WO2016068239A1 - 樹脂改質用粒子、及びそれを含む塩化ビニル系樹脂組成物 - Google Patents

樹脂改質用粒子、及びそれを含む塩化ビニル系樹脂組成物 Download PDF

Info

Publication number
WO2016068239A1
WO2016068239A1 PCT/JP2015/080561 JP2015080561W WO2016068239A1 WO 2016068239 A1 WO2016068239 A1 WO 2016068239A1 JP 2015080561 W JP2015080561 W JP 2015080561W WO 2016068239 A1 WO2016068239 A1 WO 2016068239A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
resin
vinyl chloride
parts
glycidyl group
Prior art date
Application number
PCT/JP2015/080561
Other languages
English (en)
French (fr)
Inventor
賢治 高水
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to EP15855313.1A priority Critical patent/EP3214137B1/en
Priority to US15/520,337 priority patent/US10259937B2/en
Priority to CN201580056760.7A priority patent/CN107075259B/zh
Priority to JP2016556625A priority patent/JP6637436B2/ja
Publication of WO2016068239A1 publication Critical patent/WO2016068239A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/062Copolymers with monomers not covered by C08L33/06
    • C08L33/068Copolymers with monomers not covered by C08L33/06 containing glycidyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/06Polymer mixtures characterised by other features having improved processability or containing aids for moulding methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/53Core-shell polymer

Definitions

  • the present invention relates to a resin modifying particle, a vinyl chloride resin composition, a method for producing the resin modifying particle, a vinyl chloride resin useful for improving the resin in terms of impact resistance, thermal stability and appearance.
  • the present invention relates to a method for producing a composition and a molded body.
  • Patent Document 1 discloses a vinyl chloride resin composition containing a glycidyl group-containing polymer as an epoxy stabilizer and a core-shell copolymer as an impact resistance improver.
  • the glycidyl group-containing polymer is a hard powdery resin, and it is difficult to disperse it in the vinyl chloride resin from the powdered state, and the surface of the resin due to poor dispersion may be a problem.
  • Patent Document 1 the number of bumps on the surface of the resin is large.
  • a vinyl chloride resin composition containing a conventional stabilizer impact resistance and thermal stability are confirmed.
  • the properties are satisfactory, the surface of the resin is flawed due to poor dispersion of the stabilizer, resulting in poor appearance.
  • the present invention provides a resin-modifying particle, a vinyl chloride resin composition, and a resin-modifying particle, which have excellent impact resistance and thermal stability, and further provide an appearance with reduced surface roughness of the resin.
  • An object of the present invention is to provide a method for producing a vinyl chloride resin composition, and a molded article.
  • the present inventors have found that the resin-modified particles obtained by mixing and coagulating each of the glycidyl group-containing copolymer and the core-shell copolymer in a latex state have good impact resistance and thermal stability.
  • the present invention has been completed by finding that it is effective and effective for reducing the surface roughness of the resin.
  • both acid coagulant and salt coagulant are effective in preparing resin-modifying particles exhibiting desired characteristics, more preferably acid coagulant has desired characteristics (especially resin It has also been found that it is effective for the preparation of resin-modifying particles exhibiting reduced surface roughness.
  • the gist of the present invention is as follows. [1] Particles for resin modification containing a glycidyl group-containing polymer (B) and a core-shell copolymer (C) in a single particle. [2] The glycidyl group-containing polymer (B) comprises 50 to 100% by weight of the glycidyl group-containing ethylenically unsaturated monomer (B1) and 0 to 50% by weight of the other unsaturated monomer (B2). The resin modifying particle according to [1], which is a polymer.
  • the core-shell copolymer (C) is composed of a rubber elastic core layer and a vinyl polymer shell layer covering the core layer, according to [1] or [2] Particles for resin modification.
  • the amount of the glycidyl group-containing polymer (B) is 1 to 30 parts by weight with respect to a total of 100 parts by weight of the glycidyl group-containing polymer (B) and the core-shell copolymer (C).
  • a vinyl chloride resin composition comprising a vinyl chloride resin (A) and the resin modifying particles according to any one of [1] to [5].
  • the vinyl chloride resin composition according to [6] wherein the amount of the resin modifying particles is 1 to 30 parts by weight with respect to 100 parts by weight of the vinyl chloride resin (A).
  • Resin modification characterized by mixing a glycidyl group-containing polymer (B) and a core-shell copolymer (C) in a latex state and granulating by either an acid coagulation or salt coagulation granulation method.
  • [12] 1 to 30 parts by weight of resin-modifying particles obtained by the production method according to any one of [9] to [11] are included with respect to 100 parts by weight of the vinyl chloride resin composition (A).
  • a method for producing a vinyl chloride resin composition [13] A molded body of the vinyl chloride resin composition according to any one of [6] to [8], wherein the number of granular materials having a size of 10 ⁇ m or more and 1000 ⁇ m or less appearing on the surface of the molded body is 20 cm ⁇ 20 cm.
  • the resin modification particles of the present invention contain a glycidyl group-containing polymer (B) and a core-shell copolymer (C) in a single particle.
  • the resin modifying particles are obtained by mixing a glycidyl group-containing polymer and a core-shell copolymer in a latex state, and solidifying the glycidyl group-containing polymer and the core-shell copolymer in a composite state.
  • the glycidyl group-containing polymer and the core-shell copolymer are uniformly mixed at a latex particle size (for example, submicron size) level, and this state is referred to as “composite” in this specification.
  • Glycidyl group-containing polymer (B) The glycidyl group-containing polymer (B) of the present invention comprises 50 to 100% by weight of a glycidyl group-containing ethylenically unsaturated monomer (B1) and another unsaturated monomer (B2) of 0 to 50% by weight. It is preferably a coalescence.
  • the composition ratio of (B1) and (B2) is preferably 50 to 100% by weight, and preferably 60 to 100% by weight of the glycidyl group-containing ethylenically unsaturated monomer (B1) from the viewpoint of thermal stability. More preferably, it is 70 to 100% by weight, more preferably 80 to 100% by weight. When the glycidyl group-containing ethylenically unsaturated monomer (B1) is less than 50% by weight, the thermal stability may be insufficient.
  • the glycidyl group-containing ethylenically unsaturated monomer (B1) has only to have a structure having an epoxy group in the molecule, and is glycidyl methacrylate, glycidyl acrylate, 3,4-epoxycyclohexyl methacrylate, acrylic acid. Examples include 3,4-epoxycyclohexyl. These may be used alone or in combination of two or more as required.
  • a glass transition temperature (Tg) is high, and glycidyl methacrylate is preferable from the viewpoint of powder characteristics.
  • an acrylic ester and / or a methacrylic ester may be collectively referred to as a (meth) acrylic ester.
  • Other unsaturated monomers (B2) include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, (meth) N-butyl acrylate, iso-butyl (meth) acrylate, sec-butyl (meth) acrylate, tert-butyl (meth) acrylate, n-amyl (meth) acrylate, iso-amyl (meth) acrylate N-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate, dodecyl (meth) acrylate, ( (Meth) acrylic acid esters having 1 to 20 carbon atoms such as (meth) lauryl acryl
  • Heterocyclic group-containing unsaturated monomers vinyl chloride, vinyl chloride Halogen-containing unsaturated monomers such as ethylene, vinyl fluoride, vinylidene fluoride, tetrafluoroethylene and hexafluoropropylene; aromatic ring group-containing unsaturated compounds such as styrene, ⁇ -methylstyrene, vinyltoluene and p-chlorostyrene Monomers; vinyl acetate; vinyl ether; (meth) acrylonitrile; monocarboxylic acid group-containing unsaturated monomers such as (meth) acrylic acid and crotonic acid; itaconic acid, monomethyl itaconate, monoethyl itaconate, monopropyl itaconate Monobutyl itaconate, dimethyl itaconate, diethyl itaconate, dipropyl itaconate, dibutyl itaconate, monobutyl itaconate, fumaric acid, monomethyl fum
  • Saturated monomers such as vinyl sulfonic acid, styrene sulfonic acid and sulfoethyl (meth) acrylate; 2- (meth) acryloyloxyethyl acid phosphate, 2- (meth) acryloyloxypropyl acid Phosphoric acid-containing ethylenically unsaturated monomers such as phosphate, 2- (meth) acryloyloxy-3-chloropropyl acid phosphate, 2-methacryloyloxyethylphenyl phosphoric acid, and the like can be used.
  • the monomer (B2) can be used alone or in combination of two or more.
  • alkyl group-containing (meth) acrylic acid esters and aromatic ring group-containing unsaturated monomers are preferable, and methyl (meth) acrylate, ethyl (meth) acrylate, and n-propyl (meth) acrylate are more preferable.
  • Styrene and ⁇ -methylstyrene are more preferably methyl (meth) acrylate and styrene.
  • the amount of the alkyl group-containing (meth) acrylic acid ester is preferably 40% in 100% by weight of the other unsaturated monomer. -100% by weight, more preferably 50-98% by weight, still more preferably 60-95% by weight.
  • the amount of the aromatic ring group-containing unsaturated monomer is preferably 100% by weight of the other unsaturated monomer. Is 0 to 60% by weight, more preferably 2 to 50% by weight, still more preferably 5 to 40% by weight.
  • the weight average molecular weight (Mw) of the glycidyl group-containing polymer (B) of the present invention is preferably in the range of 10,000 to 500,000, more preferably 10,000 to 250,000, from the viewpoint of dispersibility. 10,000 to 200,000 is more preferred, 10,000 to 150,000 is even more preferred, and 20,000 or more or 70,000 or more is particularly preferred.
  • the weight average molecular weight can be determined using, for example, gel permeation chromatography (manufactured by Tosoh Corporation, HLC-8220GPC).
  • the volume average particle size of the glycidyl group-containing polymer (B) of the present invention is preferably 0.05 to 0.5 ⁇ m, more preferably 0.1 to 0.3 ⁇ m, and more preferably 0.1 to 0.3 ⁇ m from the viewpoint of thermal stability. 0.2 ⁇ m is more preferable, and 0.15 to 0.18 ⁇ m is particularly preferable.
  • an initiator amount and / or a chain transfer agent can be used to adjust the weight average molecular weight (Mw).
  • Chain transfer agents include mercaptans such as n-dodecyl mercaptan, t-dodecyl mercaptan, n-octyl mercaptan, n-tetradecyl mercaptan, n-hexyl mercaptan, n-butyl mercaptan; carbon tetrachloride, ethylene bromide, etc. Halogen compound; a known chain transfer agent such as ⁇ -methylstyrene dimer may be used.
  • the said chain transfer agent can be used individually by 1 type, and can be used in combination of 2 or more type.
  • the polymerization method for obtaining the glycidyl group-containing polymer (B) of the present invention is, for example, easy recovery of the glycidyl group-containing polymer (B), low odor of the polymer, handling properties, blocking resistance and economy. From this viewpoint, a polymerization method using water as a medium such as an emulsion polymerization method and a suspension polymerization method is preferable, and an emulsion polymerization method is most preferable from the viewpoint of dispersibility in a vinyl chloride resin.
  • the particle structure may be a single layer structure or a multilayer structure.
  • a three-layer structure or less is preferable from the viewpoint of economy.
  • Examples of the emulsifier for emulsion polymerization of the glycidyl group-containing polymer (B) of the present invention include an anionic emulsifier, a cationic emulsifier, and a nonionic emulsifier.
  • anionic emulsifier such as fatty acid salt, alkyl sulfate ester salt, alkylbenzene sulfonate salt, alkyl phosphate ester salt, sulfosuccinic acid diester salt, cationic emulsifier such as alkylamine salt, polyoxyethylene alkyl ether, polyoxyethylene fatty acid
  • Nonionic emulsifiers such as esters can be used. These can be used individually by 1 type or in combination of 2 or more types as needed.
  • Examples of the solvent for polymerizing the glycidyl group-containing polymer (B) of the present invention by a solution polymerization method include toluene, xylene, and other aromatic solvents; ester systems such as ethyl acetate, butyl acetate, and cellosolve acetate. Solvent; a known organic solvent such as a ketone solvent such as acetone, methyl ethyl ketone, diethyl ketone, or methyl isobutyl ketone may be used. These may be used alone or in combination of two or more.
  • dispersion stabilizer when the glycidyl group-containing polymer (B) of the present invention is polymerized by suspension polymerization, water-soluble polymers such as gelatin, starch, polyvinyl alcohol, carboxymethyl cellulose, calcium carbonate, carbonic acid are used. Insoluble powders such as magnesium can be used. These dispersion stabilizers may be used alone or in combination of two or more.
  • Core-shell copolymer (C) The core-shell copolymer (C) of the present invention is preferably composed of a rubber elastic core layer and a vinyl polymer shell layer covering the core layer, and the core layer includes the shell layer. Is more preferably graft-bonded. The core layer may be partially or entirely covered with the grafted shell layer.
  • the core layer is more preferably at least one rubber selected from the group consisting of diene rubber, acrylic rubber and silicon rubber as one or more core layers (C1).
  • the core layer may have a multilayer structure. In this case, the composition of each layer may be different or the same.
  • the core layer is composed of 50 to 100% by weight of the diene monomer (C1-1) and 0 to 50% by weight of the monomer (C1-2) copolymerizable with the diene monomer.
  • the polymer is preferably.
  • the diene monomer (C1-1) is preferably butadiene, isoprene, chloroprene, and more preferably butadiene.
  • Monomers (C1-2) copolymerizable with diene monomers include aromatic vinyl monomers such as styrene, ⁇ -methylstyrene and vinyl naphthalene, and vinyl cyanide monomers such as (meth) acrylonitrile.
  • it is a monomer or the like.
  • the diene monomer and the monomer copolymerizable with the diene monomer may be used alone or in combination of two or more.
  • the core layer may be polymerized using a polyfunctional monomer in order to increase the degree of crosslinking.
  • the polyfunctional monomer is preferably divinylbenzene, triallyl (iso) cyanurate, allyl (meth) acrylate, diallyl itaconate, diallyl phthalate, or the like.
  • diene rubber examples include polybutadiene, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), and ethylene-propylene-diene terpolymer rubber (EPDM). Of these, polybutadiene is preferred.
  • the core layer is composed of 50 to 100% by weight of (meth) acrylate monomer (C1-3) and a monomer that can be copolymerized with (meth) acrylate monomer.
  • the polymer (C1-4) is preferably a 0 to 50% by weight polymer.
  • (Meth) acrylate monomers (C1-3) are methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) acrylic (Meth) acrylic acid hydroxyalkyl esters such as octyl acid, alkyl group-containing (meth) acrylic acid esters such as (meth) acrylic acid dodecyl, (meth) acrylic acid 2-hydroxyethyl, (meth) acrylic acid 4-hydroxybutyl Etc.
  • the monomer (C1-4) copolymerizable with the (meth) acrylic acid ester monomer may be the same as the monomer (C1-2) copolymerizable with the diene monomer.
  • the (meth) acrylic acid ester monomer and the monomer copolymerizable with the (meth) acrylic acid ester monomer may be used alone or in combination of two or more.
  • the core layer is a polysiloxane rubber composed of alkyl or aryl disubstituted silyloxy units such as dimethylsiloxane, diethylsiloxane, methylphenylsiloxane, diphenylsiloxane, dimethylsiloxane-diphenylsiloxane, etc .; some of the alkyl groups in the side chain are hydrogen atoms Silicone rubbers such as polysiloxane rubbers composed of alkyl or aryl 1-substituted siloxane units such as organohydrogensiloxanes substituted with a polysiloxane may be used.
  • the core layer may be a composite rubber of acrylic rubber and silicon rubber, or a composite rubber of dimethylsiloxane rubber and butyl acrylate rubber.
  • the shell layer is 50 to 100% by weight (preferably, vinyl monomer (C2-1) selected from at least one member selected from the group consisting of methacrylic acid esters and acrylic acid esters as one or more shell layers (C2). 60 to 95% by weight, more preferably 65 to 90% by weight), and monomer (C2-2) copolymerizable with these monomers 0 to 50% by weight (preferably 5 to 40% by weight, more preferably Is preferably 10 to 35% by weight of a copolymer.
  • vinyl monomer (C2-1) selected from at least one member selected from the group consisting of methacrylic acid esters and acrylic acid esters as one or more shell layers (C2).
  • C2 monomer copolymerizable with these monomers 0 to 50% by weight (preferably 5 to 40% by weight, more preferably Is preferably 10 to 35% by weight of a copolymer.
  • Vinyl monomers (C2-1) are methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, lauryl methacrylate, methyl acrylate, ethyl acrylate, n-butyl acrylate, (Meth) acrylic acid (meth) acrylate such as 2-ethylhexyl acrylate, cyclohexyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl methacrylate, 4-hydroxybutyl acrylate, etc.
  • (Meth) acrylic acid esters such as (meth) acrylic acid aralkyl such as hydroxyalkyl acrylate, glycidyl methacrylate and glycidyl acrylate, glycidyl (meth) acrylate, benzyl acrylate and benzyl methacrylate and the like are preferable.
  • Monomers (C2-2) copolymerizable with these monomers include (meth) acrylonitrile such as acrylonitrile and methacrylonitrile, aromatic vinyl monomers such as styrene and ⁇ -methylstyrene, vinyl chloride, odor Preferred are halogen vinyl monomers such as vinyl fluoride and vinyl fluoride.
  • These monomers are used alone or in admixture of two or more.
  • an alkyl (meth) acrylate and an aromatic vinyl monomer are preferable, and a combination of methyl methacrylate, styrene, and n-butyl acrylate is preferable.
  • each monomer as a constituent component of the shell layer may be added to the aqueous latex of the core polymer prepared by emulsion polymerization.
  • the core layer (C1) is 40 to 99.9% by weight, the shell layer (C2) 0 0.1 to 60% by weight, preferably 50 to 99.9% by weight of the core layer (C1), 0.1 to 50% by weight of the shell layer (C2), more preferably 60 to 99.9% of the core layer (C1).
  • the composition ratio is 1% by weight and the shell layer (C2) is 0.1 to 40% by weight.
  • the amount of the glycidyl group-containing polymer (B) is preferably 1 to 30 parts by weight, more preferably 2 parts per 100 parts by weight in total of the glycidyl group-containing polymer (B) and the core-shell copolymer (C). -25 parts by weight, more preferably 5-20 parts by weight. If it is less than 1 part by weight, the heat resistance and mechanical properties may be lowered, and if it exceeds 30 parts by weight, the surface of the molded body may increase.
  • the above-mentioned amount may be a solid content when the latex of each of the glycidyl group-containing polymer and the core-shell copolymer is mixed.
  • the content of Mg and Ca (preferably the content of alkaline earth metal) is preferably 100 ppm or less, more preferably 50 ppm or less, and even more preferably 10 ppm or less in the resin-modifying particles. Particularly preferred is 0 ppm.
  • Mg and Ca increase, when added to the resin, heat resistance, aging resistance, and moldability may be insufficient.
  • the method for producing resin modifying particles is a step of mixing a glycidyl group-containing polymer (B) and a core-shell copolymer (C) in a latex state, and granulating by one of acid coagulation and salt coagulation granulation methods. including.
  • the glycidyl group-containing polymer (B) and the core-shell copolymer (C) are granulated and mixed into a powder, they are mixed in a latex state, and solidification methods such as salt coagulation and acid coagulation (inorganic salts, acids, etc.) It is preferable to obtain a powder of the polymer mixture of (B) and (C) by treating with a coagulant.
  • the polymer mixture of (B) and (C) obtained by this method is a resin caused by poor dispersion of (B), which is a concern when mixing powders obtained by granulating each of (B) and (C) separately. The problem of surface irregularities is eliminated.
  • the resin-modifying particles are prepared by a production method including a step of mixing a glycidyl group-containing polymer (B) and a core-shell copolymer (C) in a latex state and granulating by an acid coagulation granulation method. Is done.
  • the latex mixture contains 0.1 to 10 parts by weight (preferably 0.1 to 5 parts by weight, more preferably 0.1 to 1 part by weight) of the glycidyl group-containing polymer (B), the core-shell copolymer (C) 0 It may be prepared by mixing 1 to 20 parts by weight (preferably 0.5 to 20 parts by weight, more preferably 1 to 15 parts by weight).
  • Examples of the acid coagulant used when powdering the latex of the polymer mixture of (B) and (C) are inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, formic acid, acetic acid, propionic acid, maleic acid Organic acids such as These acid coagulants can be used alone or in combination of two or more. Of these, hydrochloric acid, sulfuric acid, phosphoric acid, and acetic acid are preferable, and hydrochloric acid is more preferable.
  • the acid coagulant has an advantage of reducing the surface roughness of the molded body as compared with the following salt coagulant.
  • inorganic salts such as sodium chloride, calcium chloride, magnesium chloride, sodium sulfate, calcium sulfate, magnesium sulfate, Organic salts such as calcium acetate and magnesium acetate.
  • These salt coagulants can be used alone or in combination of two or more. Of these, calcium chloride and magnesium chloride are preferable.
  • the coagulant may be added to the latex mixture as it is, or may be added to the latex mixture as a coagulant solution. From the viewpoint of workability, it is preferable to use a coagulant solution.
  • the amount of coagulant used is, for example, 0.0001 to 0.01 parts by weight, preferably 0.001 to 0.01 parts by weight with respect to 100 parts by weight of the latex mixture. It is.
  • the concentration of the coagulant solution is, for example, 0.1 to 10% by weight, and preferably 0.2 to 5% by weight.
  • the temperature at which the latex mixture is coagulated is, for example, 5 to 50 ° C., preferably 15 to 40 ° C.
  • the mixing of the latex mixture and the coagulant (solution) is preferably performed with stirring.
  • the coagulated latex mixture is subjected to heat treatment, dehydration, washing, drying, and the like to prepare resin modifying particles.
  • the content of the glycidyl group-containing polymer (B) in 100% by weight of the resin modifying particles in the powder of the polymer mixture (resin modifying particles) of (B) and (C) is too large.
  • processing problems such as a decrease in impact resistance and an increase in melt viscoelasticity of the vinyl chloride resin composition occur, for example, 30% by weight or less, preferably 20% by weight or less, more preferably 15% by weight. % Or less.
  • the content of the core-shell copolymer (C) is desirably 70% by weight or more, preferably 80% by weight or more, more preferably 85% by weight or more in 100% by weight of the resin modifying particles.
  • the glycidyl group-containing polymer (B) is, for example, 0.5% by weight or more, preferably 5.0%.
  • the content of the core-shell polymer (C) is, for example, 99.5% by weight or less, preferably 95.0% by weight or less.
  • the volume average particle diameter of the resin modifying particles is, for example, 0.001 to 10 ⁇ m, preferably 0.002 to 5 ⁇ m, and more preferably 0.005 to 1 ⁇ m.
  • the volume average particle diameter can be measured using, for example, a particle size analyzer (Nanotracwave manufactured by Nikkiso Co., Ltd.).
  • a vinyl chloride resin (A) is mixed with a glycidyl group-containing polymer (B) and a core-shell copolymer (C) in a latex state to produce acid coagulation or salt coagulation.
  • One embodiment includes a vinyl chloride resin composition comprising a polymer mixture (resin-modifying particles) granulated by a granulation method.
  • the vinyl chloride resin composition contains a vinyl chloride resin (A) and the resin modifying particles of the polymer mixture.
  • the vinyl chloride resin (A) of the present invention may have a structure in which one or more of hydrogens of polyolefin and polydiene monomer units are replaced by chlorine.
  • polyvinyl chloride, polychlorinated vinyl chloride Polyvinylidene chloride, chlorinated polyethylene, vinyl chloride vinyl acetate copolymer, vinyl chloride ethylene copolymer, and chloroprene rubber.
  • Polyvinyl chloride or polychlorinated vinyl chloride is preferable.
  • the average degree of polymerization of vinyl chloride is, for example, 300 or more and 4000 or less, and preferably 600 or more and 1500 or less.
  • the content of the polymer mixture (resin modifying particles) of (B) and (C) in the vinyl chloride resin composition is such that the vinyl chloride resin (A) is used from the viewpoint of the heat distortion resistance of the molded product.
  • the amount of the polymer mixture of (B) and (C) (resin-modifying particles) is preferably 1 to 30 parts by weight, more preferably 2 to 20 parts by weight, and particularly preferably 3 to 15 parts by weight with respect to 100 parts by weight. .
  • stabilizers may be added to the vinyl chloride resin composition of the present invention.
  • the stabilizer examples include organic compounds such as methyl tin mercapto, butyl tin mercapto, octyl tin mercapto, butyl tin malate, butyl tin malate polymer, octyl tin malate, octyl tin malate polymer, butyl tin laurate, and butyl tin laurate polymer.
  • Tin stabilizers; lead stabilizers such as lead stearate, dibasic lead phosphite, tribasic lead sulfate; calcium-zinc stabilizers; barium-zinc stabilizers; cadmium-barium stabilizers It is done. These may be used alone or in combination of two or more.
  • the amount of the stabilizer (preferably tin-based stabilizer) is preferably 0.1 to 3.0 parts by weight, more preferably 0.2 to 3.0 parts by weight with respect to 100 parts by weight of the vinyl chloride resin.
  • the amount is preferably 0.5 to 2.5 parts by weight.
  • plasticizers include phthalate plasticizers such as di-2-ethylhexyl phthalate (DOP), di-n-octyl phthalate, diisononyl phthalate (DINP), and dibutyl phthalate (DBP); tricresyl phosphate (TCP ), Trixyl phosphate (TXP), triphenyl phosphate (TPP), tri-2-ethylhexyl phosphate (TOTM), etc .; phosphate plasticizers; 2,2,4-trimethyl-1,3-pentanediol diisobutyl Fatty acid ester plasticizers such as tyrate (TXIB), di-2-ethylhexyl adipate (DEHA), di-2-ethylhexyl sebacate, polybutyl acrylate, acrylate-n-butyl / methyl methacrylate copolymer, 2-ethylhexyl
  • filler examples include calcium carbonate, magnesium carbonate, lithium carbonate, kaolin clay, gypsum, mica, talc, magnesium hydroxide, calcium silicate, borax, and titanium oxide.
  • the method for molding the vinyl chloride resin composition into various molded products is not particularly limited, but for example, ordinary vinyl chloride resin processing such as extrusion molding, injection molding, calendar molding, press molding, etc. Law.
  • the molded body of the present invention is a molded body of a vinyl chloride resin composition, and the number of particles having a size of 10 ⁇ m or more and 1000 ⁇ m or less appearing on the surface of the molded body is 600 or less per 20 cm ⁇ 20 cm.
  • the granular material (butsu) means a size of 10 ⁇ m or more and 1000 ⁇ m or less that can be observed with the naked eye on the surface of the molded body.
  • the number of granular materials is preferably 580 or less per 20 cm ⁇ 20 cm, more preferably 560 or less, still more preferably 540 or less, and even more preferably 520 or less.
  • the Izod impact resistance value measured by JIS K 7110 is, for example, 85 kJ / m 2 or more at 23 ° C., preferably 90 kJ / m 2 or more, more preferably 95 kJ / m 2 or more, and further preferably 100 kJ / m 2 or more.
  • molded products include secondary molding sheets, flooring materials, inks, paints, aluminum film heat sealants, metal coating agents, hot water pipes and joints, industrial pipes and joints, sprinkler pipes and joints, electric power Examples include underground pipes for cable storage, films and sheets, filters, equipment, and adhesives.
  • ⁇ Weight average molecular weight measurement> The sample to be measured was dissolved in tetrahydrofuran (THF), and the soluble component was dissolved in a glycidyl group-containing polymer (HLC-8220GPC, manufactured by Tosoh Corporation) using a gel permeation chromatography based on polystyrene.
  • the weight average molecular weight of B) was determined (sample solution: sample 20 mg / THF 10 mL, measurement temperature: 25 ° C., detector: differential refraction system, injection amount: 1 mL).
  • volume average particle diameter of the resin-modifying particles which is a polymer of 0.01 to 0.5 ⁇ m, was measured using light scattering at a wavelength of 546 nm using a particle size analyzer (Nanotracwave, manufactured by Nikkiso Co., Ltd.). It was measured.
  • a test piece for No. 2A Izod impact test having a thickness of 5.0 mm, a length of 70 mm, and a width of 15 mm was produced from this press plate.
  • the impact resistance at 0 ° C. and 23 ° C. was measured according to JIS K 7110 standard.
  • ⁇ Ungelled product> In the sample used for the thermal stability, the number of ungelatinized products on the sheet contained in an area of 20 cm ⁇ 20 cm was visually observed and counted.
  • the ungelatinized product was a solid having a size of 10 ⁇ m or more and 1000 ⁇ m or less on the surface of the molded body.
  • Example of production of core-shell copolymer (C-1) (Production Example 2-1)> 200 parts water, 2.2 parts sodium oleate, 0.002 parts ferrous sulfate (FeSO 4 .7H 2 O), 0.007 parts disodium ethylenediaminetetraacetate, sodium formaldehyde sulfoxylate 0 0.08 part, 0.4 part of tripotassium phosphate, 100 parts of butadiene and 0.1 part of paramentane hydroperoxide were charged and polymerized to obtain a latex of a diene rubbery polymer.
  • FeSO 4 .7H 2 O ferrous sulfate
  • disodium ethylenediaminetetraacetate sodium formaldehyde sulfoxylate 0 0.08 part
  • tripotassium phosphate 100 parts of butadiene and 0.1 part of paramentane hydroperoxide were charged and polymerized to obtain a latex of a diene rubbery polymer.
  • the latex polymer mixture is coagulated by adding 1 part of hydrochloric acid diluted to 1% under a temperature condition of 25 ° C., and heat treatment, dehydration, washing and drying are performed, and the polymer mixture (resin-modifying particles) ( X1) was obtained.
  • Example 1 The physical properties of the vinyl chloride resin composition obtained by adding 10 parts of the polymer mixture (resin modifying particles) (X1) to 100 parts of the vinyl chloride resin (A1) were evaluated according to the evaluation items described above. The results are shown in Table 4.
  • Example 2 In Example 1, instead of the polymer mixture (resin-modifying particles) (X1), a vinyl chloride resin composition to which (X2) was added was prepared, and the same evaluation was performed on the composition. The results are shown in Table 4.
  • Example 3 In Example 1, instead of the polymer mixture (resin-modifying particles) (X1), a vinyl chloride resin composition added with (X3) was prepared, and the same evaluation was performed on the composition. The results are shown in Table 4.
  • Example 4 In Example 1, instead of the polymer mixture (resin-modifying particles) (X1), a vinyl chloride resin composition to which (X4) was added was prepared, and the same evaluation was performed on the composition. The results are shown in Table 4.
  • Example 5 In Example 1, instead of the polymer mixture (resin-modifying particles) (X1), a vinyl chloride resin composition to which (X5) was added was prepared, and the same evaluation was performed on the composition. The results are shown in Table 4.
  • Example 1 In Example 1, instead of the polymer mixture (resin-modifying particles) (X1), a vinyl chloride resin composition to which (X6) was added was prepared, and the same evaluation was performed on the composition. The results are shown in Table 4.
  • Example 2 In Example 1, instead of the polymer mixture (resin-modifying particles) (X1), a vinyl chloride resin composition to which (X7) was added was prepared, and the same evaluation was performed on the composition. The results are shown in Table 4.
  • Example 3 In Example 6, instead of the polymer mixture (resin-modifying particles) (X1), a vinyl chloride resin composition was prepared by adding a hydrochloric acid coagulum of the core-shell copolymer (C-1). The same evaluation was performed. The results are shown in Table 5.
  • the resin surface irregularity due to poor dispersion of the stabilizer which is a concern with the addition of the conventional epoxy polymer thermal stabilizer, is greatly increased. Reduce.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

 本発明は、グリシジル基含有重合体(B)とコアシェル共重合体(C)とを一粒子内に複合して含む樹脂改質用粒子、及び塩化ビニル系樹脂(A)と、前記樹脂改質用粒子とを含有する塩化ビニル系樹脂組成物等に関する。

Description

樹脂改質用粒子、及びそれを含む塩化ビニル系樹脂組成物
 本発明は、耐衝撃性、熱安定性および外観の面で樹脂を改善するのに有用な樹脂改質用粒子、塩化ビニル系樹脂組成物、樹脂改質用粒子の製造方法、塩化ビニル系樹脂組成物の製造方法、及び成形体に関する。
 塩化ビニル系樹脂を成型加工する際、長い滞留時間、高温成型等の加工条件によっては、樹脂の熱分解による機械的物性の低下や着色等が問題となる場合がある。このため、一般的には、安定剤として、鉛系、バリウム-亜鉛系、カルシウム-亜鉛系、錫系などの金属系安定剤やエポキシ化大豆油などのエポキシ系安定剤が使用されている。
 特許文献1には、エポキシ系安定剤として、グリシジル基含有重合体と、耐衝撃改良剤として、コアシェル共重合体を含む塩化ビニル系樹脂組成物が開示されている。
 しかし、グリシジル基含有重合体は硬い粉末状の樹脂であり、粉末の状態から塩化ビニル系樹脂に分散させるのが困難であり、分散不良に伴う樹脂表面のブツが問題となる場合がある。
特許第5037910号公報
 本発明者は、特許文献1では、樹脂表面でのブツの個数が多い事を確認しており、この様に、従来の安定剤を含む塩化ビニル系樹脂組成物では、耐衝撃性と熱安定性は満足するものの、安定剤の分散不良による樹脂表面のブツが生じ、外観不良が問題となっている。
 そこで、本発明は、優れた耐衝撃性と熱安定性を有し、さらに樹脂表面のブツを低減している外観をもたらす樹脂改質用粒子、塩化ビニル系樹脂組成物、樹脂改質用粒子の製造方法、塩化ビニル系樹脂組成物の製造方法、及び成形体を提供することを目的とする。
 本発明者は、鋭意検討した結果、グリシジル基含有共重合体とコアシェル共重合体のそれぞれをラテックスの状態で混合し、凝固させて得られる樹脂改質用粒子が良好な耐衝撃性と熱安定性を有し、かつ樹脂表面のブツの低減に有効であることを見出して、本発明を完成させた。
 さらに、本発明者は、好ましくは酸凝固剤や塩凝固剤の両方が所望の特性を呈する樹脂改質用粒子の調製に有効である事、より好ましくは酸凝固剤が所望の特性(特に樹脂表面のブツ低減)を呈する樹脂改質用粒子の調製に有効であることも見出した。
 本発明の要旨は以下の通りである。
[1] グリシジル基含有重合体(B)とコアシェル共重合体(C)とを一粒子内に複合して含む樹脂改質用粒子。
[2] 前記グリシジル基含有重合体(B)が、グリシジル基含有エチレン性不飽和単量体(B1)50~100重量%と、その他の不飽和単量体(B2)0~50重量%の重合体である[1]に記載の樹脂改質用粒子。
[3] 前記コアシェル共重合体(C)が、ゴム弾性を有するコア層と、このコア層を被覆するビニル系重合体のシェル層とから構成されている[1]又は[2]に記載の樹脂改質用粒子。
[4] 前記グリシジル基含有重合体(B)の量が、グリシジル基含有重合体(B)とコアシェル共重合体(C)の合計100重量部に対して、1~30重量部である[1]~[3]のいずれかに記載の樹脂改質用粒子。
[5] Mg及びCaの含有量が、100ppm以下である[1]~[4]のいずれかに記載の樹脂改質用粒子。
[6] 塩化ビニル系樹脂(A)と、[1]~[5]のいずれかに記載の樹脂改質用粒子とを含有する塩化ビニル系樹脂組成物。
[7] 前記樹脂改質用粒子の量が、塩化ビニル系樹脂(A)100重量部に対して、1~30重量部である[6]に記載の塩化ビニル系樹脂組成物。
[8] 錫系安定剤0.1~3.0重量部をさらに含む[6]又は[7]に記載の塩化ビニル系樹脂組成物。
[9] グリシジル基含有重合体(B)とコアシェル共重合体(C)をラテックス状態で混合し、酸凝固あるいは塩凝固のいずれかの造粒方法により造粒することを特徴とする樹脂改質用粒子の製造方法。
[10] グリシジル基含有重合体(B)とコアシェル共重合体(C)をラテックス状態で混合し、酸凝固の造粒方法により造粒することを特徴とする[9]に記載の樹脂改質用粒子の製造方法。
[11] グリシジル基含有重合体(B)0.1~10重量部、コアシェル共重合体(C)0.1~20重量部を混合する[9]又は[10]に記載の樹脂改質用粒子の製造方法。
[12] 塩化ビニル系樹脂組成物(A)100質量部に対して、[9]~[11]のいずれかに記載の製造方法で得られた樹脂改質用粒子1~30重量部を含ませる塩化ビニル系樹脂組成物の製造方法。
[13] [6]~[8]のいずれかに記載の塩化ビニル系樹脂組成物の成形体であって、成形体表面に現れる大きさ10μm以上1000μm以下の粒状物の個数が、20cm×20cm当たり600個以下である事を特徴とする成形体。
 本発明によれば、耐衝撃性、熱安定性と外観のバランスに優れた成形体を提供することができる。
1.樹脂改質用粒子
 本発明の樹脂改質用粒子は、グリシジル基含有重合体(B)とコアシェル共重合体(C)とを一粒子内に複合して含む。樹脂改質用粒子は、後述される通り、グリシジル基含有重合体とコアシェル共重合体それぞれをラテックス状態で混合し、グリシジル基含有重合体とコアシェル共重合体が互いに複合した状態で凝固してなるものであり、グリシジル基含有重合体とコアシェル共重合体とは、ラテックス粒子サイズ(例えば、サブミクロンサイズ)のレベルで均一に混ざっており、この状態を本明細書では「複合」という。
1-1.グリシジル基含有重合体(B)
 本発明のグリシジル基含有重合体(B)は、グリシジル基含有エチレン性不飽和単量体(B1)50~100重量%と、その他の不飽和単量体(B2)0~50重量%の重合体であることが好ましい。
 前記(B1)及び(B2)の組成比は、熱安定性の観点から、グリシジル基含有エチレン性不飽和単量体(B1)が50~100重量%であることが好ましく、60~100重量%であることがより好ましく、70~100重量%であることがさらに好ましく、80~100重量%であることが特に好ましい。グリシジル基含有エチレン性不飽和単量体(B1)が50重量%を下回る場合は、熱安定性が不十分になる場合がある。
 グリシジル基含有エチレン性不飽和単量体(B1)は、分子内にエポキシ基を持つ構造を有していればよく、メタクリル酸グリシジル、アクリル酸グリシジル、メタクリル酸3,4-エポキシシクロヘキシル、アクリル酸3,4-エポキシシクロヘキシル等が挙げられる。これらは必要に応じて1種あるいは2種以上を組み合わせて使用できる。単量体(B1)として、ガラス転移温度(Tg)が高く、粉体特性の観点からメタクリル酸グリシジルが好ましい。本発明において、アクリル酸エステル及び/又はメタクリル酸エステルを纏めて(メタ)アクリル酸エステルと称することがある。
 また、その他の不飽和単量体(B2)としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸iso-ブチル、(メタ)アクリル酸sec-ブチル、(メタ)アクリル酸tert-ブチル、(メタ)アクリル酸n-アミル、(メタ)アクリル酸iso-アミル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸ラウリル、(メタ)アクリル酸ステアリル等の炭素数1~20のアルキル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸ベンジル等の炭素数7~20のアラルキル基含有(メタ)アクリル酸エステル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸p-tert-ブチルシクロヘキシル等の炭素数3~20のシクロアルキル基含有(メタ)アクリル酸エステル;(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-(3-)ヒドロキシプロピル、(メタ)アクリル酸4-ヒドロキシブチル、(メタ)アクリル酸グリセロール等のヒドロキシ基含有(メタ)アクリル酸エステル;(メタ)アクリル酸アミド、(メタ)アクリル酸N,N-ジメチルアミノエチル等のアミノ基含有(メタ)アクリル酸エステル;ビニルピリジン、ビニルイミダゾール、ビニルピロリドン等の複素環基含有不飽和単量体;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン等のハロゲン含有不飽和単量体;スチレン、α-メチルスチレン、ビニルトルエン、p-クロロスチレン等の芳香族環基含有不飽和単量体;酢酸ビニル;ビニルエーテル;(メタ)アクリロニトリル;(メタ)アクリル酸、クロトン酸等のモノカルボン酸基含有不飽和単量体;イタコン酸、イタコン酸モノメチル、イタコン酸モノエチル、イタコン酸モノプロピル、イタコン酸モノブチル、イタコン酸ジメチル、イタコン酸ジエチル、イタコン酸ジプロピル、イタコン酸ジブチル、イタコン酸モノブチル、フマル酸、フマル酸モノメチル、フマル酸モノエチル、フマル酸モノプロピル、フマル酸モノブチル、フマル酸ジメチル、フマル酸ジエチル、フマル酸ジプロピル、フマル酸ジブチル、マレイン酸、マレイン酸モノメチル、マレイン酸モノエチル、マレイン酸モノプロピル、マレイン酸モノブチル、マレイン酸ジメチル、マレイン酸ジエチル、マレイン酸ジプロピル、マレイン酸ジブチル等のジカルボン酸基含有不飽和単量体;ビニルスルホン酸、スチレンスルホン酸及びスルホエチル(メタ)アクリレート等のスルホン酸基含有不飽和単量体;2-(メタ)アクリロイルオキシエチルアシッドホスフェート、2-(メタ)アクリロイルオキシプロピルアシッドホスフェート、2-(メタ)アクリロイルオキシ-3-クロロプロピルアシッドホスフェート、2-メタクリロイルオキシエチルフェニルリン酸等のリン酸含有エチレン性不飽和単量体等を用いることができる。上記単量体(B2)は単独で使用できる他、2種以上を組み合わせて用いることができる。
 中でも、アルキル基含有(メタ)アクリル酸エステル、芳香族環基含有不飽和単量体が好ましく、より好ましくは(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、スチレン、α-メチルスチレンであり、さらに好ましくは(メタ)アクリル酸メチル、スチレンである。
 その他の不飽和単量体としてアルキル基含有(メタ)アクリル酸エステルを使用する場合、アルキル基含有(メタ)アクリル酸エステルの量は、その他の不飽和単量体100重量%中、好ましくは40~100重量%、より好ましくは50~98重量%、さらに好ましくは60~95重量%である。
 その他の不飽和単量体として芳香族環基含有不飽和単量体を使用する場合、芳香族環基含有不飽和単量体の量は、その他の不飽和単量体100重量%中、好ましくは0~60重量%、より好ましくは2~50重量%、さらに好ましくは5~40重量%である。
 本発明のグリシジル基含有重合体(B)の重量平均分子量(Mw)は、分散性の観点から、10,000~500,000の範囲が好ましく、10,000~250,000がより好ましく、10,000~200,000がさらに好ましく、10,000~150,000がさらにより好ましく、20,000以上又は70,000以上が特に好ましい。
 重量平均分子量は、例えばゲルパーミエーションクロマトグラフィー(東ソー(株)社製、HLC-8220GPC)を使用して求めることができる。
 本発明のグリシジル基含有重合体(B)の体積平均粒子径は、熱安定性の観点から、0.05~0.5μmが好ましく、0.1~0.3μmがより好ましく、0.1~0.2μmがさらに好ましく、0.15~0.18μmが特に好ましい。
 本発明のグリシジル基含有重合体を重合する場合、重量平均分子量(Mw)を調整するために、開始剤量及び/又は連鎖移動剤を使用できる。連鎖移動剤としては、n-ドデシルメルカプタン、t-ドデシルメルカプタン、n-オクチルメルカプタン、n-テトラデシルメルカプタン、n-ヘキシルメルカプタン、n-ブチルメルカプタン等のメルカプタン類;四塩化炭素、臭化エチレン等のハロゲン化合物;α-メチルスチレンダイマー等の公知の連鎖移動剤を用いればよい。連鎖移動剤の使用量は、使用する連鎖移動剤の種類や不飽和単量体の構成比に応じて変化させればよい。上記連鎖移動剤は、1種を単独で使用できる他、2種以上を組み合わせて用いることができる。
 本発明のグリシジル基含有重合体(B)を得るための重合法は、グリシジル基含有重合体(B)の回収の容易性、重合物の低臭気性、ハンドリング性、耐ブロッキング性及び経済性等の観点から、乳化重合法、懸濁重合法等の水を媒体とした重合法が好ましく、塩化ビニル系樹脂への分散性の観点から乳化重合法が最も好ましい。また、乳化重合法、ソープフリー乳化重合法、滴下懸濁重合法などの粒子構造体を得ることができる重合法を用いて重合する場合、その粒子構造は単層構造であっても多層構造であってもよいが、多層構造粒子の場合、経済性の点から3層構造以下であることが好ましい。
 本発明のグリシジル基含有重合体(B)を乳化重合する際の乳化剤としては、アニオン性乳化剤、カチオン性乳化剤、又はノニオン性乳化剤等が挙げられる。例えば、脂肪酸塩、アルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、アルキルリン酸エステル塩、スルホコハク酸ジエステル塩などのアニオン性乳化剤、アルキルアミン塩などのカチオン性乳化剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステルなどのノニオン性乳化剤などを使用できる。これらは必要に応じて1種を単独で、又は2種以上を組み合わせて使用できる。
 本発明のグリシジル基含有重合体(B)を溶液重合法にて重合する際の溶媒としては、例えば、トルエン、キシレン、その他の芳香族系溶媒;酢酸エチル、酢酸ブチル、セロソルブアセテート等のエステル系溶媒;アセトン、メチルエチルケトン、ジエチルケトン、メチルイソブチルケトン等のケトン系溶媒等、公知の有機溶剤を使用すればよい。これらは1種のみを使用しても2種以上を混合して使用してもよい。また、本発明のグリシジル基含有重合体(B)を懸濁重合法にて重合する際の分散安定剤としては、ゼラチン、澱粉、ポリビニルアルコール、カルボキシメチルセルロース等の水溶性高分子や炭酸カルシウム、炭酸マグネシウムなどの不溶性粉末を使用できる。これらの分散安定剤は1種を単独で使用しても2種以上を併用してもよい。
1-2.コアシェル共重合体(C)
 本発明のコアシェル共重合体(C)は、ゴム弾性を有するコア層と、このコア層を被覆するビニル系重合体のシェル層とから構成されていることが好ましく、前記コア層に前記シェル層がグラフト結合していることがより好ましい。前記コア層は、グラフト結合した前記シェル層により、一部又は全部が覆われていてもよい。
 コア層は、1層以上のコア層(C1)としてジエン系ゴム、アクリル系ゴム及びシリコン系ゴムからなる群より選ばれる1種以上のゴムであることがより好ましい。
 コア層は、多層構造であってもよく、この場合、各層の組成は、互いに相違していても同一であってもよい。
 コア層は、耐衝撃性の点から、ジエン系単量体(C1-1)50~100重量%及びジエン系単量体と共重合可能な単量体(C1-2)0~50重量%の重合体であることが好ましい。
 ジエン系単量体(C1-1)は、ブタジエン、イソプレン、クロロプレン等が好ましく、より好ましくはブタジエンである。
 ジエン系単量体と共重合可能な単量体(C1-2)は、スチレン、α-メチルスチレン、ビニルナフタレン等の芳香族ビニル系単量体、(メタ)アクリロニトリル等のシアン化ビニル系単量体等であることが好ましい。
 ジエン系単量体と、ジエン系単量体と共重合可能な単量体は、それぞれ1種又は2種以上を使用してもよい。
 コア層は、架橋度を高める為に、多官能性単量体を用いて重合されていてもよい。多官能性単量体は、ジビニルベンゼン、(イソ)シアヌル酸トリアリル、(メタ)アクリル酸アリル、イタコン酸ジアリル、フタル酸ジアリル等であることが好ましい。
 前記ジエン系ゴムとしては、ポリブタジエン、スチレン-ブタジエンゴム(SBR)、アクリロニトリル-ブタジエンゴム(NBR)、エチレン-プロピレン-ジエン三元共重合体ゴム(EPDM)等が挙げられる。中でも、ポリブタジエンが好ましい。
 コア層は、耐衝撃性や耐候性の点から、(メタ)アクリル酸エステル単量体(C1-3)50~100重量%及び(メタ)アクリル酸エステル単量体と共重合可能な単量体(C1-4)0~50重量%の重合体であることが好ましい。
 (メタ)アクリル酸エステル単量体(C1-3)は、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ドデシル等のアルキル基含有(メタ)アクリル酸エステル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキルエステル等であることが好ましい。
 (メタ)アクリル酸エステル単量体と共重合可能な単量体(C1-4)は、ジエン系単量体と共重合可能な単量体(C1-2)と同様であってもよい。
 (メタ)アクリル酸エステル単量体と、(メタ)アクリル酸エステル単量体と共重合可能な単量体は、それぞれ1種又は2種以上で使用されてもよい。
 コア層は、ジメチルシロキサン、ジエチルシロキサン、メチルフェニルシロキサン、ジフェニルシロキサン、ジメチルシロキサン-ジフェニルシロキサン等のアルキル又はアリール2置換シリルオキシ単位から構成されるポリシロキサンゴム;側鎖のアルキル基の一部が水素原子に置換されたオルガノハイドロジェンシロキサン等のアルキル又はアリール1置換シロキサン単位から構成されるポリシロキサンゴム等のシリコン系ゴムであってもよい。
 他方、コア層は、アクリル系ゴムとシリコン系ゴムの複合ゴムであってもよく、ジメチルシロキサンゴムとブチルアクリレートゴムの複合ゴムであってもよい。
 シェル層は、1層以上のシェル層(C2)としてメタクリル酸エステル、及びアクリル酸エステルからなる群の1種以上より選ばれるビニル系単量体(C2-1)50~100重量%(好ましくは60~95重量%、より好ましくは65~90重量%)と、これら単量体と共重合可能な単量体(C2-2)0~50重量%(好ましくは5~40重量%、より好ましくは10~35重量%)の共重合体であることが好ましい。
 ビニル系単量体(C2-1)は、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸ラウリル、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸2-エチルヘキシル、アクリル酸シクロヘキシル等の(メタ)アクリル酸アルキル、メタクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシエチル、メタクリル酸4-ヒドロキシブチル、アクリル酸4-ヒドロキシブチル等の(メタ)アクリル酸ヒドロキシアルキル、メタクリル酸グリシジル、アクリル酸グリシジル等の(メタ)アクリル酸グリシジル、アクリル酸ベンジル、メタクリル酸ベンジル等の(メタ)アクリル酸アラルキル等の(メタ)アクリル酸エステルであることが好ましい。
 これら単量体と共重合可能な単量体(C2-2)は、アクリロニトリル、メタクリロニトリル等の(メタ)アクリロニトリル、スチレン、α-メチルスチレン等の芳香族ビニル単量体、塩化ビニル、臭化ビニル、フッ化ビニル等のハロゲンビニル単量体等であることが好ましい。
 これら単量体は単独でまたは2種以上を混合して用いられる。特に、塩化ビニル系樹脂への分散性および粉体化の観点から、(メタ)アクリル酸アルキル、芳香族ビニル単量体が好ましく、メタクリル酸メチル、スチレン、アクリル酸n-ブチルの組み合わせが好ましい。
 シェル層の重合は、例えば乳化重合で調製されたコア重合体の水性ラテックスに対して、シェル層の構成成分である各単量体を添加して、重合すればよい。
 本発明のコアシェル共重合体(C)の組成比において、耐衝撃強度及び樹脂への相溶性のバランスの観点から、例えばコア層(C1)40~99.9重量%、シェル層(C2)0.1~60重量%であり、好ましくはコア層(C1)50~99.9重量%、シェル層(C2)0.1~50重量%、より好ましくはコア層(C1)60~99.9重量%、シェル層(C2)0.1~40重量%の組成比である。
 コア層が40重量%未満であると、耐衝撃性が充分発揮できない場合があり、コア層が99.9重量%超であると、組成物の粘度が高くなりすぎて作業性が悪化する場合がある。
 前記グリシジル基含有重合体(B)の量は、グリシジル基含有重合体(B)とコアシェル共重合体(C)の合計100重量部に対して、好ましくは1~30重量部、より好ましくは2~25重量部、さらに好ましくは5~20重量部である。1重量部未満であると、耐熱性や機械的特性が低下する虞があり、30重量部超であると、成形体表面のブツが多くなる場合がある。上記量は、グリシジル基含有重合体とコアシェル共重合体それぞれのラテックスを混合する際の固形分量であってもよい。
 Mg及びCaの含有量(好ましくはアルカリ土類金属の含有量)は、樹脂改質用粒子中に、好ましくは100ppm以下であり、より好ましくは50ppm以下であり、さらに好ましくは10ppm以下であり、特に好ましくは0ppmである。Mg及びCaが多くなると、樹脂に添加した場合、耐熱性、耐老化性、成形性が不十分となる場合がある。
 樹脂改質用粒子の製造方法は、グリシジル基含有重合体(B)とコアシェル共重合体(C)をラテックス状態で混合し、酸凝固あるいは塩凝固のいずれかの造粒方法により造粒する工程を含む。
 すなわち、グリシジル基含有重合体(B)とコアシェル共重合体(C)を造粒し粉体化する場合、ラテックス状態で混合し、塩凝固や酸凝固等の凝固法(無機塩類、酸類などの凝固剤に接触させる)で処理することで、(B)と(C)の重合体混合物の粉体を得ることが好ましい。この方法により得られた(B)と(C)の重合体混合物は、(B)と(C)それぞれを単独造粒した粉体を混合する時に懸念される、(B)の分散不良による樹脂表面のブツが発生する問題が解消される。
 好ましくは、樹脂改質用粒子は、グリシジル基含有重合体(B)とコアシェル共重合体(C)をラテックス状態で混合し、酸凝固の造粒方法により造粒する工程を含む製造方法により調製される。
 ラテックス混合物は、グリシジル基含有重合体(B)0.1~10重量部(好ましくは0.1~5重量部、より好ましくは0.1~1重量部)、コアシェル共重合体(C)0.1~20重量部(好ましくは0.5~20重量部、より好ましくは1~15重量部)を混合して調製してもよい。
 前記(B)と(C)の重合体混合物のラテックスを粉体化する場合の酸凝固剤種としては、塩酸、硫酸、硝酸、リン酸等の無機酸類、ギ酸、酢酸、プロピオン酸、マレイン酸等の有機酸類などである。これら酸凝固剤は1種を単独で、又は2種以上を組み合わせて使用できる。中でも、塩酸、硫酸、リン酸、酢酸が好ましく、塩酸がより好ましい。酸凝固剤は、以下の塩凝固剤に比べて成形体表面のブツを低減するメリットがある。
 前記(B)と(C)の重合体混合物のラテックスを粉体化する場合の塩凝固剤種としては、塩化ナトリウム、塩化カルシウム、塩化マグネシウム、硫酸ナトリウム、硫酸カルシウム、硫酸マグネシウム等の無機塩類、酢酸カルシウム、酢酸マグネシウム等の有機塩類などである。これら塩凝固剤は1種を単独で、又は2種以上を組み合わせて使用できる。
 中でも、塩化カルシウム、塩化マグネシウムが好ましい。
 凝固剤は、そのままラテックス混合物に添加してもよく、凝固剤の溶液としてラテックス混合物に添加してもよい。作業性の観点から、凝固剤の溶液を使用することが好ましい。
 凝固剤をラテックス混合物に添加する場合、凝固剤の使用量は、ラテックス混合物100重量部に対して、例えば0.0001~0.01重量部であり、好ましくは0.001~0.01重量部である。
 凝固剤の溶液をラテックス混合物に添加する場合、凝固剤溶液の濃度は、例えば0.1~10重量%であり、好ましくは0.2~5重量%である。
 ラテックス混合物を凝固する際の温度は、例えば5~50℃、好ましくは15~40℃である。ラテックス混合物と凝固剤(溶液)の混合は、撹拌下で行うことが好ましい。
 凝固したラテックス混合物は、熱処理、脱水、洗浄および乾燥等に供され、樹脂改質用粒子を調製することができる。
 前記(B)と(C)の重合体混合物(樹脂改質用粒子)の粉末において、樹脂改質用粒子100重量%中のグリシジル基含有重合体(B)の含有量は、あまりにも多い場合には、塩化ビニル系樹脂組成物の耐衝撃性の低下や溶融粘弾性が増加するといった加工上の問題が発生するため、例えば30重量%以下、好ましくは20重量%以下、より好ましくは15重量%以下である。
 他方、コアシェル共重合体(C)の含有量が樹脂改質用粒子100重量%中、例えば70重量%以上、好ましくは80重量%以上、より好ましくは85重量以上であることが望ましい。
 またあまりにも少ない場合には、塩化ビニル系樹脂組成物に対して充分な熱安定性効果が発現されないため、グリシジル基含有重合体(B)が例えば0.5重量%以上、好ましくは5.0重量%以上、すなわちコアシェル重合体(C)の含有量が例えば99.5重量%以下、好ましくは95.0重量%以下である。
 樹脂改質用粒子の体積平均粒子径は、例えば0.001~10μm、好ましくは0.002~5μm、より好ましくは0.005~1μmである。
 体積平均粒子径は、例えば粒度分析計(日機装(株)社製、Nanotracwave)を使用して測定することができる。
2.塩化ビニル系樹脂組成物
 本発明には、塩化ビニル系樹脂(A)に対し、グリシジル基含有重合体(B)及びコアシェル共重合体(C)をラテックス状態で混合、酸凝固あるいは塩凝固の造粒方法により造粒した重合体混合物(樹脂改質用粒子)を含むことを特徴とする塩化ビニル系樹脂組成物が一態様として包含される。
 塩化ビニル系樹脂組成物は、塩化ビニル系樹脂(A)と、重合体混合物の前記樹脂改質用粒子とを含有する。
 本発明の塩化ビニル系樹脂(A)としては、ポリオレフィン、ポリジエンのモノマーユニットの水素の1つ以上を塩素で置き換えた構造を有していればよく、例えば、ポリ塩化ビニル、ポリ塩素化塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩化ビニル酢酸ビニルコポリマー、塩化ビニルエチレンコポリマー、及びクロロプレンゴムである。好ましくは、ポリ塩化ビニル又はポリ塩素化塩化ビニルである。
 塩化ビニルの平均重合度は、例えば、300以上4000以下であり、好ましくは600以上1500以下である。
 塩化ビニル系樹脂組成物中の前記(B)と(C)の重合体混合物(樹脂改質用粒子)の含有量は、成形品の耐熱変形性などの観点から、塩化ビニル系樹脂(A)100重量部に対し、(B)と(C)の重合体混合物(樹脂改質用粒子)が1~30重量部が好ましく、2~20重量部がさらに好ましく、3~15重量部が特に好ましい。
 本発明の塩化ビニル系樹脂組成物には、必要により、安定剤、滑剤、可塑剤、着色剤、充填剤、発泡剤等を加えてもよい。
 安定剤としては、例えばメチル錫メルカプト、ブチル錫メルカプト、オクチル錫メルカプト、ブチル錫マレート、ブチル錫マレートポリマー、オクチル錫マレート、オクチル錫マレートポリマー、ブチル錫ラウレート、ブチル錫ラウレートポリマー等の有機錫安定剤;ステアリン酸鉛、二塩基性亜燐酸鉛、三塩基性硫酸鉛等の鉛系安定剤;カルシウム-亜鉛系安定剤;バリウム-亜鉛系安定剤;カドミウム-バリウム系安定剤等が挙げられる。これらは単独で用いても2種以上を併用してもよい。
 安定剤(好ましくは錫系安定剤)の量は、塩化ビニル系樹脂100重量部に対し、好ましくは0.1~3.0重量部、より好ましくは0.2~3.0重量部、さらに好ましくは0.5~2.5重量部である。
 可塑剤として、例えば、ジ-2-エチルヘキシルフタレート(DOP)、ジ-n-オクチルフタレート、ジイソノニルフタレート(DINP)、ジブチルフタレート(DBP)等のフタル酸エステル系可塑剤;トリクレジルフォスフェート(TCP)、トリキシリルホスフェート(TXP)、トリフェニルフォスフェート(TPP)、トリ-2-エチルヘキシルホスフェート(TOTM)等のリン酸エステル系可塑剤;2,2,4-トリメチル-1,3-ペンタンジオールジイソブチレート(TXIB)、ジ-2-エチルヘキシルアジペート(DEHA)、ジ-2-エチルヘキシルセバケート等の脂肪酸エステル系可塑剤、ポリアクリル酸ブチル、アクリル酸-n-ブチル/メタクリル酸メチル共重合体、アクリル酸-2-エチルヘキシル/メタクリル酸メチル共重合体、アクリル酸-2-エチルヘキシル/メタクリル酸メチル/メタクリル酸-n-ブチル共重合体等のポリアクリル系可塑剤等から選ばれる一種または二種以上の可塑剤が使用できる。
 充填剤は、例えば、炭酸カルシウム、炭酸マグネシウム、炭酸リチウム、カオリングレー、石膏、マイカ、タルク、水酸化マグネシウム、珪酸カルシウム、硼砂、酸化チタン等を挙げることができる。
 塩化ビニル樹脂組成物を各種成形体に成形加工する方法としては、特に限定はないが、例えば押出成形法、射出成形法、カレンダー成形法、プレス成形法等の、通常の塩化ビニル系樹脂の加工法が挙げられる。
 本発明の成形体は、塩化ビニル系樹脂組成物の成形体であって、成形体表面に現れる大きさ10μm以上1000μm以下の粒状物の個数が、20cm×20cm当たり600個以下である。
 粒状物(ブツ)は、成形体の表面に肉眼が観察できる大きさ10μm以上1000μm以下のものを意味する。粒状物の個数は、20cm×20cm当たり580個以下であることが好ましく、より好ましくは560個以下、さらに好ましくは540個以下、さらにより好ましくは520個以下である。
 本発明の成形体(例えば樹脂として塩化ビニル系樹脂を使用する場合)において、JIS K 7110で測定されるアイゾット耐衝撃性値は、23℃で例えば85kJ/m2以上であり、好ましくは90kJ/m2以上であり、より好ましくは95kJ/m2以上であり、さらに好ましくは100kJ/m2以上である。
 成形体の用途としては、二次成型用シート、床材、インク、塗料、アルミフィルムのヒートシール剤、メタルコーティング剤、給湯用パイプ・継ぎ手、産業用パイプ・継ぎ手、スプリンクラー用パイプおよび継ぎ手、電力ケーブル収納用の地中埋設パイプ、フィルム・シート、フィルター、機器類、接着剤等が挙げられる。
 本願は、2014年10月29日に出願された日本国特許出願第2014-220426号に基づく優先権の利益を主張するものである。2014年10月29日に出願された日本国特許出願第2014-220426号の明細書の全内容が、本願に参考のため援用される。
 以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。なお、以下においては、特に断りのない限り、「部」は「重量部」を、「%」は「重量%」を意味する。
<重量平均分子量測定>
 測定試料をテトラヒドロフラン(THF)に溶解させ、その可溶分を、ポリスチレンを基準とするゲルパーミエーションクロマトグラフィー(東ソー(株)社製、HLC-8220GPC)を使用して、グリシジル基含有重合体(B)の重量平均分子量を求めた(試料溶液:試料20mg/THF10mL、測定温度:25℃、検出器:示差屈折系、注入量:1mL)。
<体積平均粒子径測定>
 0.01~0.5μmの重合体である樹脂改質用粒子の体積平均粒子径は、粒度分析計(日機装(株)社製、Nanotracwave)を使用して546nmの波長の光散乱を用いて測定した。
<耐衝撃性>
 得られる(B)と(C)の重合体混合物(樹脂改質用粒子)の粉末10部を、メチル錫メルカプト系安定剤((株)勝田化工製 商品名:TM-181FSJ)1.0部、加工助剤((株)カネカ製 商品名:カネエース(登録商標)PA-20)1.0部、内部滑剤(Emery Oleochemicals社製 商品名:GH4)0.5部及び外部滑剤(Emery Oleochemicals社製 商品名:G70S)0.4部を含む塩化ビニル樹脂(A1)((株)カネカ製 商品名:カネビニール(登録商標)S-1008 平均重合度800)100部に粉体状態で混合し、8インチテストロール(関西ロール(株)社製、テストロール)を用い、回転数17rpm、165℃で5分間混練りした後、180℃のプレスで15分間加圧、成形して厚さ1.0mmのプレス板を作製した。このプレス板より厚さ5.0mm、長さ70mm、幅15mmの2号Aのアイゾット衝撃試験用テストピースを作製した。得られたテストピースを用いてJIS K 7110規格に従い、0℃及び23℃における耐衝撃性を測定した。
<熱安定性(黒化時間)>
 耐衝撃性評価と同様の組成・条件でロール混練り、プレス成形により厚さ1.0mm、10×10mmの試験片を作成した。この試験片を恒温乾燥機(サタケ社製 熱風循環恒温乾燥機)にてJIS K 7212に従い、180℃、試験時間110分、吊り下げ方式で試験を行い、試験開始から10分毎に試験片を取り出し、色調のL値が20以下の値となる点を黒化と判断し、黒化までの時間を熱安定性として評価した。
<未ゲル化物>
 上記熱安定性で使用した試料において、20cm×20cm面積に含まれるシート上の未ゲル化物の個数を目視で観察し、数を数えた。未ゲル化物は、成形体表面の大きさ10μm以上1000μm以下のブツとした。
<グリシジル基含有重合体(B-1)の製造例(製造例1-1)>
 あらかじめ水に溶解したジオクチルコハク酸ナトリウム0.8部(重量部、以下同様)および硫酸第一鉄(FeSO4・7H2O)0.0005部、エチレンジアミン四酢酸二ナトリウム塩0.002部、炭酸ナトリウム0.5部及びホルムアルデヒドスルホキシル酸ナトリウム0.055部を撹拌機付き反応器に入れ、さらに水を加えて水の全量を200部とした。反応器内をチッ素置換して空間部および水中の酸素を除去したのち、撹拌しつつ内容物を60℃まで昇温しつつ、メタクリル酸グリシジル85部、メタクリル酸メチル10部、スチレン5部、t-ドデシルメルカプタン0.5部及びt-ブチルハイドロパーオキサイド0.03部を連続追加しながら重合を行い、共重合成分の追加終了後もそのまま内容物を60℃に保ったまま撹拌を1時間以上続けて重合を完結させたのちに冷却し、グリシジル基含有重合体(B-1)のラテックスを得た。
(製造例1-2~6)
 製造例1-1と同様の方法で、表1で示す組成でもって乳化重合を行い、グリシジル基含有重合体(B-2~B-6)を得た。
 なお、表1記載の略語は以下の意味を示す。
GMA:メタクリル酸グリシジル
MMA:メタクリル酸メチル
St:スチレン
tDM:t-ドデシルメルカプタン
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、重量平均分子量17,500~203,000、体積平均粒子径0.152~0.202μmを示すグリシジル基含有重合体(B)のラテックスが得られた。一方、製造例1-6記載の場合では単量体混合物の親水性が上がり、不安定化したことで重合不可となった。
<コアシェル共重合体(C-1)の製造例(製造例2-1)>
 耐圧重合機に水200部、オレイン酸ソーダ2.2部、硫酸第一鉄(FeSO4・7H2O)0.002部、エチレンジアミン四酢酸二ナトリウム塩0.007部、ホルムアルデヒドスルホキシル酸ソーダ0.08部、リン酸三カリウム0.4部、ブタジエン100部及びパラメンタンハイドロパーオキサイド0.1部を仕込み、これらを重合させてジエン系ゴム状重合体のラテックスを得た。このラテックス195部(固形分量70部)に、水20部、硫酸第一鉄0.003部、エチレンジアミン四酢酸二ナトリウム塩0.012部およびホルムアルデヒドスルホキシル酸ソーダ1.7部を添加し、これに60℃でスチレン4.5部、メタクリル酸メチル21部、アクリル酸n-ブチル4.5部及びt-ブチルハイドロパーオキサイド0.1部の混合液を連続追加してグラフト重合し、コアシェル共重合体(C-1)を得た。
 なお、表2記載の略語は以下の意味を示す。
Bd:ブタジエン
MMA:メタクリル酸メチル
St:スチレン
BA:アクリル酸n-ブチル
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、体積平均粒子径0.182μmを示すコアシェル共重合体(C)のラテックスが得られた。
<グリシジル基含有重合体(B-1)とコアシェル共重合体(C-1)の重合体混合物(樹脂改質用粒子)(X1)の製造例(製造例3-1)>
 得られたグリシジル基含有重合体(B-1)のラテックス30部(固形分量10部)と前記コアシェル共重合体(C-1)のラテックス257部(固形分量90部)をラテックス状態で混合した(この時のグリシジル基含有重合体(B-1)とコアシェル共重合体(C-1)との重量比は10/90となる)。ラテックス状態の重合体混合物に25℃の温度条件下で1%に希釈した塩酸1部を加えて凝固を行ない、熱処理、脱水、洗浄および乾燥を行ない、重合体混合物(樹脂改質用粒子)(X1)を得た。
(製造例3-2)
 表3記載の(B-1)と(C-1)の重量比でもって混合したラテックス状態の重合体混合物に25℃の温度条件下で1%に希釈したリン酸1部を加えて凝固を行ない、熱処理、脱水、洗浄および乾燥を行ない、重合体混合物(樹脂改質用粒子)(X2)を得た。
(製造例3-3)
 表3記載の(B-1)と(C-1)の重量比でもって混合したラテックス状態の重合体混合物に25℃の温度条件下で1%に希釈した酢酸1部を加えて凝固を行ない、熱処理、脱水、洗浄および乾燥を行ない、重合体混合物(樹脂改質用粒子)(X3)を得た。
(製造例3-4)
 表3記載の(B-1)と(C-1)の重量比でもって混合したラテックス状態の重合体混合物に25℃の温度条件下で1%に希釈した硫酸1部を加えて凝固を行ない、熱処理、脱水、洗浄および乾燥を行ない、重合体混合物(樹脂改質用粒子)(X4)を得た。
(製造例3-5)
 表3記載の(B-1)と(C-1)の重量比でもって混合したラテックス状態の重合体混合物に25℃の温度条件下で1%に希釈した塩化カルシウム4部を加えて凝固を行ない、熱処理、脱水、洗浄および乾燥を行ない、重合体混合物(樹脂改質用粒子)(X5)を得た。
(製造例3-6)
 表3記載の(B-1)と(C-1)の重量比でもって、(B-1)は塩化カルシウム凝固、(C-1)は塩酸凝固によってそれぞれを単独に造粒したものを粉体状態で混合した重合体混合物(X6)を得た。
(製造例3-7)
 表3記載の(B-1)と(C-1)の重量比でもって混合したラテックス状態の重合体混合物をスプレードライヤー(大川原化工機(株)製、L-8型)を用いて、入り口温度130℃、出口温度60℃、アドマイザー回転数16000rpmにて噴霧乾燥した重合体混合物(X7)を得た。
Figure JPOXMLDOC01-appb-T000003
<塩化ビニル樹脂組成物の評価(実施例1)>
 塩化ビニル樹脂(A1)100部に対し、重合体混合物(樹脂改質用粒子)(X1)10部を添加した塩化ビニル樹脂組成物の物性を前記記載の評価項目によって評価を行った。結果を表4に示す。
(実施例2)
 実施例1において、重合体混合物(樹脂改質用粒子)(X1)に換えて、(X2)を添加した塩化ビニル樹脂組成物を調製し、当該組成物に対し、同様の評価を行った。結果を表4に示す。
(実施例3)
 実施例1において、重合体混合物(樹脂改質用粒子)(X1)に換えて、(X3)を添加した塩化ビニル樹脂組成物を調製し、当該組成物に対し、同様の評価を行った。結果を表4に示す。
(実施例4)
 実施例1において、重合体混合物(樹脂改質用粒子)(X1)に換えて、(X4)を添加した塩化ビニル樹脂組成物を調製し、当該組成物に対し、同様の評価を行った。結果を表4に示す。
(実施例5)
 実施例1において、重合体混合物(樹脂改質用粒子)(X1)に換えて、(X5)を添加した塩化ビニル樹脂組成物を調製し、当該組成物に対し、同様の評価を行った。結果を表4に示す。
(比較例1)
 実施例1において、重合体混合物(樹脂改質用粒子)(X1)に換えて、(X6)を添加した塩化ビニル樹脂組成物を調製し、当該組成物に対し、同様の評価を行った。結果を表4に示す。
(比較例2)
 実施例1において、重合体混合物(樹脂改質用粒子)(X1)に換えて、(X7)を添加した塩化ビニル樹脂組成物を調製し、当該組成物に対し、同様の評価を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示された結果から、実施例1~5記載の場合では、耐衝撃性および熱安定性を十分に満たし、さらに、(B)の分散不良に伴う樹脂表面のブツが低減されたことがわかる。また、実施例1~4によれば、酸凝固による造粒ではより樹脂表面のブツが低減される。したがって、グリシジル基含有重合体(B)とコアシェル共重合体(C)をラテックス状態で混合し酸凝固または塩凝固によって造粒される重合体混合物(樹脂改質用粒子)では、耐衝撃性および熱安定性を十分に満足しつつ、樹脂表面のブツを低減する。
<塩素化塩化ビニル樹脂組成物の評価(実施例6)>
 得られる重合体混合物(樹脂改質用粒子)の粉末(X1)6部を、メチル錫メルカプト系安定剤(Dow Chemical社製 商品名:ADVANSTAB TM181)2.0部、加工助剤(Dow Chemical社製 商品名:PARALOIDK175)1.0部、安定剤(水澤化学工業(株)製 STABINEX DSM-1)3.6部、酸化防止剤(BASF社製 商品名:Irganox 175)0.3部および酸化チタン3.0部(Dupont社製 商品名:Ti-pure R-902+)を含む塩素化塩化ビニル樹脂(A2)((株)カネカ製 商品名:カネビニールH-829 平均重合度900)100部に粉体状態で混合し、8インチテストロール(関西ロール(株)社製、テストロール)を用い、回転数18rpm、190℃で5分間混練りした後、200℃のプレスで15分間加圧、成形して厚さ1.0mmのプレス板を作製した。このプレス成形板より、前記記載の23℃における耐衝撃性および熱安定性の評価法の条件でもって評価した。結果を表5に示す。
(比較例3)
 実施例6において、重合体混合物(樹脂改質用粒子)(X1)に換えて、コアシェル共重合体(C-1)の塩酸凝固物を添加した塩化ビニル樹脂組成物を調製し、当該組成物に対し、同様の評価を行った。結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示された結果から、実施例6記載の場合では、塩素化塩化ビニル樹脂の耐衝撃性及び熱安定性を十分に満たす。
 したがって、本発明では、耐衝撃性および熱安定性を十分に満足しつつ、従来のエポキシ系高分子熱安定剤の添加で懸念される、安定剤の分散不良に伴う樹脂表面のブツを大幅に低減する。
 

Claims (13)

  1.  グリシジル基含有重合体(B)とコアシェル共重合体(C)とを一粒子内に複合して含む樹脂改質用粒子。
  2.  前記グリシジル基含有重合体(B)が、グリシジル基含有エチレン性不飽和単量体(B1)50~100重量%と、その他の不飽和単量体(B2)0~50重量%の重合体である請求項1に記載の樹脂改質用粒子。
  3.  前記コアシェル共重合体(C)が、ゴム弾性を有するコア層と、このコア層を被覆するビニル系重合体のシェル層とから構成されている請求項1又は2に記載の樹脂改質用粒子。
  4.  前記グリシジル基含有重合体(B)の量が、グリシジル基含有重合体(B)とコアシェル共重合体(C)の合計100重量部に対して、1~30重量部である請求項1~3のいずれかに記載の樹脂改質用粒子。
  5.  Mg及びCaの含有量が、100ppm以下である請求項1~4のいずれかに記載の樹脂改質用粒子。
  6.  塩化ビニル系樹脂(A)と、請求項1~5のいずれかに記載の樹脂改質用粒子とを含有する塩化ビニル系樹脂組成物。
  7.  前記樹脂改質用粒子の量が、塩化ビニル系樹脂(A)100重量部に対して、1~30重量部である請求項6に記載の塩化ビニル系樹脂組成物。
  8.  錫系安定剤0.1~3.0重量部をさらに含む請求項6又は7に記載の塩化ビニル系樹脂組成物。
  9.  グリシジル基含有重合体(B)とコアシェル共重合体(C)をラテックス状態で混合し、酸凝固あるいは塩凝固のいずれかの造粒方法により造粒することを特徴とする樹脂改質用粒子の製造方法。
  10.  グリシジル基含有重合体(B)とコアシェル共重合体(C)をラテックス状態で混合し、酸凝固の造粒方法により造粒することを特徴とする請求項9に記載の樹脂改質用粒子の製造方法。
  11.  グリシジル基含有重合体(B)0.1~10重量部、コアシェル共重合体(C)0.1~20重量部を混合する請求項9又は10に記載の樹脂改質用粒子の製造方法。
  12.  塩化ビニル系樹脂組成物(A)100質量部に対して、請求項9~11のいずれかに記載の製造方法で得られた樹脂改質用粒子1~30重量部を含ませる塩化ビニル系樹脂組成物の製造方法。
  13.  請求項6~8のいずれかに記載の塩化ビニル系樹脂組成物の成形体であって、成形体表面に現れる大きさ10μm以上1000μm以下の粒状物の個数が、20cm×20cm当たり600個以下である事を特徴とする成形体。
     
PCT/JP2015/080561 2014-10-29 2015-10-29 樹脂改質用粒子、及びそれを含む塩化ビニル系樹脂組成物 WO2016068239A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15855313.1A EP3214137B1 (en) 2014-10-29 2015-10-29 Resin-modifying particles and vinyl chloride resin composition containing same
US15/520,337 US10259937B2 (en) 2014-10-29 2015-10-29 Resin-modifying particles and vinyl chloride resin composition containing same
CN201580056760.7A CN107075259B (zh) 2014-10-29 2015-10-29 树脂改性用粒子和含有该树脂改性用粒子的氯乙烯系树脂组合物
JP2016556625A JP6637436B2 (ja) 2014-10-29 2015-10-29 樹脂改質用粒子、及びそれを含む塩化ビニル系樹脂組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014220426 2014-10-29
JP2014-220426 2014-10-29

Publications (1)

Publication Number Publication Date
WO2016068239A1 true WO2016068239A1 (ja) 2016-05-06

Family

ID=55857574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080561 WO2016068239A1 (ja) 2014-10-29 2015-10-29 樹脂改質用粒子、及びそれを含む塩化ビニル系樹脂組成物

Country Status (5)

Country Link
US (1) US10259937B2 (ja)
EP (1) EP3214137B1 (ja)
JP (1) JP6637436B2 (ja)
CN (1) CN107075259B (ja)
WO (1) WO2016068239A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020196921A1 (ja) * 2019-03-28 2020-10-01 株式会社カネカ 樹脂組成物の製造方法および樹脂組成物
JP2020535281A (ja) * 2017-09-27 2020-12-03 アーケマ・インコーポレイテッド ワンパックポリマー変性剤
WO2022070505A1 (ja) * 2020-09-30 2022-04-07 株式会社カネカ 塩化ビニル系樹脂組成物用の加工助剤

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108504163B (zh) * 2018-04-09 2020-02-11 漳州市龙文区康保建材有限公司 一种生物工程内墙腻子粉及其制备方法
CN116041872B (zh) * 2021-10-28 2024-02-13 中国石油化工股份有限公司 一种耐迁移析出、耐老化pvc电缆料组合物
CN115652114B (zh) * 2022-12-28 2023-04-07 长沙华时捷环保科技发展股份有限公司 一种含铊溶液中铊的资源化回收工艺

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118320A (ja) * 1986-11-07 1988-05-23 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP2005314440A (ja) * 2004-03-31 2005-11-10 Mitsubishi Rayon Co Ltd 加工助剤、レオロジーコントロール剤及びこれらを用いた樹脂組成物、成形品
JP2008063424A (ja) * 2006-09-06 2008-03-21 Mitsubishi Rayon Co Ltd ポリ塩化ビニル系樹脂用添加剤およびその製造方法
JP2012533642A (ja) * 2009-07-17 2012-12-27 アルケマ フランス 改良された衝撃特性を有するポリエステル組成物の製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0680842A (ja) * 1992-09-01 1994-03-22 Kanegafuchi Chem Ind Co Ltd 耐衝撃性および耐熱性に優れた熱可塑性樹脂組成物
DE69518744T2 (de) * 1995-06-21 2001-04-12 Mitsui Chemicals Inc Polymernetzwerke und Pulverlack zu ihrer Herstellung
JP5037910B2 (ja) 2006-11-24 2012-10-03 三菱レイヨン株式会社 熱可塑性樹脂、該熱可塑性樹脂を含むポリ塩化ビニル樹脂用安定剤、及び改質されたポリ塩化ビニル樹脂
US9669265B2 (en) * 2009-03-13 2017-06-06 Acushnet Company Three-cover-layer golf ball having transparent or plasticized polyamide intermediate layer
US8729156B2 (en) 2009-07-17 2014-05-20 Arkema France Polyhydroxyalkanoate composition exhibiting improved impact resistance at low levels of impact modifier
KR101786158B1 (ko) * 2010-11-01 2017-10-17 도요보 가부시키가이샤 폴리아미드 수지 조성물, 폴리아미드 수지 발포 성형체 및 자동차용 수지 성형품
CN104684999A (zh) * 2012-07-26 2015-06-03 因温斯特技术公司 用于高抗冲应用的热塑性组合物
DK2871002T3 (en) * 2013-11-08 2016-05-17 Vln Advanced Technologies Inc INTEGRATED LIQUID RADIATION SYSTEM FOR CLEANING, PREPARING AND COATING A SUBJECT
FR3031109B1 (fr) * 2014-12-24 2018-08-17 Arkema France Composition de polymeres, son procede de preparation, son utilisation et composition la comprenant

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118320A (ja) * 1986-11-07 1988-05-23 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP2005314440A (ja) * 2004-03-31 2005-11-10 Mitsubishi Rayon Co Ltd 加工助剤、レオロジーコントロール剤及びこれらを用いた樹脂組成物、成形品
JP2008063424A (ja) * 2006-09-06 2008-03-21 Mitsubishi Rayon Co Ltd ポリ塩化ビニル系樹脂用添加剤およびその製造方法
JP2012533642A (ja) * 2009-07-17 2012-12-27 アルケマ フランス 改良された衝撃特性を有するポリエステル組成物の製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020535281A (ja) * 2017-09-27 2020-12-03 アーケマ・インコーポレイテッド ワンパックポリマー変性剤
WO2020196921A1 (ja) * 2019-03-28 2020-10-01 株式会社カネカ 樹脂組成物の製造方法および樹脂組成物
WO2022070505A1 (ja) * 2020-09-30 2022-04-07 株式会社カネカ 塩化ビニル系樹脂組成物用の加工助剤

Also Published As

Publication number Publication date
EP3214137A1 (en) 2017-09-06
EP3214137A4 (en) 2018-05-09
US10259937B2 (en) 2019-04-16
US20170335097A1 (en) 2017-11-23
CN107075259B (zh) 2020-09-04
JP6637436B2 (ja) 2020-01-29
JPWO2016068239A1 (ja) 2017-08-17
EP3214137B1 (en) 2019-10-23
CN107075259A (zh) 2017-08-18

Similar Documents

Publication Publication Date Title
JP6637436B2 (ja) 樹脂改質用粒子、及びそれを含む塩化ビニル系樹脂組成物
EP0050848A2 (en) Vinyl chloride resin composition
JP5144307B2 (ja) グラフト共重合体、樹脂組成物及びその成形品
JP5112606B2 (ja) 耐衝撃改質剤とその製造法、および熱可塑性樹脂組成物
US8362147B2 (en) Thermoplastic resin composition and molded body thereof
JP6348615B2 (ja) アクリル系加工助剤及びこれを含む塩化ビニル系樹脂組成物
EP1870435B1 (en) (meth)acrylic polymer and vinyl chloride resin composition containing the same
JP2005112907A (ja) グラフト共重合体、耐衝撃改質剤、および熱可塑性樹脂組成物
KR20200055786A (ko) 일액형 중합체 개질제
JP2001031826A (ja) 加工助剤、それを用いた塩化ビニル系樹脂組成物およびそれを用いた成形品の製造法
EP3305844A1 (en) Vinyl chloride resin composition
TW200808893A (en) Thermoplastic resin composition and process for production thereof
WO2017040036A1 (en) Vinylidene chloride polymer compositions and articles comprising the same
US5248723A (en) Vinyl chloride polymer composition
EP1535963A1 (en) Acrylic resin composition
EP0388907B1 (en) Vinyl Chloride polymer composition
WO2010150608A1 (ja) 熱可塑性樹脂組成物、及びその成形体
JP2005089619A (ja) 耐衝撃改質剤、および、熱可塑性樹脂組成物
CA2372055A1 (en) Vinyl chloride resin composition
JP3953924B2 (ja) アクリル系重合体凝固組成物およびそれを用いたアクリルゾル
JPH0673199A (ja) ラミネート用艶消フィルム
JP2007297536A (ja) アクリルゴムラテックス、その製造法、複合ゴムグラフト共重合体及び熱可塑性樹脂組成物
CN115427469A (zh) 制备接枝共聚物的方法、接枝共聚物和包含该接枝共聚物的树脂组合物
JP4314960B2 (ja) 難燃性重合体組成物及びその製造方法
JP2002348335A (ja) アクリルゴム系グラフト共重合体、衝撃強度改質剤、樹脂組成物、アクリルゴム系グラフト共重合体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855313

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556625

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015855313

Country of ref document: EP