JP6396598B1 - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP6396598B1
JP6396598B1 JP2017540673A JP2017540673A JP6396598B1 JP 6396598 B1 JP6396598 B1 JP 6396598B1 JP 2017540673 A JP2017540673 A JP 2017540673A JP 2017540673 A JP2017540673 A JP 2017540673A JP 6396598 B1 JP6396598 B1 JP 6396598B1
Authority
JP
Japan
Prior art keywords
manufacturing
semiconductor device
semiconductor wafer
range
mesa groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017540673A
Other languages
English (en)
Other versions
JPWO2018193554A1 (ja
Inventor
小笠原 淳
淳 小笠原
浩二 伊東
浩二 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shindengen Electric Manufacturing Co Ltd
Original Assignee
Shindengen Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shindengen Electric Manufacturing Co Ltd filed Critical Shindengen Electric Manufacturing Co Ltd
Application granted granted Critical
Publication of JP6396598B1 publication Critical patent/JP6396598B1/ja
Publication of JPWO2018193554A1 publication Critical patent/JPWO2018193554A1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/02Electrophoretic coating characterised by the process with inorganic material
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/10Electrophoretic coating characterised by the process characterised by the additives used
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/12Electrophoretic coating characterised by the process characterised by the article coated

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)
  • Dicing (AREA)

Abstract

半導体装置の製造方法は、ガラス被膜形成面にメサ溝120が形成された半導体ウェーハWを準備する半導体ウェーハ準備工程と、鉛フリーガラス微粒子を溶媒に懸濁させた懸濁液12に、第1電極板14と第2電極板16とを前記懸濁液に浸漬した状態で対向して設置するとともに、前記第1電極板と前記第2電極板との間に前記半導体ウェーハを前記ガラス被膜形成面が前記第1電極板側に向いた状態で、電気泳動堆積法により前記ガラス被膜形成面にガラス被膜124を形成するガラス被膜形成工程と、を含む。

Description

本発明は、半導体装置の製造方法に関する発明である。
従来、半導体ウェーハの表面にガラス被膜を形成するガラス被膜形成工程を含む半導体装置の製造方法が知られている(例えば、特開平8−64557号公報、特開2014−187144号公報、特開昭2005−243893号公報、特開昭57−143832号公報参照)。
この従来の半導体装置の製造方法においては、電気泳動堆積法(EPD:Electrophoretic Deposition)により、鉛を含まない鉛フリーガラス微粒子を半導体ウェーハのメサ溝に堆積させ、その後、当該メサ溝に堆積した鉛フリーガラス微粒子を焼成して、ガラス化することで、半導体装置のパッシベーション膜を形成する。
特に、上述の従来の半導体装置の製造方法では、電気泳動堆積法によるガラス被膜形成工程において、鉛フリーガラス微粒子が半導体ウェーハのメサ溝の底部にも堆積される。
これにより、鉛フリーガラス微粒子の堆積物を焼成してガラス化したパッシベーション膜がメサ溝の底部にも形成されることとなる。
したがって、例えば、半導体ウェーハをチップ化するために、ダイシング又はレーザー等で半導体ウェーハをメサ溝に沿って切断する際に、半導体ウェーハのシリコンとパシベーション膜であるガラスを、すなわち材質が異なる複数の材料を、切断する必要がある。
そして、この材質が異なる複数の材料の切断の応力によりクラック等が発生してしまう。このクラック発生防止策として、半導体ウェーハの切断スピードを落としたり、特殊な切断装置などを使ったりする必要がある。
また、効率よく切断するために、メサ溝部のガラスを写真工程後、選択的にエッチングし、シリコン面を露出させる方法もある。
しかしながら、上記いずれの対策においても工程追加や処理時間の増加なり、コストの増加につながる。
上述のように、従来の半導体装置の製造方法では、電気泳動堆積法によるガラス被膜形成工程において、半導体ウェーハの切断時のクラックやの原因になる、鉛フリーガラス微粒子が半導体ウェーハのメサ溝の底部にも堆積される問題がある。
そこで、本発明では、ガラス被膜形成工程で用いられる懸濁液の特性を制御して、メサ溝の底部の少なくとも一部が露出した(メサ溝の底部の少なくともに一部に鉛フリーガラス微粒子の堆積物のガラス被膜が形成されない)状態で、鉛フリーガラス微粒子の堆積物のガラス被膜をメサ溝の開口端周辺とメサ溝の側壁を被覆するように精度良く所定の厚さに形成することが可能な半導体装置の製造方法を提供することを目的とする。
本発明の一態様に係る実施形態に従った半導体装置の製造方法は、
ガラス被膜形成面にメサ溝が形成された半導体ウェーハを準備する半導体ウェーハ準備工程と、鉛フリーガラス微粒子を溶媒に懸濁させた懸濁液に、第1電極板と第2電極板とを前記懸濁液に浸漬した状態で対向して設置するとともに、前記第1電極板と前記第2電極板との間に前記半導体ウェーハを前記ガラス被膜形成面が前記第1電極板側に向いた状態で、電気泳動堆積法により前記ガラス被膜形成面にガラス被膜を形成するガラス被膜形成工程と、を含む半導体装置の製造方法であって、
前記ガラス被膜形成工程は、前記メサ溝の底部の少なくとも一部が露出した状態で、前記鉛フリーガラス微粒子の堆積物である前記ガラス被膜を前記メサ溝の開口端周辺と前記メサ溝の側壁を被覆するように形成するものであり、
前記ガラス被膜形成工程で用いられる前記懸濁液は、
前記鉛フリーガラス微粒子を含む前記溶媒の誘電率を第1の範囲に制御した後、当該溶媒に、有機溶剤と電解質である硝酸とを含む混合液を加えて、その電気伝導度を第2の範囲に制御した懸濁液であり、
前記溶媒の誘電率の前記第1の範囲は、5〜7の範囲であり、
前記懸濁液の電気伝導度の前記第2の範囲は、20nS/cm〜100nS/cmの範囲である
ことを特徴とする。
前記半導体装置の製造方法において、
前記混合液を調整することで、前記懸濁液の前記電気伝導度を前記第2の範囲に制御することを特徴とする。
前記半導体装置の製造方法において、
前記溶媒に加えられる前に、前記混合液は、電気伝導度が第3の範囲に制御されており、前記混合液の電気伝導度の前記第3の範囲は、90μS/cm〜130μS/cmの範囲であることを特徴とする。
前記半導体装置の製造方法において、
前記有機溶剤は、イソプロピルアルコール又は酢酸エチルであることを特徴とする。
前記半導体装置の製造方法において、
前記混合液の前記電気伝導度を、前記混合液における前記硝酸の割合を調整することにより、前記第3の範囲に制御することを特徴とする。
前記半導体装置の製造方法において、
前記溶媒は、イソプロピルアルコールと酢酸エチルとを含む混合溶媒であることを特徴とする。
前記半導体装置の製造方法において、
前記溶媒の誘電率を、前記混合溶媒における前記酢酸エチルの割合を調整することにより、前記第1の範囲に制御する
ことを特徴とする。
前記半導体装置の製造方法において、
前記鉛フリーガラス微粒子は、SiO、Al、CaO、MgO、ZnO、B、BaOの少なくとも何れか1つを含む鉛フリーガラス微粒子である
ことを特徴とする。
前記半導体装置の製造方法において、
前記半導体ウェーハ準備工程は、
主面に平行なpn接合を備える半導体ウェーハを準備する工程と、
前記半導体ウェーハの一方の表面から前記pn接合を超える深さのメサ溝を形成することにより、前記メサ溝の内面に前記pn接合の露出部を形成する工程と、
前記pn接合の露出部を覆うように前記メサ溝の内面に下地絶縁膜121を形成する工程と、を含む
ことを特徴とする。
前記半導体装置の製造方法において、
前記懸濁液は、界面活性剤を含まないことを特徴とする。
前記半導体装置の製造方法において、
前記半導体ウェーハ準備工程は、半導体ウェーハの表面に前記メサ溝の側壁のpn接合の露出部を形成する工程と、前記pn接合の露出部を覆うように前記半導体ウェーハの表面に下地絶縁膜を形成する工程と、を含む
ことを特徴とする。
前記半導体装置の製造方法において、
前記ガラス被膜形成工程は、前記ガラス被膜を、前記メサ溝の開口端周辺及び前記メサ溝の側壁の前記下地絶縁膜の表面に形成する
ことを特徴とする。
前記半導体装置の製造方法において、
前記半導体ウェーハの前記一方の表面の隣接する2つの前記メサ溝間にアノード電極を形成するとともに、前記半導体ウェーハの他方の表面にカソード電極を形成する電極形成工程をさらに備える
ことを特徴とする。
前記半導体装置の製造方法において、
前記ガラス被膜は、前記下地絶縁膜を介して、前記pn接合の露出部を覆っていることを特徴とする。
前記半導体装置の製造方法において、
前記ガラス被膜が形成されていない前記メサ溝の前記底部の中央近傍に沿って前記半導体ウェーハを切断して前記半導体ウェーハをチップ化する半導体ウェーハ切断工程をさらに含む
ことを特徴とする。
本発明の一態様に係る半導体装置の製造方法は、ガラス被膜形成面にメサ溝が形成された半導体ウェーハWを準備する半導体ウェーハ準備工程と、鉛フリーガラス微粒子を溶媒に懸濁させた懸濁液に、第1電極板と第2電極板とを懸濁液に浸漬した状態で対向して設置するとともに、第1電極板と第2電極板との間に半導体ウェーハをガラス被膜形成面が第1電極板側に向いた状態で、電気泳動堆積法によりガラス被膜形成面にガラス被膜を形成するガラス被膜形成工程と、を含む。
そして、ガラス被膜形成工程は、メサ溝の底部の少なくとも一部が露出した状態で、鉛フリーガラス微粒子の堆積物であるガラス被膜をメサ溝の開口端周辺とメサ溝の側壁を被覆するように形成するものである。
そして、ガラス被膜形成工程で用いられる懸濁液は、鉛フリーガラス微粒子を含む溶媒の誘電率を第1の範囲に制御した後、当該溶媒に、有機溶剤と電解質である硝酸とを含む混合液(電解質溶液)を加えて、その電気伝導度を第2の範囲に制御した懸濁液である。さらに、溶媒の誘電率の第1の範囲は、5〜7の範囲である。さらに、懸濁液の電気伝導度の第2の範囲は、20nS/cm〜100nS/cmの範囲である。
これにより、メサ溝の底部の少なくとも一部が露出した状態で、鉛フリーガラス微粒子の堆積物のガラス被膜をメサ溝の開口端周辺とメサ溝の側壁を被覆するように精度良く所定の厚さに形成することができる。
図1は、第1の実施形態に係る半導体装置の製造方法の工程を示す図である。 図2は、図1に続く、第1の実施形態に係る半導体装置の製造方法の工程を示す図である。 図3は、図2に続く、第1の実施形態に係る半導体装置の製造方法の工程を示す図である。 図4は、図3に続く、第1の実施形態に係る半導体装置の製造方法の工程を示す図である。 図5は、図4に続く、第1の実施形態に係る半導体装置の製造方法の工程を示す図である。 図6は、図5に続く、第1の実施形態に係る半導体装置の製造方法の工程を示す図である。 図7は、図6に続く、第1の実施形態に係る半導体装置の製造方法の工程を示す図である。 図8は、図7に続く、第1の実施形態に係る半導体装置の製造方法の工程を示す図である。 図9は、ガラス被膜形成装置1を横方向から見た断面図である。 図10は、第1の実施形態に係る半導体装置の製造方法の電気泳動堆積法で用いられる懸濁液12の組成の一例を示す図である。 図11は、イソプロピルアルコールと酢酸エチルとを含む混合溶媒である溶媒(1)の、イソプロピルアルコールと酢酸エチルの比率と、誘電率との関係の一例を示す図である。 図12は、懸濁液12の電気伝導度とメサ溝120の底部120aの堆積物の付着状態との関係の一例を示す図である。 図13は、ガラス被膜形成工程における、焼成前のガラス被膜124が成膜された状態の半導体ウェーハの上面の写真である。 図14は、ガラス被膜形成工程における、焼成後のガラス被膜124を含むメサ溝120の断面の写真である。
以下、本発明に係る実施形態について図面に基づいて説明する。
第1の実施形態
第1の実施形態に係る半導体装置の製造方法は、図1ないし図8に示すように、「半導体ウェーハ準備工程」、「ガラス被膜形成工程」、「酸化膜除去工程」、「粗面化領域形成工程」、「電極形成工程」及び「半導体ウェーハ切断工程」をこの順序で実施する。以下、実施形態に係る半導体装置の製造方法を工程順に説明する。
(a)半導体ウェーハ準備工程
まず、n−型半導体ウェーハ(例えば、直径4インチのn−型シリコンウェーハ)110の一方の表面からのp型不純物の拡散によりp+型拡散層112を形成するとともに、他方の表面からのn型不純物の拡散によりn+型拡散層114を形成して、主面に平行なpn接合が形成された半導体ウェーハWを準備する(図1)。
その後、熱酸化によりp+型拡散層112及びn+型拡散層114の表面に酸化膜116、118を形成する(図1)。
次に、フォトエッチング法によって、酸化膜116の所定部位に所定の開口部を形成する。酸化膜のエッチング後、引き続いて半導体ウェーハのエッチングを行い、半導体ウェーハの一方の表面からpn接合を超える深さの溝(メサ溝)120を形成する(図2)。このとき、溝120の内面(側壁)にpn接合の露出部Aが形成される。すなわち、半導体ウェーハの表面にメサ溝120の側壁のpn接合の露出部Aを形成する。
次に、ドライ酸素(DryO)を用いた熱酸化法によって、溝120の内面にシリコン酸化膜からなる下地絶縁膜121を形成する(図3)。すなわち、pn接合の露出部Aを覆うように半導体ウェーハの表面(溝120の内面)に下地絶縁膜121を形成する。
ここでは、図3に示すように、メサ溝120は、底部120aと、開口端120bと、側壁120cと、を有する。この図3の例では、底部120a、開口端120b、及び、側壁120cは、下地絶縁膜121の表面を示している。なお、下地絶縁膜121を省略して考える場合には、メサ溝120の底部120aの一部、開口端120b、及び側壁120cは、単に、ガラス被膜形成面の一部として定義される。また、この下地酸化膜121が形成される前の工程(図2)では、メサ溝120の内面は、p+型拡散層112とn−型拡散層114との表面を示す。
なお、下地絶縁膜121の厚さは、例えば、5nm〜60nmの範囲内(例えば20nm)とする。下地絶縁膜121の形成は、半導体ウェーハを拡散炉に入れた後、酸素ガスを流しながら900℃の温度で10分処理することにより行う。下地絶縁膜121の厚さが5nm未満であるとBT耐量低減の効果が得られなくなる場合がある。一方、下地絶縁膜121の厚さが60nmを超えると次のガラス被膜形成工程で電気泳動堆積法によりガラス被膜を形成することができなくなる場合がある。
以上のようにして、ガラス被膜形成面にメサ溝120が形成された半導体ウェーハWが準備される。
(b)ガラス被膜形成工程
次に、電気泳動堆積法により、メサ溝120の底部120aの少なくとも一部が露出した状態で、鉛フリーガラス微粒子の堆積物であるガラス被膜124をメサ溝120の開口端120b周辺とメサ溝120の側壁120c(下地絶縁膜121の表面)を被覆するように形成するとともに、当該ガラス被膜124を焼成することにより、当該ガラス被膜124を緻密化する(図4)。なお、以下の図5から図8に示す工程でも、焼成された当該ガラス被膜についても焼成前のガラス被膜と同じ符号124を用いて表記するものとする。
この図4に示す例では、ガラス被膜124は、メサ溝120の開口端120b周辺とメサ溝120の側壁120c(下地絶縁膜121の表面)を被覆するとともに、メサ溝120の側壁120cに隣接するメサ溝120の底部120aの一部(例えば、底部120aの中央近傍)も被覆している(メサ溝120の底部120aの少なくとも一部が露出した状態である)。
すなわち、このガラス被膜形成工程は、ガラス被膜124を、メサ溝120の開口端120b周辺及びメサ溝120の側壁120cの下地絶縁膜121の表面に形成する。換言すれば、このガラス被膜124は、下地絶縁膜121を介して、pn接合の露出部Aを覆っている。
このガラス被膜形成工程を実施するにあたっては、以下の構成を備えるガラス被膜形成装置、すなわち、鉛フリーガラス微粒子を溶媒に懸濁させた懸濁液12を貯留するための槽10と、互いに対向した状態で槽10の中に設置された第1電極板14及び第2電極板16と、第1電極板14と第2電極板16との間に設置され、所定位置に半導体ウェーハWを配設するための半導体ウェーハ配設治具(図示せず。)と、第1電極板14および第2電極板16に電位を与える電源装置20と、を備えるガラス被膜形成装置を用いる(図9)。
そして、図9に示すように、鉛フリーガラス微粒子を溶媒に懸濁させた懸濁液12を貯留した槽10の内部に、プラス端子に接続された第1電極板14とマイナス端子に接続された第2電極板16とを懸濁液12に浸漬した状態で対向して設置するとともに、これら第1電極板14と第2電極板16との間に半導体ウェーハWをガラス被膜形成予定面(図9では溝の内面)が第1電極板14側に向いた姿勢で配置した状態で、電気泳動堆積法によりガラス被膜形成予定面にガラス被膜124を形成する。
なお、第1電極板14と第2電極板16との間に印加する電圧としては、10V〜800V(例えば400V)の電圧を与える。
以上のように、このガラス被膜形成工程は、メサ溝120の底部120a(底部120aにおける下地酸化膜121の表面)の少なくとも一部が露出した状態で、鉛フリーガラス微粒子の堆積物であるガラス被膜をメサ溝の開口端120b周辺とメサ溝の側壁120cを被覆するように形成するものである。
ここで、このガラス被膜形成工程で用いられる懸濁液12は、鉛フリーガラス微粒子を含む溶媒(1)の誘電率を第1の範囲に制御した後、当該溶媒(1)に、有機溶剤と電解質である硝酸とを含む混合液(電解質溶液(2))を加えて、その電気伝導度(EC:Electro Conductivity)を第2の範囲に制御した懸濁液である(図10参照)。特に、この懸濁液12は、界面活性を含まない。
なお、鉛フリーガラスからなる鉛フリーガラス微粒子として、例えば、次のようなガラス微粒子、すなわち、SiO、Al、CaO、MgO、ZnO、B、BaOの少なくとも何れか1つを含有し、かつ、Pbを実質的に含有しない原料を溶融させて得られる融液から作製された鉛フリーガラス微粒子を用いる。
そして、溶媒(1)は、イソプロピルアルコールと酢酸エチルとの混合溶媒である。この溶媒(1)の誘電率を、混合溶媒における酢酸エチルの割合を調整することにより、既述の第1の範囲に制御する。例えば、溶媒(1)の誘電率の第1の範囲は、5〜7の範囲である。
ここで、図11は、イソプロピルアルコールと酢酸エチルとを含む混合溶媒である溶媒(1)の、イソプロピルアルコールと酢酸エチルの比率と、誘電率との関係の一例を示す図である。
この図11に示すように、この溶媒(1)の誘電率を、混合溶媒における酢酸エチルの割合を調整することにより、既述の第1の範囲に調整可能である。
また、電解質(2)は、有機溶剤(イソプロピルアルコール(IPA))と硝酸(HNO)との混合液である。この混合液の有機溶剤と硝酸との体積比は、例えば、1000:1〜5である。なお、有機溶剤は、所望の特性が得られるものであれば、酢酸エチル、アセトン、エタノール、その他の有機溶剤も選択され得る。
ここで、本実施形態では、既述の混合液(電解質溶液(2))を調整することで、懸濁液12の電気伝導度を既述の第2の範囲に制御する。この懸濁液12の電気伝導度の第2の範囲は、20nS/cm〜100nS/cmの範囲である。
なお、従来の鉛を含有させた鉛ガラス粉末を電気泳動堆積法により半導体素子のメサ溝に堆積させる場合、鉛ガラス粉末を懸濁させた懸濁液の電気伝導度(導電率)は、150±50μS/cmである(既述の特開昭57−143832号公報参照)。なお、当該鉛ガラス粉末はアメリカ合衆国イノテック社から商品名IP760として市販されている(特開昭57−143832号公報の1ページ右下欄参照)。
この従来の懸濁液の電気伝導度の条件(150±50μS/cm)は、上述の本願の懸濁液12の電気伝導度の第2の範囲(20nS/cm〜100nS/cm)と比較して大きく異なる(電気伝導度が高い範囲である)。
このように、特開昭57−143832号公報には、懸濁液の導電率が100μS/cm以下である場合には、メサ型半導体素子のPN接合端部が露出する面のみならず、他の部分、例えば、SiO膜上にもガラス被膜が形成され、この後の製造工程において悪影響がもたらされることが記載されている。
すなわち、特開昭57−143832号公報に記載された、従来の鉛を含有させた鉛ガラス粉末を堆積させる電気泳動堆積法は、懸濁液の導電率を100μS/cm以下に設定して使用することを想定していない。
これに対し、本願の実施形態においては、懸濁液12の電気伝導度の第2の範囲は、鉛フリーガラス微粒子をメサ溝120の底部120aの少なくとも一部が露出した状態で精度よくメサ溝120に堆積させる条件として、上記の従来技術では使用しない100μS/cm以下の非常に低い、20nS/cm〜100nS/cmの範囲に設定するものである。
なお、上記従来の懸濁液の電気伝導度の条件(150±50μS/cm)では、本実施形態で適用する鉛フリーガラスを電気泳動堆積法により半導体素子のメサ溝に堆積させることができないことが確認されている。
一方、本実施形態では、既述の溶媒(1)に加えられる前に、混合液(電解質溶液(2))は、電気伝導度が第3の範囲に制御される。例えば、混合液(電解質溶液(2))の電気伝導度を、混合液における硝酸の割合を調整することにより、既述の第3の範囲に制御する。この混合液(電解質溶液(2))の電気伝導度の第3の範囲は、90μS/cm〜130μS/cmの範囲である。
なお、溶媒(1)の体積を、例えば、7l程度とした場合、電解質溶液(2)は30〜40cc程度である。
このように、本実施形態に係る半導体装置の製造方法においては、先ず鉛フリーガラス微粒子を含む溶媒の誘電率を第1の範囲(5〜11)に制御し、次に誘電率を第1の範囲に制御した溶媒(イソプロピルアルコール(IPA)と酢酸エチルとの混合溶媒)に、電解質溶液(2)を加えて、電気伝導度を第2の範囲(20nS/cm〜100nS/cm)に制御した懸濁液を用いる電気泳動堆積法により、当該懸濁液中の鉛フリーガラス微粒子を半導体ウェーハのメサ溝に堆積させる。特に、本実施形態では、既述の溶媒(1)に加えられる前に、電解質(2)は、電気伝導度が第3の範囲(90μS/cm〜130μS/cm)に制御される。
さらに、既述のように、半導体ウェーハに形成されたメサ溝に堆積される鉛フリーガラス微粒子の堆積物の厚さを精度良く所定の厚さに制御することができる。
特に、鉛フリーガラス微粒子の堆積物の厚さが所定の厚さに制御されるため、この堆積物を焼成してガラス化したパッシベーション膜の膜厚も所定の膜厚に制御されることとなり、半導体ウェーハから切断分離された半導体装置のパッシベーション膜の絶縁性(逆方向特性)のばらつきを低減して当該半導体装置の信頼性を向上ことが可能となる。
(c)酸化膜除去工程
次に、ガラス被膜124の表面を覆うようにフォトレジスト126を形成した後、当該フォトレジスト126をマスクとして酸化膜116のエッチングを行い、Niめっき電極膜を形成する部位130における酸化膜116を除去する(図5)。
(d)粗面化領域形成工程
次に、Niめっき電極膜を形成する部位130における半導体ウェーハ表面の粗面化処理を行い、Niめっき電極と半導体ウェーハとの密着性を高くするための粗面化領域132を形成する(図6)。
(e)電極形成工程
次に、半導体ウェーハWにNiめっきを行い、粗面化領域132上(半導体ウェーハWの一方の表面の隣接する2つのメサ溝120間)にアノード電極134を形成するとともに、半導体ウェーハWの他方の表面にカソード電極136を形成する(図7)。
(f)半導体ウェーハ切断工程
次に、ダイシング又はレーザー等により、ガラス被膜124が形成されていないメサ溝120の底部120aの中央近傍に沿って、半導体ウェーハを切断して半導体ウェーハをチップ化して、半導体装置(メサ型のpnダイオード)100を製造する(図8)。
ここで、既述のガラス被膜形成工程で用いられる懸濁液12の特性を制御して、メサ溝120の底部120aの少なくとも一部(底部120aの中央近傍)が露出した(メサ溝120の底部に鉛フリーガラス微粒子の堆積物のガラス被膜124が形成されない)状態で、鉛フリーガラス微粒子の堆積物のガラス被膜124をメサ溝120の開口端120b周辺とメサ溝120の側壁120cを被覆するように精度良く所定の厚さに形成されている。
したがって、半導体ウェーハをチップ化するために、ダイシング又はレーザー等で半導体ウェーハをメサ溝120(底部120aの中央近傍)に沿って切断する際に、パシベーション膜であるガラス(ガラス被膜124)を切断する必要がなくなる。
すなわち、この半導体ウェーハ切断工程では、半導体ウェーハのシリコンを主として切断することとなる。これにより、切断の応力が低減され、半導体ウェーハのクラック等の発生が抑制され、半導体ウェーハの切断が容易になる。
以上のようにして、半導体装置(メサ型のpnダイオード)100を製造することができる。
ここで、上述の第1の実施形態に係る半導体装置の製造方法の効果を説明する。
図12は、懸濁液12の電気伝導度とメサ溝120の底部120aの堆積物の付着状態との関係の一例を示す図である。また、図13は、ガラス被膜形成工程における、焼成前のガラス被膜124が成膜された状態の半導体ウェーハの上面の写真である。また、図14は、ガラス被膜形成工程における、焼成後のガラス被膜124を含むメサ溝120の断面の写真である。
図12に示すように、懸濁液12の電気伝導度の第2の範囲を、20nS/cm〜100nS/cmの範囲に設定することで、鉛フリーガラス微粒子をメサ溝120の底部120aの少なくとも一部(例えば、底部120aの中央近傍)が露出した状態で精度よくメサ溝120に堆積させることができる。
そして、例えば、図13に示すように、実施形態に係るガラス被膜形成工程における、焼成前において、メサ溝120の底部120aの少なくとも一部(例えば、底部120aの中央近傍)が露出した状態で、ガラス被膜124がメサ溝120の開口端120b周辺とメサ溝120の側壁120cを被覆するように形成されているのが確認されている。
さらに、例えば、図14に示すように、実施形態に係るガラス被膜形成工程における、焼成後において、メサ溝120の底部120aの少なくとも一部が露出した状態で、ガラス被膜124がメサ溝120の開口端120b周辺とメサ溝120の側壁120cを被覆するように形成されているのが確認できている。
なお、既述のように、従来の電気泳動堆積法では、鉛フリーガラス微粒子の半導体ウェーハに対する付着性が安定せず、メサ溝に堆積される鉛フリーガラス微粒子の堆積物の厚さを精度良く所定の厚さに制御することができない。
一方、既述の条件を適用した実施形態に係る半導体装置の製造方法においては、メサ溝の底部の少なくとも一部が露出した状態で、鉛フリーガラス微粒子の堆積物のガラス被膜をメサ溝の開口端周辺とメサ溝の側壁を被覆するように精度良く所定の厚さに形成することができる。特に、鉛フリーガラス微粒子の半導体ウェーハに対する付着性が安定して、メサ溝に堆積される鉛フリーガラス微粒子の堆積物の厚さを精度良く所定の厚さに制御することができる。
以上のように、本発明の一態様に係る半導体装置の製造方法は、ガラス被膜形成面にメサ溝が形成された半導体ウェーハWを準備する半導体ウェーハ準備工程と、鉛フリーガラス微粒子を溶媒に懸濁させた懸濁液に、第1電極板と第2電極板とを懸濁液に浸漬した状態で対向して設置するとともに、第1電極板と第2電極板との間に半導体ウェーハをガラス被膜形成面が第1電極板側に向いた状態で、電気泳動堆積法によりガラス被膜形成面にガラス被膜124を形成するガラス被膜形成工程と、を含む。
そして、ガラス被膜形成工程は、メサ溝の底部の少なくとも一部が露出した状態で、鉛フリーガラス微粒子の堆積物であるガラス被膜をメサ溝の開口端120b周辺とメサ溝の側壁を被覆するように形成するものであり、ガラス被膜形成工程で用いられる懸濁液は、鉛フリーガラス微粒子を含む溶媒の誘電率を第1の範囲に制御した後、当該溶媒に、有機溶剤と電解質である硝酸とを含む混合液(電解質溶液)を加えて、その電気伝導度を第2の範囲に制御した懸濁液であり、溶媒の誘電率の第1の範囲は、5〜7の範囲であり、懸濁液の電気伝導度の第2の範囲は、20nS/cm〜100nS/cmの範囲である。
これにより、メサ溝の底部の少なくとも一部が露出した状態で、鉛フリーガラス微粒子の堆積物のガラス被膜をメサ溝の開口端周辺とメサ溝の側壁を被覆するように精度良く所定の厚さに形成することができる。
なお、上記実施形態においては、半導体ウェーハとしてシリコンからなる半導体ウェーハ板を用いたが、本発明はこれに限定されるものではない。例えば、SiC、GaN、GaOなどからなる半導体ウェーハを用いることもできる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 ガラス被膜形成装置
10 槽
12 懸濁液
14 第1電極板
16 第2電極板
20 電源装置
100 半導体装置
110 n−型半導体基板
112 p+型拡散層
114 n−型拡散層
116,118 酸化膜
120 溝(メサ溝)
120a メサ溝の底部
120b メサ溝の開口端
120c メサ溝の側壁
121 下地絶縁膜
124 ガラス被膜
126 フォトレジスト
130 Niめっき電極膜を形成する部位
132 粗面化領域
134 アノード電極
136 カソード電極
V1 第1電極板の電位
V2 第2電極板の電位
A 露出部

Claims (15)

  1. ガラス被膜形成面にメサ溝が形成された半導体ウェーハを準備する半導体ウェーハ準備工程と、鉛フリーガラス微粒子を溶媒に懸濁させた懸濁液に、第1電極板と第2電極板とを前記懸濁液に浸漬した状態で対向して設置するとともに、前記第1電極板と前記第2電極板との間に前記半導体ウェーハを前記ガラス被膜形成面が前記第1電極板側に向いた状態で、電気泳動堆積法により前記ガラス被膜形成面にガラス被膜を形成するガラス被膜形成工程と、を含む半導体装置の製造方法であって、
    前記ガラス被膜形成工程は、前記メサ溝の底部の少なくとも一部が露出した状態で、前記鉛フリーガラス微粒子の堆積物である前記ガラス被膜を前記メサ溝の開口端周辺と前記メサ溝の側壁を被覆するように形成するものであり、
    前記ガラス被膜形成工程で用いられる前記懸濁液は、
    前記鉛フリーガラス微粒子を含む前記溶媒の誘電率を第1の範囲に制御した後、当該溶媒に、有機溶剤と電解質である硝酸とを含む混合液を加えて、その電気伝導度を第2の範囲に制御した懸濁液であり、
    前記溶媒の誘電率の前記第1の範囲は、5〜7の範囲であり、
    前記懸濁液の電気伝導度の前記第2の範囲は、20nS/cm〜100nS/cmの範囲である
    ことを特徴とする半導体装置の製造方法。
  2. 前記混合液を調整することで、前記懸濁液の前記電気伝導度を前記第2の範囲に制御することを特徴とする請求項1に記載の半導体装置の製造方法。
  3. 前記溶媒に加えられる前に、前記混合液は、電気伝導度が第3の範囲に制御されており、前記混合液の電気伝導度の前記第3の範囲は、90μS/cm〜130μS/cmの範囲であることを特徴とする請求項2に記載の半導体装置の製造方法。
  4. 前記有機溶剤は、イソプロピルアルコール又は酢酸エチルであることを特徴とする請求項1に記載の半導体装置の製造方法。
  5. 前記混合液の前記電気伝導度を、前記混合液における前記硝酸の割合を調整することにより、前記第3の範囲に制御する
    ことを特徴とする請求項4に記載の半導体装置の製造方法。
  6. 前記溶媒は、イソプロピルアルコールと酢酸エチルとを含む混合溶媒であることを特徴とする請求項5に記載の半導体装置の製造方法。
  7. 前記溶媒の誘電率を、前記混合溶媒における前記酢酸エチルの割合を調整することにより、前記第1の範囲に制御する
    ことを特徴とする請求項6に記載の半導体装置の製造方法。
  8. 前記鉛フリーガラス微粒子は、SiO、Al、CaO、MgO、ZnO、B、BaOの少なくとも何れか1つを含む鉛フリーガラス微粒子である
    ことを特徴とする請求項1に記載の半導体装置の製造方法。
  9. 前記半導体ウェーハ準備工程は、
    主面に平行なpn接合を備える半導体ウェーハを準備する工程と、
    前記半導体ウェーハの一方の表面から前記pn接合を超える深さのメサ溝を形成することにより、前記メサ溝の内面に前記pn接合の露出部を形成する工程と、
    前記pn接合の露出部を覆うように前記メサ溝の内面に下地絶縁膜を形成する工程と、を含む
    ことを特徴とする請求項3に記載の半導体装置の製造方法。
  10. 前記懸濁液は、界面活性剤を含まないことを特徴とする請求項1に記載の半導体装置の製造方法。
  11. 前記半導体ウェーハ準備工程は、半導体ウェーハの表面に前記メサ溝の側壁のpn接合の露出部を形成する工程と、前記pn接合の露出部を覆うように前記半導体ウェーハの表面に下地絶縁膜を形成する工程と、を含む
    ことを特徴とする請求項3に記載の半導体装置の製造方法。
  12. 前記ガラス被膜形成工程は、前記ガラス被膜を、前記メサ溝の開口端周辺及び前記メサ溝の側壁の前記下地絶縁膜の表面に形成する
    ことを特徴とする請求項9に記載の半導体装置の製造方法。
  13. 前記半導体ウェーハの前記一方の表面の隣接する2つの前記メサ溝間にアノード電極を形成するとともに、前記半導体ウェーハの他方の表面にカソード電極を形成する電極形成工程をさらに備える
    ことを特徴とする請求項12に記載の半導体装置の製造方法。
  14. 前記ガラス被膜は、前記下地絶縁膜を介して、前記pn接合の露出部を覆っていることを特徴とする請求項12に記載の半導体装置の製造方法。
  15. 前記ガラス被膜が形成されていない前記メサ溝の前記底部の中央近傍に沿って前記半導体ウェーハを切断して前記半導体ウェーハをチップ化する半導体ウェーハ切断工程をさらに含む
    ことを特徴とする請求項14に記載の半導体装置の製造方法。
JP2017540673A 2017-04-19 2017-04-19 半導体装置の製造方法 Active JP6396598B1 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/015723 WO2018193554A1 (ja) 2017-04-19 2017-04-19 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP6396598B1 true JP6396598B1 (ja) 2018-09-26
JPWO2018193554A1 JPWO2018193554A1 (ja) 2019-06-27

Family

ID=63668535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017540673A Active JP6396598B1 (ja) 2017-04-19 2017-04-19 半導体装置の製造方法

Country Status (4)

Country Link
JP (1) JP6396598B1 (ja)
CN (1) CN109121423B (ja)
TW (1) TWI657512B (ja)
WO (1) WO2018193554A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230024412A1 (en) * 2019-12-20 2023-01-26 3M Innovative Properties Company Light control film and a method of manufacturing the same
CN114171416B (zh) * 2022-02-14 2022-06-03 浙江里阳半导体有限公司 一种tvs芯片及其玻璃钝化方法、制造方法
CN117558687A (zh) * 2024-01-10 2024-02-13 江苏吉莱微电子股份有限公司 一种新型电泳工艺结构芯片及其制造方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596640A (en) * 1979-01-19 1980-07-23 Hitachi Ltd Method of forming glass film on semiconductor substrate
JPS57143832A (en) * 1981-02-27 1982-09-06 Matsushita Electronics Corp Manufacture of semiconductor device
JPS5834198A (ja) * 1981-08-21 1983-02-28 Toshiba Corp 粉体塗布方法
JPS5951533A (ja) * 1982-09-17 1984-03-26 Matsushita Electronics Corp 半導体装置の製造方法
JPH033931B2 (ja) * 1983-10-27 1991-01-21 Nippon Electric Glass Co
JPH0729900A (ja) * 1993-07-12 1995-01-31 Nippon Electric Glass Co Ltd 半導体装置のガラス被覆方法
JP2007277646A (ja) * 2006-04-07 2007-10-25 Nts:Kk 熱伝導材、放熱構造を備えた装置、及び、熱伝導材の製造方法
WO2013168314A1 (ja) * 2012-05-08 2013-11-14 新電元工業株式会社 半導体装置の製造方法及び半導体装置
WO2016075787A1 (ja) * 2014-11-13 2016-05-19 新電元工業株式会社 半導体装置の製造方法及びガラス被膜形成装置
JP6235190B1 (ja) * 2016-02-05 2017-11-22 新電元工業株式会社 半導体装置の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3639975A (en) * 1969-07-30 1972-02-08 Gen Electric Glass encapsulated semiconductor device fabrication process
JPS5832421A (ja) * 1981-08-20 1983-02-25 Nec Corp 半導体装置の製造方法
JPS6331125A (ja) * 1986-07-25 1988-02-09 Toshiba Components Kk 半導体装置の製造方法
JPH04296087A (ja) * 1991-03-26 1992-10-20 Oki Electric Ind Co Ltd ホーロー基板とその製造方法
JP2005243893A (ja) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd メサ型半導体装置の製造方法
CN1302523C (zh) * 2004-12-21 2007-02-28 天津中环半导体股份有限公司 一种台面整流器件的玻璃钝化形成工艺
CN101393929A (zh) * 2008-11-10 2009-03-25 吉林华微电子股份有限公司 双正斜角槽终端半导体分立器件可控硅及其制造方法
WO2012160704A1 (ja) * 2011-05-26 2012-11-29 新電元工業株式会社 半導体接合保護用ガラス組成物、半導体装置の製造方法及び半導体装置
JP6254765B2 (ja) * 2013-03-22 2017-12-27 新電元工業株式会社 メサ型半導体素子及びその製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5596640A (en) * 1979-01-19 1980-07-23 Hitachi Ltd Method of forming glass film on semiconductor substrate
JPS57143832A (en) * 1981-02-27 1982-09-06 Matsushita Electronics Corp Manufacture of semiconductor device
JPS5834198A (ja) * 1981-08-21 1983-02-28 Toshiba Corp 粉体塗布方法
JPS5951533A (ja) * 1982-09-17 1984-03-26 Matsushita Electronics Corp 半導体装置の製造方法
JPH033931B2 (ja) * 1983-10-27 1991-01-21 Nippon Electric Glass Co
JPH0729900A (ja) * 1993-07-12 1995-01-31 Nippon Electric Glass Co Ltd 半導体装置のガラス被覆方法
JP2007277646A (ja) * 2006-04-07 2007-10-25 Nts:Kk 熱伝導材、放熱構造を備えた装置、及び、熱伝導材の製造方法
WO2013168314A1 (ja) * 2012-05-08 2013-11-14 新電元工業株式会社 半導体装置の製造方法及び半導体装置
WO2016075787A1 (ja) * 2014-11-13 2016-05-19 新電元工業株式会社 半導体装置の製造方法及びガラス被膜形成装置
JP6235190B1 (ja) * 2016-02-05 2017-11-22 新電元工業株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
WO2018193554A1 (ja) 2018-10-25
CN109121423A (zh) 2019-01-01
TWI657512B (zh) 2019-04-21
TW201839866A (zh) 2018-11-01
JPWO2018193554A1 (ja) 2019-06-27
CN109121423B (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
KR101851884B1 (ko) 반도체 장치의 제조 방법 및 유리 피막 형성 장치
JP6396598B1 (ja) 半導体装置の製造方法
JPH03149817A (ja) シリコンプレートを電気化学的にエッチングする方法
TWI652740B (zh) 半導體裝置的製造方法及半導體裝置
JP6235190B1 (ja) 半導体装置の製造方法
US10186425B2 (en) Method of manufacturing semiconductor device and resist glass
JP2017157670A (ja) 半導体装置
JPWO2012160962A1 (ja) 半導体装置の製造方法及び半導体装置
JP6251846B1 (ja) 半導体装置の製造方法
JPS6161533B2 (ja)
JPS5951533A (ja) 半導体装置の製造方法
JPS5984431A (ja) 半導体装置の製造方法
CN114267601A (zh) 一种平面可控硅芯片的钝化工艺
JPS5836495B2 (ja) 半導体装置の製造方法
JPS59151417A (ja) 半導体結晶薄膜の製造方法
JPS6360531B2 (ja)
JPH03229418A (ja) 半導体装置の製造方法
JPS59213136A (ja) メサ型半導体装置
JPS62222673A (ja) シヨツトキバリヤ形半導体装置およびその製造方法
JPS59100543A (ja) 半導体素子の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180829

R150 Certificate of patent or registration of utility model

Ref document number: 6396598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150