WO2016072804A1 - 이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체, 그 제조방법 및 이를 이용한 발광소자 - Google Patents

이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체, 그 제조방법 및 이를 이용한 발광소자 Download PDF

Info

Publication number
WO2016072804A1
WO2016072804A1 PCT/KR2015/011958 KR2015011958W WO2016072804A1 WO 2016072804 A1 WO2016072804 A1 WO 2016072804A1 KR 2015011958 W KR2015011958 W KR 2015011958W WO 2016072804 A1 WO2016072804 A1 WO 2016072804A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
inorganic hybrid
hybrid perovskite
dimensional structure
light emitting
Prior art date
Application number
PCT/KR2015/011958
Other languages
English (en)
French (fr)
Inventor
이태우
임상혁
김영훈
조힘찬
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to US15/524,429 priority Critical patent/US10109805B2/en
Priority to JP2017524021A priority patent/JP6867287B2/ja
Publication of WO2016072804A1 publication Critical patent/WO2016072804A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/24Lead compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/188Metal complexes of other metals not provided for in one of the previous groups
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/70Nanostructure
    • Y10S977/788Of specified organic or carbon-based composition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/84Manufacture, treatment, or detection of nanostructure
    • Y10S977/895Manufacture, treatment, or detection of nanostructure having step or means utilizing chemical property
    • Y10S977/896Chemical synthesis, e.g. chemical bonding or breaking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure
    • Y10S977/932Specified use of nanostructure for electronic or optoelectronic application
    • Y10S977/949Radiation emitter using nanostructure
    • Y10S977/95Electromagnetic energy

Definitions

  • the present invention relates to a light emitting device and a light emitting device using the same, and more particularly, to an organic-inorganic hybrid perovskite nanocrystalline particle light emitting device having a two-dimensional structure and a light emitting device using the same.
  • organic light emitters have the advantage of high efficiency, but the color spectrum is poor due to the broad spectrum.
  • Inorganic quantum dot light emitters have been known to have good color purity, but since the light emission is due to the quantum size effect, it is difficult to control the quantum dot size uniformly toward the blue side, and thus there is a problem that the color purity falls.
  • the inorganic quantum dot has a very deep valence band, so that the hole injection barrier in the organic hole injection layer is very large, which makes the hole injection difficult.
  • the two light emitters are expensive. Therefore, there is a need for a new type of organic / inorganic hybrid light emitting body that complements and maintains the disadvantages of organic and inorganic light emitting bodies.
  • Organic-inorganic hybrid materials have the advantages of organic materials, which are low in manufacturing cost, simple in manufacturing and device fabrication process, easy to control optical and electrical properties, and inorganic materials having high charge mobility and mechanical and thermal stability. I can have it and am attracting attention academically and industrially.
  • the organic-inorganic hybrid perovskite material has high color purity, simple color control, and low synthesis cost, so there is great potential for development as a light-emitting body.
  • High color purity has a layered structure in which the 2D plane of the inorganic material is sandwiched between the 2D plane of the organic material, and the dielectric constant difference between the inorganic and organic material is large ( ⁇ organic ⁇ 2.4, ⁇ inorganic ⁇ 6.1)
  • the excitons are bound to the inorganic layer and are therefore formed because they have a high color purity (FWHMM ⁇ 20 nm).
  • Organic / inorganic hybrid perovskite having a perovskite crystal structure is currently mainly studied as a light absorber of a solar cell, but its characteristics have great potential as a light emitter.
  • the organic / inorganic hybrid perovskite has a lamellar structure in which the organic and inorganic planes are alternately stacked, and the exciton can be bound within the inorganic plane, so that the color structure is very high by the crystal structure itself rather than the size of the material. It can be an ideal light emitter that emits light.
  • Korean Patent Laid-Open No. 10-2001-0015084 (2001.02.26.) Discloses an electroluminescent device using a dye-containing organic-inorganic hybrid material in the form of a thin film to use as a light emitting layer.
  • organic / inorganic hybrid perovskite has a small exciton binding energy, it is possible to emit light at low temperatures, but at room temperature, the fundamental problem that excitons do not go into luminescence but is separated into free charges and disappears due to thermal ionization and delocalization of charge carriers. There is.
  • the free charge recombines again to form excitons, there is a problem that the excitons are dissipated by the surrounding layer having high conductivity, so that light emission does not occur. Therefore, in order to increase luminous efficiency and luminance of organic / inorganic hybrid perovskite-based LEDs, it is necessary to prevent quenching of exciton.
  • the problem to be solved by the present invention is to synthesize the organic-inorganic hybrid perovskite having a two-dimensional (2 dimensional) structure as a nano-crystal instead of a thin film to prevent thermal ionization, delocalization of the charge carrier and quenching of excitons, the luminous efficiency and
  • the present invention provides a nanocrystalline particle emitter having improved durability and stability, and a light emitting device using the same.
  • the organic-inorganic hybrid perovskite nanocrystalline particle emitter having a two-dimensional structure may include an organic-inorganic hybrid perovskite nanocrystalline structure having a two-dimensional structure while being dispersed in an organic solvent.
  • the organic solvent includes a protic solvent or an aprotic solvent
  • the protic solvent is dimethylformamide, gamma butyrolactone, N-methylpyrrolidone or Dimethylsulfoxide
  • the aprotic solvent is dichloroethylene, trichloroethylene, chloroform, chlorobenzene, dichlorobenzene, styrene, dimethylformamide, dimethylsulfoxide, xylene, toluene , Cyclohexene or isopropyl alcohol.
  • the two-dimensional structure is centered on the center metal, face centered cubic (FCC), and 6 inorganic halide materials are located on all surfaces of the cube, and body ammonium (BCC) organic ammonium is used.
  • FCC face centered cubic
  • BCC body ammonium
  • It is an organic-inorganic hybrid perovskite nanocrystal structure having eight hexahedrons at all vertices of the hexahedron, including structures having the same length and length but 1.5 times longer than the length and length.
  • the nanocrystalline particles may have a spherical shape, a cylinder, an elliptic cylinder, or a polygonal pillar.
  • the size of the nanocrystalline particles may be 1 nm to 900 nm.
  • the emission wavelength of the nanocrystalline light emitter is characterized in that 200 nm to 1300 nm.
  • the bandgap energy of the organic-inorganic hybrid perovskite nanocrystalline particles is characterized by the structure of the crystal, not depending on the particle size.
  • the band gap energy of the nanocrystalline particles may be 1 eV to 5 eV.
  • the organic-inorganic hybrid perovskite includes a structure of A 2 BX 4 , ABX 4 or A n- 1 B n X 3n +1 (n is an integer between 2 and 6), wherein A is an organic ammonium, and B is a metal material, and X may be a halogen element.
  • A is (CH 3 NH 3 ) n , ((C x H 2x + 1 ) n NH 3 ) 2 (CH 3 NH 3 ) n , (RNH 3 ) 2 , (C n H 2n + 1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 or (C n F 2n + 1 NH 3 ) 2 (n is an integer of 1 or more), and B is a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof, and X may be Cl, Br, I, or a combination thereof.
  • the organic-inorganic hybrid perovskite nanocrystalline particles may further include a plurality of organic ligands surrounding the surface.
  • the organic ligand may include an alkyl halide.
  • the alkyl structure of the alkyl halide is acyclic alkyl having a structure of C n H 2n +1 , primary alcohol, secondary alcohol, secondary alcohol, tertiary alcohol, alkylamine ), p-substituted aniline, phenyl ammonium or fluorine ammonium.
  • another aspect of the present invention provides a method for preparing an organic-inorganic hybrid perovskite nanocrystalline particle emitter having a two-dimensional structure.
  • the organic-inorganic hybrid perovskite nanocrystalline particle emitter manufacturing method having the two-dimensional structure is an alkyl halide in a first solution and an aprotic solvent in which the organic-inorganic hybrid perovskite having a two-dimensional structure is dissolved in a protic solvent
  • the method may include preparing a second solution in which a surfactant is dissolved, and mixing the first solution with the second solution to form nanocrystalline particles.
  • the step of mixing the first solution to the second solution to form nanocrystalline particles characterized in that the first solution by dropping the first solution drop by mixing.
  • the organic-inorganic hybrid perovskite includes a structure of A 2 BX 4 , ABX 4 or A n- 1 B n X 3n +1 (n is an integer between 2 and 6), wherein A is an organic ammonium , B is a metal material, and X may be a halogen element.
  • A is (CH 3 NH 3 ) n , ((C x H 2x + 1 ) n NH 3 ) 2 (CH 3 NH 3 ) n , (RNH 3 ) 2 , (C n H 2n + 1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 or (C n F 2n + 1 NH 3 ) 2 (n is an integer of 1 or more), and B is a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof, and X may be Cl, Br, I, or a combination thereof.
  • the first solution is formed by dissolving AX and BX 2 in a proportion in a protic solvent.
  • the light emitting device may include a light emitting layer including a first electrode, a second electrode, and an organic-inorganic hybrid perovskite nanocrystalline particle light emitting body having a two-dimensional structure and positioned between the first electrode and the second electrode. Can be.
  • the nanocrystalline particle emitter including the two-dimensional organic / inorganic hybrid perovskite according to the present invention forms an organic-inorganic hybrid perovskite nanocrystal having a crystal structure combining FCC and BCC in the nanocrystalline particle emitter,
  • the lamellar structure is formed by alternately stacking the plane and the inorganic plane, and excitons are constrained to the inorganic plane to produce high color purity.
  • the exciton diffusion length in the nanocrystal particles within 900 nm is reduced, and the exciton binding energy is increased to prevent the exciton disappearance due to thermal ionization and delocalization of the charge carriers. It can have a luminous efficiency at room temperature.
  • the band gap energy of the organic-inorganic hybrid perovskite nanocrystalline particles is determined by the structure of the crystal, not depending on the particle size.
  • the organic-inorganic hybrid perovskite having a three-dimensional structure such as the ABX 3 structure it has a two-dimensional structure such as that of A 2 BX 4 , ABX 4 or A n-1 B n X 3n + 1 .
  • the distance between the inorganic planes on which the exciton is constrained can be increased, thereby increasing the exciton binding energy to further improve luminous efficiency and increasing durability-stability.
  • the size of the organic-inorganic hybrid perovskite nanocrystals according to the length and size of the alkyl halide surfactant organic-inorganic hybrid perovskite A sky nanocrystalline light emitter can be synthesized.
  • FIG. 1 is a schematic diagram of a perovskite nanocrystal structure according to an embodiment of the present invention.
  • Figure 2 is a flow chart showing a method for producing an organic-inorganic hybrid perovskite nanocrystalline particles light emitting having a two-dimensional structure according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing a method for producing an organic-inorganic hybrid perovskite nanocrystalline particle light emitter having a two-dimensional structure according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing an organic-inorganic hybrid perovskite nanocrystalline particle light emitter having a two-dimensional structure according to an embodiment of the present invention.
  • Figure 5 is a schematic diagram showing the organic-inorganic hybrid perovskite nanocrystals having a two-dimensional structure formed through the Inverse nano-emulsion method of the present invention.
  • first, second, etc. may be used to describe various elements, components, regions, layers, and / or regions, such elements, components, regions, layers, and / or regions It will be understood that it should not be limited by these terms.
  • 1 is a structure of the organic-inorganic hybrid perovskite nanocrystals according to an embodiment of the present invention.
  • the organic-inorganic hybrid perovskite nanocrystal has a center metal in the center, and is face centered cubic (FCC), and six inorganic halide materials (X) are positioned on all surfaces of the cube.
  • the body-centered cubic (BCC) has an organic ammonium (OA) that forms eight structures at all vertices of the cube.
  • Pb is shown as an example of the center metal at this time.
  • all sides of the cube form 90 °, and include a cubic structure having the same horizontal length, vertical length, and height, as well as tetragonal structure having the same horizontal length and vertical length but different height lengths.
  • the two-dimensional structure according to the present invention has the center metal in the center, the center of the cubic structure of the inorganic halide material is located on all six surfaces of the cube, and the body of the cubic structure of the organic ammonium is located at all vertices of the hexahedron
  • the width and length are the same, but the height is defined as a structure 1.5 times longer than the length and length.
  • Figure 2 is a flow chart showing a method for producing an organic-inorganic hybrid perovskite nanocrystalline particles light emitting having a two-dimensional structure according to an embodiment of the present invention.
  • the organic-inorganic hybrid perovskite nanocrystalline particle emitter manufacturing method having a two-dimensional structure is a first solution and aprotic in which the organic-inorganic hybrid perovskite having a two-dimensional structure is dissolved in a protic solvent
  • the method may include preparing a second solution in which an alkyl halide surfactant is dissolved in a magnetic solvent (S100) and mixing the first solution with the second solution to form nanocrystalline particles (S200).
  • the organic-inorganic hybrid perovskite nanocrystalline particle emitter having a two-dimensional structure according to the present invention can be prepared through an inverse nano-emulsion method.
  • a first solution in which an organic-inorganic hybrid perovskite having a two-dimensional structure is dissolved in a protic solvent and a second solution in which an alkyl halide surfactant is dissolved in an aprotic solvent are prepared S100.
  • the protic solvent may include dimethylformamide, gamma butyrolactone or N-methylpyrrolidone, or dimethylsulfoxide, but is not limited thereto. It is not.
  • the organic-inorganic hybrid perovskite at this time may be a material having a two-dimensional crystal structure.
  • such organic-inorganic hybrid perovskite may be of the structure of A 2 BX 4 , ABX 4 or A n- 1 Pb n I 3n +1 (n is an integer between 2 and 6).
  • A is an organoammonium material
  • B is a metal material
  • X is a halogen element
  • A is (CH 3 NH 3 ) n , ((C x H 2x + 1 ) n NH 3 ) 2 (CH 3 NH 3 ) n , (RNH 3 ) 2 , (C n H 2n + 1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 or (C n F 2n + 1 NH 3 ) 2 (n is an integer of 1 or more), and B is a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof, X may be Cl, Br, I or a combination thereof.
  • such perovskite can be prepared by combining AX and BX 2 in a certain ratio. That is, the first solution may be formed by dissolving AX and BX 2 in a proportion in a protic solvent.
  • a first solution in which A 2 BX 3 organic-inorganic hybrid perovskite is dissolved may be prepared by dissolving AX and BX 2 in a protic solvent in a 2: 1 ratio.
  • the aprotic solvent at this time is dichloroethylene, trichloroethylene, chloroform, chlorobenzene, dichlorobenzene, styrene, dimethylformamide, dimethyl sulfoxide, xylene, toluene, cyclohexene or isopropyl alcohol May be included but is not limited to this.
  • the alkyl halide surfactant may be of the structure of alkyl-X.
  • the halogen element corresponding to X may include Cl, Br, or I.
  • the alkyl structure includes primary alcohols and secondary alcohols having a structure such as acyclic alkyl having a structure of C n H 2n +1 , C n H 2n + 1 OH, and the like.
  • Tertiary alcohol, alkylamine with alkyl-N structure (ex.
  • the first solution is mixed with the second solution to form nanocrystalline particles (S200).
  • nanocrystalline particles In the forming of the nanocrystalline particles by mixing the first solution with the second solution, it is preferable to drop the first solution drop by drop into the second solution.
  • the second solution at this time may be stirred.
  • nanocrystalline particles may be synthesized by slowly dropping a second solution in which an organic-inorganic perovskite (OIP) is dissolved into a second solution in which a strongly stirring alkyl halide surfactant is dissolved.
  • OIP organic-inorganic perovskite
  • an organic-inorganic hybrid perovskite nanocrystalline particle emitter including an organic-inorganic perovskite nanocrystal structure and a plurality of alkyl halide organic ligands surrounding the organic / inorganic perovskite nanocrystal structure can be prepared.
  • the size of the organic-inorganic perovskite nanocrystalline particles can be controlled by adjusting the length or shape factor of the alkyl halide surfactant.
  • shape factor adjustment can control the size through a linear, tapered or inverted triangular surfactant.
  • the size of the organic-inorganic perovskite nanocrystalline particles thus produced is preferably 1 nm to 900 nm.
  • the size of the nano-crystal grains at this time means a size that does not consider the length of the ligand to be described later, that is, the size of the remaining portion except for these ligands.
  • the fundamental problem is that excitons do not go into luminescence due to thermal ionization and delocalization of charge carriers in large nanocrystals. There may be.
  • FIG. 3 is a schematic diagram showing a method of preparing an organic-inorganic hybrid perovskite nanocrystalline particle emitter having a two-dimensional structure according to an embodiment of the present invention through an inverse nano-emulsion method.
  • a first solution in which an organic-inorganic hybrid perovskite having a two-dimensional structure is dissolved in a protic solvent is added to a second solution in which an alkyl halide surfactant is dissolved in an aprotic solvent.
  • the protic solvent may include dimethylformamide, gamma butyrolactone or N-methylpyrrolidone, or dimethylsulfoxide, but is not limited thereto. It is not.
  • the organic-inorganic hybrid perovskite having a two-dimensional structure is A 2 BX 4 , ABX 4 Or A n- 1 B n I 3n +1 (n is an integer between 2 and 6).
  • A is an organoammonium material
  • B is a metal material
  • X is a halogen element.
  • A is (CH 3 NH 3 ) n , ((C x H 2x + 1 ) n NH 3 ) 2 (CH 3 NH 3 ) n , (RNH 3 ) 2 , (C n H 2n + 1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 or (C n F 2n + 1 NH 3 ) 2 (n is an integer of 1 or more), and B is a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, or a combination thereof. At this time, the rare earth metal may be Ge, Sn, Pb, Eu or Y
  • the structure of the perovskite at this time may be formed by a ratio-specific combination of AX and BX 2 .
  • a first solution in which A 2 BX 3 organic-inorganic hybrid perovskite is dissolved may be prepared by dissolving AX and BX 2 in a protic solvent in a 2: 1 ratio.
  • organic-inorganic hybrid perovskite is precipitated in the second solution due to the difference in solubility, and the precipitated organic-inorganic hybrid perovskite is deposited.
  • the alkyl halide surfactant surrounds and stabilizes the surface to produce the organic-inorganic hybrid perovskite nanocrystalline particle emitter 100 including the organic-inorganic hybrid perovskite nanocrystal structure well dispersed.
  • the surface of the organic-inorganic hybrid perovskite nanocrystalline particles are surrounded by organic ligands, which are alkyl halides.
  • the protic solvent including the organic-inorganic hybrid perovskite nanocrystalline particle emitter 100 dispersed in the aprotic solvent in which the alkyl halide surfactant is dissolved is selectively evaporated by heating, or Aprotic solvents including nanocrystalline particles are selectively extracted from aprotic solvents by adding aprotic solvents and co-solvents that can be dissolved in all to obtain organic-inorganic hybrid perovskite nanocrystalline particle emitters. Can be.
  • Organic-inorganic hybrid perovskite nanocrystalline particles emitter having a two-dimensional structure may include an organic-inorganic hybrid perovskite nanocrystalline structure having a two-dimensional structure that can be dispersed in an organic solvent.
  • the organic solvent may be a protic solvent or an aprotic solvent.
  • the protic solvent includes dimethylformamide, gamma butyrolactone, N-methylpyrrolidone or dimethylsulfoxide
  • Protic solvents may include dichloroethylene, trichloroethylene, chloroform, chlorobenzene, dichlorobenzene, styrene, dimethylformamide, dimethylsulfoxide, xylene, toluene, cyclohexene or isopropyl alcohol .
  • the nanocrystalline particles may have a spherical shape, a cylinder, an elliptic cylinder or a polygonal pillar.
  • the size of the nanocrystalline particles may be 1 nm to 900 nm.
  • the diameter of the nanocrystalline particles may be 1 nm to 900 nm.
  • the size of the nano-crystal grains at this time does not consider the length of the ligand to be described later, means the size of the remaining portion except for these ligands.
  • the band gap energy of the nanocrystalline particles may be 1 eV to 5 eV. Therefore, since the energy band gap is determined according to the constituent material or crystal structure of the nanocrystalline particles, by adjusting the constituent material of the nanocrystalline particles, it is possible to emit light having a wavelength of, for example, 200 nm to 1300 nm.
  • organic-inorganic hybrid perovskite nanocrystalline particles may further include a plurality of organic ligands surrounding the surface.
  • FIG. 3 is a schematic diagram showing an organic-inorganic hybrid perovskite nanocrystalline particle light emitter having a two-dimensional structure according to an embodiment of the present invention.
  • the light emitter according to the exemplary embodiment of the present invention is an organic-inorganic hybrid perovskite nanocrystalline particle having a two-dimensional structure that can be dispersed in an organic solvent, and an lamella in which an organic plane and an inorganic plane are alternately stacked.
  • the organic-inorganic hybrid perovskite having such a two-dimensional structure may include a structure of A 2 BX 4 , ABX 4 or A n- 1 Pb n I 3n +1 (n is an integer between 2 and 6).
  • A is an organoammonium material
  • B is a metal material
  • X is a halogen element.
  • A is (CH 3 NH 3 ) n , ((C x H 2x + 1 ) n NH 3 ) 2 (CH 3 NH 3 ) n , (RNH 3 ) 2 , (C n H 2n + 1 NH 3 ) 2 , (CF 3 NH 3 ), (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 (CF 3 NH 3 ) n , ((C x F 2x + 1 ) n NH 3 ) 2 or (C n F 2n + 1 NH 3 ) 2 (n is an integer of 1 or more), and B is a divalent transition metal, a rare earth metal, an alkaline earth metal, Pb, Sn, Ge, Ga, In, Al, Sb,
  • the organic-inorganic hybrid perovskite nanocrystalline particle emitter 100 having a two-dimensional structure according to the present invention is a plurality of organic ligands surrounding the organic-inorganic hybrid perovskite nanocrystalline structure (110) ( 120 may be further included.
  • the organic ligands 120 may include an alkyl halide as a material used as a surfactant. Therefore, the alkyl halide used as a surfactant to stabilize the surface of the organic-inorganic hybrid perovskite precipitated as described above becomes an organic ligand surrounding the surface of the organic-inorganic hybrid perovskite nanocrystals.
  • the length of the alkyl halide surfactant is short, since the size of the nanocrystalline particles are formed to be larger than 900 nm can be formed, in this case thermal ionization and delocalization of the charge carrier in the large nanocrystals There is a fundamental problem that the excitons do not go to the light emission but are separated by the free charge and disappear.
  • the size of the organic-inorganic hybrid perovskite nanocrystalline particles formed is inversely proportional to the length of the alkyl halide surfactant used to form such nanocrystalline particles.
  • the size of the organic-inorganic hybrid perovskite nanocrystalline particles formed by using an alkyl halide of a predetermined length or more as a surfactant to a predetermined size or less.
  • an alkyl halide of a predetermined length or more as a surfactant
  • octadecyl-ammonium bromide may be used as an alkyl halide surfactant to form organic-inorganic hybrid perovskite nanocrystalline particles having a size of 900 nm or less.
  • a light emitting device according to an embodiment of the present invention will be described.
  • the light emitting device may be a device using a light emitting layer including the organic-inorganic hybrid perovskite nanocrystalline particle light emitting body having the above-described two-dimensional structure.
  • the light emitting device is located between the first electrode, the second electrode, and the first electrode and the second electrode, the organic-inorganic hybrid perovskite nanocrystalline particles having the two-dimensional structure described above It may include a light emitting layer including a light emitter.
  • An organic-inorganic hybrid perovskite nanocrystalline particle emitter having a two-dimensional structure according to an embodiment of the present invention was formed. It was formed through the inverse nano-emulsion method.
  • a first solution was prepared by dissolving an organic-inorganic hybrid perovskite in a protic solvent.
  • Dimethylformamide was used as the protic solvent, and organic-inorganic hybrid perovskite (CH 3 NH 3 ) 2 PbBr 4 was used.
  • the (CH 3 NH 3 ) 2 PbBr 4 used was a mixture of CH 3 NH 3 Br and PbBr 2 in a 2: 1 ratio.
  • the first solution was slowly added dropwise to the strongly stirring second solution to form a nanocrystalline particle emitter including organic-inorganic hybrid perovskite nanocrystals having a two-dimensional structure.
  • the size of the organic-inorganic hybrid perovskite nanocrystalline particles is about 20nm.
  • organic-inorganic hybrid perovskite nanocrystalline particles in the solution state were spin-coated on a glass substrate to form an organic-inorganic hybrid perovskite nanocrystalline particle thin film (OIP-NP film).
  • OIP-NP film organic-inorganic hybrid perovskite nanocrystalline particle thin film
  • the size of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is about 20nm.
  • the organic-inorganic hybrid perovskite nanocrystalline particles having a two-dimensional structure according to an embodiment of the present invention is carried out in the same manner as in Preparation Example 1, but using an alkyl halide surfactant as CH 3 (CH 2 ) 13 NH 3 Br A light emitter was formed.
  • the size of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is about 100nm.
  • the organic-inorganic hybrid perovskite nanocrystalline particles having a two-dimensional structure by performing the same as in Preparation Example 1, but using an alkyl halide surfactant CH 3 (CH 2 ) 10 NH 3 Br A light emitter was formed.
  • the size of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is about 300nm.
  • the organic-inorganic hybrid perovskite nanocrystalline particles having a two-dimensional structure according to an embodiment of the present invention is carried out in the same manner as in Preparation Example 1, but using an alkyl halide surfactant as CH 3 (CH 2 ) 7 NH 3 Br A light emitter was formed.
  • the size of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is about 500nm.
  • the organic-inorganic hybrid perovskite nanocrystalline particles having a two-dimensional structure according to an embodiment of the present invention is carried out in the same manner as in Preparation Example 1, but using an alkyl halide surfactant CH 3 (CH 2 ) 4 NH 3 Br A light emitter was formed.
  • the size of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is about 700nm.
  • the organic-inorganic hybrid perovskite nanocrystalline particle emitter having a two-dimensional structure according to an embodiment of the present invention is formed by performing the same method as Preparation Example 1, but using an alkyl halide surfactant CH 3 CH 2 NH 3 Br. It was.
  • the size of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is about 800nm.
  • an organic-inorganic hybrid perovskite nanocrystalline particle emitter having a two-dimensional structure according to an embodiment of the present invention was formed using an alkyl halide surfactant CH 3 NH 3 Br.
  • the size of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is about 900nm.
  • the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time emits ultraviolet light or light near blue.
  • the emission spectrum is located at about 380 nm.
  • the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time emits light in the infrared or near red color.
  • the emission spectrum is located at about 780 nm.
  • the emission spectrum of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is located between 380 nm and 520 nm.
  • an organic-inorganic hybrid perovskite (CH 3 NH 3 ) 2 PbI x Br 4 -x was used.
  • the (CH 3 NH 3 ) 2 PbI x Br 4-x used was a mixture of CH 3 NH 3 I and PbBr 2 in a constant ratio.
  • the emission spectrum of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is located between 520 nm and 780 nm.
  • the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time emit infrared light and the emission spectrum is located at about 800 nm.
  • an organic-inorganic hybrid perovskite (CH 3 NH 3 ) 2 Pb x Sn 1 - x I 4 It was used.
  • the emission spectrum of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is located at 820 nm and 1120 nm.
  • the emission spectra of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time are located at 540 nm and 650 nm.
  • the emission spectra of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time are located at 400 nm and 460 nm.
  • the emission spectrum of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is located at about 411 nm.
  • the emission spectrum of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is located at about 405 nm.
  • the emission spectrum of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is located at about 401 nm.
  • the emission spectrum of the organic-inorganic hybrid perovskite nanocrystalline particles formed at this time is located at about 388 nm.
  • a light emitting device according to an embodiment of the present invention was manufactured.
  • an ITO substrate glass substrate coated with an ITO anode
  • spin-coated PEDOT: PSS AI4083 manufactured by Heraeus
  • a conductive material on the ITO anode, and heat-treat at 150 ° C. for 30 minutes to inject a 40 nm thick hole.
  • a layer was formed.
  • TPBI 1,3,5-Tris (1-phenyl- 1H-benzimidazol-2-yl) benzene
  • Evaporation is performed at the following high vacuum to form an electron transport layer, 1 nm thick LiF is deposited thereon to form an electron injection layer, and 100 nm thick aluminum is deposited thereon to form a negative electrode to form an organic / inorganic hybrid perovskite.
  • a nanocrystalline light emitting device was manufactured.
  • the first solution is then spin coated onto a glass substrate to provide (CH 3 NH 3 ) 2 PbBr 4
  • a thin film (OIP film) was prepared.
  • the first solution is then spin coated onto a glass substrate to provide (CH 3 NH 3 ) 2 PbCl 4
  • a thin film (OIP film) was prepared.
  • Figure 4 is a schematic diagram showing the organic-inorganic hybrid perovskite nanocrystals having a two-dimensional structure formed through the Inverse nano-emulsion method of the present invention.
  • A is organic ammonium
  • B is a metal material
  • X is a halide. Therefore, as shown in FIG. 4 (a), the organic layer and the inorganic layer are indistinguishable from each other. Thus, it can be seen that the three-dimensional structure.
  • Sky agent is a schematic diagram showing the nanocrystalline (a 2 BX 4).
  • the distance between the inorganic plane and the adjacent inorganic plane is found to be a substantially two-dimensional (2D) structure. Therefore, when having the 2D structure, the organic material widens the interval between the inorganic materials, confines the inorganic materials well, thereby improving the exciton confinement, thereby increasing the luminous efficiency.
  • the band gap of the organic-inorganic hybrid perovskite nanocrystalline particles formed by adjusting the composition ratio of the perovskite material used in the first solution for example, AX and BX 2 , may be adjusted.
  • the nanocrystalline particle emitter including the two-dimensional organic / inorganic hybrid perovskite nanocrystal structure according to the present invention is formed of an organic-inorganic hybrid perovskite nanocrystal having a crystal structure combining FCC and BCC in the nanocrystalline particle emitter. It forms a lamellar structure in which the organic plane and the inorganic plane are alternately stacked, and excitons are bound to the inorganic plane to achieve high color purity.
  • the exciton diffusion length in the nanocrystals within 900 nm is not only decreased, but the exciton binding energy is increased to prevent the exciton disappearance due to thermal ionization and delocalization of the charge carriers. Can have a luminous efficiency.
  • the band gap energy of the organic-inorganic hybrid perovskite nanocrystalline particles is determined by the structure of the crystal, not depending on the particle size.
  • the size of the organic-inorganic hybrid perovskite nanocrystalline particles of the organic-inorganic hybrid perovskite nanocrystalline particles according to the length and size of the alkyl halide surfactant It is possible to synthesize a lobite nanocrystalline light emitter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체, 그 제조방법 및 이를 이용한 발광소자를 제공한다. 이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체는 유기 용매에 분산이 가능한 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정구조를 포함한다. 따라서, 나노결정입자 발광체 안에 FCC와 BCC를 합친 결정구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정이 형성되며, 유기평면과 무기평면이 교대로 적층이 되어있는 라멜라 구조를 형성하고 있으며, 무기평면에 엑시톤이 구속되어 높은 색순도를 낼 수 있다. 또한, 엑시톤 확산거리가 감소할 뿐만 아니라 엑시톤 바인딩 에너지가 증가하여 열적 이온화 및 전하 운반체의 비편재화에 의한 엑시톤 소멸을 막아 높은 상온에서 발광 효율을 가질 수 있다.

Description

이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체, 그 제조방법 및 이를 이용한 발광소자
본 발명은 발광체 및 이를 이용한 발광소자에 관한 것으로, 더욱 자세하게는 이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 및 이를 이용한 발광소자에 관한 것이다.
현재 디스플레이 시장의 메가 트렌드는 기존의 고효율 고해상도 지향의 디스플레이에 더 나아가서 고색순도 천연색 구현을 지향하는 감성화질 디스플레이로 이동하고 있다. 이러한 관점에서 현재 유기 발광체 기반 유기 발광 다이오드 (OLED) 소자가 비약적인 발전을 이루었고 색순도가 향상된 무기 양자점 LED가 다른 대안으로 활발히 연구 개발되고 있다. 그러나, 유기 발광체와 무기 양자점 발광체 모두 재료적인 측면에서 본질적인 한계를 가지고 있다.
기존의 유기 발광체는 효율이 높다는 장점은 있지만, 스펙트럼이 넓어서 색순도가 좋지 않다. 무기 양자점 발광체는 색순도가 좋다고 알려져 왔지만, 양자 사이즈 효과에 의한 발광이기 때문에 Blue 쪽으로 갈수록 양자점 크기가 균일하도록 제어하기가 어려워서 색순도가 떨어지는 문제점이 존재한다. 더욱이 무기 양자점은 매우 깊은 가전자대 (valence band)를 가지고 있어, 유기 정공 주입층에서의 정공주입 장벽이 매우 커 정공주입이 어렵다는 문제점이 존재한다. 또한 두 가지 발광체는 고가라는 단점이 있다. 따라서 이러한 유기와 무기 발광체의 단점을 보완하고 장점을 유지하는 새로운 방식의 유/무기 하이브리드 발광체가 필요하다.
유무기 하이브리드 소재는 제조 비용이 저렴하고, 제조 및 소자 제작 공정이 간단하며, 광학적, 전기적 성질을 조절하기 쉬운 유기 소재의 장점과 높은 전하 이동도 및 기계적, 열적 안정성을 가지는 무기 소재의 장점을 모두 가질 수 있어 학문적, 산업적으로 각광받고 있다.
그 중, 유무기 하이브리드 페로브스카이트 소재는 높은 색순도를 가지고, 색 조절이 간단하며 합성 비용이 저렴하기 때문에 발광체로서의 발전 가능성이 매우 크다. 높은 색순도는 무기물의 2차원 평면(2D plane)이 유기물의 2차원 평면(2D plane) 사이에 끼어 있는 층상 구조를 가지고 있고, 무기물(inorganic)과 유기물(organic)의 유전율 차이가 크기 때문에 (εorganic ≒ 2.4, εinorganic ≒ 6.1) 엑시톤이 무기층에 속박되고, 따라서 높은 색순도 (Full width at half maximum (FWHM) ≒ 20 nm)를 가지기 때문에 형성된다.
페로브스카이트 결정구조를 가지는 유/무기 하이브리드 페로브스카이트는 현재 주로 태양전지의 흡광체로서 연구되고 있으나, 그 특성은 발광체로서도 매우 큰 가능성을 가지고 있다. 유/무기 하이브리드 페로브스카이트는 유기평면과 무기평면이 교대로 적층이 되어 있는 라멜라 구조로 되어 있고 무기평면 내에 엑시톤의 속박이 가능하기 때문에, 본질적으로 물질의 사이즈보다는 결정구조 자체에 의해서 매우 높은 색순도의 빛을 발광하는 이상적인 발광체가 될 수 있다.
예를 들어, 대한민국 공개특허 제10-2001-0015084호(2001.02.26.)에서는 염료-함유 유기-무기 혼성 물질을 박막형태로 형성하여 발광층으로 이용하는 전자발광소자에 대하여 개시되어 있다.
그러나 유/무기 하이브리드 페로브스카이트는 작은 엑시톤 결합 에너지를 가지기 때문에, 저온에서는 발광이 가능하나 상온에서는 열적 이온화 및 전하 운반체의 비편재화에 의해서 엑시톤이 발광으로 가지 못하고 자유 전하로 분리되어 소멸되는 근본적인 문제가 있다. 또한, 자유 전하가 다시 재결합하여 엑시톤을 형성할 때 엑시톤이 주변의 높은 전도성을 가지는 층에 의해 소멸되어 발광이 일어나지 못하는 문제가 있다. 그러므로 유/무기 하이브리드 페로브스카이트 기반 LED의 발광 효율 및 휘도를 높이기 위해서는 엑시톤의 퀜칭(quenching)을 막는 것이 필요하다.
본 발명이 해결하고자 하는 과제는 열적 이온화, 전하 운반체의 비편재화 및 엑시톤의 퀜칭을 방지하도록 이차원적인(2 dimensional) 구조를 갖는 유무기 하이브리드 페로브스카이트를 박막 대신 나노결정으로 합성하여 발광 효율 및 내구성-안정성이 향상된 나노결정입자 발광체 및 이를 이용한 발광소자를 제공함에 있다.
상기 과제를 이루기 위하여 본 발명의 일 측면은 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 제공한다. 상기 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체는 유기 용매에 분산이 가능하면서 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정구조를 포함할 수 있다.
상기 유기 용매는 양성자성 용매 또는 비양성자성 용매를 포함하고, 상기 양성자성 용매는 다이메틸폼아마이드(dimethylformamide), 감마 부티로락톤(gamma butyrolactone), N-메틸피롤리돈(N-methylpyrrolidone) 또는 디메틸설폭사이드(dimethylsulfoxide)를 포함하고, 상기 비양성자성 용매는 다이클로로에틸렌, 트라이클로로에틸렌, 클로로포름, 클로로벤젠, 다이클로로벤젠, 스타이렌, 다이메틸포름아마이드, 다이메틸설폭사이드, 자일렌, 톨루엔, 사이클로헥센 또는 이소프로필알콜을 포함할 수 있다.
이때의 이차원적 구조는 중심 금속을 가운데에 두고, 면심입방구조(face centered cubic; FCC)로 무기할라이드 물질이 육면체의 모든 표면에 6개가 위치하고, 체심입방구조 (body centered cubic; BCC)로 유기 암모늄이 육면체의 모든 꼭지점에 8개가 위치한 유무기 하이브리드 페로브스카이트 나노결정구조로서, 가로길이와 세로길이는 같으나 높이 길이가 가로길이 및 세로길이보다 1.5배 이상 긴 구조를 포함한다.
이때의 나노결정입자는 구형, 원기둥, 타원기둥 또는 다각기둥 형태일 수 있다. 또한, 상기 나노결정입자의 크기는 1 nm 내지 900 nm일 수 있다.
상기 나노결정입자 발광체의 발광 파장은 200 nm 내지 1300 nm인 것을 특징으로 한다.
또한, 상기 유무기 하이브리드 페로브스카이트 나노결정입자의 밴드갭 에너지는 입자크기에 의해서 의존하지 않고 결정의 구조에 의해서 결정되는 것을 특징으로 한다.
또한, 상기 나노결정입자의 밴드갭 에너지는 1 eV 내지 5 eV일 수 있다.
상기 유무기 하이브리드 페로브스카이트는 A2BX4, ABX4 또는 An- 1BnX3n +1(n은 2 내지 6사이의 정수)의 구조를 포함하고, 상기 A는 유기암모늄이고, 상기 B는 금속물질이고, 상기 X는 할로겐 원소일 수 있다. 상기 A는 (CH3NH3)n, ((CxH2x + 1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n + 1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x+1)nNH3)2(CF3NH3)n, ((CxF2x + 1)nNH3)2 또는 (CnF2n + 1NH3)2이고 (n은 1이상인 정수, x는 1이상인 정수), 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, 또는 이들의 조합이고, 상기 X는 Cl, Br, I 또는 이들의 조합일 수 있다.
또한, 상기 유무기 하이브리드 페로브스카이트 나노결정입자 표면을 둘러싸는 복수개의 유기리간드들을 더 포함할 수 있다. 상기 유기리간드는 알킬할라이드를 포함할 수 있다. 상기 알킬할라이드의 알킬 구조는 CnH2n +1의 구조를 가지는 비고리형 알킬(acyclic alkyl), 일차 알코올(primary alcohol), 이차 알코올(secondary alcohol), 삼차 알코올(tertiary alcohol), 알킬아민(alkylamine), p-치환된 아닐린(p-substituted aniline), 페닐 암모늄(phenyl ammonium) 또는 플루오린 암모늄(fluorine ammonium)을 포함할 수 있다.
상기 과제를 이루기 위하여 본 발명의 다른 측면은 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 제공한다. 상기 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법은 양성자성 용매에 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비하는 단계 및 상기 제1 용액을 상기 제2 용액에 섞어 나노결정입자를 형성하는 단계를 포함할 수 있다.
또한, 상기 제1 용액을 상기 제2 용액에 섞어 나노결정입자를 형성하는 단계는, 상기 제2 용액에 상기 제1 용액을 한방울씩 떨어뜨려 섞는 것을 특징으로 한다.
또한, 상기 유무기 하이브리드 페로브스카이트는 A2BX4, ABX4 또는 An- 1BnX3n +1(n은 2 내지 6사이의 정수)의 구조를 포함하고, 상기 A는 유기암모늄이고, 상기 B는 금속물질이고, 상기 X는 할로겐 원소일 수 있다. 상기 A는 (CH3NH3)n, ((CxH2x + 1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n + 1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x+1)nNH3)2(CF3NH3)n, ((CxF2x + 1)nNH3)2 또는 (CnF2n + 1NH3)2이고 (n은 1이상인 정수, x는 1이상인 정수), 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, 또는 이들의 조합이고, 상기 X는 Cl, Br, I 또는 이들의 조합일 수 있다.
또한, 상기 제1 용액은 양성자성 용매에 AX 및 BX2를 일정 비율로 녹여서 형성된 것을 특징으로 한다.
상기 과제를 이루기 위하여 본 발명의 또 다른 측면은 발광소자를 제공한다. 상기 발광소자는 제1 전극, 제2 전극 및 상기 제1 전극 및 제2 전극 사이에 위치하되, 상술한 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 포함하는 발광층을 포함할 수 있다.
본 발명에 따른 이차원적인 유/무기 하이브리드 페로브스카이트를 포함하는 나노결정입자 발광체는 나노결정입자 발광체 안에 FCC와 BCC를 합친 결정구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정이 형성되며, 유기평면과 무기평면이 교대로 적층이 되어있는 라멜라 구조를 형성하고 있으며, 무기평면에 엑시톤이 구속되어 높은 색순도를 낼 수 있다.
또한, 900 nm 크기 이내의 나노결정입자 안에서 엑시톤 확산거리 (exciton diffusion length)가 감소할 뿐만 아니라 엑시톤 바인딩 에너지 (exciton binding energy) 가 증가하여 열적 이온화 및 전하 운반체의 비편재화에 의한 엑시톤 소멸을 막아 높은 상온에서 발광 효율을 가질 수 있다.
또한, 상기 유무기 하이브리드 페로브스카이트 나노결정입자의 밴드갭 에너지는 입자크기에 의해서 의존하지 않고 결정의 구조에 의해서 결정된다.
나아가, ABX3구조와 같은 3차원적 구조를 갖는 유무기 하이브리드 페로브스카이트에 비하여 A2BX4, ABX4 또는 An-1BnX3n+1의 구조와 같은 2차원적 구조를 갖는 유무기 하이브리드 페로브스카이트로 나노결정을 합성함으로써, 엑시톤이 구속되는 무기평면 사이의 거리가 증가하여 엑시톤 바인딩 에너지를 증가시켜 발광 효율을 보다 향상 시킬 수 있을 뿐만 아니라 및 내구성-안정성을 증가시킬 수 있다.
또한, 본 발명에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법에 의하면, 알킬 할라이드 계면활성제의 길이 및 크기에 따라 유무기 하이브리드 페로브스카이트 나노결정의 크기 조절된 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 합성할 수 있다.
본 발명의 기술적 효과들은 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 일 실시예에 따른 페로브스카이트 나노결정구조의 모식도이다.
도 2는 본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 나타낸 순서도이다.
도 3은 본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 나타낸 모식도이다.
도 4는 본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 나타낸 모식도이다.
도 5는 본 발명의 Inverse nano-emulsion 법을 통하여 형성된 이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정을 나타낸 모식도이다.
이하, 첨부된 도면을 참고하여 본 발명에 의한 실시예를 상세히 설명하면 다음과 같다.
본 발명이 여러 가지 수정 및 변형을 허용하면서도, 그 특정 실시예들이 도면들로 예시되어 나타내어지며, 이하에서 상세히 설명될 것이다. 그러나 본 발명을 개시된 특별한 형태로 한정하려는 의도는 아니며, 오히려 본 발명은 청구항들에 의해 정의된 본 발명의 사상과 합치되는 모든 수정, 균등 및 대용을 포함한다.
층, 영역 또는 기판과 같은 요소가 다른 구성요소 "상(on)"에 존재하는 것으로 언급될 때, 이것은 직접적으로 다른 요소 상에 존재하거나 또는 그 사이에 중간 요소가 존재할 수도 있다는 것을 이해할 수 있을 것이다.
비록 제1, 제2 등의 용어가 여러 가지 요소들, 성분들, 영역들, 층들 및/또는 지역들을 설명하기 위해 사용될 수 있지만, 이러한 요소들, 성분들, 영역들, 층들 및/또는 지역들은 이러한 용어에 의해 한정되어서는 안 된다는 것을 이해할 것이다.
도 1은 본 발명의 일 실시예에 따른 유무기 하이브리드 페로브스카이트 나노결정의 구조이다.
도 1을 참조하면, 본 유무기 하이브리드 페로브스카이트 나노결정은 중심 금속을 가운데에 두고, 면심입방구조(face centered cubic; FCC)로 무기할라이드 물질(X)이 육면체의 모든 표면에 6개가 위치하고, 체심입방구조(body centered cubic; BCC)로 유기 암모늄(organic ammonium, OA)이 육면체의 모든 꼭지점에 8개가 위치한 구조를 형성하고 있다. 이때의 중심 금속의 예로 Pb를 도시하였다.
이때 육면체의 모든 면이 90°를 이루며, 가로길이와 세로길이 및 높이길이가 같은 정육면체 (cubic) 구조뿐만 아니라 가로길이와 세로길이는 같으나 높이 길이가 다른 정방정계 (tetragonal) 구조를 포함한다.
따라서, 본 발명에 따른 이차원적 구조는 중심 금속을 가운데에 두고, 면심입방구조로 무기할라이드 물질이 육면체의 모든 표면에 6개가 위치하고, 체심입방구조로 유기 암모늄이 육면체의 모든 꼭지점에 8개가 위치한 유무기 하이브리드 페로브스카이트 나노결정구조로서, 가로길이와 세로길이는 같으나 높이길이가 상기 가로길이 및 세로길이보다 1.5배 이상 긴 구조로 정의한다.
본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 설명한다.
도 2는 본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법을 나타낸 순서도이다.
도 2를 참조하면, 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법은 양성자성 용매에 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비하는 단계(S100) 및 상기 제1 용액을 상기 제2 용액에 섞어 나노결정입자를 형성하는 단계(S200)를 포함할 수 있다.
즉, 역 나노-에멀젼(Inverse nano-emulsion) 법을 통하여 본 발명에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 제조할 수 있다.
이하, 보다 구체적으로 설명하면,
먼저, 양성자성(protic) 용매에 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성(aprotic) 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비한다(S100).
이때의 양성자성 용매는 다이메틸폼아마이드(dimethylformamide), 감마 부티로락톤(gamma butyrolactone) 또는 N-메틸피롤리돈(N-methylpyrrolidone), 디메틸설폭사이드(dimethylsulfoxide)를 포함할 수 있으나, 이에 제한되는 것은 아니다.
또한, 이때의 유무기 하이브리드 페로브스카이트는 이차원적인 결정구조를 갖는 물질일 수 있다. 예를 들어, 이러한 유무기 하이브리드 페로브스카이트는 A2BX4, ABX4 또는 An- 1PbnI3n +1(n은 2 내지 6사이의 정수)의 구조일 수 있다.
이때의 A는 유기암모늄 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소이다.
예를 들어, 상기 A는 (CH3NH3)n, ((CxH2x + 1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n + 1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x+1)nNH3)2(CF3NH3)n, ((CxF2x + 1)nNH3)2 또는 (CnF2n+1NH3)2이고 (n은 1이상인 정수, x는 1이상인 정수), 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, 또는 이들의 조합이고, 상기 X는 Cl, Br, I 또는 이들의 조합일 수 있다.
한편, 이러한 페로브스카이트는 AX 및 BX2를 일정 비율로 조합하여 준비할 수 있다. 즉, 제1 용액은 양성자성 용매에 AX 및 BX2를 일정 비율로 녹여서 형성될 수 있다. 예를 들어, 양성자성 용매에 AX 및 BX2를 2:1 비율로 녹여서 A2BX3 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액을 준비할 수 있다.
또한, 이때의 비양성자성 용매는 다이클로로에틸렌, 트라이클로로에틸렌, 클로로포름, 클로로벤젠, 다이클로로벤젠, 스타이렌, 다이메틸포름아마이드, 다이메틸설폭사이드, 자일렌, 톨루엔, 사이클로헥센 또는 이소프로필알콜를 포함 할 수 있지만 이것으로 제한되는 것은 아니다.
또한, 알킬 할라이드 계면활성제는 alkyl-X의 구조일 수 있다. 이때의 X에 해당하는 할로겐 원소는 Cl, Br 또는 I 등을 포함할 수 있다. 또한, 이때의 alkyl 구조에는 CnH2n +1의 구조를 가지는 비고리형 알킬(acyclic alkyl), CnH2n + 1OH 등의 구조를 가지는 일차 알코올(primary alcohol), 이차 알코올(secondary alcohol), 삼차 알코올(tertiary alcohol), alkyl-N의 구조를 가지는 알킬아민(alkylamine) (ex. Hexadecyl amine, 9-Octadecenylamine 1-Amino-9-octadecene (C19H37N)), p-치환된 아닐린(p-substituted aniline), 페닐 암모늄(phenyl ammonium) 또는 플루오린 암모늄(fluorine ammonium)을 포함할 수 있지만 이것으로 제한되는 것은 아니다.
그 다음에, 상기 제1 용액을 상기 제2 용액에 섞어 나노결정입자를 형성한다(S200).
상기 제1 용액을 상기 제2 용액에 섞어 나노결정입자를 형성하는 단계는, 상기 제2 용액에 상기 제1 용액을 한방울씩 떨어뜨려 섞는 것이 바람직하다. 또한, 이때의 제2 용액은 교반을 수행할 수 있다. 예를 들어, 강하게 교반중인 알킬 할라이드 계면활성제가 녹아 있는 제2 용액에 유무기 페로브스카이트(OIP)가 녹아 있는 제2 용액을 천천히 한방울씩 첨가하여 나노결정입자를 합성할 수 있다.
이 경우, 제1 용액을 제2 용액에 떨어뜨려 섞게 되면 용해도 차이로 인해 제2 용액에서 유무기 페로브스카이트(OIP)가 석출(precipitation)된다. 그리고 제2 용액에서 석출된 유무기 페로브스카이트(OIP)를 알킬 할라이드 계면활성제가 표면을 안정화하면서 잘 분산된 유무기 페로브스카이트 나노결정(OIP-NC)을 생성하게 된다. 따라서, 유무기 페로브스카이트 나노결정구조 및 이를 둘러싸는 복수개의 알킬할라이드 유기리간드들을 포함하는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 제조할 수 있다.
한편, 이러한 유무기 페로브스카이트 나노결정입자의 크기는 알킬 할라이드 계면활성제의 길이 또는 모양 요소(shape factor) 조절을 통해 제어할 수 있다. 예컨대, shape factor 조절은 선형, tapered 또는 역삼각 모양의 surfactant를 통해 크기를 제어할 수 있다.
한편, 이와 같이 생성되는 유무기 페로브스카이트 나노결정입자의 크기는 1 nm 내지 900 nm인 것이 바람직하다. 한편, 이때의 나노결정입자의 크기는 후술하는 리간드의 길이를 고려하지 않은 크기 즉, 이러한 리간드를 제외한 나머지 부분의 크기를 의미한다.
만일 유무기 페로브스카이트 나노결정의 크기를 900 nm를 초과하여 형성할 경우 큰 나노결정 안에서 열적 이온화 및 전하 운반체의 비편재화에 의해서 엑시톤이 발광으로 가지 못하고 자유 전하로 분리되어 소멸되는 근본적인 문제가 있을 수 있다.
도 3은 본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 역 나노-에멀젼 (Inverse nano-emulsion) 법을 통하여 제조하는 방법을 나타낸 모식도이다.
도 3(a)를 참조하면, 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액에 양성자성 용매에 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액을 첨가한다.
이때의 양성자성 용매는 다이메틸폼아마이드(dimethylformamide), 감마 부티로락톤(gamma butyrolactone) 또는 N-메틸피롤리돈(N-methylpyrrolidone), 디메틸설폭사이드(dimethylsulfoxide)를 포함할 수 있으나, 이에 제한되는 것은 아니다.
이때의 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트는 A2BX4, ABX4 또는 An- 1BnI3n +1(n은 2 내지 6사이의 정수)의 구조일 수 있다. 이때의 A는 유기암모늄 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소이다. 예를 들어, 상기 A는 (CH3NH3)n, ((CxH2x + 1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n + 1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x + 1)nNH3)2(CF3NH3)n, ((CxF2x + 1)nNH3)2 또는 (CnF2n + 1NH3)2이고 (n은 1이상인 정수, x는 1이상인 정수), 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, 또는 이들의 조합일 수 있다. 이때의 희토류 금속은 예컨대 Ge, Sn, Pb, Eu 또는 Yb일 수 있다. 또한, 알칼리 토류 금속은 예컨대, Ca 또는 Sr일 수 있다. 또한, 상기 X는 Cl, Br, I 또는 이들의 조합일 수 있다.
한편, 이때의 페로브스카이트의 구조는 AX와 BX2의 비율별 조합으로 형성될 수 있다. 예를 들어, 양성자성 용매에 AX 및 BX2를 2:1 비율로 녹여서 A2BX3 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액을 준비할 수 있다.
한편, 이때의 AX의 합성예로서, A가 CH3NH3, X가 Br일 경우, CH3NH2(methylamine)과 HBr(hydroiodic acid)을 질소분위기에서 녹여 용매 증발을 통해 CH3NH3Br을 얻을 수 있다.
도 3(b)를 참조하면, 제2 용액에 제1 용액을 첨가하면, 용해도 차이로 인해 제2 용액에서 유무기 하이브리드 페로브스카이트가 석출되고, 이러한 석출된 유무기 하이브리드 페로브스카이트를 알킬 할라이드 계면활성제가 둘러싸면서 표면을 안정화하면서 잘 분산된 유무기 하이브리드 페로브스카이트 나노결정구조를 포함하는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체(100)를 생성하게 된다. 이때 유무기 하이브리드 페로브스카이트 나노결정입자의 표면은 알킬 할라이드인 유기 리간드들이 둘러싸이게 된다.
이후, 알킬 할라이드 계면활성제가 녹아있는 비양성자성 용매에 분산되어있는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체(100)를 포함한 양성자성 용매를 열을 가해 선택적으로 증발 시키거나, 양성자성 용매와 비양성자성 용매와 모두 녹을 수 있는 코솔벤트(co-solvent)를 첨가하여 나노결정입자를 포함한 양성자성 용매를 선택적으로 비양성자성 용매로부터 추출하여 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 얻을 수 있다.
본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 설명한다.
본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체는 유기 용매에 분산이 가능한 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정구조를 포함할 수 있다. 이때의 유기 용매는 양성자성 용매 또는 비양성자성 용매일 수 있다. 예를 들어, 상기 양성자성 용매는 다이메틸폼아마이드(dimethylformamide), 감마 부티로락톤(gamma butyrolactone), N-메틸피롤리돈(N-methylpyrrolidone) 또는 디메틸설폭사이드(dimethylsulfoxide)를 포함하고, 상기 비양성자성 용매는 다이클로로에틸렌, 트라이클로로에틸렌, 클로로포름, 클로로벤젠, 다이클로로벤젠, 스타이렌, 다이메틸포름아마이드, 다이메틸설폭사이드, 자일렌, 톨루엔, 사이클로헥센 또는 이소프로필알콜을 포함할 수 있다.
또한, 이때의 나노결정입자는 구형, 원기둥, 타원기둥 또는 다각기둥 형태일 수 있다.
또한, 이러한 나노결정입자의 크기는 1 nm 내지 900 nm일 수 있다. 예컨대 나노결정입자가 구형인 경우, 나노결정입자의 지름은 1 nm 내지 900 nm일 수 있다.
한편, 이때의 나노결정입자의 크기는 후술하는 리간드의 길이를 고려하지 않고, 이러한 리간드를 제외한 나머지 부분의 크기를 의미한다.
또한, 이러한 나노결정입자의 밴드갭 에너지는 1 eV 내지 5 eV일 수 있다. 따라서, 나노결정입자의 구성물질 또는 결정구조에 따라 에너지 밴드갭이 정해지므로, 나노결정입자의 구성물질을 조절함으로써, 예컨대 200 nm 내지 1300 nm의 파장을 갖는 빛을 방출할 수 있다.
또한, 이러한 유무기 하이브리드 페로브스카이트 나노결정입자 표면을 둘러싸는 복수개의 유기리간드들을 더 포함할 수 있다.
이하, 도 3을 참조하여 보다 구체적으로 설명한다.
도 3은 본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 나타낸 모식도이다.
도 4를 참조하면, 본 발명의 일 실시예에 따른 발광체는 유기 용매에 분산이 가능한 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자로서, 유기물 평면과 무기물 평면이 교대로 적층된 라멜라 구조를 갖는 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정구조(110)를 포함한다.
이러한 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트는 A2BX4, ABX4 또는 An- 1PbnI3n +1(n은 2 내지 6사이의 정수)의 구조를 포함할 수 있다.
이때의 A는 유기암모늄 물질이고, 상기 B는 금속 물질이고, 상기 X는 할로겐 원소이다. 예를 들어, 상기 A는 (CH3NH3)n, ((CxH2x + 1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n + 1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x+1)nNH3)2(CF3NH3)n, ((CxF2x + 1)nNH3)2 또는 (CnF2n+1NH3)2이고 (n은 1이상인 정수, x는 1이상인 정수), 상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, 또는 이들의 조합일 수 있다. 이때의 희토류 금속은 예컨대 Ge, Sn, Pb, Eu 또는 Yb일 수 있다. 또한, 알칼리 토류 금속은 예컨대, Ca 또는 Sr일 수 있다. 또한, 상기 X는 Cl, Br, I 또는 이들의 조합일 수 있다.
한편, 본 발명에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체(100)는 상술한 유무기 하이브리드 페로브스카이트 나노결정구조(110)를 둘러싸는 복수개의 유기리간드들(120)을 더 포함할 수 있다. 이때의 유기리간드들(120)은 계면활성제로 사용된 물질로서, 알킬할라이드를 포함할 수 있다. 따라서, 상술한 바와 같이 석출되는 유무기 하이브리드 페로브스카이트의 표면을 안정화하기 위하여 계면활성제로 사용된 알킬할라이드가 유무기 하이브리드 페로브스카이트 나노결정의 표면을 둘러싸는 유기리간드가 된다.
한편, 만일, 이러한 알킬할라이드 계면활성제의 길이가 짧을 경우, 형성되는 나노결정입자의 크기가 커지게 되므로 900 nm를 초과하여 형성될 수 있고, 이 경우 큰 나노결정 안에서 열적 이온화 및 전하 운반체의 비편재화에 의해서 엑시톤이 발광으로 가지 못하고 자유 전하로 분리되어 소멸되는 근본적인 문제가 있을 수 있다.
즉, 형성되는 유무기 하이브리드 페로브스카이트 나노결정입자의 크기와 이러한 나노결정입자를 형성하기 위해 사용되는 알킬 할라이드 계면활성제의 길이는 반비례한다.
따라서, 일정 길이 이상의 알킬할라이드를 계면활성제로 사용함으로써 형성되는 유무기 하이브리드 페로브스카이트 나노결정입자의 크기를 일정 크기 이하로 제어할 수 있다. 예를 들어, 알킬할라이드 계면활성제로 옥타데실암모늄 브로마이드(octadecyl-ammonium bromide)를 사용하여 900 nm 이하의 크기를 가진 유무기 하이브리드 페로브스카이트 나노결정입자를 형성할 수 있다.
본 발명의 일 실시예에 따른 발광소자를 설명한다.
본 발명의 일 실시예에 따른 발광소자는 상술한 이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 포함하는 발광층을 이용한 소자일 수 있다.
예를 들어, 본 발명에 따른 발광소자는 제1 전극, 제2 전극, 및 상기 제1 전극 및 제2 전극 사이에 위치하되, 상술한 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 포함하는 발광층을 포함할 수 있다.
제조예 1
본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다. Inverse nano-emulsion 법을 통하여 형성하였다.
구체적으로, 양성자성 용매에 유무기 하이브리드 페로브스카이트를 녹여 제1 용액을 준비하였다. 이때의 양성자성 용매로 다이메틸폼아마이드(dimethylformamide)를 사용하고, 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbBr4를 사용하였다. 이때 사용한 (CH3NH3)2PbBr4은 CH3NH3Br 과 PbBr2를 2:1 비율로 섞은 것을 사용하였다.
그리고 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비하였다. 이때의 비양성자성 용매는 톨루엔(Toluene)을 사용하였고, 알킬 할라이드 계면활성제는 옥타데실암모늄 브로마이드(octadecylammonium bromide, CH3(CH2)17NH3Br)를 사용하였다.
그 다음에, 강하게 교반중인 제2 용액에 제1 용액을 천천히 한방울씩 떨어뜨려 첨가하여 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정을 포함하는 나노결정입자 발광체를 형성하였다.
이때의 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 20nm 이다.
그 다음에, 이러한 용액상태의 유무기 하이브리드 페로브스카이트 나노결정입자를 유리 기판 상에 스핀코팅하여 유무기 하이브리드 페로브스카이트 나노결정입자 박막(OIP-NP film)을 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 20nm 이다.
제조예 2
제조예 1과 동일하게 수행하되, 알킬할라이드 계면활성제를 CH3(CH2)13NH3Br를 사용하여 본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 100nm 이다.
제조예 3
제조예 1과 동일하게 수행하되, 알킬할라이드 계면활성제를 CH3(CH2)10NH3Br를 사용하여 본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 300nm 이다.
제조예 4
제조예 1과 동일하게 수행하되, 알킬할라이드 계면활성제를 CH3(CH2)7NH3Br를 사용하여 본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 500nm 이다.
제조예 5
제조예 1과 동일하게 수행하되, 알킬할라이드 계면활성제를 CH3(CH2)4NH3Br를 사용하여 본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 700nm 이다.
제조예 6
제조예 1과 동일하게 수행하되, 알킬할라이드 계면활성제를 CH3CH2NH3Br를 사용하여 본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 800nm 이다.
제조예 7
제조예 1과 동일하게 수행하되, 알킬할라이드 계면활성제를 CH3NH3Br를 사용하여 본 발명의 일 실시예에 따른 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 형성하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 크기는 약 900nm 이다.
제조예 8
제조예 1과 동일하게 수행하되, 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbCl4를 사용하였다. 이때 사용한 (CH3NH3)2PbCl4은 CH3NH3Cl 과 PbCl2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자는 자외선 혹은 파란색 근처의 빛을 발광한다. 발광 스펙트럼은 약 380 nm에 위치한다.
제조예 9
제조예 1과 동일하게 수행하되, 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbI4를 사용하였다. 이때 사용한 (CH3NH3)2PbI4은 CH3NH3I 과 PbI2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자는 적외선 혹은 붉은색 근처의 빛을 발광한다. 발광 스펙트럼은 약 780 nm에 위치한다.
제조예 10
제조예 1과 동일하게 수행하되, 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbClxBr4 -x를 사용하였다. 이때 사용한 (CH3NH3)2PbClxBr4-x은 CH3NH3Cl 과 PbBr2를 일정 비율로 섞은 것을 사용하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 380 nm와 520 nm 사이에 위치한다.
제조예 11
제조예 1과 동일하게 수행하되, 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbIxBr4 -x를 사용하였다. 이때 사용한 (CH3NH3)2PbIxBr4-x은 CH3NH3I 과 PbBr2를 일정 비율로 섞은 것을 사용하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 520 nm와 780 nm 사이에 위치한다.
제조예 12
제조예 1과 동일하게 수행하되, 유무기 하이브리드 페로브스카이트로 (CH(NH2)2)2PbI4를 사용하였다. 이때 사용한 (CH(NH2)2)2PbI4은 CH(NH2)2I 과 PbI2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자는 적외선의 빛을 내며 발광 스펙트럼은 약 800 nm에 위치한다.
제조예 13
제조예 1과 동일하게 수행하되, 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbxSn1 - xI4를 사용하였다. 이때 사용한 (CH3NH3)2PbxSn1-xI4은 CH3NH3I 과 PbxSn1-xI2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 820 nm와 1120 nm 에 위치한다.
제조예 14
제조예 1과 동일하게 수행하되, 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbxSn1 - xBr4를 사용하였다. 이때 사용한 (CH3NH3)2PbxSn1-xBr4은 CH3NH3Br 과 PbxSn1-xBr2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 540 nm와 650 nm 에 위치한다.
제조예 15
제조예 1과 동일하게 수행하되, 유무기 하이브리드 페로브스카이트로 (CH3NH3)2PbxSn1 - xCl4를 사용하였다. 이때 사용한 (CH3NH3)2PbxSn1-xCl4은 CH3NH3Cl 과 PbxSn1-xCl2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 400 nm와 460 nm 에 위치한다.
제조예 16
제조예 1과 동일하게 수행하되, 유무기 하이브리드 페로브스카이트로 (C4H9NH3)PbBr4를 사용하였다. 이때 사용한 (C4H9NH3)PbBr4은 (C4H9NH3)Br 과 PbBr2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 약 411 nm 에 위치한다.
제조예 17
제조예 1과 동일하게 수행하되, 유무기 하이브리드 페로브스카이트로 (C5H11NH3)PbBr4를 사용하였다. 이때 사용한 (C5H11NH3)PbBr4은 (C5H11NH3)Br 과 PbBr2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 약 405 nm 에 위치한다.
제조예 18
제조예 1과 동일하게 수행하되, 유무기 하이브리드 페로브스카이트로 (C7H15NH3)PbBr4를 사용하였다. 이때 사용한 (C7H15NH3)PbBr4은 (C7H15NH3)Br 과 PbBr2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 약 401 nm 에 위치한다.
제조예 19
제조예 1과 동일하게 수행하되, 유무기 하이브리드 페로브스카이트로 (C12H25NH3)PbBr4를 사용하였다. 이때 사용한 (C12H25NH3)PbBr4은 (C12H25NH3)Br 과 PbBr2를 2:1 비율로 섞은 것을 사용하였다.
이때의 형성된 유무기 하이브리드 페로브스카이트 나노결정입자의 발광 스펙트럼은 약 388 nm 에 위치한다.
제조예 20
본 발명의 일 실시예에 따른 발광 소자를 제조하였다.
먼저 ITO 기판(ITO 양극이 코팅된 유리 기판)을 준비한 후, ITO 양극 상에 전도성 물질인 PEDOT:PSS(Heraeus 社의 AI4083) 을 스핀 코팅한 후 150℃에서 30분 동안 열처리하여 40nm 두께의 정공 주입층을 형성하였다.
상기 정공 주입층 상에 제조예 1에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체가 녹아있는 용액을 스핀 코팅하고 80℃에서 20분간 열처리 하여 유무기 하이브리드 페로브스카이트 나노결정입자 발광층을 형성한다.
이 후, 유무기 하이브리드 페로브스카이트 나노결정입자 발광층 상에 50nm 두께의 1,3,5-Tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBI)를 1 x 10-7 Torr 이하의 높은 진공에서 증착하여 전자수송층을 형성하고, 그 위에 1nm 두께의 LiF를 증착하여 전자주입층을 형성하고, 그 위에 100nm 두께의 알루미늄을 증착하여 음전극을 형성하여 유/무기 하이브리드 페로브스카이트 나노결정입자 발광 소자를 제작하였다.
비교예 1
양성자성 용매인 다이메틸폼아마이드(dimethylformamide)에 (CH3NH3)2PbBr4를 녹여 제1 용액을 제조하였다.
그 다음에, 상기 제1 용액을 유리 기판 상에 스핀 코팅하여 (CH3NH3)2PbBr4 박막(OIP film)을 제조하였다.
비교예 2
양성자성 용매인 다이메틸폼아마이드(dimethylformamide)에 (CH3NH3)2PbCl4 를 녹여 제1 용액을 제조하였다.
그 다음에, 상기 제1 용액을 유리 기판 상에 스핀 코팅하여 (CH3NH3)2PbCl4 박막(OIP film)을 제조하였다.
도 4는 본 발명의 Inverse nano-emulsion 법을 통하여 형성된 이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정을 나타낸 모식도이다.
도 4(a)를 참조하면, 제1 용액에 사용되는 페로브스카이트 물질로 AX와 BX2를 1:1의 조성비로 사용하여 형성된 3차원적인(3D) 구조의 유무기 하이브리드 페로브스카이트 나노결정(ABX3)을 나타낸 모식도이다. 이때의 A는 유기 암모늄(Organic Ammonium)이고, B은 금속물질이고, X는 할라이드(halide)이다. 따라서, 도 4(a)에 도시된 바와 같이 유기물질과 무기물질이 층층이 구별이 잘 되지 않는 바, 3차원 구조임을 알 수 있다.
이에 반하여, 4(b)를 참조하면, 제1 용액에 사용되는 페로브스카이트 물질로 AX와 BX2를 2:1의 조성비로 사용하여 형성된 2차원적인(2D) 구조의 유무기 하이브리드 페로브스카이트 나노결정(A2BX4)를 나타낸 모식도이다. 도시된 바와 같이 무기물 평면과 인접하는 무기물 평면의 거리가 멀어지는바 실질적으로 이차원적인(2D) 구조임을 알 수 있다. 따라서, 이러한 2D 구조를 갖게 되면, 유기물질이 무기물질 사이의 간격을 넓혀, 무기물질을 구속(confine)을 잘 해주고, 이로 인해 exciton confinement가 향상되어 발광효율이 증가될 수 있다.
한편, 제1 용액에 사용되는 페로브스카이트 물질의 조성비 예컨대, AX와 BX2의 조성비를 조절하여 형성되는 유무기 하이브리드 페로브스카이트 나노결정입자의 밴드갭을 조절할 수 있을 것이다.
본 발명에 따른 이차원적인 유/무기 하이브리드 페로브스카이트 나노결정구조를 포함하는 나노결정입자 발광체는 나노결정입자 발광체 안에 FCC와 BCC를 합친 결정구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정이 형성되며, 유기평면과 무기평면이 교대로 적층이 되어있는 라멜라 구조를 형성하고 있으며, 무기평면에 엑시톤이 구속되어 높은 색순도를 낼 수 있다.
또한, 900 nm 크기 이내의 나노결정 안에서 엑시톤 확산거리 (exciton diffusion length)가 감소할 뿐만 아니라 엑시톤 바인딩 에너지 (exciton binding energy) 가 증가하여 열적 이온화 및 전하 운반체의 비편재화에 의한 엑시톤 소멸을 막아 높은 상온에서 발광 효율을 가질 수 있다.
또한, 상기 유무기 하이브리드 페로브스카이트 나노결정입자의 밴드갭 에너지는 입자크기에 의해서 의존하지 않고 결정의 구조에 의해서 결정된다.
나아가, 삼차원 유무기 하이브리드 페로브스카이트에 비하여 나노결정을 이차원적인 구조로 합성함으로써, 엑시톤 바인딩 에너지를 증가시켜 발광 효율을 보다 향상 시킬 수 있을 뿐만 아니라 및 내구성-안정성을 증가시킬 수 있다.
또한, 본 발명에 따른 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법에 의하면, 알킬 할라이드 계면활성제의 길이 및 크기에 따라 유무기 하이브리드 페로브스카이트 나노결정입자의 크기 조절된 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 합성할 수 있다.
한편, 본 명세서와 도면에 개시된 본 발명의 실시 예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시 예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다.
[부호의 설명]
100: 유무기 하이브리드 페로브스카이트 나노결정입자 발광체
110: 유무기 하이브리드 페로브스카이트 나노결정구조
120: 유기 리간드

Claims (19)

  1. 유기 용매에 분산이 가능하면서 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정구조를 포함하는, 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  2. 제 1항에 있어서,
    상기 유기 용매는 양성자성 용매 또는 비양성자성 용매를 포함하고,
    상기 양성자성 용매는 다이메틸폼아마이드(dimethylformamide), 감마 부티로락톤(gamma butyrolactone), N-메틸피롤리돈(N-methylpyrrolidone) 또는 디메틸설폭사이드(dimethylsulfoxide)를 포함하고,
    상기 비양성자성 용매는 다이클로로에틸렌, 트라이클로로에틸렌, 클로로포름, 클로로벤젠, 다이클로로벤젠, 스타이렌, 다이메틸포름아마이드, 다이메틸설폭사이드, 자일렌, 톨루엔, 사이클로헥센 또는 이소프로필알콜을 포함하는 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  3. 제1항에 있어서,
    상기 이차원적 구조는 중심 금속을 가운데에 두고, 면심입방구조로 무기할라이드 물질이 육면체의 모든 표면에 6개가 위치하고, 체심입방구조로 유기 암모늄이 육면체의 모든 꼭지점에 8개가 위치한 유무기 하이브리드 페로브스카이트 나노결정구조로서, 가로길이와 세로길이는 같으나 높이길이가 상기 가로길이 및 세로길이보다 1.5배 이상 긴 구조인, 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  4. 제1항에 있어서,
    상기 나노결정입자는 구형, 원기둥, 타원기둥 또는 다각기둥 형태인 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  5. 제1항에 있어서,
    상기 나노결정입자의 크기는 1 nm 내지 900 nm인 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  6. 제1항에 있어서,
    상기 나노결정입자 발광체의 발광 파장은 200 nm 내지 1300 nm인 것을 특징으로 하는 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  7. 제1항에 있어서,
    상기 유무기 하이브리드 페로브스카이트 나노결정입자의 밴드갭 에너지는 입자크기에 의해서 의존하지 않고 결정의 구조에 의해서 결정되는 것을 특징으로 하는 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  8. 제1항에 있어서,
    상기 나노결정입자의 밴드갭 에너지는 1 eV 내지 5 eV인 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  9. 제1항에 있어서,
    상기 유무기 하이브리드 페로브스카이트는 A2BX4, ABX4 또는 An- 1BnX3n +1(n은 2 내지 6사이의 정수)의 구조를 포함하고,
    상기 A는 유기암모늄이고, 상기 B는 금속물질이고, 상기 X는 할로겐 원소인,
    이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  10. 제9항에 있어서,
    상기 A는 (CH3NH3)n, ((CxH2x + 1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n + 1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x+1)nNH3)2(CF3NH3)n, ((CxF2x+1)nNH3)2 또는 (CnF2n+1NH3)2이고 (n은 1이상인 정수, x는 1이상인 정수),
    상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, 또는 이들의 조합이고,
    상기 X는 Cl, Br, I 또는 이들의 조합인,
    이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  11. 제1항에 있어서,
    상기 유무기 하이브리드 페로브스카이트 나노결정입자 표면을 둘러싸는 복수개의 유기리간드들을 더 포함하는 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  12. 제11항에 있어서,
    상기 유기리간드는 알킬할라이드를 포함하는 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  13. 제12항에 있어서,
    상기 알킬할라이드의 알킬 구조는 CnH2n +1의 구조를 가지는 비고리형 알킬(acyclic alkyl), 일차 알코올(primary alcohol), 이차 알코올(secondary alcohol), 삼차 알코올(tertiary alcohol), 알킬아민(alkylamine), p-치환된 아닐린(p-substituted aniline), 페닐 암모늄(phenyl ammonium) 또는 플루오린 암모늄(fluorine ammonium)을 포함하는 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체.
  14. 양성자성 용매에 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트가 녹아있는 제1 용액 및 비양성자성 용매에 알킬 할라이드 계면활성제가 녹아있는 제2 용액을 준비하는 단계; 및
    상기 제1 용액을 상기 제2 용액에 섞어 나노결정입자를 형성하는 단계를 포함하는 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법.
  15. 제14항에 있어서,
    상기 제1 용액을 상기 제2 용액에 섞어 나노결정입자를 형성하는 단계는,
    상기 제2 용액에 상기 제1 용액을 한방울씩 떨어뜨려 섞는 것을 특징으로 하는 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법.
  16. 제14항에 있어서,
    상기 유무기 하이브리드 페로브스카이트는 A2BX4, ABX4 또는 An- 1BnX3n +1(n은 2 내지 6사이의 정수)의 구조를 포함하고,
    상기 A는 유기암모늄이고, 상기 B는 금속물질이고, 상기 X는 할로겐 원소인,
    이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법.
  17. 제16항에 있어서,
    상기 A는 (CH3NH3)n, ((CxH2x + 1)nNH3)2(CH3NH3)n, (RNH3)2, (CnH2n + 1NH3)2, (CF3NH3), (CF3NH3)n, ((CxF2x+1)nNH3)2(CF3NH3)n, ((CxF2x+1)nNH3)2 또는 (CnF2n+1NH3)2이고 (n은 1이상인 정수, x는 1이상인 정수),
    상기 B는 2가의 전이 금속, 희토류 금속, 알칼리 토류 금속, Pb, Sn, Ge, Ga, In, Al, Sb, Bi, Po, 또는 이들의 조합이고,
    상기 X는 Cl, Br, I 또는 이들의 조합인,
    이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법.
  18. 제16항에 있어서,
    상기 제1 용액은 양성자성 용매에 AX 및 BX2를 일정 비율로 녹여서 형성된 것을 특징으로 하는 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체 제조방법.
  19. 제1 전극;
    제2 전극; 및
    상기 제1 전극 및 제2 전극 사이에 위치하되, 제1항 내지 제13항 중 어느 한 항의 이차원적 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체를 포함하는 발광층을 포함하는 발광소자.
PCT/KR2015/011958 2014-11-06 2015-11-06 이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체, 그 제조방법 및 이를 이용한 발광소자 WO2016072804A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/524,429 US10109805B2 (en) 2014-11-06 2015-11-06 Organic-inorganic hybrid perovskite nanocrystal particle light emitting body having two-dimensional structure, method for producing same, and light emitting device using same
JP2017524021A JP6867287B2 (ja) 2014-11-06 2015-11-06 二次元構造を有する有機無機ハイブリッドペロブスカイトナノ結晶粒子の発光体、その製造方法及びこれを用いる発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140153972A KR101752533B1 (ko) 2014-11-06 2014-11-06 이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체, 그 제조방법 및 이를 이용한 발광소자
KR10-2014-0153972 2014-11-06

Publications (1)

Publication Number Publication Date
WO2016072804A1 true WO2016072804A1 (ko) 2016-05-12

Family

ID=55909440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011958 WO2016072804A1 (ko) 2014-11-06 2015-11-06 이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체, 그 제조방법 및 이를 이용한 발광소자

Country Status (4)

Country Link
US (1) US10109805B2 (ko)
JP (1) JP6867287B2 (ko)
KR (1) KR101752533B1 (ko)
WO (1) WO2016072804A1 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106848063A (zh) * 2017-01-13 2017-06-13 浙江大学 基于耐潮湿有机‑无机杂化钙钛矿材料的高响应度光探测器
CN108026445A (zh) * 2016-08-11 2018-05-11 凡泰姆股份公司 发光晶体和其制造
WO2018117131A1 (ja) * 2016-12-22 2018-06-28 住友化学株式会社 組成物、フィルム、積層構造体、発光装置、及びディスプレイ
JP2018120846A (ja) * 2016-11-30 2018-08-02 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、表示装置及び照明装置
JP2020502769A (ja) * 2016-12-22 2020-01-23 トヨタ・モーター・ヨーロッパToyota Motor Europe 2d−ペロブスカイト活性層を有する光電子素子
US10927295B2 (en) * 2015-11-08 2021-02-23 King Abdullah University Of Science And Technology Air-stable surface-passivated perovskite quantum dots (QDS), methods of making these QDS, and methods of using these QDS

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017184292A1 (en) * 2016-04-22 2017-10-26 The Trustees Of Princeton University Organic-inorganic hybrid perovskite nanocrystals and methods of making the same
US11702762B2 (en) 2016-08-11 2023-07-18 Avantama Ag Luminescent crystals and manufacturing thereof
JP7093098B2 (ja) * 2018-02-14 2022-06-29 国立大学法人山形大学 Ledの製造方法
US20210242357A1 (en) * 2018-04-27 2021-08-05 University Of Washington Metal-halide semiconductor optical and electronic devices and methods of making the same
CN109004092A (zh) * 2018-06-29 2018-12-14 云谷(固安)科技有限公司 有机电致发光器件和有机电致发光装置
CN110880555A (zh) * 2018-09-05 2020-03-13 杭州纤纳光电科技有限公司 前驱体与表面活性剂的混合溶液的涂布设备及其方法
CN109755393B (zh) * 2019-01-16 2023-06-02 济南大学 一种锑碘杂化钙钛矿的溶液法制备与应用
CN109879278B (zh) * 2019-03-14 2022-05-20 复旦大学 一种零维-二维杂化叠层超结构纳米材料的制备方法
CN110003014A (zh) * 2019-04-29 2019-07-12 天津大学 一种发橙光钙钛矿量子点材料及其合成
CN112292769A (zh) * 2019-05-13 2021-01-29 京东方科技集团股份有限公司 发光器件及其制作方法
KR102241926B1 (ko) 2019-06-20 2021-04-16 경북대학교 산학협력단 안정성이 높고 반치폭이 좁은 디스플레이용 녹색 나노 형광체 및 그 제조방법
CN111864080A (zh) * 2020-09-07 2020-10-30 天津理工大学 一种二维有机无机杂化钙钛矿晶体光电探测器及其制备方法
CN113046063B (zh) * 2021-03-23 2023-01-20 广东工业大学 一种杂化钙钛矿发光材料及其制备方法和应用
CN114990699A (zh) * 2022-05-23 2022-09-02 闽都创新实验室 一种二维双层有机-无机杂化钙钛矿半导体晶体及其制备方法和用途
CN114989020A (zh) * 2022-06-10 2022-09-02 闽都创新实验室 一种三维有机-无机杂化钙钛矿半导体晶体及其制备方法和用途

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015084A (ko) * 1999-07-08 2001-02-26 포만 제프리 엘 염료-함유 유기-무기 혼성 물질을 방출층으로서 갖는전자발광소자
JP2003309308A (ja) * 2002-03-08 2003-10-31 Internatl Business Mach Corp <Ibm> 有機・無機ハイブリッド膜の低温溶融加工
US20040095658A1 (en) * 2002-09-05 2004-05-20 Nanosys, Inc. Nanocomposites

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227330A (ja) * 2007-03-15 2008-09-25 Canon Inc 発光素子
JP6103183B2 (ja) * 2012-10-10 2017-03-29 ペクセル・テクノロジーズ株式会社 ペロブスカイト化合物を用いた電界発光素子
GB201513272D0 (en) * 2015-07-28 2015-09-09 Isis Innovation Luminescent material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010015084A (ko) * 1999-07-08 2001-02-26 포만 제프리 엘 염료-함유 유기-무기 혼성 물질을 방출층으로서 갖는전자발광소자
JP2001060497A (ja) * 1999-07-08 2001-03-06 Internatl Business Mach Corp <Ibm> 有機−無機ハイブリッド材料を発光層として有するエレクトロルミネセンス素子
JP2003309308A (ja) * 2002-03-08 2003-10-31 Internatl Business Mach Corp <Ibm> 有機・無機ハイブリッド膜の低温溶融加工
US20040095658A1 (en) * 2002-09-05 2004-05-20 Nanosys, Inc. Nanocomposites

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITZI, D. B. ET AL.: "Organic-Inorganic Electronics", IBM JOURNAL OF RESEARCH AND DEVELOPMENT, vol. 45, no. 1, pages 29 - 45 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11390802B2 (en) 2015-11-08 2022-07-19 King Abdullah University Of Science And Technology Air-stable surface-passivated perovskite quantum dots (QDS), methods of making these QDS, and methods of using these QDS
US10927295B2 (en) * 2015-11-08 2021-02-23 King Abdullah University Of Science And Technology Air-stable surface-passivated perovskite quantum dots (QDS), methods of making these QDS, and methods of using these QDS
CN108026445B (zh) * 2016-08-11 2022-06-21 凡泰姆股份公司 发光晶体和其制造
CN108026445A (zh) * 2016-08-11 2018-05-11 凡泰姆股份公司 发光晶体和其制造
JP2018529793A (ja) * 2016-08-11 2018-10-11 アファンタマ アクチェンゲゼルシャフト 発光性結晶及びその製造
CN114716997A (zh) * 2016-08-11 2022-07-08 凡泰姆股份公司 发光晶体和其制造
US11377592B2 (en) * 2016-08-11 2022-07-05 Avantama Ag Luminescent crystals and manufacturing thereof
JP7129772B2 (ja) 2016-11-30 2022-09-02 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
JP2018120846A (ja) * 2016-11-30 2018-08-02 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、表示装置及び照明装置
JPWO2018117131A1 (ja) * 2016-12-22 2019-10-31 住友化学株式会社 組成物、フィルム、積層構造体、発光装置、及びディスプレイ
TWI746745B (zh) * 2016-12-22 2021-11-21 日商住友化學股份有限公司 組成物、膜、積層構造體、發光裝置及顯示器
JP2020502769A (ja) * 2016-12-22 2020-01-23 トヨタ・モーター・ヨーロッパToyota Motor Europe 2d−ペロブスカイト活性層を有する光電子素子
WO2018117131A1 (ja) * 2016-12-22 2018-06-28 住友化学株式会社 組成物、フィルム、積層構造体、発光装置、及びディスプレイ
CN106848063A (zh) * 2017-01-13 2017-06-13 浙江大学 基于耐潮湿有机‑无机杂化钙钛矿材料的高响应度光探测器
CN106848063B (zh) * 2017-01-13 2019-08-23 浙江大学 基于耐潮湿有机-无机杂化钙钛矿材料的高响应度光探测器

Also Published As

Publication number Publication date
KR20160054736A (ko) 2016-05-17
JP6867287B2 (ja) 2021-04-28
JP2017538808A (ja) 2017-12-28
KR101752533B1 (ko) 2017-07-03
US10109805B2 (en) 2018-10-23
US20170358758A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
WO2016072804A1 (ko) 이차원적인 구조를 갖는 유무기 하이브리드 페로브스카이트 나노결정입자 발광체, 그 제조방법 및 이를 이용한 발광소자
WO2018070791A1 (ko) 페로브스카이트 나노결정 박막, 이의 제조 방법 및 이를 포함하는 발광 소자
WO2020130592A1 (ko) 금속 할라이드 페로브스카이트 발광소자 및 이의 제조방법
WO2016072806A2 (ko) 코어-쉘 구조의 페로브스카이트 나노결정입자 발광체, 이의 제조방법 및 이를 이용한 발광소자
WO2016072807A1 (ko) 유기 리간드가 치환된 페로브스카이트 나노결정입자 발광체 제조방법, 이에 의해 제조된 나노결정입자 발광체 및 이를 이용한 발광소자
WO2009139607A2 (ko) 적층형 유기발광소자
KR102595042B1 (ko) 반도체 장치 및 반도체 장치를 포함하는 표시 장치
WO2013154342A1 (ko) 엑시플렉스를 형성하는 공동 호스트를 포함하는 유기 발광 소자, 이를 포함하는 조명 기구와 디스플레이 장치
WO2015005655A1 (ko) 초소형 led 전극어셈블리 및 이의 제조방법
WO2016072805A1 (ko) 페로브스카이트 나노결정입자 및 이를 이용한 광전자 소자
WO2019045252A1 (ko) 유기 전계 발광 소자
WO2021125412A1 (ko) 결점이 제어된 금속 할라이드 페로브스카이트 발광 물질 및 이를 포함하는 발광 소자
WO2019240546A1 (ko) 페로브스카이트 전하 수송층을 포함하는 발광 소자 및 이의 제조방법
WO2015099481A1 (ko) 유기 전계 발광 소자
WO2016064102A1 (ko) 유기 전계 발광 소자
WO2016200225A1 (ko) 양자점 또는 염료를 함유하는 대면적 필름 및 이의 제조 방법
WO2020213814A1 (ko) 패시베이션 층을 포함하는 페로브스카이트 발광 소자 및 이의 제조방법
WO2018056645A1 (en) Organic electroluminescent device comprising an electron buffer layer and an electron transport layer
WO2020184825A1 (ko) 적층 구조의 페로브스카이트 발광층을 포함하는 발광 소자 및 이의 제조 방법
WO2018131877A1 (ko) 지연형광 화합물 및 이를 이용한 유기전기소자 및 그 전자 장치
WO2021029598A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013180539A1 (ko) 유기전계발광소자
WO2018084681A1 (ko) 코팅 조성물, 이를 이용한 유기 전계 발광 소자의 제조방법 및 이에 의하여 제조된 유기 전계 발광 소자
WO2021210898A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021054640A1 (ko) 유기 전계 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017524021

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15524429

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15857554

Country of ref document: EP

Kind code of ref document: A1