WO2016067969A1 - アンテナモジュール及び回路モジュール - Google Patents

アンテナモジュール及び回路モジュール Download PDF

Info

Publication number
WO2016067969A1
WO2016067969A1 PCT/JP2015/079562 JP2015079562W WO2016067969A1 WO 2016067969 A1 WO2016067969 A1 WO 2016067969A1 JP 2015079562 W JP2015079562 W JP 2015079562W WO 2016067969 A1 WO2016067969 A1 WO 2016067969A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
dielectric substrate
substrate
mounting
antenna module
Prior art date
Application number
PCT/JP2015/079562
Other languages
English (en)
French (fr)
Inventor
通春 横山
伸充 天知
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2016556510A priority Critical patent/JP6288294B2/ja
Priority to CN201580058658.0A priority patent/CN107078406B/zh
Publication of WO2016067969A1 publication Critical patent/WO2016067969A1/ja
Priority to US15/498,853 priority patent/US10468763B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3121Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed a substrate forming part of the encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • H01L23/3107Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape the device being completely enclosed
    • H01L23/3135Double encapsulation or coating and encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/552Protection against radiation, e.g. light or electromagnetic waves
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/067Two dimensional planar arrays using endfire radiating aerial units transverse to the plane of the array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q25/00Antennas or antenna systems providing at least two radiating patterns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • H01L21/561Batch processing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6616Vertical connections, e.g. vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6661High-frequency adaptations for passive devices
    • H01L2223/6677High-frequency adaptations for passive devices for antenna, e.g. antenna included within housing of semiconductor device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16265Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being a discrete passive component
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15172Fan-out arrangement of the internal vias
    • H01L2924/15174Fan-out arrangement of the internal vias in different layers of the multilayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/153Connection portion
    • H01L2924/1532Connection portion the connection portion being formed on the die mounting surface of the substrate
    • H01L2924/15322Connection portion the connection portion being formed on the die mounting surface of the substrate being a pin array, e.g. PGA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19042Component type being an inductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19102Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device
    • H01L2924/19104Disposition of discrete passive components in a stacked assembly with the semiconductor or solid state device on the semiconductor or solid-state device, i.e. passive-on-chip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19105Disposition of discrete passive components in a side-by-side arrangement on a common die mounting substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/28Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements
    • H01Q19/30Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using a secondary device in the form of two or more substantially straight conductive elements the primary active element being centre-fed and substantially straight, e.g. Yagi antenna

Definitions

  • the present invention relates to an antenna module and a circuit module mounted on a mounting board.
  • Patent Document 1 discloses a multilayer module using a ceramic multilayer substrate.
  • a ceramic multilayer substrate for example, a ceramic green sheet cut into a rectangular shape having a length of 100 mm and a width of 100 mm is used.
  • Circuit components such as a chip capacitor and a chip resistor are mounted on the ceramic multilayer substrate.
  • a surface conductor is formed on one surface of the ceramic multilayer substrate.
  • the multilayer module is mounted on the mounting substrate in a posture in which the surface on which the surface conductor is formed is opposed to the mounting substrate.
  • the ceramic multilayer substrate on which chip capacitors and the like are mounted is divided into a plurality of multilayer modules by dicing.
  • the multilayer module is mounted on the mounting board by soldering or the like, and then firmly fixed to the mounting board with an adhesive resin such as underfill.
  • the fixing resin is filled in a gap between the multilayer module and the mounting substrate, and also adheres to the side surface of the multilayer module.
  • an endfire antenna having directivity in a direction parallel to the substrate surface may be mounted on the multilayer module.
  • the fixing resin adheres to a part of the top surface of the multilayer module.
  • the height from the mounting surface of the mounting substrate to the top of the mounting component may exceed the allowable range.
  • the area of the side surface to which the fixing resin adheres becomes smaller. For this reason, the adhering force of the multilayer module is weakened.
  • An antenna module includes: A dielectric substrate on which an antenna made of a conductor pattern is disposed; A high-frequency semiconductor element mounted on the bottom surface of the dielectric substrate and supplying a high-frequency signal to the antenna; A plurality of conductive pillars protruding from the bottom surface; A dielectric member that is disposed on the bottom surface and embeds the conductor column so that the end of the conductor column is exposed; The dielectric member defines a mounting surface facing the mounting substrate; A step is provided on a side surface of the composite structure including the dielectric substrate and the dielectric member, and a side surface from the mounting surface to the step is set back from a side surface above the step.
  • the wetting of the fixing resin stops due to the step. For this reason, the height of wetting of the fixing resin can be controlled. Thereby, the dispersion
  • the antenna has directivity in a direction parallel to the substrate surface of the dielectric substrate, and the step is disposed closer to the mounting surface than the antenna.
  • the surface roughness of the side surface from the mounting surface to the step is larger than the surface roughness of the side surface above the step.
  • the high-frequency semiconductor element is embedded in the dielectric member.
  • the high-frequency semiconductor element can be firmly fixed to the dielectric substrate. Furthermore, the heat dissipation characteristics of the high-frequency semiconductor element can be enhanced.
  • a circuit module is: A dielectric substrate provided with a conductor pattern; A first semiconductor element mounted on the bottom surface of the dielectric substrate and connected to the conductor pattern; A plurality of conductive pillars protruding from the bottom surface; A dielectric member that is disposed on the bottom surface and embeds the conductor column so that the end of the conductor column is exposed; The dielectric member defines a mounting surface facing the mounting substrate; A step is provided on a side surface of the composite structure including the dielectric substrate and the dielectric member, and a portion from the mounting surface to the step is set back from a portion above the step.
  • a side surface from the mounting surface to the step is rougher than a side surface above the step.
  • the circuit module according to the seventh aspect of the present invention includes: A second semiconductor element mounted on the top surface of the dielectric substrate; A sealing resin layer that covers the upper surface, embeds the second semiconductor element, and has a side surface recessed from the side surface of the dielectric substrate; The sealing resin layer is covered, and a shield layer connected to a ground layer provided on the dielectric substrate is provided outside the side surface of the sealing resin layer.
  • the second semiconductor element can be shielded by the shield layer.
  • the wetting of the fixing resin stops due to the step. For this reason, the height of wetting of the fixing resin can be controlled. Thereby, the dispersion
  • FIG. 1A is a plan sectional view of the uppermost conductor layer in a dielectric substrate used in the antenna module according to the first embodiment
  • FIG. 1B is a bottom view of the antenna module
  • 2A is a side view of the antenna module according to the first embodiment
  • FIG. 2B is a cross-sectional view taken along one-dot chain line 2B-2B in FIG. 1A
  • 3A to 3C are cross-sectional views of the dielectric substrate and the sealing resin layer before the dicing process, during the dicing process, and after the dicing process, respectively.
  • FIG. 4 is a cross-sectional view of the antenna module and the mounting substrate according to the first embodiment.
  • FIG. 5A and 5B are cross-sectional views of an antenna module and a mounting board according to a comparative example.
  • 6A is a cross-sectional view of the antenna module and the mounting board according to the second embodiment before mounting
  • FIG. 6B is a cross-sectional view of the antenna module and the mounting board after mounting.
  • 7A is a bottom view of the antenna module according to the third embodiment
  • FIG. 7B is a cross-sectional view taken along one-dot chain line 7B-7B in FIG. 7A.
  • 8A is a cross-sectional view of a circuit module according to the fourth embodiment
  • FIG. 8B is a cross-sectional view of a circuit module according to a modification of the fourth embodiment.
  • Example 1 An antenna module according to the first embodiment will be described with reference to FIGS. 1A to 4.
  • FIG. 1A shows a plan sectional view of the uppermost conductor layer in the dielectric substrate 12 used in the antenna module 10.
  • the dielectric substrate 12 has a rectangular or square planar shape.
  • the uppermost conductor layer includes a plurality of printed dipole antennas 14, a feeding line 15, a balun (balance-unbalance converter) 16, and a plurality of patch antennas 18.
  • a conductive material such as copper is used.
  • a conductive material such as copper is used for the lower conductor layer.
  • the plurality of dipole antennas 14 are arranged along the outer peripheral line of the dielectric substrate 12 slightly inside the outer peripheral line. Each of the dipole antennas 14 is disposed in parallel to the outer peripheral line of the dielectric substrate 12. As an example, three dipole antennas 14 are arranged on one side of the dielectric substrate 12.
  • a balanced feed line 15 extends from each of the dipole antennas 14 toward the inside of the dielectric substrate 12.
  • a balun (balance-unbalance converter) 16 is provided at the inner end of the feeder line 15. The balun 16 shifts one phase of the balanced power supply line 15 by 180 degrees with respect to the other phase. The balun 16 is connected to the transmission line on the inner layer of the dielectric substrate 12 at the connection point 17.
  • a reflector pattern 20 is disposed slightly inside the dipole antenna 14 and outside the balun 16.
  • the reflector pattern 20 is composed of a linear conductor pattern arranged along a rectangular outer peripheral line that is slightly smaller than the dielectric substrate 12.
  • the reflector pattern 20 is cut at a location that intersects the power supply line 15 and is insulated from the power supply line 15.
  • the distance between the dipole antenna 14 and the reflector pattern 20 is equal to 1 ⁇ 4 of the effective wavelength of the radio wave at the operating frequency of the dipole antenna 14.
  • the reflector pattern 20 is connected to the inner ground layer.
  • the plurality of patch antennas 18 are arranged in a matrix inside the dipole antenna 14.
  • the patch antennas 18 are arranged in a matrix of 2 rows and 3 columns.
  • the row direction and the column direction are parallel to the outer peripheral line of the dielectric substrate 12.
  • the dipole antenna 14 operates as an endfire antenna having directivity in a direction parallel to the surface of the dielectric substrate 12.
  • the patch antenna 18 has directivity in the normal direction (bore sight direction) of the surface of the dielectric substrate 12.
  • FIG. 1B shows a bottom view of the antenna module 10.
  • the sealing resin layer 25 is in close contact with the bottom surface of the dielectric substrate 12 (FIG. 1A).
  • the outer periphery of the sealing resin layer 25 is located slightly inside the outer periphery of the dielectric substrate 12.
  • a step 40 appears between the outer periphery of the dielectric substrate 12 and the outer periphery of the sealing resin layer 25.
  • a high-frequency semiconductor element (high-frequency integrated circuit element) 27, a high-frequency circuit component 28, and a conductor column 30 are embedded in the sealing resin layer 25.
  • the high frequency semiconductor element 27 supplies a high frequency signal to the dipole antenna 14 and the patch antenna 18 (FIG. 1A).
  • the high frequency circuit component 28 includes an inductor, a capacitor, and the like.
  • the high-frequency semiconductor element 27 and the high-frequency circuit component 28 are mounted on the bottom surface of the dielectric substrate 12 (FIG. 1A).
  • the conductive pillar 30 protrudes from the back surface of the dielectric substrate 12, and its tip is exposed on the surface of the sealing resin layer 25.
  • a conductive material such as copper is used.
  • a thermosetting resin such as an epoxy resin or a cyanate resin is used.
  • the sealing resin layer 25 defines a mounting surface facing the mounting substrate when the antenna module 10 is mounted on the mounting substrate.
  • the plurality of conductive pillars 30 are arranged at equal intervals along the reflector pattern 20 (FIG. 1A) in plan view. That is, the conductor pillar 30 is disposed on the inner side than the dipole antenna 14.
  • the conductor pillar 30 includes a plurality of signal conductor pillars and a plurality of ground conductor pillars.
  • the signal conductor pillar is connected to the high-frequency semiconductor element 27 by a wiring pattern formed on the dielectric substrate 12 (FIG. 1A).
  • the ground conductor column is connected to the ground layer and the reflector pattern 20 in the dielectric substrate 12 (FIG. 1A).
  • the ground conductor column works as a reflector of the dipole antenna 14 together with the reflector pattern 20.
  • FIG. 2A shows a side view of the antenna module 10.
  • the antenna module 10 includes a dielectric substrate 12 and a sealing resin layer 25.
  • the bottom surface of the dielectric substrate 12 is covered with a sealing resin layer 25.
  • the sealing resin layer 25 defines a mounting surface 250 that faces the mounting substrate.
  • a step 40 is provided on the side surface of the composite structure including the dielectric substrate 12 and the sealing resin layer 25.
  • the side surface 42 from the mounting surface 250 to the step 40 is set back from the side surface 44 above the step 40.
  • the step 40 is located at the interface between the dielectric substrate 12 and the sealing resin layer 25.
  • the surface roughness of the side surface 42 from the mounting surface 250 to the step 40 is larger than the surface roughness of the side surface 44 above the step 40.
  • the step 40 is not necessarily arranged at the interface between the dielectric substrate 12 and the sealing resin layer 25.
  • the step 40 may be disposed in the dielectric substrate 12 or in the sealing resin layer 25.
  • FIG. 2B shows a cross-sectional view taken along one-dot chain line 2B-2B in FIG. 1A.
  • a dipole antenna 14 is disposed on the uppermost conductor layer of the dielectric substrate 12.
  • the ground layer 32 and the transmission line 34 are disposed in the inner layer.
  • the transmission line 34 connects the dipole antenna 14 and the high frequency semiconductor element 27.
  • the ground layer 32 is connected to a part of the conductor pillars 30 (ground conductor pillars).
  • the step 40 is disposed closer to the mounting surface 250 than the dipole antenna 14.
  • the conductive pillar 30 protrudes from the bottom surface of the dielectric substrate 12.
  • the high-frequency semiconductor element 27, the high-frequency circuit component 28, and the conductor pillar 30 are embedded in the sealing resin layer 25.
  • the tips of the conductor columns 30 are exposed on the mounting surface 250. Since the high-frequency semiconductor element 27 and the high-frequency circuit component 28 are embedded in the sealing resin layer 25, the adhesion strength of the high-frequency semiconductor element 27 and the high-frequency circuit component 28 to the dielectric substrate 12 can be increased. Furthermore, the heat dissipation characteristics of the high-frequency semiconductor element 27 can be enhanced. Furthermore, the mechanical strength of the conductor pillar 30 can be increased.
  • a method of dicing a substrate before dicing and dividing it into individual antenna modules 10 will be described with reference to FIGS. 3A to 3C.
  • FIG. 3A shows a cross-sectional view of the dielectric substrate 12 and the sealing resin layer 25 before the dicing process.
  • a plurality of antenna modules 10 are formed on the dielectric substrate 12 and the sealing resin layer 25.
  • the sealing resin layer 25 is diced along the boundary line of the antenna module 10 using the first dicing blade 50.
  • a dicing groove 51 is formed by dicing.
  • the dielectric substrate 12 is diced along the dicing grooves 51 using the second dicing blade 52.
  • the dielectric substrate 12 and the sealing resin layer 25 on which the antenna module 10 is formed are divided into individual antenna modules 10.
  • the second dicing blade 52 is thinner than the first dicing blade 50. Therefore, a step 40 is formed on the side surface of the antenna module 10. Further, the particle size of the first dicing blade 50 is larger than the particle size of the second dicing blade 52. For this reason, the surface roughness of the side surface 42 from the mounting surface 250 to the step 40 becomes larger than the surface roughness of the side surface 44 above the step 40.
  • a method of mounting the antenna module 10 on the mounting board 60 will be described with reference to FIG.
  • FIG. 4 shows a cross-sectional view of the antenna module 10 and the mounting substrate 60.
  • the antenna module 10 is surface-mounted on the mounting substrate 60 by the solder 36.
  • the conductor pillar 30 of the antenna module 10 is connected to the land 62 of the mounting substrate 60 via the solder 36.
  • a thermosetting fixing resin 68 is applied around the antenna module 10 using the nozzle 66. The fixing resin 68 penetrates into the gap between the antenna module 10 and the mounting substrate 60 by a capillary phenomenon.
  • the fixing resin 68 adheres to the side surface. Since the step 40 is formed on the side surface of the antenna module 10, wetting up stops at the step 40. For this reason, the fixing resin 68 is unlikely to adhere to the side surface 44 above the step 40. After the liquid fixing resin 68 is applied, the fixing resin 68 is cured by heating.
  • 5A and 5B are sectional views of the antenna module 100 and the mounting substrate 60 according to the comparative example. No step is formed on the side surface of the antenna module 100 according to the comparative example. Since no step is formed, the wetting of the fixing resin 68 does not stop in the middle of the side surface. In the example shown in FIG. 5A, the fixing resin 68 reaches the upper end of the side surface of the antenna module 100. In the example shown in FIG. 5B, after the fixing resin 68 reaches the upper end of the side surface, it spreads wet in the lateral direction. As a result, the fixing resin 68 adheres to a part of the top surface of the antenna module 100.
  • the fixing resin 68 intersects the radio wave radiated from the dipole antenna 14. For this reason, the fixing resin 68 affects the radiation characteristics of the dipole antenna 14. It is difficult to keep the height of wetting on the side surface of the antenna module 100 and the thickness of the fixing resin 68 covering the side surface constant. For this reason, the antenna characteristics of the antenna module 100 vary.
  • the height of the wetting of the fixing resin 68 can be controlled to be constant. For this reason, the dispersion
  • Example 1 the surface roughness of the side surface 42 from the mounting surface 250 to the step 40 of the antenna module 10 is larger than the surface roughness of the side surface 44 above the step 40. Therefore, wetting of the fixing resin 68 is likely to occur on the side surface 42 below the step 40, and wetting of the fixing resin 68 is unlikely to occur on the upper side surface 44. Even if the thickness of the fixing resin 68 that covers the side surface 42 below the step 40 exceeds the height (lateral height) of the step 40, the wetting of the fixing resin 68 on the side surface 44 above the step 40 is increased. Can be suppressed.
  • the height of the step 40 (the height in the lateral direction) is too low, wetting of the fixing resin 68 cannot be stopped at the step 40 with good reproducibility. Furthermore, if the level difference 40 is too low, high-precision alignment between the second dicing blade 52 and the dicing groove 51 is required during the second dicing shown in FIG. 3C. Considering these points, the height of the step 40 is preferably 50 ⁇ m or more.
  • the height of the step 40 is preferably set to be equal to or less than the thickness of the dielectric substrate 12.
  • the height from the mounted surface of the mounting substrate 60 to the top of the fixing resin 68 exceeds the height to the top surface of the antenna module 100.
  • the fixing resin 68 attached to the top surface of the antenna module 100 may interfere with the assembly of the device.
  • the fixing resin 68 since the fixing resin 68 is not easily applied to the top surface of the antenna module 10, the fixing resin 68 does not hinder assembly.
  • the fixing resin 68 adheres not only to the side surface 42 below the step 40 but also to the step 40 facing the mounting substrate 60. For this reason, a decrease in fixing strength due to stopping the wetting of the fixing resin 68 in the middle of the side surface is suppressed.
  • Example 2 With reference to FIG. 6A and FIG. 6B, the antenna module 10 by Example 2 is demonstrated. Hereinafter, differences from the antenna module 10 according to the first embodiment illustrated in FIGS. 1 to 4 will be described, and description of common configurations will be omitted.
  • the antenna module 10 was mounted on the mounting substrate 60 using the solder 36 (FIG. 4).
  • an NCP (non-conductive paste) method is employed.
  • FIG. 6A shows a cross-sectional view of the antenna module 10 and the mounting substrate 60 before mounting.
  • a gold bump 37 is formed at the tip of the conductor pillar 30.
  • the insulating paste 70 is applied to the mounting area of the antenna module 10 on the mounting surface of the mounting substrate 60.
  • the insulating paste 70 covers the lands 62 formed on the mounting substrate 60.
  • the antenna module 10 is placed on the mounting substrate 60 and pressurized.
  • the gold bumps 37 are pressed against the lands 62 to obtain an electrical connection.
  • the insulating paste 70 is pushed outward from the gap between the antenna module 10 and the mounting substrate 60.
  • the extruded insulating paste 70 covers the side surface of the antenna module 10 by wetting.
  • the insulating paste 70 is cured by heating. Also in the second embodiment, as in the first embodiment, the wetting is stopped by the step 40. For this reason, the same effect as Example 1 is acquired.
  • anisotropic conductive paste (ACP) may be used.
  • ACP anisotropic conductive paste
  • the conductor pillar 30 of the antenna module 10 and the land 62 of the mounting substrate 60 are electrically connected via the anisotropic conductive paste. For this reason, the gold bump 37 is unnecessary.
  • Example 3 An antenna module according to the third embodiment will be described with reference to FIGS. 7A and 7B. Hereinafter, differences from the antenna module 10 according to the first embodiment illustrated in FIGS. 1 to 4 will be described, and description of common configurations will be omitted.
  • a frame-shaped substrate 26 is used instead of the sealing resin layer 25 (FIGS. 2A and 2B) of the first embodiment.
  • FIG. 7A shows a bottom view of the antenna module 10 according to the third embodiment.
  • FIG. 7B shows a cross-sectional view taken along one-dot chain line 7B-7B in FIG. 7A.
  • a frame-shaped substrate 26 is bonded to the bottom surface of the dielectric substrate 12.
  • a high-frequency semiconductor element 27 and a high-frequency circuit component 28 are mounted in a region surrounded by the frame substrate 26.
  • the outer periphery of the frame substrate 26 is located slightly inside the outer periphery of the dielectric substrate 12. For this reason, the step 40 appears as in the case of the first embodiment.
  • Conductor pillars 30 are embedded in through holes formed in the frame-shaped substrate 26.
  • the frame substrate 26 defines a mounting surface 260.
  • Example 1 the mechanical strength of the conductor column 30 is increased by embedding the conductor column 30 with a dielectric member such as the sealing resin layer 25 (FIGS. 2A and 2B) and the frame-like substrate 26. be able to. Also in Example 3, a step 40 is provided on the side surface of the antenna module 10. For this reason, the same effect as Example 1 is acquired.
  • a dielectric member such as the sealing resin layer 25 (FIGS. 2A and 2B) and the frame-like substrate 26.
  • FIG. 8A shows a cross-sectional view of a circuit module 80 according to the fourth embodiment.
  • a semiconductor element 82 is mounted on the top surface of the dielectric substrate 12, and a semiconductor element 84 is mounted on the bottom surface.
  • the sealing resin layer 25 covers the bottom surface of the dielectric substrate 12.
  • the semiconductor element 84 is embedded in the sealing resin layer 25.
  • Another sealing resin layer 29 covers the top surface of the dielectric substrate 12.
  • the semiconductor element 82 is embedded in the sealing resin layer 29.
  • a step 40 is provided on the side surface of the composite structure including the dielectric substrate 12, the lower sealing resin layer 25, and the upper sealing resin layer 29.
  • a step 40 is provided at the interface between the dielectric substrate 12 and the lower sealing resin layer 25.
  • Example 4 the step 40 stops the wetting of the fixing resin 68 (FIG. 4). For this reason, adhesion of the fixing resin 68 to the top surface of the circuit module 80 can be avoided. Furthermore, the adhesion resin 68 adheres to the surface facing the lower side of the step 40, so that sufficient contact strength of the circuit module 80 to the mounting substrate 60 can be ensured.
  • FIG. 8B shows a cross-sectional view of a circuit module 80 according to a modification of the fourth embodiment.
  • the side surface of the upper sealing resin layer 29 is set back relative to the side surface of the dielectric substrate 12. Therefore, a step 41 that faces upward appears at the interface between the dielectric substrate 12 and the sealing resin layer 29.
  • the upper surface and side surfaces of the sealing resin layer 29 are covered with a shield layer 86 made of a conductive material.
  • a groove 87 is formed in a region where the step 41 appears on the upper surface of the dielectric substrate 12.
  • the ground layer 32 appears on the bottom surface of the groove 87.
  • the shield layer 86 is connected to the ground layer 32 through the groove 87.
  • the semiconductor element 82 can be electromagnetically shielded.
  • Antenna module 12 Dielectric substrate 14 Dipole antenna 15 Feed line 16 Balun (balance-unbalance converter) 17 Connection point 18 Patch antenna 20 Reflector pattern 22 Connection point 25 Sealing resin layer 26 Frame substrate 27 High-frequency semiconductor element 28 High-frequency circuit component 29 Sealing resin layer 30 Conductor pillar 32 Ground layer 34 Transmission line 36 Solder 37 Gold bump 40 , 41 Step 42 Side surface 44 from mounting surface to step 44 Side surface 50 above step 50 First dicing blade 51 Dicing groove 52 Second dicing blade 60 Mounting substrate 62 Land 66 Nozzle 68 Fixing resin 70 Insulating paste 80 Circuit module 82 , 84 Semiconductor element 86 Shield layer 87 Groove 100 Antenna module 250, 260 Mounting surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Abstract

 誘電体基板に、導体パターンからなるアンテナが配置されている。誘電体基板の底面に、アンテナに高周波信号を供給する高周波半導体素子が実装されている。底面から複数の導体柱が突出する。底面に配置された誘電体部材が導体柱を埋め込んでいる。導体柱の先端は、誘電体部材から露出している。誘電体部材が、実装基板に対向する実装面を画定する。誘電体基板及び誘電体部材からなる複合構造物の側面に段差が設けられており、実装面から段差までの側面が、段差より上の側面より後退している。固着樹脂で固着した状態でも、アンテナの放射特性のばらつきが生じにくいアンテナモジュールが提供される。

Description

アンテナモジュール及び回路モジュール
 本発明は、実装基板に実装されるアンテナモジュール及び回路モジュールに関する。
 下記の特許文献1に、セラミック多層基板を用いた多層モジュールが開示されている。セラミック多層基板の作製に、例えば縦100mm、横100mmの方形形状に切り出されたセラミックグリーンシートが用いられる。セラミック多層基板にチップコンデンサ、チップ抵抗等の回路部品が実装される。セラミック多層基板の一方の面に、表面導体が形成される。多層モジュールは、表面導体が形成された面を実装基板に対向させた姿勢で、実装基板に実装される。
 特許文献1には説明されていないが、チップコンデンサ等が搭載されたセラミック多層基板をダイシングすることにより、複数の多層モジュールに分割される。
特開2003-188538号公報
 多層モジュールは、はんだ付け等によって実装基板に実装された後、アンダーフィル等の固着樹脂で実装基板に強固に固定される。固着樹脂は、多層モジュールと実装基板との隙間に充填されるとともに、多層モジュールの側面にも付着する。
 多層モジュールに、基板面に平行な方向に指向性を持つエンドファイアアンテナが実装される場合がある。本願の発明者の検討、実験、シミュレーションの積み重ねにより、多層モジュールの側面に付着した固着樹脂が、エンドファイアアンテナの放射特性に影響を与えることが明らかになった。多層モジュールの側面を被覆する固着樹脂の厚さや、固着樹脂で被覆される領域の形状及び大きさを制御することは困難である。このため、エンドファイアアンテナの放射特性にばらつきが生じる。
 固着樹脂が、多層モジュールの天面の一部の領域まで付着することが考えられる。固着樹脂が多層モジュールの天面に付着すると、実装基板の被実装面から実装部品の頂部までの高さが、許容範囲を超えてしまう場合がある。また、多層モジュールが薄くなると、固着樹脂が付着する側面の面積が小さくなる。このため、多層モジュールの固着力が弱くなってしまう。
 本発明の目的は、固着樹脂で固着した状態でも、アンテナの放射特性のばらつきが生じにくいアンテナモジュールを提供することである。本発明の他の目的は、固着樹脂が天面に付着しにくいアンテナモジュール及び回路モジュールを提供することである。本発明のさらに他の目的は、薄くなっても固着樹脂による固着力が低下しにくいアンテナモジュール及び回路モジュールを提供することである。
 本発明の第1の観点によるアンテナモジュールは、
 導体パターンからなるアンテナが配置された誘電体基板と、
 前記誘電体基板の底面に実装され、前記アンテナに高周波信号を供給する高周波半導体素子と、
 前記底面から突出する複数の導体柱と、
 前記底面に配置され、前記導体柱の先端が露出するように前記導体柱を埋め込む誘電体部材と
を有し、
 前記誘電体部材が、実装基板に対向する実装面を画定し、
 前記誘電体基板及び前記誘電体部材からなる複合構造物の側面に段差が設けられており、前記実装面から前記段差までの側面が、前記段差より上の側面より後退している。
 アンテナモジュールを実装基板に実装し、固着樹脂で固定する場合、固着樹脂の濡れ上がりが段差によって停止する。このため、固着樹脂の濡れ上がりの高さを制御することができる。これにより、アンテナの放射特性のばらつきを抑制することができる。さらに、固着樹脂がアンテナモジュールの天面まで到達しにくい。固着樹脂が段差にも密着するため、実装基板に対するアンテナモジュールの密着強度の低下を抑制することができる。
 本発明の第2の観点によるアンテナモジュールにおいては、第1の観点によるアンテナモジュールの構成に加えて、
 前記アンテナが、前記誘電体基板の基板面に平行な方向に指向性を持ち、前記段差は、前記アンテナよりも前記実装面側に配置されている。
 固着樹脂の濡れ上がりが、アンテナの高さまで到達しない。このため、固着樹脂がアンテナの放射特性に与える影響を軽減することができる。
 本発明の第3の観点によるアンテナモジュールにおいては、第1~第2の観点によるアンテナモジュールの構成に加えて、
 前記実装面から前記段差までの側面の表面粗さが、前記段差より上の側面の表面粗さよりも大きい。
 段差よりも上の側面の表面粗さが小さいため、段差より上の側面への、固着樹脂の濡れ上がりが生じにくい。このため、固着樹脂が段差を超える程度の厚さになっても、段差より上の側面まで濡れ上がりが生じることを抑制することができる。
 本発明の第4の観点によるアンテナモジュールにおいては、第1~第3の観点によるアンテナモジュールの構成に加えて、
 前記高周波半導体素子が前記誘電体部材に埋め込まれている。
 高周波半導体素子を誘電体基板に強固に固定することができる。さらに、高周波半導体素子の放熱特性を高めることができる。
 本発明の第5の観点による回路モジュールは、
 導体パターンが設けられた誘電体基板と、
 前記誘電体基板の底面に実装され、前記導体パターンに接続された第1の半導体素子と、
 前記底面から突出する複数の導体柱と、
 前記底面に配置され、前記導体柱の先端が露出するように前記導体柱を埋め込む誘電体部材と
を有し、
 前記誘電体部材が、実装基板に対向する実装面を画定し、
 前記誘電体基板及び前記誘電体部材からなる複合構造物の側面に段差が設けられており、前記実装面から前記段差までの部分が、前記段差より上の部分より後退している。
 回路モジュールを実装基板に実装し、固着樹脂で固定する場合、固着樹脂の濡れ上がりが段差によって停止する。このため、固着樹脂の濡れ上がりの高さを制御することができる。固着樹脂が回路モジュールの天面まで到達しにくい。固着樹脂が段差にも密着するため、実装基板に対する回路モジュールの密着強度の低下を抑制することができる。
 本発明の第6の観点による回路モジュールにおいては、第5の回路モジュールの構成に加えて、
 前記実装面から前記段差までの側面が、前記段差より上の側面よりも粗い。
 段差よりも上の側面の表面粗さが小さいため、段差より上の側面への、固着樹脂の濡れ上がりが生じにくい。このため、固着樹脂が段差を超える程度の厚さになっても、段差より上の側面まで濡れ上がりが生じることを抑制することができる。
 本発明の第7の観点による回路モジュールは、第5または第6の回路モジュールの構成に加えて、
 前記誘電体基板の上面に実装された第2の半導体素子と、
 前記上面を被覆するとともに、前記第2の半導体素子を埋め込み、前記誘電体基板の側面よりも後退した側面を有する封止樹脂層と、
 前記封止樹脂層を被覆し、前記封止樹脂層の側面よりも外側において、前記誘電体基板に設けられた接地層に接続されたシールド層と
を有する。
 シールド層で第2の半導体素子をシールドすることができる。
 アンテナモジュールを実装基板に実装し、固着樹脂で固定する場合、固着樹脂の濡れ上がりが段差によって停止する。このため、固着樹脂の濡れ上がりの高さを制御することができる。これにより、アンテナの放射特性のばらつきを抑制することができる。さらに、固着樹脂がアンテナモジュールの天面まで到達しにくい。固着樹脂が段差にも密着するため、実装基板に対するアンテナモジュールの密着強度の低下を抑制することができる。
図1Aは、実施例1によるアンテナモジュールに用いられている誘電体基板内の最も上の導体層の平断面図であり、図1Bは、アンテナモジュールの底面図である。 図2Aは、実施例1によるアンテナモジュールの側面図であり、図2Bは、図1Aの一点鎖線2B-2Bにおける断面図である。 図3A乃至図3Cは、それぞれダイシング工程前、ダイシング工程の途中、ダイシング工程後の誘電体基板及び封止樹脂層の断面図である。 図4は、実施例1によるアンテナモジュール及び実装基板の断面図である。 図5A及び図5Bは、比較例によるアンテナモジュール及び実装基板の断面図である。 図6Aは、実装前の実施例2によるアンテナモジュール及び実装基板の断面図であり、図6Bは、実装後のアンテナモジュール及び実装基板の断面図である。 図7Aは、実施例3によるアンテナモジュールの底面図であり、図7Bは、図7Aの一点鎖線7B-7Bにおける断面図である。 図8Aは、実施例4による回路モジュールの断面図であり、図8Bは、実施例4の変形例による回路モジュールの断面図である。
 [実施例1]
 図1A~図4を参照して、実施例1によるアンテナモジュールについて説明する。
 図1Aに、アンテナモジュール10に用いられている誘電体基板12内の最も上の導体層の平断面図を示す。誘電体基板12は、長方形または正方形の平面形状を有する。最も上の導体層は、複数のプリンテッドダイポールアンテナ14、給電線15、バラン(平衡不平衡変換器)16、及び複数のパッチアンテナ18を含む。誘電体基板12には、例えばセラミック、エポキシ樹脂等が用いられる。ダイポールアンテナ14、給電線15、バラン16、及びパッチアンテナ18には、例えば銅等の導電材料が用いられる。同様に、下層の導体層にも、銅等の導電材料が用いられる。
 複数のダイポールアンテナ14は、誘電体基板12の外周線に沿って、外周線よりもやや内側に配置されている。ダイポールアンテナ14の各々は、誘電体基板12の外周線に対して平行に配置されている。一例として、誘電体基板12の1つの辺に3個のダイポールアンテナ14が配置される。
 ダイポールアンテナ14の各々から、誘電体基板12の内側に向かって平衡型の給電線15が延びる。給電線15の内側の端部にバラン(平衡不平衡変換器)16が設けられている。バラン16は、平衡型の給電線15の一方の位相を他方の位相に対して180度ずらす。バラン16は、接続点17において、誘電体基板12の内層の伝送線路に接続されている。
 ダイポールアンテナ14よりもやや内側に、かつバラン16より外側に、反射器パターン20が配置されている。反射器パターン20は、誘電体基板12よりもやや小さい長方形の外周線に沿って配置された線状の導体パターンで構成される。反射器パターン20は、給電線15と交差する箇所において切断されており、給電線15から絶縁されている。ダイポールアンテナ14と反射器パターン20との間隔は、ダイポールアンテナ14の動作周波数の電波の実効波長の1/4に等しい。反射器パターン20に沿って並ぶ複数の接続点22において、反射器パターン20が内層の接地層に接続されている。
 複数のパッチアンテナ18は、ダイポールアンテナ14よりも内側に、行列状に配置されている。図1Aに示した例では、パッチアンテナ18が2行3列の行列状に配置されている。行方向及び列方向は、誘電体基板12の外周線に対して平行である。
 ダイポールアンテナ14は、誘電体基板12の表面に対して平行な方向に指向性を持つエンドファイアアンテナとして動作する。パッチアンテナ18は、誘電体基板12の表面の法線方向(ボアサイト方向)に指向性を持つ。複数のダイポールアンテナ14及び複数のパッチアンテナ18が、二次元フェーズドアレイアンテナとして動作することにより、放射パターンのメインローブの方向を、方位角方向及び仰角方向に変化させることができる。
 図1Bに、アンテナモジュール10の底面図を示す。誘電体基板12(図1A)の底面に封止樹脂層25が密着している。封止樹脂層25の外周は、誘電体基板12の外周よりもやや内側に位置する。誘電体基板12の外周と、封止樹脂層25の外周との間に、段差40が現れる。封止樹脂層25内に、高周波半導体素子(高周波集積回路素子)27、高周波回路部品28、及び導体柱30が埋め込まれている。高周波半導体素子27は、ダイポールアンテナ14及びパッチアンテナ18(図1A)に高周波信号を供給する。高周波回路部品28には、インダクタ、キャパシタ等が含まれる。高周波半導体素子27及び高周波回路部品28は、誘電体基板12(図1A)の底面に実装されている。
 導体柱30は、誘電体基板12の裏面から突出しており、その先端は、封止樹脂層25の表面に露出している。導体柱30には、例えば銅等の導電材料が用いられる。封止樹脂層25には、例えばエポキシ樹脂、シアネート樹脂等の熱硬化性樹脂が用いられる。封止樹脂層25は、アンテナモジュール10を実装基板に実装するときに、実装基板に対向する実装面を画定する。
 複数の導体柱30は、平面視において反射器パターン20(図1A)に沿って、等間隔に配列している。すなわち、導体柱30は、ダイポールアンテナ14よりも内側に配置されている。導体柱30には、複数の信号用導体柱と複数の接地導体柱とが含まれる。信号用導体柱は、誘電体基板12(図1A)に形成された配線パターンにより高周波半導体素子27に接続されている。接地導体柱は、誘電体基板12(図1A)内の接地層及び反射器パターン20に接続されている。接地導体柱は、反射器パターン20とともに、ダイポールアンテナ14の反射器として動作する。
 図2Aに、アンテナモジュール10の側面図を示す。アンテナモジュール10は、誘電体基板12及び封止樹脂層25を含む。誘電体基板12の底面が、封止樹脂層25で被覆されている。封止樹脂層25が、実装基板に対向する実装面250を画定する。
 誘電体基板12及び封止樹脂層25からなる複合構造物の側面に段差40が設けられている。実装面250から段差40までの側面42が、段差40より上の側面44より後退している。一例として、段差40は、誘電体基板12と封止樹脂層25との界面に位置する。実装面250から段差40までの側面42の表面粗さは、段差40より上の側面44の表面粗さより大きい。なお、段差40は、必ずしも誘電体基板12と封止樹脂層25との界面に配置する必要はない。段差40を、誘電体基板12内に配置してもよいし、封止樹脂層25内に配置してもよい。
 図2Bに、図1Aの一点鎖線2B-2Bにおける断面図を示す。誘電体基板12の最も上の導体層に、ダイポールアンテナ14が配置されている。内層に、接地層32及び伝送線路34が配置されている。伝送線路34は、ダイポールアンテナ14と高周波半導体素子27とを接続する。接地層32は、一部の導体柱30(接地導体柱)に接続されている。段差40は、ダイポールアンテナ14よりも実装面250側に配置されている。
 誘電体基板12の底面から導体柱30が突出している。高周波半導体素子27、高周波回路部品28、及び導体柱30が、封止樹脂層25に埋め込まれている。導体柱30の先端は、実装面250に露出している。高周波半導体素子27及び高周波回路部品28が封止樹脂層25に埋め込まれているため、誘電体基板12に対する高周波半導体素子27及び高周波回路部品28の固着強度を高めることができる。さらに、高周波半導体素子27の放熱特性を高めることができる。さらに、導体柱30の機械的強度を高めることができる。
 図3A乃至図3Cを参照して、ダイシング前の基板をダイシングして、個々のアンテナモジュール10に分割する方法について説明する。
 図3Aに、ダイシング工程前の誘電体基板12及び封止樹脂層25の断面図を示す。誘電体基板12及び封止樹脂層25に、複数のアンテナモジュール10が形成されている。
 図3Bに示すように、第1のダイシングブレード50を用い、アンテナモジュール10の境界線に沿って封止樹脂層25をダイシングする。ダイシングにより、ダイシング溝51が形成される。
 図3Cに示すように、第2のダイシングブレード52を用い、ダイシング溝51に沿って誘電体基板12をダイシングする。このダイシングにより、アンテナモジュール10が形成された誘電体基板12及び封止樹脂層25が、個々のアンテナモジュール10に分割される。
 第2のダイシングブレード52は第1のダイシングブレード50より薄い。このため、アンテナモジュール10の側面に段差40が形成される。さらに、第1のダイシングブレード50の粒径は、第2のダイシングブレード52の粒径より大きい。このため、実装面250から段差40までの側面42の表面粗さが、段差40より上の側面44の表面粗さより大きくなる。
 図4を参照して、アンテナモジュール10を実装基板60に実装する方法について説明する。
 図4に、アンテナモジュール10及び実装基板60の断面図を示す。はんだ36により、アンテナモジュール10が実装基板60に表面実装される。アンテナモジュール10の導体柱30が、実装基板60のランド62に、はんだ36を介して接続される。ノズル66を用いて、アンテナモジュール10の周囲に熱硬化型の固着樹脂68を塗布する。固着樹脂68は、毛細管現象によって、アンテナモジュール10と実装基板60との隙間に浸透する。
 アンテナモジュール10の側面に沿って濡れ上がりが生じることにより、側面にも固着樹脂68が付着する。アンテナモジュール10の側面に段差40が形成されているため、濡れ上がりは、段差40で停止する。このため、段差40よりも上の側面44には、固着樹脂68が付着しにくい。液状の固着樹脂68を塗布した後、加熱することにより、固着樹脂68を硬化させる。
 図5A及び図5Bに、比較例によるアンテナモジュール100及び実装基板60の断面図を示す。比較例よるアンテナモジュール100の側面には、段差が形成されていない。段差が形成されていないため、固着樹脂68の濡れ上がりが、側面の途中で停止しない。図5Aに示した例では、固着樹脂68が、アンテナモジュール100の側面の上端まで達している。図5Bに示した例では、固着樹脂68が側面の上端まで達した後、横方向に濡れ広がっている。これにより、アンテナモジュール100の天面の一部に固着樹脂68が付着している。
 図5A及び図5Bに示した比較例では、固着樹脂68が、ダイポールアンテナ14から放射される電波と交差する。このため、固着樹脂68が、ダイポールアンテナ14の放射特性に影響を与える。アンテナモジュール100の側面への濡れ上がりの高さや、側面を被覆する固着樹脂68の厚さを一定に保つことは困難である。このため、アンテナモジュール100のアンテナ特性がばらついてしまう。
 図4に示した実施例1においては、段差40によって濡れ上がりが停止するため、固着樹脂68の濡れ上がりの高さを一定に制御することが可能である。このため、ダイポールアンテナ14の放射特性のばらつきを軽減することができる。さらに、ダイポールアンテナ14が配置されている高さの側面は、固着樹脂68で被覆されない。このため、ダイポールアンテナ14の放射特性に対する固着樹脂68の影響が軽減される。これにより、目標とするアンテナ特性を実現することが可能になる。
 さらに、実施例1においては、アンテナモジュール10の実装面250から段差40までの側面42の表面粗さが、段差40より上の側面44の表面粗さより大きい。このため、段差40より下の側面42には、固着樹脂68の濡れ上がりが生じやすく、上の側面44には、固着樹脂68の濡れ上がりが生じにくい。段差40の下の側面42を被覆する固着樹脂68の厚さが、段差40の高さ(横方向の高さ)を超えても、段差40の上の側面44への固着樹脂68の濡れ上がりを抑制することができる。
 段差40の高さ(横方向の高さ)が低すぎると、固着樹脂68の濡れ上がりを段差40で再現性よく停止させることができない。さらに、段差40が低すぎると、図3Cに示した2回目のダイシング時に、第2のダイシングブレード52とダイシング溝51との高精度の位置合わせが必要になる。これらの点を考慮し、段差40の高さを50μm以上にすることが好ましい。
 段差40を高くしすぎると、誘電体基板12の機械的強度が低下する。十分な強度を維持するために、段差40の高さを誘電体基板12の厚さ以下とすることが好ましい。
 図5Bに示した比較例では、実装基板60の被実装面から固着樹脂68の頂部までの高さが、アンテナモジュール100の天面までの高さを超える。アンテナモジュール100の天面に付着した固着樹脂68が、機器の組み立て時の妨げになる場合がある。実施例1においては、アンテナモジュール10の天面には固着樹脂68が塗布されにくいため、固着樹脂68が組み立ての妨げになることはない。
 さらに、実施例1においては、段差40よりも下の側面42のみならず、実装基板60の方を向く段差40にも固着樹脂68が密着する。このため、固着樹脂68の濡れ上がりを側面の途中で停止させたことに起因する固着強度の低下が抑制される。
 [実施例2]
 図6A及び図6Bを参照して、実施例2によるアンテナモジュール10について説明する。以下、図1乃至図4に示した実施例1によるアンテナモジュール10との相違点について説明し、共通の構成については説明を省略する。実施例1では、はんだ36(図4)を用いてアンテナモジュール10を実装基板60に実装した。実施例2では、NCP(ノンコンダクティブペースト)工法が採用される。
 図6Aに、実装前のアンテナモジュール10及び実装基板60の断面図を示す。導体柱30の先端に、例えば金バンプ37が形成されている。実装基板60の被実装面のうち、アンテナモジュール10の実装領域に、絶縁性ペースト70が塗布されている。絶縁性ペースト70は、実装基板60に形成されているランド62を覆う。
 図6Bに示すように、アンテナモジュール10を実装基板60の上に配置し、加圧する。金バンプ37がランド62に押し付けられて、電気的接続が得られる。同時に、絶縁性ペースト70がアンテナモジュール10と実装基板60との隙間から外側に押し出される。押し出された絶縁性ペースト70が、濡れ上がりによってアンテナモジュール10の側面を被覆する。アンテナモジュール10を加圧した後、加熱することにより、絶縁性ペースト70を硬化させる。実施例2においても、実施例1の場合と同様に、濡れ上がりは、段差40によって停止する。このため、実施例1と同様の効果が得られる。
 絶縁性ペースト70に代えて、異方性導電ペースト(ACP)を用いてもよい。異方性導電ペーストを用いる場合には、アンテナモジュール10の導体柱30と、実装基板60のランド62が、異方性導電ペーストを介して導通する。このため、金バンプ37は不要である。
 [実施例3]
 図7A及び図7Bを参照して、実施例3によるアンテナモジュールについて説明する。以下、図1乃至図4に示した実施例1によるアンテナモジュール10との相違点について説明し、共通の構成については説明を省略する。実施例3では、実施例1の封止樹脂層25(図2A、図2B)に代えて、枠状基板26が用いられる。
 図7Aに、実施例3によるアンテナモジュール10の底面図を示す。図7Bに、図7Aの一点鎖線7B-7Bにおける断面図を示す。誘電体基板12の底面に枠状基板26が接着されている。枠状基板26に囲まれた領域に、高周波半導体素子27及び高周波回路部品28が実装されている。枠状基板26の外周は、誘電体基板12の外周よりもやや内側に位置する。このため、実施例1の場合と同様に、段差40が現れる。枠状基板26に形成されたスルーホールに、導体柱30が埋め込まれる。枠状基板26が実装面260を画定する。
 実施例1及び実施例のように、封止樹脂層25(図2A、図2B)、枠状基板26等の誘電体部材で導体柱30を埋め込むことにより、導体柱30の機械的強度を高めることができる。実施例3においても、アンテナモジュール10の側面に段差40が設けられている。このため、実施例1と同様の効果が得られる。
 [実施例4]
 図8Aを参照して、実施例4による回路モジュール80について説明する。以下、図1乃至図4に示した実施例1によるアンテナモジュール10との相違点について説明し、共通の構成については説明を省略する。実施例4においては、回路モジュール80にアンテナが実装されていない。
 図8Aに、実施例4による回路モジュール80の断面図を示す。誘電体基板12の上面に半導体素子82が実装されており、底面に半導体素子84が実装されている。実施例1の場合と同様に、誘電体基板12の底面を封止樹脂層25が被覆する。半導体素子84は、封止樹脂層25に埋め込まれる。誘電体基板12の上面を、他の封止樹脂層29が被覆する。半導体素子82は、封止樹脂層29に埋め込まれる。
 誘電体基板12、下側の封止樹脂層25、及び上側の封止樹脂層29からなる複合構造物の側面に、段差40が設けられている。図8Aに示した例では、誘電体基板12と下側の封止樹脂層25との界面に、段差40が設けられている。
 実施例4においても、段差40が固着樹脂68(図4)の濡れ上がりを停止させる。このため、回路モジュール80の天面への固着樹脂68の付着を回避することができる。さらに、段差40の下方を向く面に固着樹脂68が付着することにより、実装基板60への回路モジュール80の十分な接触強度を確保することができる。
 図8Bに、実施例4の変形例による回路モジュール80の断面図を示す。この変形例では、上側の封止樹脂層29の側面が、誘電体基板12の側面よりも後退している。このため、誘電体基板12と封止樹脂層29との界面に、上方を向く段差41が現れる。封止樹脂層29の上面及び側面が、導電材料からなるシールド層86で被覆されている。
 誘電体基板12の上面のうち、段差41が現れている領域に溝87が形成されている。溝87の底面に、接地層32が現れる。シールド層86は、溝87を通して接地層32に接続されている。この変形例においては、図8Aに示した実施例4の効果に加えて、半導体素子82を電磁的にシールドすることができる。
 上述の各実施例は例示であり、異なる実施例で示した構成の部分的な置換または組み合わせが可能であることは言うまでもない。複数の実施例の同様の構成による同様の作用効果については実施例ごとには逐次言及しない。さらに、本発明は上述の実施例に制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。
10 アンテナモジュール
12 誘電体基板
14 ダイポールアンテナ
15 給電線
16 バラン(平衡不平衡変換器)
17 接続点
18 パッチアンテナ
20 反射器パターン
22 接続点
25 封止樹脂層
26 枠状基板
27 高周波半導体素子
28 高周波回路部品
29 封止樹脂層
30 導体柱
32 接地層
34 伝送線路
36 はんだ
37 金バンプ
40、41 段差
42 実装面から段差までの側面
44 段差より上の側面
50 第1のダイシングブレード
51 ダイシング溝
52 第2のダイシングブレード
60 実装基板
62 ランド
66 ノズル
68 固着樹脂
70 絶縁性ペースト
80 回路モジュール
82、84 半導体素子
86 シールド層
87 溝
100 アンテナモジュール
250、260 実装面

Claims (7)

  1.  導体パターンからなるアンテナが配置された誘電体基板と、
     前記誘電体基板の底面に実装され、前記アンテナに高周波信号を供給する高周波半導体素子と、
     前記底面から突出する複数の導体柱と、
     前記底面に配置され、前記導体柱の先端が露出するように前記導体柱を埋め込む誘電体部材と
    を有し、
     前記誘電体部材が、実装基板に対向する実装面を画定し、
     前記誘電体基板及び前記誘電体部材からなる複合構造物の側面に段差が設けられており、前記実装面から前記段差までの側面が、前記段差より上の側面より後退しているアンテナモジュール。
  2.  前記アンテナは、前記誘電体基板の基板面に平行な方向に指向性を持ち、前記段差は、前記アンテナよりも前記実装面側に配置されている請求項1に記載のアンテナモジュール。
  3.  前記実装面から前記段差までの側面の表面粗さが、前記段差より上の側面の表面粗さよりも大きい請求項1または2に記載のアンテナモジュール。
  4.  前記高周波半導体素子が前記誘電体部材に埋め込まれている請求項1乃至3のいずれか1項に記載のアンテナモジュール。
  5.  導体パターンが設けられた誘電体基板と、
     前記誘電体基板の底面に実装され、前記導体パターンに接続された第1の半導体素子と、
     前記底面から突出する複数の導体柱と、
     前記底面に配置され、前記導体柱の先端が露出するように前記導体柱を埋め込む誘電体部材と
    を有し、
     前記誘電体部材が、実装基板に対向する実装面を画定し、
     前記誘電体基板及び前記誘電体部材からなる複合構造物の側面に段差が設けられており、前記実装面から前記段差までの部分が、前記段差より上の部分より後退している回路モジュール。
  6.  前記実装面から前記段差までの側面が、前記段差より上の側面よりも粗い請求項5に記載の回路モジュール。
  7.  さらに、
     前記誘電体基板の上面に実装された第2の半導体素子と、
     前記上面を被覆するとともに、前記第2の半導体素子を埋め込み、前記誘電体基板の側面よりも後退した側面を有する封止樹脂層と、
     前記封止樹脂層を被覆し、前記封止樹脂層の側面よりも外側において、前記誘電体基板に設けられた接地層に接続されたシールド層と
    を有する請求項5または6に記載の回路モジュール。
PCT/JP2015/079562 2014-10-31 2015-10-20 アンテナモジュール及び回路モジュール WO2016067969A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016556510A JP6288294B2 (ja) 2014-10-31 2015-10-20 アンテナモジュール及び回路モジュール
CN201580058658.0A CN107078406B (zh) 2014-10-31 2015-10-20 天线模块以及电路模块
US15/498,853 US10468763B2 (en) 2014-10-31 2017-04-27 Antenna module and circuit module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014223400 2014-10-31
JP2014-223400 2014-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/498,853 Continuation US10468763B2 (en) 2014-10-31 2017-04-27 Antenna module and circuit module

Publications (1)

Publication Number Publication Date
WO2016067969A1 true WO2016067969A1 (ja) 2016-05-06

Family

ID=55857310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/079562 WO2016067969A1 (ja) 2014-10-31 2015-10-20 アンテナモジュール及び回路モジュール

Country Status (5)

Country Link
US (1) US10468763B2 (ja)
JP (1) JP6288294B2 (ja)
CN (1) CN107078406B (ja)
TW (1) TWI586240B (ja)
WO (1) WO2016067969A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645033A (zh) * 2016-07-21 2018-01-30 环旭电子股份有限公司 电子模块
WO2019064430A1 (ja) * 2017-09-28 2019-04-04 三菱電機株式会社 アレーアンテナ装置
JP2019118095A (ja) * 2017-12-26 2019-07-18 サムソン エレクトロ−メカニックス カンパニーリミテッド. アンテナモジュール及びデュアルバンドアンテナ装置
CN110476242A (zh) * 2017-03-30 2019-11-19 株式会社村田制作所 电路模块
WO2020054001A1 (ja) * 2018-09-12 2020-03-19 三菱電機株式会社 空中線
WO2020122014A1 (ja) * 2018-12-10 2020-06-18 凸版印刷株式会社 半導体装置用配線基板とその製造方法、及び半導体装置
US10957973B2 (en) 2016-08-24 2021-03-23 Murata Manufacturing Co., Ltd. Antenna module
WO2021065819A1 (ja) * 2019-10-04 2021-04-08 ソニーセミコンダクタソリューションズ株式会社 アンテナ装置及び無線通信装置
US11024955B2 (en) 2017-07-31 2021-06-01 Murata Manufacturing Co., Ltd. Antenna module and communication apparatus
US11063340B2 (en) 2019-01-22 2021-07-13 Murata Manufacturing Co., Ltd. Antenna module and communication device
US11283191B2 (en) 2017-12-28 2022-03-22 Murata Manufacturing Co., Ltd. Antenna array and antenna module
US11283150B2 (en) 2017-08-30 2022-03-22 Murata Manufacturing Co., Ltd. Antenna module
US11362418B2 (en) 2018-03-27 2022-06-14 Murata Manufacturing Co., Ltd. Antenna module
US11411314B2 (en) 2018-03-30 2022-08-09 Murata Manufacturing Co., Ltd. Antenna module and communication apparatus equipped therewith
JP2022130459A (ja) * 2016-12-21 2022-09-06 インテル コーポレイション 無線通信技術、装置及び方法
US11450942B2 (en) 2018-02-22 2022-09-20 Murata Manufacturing Co., Ltd. Antenna module and communication device equipped with the same
US11929557B2 (en) 2019-12-26 2024-03-12 Murata Manufacturing Co., Ltd. Antenna module and communication device equipped with the same
US12003015B2 (en) 2019-09-27 2024-06-04 Murata Manufacturing Co., Ltd. Antenna module, manufacturing method thereof, and collective board

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018186065A1 (ja) * 2017-04-03 2018-10-11 株式会社村田製作所 高周波モジュール
CN107342233A (zh) * 2017-06-29 2017-11-10 江苏长电科技股份有限公司 低损耗部件埋入式天线封装结构及其制造方法
US11394103B2 (en) * 2017-07-18 2022-07-19 Samsung Electro-Mechanics Co., Ltd. Antenna module and manufacturing method thereof
GB2567812A (en) * 2017-10-19 2019-05-01 Raspberry Pi Trading Ltd Radio module
CN111448713B (zh) * 2017-12-11 2023-09-05 株式会社村田制作所 带天线的基板、以及天线模块
KR102022354B1 (ko) 2017-12-26 2019-09-18 삼성전기주식회사 안테나 모듈 및 안테나 장치
US11233337B2 (en) * 2018-03-02 2022-01-25 Samsung Electro-Mechanics Co., Ltd. Antenna apparatus
CN111886623B (zh) * 2018-05-01 2024-05-07 株式会社村田制作所 电子设备以及搭载了该电子设备的指纹认证装置
JP6981550B2 (ja) * 2018-07-06 2021-12-15 株式会社村田製作所 アンテナモジュール及び通信装置
CN110828962B (zh) 2018-08-09 2021-08-03 财团法人工业技术研究院 天线阵列模块及其制造方法
CN109149068B (zh) * 2018-08-12 2021-04-02 瑞声科技(南京)有限公司 封装天线系统及移动终端
US10971461B2 (en) * 2018-08-16 2021-04-06 Taiwan Semiconductor Manufacturing Company, Ltd. Semiconductor device and method of manufacture
WO2020100412A1 (ja) * 2018-11-15 2020-05-22 株式会社村田製作所 アンテナモジュール、通信モジュールおよび通信装置
JP6777273B1 (ja) * 2019-01-25 2020-10-28 株式会社村田製作所 アンテナモジュールおよびそれを搭載した通信装置
KR102608773B1 (ko) * 2019-02-14 2023-12-04 삼성전자주식회사 안테나 모듈 및 이를 포함하는 전자 장치
CN112106250B (zh) * 2019-02-20 2021-07-09 株式会社村田制作所 天线模块和搭载该天线模块的通信装置以及天线模块的制造方法
CN113519091B (zh) * 2019-03-04 2022-10-25 株式会社村田制作所 通信装置
KR102529052B1 (ko) * 2019-06-12 2023-05-03 삼성전기주식회사 안테나 장치
KR102593888B1 (ko) * 2019-06-13 2023-10-24 삼성전기주식회사 안테나 모듈 및 이를 포함하는 전자기기
KR102656096B1 (ko) * 2019-06-14 2024-04-11 삼성전자주식회사 안테나 모듈을 포함하는 전자 장치
JP2021103713A (ja) * 2019-12-25 2021-07-15 株式会社村田製作所 高周波モジュール及び通信装置
US11749625B2 (en) 2020-04-17 2023-09-05 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure including one or more antenna structures
TWI751051B (zh) * 2020-04-17 2021-12-21 台灣積體電路製造股份有限公司 半導體結構及其製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104461A (ja) * 1992-09-18 1994-04-15 Canon Inc 光半導体装置及びそれを用いた光情報処理装置
JP2006067375A (ja) * 2004-08-27 2006-03-09 Kyocera Corp アンテナモジュール
JP2007013456A (ja) * 2005-06-29 2007-01-18 Yokowo Co Ltd アンテナ装置およびその製造方法
JP2012517759A (ja) * 2009-02-12 2012-08-02 ハイム ゴールドバーガー, アンテナモジュールハイブリッド回路
JP2012195617A (ja) * 2012-07-12 2012-10-11 Sharp Corp 電子素子および電子情報機器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW575949B (en) * 2001-02-06 2004-02-11 Hitachi Ltd Mixed integrated circuit device, its manufacturing method and electronic apparatus
JP2003188538A (ja) 2001-12-18 2003-07-04 Murata Mfg Co Ltd 多層基板、および多層モジュール
TW200520201A (en) * 2003-10-08 2005-06-16 Kyocera Corp High-frequency module and communication apparatus
JP4511278B2 (ja) * 2004-08-11 2010-07-28 三洋電機株式会社 セラミックパッケージ
JP4518877B2 (ja) * 2004-08-26 2010-08-04 京セラ株式会社 弾性表面波装置
US7405698B2 (en) * 2004-10-01 2008-07-29 De Rochemont L Pierre Ceramic antenna module and methods of manufacture thereof
KR100638726B1 (ko) * 2005-02-25 2006-10-30 삼성전기주식회사 안테나 모듈 및 이를 구비한 전자 장치
JP5071481B2 (ja) * 2007-08-24 2012-11-14 住友ベークライト株式会社 多層配線基板および半導体装置
US8988299B2 (en) * 2011-02-17 2015-03-24 International Business Machines Corporation Integrated antenna for RFIC package applications
US8816906B2 (en) * 2011-05-05 2014-08-26 Intel Corporation Chip packages including through-silicon via dice with vertically inegrated phased-array antennas and low-frequency and power delivery substrates
TWI496346B (zh) * 2011-12-30 2015-08-11 Ind Tech Res Inst 介質天線以及天線模組
US8786060B2 (en) * 2012-05-04 2014-07-22 Advanced Semiconductor Engineering, Inc. Semiconductor package integrated with conformal shield and antenna
JP2014179472A (ja) * 2013-03-15 2014-09-25 Murata Mfg Co Ltd モジュールおよびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104461A (ja) * 1992-09-18 1994-04-15 Canon Inc 光半導体装置及びそれを用いた光情報処理装置
JP2006067375A (ja) * 2004-08-27 2006-03-09 Kyocera Corp アンテナモジュール
JP2007013456A (ja) * 2005-06-29 2007-01-18 Yokowo Co Ltd アンテナ装置およびその製造方法
JP2012517759A (ja) * 2009-02-12 2012-08-02 ハイム ゴールドバーガー, アンテナモジュールハイブリッド回路
JP2012195617A (ja) * 2012-07-12 2012-10-11 Sharp Corp 電子素子および電子情報機器

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107645033A (zh) * 2016-07-21 2018-01-30 环旭电子股份有限公司 电子模块
US10957973B2 (en) 2016-08-24 2021-03-23 Murata Manufacturing Co., Ltd. Antenna module
US11955732B2 (en) 2016-12-21 2024-04-09 Intel Corporation Wireless communication technology, apparatuses, and methods
JP7441269B2 (ja) 2016-12-21 2024-02-29 インテル コーポレイション 無線通信技術、装置及び方法
JP2022130459A (ja) * 2016-12-21 2022-09-06 インテル コーポレイション 無線通信技術、装置及び方法
CN110476242B (zh) * 2017-03-30 2022-10-25 株式会社村田制作所 电路模块
CN110476242A (zh) * 2017-03-30 2019-11-19 株式会社村田制作所 电路模块
US11024955B2 (en) 2017-07-31 2021-06-01 Murata Manufacturing Co., Ltd. Antenna module and communication apparatus
US11283150B2 (en) 2017-08-30 2022-03-22 Murata Manufacturing Co., Ltd. Antenna module
WO2019064430A1 (ja) * 2017-09-28 2019-04-04 三菱電機株式会社 アレーアンテナ装置
JP6516939B1 (ja) * 2017-09-28 2019-05-22 三菱電機株式会社 アレーアンテナ装置
JP2019118095A (ja) * 2017-12-26 2019-07-18 サムソン エレクトロ−メカニックス カンパニーリミテッド. アンテナモジュール及びデュアルバンドアンテナ装置
JP7205042B2 (ja) 2017-12-26 2023-01-17 サムソン エレクトロ-メカニックス カンパニーリミテッド. アンテナモジュール及び電子機器
US10965028B2 (en) 2017-12-26 2021-03-30 Samsung Electro-Mechanics Co., Ltd. Antenna module and dual-band antenna apparatus
CN112768948A (zh) * 2017-12-26 2021-05-07 三星电机株式会社 天线模块、双频带天线装置及电子设备
CN112768948B (zh) * 2017-12-26 2023-07-25 三星电机株式会社 天线模块、双频带天线装置及电子设备
JP2020025296A (ja) * 2017-12-26 2020-02-13 サムソン エレクトロ−メカニックス カンパニーリミテッド. アンテナモジュール及びデュアルバンドアンテナ装置
US10770793B2 (en) 2017-12-26 2020-09-08 Samsung Electro-Mechanics Co., Ltd. Antenna module and dual-band antenna apparatus
US11283191B2 (en) 2017-12-28 2022-03-22 Murata Manufacturing Co., Ltd. Antenna array and antenna module
US11450942B2 (en) 2018-02-22 2022-09-20 Murata Manufacturing Co., Ltd. Antenna module and communication device equipped with the same
US11362418B2 (en) 2018-03-27 2022-06-14 Murata Manufacturing Co., Ltd. Antenna module
US11411314B2 (en) 2018-03-30 2022-08-09 Murata Manufacturing Co., Ltd. Antenna module and communication apparatus equipped therewith
JPWO2020054001A1 (ja) * 2018-09-12 2021-05-20 三菱電機株式会社 空中線
WO2020054001A1 (ja) * 2018-09-12 2020-03-19 三菱電機株式会社 空中線
JPWO2020122014A1 (ja) * 2018-12-10 2021-09-02 凸版印刷株式会社 半導体装置用配線基板とその製造方法、及び半導体装置
JP7196936B2 (ja) 2018-12-10 2022-12-27 凸版印刷株式会社 半導体装置用配線基板の製造方法、及び半導体装置用配線基板
WO2020122014A1 (ja) * 2018-12-10 2020-06-18 凸版印刷株式会社 半導体装置用配線基板とその製造方法、及び半導体装置
US11063340B2 (en) 2019-01-22 2021-07-13 Murata Manufacturing Co., Ltd. Antenna module and communication device
US12003015B2 (en) 2019-09-27 2024-06-04 Murata Manufacturing Co., Ltd. Antenna module, manufacturing method thereof, and collective board
WO2021065819A1 (ja) * 2019-10-04 2021-04-08 ソニーセミコンダクタソリューションズ株式会社 アンテナ装置及び無線通信装置
US11929557B2 (en) 2019-12-26 2024-03-12 Murata Manufacturing Co., Ltd. Antenna module and communication device equipped with the same

Also Published As

Publication number Publication date
US10468763B2 (en) 2019-11-05
TW201622509A (zh) 2016-06-16
TWI586240B (zh) 2017-06-01
JP6288294B2 (ja) 2018-03-07
JPWO2016067969A1 (ja) 2017-07-27
CN107078406A (zh) 2017-08-18
US20170229769A1 (en) 2017-08-10
CN107078406B (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
JP6288294B2 (ja) アンテナモジュール及び回路モジュール
US10714838B2 (en) Array antenna apparatus and method of manufacturing the same
US10636721B2 (en) Semiconductor package and electronic device having the same
EP3561953B1 (en) Antenna module
US10615511B2 (en) Antenna packaging solution
US20160104940A1 (en) Integrated fan out antenna and method of forming the same
US8546927B2 (en) RFIC chip mounting structure
CN106463515B (zh) 摄像元件安装用基板及摄像装置
WO2013035819A1 (ja) 電子部品モジュール及び該電子部品モジュールの製造方法
JP6479577B2 (ja) 半導体装置
US9922918B2 (en) Substrate for stacked module, stacked module, and method for manufacturing stacked module
US9793189B2 (en) Printed wiring board assembly, electrical device, and method for assembling printed wiring board assembly
US20150187676A1 (en) Electronic component module
US10692802B2 (en) Flexible semiconductor device with graphene tape
JP6737634B2 (ja) 放熱チップ及び放熱構造
US9554488B2 (en) Method to align surface mount packages for thermal enhancement
JP2005044989A (ja) 半導体パッケージ及びその製造方法
JP2017034224A (ja) 電子モジュール
KR101716882B1 (ko) 접속 영역의 스트레스가 분산되는 연성 패키지, 및 그 제조 방법
US20220263222A1 (en) Uniform multi-package antenna array
WO2021006344A1 (ja) アレイアンテナ装置
US20210090970A1 (en) Integrated device package
JP5919860B2 (ja) 電子部品モジュール及び該電子部品モジュールの製造方法
KR20140015607A (ko) 반도체 패키지 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15854283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016556510

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15854283

Country of ref document: EP

Kind code of ref document: A1