CN114990699A - 一种二维双层有机-无机杂化钙钛矿半导体晶体及其制备方法和用途 - Google Patents

一种二维双层有机-无机杂化钙钛矿半导体晶体及其制备方法和用途 Download PDF

Info

Publication number
CN114990699A
CN114990699A CN202210568432.7A CN202210568432A CN114990699A CN 114990699 A CN114990699 A CN 114990699A CN 202210568432 A CN202210568432 A CN 202210568432A CN 114990699 A CN114990699 A CN 114990699A
Authority
CN
China
Prior art keywords
inorganic hybrid
hybrid perovskite
perovskite semiconductor
dimensional double
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210568432.7A
Other languages
English (en)
Inventor
罗军华
王道华
姬成敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mindu Innovation Laboratory
Original Assignee
Mindu Innovation Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mindu Innovation Laboratory filed Critical Mindu Innovation Laboratory
Priority to CN202210568432.7A priority Critical patent/CN114990699A/zh
Publication of CN114990699A publication Critical patent/CN114990699A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/54Organic compounds
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)

Abstract

本发明涉及一种二维双层有机‑无机杂化钙钛矿半导体晶体、制备方法和用途,所述的无机‑有机杂化半导体材料的化学式为(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7。本发明的二维双层有机‑无机杂化钙钛矿半导体晶体制备成平面光电导探测器可实现对本征吸收光谱的高灵敏度探测。利用波长为405nm的激光照射采用本发明单晶制备的晶体探测器件,测试其光电响应,入射光的功率密度为10.2mW/cm2时,该晶体探测器件表现出明显的光电导效应Iph=17nA,该结果表明该材料用作光电导探测器件具有潜在的应用价值。

Description

一种二维双层有机-无机杂化钙钛矿半导体晶体及其制备方 法和用途
技术领域
本发明属于功能晶体材料领域中的人工晶体材料领域,具体涉及一种二维双层有机-无机杂化钙钛矿半导体晶体及其制备方法和用途。
背景技术
三维(3D)有机-无机杂化钙钛矿的结构通式为ABX3,A是一价阳离子,如Cs+、甲铵离子(MA)、甲脒离子(FA);而B是二价金属,如Pb2+、Sn2+等;X是卤素(Cl、Br或I)。从结构上来讲,3DABX3是BX6八面体通过顶点共享向三个方向无限延伸的网络,A位有机阳离子填充在由相邻BX6八面体组成的空隙当中,起到平衡电荷、稳定结构的作用。为了使3D结构稳定,A位有机阳离子的尺寸需在一定范围内,它们的选择受到Goldschmidt容忍因子(t)的限制,因此3D的ABX3结构具有相当严格的结构约束,通过改变组分特别是A的离子大小可以实现卓越的结构可调性得到二维(2D),一维(1D),乃至零维(0D)结构。对于组分相同的无机有机杂化钙钛矿,从3D到0D其带隙逐渐变宽。对于二维多层无机有机杂化钙钛矿,其Eg随着无机层厚度的增加而减小。如(C4H9NH3)2(MA)n-1SnnI3n+1,随着n增加,其从1.98eV(n=1)减小到1.2eV(n=∞)。更为重要的是,2D的无机有机杂化钙钛矿不受容忍因子的限制,可以容纳各种各样的阳离子,有机阳离子的分子动力学为对称破坏和电极的产生提供了驱动力。因此,2D无机有机杂化钙钛矿是设计具有优越半导体性质的理想体系。
发明内容
本发明提供一种二维双层有机-无机杂化钙钛矿半导体晶体、制备方法和用途,本发明的二维双层有机-无机杂化钙钛矿半导体晶体制成平面光电导探测器可实现对本征吸收光谱的高灵敏度探测。
本发明的技术方案如下:
方案一)
一种二维双层有机-无机杂化钙钛矿半导体晶体,所述的无机-有机杂化半导体材料的化学式为(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7
所述的二维双层有机-无机杂化钙钛矿半导体晶体属于三斜晶系,空间群为P1。
所述晶体的晶胞参数为:
Figure BDA0003657140940000021
α=96.815(18)°,β=95.416(16)°,γ=90.271(19)°,
Figure BDA0003657140940000022
Z=2。
方案二)
一种有机-无机杂化双钙钛矿半导体晶体的制备方法,包括以下步骤:
称取氮甲基-1,3-丙二胺、碳酸铯、氧化铅并置于烧杯中,再向烧杯中加入HBr水溶液,加热到126~130℃并搅拌至得到黄色澄清溶液;
然后将得到的溶液密封放入55℃-60℃的烘箱中,以0.8~1(℃/天的速率冷却至室温,即得到所述的有机-无机杂化钙钛矿半导体;
所述的氮甲基-1,3-丙二胺、碳酸铯、氧化铅的摩尔比为(2~4):(1~2):(4~8);
所述的PbO与HBr的摩尔比为1:(6~10)。
进一步地,所述的HBr水溶液中HBr的质量分数为47~48%。
方案三)
一种二维双层有机-无机杂化钙钛矿半导体的用途,所述的有机-无机杂化钙钛矿半导体(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7能应用在光电导探测器领域。
X射线单晶衍射的结果表明:该化合物的分子式为(N2C4H14)(Cs)Pb2Br7,结构简式为(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7。其中,(NH3CH2CH2CH2NH2CH3)2+代表氮甲基-1,3-丙二胺离子。在室温下(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7晶体属于三斜晶系,空间群为P1。该化合物的晶胞参数为
Figure BDA0003657140940000031
Figure BDA0003657140940000032
α=96.815(18)°,β=95.416(16)°,γ=90.271(19)°,
Figure BDA0003657140940000033
Figure BDA0003657140940000034
Z=2。
较之前的现有技术,本发明具有以下有益效果:本发明制备了一种二维双层有机-无机杂化钙钛矿半导体晶体,本发明的二维双层有机-无机杂化钙钛矿半导体晶体制备成平面光电导探测器可实现对本征吸收光谱的高灵敏度探测。利用波长为405nm的激光照射采用本发明单晶制备的晶体探测器件,测试其光电响应,入射光的功率密度为10.2mW/cm2时,该晶体探测器件表现出明显的光电导效应Iph=17nA,该结果表明该材料用作光电导探测器件具有潜在的应用价值。
附图说明
图1是本发明中(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7晶体的照片。
图2是本发明中(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7晶体的晶体结构图。
图3是本发明中(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7的光学带隙。
图4是本发明中(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7晶体的光电导性能。
具体实施方式
下面结合具体实施例对本发明进一步阐述
实施例1
制备二维双层有机-无机杂化钙钛矿半导体晶体(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7
采用降温结晶法合成晶体(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7,化学反应式为
2NH2CH2CH2CH2NHCH3+4PbO+Cs2CO3+14HBr→
2(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7+7H2O
称取氮甲基-1,3-丙二胺(1×10-3mol)、碳酸铯(0.5×10-3mol)、氧化铅(2×10- 3mol)并置于烧杯中,再向烧杯中加入HBr水溶液,加热到126℃并搅拌直至得到黄色澄清溶液;
然后将得到的黄色澄清溶液密封,放入温度为55℃的烘箱中,待溶液温度达到55℃之后,以0.8℃/天的速率冷却至室温,即得到所述的有机-无机杂化钙钛矿半导体;
所述的氧化铅与HBr水溶液中的HBr的摩尔比为1:6。
所述的HBr水溶液中HBr的质量分数为48%。
实施例2
二维双层有机-无机杂化钙钛矿半导体晶体(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7的制备
称取氮甲基-1,3-丙二胺(4×10-3mol)、碳酸铯(2×10-3mol)、氧化铅(8×10-3mol)并置于烧杯中,再向烧杯中加入HBr水溶液,加热到130℃并搅拌直至得到黄色澄清溶液;
然后将得到的黄色澄清溶液密封,放入温度为60℃的烘箱中,待溶液温度达到60℃之后,以1℃/天的速率冷却至室温,即得到所述的有机-无机杂化钙钛矿半导体;
所述的氧化铅与HBr水溶液中的HBr的摩尔比为1:10。
所述的HBr水溶液中HBr的质量分数为47。
本实施例溶液析出尺寸为3×3×1mm3的黄色片状晶体(如图1所示),即(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7晶体。
经X射线单晶衍射分析,本实施例制备的(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7晶体室温下属于三斜晶系P1空间群,晶胞参数为
Figure BDA0003657140940000051
α=90°,β=90.052(3)°,γ=90°,
Figure BDA0003657140940000052
Z=2。
从图2中可以看出,(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7采用如下的结构:有机阳离子层(NH3CH2CH2CH2NH2CH3)2+和无机层CsPb2Br7 2+交错堆积构成二维杂化钙钛矿结构,无机部分二维双层钙钛矿结构框架,类似于典型的立方型钙钛矿CsPbBr3,无机的碱金属Cs+离子位于PbBr6八面体连接的钙钛矿孔隙中。
实施例3
称取氮甲基-1,3-丙二胺、碳酸铯、氧化铅并置于烧杯中,再向烧杯中加入HBr水溶液,加热到127℃并搅拌直至得到黄色澄清溶液;
然后将得到的黄色澄清溶液密封,放入温度为57℃的烘箱中,待溶液温度达到57℃之后,以0.9℃/天的速率冷却至室温,即得到所述的有机-无机杂化钙钛矿半导体;
所述的氮甲基-1,3-丙二胺、碳酸铯、氧化铅的摩尔比为3:1:5;
所述的氧化铅与HBr水溶液中的HBr的摩尔比为1:7。
所述的HBr水溶液中HBr的质量分数为47%。
将上述实施例制得的二维双层有机-无机杂化钙钛矿半导体晶体(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7通过紫外可见吸收光谱对(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7的光学吸收进行分析。(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7的吸收截止边为525nm。如图3所示,根据Tauc公式可以推导出该化合物的光学带隙值为2.36eV。
基于(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7单晶制成的平面电极采用405nm激光为激发光源研究了其光电导行为。图4显示了(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7在黑暗中和光照下的电流-电压(I-V)曲线。结果表明,在10V偏压下,(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7的暗电流(Idark)为9×10-10A,说明其单晶的结晶质量高,固有载流子密度低。当光照强度为10.2mW/cm2时,(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7的光电流(Iph)急剧增加至1.7×10-8A,得到Iph/Idark的值为18。该结果不仅揭示了(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7晶体的半导体性能,而且表明该材料能够用于制作光电导探测器件,表明材料在集成光电功能器件领域具有潜在的应用价值。
本发明不仅限于上述实施例,凡是依据本发明上述实施例所做出的替换和变更,都在本发明保护范围。

Claims (4)

1.一种二维双层有机-无机杂化钙钛矿半导体晶体,其特征在于:所述的二维双层有机-无机杂化钙钛矿半导体晶体的化学式为(NH3CH2CH2CH2NH2CH3)(Cs)Pb2Br7,属于三斜晶系,空间群为P1,晶胞参数为:
Figure FDA0003657140930000011
α=96.815(18)°,β=95.416(16)°,γ=90.271(19)°,
Figure FDA0003657140930000012
Z=2。
2.根据权利要求1所述的二维双层有机-无机杂化钙钛矿半导体晶体的制备方法,其特征在于:包括以下步骤:
称取氮甲基-1,3-丙二胺、碳酸铯、氧化铅并置于烧杯中,再向烧杯中加入HBr水溶液,加热到126-130℃并搅拌直至得到黄色澄清溶液;
然后将得到的黄色澄清溶液密封,放入温度为55℃~60℃的烘箱中,待溶液温度达到55℃~60℃之后,以0.8~1℃/天的速率冷却至室温,即得到所述的有机-无机杂化钙钛矿半导体;
所述的氮甲基-1,3-丙二胺、碳酸铯、氧化铅的摩尔比为(2~4):(1~2):(4~8);
所述的氧化铅与HBr水溶液中的HBr的摩尔比为1:(6~10)。
3.根据权利要求2所述的二维双层有机-无机杂化钙钛矿半导体晶体的制备方法,其特征在于:所述的HBr水溶液中HBr的质量分数为47~48%。
4.根据权利要求1所述的一种二维双层有机-无机杂化钙钛矿半导体的用途,其特征在于:所述的二维双层有机-无机杂化钙钛矿半导体用于制备光电导探测器。
CN202210568432.7A 2022-05-23 2022-05-23 一种二维双层有机-无机杂化钙钛矿半导体晶体及其制备方法和用途 Pending CN114990699A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210568432.7A CN114990699A (zh) 2022-05-23 2022-05-23 一种二维双层有机-无机杂化钙钛矿半导体晶体及其制备方法和用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210568432.7A CN114990699A (zh) 2022-05-23 2022-05-23 一种二维双层有机-无机杂化钙钛矿半导体晶体及其制备方法和用途

Publications (1)

Publication Number Publication Date
CN114990699A true CN114990699A (zh) 2022-09-02

Family

ID=83027807

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210568432.7A Pending CN114990699A (zh) 2022-05-23 2022-05-23 一种二维双层有机-无机杂化钙钛矿半导体晶体及其制备方法和用途

Country Status (1)

Country Link
CN (1) CN114990699A (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170358758A1 (en) * 2014-11-06 2017-12-14 Postech Academy-Industry Foundation Organic-inorganic hybrid perovskite nanocrystal particle light emitting body having two-dimensional structure, method for producing same, and light emitting device using same
CN111211233A (zh) * 2020-01-13 2020-05-29 山西大学 一种dj型二维双层杂化钙钛矿材料及制备方法和应用
CN112479893A (zh) * 2021-01-11 2021-03-12 天津理工大学 一种新型具有变温荧光性质的金属卤化物钙钛矿的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170358758A1 (en) * 2014-11-06 2017-12-14 Postech Academy-Industry Foundation Organic-inorganic hybrid perovskite nanocrystal particle light emitting body having two-dimensional structure, method for producing same, and light emitting device using same
CN111211233A (zh) * 2020-01-13 2020-05-29 山西大学 一种dj型二维双层杂化钙钛矿材料及制备方法和应用
CN112479893A (zh) * 2021-01-11 2021-03-12 天津理工大学 一种新型具有变温荧光性质的金属卤化物钙钛矿的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAO XIAO,ET AL.: "Two-Dimensional Dion–Jacobson Perovskite (NH3C4H8NH3)CsPb2Br7 with High X-ray Sensitivity and Peak Discrimination of α-Particles", THE JOURNAL OF PHYSICAL CHEMISTRY LETTERS, vol. 13, pages 1187 - 1193 *

Similar Documents

Publication Publication Date Title
Bella et al. Caesium for perovskite solar cells: an overview
Zhou et al. Hierarchical Cu2ZnSnS4 particles for a low-cost solar cell: morphology control and growth mechanism
Kaltzoglou et al. Trimethylsulfonium lead triiodide: an air-stable hybrid halide perovskite
Ghosh et al. Recent developments of lead-free halide double perovskites: a new superstar in the optoelectronic field
Hartono et al. The effect of structural dimensionality on carrier mobility in lead-halide perovskites
Li et al. Bismuth oxychalcogenide nanosheet: facile synthesis, characterization, and photodetector application
Tian et al. Two-dimensional organic–inorganic hybrid Ruddlesden–Popper perovskite materials: preparation, enhanced stability, and applications in photodetection
Ghorpade et al. Emerging chalcohalide materials for energy applications
Luo et al. Spatially heterogeneous chlorine incorporation in organic–inorganic perovskite solar cells
Ding et al. Cesium Decreases Defect Density and Enhances Optoelectronic Properties of Mixed MA1–x Cs x PbBr3 Single Crystal
Pan et al. Searching for high-quality halide perovskite single crystals toward X-ray detection
De Marco et al. Perovskite single‐crystal solar cells: advances and challenges
Bakr et al. Deposition and characterization of Cu2ZnSnS4 thin films for solar cell applications
Zhang et al. Ferroelastic domains in a CsPbBr3 single crystal and their phase transition characteristics: An in situ TEM study
CN113571645A (zh) Dj型无甲胺窄带隙二维双层杂化钙钛矿材料及制备方法
Yan et al. Advances in the synthesis of halide perovskite single crystals for optoelectronic applications
CN107829138A (zh) 一种基于混合阳离子的立方相有机无机钙钛矿单晶材料、制备方法及其应用
Sansom et al. Chemical control of the dimensionality of the octahedral network of solar absorbers from the CuI–AgI–BiI3 phase space by synthesis of 3D CuAgBiI5
Ibraheam et al. Structural, optical and electrical properties of Cu 2 Zn 1− x Cd x SnS 4 quinternary alloys nanostructures deposited on porous silicon
Pradhan et al. Two-dimensional hybrid organohalide perovskites from ultrathin PbS nanocrystals as template
Zhu et al. Synthesis of water-soluble antimony sulfide quantum dots and their photoelectric properties
Bhawna et al. BiOBr surface-functionalized halide double-perovskite films for slow ion migration and improved stability
Sánchez-Coronilla et al. Hybrid perovskite, CH 3 NH 3 PbI 3, for solar applications: an experimental and theoretical analysis of substitution in A and B sites
CN114990699A (zh) 一种二维双层有机-无机杂化钙钛矿半导体晶体及其制备方法和用途
Shen et al. Dimensionality Engineering of Organic–Inorganic Halide Perovskites for Next‐Generation X‐Ray Detector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination