxidized to produce a silicon wafer having a 27 nm-thickness base insulating film formed on the surface. Next, basically, a glass film was formed on the base insulating film of the silicon wafer by the same glass film forming process as the glass film forming process described in the first embodiment, and this was used as Sample 1 (Example). .
  • Sample 3 A sample was produced in the same manner as in the case of Sample 1 except that the thickness of the base insulating film to be formed was 45 nm, and this was designated as Sample 3 (Example).
  • Sample 4 A sample was prepared in the same manner as in the case of Sample 2 except that the thickness of the base insulating film to be formed was 45 nm, and this was used as Sample 4 (Comparative Example).
  • FIG. 10 is a diagram showing the evaluation results for Samples 1 and 2.
  • FIG. 11 is a diagram showing the evaluation results for samples 3 and 4.
  • the symbol B indicates the width of the glass film non-formation region.
  • the samples (samples 1 and 3) in which the glass film was formed with the ring electrode plate installed were the samples in which the glass film was formed without installing the ring electrode plate.
  • the glass coating non-formation region width B at the outer peripheral portion of the silicon wafer was narrow, and the glass coating was formed up to the vicinity of the outermost periphery of the silicon wafer.
  • a ring-shaped electrode plate having a circular outer shape smaller than that of the second electrode plate 16 is used as the ring-shaped electrode plate 18, but the present invention is limited to this. It is not a thing.
  • a ring-shaped electrode plate (Modification 1) having a circular outer shape larger than the second electrode plate 16 may be used.
  • a ring-shaped electrode plate (Modification 2) having a rectangular outer shape larger than the second electrode plate 16 may be used.
  • a negative electrode plate and a positive electrode plate are used as the first electrode plate 14 and the second electrode plate 16, respectively.
  • the first electrode plate 14 and the second electrode plate are used.
  • a positive electrode plate and a negative electrode plate were used, respectively.
  • Which of the first electrode plate and the second electrode plate of the present invention is used as the negative electrode plate or the positive electrode plate depends on the glass fine particles, the solvent, and the added electrolyte. It can be determined appropriately depending on the type and combination.
  • a glass film is formed on the ring electrode plate 18 with the same potential as the potential V1 of the first electrode plate 14, and in the second embodiment, the ring electrode plate 18 is formed.
  • a glass coating was formed in a state where a potential V3 (a slightly lower potential than V1) between the potential V1 of the first electrode plate 14 and the potential V2 of the second electrode plate 16 was applied to the glass coating film. It is not limited.
  • the range of the potential applied to the ring electrode plate 18 is not limited to the range described in the first and second embodiments.
  • a predetermined potential biased to the potential V1 side of the first electrode plate 14 relative to the potential V2 for example, a predetermined potential lower than the potential V1 of the first electrode plate 14, the same potential as the potential V1 of the first electrode plate 14,
  • a glass coating is applied in a state where a predetermined potential between the potential V1 of the first electrode plate 14 and the potential V2 of the second electrode plate 16 (excluding the same potential as the potential V2 of the second electrode plate 16) is applied. May be formed.
  • the second electrode plate is connected to the ring-shaped electrode plate 18 as shown in FIG.
  • a predetermined potential biased to the potential V1 side of the first electrode plate 14 from the potential V2 of 16 for example, a predetermined potential higher than the potential V1 of the first electrode plate 14, the same potential as the potential V1 of the first electrode plate 14
  • a glass film may be formed.
  • Embodiment 3 after the glass coating is formed on the entire surface of the base insulating film formed on the surface of the semiconductor wafer, the glass coating is removed by etching in regions other than the glass coating formation region.
  • the present invention is not limited to this.
  • a base insulating film 218 is formed on the surface of the semiconductor wafer (see FIGS. 7A to 7D), and further, glass on the surface of the base insulating film 218 is formed.
  • a glass film 220 may be formed on the surface of the base insulating film 218 via the mask M4 (Modification 3, FIGS. 14A to 14 ( See d).).
  • the semiconductor wafer plate made of silicon is used as the semiconductor wafer, but the present invention is not limited to this.
  • a semiconductor wafer made of SiC, GaN, GaO or the like can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

 第1電極板14と第2電極板16との間に半導体ウェーハWの直径よりも小さな直径の開口を有するリング状電極板18を設置するとともに、リング状電極板18と第2電極板16との間に半導体ウェーハWを配置し、リング状電極板18に第2電極板16よりも低い電位を与えた状態でガラス被膜形成予定面にガラス被膜を形成するガラス被膜形成工程を含む半導体装置の製造方法。 本発明の半導体装置の製造方法によれば、半導体ウェーハとして、ガラス被膜形成予定面に下地絶縁膜を形成した半導体ウェーハを用いてガラス被膜形成工程を行う場合であっても、半導体ウェーハの外周部においてガラス微粒子の被着効率の低下を抑制することが可能となり、もって高信頼性の半導体装置を高い生産性で製造することが可能となる。

Description

半導体装置の製造方法及びガラス被膜形成装置
 本発明は、半導体装置の製造方法及びガラス被膜形成装置に関する。
 従来、電気泳動法により半導体ウェーハの表面にガラス被膜を形成するガラス被膜形成工程を含む半導体装置の製造方法が知られている(例えば、特許文献1参照。)。従来の半導体装置の製造方法は、図15及び図16に示すように、「半導体ウェーハ準備工程」、「ガラス被膜形成工程」、「酸化膜除去工程」、「粗面化領域形成工程」、「電極形成工程」及び「半導体ウェーハ切断工程」をこの順序で含む。以下、従来の半導体装置の製造方法を工程順に説明する。
(a)半導体ウェーハ準備工程
 まず、n型半導体ウェーハ(n型シリコンウェーハ)910の一方の表面からのp型不純物の拡散によりp型拡散層912を形成するとともに、他方の表面からのn型不純物の拡散によりn型拡散層914を形成して、主面に平行なpn接合が形成された半導体ウェーハを形成する。その後、熱酸化によりp型拡散層912及びn型拡散層914の表面に酸化膜916,918を形成する(図15(a)参照。)。
 次に、フォトエッチング法によって、酸化膜916の所定部位に所定の開口部を形成する。酸化膜のエッチング後、引き続いて半導体ウェーハのエッチングを行い、半導体ウェーハの一方の表面からpn接合を超える深さの溝920を形成する(図15(b)参照。)。
(b)ガラス被膜形成工程
 次に、溝920の表面に、電気泳動法により溝920の内面及びその近傍の半導体ウェーハ表面にガラス被膜924を形成するとともに、当該ガラス被膜924を焼成することにより、ガラス被膜924を緻密化する(図15(c)参照。)。
 なお、従来の半導体装置の製造方法においては、電気泳動法によりガラス被膜924を形成するにあたって、図17に示すように、ガラス微粒子を溶媒に懸濁させた懸濁液12を貯留した槽10の内部に、マイナス端子に接続された第1電極板14とプラス端子に接続された第2電極板16とを懸濁液12に浸漬した状態で対向して設置するとともに、これら第1電極板14と第2電極板16との間に半導体ウェーハWをガラス被膜形成予定面(図17では溝の内面)が第1電極板14側に向いた姿勢で配置した状態で電気泳動法によりガラス被膜形成予定面にガラス被膜924を形成する。ガラス微粒子としては、例えば、PbO、B及びSiOを主成分とする硼珪酸鉛系ガラスを用いる。
(c)酸化膜除去工程
 次に、ガラス被膜924の表面を覆うようにフォトレジスト926を形成した後、当該フォトレジスト926をマスクとして酸化膜916のエッチングを行い、Niめっき電極膜を形成する部位930における酸化膜916を除去する(図15(d)及び図16(a)参照。)。
(d)粗面化領域形成工程
 次に、Niめっき電極膜を形成する部位930における半導体ウェーハ表面の粗面化処理を行い、Niめっき電極と半導体ウェーハとの密着性を高くするための粗面化領域932を形成する(図16(b)参照。)。
(e)電極形成工程
 次に、半導体ウェーハにNiめっきを行い、粗面化領域932上にアノード電極934を形成するとともに、半導体ウェーハの他方の表面にカソード電極936を形成する(図16(c)参照。)。
(f)半導体ウェーハ切断工程
 次に、ダイシング等により、ガラス被膜924の中央部において半導体ウェーハを切断して半導体ウェーハをチップ化して、メサ型半導体装置(pnダイオード)を作成する(図16(d)参照。)。
 従来の半導体装置の製造方法によれば、溝920の内部にガラス被膜924を形成した後半導体ウェーハを切断することにより、高信頼性のメサ型半導体装置を製造することができる。
特開2004-87955号公報 国際公開第2013/168314号
 ところで、従来の半導体装置の製造方法において、半導体装置のBT耐量(高温逆バイアス耐量)などを向上させるために、半導体ウェーハとして、ガラス被膜形成予定面に下地絶縁膜を形成した半導体ウェーハを用いてガラス被膜形成工程を行うことが、本発明の発明者らにより提案されている(例えば、特許文献2参照。)。
 しかしながら、本発明の発明者らの研究により、上記のように、半導体ウェーハとして、ガラス被膜形成予定面に下地絶縁膜を形成した半導体ウェーハを用いてガラス被膜形成工程を行う場合には、半導体ウェーハの外周部においてガラス微粒子の被着効率が低下することから、半導体ウェーハの外周部から切断分離された半導体装置の絶縁性(逆方向特性)が低下し当該半導体装置の信頼性が低下する場合がある。その結果、半導体ウェーハ全面にわたって高信頼性の半導体装置を製造することが困難となることから、高信頼性の半導体装置を高い生産性で製造することが困難となる場合があるという問題があることがわかった。
 そこで、本発明は、上記した問題を解決するためになされたもので、半導体ウェーハとして、ガラス被膜形成予定面に下地絶縁膜を形成した半導体ウェーハを用いてガラス被膜形成工程を行う場合であっても、高信頼性の半導体装置を高い生産性で製造することが可能な半導体装置の製造方法及びガラス被膜形成装置を提供することを目的とする。
[1]本発明の半導体装置の製造方法は、ガラス被膜形成予定面に下地絶縁膜が形成された半導体ウェーハを準備する半導体ウェーハ準備工程と、ガラス微粒子を溶媒に懸濁させた懸濁液を貯留した槽の内部に、第1電極板と第2電極板とを前記懸濁液に浸漬した状態で対向して設置するとともに、前記第1電極板と前記第2電極板との間に前記半導体ウェーハを前記ガラス被膜形成予定面が前記第1電極板側に向いた姿勢で配置した状態で、電気泳動法により前記ガラス被膜形成予定面にガラス被膜を形成するガラス被膜形成工程とを含む半導体装置の製造方法であって、前記ガラス被膜形成工程においては、前記第1電極板と前記第2電極板との間に前記半導体ウェーハの直径よりも小さな直径の開口を有するリング状電極板を設置するとともに、前記リング状電極板と前記第2電極板との間に前記半導体ウェーハを配置し、前記リング状電極板に前記第2電極板の電位よりも前記第1電極板の電位側に偏倚した電位を与えた状態で前記ガラス被膜形成予定面にガラス被膜を形成することを特徴とする。
[2]本発明の半導体装置の製造方法においては、前記リング状電極板に前記第1電極板の電位と同じ電位を与えた状態で前記ガラス被膜形成予定面にガラス被膜を形成することが好ましい。
[3]本発明の半導体装置の製造方法においては、前記リング状電極板に前記第1電極板の電位と前記第2電極板の電位との間の電位を与えた状態で前記ガラス被膜形成予定面にガラス被膜を形成することが好ましい。
[4]本発明の半導体装置の製造方法においては、前記半導体ウェーハの直径をD1(mm)とし、前記リング状電極板の開口の直径をD2(mm)としたとき、D2を、「D1(mm)-50mm≦D2(mm)≦D1(mm)-1mm」の関係を満たす値に設定することが好ましい。
[5]本発明の半導体装置の製造方法においては、前記リング状電極板は、「D1(mm)≦D3(mm)」の関係を満たす直径D3(mm)の仮想円を内包する外形形状を有することが好ましい。
[6]本発明の半導体装置の製造方法においては、前記半導体ウェーハ準備工程は、主面に平行なpn接合を備える半導体ウェーハを準備する工程と、前記半導体ウェーハの一方の表面から前記pn接合を超える深さの溝を形成することにより、前記溝の内面に前記pn接合露出部を形成する工程と、前記pn接合露出部を覆うように前記溝の内面に前記下地絶縁膜を形成する工程とを含むことが好ましい。
[7]本発明の半導体装置の製造方法においては、前記半導体ウェーハ準備工程は、半導体ウェーハの表面に前記pn接合露出部を形成する工程と、前記pn接合露出部を覆うように前記半導体ウェーハの表面に前記下地絶縁膜を形成する工程とを含むことが好ましい。
[8]本発明の半導体装置の製造方法においては、前記下地絶縁膜の膜厚は、5nm~60nmの範囲内にあることが好ましい。
[9]本発明のガラス被膜形成装置は、ガラス被膜形成予定面に下地絶縁膜が形成された半導体ウェーハの表面に電気泳動法によりガラス被膜を形成するためのガラス被膜形成装置であって、ガラス微粒子を溶媒に懸濁させた懸濁液を貯留するための槽と、互いに対向した状態で前記槽の中に設置された第1電極板及び第2電極板と、前記第1電極板と前記第2電極板との間に設置され、かつ、前記半導体ウェーハの直径よりも小さな直径の開口を有するリング状電極板と、前記リング状電極板と前記第2電極板との間の所定位置に半導体ウェーハを配設するための半導体ウェーハ配設治具と、前記第1電極板、前記第2電極板及び前記リング状電極板に、前記リング状電極板に印加する電位が前記第2電極板の電位よりも前記第1電極板の電位側に偏倚した電位となるような、電位を与える電源装置とを備えることを特徴とする。
 本発明の半導体装置の製造方法によれば、第1電極板と第2電極板との間に、半導体ウェーハの直径よりも小さな直径の開口を有するリング状電極板を設置するとともに、リング状電極板と第2電極板との間に半導体ウェーハを配置し、リング状電極板に、第2電極板の電位よりも第1電極板の電位側に偏倚した電位を与えた状態でガラス被膜形成予定面にガラス被膜を形成することとしたことから(後述する図3及び図6参照。)、半導体ウェーハの外周部においては、半導体ウェーハの径方向外側に向かうガラス微粒子の流れを半導体ウェーハのガラス被膜形成予定面に向かうガラス微粒子の流れに矯正することが可能となる(後述する図5及び図9中符号Cが示す部分参照。)。その結果、本発明の半導体装置の製造方法によれば、半導体ウェーハとして、ガラス被膜形成予定面に下地絶縁膜を形成した半導体ウェーハを用いてガラス被膜形成工程を行う場合であっても、半導体ウェーハの外周部においてガラス微粒子の被着効率の低下を抑制することが可能となり、もって高信頼性の半導体装置を高い生産性で製造することが可能となる。
 また、本発明のガラス被膜形成装置によれば、第1電極板と第2電極板との間に、半導体ウェーハの直径よりも小さな直径の開口を有するリング状電極板を設置するとともに、リング状電極板と第2電極板との間に半導体ウェーハを配置し、リング状電極板に、第2電極板の電位よりも第1電極板の電位側に偏倚した電位を与えた状態でガラス被膜形成予定面にガラス被膜を形成することが可能となることから(後述する図3及び図6参照。)、半導体ウェーハの外周部においては、半導体ウェーハの径方向外側に向かうガラス微粒子の流れを半導体ウェーハのガラス被膜形成予定面に向かうガラス微粒子の流れに矯正することが可能となる(後述する図5及び図9中符号Cが示す部分参照。)。その結果、本発明のガラス被膜形成装置によれば、半導体ウェーハとして、ガラス被膜形成予定面に下地絶縁膜を形成した半導体ウェーハを用いてガラス被膜形成工程を行う場合であっても、半導体ウェーハの外周部においてガラス微粒子の被着効率の低下を抑制することが可能となり、もって高信頼性の半導体装置を高い生産性で製造することが可能となる。
実施形態1に係る半導体装置の製造方法を説明するために示す図である。図1(a)~図1(d)は実施形態1に係る半導体装置の製造方法の各工程を示す図である。 実施形態1に係る半導体装置の製造方法を説明するために示す図である。図2(a)~図2(d)は実施形態1に係る半導体装置の製造方法の各工程を示す図である。 実施形態1に係る半導体装置の製造方法におけるガラス被膜形成工程を説明するために示す図である。図3(a)はガラス被膜形成装置1を横方向から見た断面図であり、図3(b)は図3(a)のA-A線から見たガラス被膜形成装置1の断面図である。 リング状電極板18の構造を説明するために示す図である。図4(a)は半導体ウェーハWの直径D1を示す図であり、図4(b)はリング状電極体18の開口の直径D2及びリング状電極体18の外径D3を示す図であり、図4(c)は第2電極板16の直径D4を示す図である。 比較例1及び2並びに実施形態1におけるガラス微粒子の流れを説明するために示す図である。図5(a)は比較例1におけるガラス微粒子の流れを示す図であり、図5(b)は比較例2におけるガラス微粒子の流れを示す図であり、図5(c)は実施形態1におけるガラス微粒子の流れを示す図である。 実施形態2に係る半導体装置の製造方法におけるガラス被膜形成工程を説明するために示す図である。図6(a)はガラス被膜形成装置2を横方向から見た断面図であり、図6(b)は図6(a)のA-A線から見たガラス被膜形成装置2の断面図である。 実施形態3に係る半導体装置の製造方法を説明するために示す図である。図7(a)~図7(d)は実施形態3に係る半導体装置の製造方法の各工程を示す図である。 実施形態3に係る半導体装置の製造方法を説明するために示す図である。図8(a)~図8(d)は実施形態3に係る半導体装置の製造方法の各工程を示す図である。 比較例3及び4並びに実施形態3におけるガラス微粒子の流れを説明するために示す図である。図9(a)は比較例3におけるガラス微粒子の流れを示す図であり、図9(b)は比較例4におけるガラス微粒子の流れを示す図であり、図9(c)は実施形態3におけるガラス微粒子の流れを示す図である。 試験例の結果を示すである。図10(a)は試料1(実施例)の結果を示す図であり、図10(b)は試料2(比較例)の結果を示す図である。 試験例の結果を示すである。図11(a)は試料3(実施例)の結果を示す図であり、図11(b)は試料4(比較例)の結果を示す図である。 リング状電極板の変形例を説明するために示す図である。図12(a)及び図12(b)は各変形例(変形例1及び2)を示す図である。 リング状電極板に与える電位V3の範囲を説明するために示す図である。図13(a)は第1電極板の電位V1をマイナス電位とし第2電極板の電位V2をプラス電位としたときにおける電位V3の範囲を示す図であり、図13(b)は第1電極板の電位V1をプラス電位とし第2電極板の電位V2をマイナス電位としたときにおける電位V3の範囲を示す図である。 変形例3に係る半導体装置の製造方法を説明するために示す図である。図14(a)~図14(d)は変形例3に係る半導体装置の製造方法の各工程を示す図である。 従来の半導体装置の製造方法を説明するために示す図である。図15(a)~図15(d)は従来の半導体装置の製造方法の各工程を示す図である。 従来の半導体装置の製造方法を説明するために示す図である。図16(a)~図16(d)は従来の半導体装置の製造方法の各工程を示す図である。 従来の半導体装置の製造方法におけるにガラス被膜形成工程を説明するために示す図である。図17(a)はガラス被膜形成装置9を横方向から見た断面図であり、図17(b)は図17(a)のA-A線から見たガラス被膜形成装置9の断面図である。
 以下、本発明の半導体装置の製造方法及びガラス被膜形成装置について、図に示す実施の形態に基づいて説明する。
[実施形態1]
 実施形態1に係る半導体装置の製造方法は、図1及び図2に示すように、「半導体ウェーハ準備工程」、「ガラス被膜形成工程」、「酸化膜除去工程」、「粗面化領域形成工程」、「電極形成工程」及び「半導体ウェーハ切断工程」をこの順序で実施する。以下、実施形態1に係る半導体装置の製造方法を工程順に説明する。
(a)半導体ウェーハ準備工程
 まず、n型半導体ウェーハ(例えば直径4インチのn型シリコンウェーハ)110の一方の表面からのp型不純物の拡散によりp型拡散層112を形成するとともに、他方の表面からのn型不純物の拡散によりn型拡散層114を形成して、主面に平行なpn接合が形成された半導体ウェーハを準備する。その後、熱酸化によりp型拡散層112及びn型拡散層114の表面に酸化膜116,118を形成する(図1(a)参照。)。
 次に、フォトエッチング法によって、酸化膜116の所定部位に所定の開口部を形成する。酸化膜のエッチング後、引き続いて半導体ウェーハのエッチングを行い、半導体ウェーハの一方の表面からpn接合を超える深さの溝120を形成する(図1(b)参照。)。このとき、溝の内面にpn接合露出部Aが形成される。
 次に、ドライ酸素(DryO)を用いた熱酸化法によって、溝120の内面にシリコン酸化膜からなる下地絶縁膜121を形成する(図1(c)参照。)。下地絶縁膜121の厚さは、5nm~60nmの範囲内(例えば20nm)とする。下地絶縁膜121の形成は、半導体ウェーハを拡散炉に入れた後、酸素ガスを流しながら900℃の温度で10分処理することにより行う。下地絶縁膜121の厚さが5nm未満であるとBT耐量低減の効果が得られなくなる場合がある。一方、下地絶縁膜121の厚さが60nmを超えると次のガラス被膜形成工程で電気泳動法によりガラス被膜を形成することができなくなる場合がある。
(b)ガラス被膜形成工程
 次に、電気泳動法により溝120の内面及びその近傍の半導体ウェーハ表面にガラス被膜124を形成するとともに、当該ガラス被膜124を焼成することにより、当該ガラス被膜124を緻密化する(図1(d)参照。)。
 なお、実施形態1に係る半導体装置の製造方法においては、電気泳動法によりガラス被膜124を形成するにあたって、基本的には、従来の半導体装置の製造方法の場合と同様にして、電気泳動法によりガラス被膜形成予定面にガラス被膜124を形成する。すなわち、図3に示すように、ガラス微粒子を溶媒に懸濁させた懸濁液12を貯留した槽10の内部に、マイナス端子に接続された第1電極板14とプラス端子に接続された第2電極板16とを懸濁液12に浸漬した状態で対向して設置するとともに、これら第1電極板14と第2電極板16との間に半導体ウェーハWをガラス被膜形成予定面(図3では溝の内面)が第1電極板14側に向いた姿勢で配置した状態で、電気泳動法によりガラス被膜形成予定面にガラス被膜124を形成する。
 但し、実施形態1に係る半導体装置の製造方法においては、従来の半導体装置の製造方法の場合とは異なり、第1電極板14と第2電極板16との間に、半導体ウェーハWの直径よりも小さな直径の開口を有するリング状電極板18を設置するとともに、リング状電極板18と第2電極板16との間に半導体ウェーハWを配置し、リング状電極板18に、第2電極板16の電位V2よりも第1電極板14の電位V1側に偏倚した電位(第2電極板16の電位V2よりも低い電位)を与えた状態でガラス被膜形成予定面にガラス被膜を形成する。
 ガラス微粒子としては、例えば、PbO、B及びSiOを主成分とする硼珪酸鉛系ガラスを用いる。溶媒としては、例えば、アセトンに硝酸を添加したものを用いる。第1電極板14と第2電極板16との間に印加する電圧としては、10V~800V(例えば400V)の電圧を与える。
 実施形態1に係る半導体装置の製造方法においては、図3に示すように、リング状電極板18に第1電極板14の電位V1と同じ電位を与えた状態でガラス被膜形成予定面にガラス被膜を形成する。
 また、実施形態1に係る半導体装置の製造方法においては、リング状電極板18の開口は、半導体ウェーハWの直径をD1(mm)とし(図4(a)参照。)、リング状電極板18の開口の直径をD2(mm)としたとき(図4(b)参照。)、D2を、「D1(mm)-50mm≦D2(mm)≦D1(mm)-1mm」の関係を満たす値に設定する。
 また、リング状電極板の径方向の幅(リング状電極板18の外径D3-リング状電極板18の開口の直径D2)は、5mm~15mmの範囲内に設定する。そして、リング状電極板18の外径D3は、第2電極板16の直径D4(図4(c)参照。)よりも小さく設定する。
 ガラス被膜形成工程を実施するにあたっては、以下の構成を備えるガラス被膜形成装置、すなわち、ガラス微粒子を溶媒に懸濁させた懸濁液12を貯留するための槽10と、互いに対向した状態で槽10の中に設置された第1電極板14及び第2電極板16と、第1電極板14と第2電極板16との間に設置され、かつ、半導体ウェーハWの直径よりも小さな直径の開口を有するリング状電極板18と、リング状電極板18と第2電極板16との間の所定位置に半導体ウェーハWを配設するための半導体ウェーハ配設治具(図示せず。)と、第1電極板14、第2電極板16及びリング状電極板18に、リング状電極板18に印加する電位が第2電極板の電位よりも第1電極板の電位側に偏倚した電位となるような、電位を与える電源装置20とを備えるガラス被膜形成装置(実施形態1に係るガラス被膜形成装置1)を用いる(図3参照。)。
(c)酸化膜除去工程
 次に、ガラス被膜124の表面を覆うようにフォトレジスト126を形成した後、当該フォトレジスト126をマスクとして酸化膜116のエッチングを行い、Niめっき電極膜を形成する部位130における酸化膜116を除去する(図2(a)参照。)。
(d)粗面化領域形成工程
 次に、Niめっき電極膜を形成する部位130における半導体ウェーハ表面の粗面化処理を行い、Niめっき電極と半導体ウェーハとの密着性を高くするための粗面化領域132を形成する(図2(b)参照。)。
(e)電極形成工程
 次に、半導体ウェーハにNiめっきを行い、粗面化領域132上にアノード電極134を形成するとともに、半導体ウェーハの他方の表面にカソード電極136を形成する(図2(c)参照。)。
(f)半導体ウェーハ切断工程
 次に、ダイシング等により、ガラス被膜124の中央部において半導体ウェーハを切断して半導体ウェーハをチップ化して、半導体装置(メサ型のpnダイオード)100を製造する(図2(d)参照。)。
 以上のようにして、半導体装置(メサ型のpnダイオード)100を製造することができる。
 以下、図5を用いて、実施形態1に係る半導体装置の製造方法及びガラス被膜形成装置の効果を説明する。なお、図5中、矢印はガラス微粒子の流れを示す。
 比較例1に係る半導体装置の製造方法においては、半導体ウェーハの溝の内面に下地絶縁膜を形成することなく半導体ウェーハの溝の内面にガラス被膜を形成する(図5(a)参照。)。また、比較例2に係る半導体装置の製造方法においては、半導体ウェーハの溝の内面に下地絶縁膜を形成した後、当該下地絶縁膜上にガラス被膜を形成する。但し、実施形態1に係る半導体装置の製造方法の場合とは異なり、リング状電極板を設置することなくガラス被膜を形成する(図5(b)参照。)。これに対して、実施形態1に係る半導体装置の製造方法においては、リング状電極板を設置した状態でガラス被膜を形成する(図5(c)参照。)。
 実施形態1に係る半導体装置の製造方法においては、リング状電極板の働きにより、半導体ウェーハWの外周部において、半導体ウェーハWの径方向外側に向かうガラス微粒子の流れが半導体ウェーハWのガラス被膜形成予定面に向かうガラス微粒子の流れに矯正される(図5(b)及び図5(c)中符号Cが示す部分参照。)。
 以上説明したように、実施形態1に係る半導体装置の製造方法によれば、第1電極板14と第2電極板16との間に、半導体ウェーハWの直径よりも小さな直径の開口を有するリング状電極板18を設置するとともに、リング状電極板18と第2電極板16との間に半導体ウェーハWを配置し、リング状電極板18に、第2電極板16の電位V2よりも第1電極板14の電位V1側に偏倚した電位(第2電極板16の電位V2よりも低い電位)を与えた状態でガラス被膜形成予定面にガラス被膜を形成することから(図3参照。)、半導体ウェーハWの外周部においては、半導体ウェーハWの径方向外側に向かうガラス微粒子の流れを半導体ウェーハWのガラス被膜形成予定面に向かうガラス微粒子の流れに矯正することが可能となる(図5(b)及び図5(c)中符号Cが示す部分参照。)。その結果、実施形態1に係る半導体装置の製造方法によれば、半導体ウェーハとして、ガラス被膜形成予定面に下地絶縁膜を形成した半導体ウェーハを用いてガラス被膜形成工程を行う場合であっても、半導体ウェーハの外周部においてガラス微粒子の被着効率の低下を抑制することが可能となり、もって高信頼性の半導体装置を高い生産性で製造することが可能となる。
 また、実施形態1に係る半導体装置の製造方法によれば、リング状電極板18に第1電極板14の電位と同じ電位を与えた状態でガラス被膜形成予定面にガラス被膜を形成するため、簡易な電源装置を用いてガラス被膜を形成することが可能となる。
 また、実施形態1に係る半導体装置の製造方法によれば、リング状電極板18の開口の直径D2を「D1(mm)-50mm≦D2(mm)≦D1(mm)-1mm」の関係を満たす大きさに設定することから、半導体ウェーハWの外周部におけるガラス微粒子の流れを効果的に矯正することが可能となる。
 実施形態1に係るガラス被膜形成装置1によれば、第1電極板14と第2電極板16との間に、半導体ウェーハWの直径よりも小さな直径の開口を有するリング状電極板18を設置するとともに、リング状電極板18と第2電極板16との間に半導体ウェーハWを配置し、リング状電極板18に、第2電極板16の電位V2よりも第1電極板14の電位V1側に偏倚した電位(第2電極板16の電位V2よりも低い電位)を与えた状態でガラス被膜形成予定面にガラス被膜を形成することが可能となることから(図3参照。)、半導体ウェーハWの外周部においては、半導体ウェーハWの径方向外側に向かうガラス微粒子の流れを半導体ウェーハWのガラス被膜形成予定面に向かうガラス微粒子の流れに矯正することが可能となる(図5(b)及び図5(c)中符号Cが示す部分参照。)。その結果、実施形態1に係るガラス被膜形成装置1によれば、半導体ウェーハとして、ガラス被膜形成予定面に下地絶縁膜を形成した半導体ウェーハを用いてガラス被膜形成工程を行う場合であっても、半導体ウェーハの外周部においてガラス微粒子の被着効率の低下を抑制することが可能となり、もって高信頼性の半導体装置を高い生産性で製造することが可能となる。
[実施形態2]
 実施形態2に係る半導体装置の製造方法は、基本的には実施形態1に係る半導体装置の製造方法と同様の工程を含むが、ガラス被膜形成工程の内容が、実施形態1に係る半導体装置の製造方法の場合と異なる。すなわち、実施形態2に係る半導体装置の製造方法においては、図6に示すように、ガラス被膜形成工程において、リング状電極板18に、第1電極板14の電位V1(マイナス電位)と第2電極板16の電位V2(プラス電位)との間の電位V3(例えば、V1よりも若干高いマイナス電位)を与えた状態でガラス被膜形成予定面にガラス被膜を形成することとしている。
 このように、実施形態2に係る半導体装置の製造方法は、ガラス被膜形成工程の内容が実施形態1に係る半導体装置の製造方法の場合とは異なるが、リング状電極板18と第2電極板16との間に半導体ウェーハWを配置し、リング状電極板18に、第2電極板16の電位V2よりも第1電極板14の電位V1側に偏倚した電位(第2電極板16の電位V2よりも低い電位)を与えた状態でガラス被膜形成予定面にガラス被膜を形成することから、実施形態1に係る半導体装置の製造方法の場合と同様に、半導体ウェーハとして、ガラス被膜形成予定面に下地絶縁膜を形成した半導体ウェーハを用いてガラス被膜形成工程を行う場合であっても、半導体ウェーハの外周部においてガラス微粒子の被着効率の低下を抑制することが可能となり、もって高信頼性の半導体装置を高い生産性で製造することが可能となる。
 また、実施形態2に係る半導体装置の製造方法によれば、リング状電極板18に第1電極板14の電位V1と第2電極板16の電位V2との間の電位V3を与えた状態でガラス被膜形成予定面にガラス被膜を形成することとしていることから、リング状電極板18に与える電位V3を適宜の電圧に制御することにより、半導体ウェーハの外周部において被着効率の低下をより一層抑制することが可能となり、もって高信頼性の半導体装置をより一層高い生産性で製造することが可能となる。
 ガラス被膜形成工程を実施するにあたっては、実施形態1で用いたガラス被膜形成装置1の電源装置20を、リング状電極板18に、第1電極板14の電位V1と第2電極板16の電位V2との間の任意の電位V3を与える電源装置22に代えたガラス被膜形成装置2(実施形態2に係るガラス被膜形成装置2)を用いる。
[実施形態3]
 実施形態3に係る半導体装置の製造方法は、基本的には実施形態1に係る半導体装置の製造方法と同様の工程を含むが、実施形態1に係る半導体装置の製造方法の場合とは異なり、半導体装置としてプレーナ型のpnダイオードを製造する。また、これに対応して、図7及び図8に示すように、半導体ウェーハ準備工程が、半導体ウェーハWの表面にpn接合露出部を形成する工程と、当該pn接合露出部を覆うように半導体ウェーハWの表面に下地絶縁膜218を形成する工程とを含む。
 実施形態3に係る半導体装置の製造方法は、図7及び図8に示すように、「半導体ウェーハ準備工程」、「ガラス被膜形成工程」、「エッチング工程」、「電極形成工程」及び「半導体ウェーハ切断工程」をこの順序で実施する。以下、実施形態3に係る半導体装置の製造方法を工程順に説明する。
(a)半導体ウェーハ準備工程
 まず、n型半導体ウェーハ210上にn型エピタキシャル層212が積層された半導体ウェーハを準備する(図7(a)参照。)。
 次に、マスクM1を形成した後、当該マスクM1を介してn型エピタキシャル層212の表面における所定領域にイオン注入法によりp型不純物(例えばボロンイオン)を導入する。その後、熱拡散することにより、p型拡散層214を形成する(図7(b)参照。)。このとき、半導体ウェーハWの表面にpn接合露出部Aが形成される。
 次に、マスクM1を除去するとともにマスクM2を形成した後、当該マスクM2を介してn型エピタキシャル層212の表面における所定領域にイオン注入法によりn型不純物(例えばヒ素イオン)を導入する。その後、熱拡散することにより、n型拡散層216を形成する(図7(c)参照。)。
 次に、マスクM2を除去した後、ドライ酸素(DryO)を用いた熱酸化法によって、n型エピタキシャル層212の表面(及びn型シリコン基板210の裏面)にシリコン酸化膜からなる下地絶縁膜218を形成する(図7(d)参照。)。
 下地絶縁膜218の厚さは、5nm~60nmの範囲内(例えば20nm)とする。下地絶縁膜218の形成は、半導体ウェーハWを拡散炉に入れた後、酸素ガスを流しながら900℃の温度で10分処理することにより行う。下地絶縁膜218の厚さが5nm未満であるとBT耐量低減の効果が得られなくなる場合がある。一方、下地絶縁膜218の厚さが60nmを超えると次のガラス層形成工程で電気泳動法によりガラス被膜を形成することができなくなる場合がある。
(b)ガラス被膜形成工程
 次に、下地絶縁膜218の表面に、電気泳動法により、実施形態1の場合と同様にガラス被膜220を形成し、その後、当該ガラス被膜220を焼成することにより、ガラス被膜220を緻密化する(図8(a)参照。)。
(c)エッチング工程
 次に、ガラス被膜220の表面にマスクM3を形成した後、ガラス被膜220のエッチングを行い(図8(b)参照。)、引き続き、下地絶縁膜218のエッチングを行う(図8(c)参照。)。これにより、n型エピタキシャル層212の表面における所定領域に下地絶縁膜218及びガラス被膜220が形成されることとなる。
(d)電極形成工程
 次に、マスクM3を除去した後、半導体ウェーハの表面におけるガラス被膜220で囲まれた領域にアノード電極222を形成するとともに、半導体ウェーハの裏面にカソード電極224を形成する。
(e)半導体ウェーハ切断工程
 次に、ダイシング等により、半導体ウェーハを切断して半導体ウェーハをチップ化して、半導体装置(プレーナ型のpnダイオード)200を製造する(図8(d)参照。)。
 以上のようにして、半導体装置(プレーナ型のpnダイオード)200を製造することができる。
 以下、図9を用いて、実施形態3に係る半導体装置の製造方法の効果を説明する。なお、図9において、矢印はガラス微粒子の流れを示す。
 比較例3に係る半導体装置の製造方法においては、半導体ウェーハの表面に下地絶縁膜を形成することなく半導体ウェーハの溝の内面にガラス被膜を形成する(図9(a)参照。)。また、比較例2に係る半導体装置の製造方法においては、半導体ウェーハの表面に下地絶縁膜を形成した後、当該下地絶縁膜上にガラス被膜を形成する。但し、実施形態3に係る半導体装置の製造方法の場合とは異なり、リング状電極板を設置することなくガラス被膜を形成する(図9(b)参照。)。これに対して、実施形態3に係る半導体装置の製造方法においては、リング状電極板を設置した状態でガラス被膜を形成する(図9(c)参照。)。
 実施形態3に係る半導体装置の製造方法においては、リング状電極板の働きにより、半導体ウェーハWの外周部において、半導体ウェーハWの径方向外側に向かって急な角度で流れるガラス微粒子の流れが、半導体ウェーハWのガラス被膜形成予定面に向かって流れるガラス微粒子の流れに矯正される(図9(b)及び図9(c)中符号Cが示す部分参照。)。
 以上説明したように、実施形態3に係る半導体装置の製造方法は、半導体装置としてプレーナ型のpnダイオードを製造する点で実施形態1に係る半導体装置の製造方法の場合とは異なるが、リング状電極板18と第2電極板16との間に半導体ウェーハWを配置し、リング状電極板18に、第2電極板16の電位V2よりも第1電極板14の電位V1側に偏倚した電位(第2電極板16の電位V2よりも低い電位)を与えた状態でガラス被膜形成予定面にガラス被膜を形成することから、半導体ウェーハWの外周部においては、半導体ウェーハWの径方向外側に向かうガラス微粒子の流れを半導体ウェーハWのガラス被膜形成予定面に向かうガラス微粒子の流れに矯正することが可能となる(図9(b)及び図9(c)中符号Cが示す部分参照。)。その結果、実施形態3に係る半導体装置の製造方法によれば、実施形態1に係る半導体装置の製造方法の場合と同様に、半導体ウェーハとして、ガラス被膜形成予定面に下地絶縁膜を形成した半導体ウェーハを用いてガラス被膜形成工程を行う場合であっても、半導体ウェーハの外周部においてガラス微粒子の被着効率の低下を抑制することが可能となり、高信頼性の半導体装置を高い生産性で製造することが可能となる。
[実施形態4]
 実施形態4に係る半導体装置の製造方法は、基本的には実施形態1に係る半導体装置の製造方法と同様の工程を含むが、ガラス被膜形成工程で用いるガラス微粒子の組成が、実施形態1に係る半導体装置の製造方法の場合と異なる。すなわち、実施形態4に係る半導体装置の製造方法においては、ガラス被膜形成工程で用いるガラス微粒子として、硼珪酸鉛系ガラスからなるガラス微粒子の代わりに鉛フリーガラスからなるガラス微粒子を用いる。また、これに応じて、第1電極板14にプラスの電位を与え、第2電極板16にマイナスの電位を与えるとともに、リング状電極板18に、第2電極板16の電位V2よりも第1電極板14の電位V1側に偏倚した電位(第2電極板16の電位V2よりも高い電位)を与えた状態で、ガラス被膜形成予定面にガラス被膜を形成する。
 このように、実施形態4に係る半導体装置の製造方法は、ガラス被膜形成工程で用いるガラス微粒子の組成が実施形態1に係る半導体装置の製造方法の場合とは異なるが、リング状電極板18と第2電極板16との間に半導体ウェーハWを配置し、リング状電極板18に、第2電極板16の電位V2よりも第1電極板14の電位V1側に偏倚した電位(第2電極板16の電位V2よりも高い電位)を与えた状態でガラス被膜形成予定面にガラス被膜を形成することから、実施形態1に係る半導体装置の製造方法の場合と同様に、半導体ウェーハとして、ガラス被膜形成予定面に下地絶縁膜を形成した半導体ウェーハを用いてガラス被膜形成工程を行う場合であっても、半導体ウェーハの外周部においてガラス微粒子の被着効率の低下を抑制することが可能となり、もって高信頼性の半導体装置を高い生産性で製造することが可能となる。
 また、実施形態4に係る半導体装置の製造方法によれば、ガラス被膜形成工程で用いるガラス微粒子として、硼珪酸鉛系ガラスの代わりに鉛フリーガラスを用いることから、ガラス被膜を焼成してガラス被膜を緻密化する過程で半導体ウェーハとガラス被膜との境界面からの泡の発生を抑制するとともに、逆方向リーク電流の低い半導体装置を安定して製造することが可能となるという効果も得られる。
 なお、実施形態4に係る半導体装置の製造方法においては、鉛フリーガラスからなるガラス微粒子として、例えば、次のようなガラス微粒子、すなわち、少なくともSiOと、Alと、Bと、ZnOと、CaO、MgO及びBaOのうち少なくとも2つのアルカリ土類金属の酸化物とを含有し、かつ、Pbと、Asと、Sbと、Liと、Naと、Kとを実質的に含有しない原料を溶融させて得られる融液から作製されたガラス微粒子を用いる。
 そのようなガラス微粒子としては、SiOの含有量が41.1mol%~61.1mol%の範囲内にあり、Alの含有量が7.4mol%~17.4mol%の範囲内にあり、Bの含有量が5.8mol%~15.8mol%の範囲内にあり、ZnOの含有量が3.0mol%~24.8mol%の範囲内にあり、アルカリ土類金属の酸化物の含有量が5.5mol%~15.5mol%の範囲内にあり、ニッケル酸化物の含有量が0.01mol%~2.0mol%の範囲内にあるものを好適に用いることができる。また、アルカリ土類金属の酸化物として、CaO含有量が2.8mol%~7.8mol%の範囲内にあり、MgO含有量が1.1mol%~3.1mol%の範囲内にあり、BaO含有量が1.7mol%~4.7mol%の範囲内にあるものを好適に用いることができる。
 溶媒としては、例えば、イソプロピルアルコールと酢酸エチルの混合溶媒に硝酸を添加したものを用いる。
 実施形態4に係る半導体装置の製造方法においては、ガラス被膜形成工程を実施するにあたって、ガラス被膜形成装置として実施形態1で用いたガラス被膜形成装置1を用いる。但し、ガラス被膜形成工程で用いるガラス微粒子として、硼珪酸鉛系ガラスからなるガラス微粒子の代わりに鉛フリーガラスからなるガラス微粒子を用いることから、上記したように、第1電極板14にプラスの電位を与え、第2電極板16にマイナスの電位を与えるとともに、リング状電極板18に、第2電極板16の電位V2よりも第1電極板14の電位V1側に偏倚した電位(第2電極板16の電位V2よりも高い電位)を与えた状態で、ガラス被膜形成予定面にガラス被膜を形成する。
[試験例]
 以下、試験例により本発明をさらに具体的に説明する。
 本試験例は、リング状電極板の効果を示す実施例である。
1.試料の調製
(1)試料1
 まず、4インチのシリコンウェーハの表面を熱酸化することにより、表面に膜厚27nmの下地絶縁膜が形成されたシリコンウェーハを作製した。次に、基本的には実施形態1に記載したガラス被膜形成工程と同じガラス被膜形成工程によって、上記シリコンウェーハの下地絶縁膜上にガラス被膜を形成し、これを試料1(実施例)とした。
(2)試料2
 まず、4インチのシリコンウェーハの表面を熱酸化することにより、表面に膜厚27nmの下地絶縁膜が形成されたシリコンウェーハを作製した。次に、リング状電極板を設置しないこと以外は、試料1の場合と同様のガラス被膜形成工程によって、上記シリコンウェーハの下地絶縁膜上にガラス被膜を形成し、これを試料2(比較例)とした。
(3)試料3
 形成する下地絶縁膜の膜厚が45nmであること以外は試料1の場合と同様にして試料を作製し、これを試料3(実施例)とした。
(2)試料4
 形成する下地絶縁膜の膜厚が45nmであること以外は試料2の場合と同様にして試料を作製し、これを試料4(比較例)とした。
2.評価方法
 各試料(試料1~4)の表面を顕微鏡で観察することによって、シリコンウェーハの外周部においてガラス被膜が形成されていない領域の幅(ガラス被膜非形成領域幅)を測定することにより、リング状電極板の効果を評価した。
3.評価結果
 図10は、試料1及び2についての評価結果を示す図である。図11は、試料3及び4についての評価結果を示す図である。なお、これらの図中、符号Bはガラス被膜非形成領域幅を示す。
 図10及び図11からも明らかなように、リング状電極板を設置した状態でガラス被膜を形成した試料(試料1及び3)は、リング状電極板を設置することなくガラス被膜を形成した試料(試料2及び4)に比べて、シリコンウェーハの外周部のガラス被膜非形成領域幅Bが狭く、シリコンウェーハの最外周近傍までガラス被膜が形成されていることが確認できた。
 以上、本発明の半導体装置の製造方法及びガラス被膜形成装置を上記の実施形態に基づいて説明したが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲において実施することが可能であり、例えば次のような変形も可能である。
(1)上記の各実施形態においては、リング状電極板18として、第2電極板16よりも小さな円形状の外形形状を有するリング状電極板を用いたが、本発明はこれに限定されるものではない。例えば、図12(a)に示すように、第2電極板16よりも大きな円形状の外形形状を有するリング状電極板(変形例1)を用いてもよい。また、図12(b)に示すように、第2電極板16よりも大きな長方形状の外形形状を有するリング状電極板(変形例2)を用いてもよい。
(2)上記実施形態1においては、第1電極板14及び第2電極板16としてそれぞれマイナス電極板及びプラス電極板を用い、上記実施形態4においては、第1電極板14及び第2電極板16としてそれぞれプラス電極板及びマイナス電極板を用いたが、本発明の第1電極板及び第2電極板のどちらをマイナス電極板又はプラス電極板にするかは、ガラス微粒子、溶媒、添加電解質の種類や組み合わせによって適宜決定することができる。
(3)上記実施形態1においては、リング状電極板18に第1電極板14の電位V1と同じ電位を与えた状態でガラス被膜を形成し、上記実施形態2においては、リング状電極板18に第1電極板14の電位V1と第2電極板16の電位V2との間の電位V3(V1よりも若干高いマイナス電位)を与えた状態でガラス被膜を形成したが、本発明はこれに限定されるものではない。リング状電極板18に与える電位の範囲は上記の実施形態1及び実施形態2に記載された範囲に限定されるものではない。
 第1電極板14及び第2電極板16としてそれぞれマイナス電極板及びプラス電極板を用いた場合には、図13(a)に示すように、リング状電極板18に、第2電極板16の電位V2よりも第1電極板14の電位V1側に偏倚した所定の電位(例えば、第1電極板14の電位V1よりも低い所定の電位、第1電極板14の電位V1と同じ電位、第1電極板14の電位V1と第2電極板16の電位V2との間の所定の電位(但し、第2電極板16の電位V2と同じ電位を除く)など。)を与えた状態でガラス被膜を形成してもよい。
 一方、第1電極板14及び第2電極板16としてそれぞれプラス電極板及びマイナス電極板を用いた場合には、図13(b)に示すように、リング状電極板18に、第2電極板16の電位V2よりも第1電極板14の電位V1側に偏倚した所定の電位(例えば、第1電極板14の電位V1よりも高い所定の電位、第1電極板14の電位V1と同じ電位、第1電極板14の電位V1と第2電極板16の電位V2との間の所定の電位(但し、第2電極板16の電位V2と同じ電位を除く)など。)を与えた状態でガラス被膜を形成してもよい。
(4)上記の実施形態3においては、半導体ウェーハの表面に形成した下地絶縁膜の全面にガラス被膜を形成した後、ガラス被膜形成領域以外の領域についてガラス被膜をエッチングにより除去しているが、本発明はこれに限定されるものではない。例えば、実施形態3の場合と同様に半導体ウェーハの表面に下地絶縁膜218を形成し(図7(a)~図7(d)参照。)、さらには、当該下地絶縁膜218の表面におけるガラス被膜形成領域以外の領域にマスクM4を形成した後、当該マスクM4を介して下地絶縁膜218の表面にガラス被膜220を形成してもよい(変形例3、図14(a)~図14(d)参照。)。
(5)上記の各実施形態においては、半導体ウェーハとしてシリコンからなる半導体ウェーハ板を用いたが、本発明はこれに限定されるものではない。例えば、SiC、GaN、GaOなどからなる半導体ウェーハを用いることもできる。
1,2,9…ガラス被膜形成装置、10…槽、12…懸濁液、14…第1電極板、16…第2電極板、18…リング状電極板、20,22…電源装置、100,200,202,900…半導体装置、110,910…n型半導体基板、112,912…p型拡散層、114,914…n型拡散層、116,118,916,918…酸化膜、120,920…溝、121,218…下地絶縁膜、124,220,924…ガラス被膜、126,926…フォトレジスト、130,930…Niめっき電極膜を形成する部位、132,932…粗面化領域、134,934…アノード電極、136,936…カソード電極、210…n型半導体基板、212…n型エピタキシャル層、214…p型拡散層、216…n型拡散層、222…アノード電極層、224…カソード電極層、B…ガラス被膜非形成領域幅、M1,M2,M3,M4…マスク、V1…第1電極板の電位、V2…第2電極板の電位、V3…リング状電極板に与える電位

Claims (9)

  1.  ガラス被膜形成予定面に下地絶縁膜が形成された半導体ウェーハを準備する半導体ウェーハ準備工程と、
     ガラス微粒子を溶媒に懸濁させた懸濁液を貯留した槽の内部に、第1電極板と第2電極板とを前記懸濁液に浸漬した状態で対向して設置するとともに、前記第1電極板と前記第2電極板との間に前記半導体ウェーハを前記ガラス被膜形成予定面が前記第1電極板側に向いた姿勢で配置した状態で、電気泳動法により前記ガラス被膜形成予定面にガラス被膜を形成するガラス被膜形成工程とを含む半導体装置の製造方法であって、
     前記ガラス被膜形成工程においては、前記第1電極板と前記第2電極板との間に前記半導体ウェーハの直径よりも小さな直径の開口を有するリング状電極板を設置するとともに、前記リング状電極板と前記第2電極板との間に前記半導体ウェーハを配置し、前記リング状電極板に前記第2電極板の電位よりも前記第1電極板の電位側に偏倚した電位を与えた状態で前記ガラス被膜形成予定面にガラス被膜を形成することを特徴とする半導体装置の製造方法。
  2.  前記リング状電極板に前記第1電極板の電位と同じ電位を与えた状態で前記ガラス被膜形成予定面にガラス被膜を形成することを特徴とする請求項1に記載の半導体装置の製造方法。
  3.  前記リング状電極板に前記第1電極板の電位と前記第2電極板の電位との間の電位を与えた状態で前記ガラス被膜形成予定面にガラス被膜を形成することを特徴とする請求項1に記載の半導体装置の製造方法。
  4.  前記半導体ウェーハの直径をD1(mm)とし、前記リング状電極板の開口の直径をD2(mm)としたとき、D2を、「D1(mm)-50mm≦D2(mm)≦D1(mm)-1mm」の関係を満たす値に設定することを特徴とする請求項1~3のいずれかに記載の半導体装置の製造方法。
  5.  前記リング状電極板は、「D1(mm)≦D3(mm)」の関係を満たす直径D3(mm)の仮想円を内包する外形形状を有することを特徴とする請求項4に記載の半導体装置の製造方法。
  6.  前記半導体ウェーハ準備工程は、
     主面に平行なpn接合を備える半導体ウェーハを準備する工程と、
     前記半導体ウェーハの一方の表面から前記pn接合を超える深さの溝を形成することにより、前記溝の内面に前記pn接合露出部を形成する工程と、
     前記pn接合露出部を覆うように前記溝の内面に前記下地絶縁膜を形成する工程とを含むことを特徴とする請求項1~5のいずれかに記載の半導体装置の製造方法。
  7.  前記半導体ウェーハ準備工程は、
     半導体ウェーハの表面に前記pn接合露出部を形成する工程と、
     前記pn接合露出部を覆うように前記半導体ウェーハの表面に前記下地絶縁膜を形成する工程とを含むことを特徴とする請求項1~5のいずれかに記載の半導体装置の製造方法。
  8.  前記下地絶縁膜の膜厚は、5nm~60nmの範囲内にあることを特徴とする請求項1~7のいずれかに記載の半導体装置の製造方法。
  9.  ガラス被膜形成予定面に下地絶縁膜が形成された半導体ウェーハの表面に電気泳動法によりガラス被膜を形成するためのガラス被膜形成装置であって、
     ガラス微粒子を溶媒に懸濁させた懸濁液を貯留するための槽と、
     互いに対向した状態で前記槽の中に設置された第1電極板及び第2電極板と、
     前記第1電極板と前記第2電極板との間に設置され、かつ、前記半導体ウェーハの直径よりも小さな直径の開口を有するリング状電極板と、
      前記リング状電極板と前記第2電極板との間の所定位置に半導体ウェーハを配設するための半導体ウェーハ配設治具と、
     前記第1電極板、前記第2電極板及び前記リング状電極板に、前記リング状電極板に印加する電位が前記第2電極板の電位よりも前記第1電極板の電位側に偏倚した電位となるような、電位を与える電源装置とを備えることを特徴とするガラス被膜形成装置。
PCT/JP2014/080041 2014-11-13 2014-11-13 半導体装置の製造方法及びガラス被膜形成装置 WO2016075787A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
US15/108,554 US9978882B2 (en) 2014-11-13 2014-11-13 Method of manufacturing semiconductor device and glass film forming apparatus
JP2015549701A JP6029771B2 (ja) 2014-11-13 2014-11-13 半導体装置の製造方法及びガラス被膜形成装置
CN201480075169.1A CN105981141B (zh) 2014-11-13 2014-11-13 半导体装置的制造方法以及玻璃覆盖膜形成装置
DE112014005031.8T DE112014005031B4 (de) 2014-11-13 2014-11-13 Verfahren zur Herstellung eines Halbleiter-Bauelements und Vorrichtung zur Herstellung einer Glasschicht
PCT/JP2014/080041 WO2016075787A1 (ja) 2014-11-13 2014-11-13 半導体装置の製造方法及びガラス被膜形成装置
KR1020167012251A KR101851884B1 (ko) 2014-11-13 2014-11-13 반도체 장치의 제조 방법 및 유리 피막 형성 장치
TW104133355A TWI584381B (zh) 2014-11-13 2015-10-12 A method of manufacturing a semiconductor device, and a glass film forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/080041 WO2016075787A1 (ja) 2014-11-13 2014-11-13 半導体装置の製造方法及びガラス被膜形成装置

Publications (1)

Publication Number Publication Date
WO2016075787A1 true WO2016075787A1 (ja) 2016-05-19

Family

ID=55953900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080041 WO2016075787A1 (ja) 2014-11-13 2014-11-13 半導体装置の製造方法及びガラス被膜形成装置

Country Status (7)

Country Link
US (1) US9978882B2 (ja)
JP (1) JP6029771B2 (ja)
KR (1) KR101851884B1 (ja)
CN (1) CN105981141B (ja)
DE (1) DE112014005031B4 (ja)
TW (1) TWI584381B (ja)
WO (1) WO2016075787A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6396598B1 (ja) * 2017-04-19 2018-09-26 新電元工業株式会社 半導体装置の製造方法
US20190305080A1 (en) * 2016-07-01 2019-10-03 University Of Electronic Science And Technology Of China Semiconductor structure, semiconductor assembly and power semiconductor device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10295979B2 (en) * 2015-09-15 2019-05-21 Applied Materials, Inc. Scheduling in manufacturing environments
CN109037363B (zh) 2018-07-24 2024-07-26 浙江爱旭太阳能科技有限公司 具有防断栅功能的晶硅太阳能电池的正电极
JP1660180S (ja) 2019-10-25 2020-05-25
JP1660179S (ja) 2019-10-25 2020-05-25
JP1660063S (ja) 2019-10-25 2020-05-25
JP1660178S (ja) 2019-10-25 2020-05-25

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114238A (en) * 1981-01-07 1982-07-16 Toshiba Corp Manufacture of semiconductor device
JPS5832421A (ja) * 1981-08-20 1983-02-25 Nec Corp 半導体装置の製造方法
JPS6331125A (ja) * 1986-07-25 1988-02-09 Toshiba Components Kk 半導体装置の製造方法
JPH08222558A (ja) * 1995-02-10 1996-08-30 Fuji Electric Co Ltd 半導体素子の製造方法
WO2013168314A1 (ja) * 2012-05-08 2013-11-14 新電元工業株式会社 半導体装置の製造方法及び半導体装置

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02163938A (ja) 1988-12-16 1990-06-25 Fuji Electric Co Ltd 半導体素子の製造方法
USRE37749E1 (en) * 1990-08-01 2002-06-18 Jaime Poris Electrodeposition apparatus with virtual anode
US6107213A (en) * 1996-02-01 2000-08-22 Sony Corporation Method for making thin film semiconductor
AU747022B2 (en) * 1997-06-20 2002-05-09 New York University Electrospraying solutions of substances for mass fabrication of chips and libraries
US6159354A (en) * 1997-11-13 2000-12-12 Novellus Systems, Inc. Electric potential shaping method for electroplating
US6156167A (en) * 1997-11-13 2000-12-05 Novellus Systems, Inc. Clamshell apparatus for electrochemically treating semiconductor wafers
US6179983B1 (en) * 1997-11-13 2001-01-30 Novellus Systems, Inc. Method and apparatus for treating surface including virtual anode
US6126798A (en) * 1997-11-13 2000-10-03 Novellus Systems, Inc. Electroplating anode including membrane partition system and method of preventing passivation of same
JPH11195775A (ja) * 1997-12-26 1999-07-21 Sony Corp 半導体基板および薄膜半導体素子およびそれらの製造方法ならびに陽極化成装置
FR2776538B1 (fr) * 1998-03-27 2000-07-21 Centre Nat Rech Scient Moyens de pulverisation electrohydrodynamique
US6331208B1 (en) * 1998-05-15 2001-12-18 Canon Kabushiki Kaisha Process for producing solar cell, process for producing thin-film semiconductor, process for separating thin-film semiconductor, and process for forming semiconductor
US6391743B1 (en) * 1998-09-22 2002-05-21 Canon Kabushiki Kaisha Method and apparatus for producing photoelectric conversion device
US6077405A (en) * 1998-10-28 2000-06-20 International Business Machines Corporation Method and apparatus for making electrical contact to a substrate during electroplating
US6664169B1 (en) * 1999-06-08 2003-12-16 Canon Kabushiki Kaisha Process for producing semiconductor member, process for producing solar cell, and anodizing apparatus
US6551483B1 (en) * 2000-02-29 2003-04-22 Novellus Systems, Inc. Method for potential controlled electroplating of fine patterns on semiconductor wafers
US8475636B2 (en) * 2008-11-07 2013-07-02 Novellus Systems, Inc. Method and apparatus for electroplating
JP3379755B2 (ja) * 2000-05-24 2003-02-24 インターナショナル・ビジネス・マシーンズ・コーポレーション 金属めっき装置
US6669833B2 (en) * 2000-10-30 2003-12-30 International Business Machines Corporation Process and apparatus for electroplating microscopic features uniformly across a large substrate
US6576488B2 (en) * 2001-06-11 2003-06-10 Lumileds Lighting U.S., Llc Using electrophoresis to produce a conformally coated phosphor-converted light emitting semiconductor
JP4434948B2 (ja) * 2002-07-18 2010-03-17 株式会社荏原製作所 めっき装置及びめっき方法
JP4022113B2 (ja) 2002-08-28 2007-12-12 新電元工業株式会社 半導体装置の製造方法及び半導体装置
US6890413B2 (en) * 2002-12-11 2005-05-10 International Business Machines Corporation Method and apparatus for controlling local current to achieve uniform plating thickness
US20060141157A1 (en) * 2003-05-27 2006-06-29 Masahiko Sekimoto Plating apparatus and plating method
US7727366B2 (en) * 2003-10-22 2010-06-01 Nexx Systems, Inc. Balancing pressure to improve a fluid seal
US7722747B2 (en) * 2003-10-22 2010-05-25 Nexx Systems, Inc. Method and apparatus for fluid processing a workpiece
EP1829688A4 (en) * 2004-12-20 2009-12-02 Konica Minolta Holdings Inc LIQUID SEPARATING HEAD, LIQUID EJECTOR AND LIQUID EJECTION PROCEDURE
US8177944B2 (en) * 2007-12-04 2012-05-15 Ebara Corporation Plating apparatus and plating method
US8342120B2 (en) * 2008-03-14 2013-01-01 The Board Of Trustees Of The University Of Illinois Apparatuses and methods for applying one or more materials on one or more substrates
JP5238556B2 (ja) * 2009-03-10 2013-07-17 東京エレクトロン株式会社 基板処理方法
JP5683139B2 (ja) * 2009-06-23 2015-03-11 新電元工業株式会社 半導体装置およびその製造方法
US8268155B1 (en) * 2009-10-05 2012-09-18 Novellus Systems, Inc. Copper electroplating solutions with halides
KR101804195B1 (ko) * 2010-07-28 2017-12-04 니폰 덴키 가라스 가부시키가이샤 유리 필름 적층체
US8784618B2 (en) * 2010-08-19 2014-07-22 International Business Machines Corporation Working electrode design for electrochemical processing of electronic components
US9062388B2 (en) * 2010-08-19 2015-06-23 International Business Machines Corporation Method and apparatus for controlling and monitoring the potential
US9159549B2 (en) 2011-05-26 2015-10-13 Shindengen Electric Manufacturing Co., Ltd. Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
CN103748667B (zh) * 2011-08-29 2016-09-14 新电元工业株式会社 半导体接合保护用玻璃复合物、半导体装置的制造方法及半导体装置
WO2013168237A1 (ja) * 2012-05-08 2013-11-14 新電元工業株式会社 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
DE102012208900A1 (de) * 2012-05-25 2013-11-28 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen optoelektronischer Bauelemente und Vorrichtung zum Herstellen optoelektronischer Bauelemente
WO2014155739A1 (ja) * 2013-03-29 2014-10-02 新電元工業株式会社 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57114238A (en) * 1981-01-07 1982-07-16 Toshiba Corp Manufacture of semiconductor device
JPS5832421A (ja) * 1981-08-20 1983-02-25 Nec Corp 半導体装置の製造方法
JPS6331125A (ja) * 1986-07-25 1988-02-09 Toshiba Components Kk 半導体装置の製造方法
JPH08222558A (ja) * 1995-02-10 1996-08-30 Fuji Electric Co Ltd 半導体素子の製造方法
WO2013168314A1 (ja) * 2012-05-08 2013-11-14 新電元工業株式会社 半導体装置の製造方法及び半導体装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190305080A1 (en) * 2016-07-01 2019-10-03 University Of Electronic Science And Technology Of China Semiconductor structure, semiconductor assembly and power semiconductor device
US10978584B2 (en) * 2016-07-01 2021-04-13 University Of Electronic Science And Technology Semiconductor structure, semiconductor assembly and power semiconductor device
JP6396598B1 (ja) * 2017-04-19 2018-09-26 新電元工業株式会社 半導体装置の製造方法
WO2018193554A1 (ja) * 2017-04-19 2018-10-25 新電元工業株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
DE112014005031B4 (de) 2019-04-25
CN105981141B (zh) 2018-09-18
US9978882B2 (en) 2018-05-22
JP6029771B2 (ja) 2016-11-24
TWI584381B (zh) 2017-05-21
JPWO2016075787A1 (ja) 2017-04-27
KR20160075562A (ko) 2016-06-29
US20160322512A1 (en) 2016-11-03
TW201622010A (zh) 2016-06-16
DE112014005031T5 (de) 2016-08-11
CN105981141A (zh) 2016-09-28
KR101851884B1 (ko) 2018-04-24

Similar Documents

Publication Publication Date Title
JP6029771B2 (ja) 半導体装置の製造方法及びガラス被膜形成装置
JP4927237B1 (ja) 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
US9006113B2 (en) Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
US9236318B1 (en) Glass composition for protecting semiconductor junction, method of manufacturing semiconductor device and semiconductor device
JP5827398B2 (ja) 半導体接合保護用ガラス組成物の製造方法、半導体装置の製造方法及び半導体装置
JP6588028B2 (ja) 半導体装置の製造方法及びレジストガラス
JP5508547B1 (ja) 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
JP6396598B1 (ja) 半導体装置の製造方法
JP6235190B1 (ja) 半導体装置の製造方法
WO2012160961A1 (ja) 半導体装置の製造方法及び半導体装置
JP5655140B2 (ja) 半導体装置の製造方法及び半導体装置
JP4993399B1 (ja) 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
JP7193393B2 (ja) 太陽電池の製造方法
JPWO2012160961A1 (ja) 半導体装置の製造方法及び半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015549701

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167012251

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112014005031

Country of ref document: DE

Ref document number: 1120140050318

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15108554

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14905984

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14905984

Country of ref document: EP

Kind code of ref document: A1