WO2016067744A1 - 磁気素子、スキルミオンメモリ、スキルミオンメモリデバイス、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置および通信装置 - Google Patents

磁気素子、スキルミオンメモリ、スキルミオンメモリデバイス、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置および通信装置 Download PDF

Info

Publication number
WO2016067744A1
WO2016067744A1 PCT/JP2015/075118 JP2015075118W WO2016067744A1 WO 2016067744 A1 WO2016067744 A1 WO 2016067744A1 JP 2015075118 W JP2015075118 W JP 2015075118W WO 2016067744 A1 WO2016067744 A1 WO 2016067744A1
Authority
WO
WIPO (PCT)
Prior art keywords
skyrmion
magnetic
memory
magnetic body
current
Prior art date
Application number
PCT/JP2015/075118
Other languages
English (en)
French (fr)
Inventor
直人 永長
航 小椎八重
惇一 岩崎
川崎 雅司
十倉 好紀
金子 良夫
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to KR1020177005705A priority Critical patent/KR102062369B1/ko
Priority to KR1020197038689A priority patent/KR102099068B1/ko
Priority to EP15855066.5A priority patent/EP3214663B1/en
Priority to JP2016556417A priority patent/JP6674899B2/ja
Publication of WO2016067744A1 publication Critical patent/WO2016067744A1/ja
Priority to US15/450,003 priority patent/US9859017B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/085Generating magnetic fields therefor, e.g. uniform magnetic field for magnetic domain stabilisation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • G11C19/0841Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation using electric current
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0866Detecting magnetic domains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention relates to a magnetic element capable of transferring a skyrmion, a skyrmion memory using the magnetic element, a shift register using the magnetic element, a skyrmion memory device using the magnetic element, and a solid electronic device equipped with the skyrmion memory
  • the present invention relates to a data recording device having a built-in skillmion memory, a data processing device having a built-in skillmion memory, and a communication device having a built-in skillmion memory.
  • a magnetic element that uses the magnetic moment of a magnetic material as digital information is known.
  • the magnetic element has a nanoscale magnetic structure that functions as an element of a non-volatile memory that does not require power when holding information.
  • the magnetic element is expected to be applied as a large-capacity information storage medium due to advantages such as ultra-high density due to a nanoscale magnetic structure, and its importance is increasing as a memory device of an electronic device.
  • the magnetic shift register drives the magnetic domain domain wall, transfers the magnetic moment arrangement with current, and reads stored information (see Patent Document 1).
  • FIG. 29 is a schematic diagram showing the principle of magnetic domain domain wall drive by electric current.
  • a domain domain wall is a boundary between magnetic regions in which the directions of magnetic moments are opposite to each other.
  • the domain domain wall in the magnetic shift register 1 is indicated by a solid line.
  • the magnetic domain domain wall is driven by passing a current in the direction of the arrow through the magnetic shift register 1. By moving the domain domain wall, the magnetism due to the direction of the magnetic moment located above the magnetic sensor 2 changes. The magnetic change is detected by the magnetic sensor 2 to extract magnetic information.
  • Such a magnetic shift register 1 has the disadvantages that a large current is required to move the magnetic domain domain wall and the transfer speed of the magnetic domain domain wall is slow. As a result, the memory writing and erasing time is delayed and the power consumption is increased.
  • Non-Patent Document 2 a skirmion magnetic element using skirmions generated in a magnetic material as a memory unit. Furthermore, in Non-Patent Document 1, the inventors of the present application have shown that skillmions can be transferred in an arrangement in which skillmions are transferred substantially parallel to the current direction.
  • Non-Patent Document 1 proposes skyrmion transfer by steady current as a storage memory.
  • Patent Literature [Patent Document 1] US Pat. No. 6,834,005 [Patent Document 2] JP-A-2014-86470 [Non-Patent Document 1] Junichi Iwasaki, Ito Mochizuki, Naoto Naganaga, “Current sky dynamics in constitutive geometries” Nature Nanotechnology, UK, Nature Pub. 8, p742-747.
  • Skyrmion has a very small magnetic structure with a diameter of 1 nm to 500 nm, and since the structure can be held stably for a long time without external power input, expectations for application to memory elements are increasing. . Thus, a configuration of a magnetic element or the like that can be applied to a memory element is provided.
  • the upstream side is a magnetic element capable of transferring skyrmions, which is a thin layered magnetic body surrounded by a non-magnetic body and a conductor connected in the extending direction of the magnetic body
  • a plurality of stable portions where the skyrmions exist more stably than the region of the above, and the direction of the current flowing between the upstream electrode and the downstream electrode with respect to the direction of transferring one or more skyrmions A magnetic element having a lateral current arrangement arranged substantially vertically is provided.
  • the magnetic element according to the first aspect, a magnetic field generation unit that is provided opposite to the magnetic body and can apply a magnetic field to the magnetic body, and is connected to the upstream electrode and the downstream electrode Measurement to measure the position of skirmion based on the detection result of skirmion detection element connected to power source for applying current to magnetic material between upstream electrode and downstream electrode and skirmion detection element
  • a skyrmion memory with a department.
  • the skyrmion memory may have a plurality of magnetic elements stacked in the thickness direction.
  • the skillmion memory is connected to the skillmion memory of the second aspect and a plurality of skillmion memories, and the skillmions are transferred between the plurality of stable parts to the corresponding skillmion memories, respectively.
  • a plurality of skyrmion transfer lines that supply transfer current, a plurality of read word lines that are connected to a plurality of skyrmion memories and transmit voltages or currents corresponding to the positions of the skyrmions of the corresponding magnetic elements, respectively
  • a plurality of switches for selecting a skillmion memory provided on a plurality of read word lines and a current or voltage flowing through the read word line, and a skillmion of a magnetic element selected by the switch.
  • a skyrmion memory device comprising a detection circuit for detecting a position is provided.
  • a skirmion memory device comprising a substrate, a semiconductor element formed on the substrate, and at least one skirmion memory of the second aspect stacked above the semiconductor element.
  • a skirmion memory-equipped solid state electronic device comprising the skillion memory or the skillion memory device of the second to fourth aspects and a solid state electronic device in the same chip.
  • a data recording apparatus equipped with the skillmion memory or the skillmion memory device of the second to fourth aspects.
  • a data processing apparatus equipped with the skillmion memory or the skillmion memory device of the second to fourth aspects.
  • a communication device equipped with the skillmion memory or the skillmion memory device of the second to fourth aspects.
  • FIG. 3 is a schematic diagram showing an example of a skyrmion 40 that is a nanoscale magnetic structure in the magnetic body 10.
  • FIG. The strength and direction of the magnetic moment are schematically shown by arrows.
  • It is a schematic diagram which shows the skyrmion 40 from which helicity (gamma) differs.
  • the schematic diagram which shows the structural example of the skyrmion memory 100 in the case of the lateral current arrangement
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the simulation result of the magnetic moment of the magnetic body 10 at t 2000 (1 / J) when the positive transfer current 0.001 ⁇ is steadily supplied.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the simulation result of the magnetic moment of the magnetic body 10 at t 5000 (1 / J) when the positive transfer current 0.001 ⁇ is steadily supplied.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the simulation result of the magnetic moment of the magnetic body 10 when the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a longitudinal current arrangement arranged substantially parallel to the direction in which the skyrmion is transferred. Show.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a vertical current arrangement that is arranged substantially parallel to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a vertical current arrangement that is arranged substantially parallel to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a vertical current arrangement that is arranged substantially parallel to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a vertical current arrangement that is arranged substantially parallel to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a vertical current arrangement that is arranged substantially parallel to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a vertical current arrangement that is arranged substantially parallel to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the current pulse for transfer to flow is shown.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • a positive erase current pulse is shown.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • a positive erase current pulse is shown.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 toward the downstream electrode 14.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and the skyrmion memory 100 that uses a closed path shape magnetic body.
  • a skyrmion memory device 110 in which n layers of magnetic elements 30 are stacked is shown.
  • a skyrmion memory device 110 having a plurality of magnetic field generators 20 in the stacking direction is shown.
  • FIG. 2 shows an example of the structure of a skyrmion memory device 110.
  • 2 shows an example of a circuit configuration of a skyrmion memory device 110.
  • An example of an operation of writing data “0” to the skillion memory 100 is shown.
  • movement which erases the skill meon 40 of the skill meon memory 100 is shown.
  • An example of the read operation of the skyrmion memory device 110 is shown.
  • 6 is a schematic diagram illustrating another configuration example of the magnetic element 30.
  • FIG. 6 is a schematic diagram illustrating another configuration example of the magnetic element 30.
  • FIG. It is a schematic diagram which shows the structural example of the solid electronic device 200 with a skyrmion memory.
  • 3 is a schematic diagram illustrating a configuration example of a data processing device 300.
  • FIG. 3 is a schematic diagram illustrating a configuration example of a data recording device 400.
  • FIG. 3 is a schematic diagram illustrating a configuration example of a communication device 500
  • a magnetic material that can generate skyrmions is a chiral magnetic material.
  • a chiral magnetic body is a magnetic body with a magnetic ordered phase in which the magnetic moment arrangement when no external magnetic field is applied rotates spirally with respect to the direction of travel of the magnetic moment. By applying an external magnetic field, the chiral magnetic material becomes a ferromagnetic phase through a state in which skyrmions exist.
  • FIG. 1 is a schematic diagram showing an example of skyrmion 40 which is a nanoscale magnetic structure in magnetic body 10.
  • each arrow indicates the direction of the magnetic moment in the skyrmion 40.
  • the x axis and the y axis are axes orthogonal to each other, and the z axis is an axis orthogonal to the xy plane.
  • the magnetic body 10 has a plane parallel to the xy plane.
  • a magnetic moment that faces all directions on the plane of the magnetic body 10 constitutes the skyrmion 40.
  • the direction of the magnetic field applied to the magnetic body 10 is the plus z direction.
  • the magnetic moment on the outermost periphery of the skillion 40 of this example is directed in the plus z direction.
  • the magnetic moment rotates spirally from the outermost circumference to the inside. Further, the direction of the magnetic moment gradually changes from the plus z direction to the minus z direction with the spiral rotation.
  • the direction of the magnetic moment is continuously twisted between the center and the outermost periphery. That is, the skyrmion 40 is a nanoscale magnetic structure having a spiral structure of magnetic moment.
  • the magnetic body 10 in which the skyrmion 40 exists is a thin plate-like solid material
  • the magnetic moment constituting the skyrmion 40 has the same direction in the thickness direction. That is, the plate has a magnetic moment in the same direction from the front surface to the back surface in the depth direction (z direction).
  • the diameter ⁇ of the skillion 40 refers to the diameter of the outermost periphery of the skillion 40.
  • the outermost periphery refers to the circumference of a magnetic moment that faces the same direction as the external magnetic field shown in FIG.
  • the Skyrmion number Nsk characterizes Skyrmion 40, which is a nanoscale magnetic structure having a spiral structure.
  • the number of skyrmions can be expressed by the following [Equation 1] and [Equation 2].
  • the polar angle ⁇ (r) between the magnetic moment and the z-axis is a continuous function of the distance r from the center of the skyrmion 40.
  • the polar angle ⁇ (r) changes from ⁇ to zero or from zero to ⁇ when r is changed from 0 to ⁇ .
  • n (r) is a unit vector indicating the direction of the magnetic moment of the skyrmion 40 at the position r.
  • m is a voltility
  • is a helicity.
  • FIG. 2 is a schematic diagram showing skyrmions 40 having different helicities ⁇ .
  • FIG. 2 (e) shows how to coordinate the magnetic moment n (right-handed system). Since a right-handed, n z axis relative to n x axis and n y axis, taken from the rear of the sheet in front of the orientation. 2A to 2E, the shading indicates the direction of the magnetic moment.
  • Magnetic moments indicated by shading on the circumference in FIG. 2 (e) has the direction of the n x -n y plane.
  • the magnetic moment indicated by the thinnest shading (white) at the center of the circle in FIG. 2E has a direction from the back to the front of the paper.
  • the angle with respect to the nz axis of the magnetic moment indicated by the shading of each position between the circumference and the center is taken from ⁇ to zero according to the distance from the center.
  • the direction of each magnetic moment in FIGS. 2 (a) to 2 (d) is indicated by the same shading in FIG. 2 (e). As shown in the center of the skillion 40 in FIGS.
  • the magnetic moment indicated by the darkest shade (black) has a direction from the front of the paper to the back of the paper.
  • Each arrow in FIGS. 2 (a) to 2 (d) indicates a magnetic moment at a predetermined distance from the center of the magnetic structure.
  • the magnetic structure shown in FIGS. 2A to 2D is in a state that can be defined as skyrmion 40.
  • the direction is rotated 90 degrees counterclockwise. 2 is equivalent to the skillion 40 of FIG. 1.
  • the skillion of ⁇ ⁇ / 2 shown in FIG.
  • FIGS. 2 (a) to 2 (d) look different, but are topologically identical.
  • the skyrmions having the structures shown in FIGS. 2A to 2D exist stably once generated, and serve as a carrier responsible for information transmission in the magnetic body 10 to which an external magnetic field is applied.
  • FIG. 3 shows an example of the configuration of the skyrmion memory 100 in which the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred. It is a schematic diagram shown.
  • the skyrmion memory 100 of this example includes a magnetic element 30, a magnetic field generation unit 20, a power supply 52, and a measurement unit 34.
  • the skirmion memory 100 causes the skirmion 40 in the magnetic body 10 to flow into the stable portion 16-1 (first stable portion) or the stable portion 16 of the magnetic body 10 by passing a transfer current through the magnetic body 10 of the magnetic element 30. -2 (second stable part).
  • a major feature is that the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmions are transferred.
  • the presence / absence of the skillion 40 in the stable portion 16-2 of the magnetic body 10 corresponds to 1-bit information.
  • the measuring unit 34 detects the presence or absence of the skillion of the stabilizing unit 16-2.
  • the magnetic element 30 can detect the skyrmion 40 by applying a current to the magnetic body 10. Further, it may be possible to generate and erase the skyrmion 40 by applying a current to the magnetic body 10. Further, the magnetic element 30 of this example has a thin layer shape.
  • the magnetic element 30 of this example includes a magnetic body 10, an upstream electrode 12, a downstream electrode 14, and a skirmion detection element 15.
  • the magnetic body 10 has a thin layer shape, and at least a skirmion crystal phase and a ferromagnetic phase are developed according to an applied magnetic field.
  • Skyrmion crystal phase refers to a state in which skirmion 40 can occur in magnetic body 10.
  • the magnetic body 10 is a chiral magnetic body.
  • the magnetic body 10 has a thin layer shape so that the skyrmion 40 can exist stably.
  • the magnetic body 10 may have a thickness of about 10 times or less the diameter of the skyrmion 40, for example.
  • the diameter of the skillion 40 refers to the outermost diameter of the skillion.
  • the magnetic body 10 has a plurality of stable portions 16.
  • the plurality of stabilizing portions 16 are provided in a region between the upstream electrode 12 and the downstream electrode 14 in the magnetic body 10.
  • the magnetic body 10 of this example includes a stable portion 16-1 and a stable portion 16-2.
  • the stable portion 16 refers to a region where the skyrmion 40 can exist more stably than the other regions of the magnetic body 10.
  • the stabilizing unit 16 may point to a region where the skillion 40 stays in the place unless the power is applied to the skillion 40 from the outside, for example, by an electric current or the like. In order to form such a region, as described below, the magnetic field intensity generated from the magnetic field generation unit 20 can be realized by setting the magnetic field intensity weaker than the magnetic field intensity around the stable unit 16.
  • the stabilizing unit 16 may point to a region isolated by some kind of barrier when moving the skillion 40 from the region.
  • This barrier can be realized by causing the upstream electrode 12 and the downstream electrode 14 to have convex portions protruding inside the magnetic body 10.
  • Each stable portion 16 occupies a predetermined range on the surface of the magnetic body 10 parallel to the xy plane.
  • the magnetic element 30 can transfer the skyrmion 40 between the plurality of stable portions 16 by a transfer current.
  • the magnetic field generator 20 applies a magnetic field H to the magnetic body 10.
  • the magnetic field generator 20 is provided to face the magnetic body 10.
  • the magnetic field generator 20 may be provided to face the back surface of the magnetic body 10.
  • the magnetic field generator 20 of this example generates a magnetic field H that makes the magnetic body 10 a ferromagnetic phase.
  • the magnetic field generator 20 applies a magnetic field H substantially perpendicular to the surface of the thin-film magnetic body 10 to the magnetic body 10.
  • the magnetic body 10 has a surface (one surface) parallel to the xy plane, and the magnetic field generator 20 generates a magnetic field H in the plus z direction as indicated by an arrow in the magnetic field generator 20.
  • the magnetic field applied to the stable unit 16-1 and the stable unit 16-2 of the magnetic body 10 becomes a magnetic field Ha smaller than the magnetic field strength H applied to other regions of the magnetic body 10. It has such a structure.
  • the magnetic field generation unit 20 may have a structure in which the magnitude of the magnetic moment in the region facing the stabilization unit 16 is smaller than in other regions.
  • the magnetic field generation unit 20 may be formed of a material different from the region facing the stabilization unit 16 and the other region, and the thickness in the z direction is different between the region facing the stabilization unit 16 and the other region. Also good. Thereby, the magnetic field applied to the stable part 16 can be made smaller than other regions, and the skyrmion 40 can be stably present in the stable part 16.
  • the magnetic field generation unit 20 may apply a magnetic field that makes the stable unit 16 and other regions a ferromagnetic phase, which will be described later.
  • the magnetic field generator 20 may be separated from or in contact with the magnetic body 10.
  • the magnetic field generator 20 is a metal, the magnetic field generator 20 is preferably separated from the magnetic body 10.
  • the upstream electrode 12 is made of a nonmagnetic metal connected to the magnetic body 10.
  • the upstream electrode 12 is connected in the extending direction of the magnetic body 10.
  • the extending direction of the magnetic body 10 refers to a direction parallel to the xy plane.
  • the upstream electrode 12 may have a thin layer shape. Further, the upstream electrode 12 may have the same thickness as the magnetic body 10.
  • the downstream electrode 14 is made of a nonmagnetic metal that is separated from the upstream electrode 12 and connected to the magnetic body 10.
  • the downstream electrode 14 is connected in the extending direction of the magnetic body 10.
  • the upstream electrode 12 and the downstream electrode 14 are arranged so that a transfer current in a direction substantially parallel to the xy plane flows through the magnetic body 10 when a voltage is applied.
  • the upstream electrode 12 and the downstream electrode 14 are used to flow a current for transferring, generating or erasing the skyrmion 40 in the magnetic body 10. Note that at least one of the upstream electrode 12 and the downstream electrode 14 in this example also functions as an electrode for passing a current to the skirmion detection element 15 that detects the position of the skirmion 40.
  • the skyrmion detection element 15 in this example is a tunnel magnetoresistive element (TMR element).
  • TMR element tunnel magnetoresistive element
  • the skillion detection element 15 is located in at least one stable part.
  • the skyrmion detection element 15 of this example has a laminated structure of a nonmagnetic thin film 151 in contact with the surface of the magnetic body 10 at the position of the stable portion 16-2 and a magnetic metal 152.
  • the magnetic metal 152 becomes a ferromagnetic phase having a magnetic moment in the plus z direction by the magnetic field in the plus z direction from the magnetic body 10.
  • the measuring unit 34 is connected between the magnetic body 10 or the upstream electrode 12 and the end of the magnetic metal 152 opposite to the magnetic body 10 side. Thereby, the resistance value detected by the skyrmion detection element 15 can be detected.
  • the resistance value when the skillmion 40 does not exist in the stable portion 16-2 of the magnetic body 10 shows the minimum value, and when the skillmion 40 exists, the resistance value increases.
  • the resistance value of the skyrmion detection element 15 is determined by the probability of the electron tunneling current of the nonmagnetic thin film 151 depending on the direction of the magnetic moment between the magnetic body 10 and the magnetic metal 152 in the ferromagnetic phase.
  • the high resistance (H) and the low resistance (L) of the skyrmion detection element 15 correspond to the presence or absence of the skyrmion 40, and correspond to the information “1” and “0” stored in the memory cell.
  • the measuring unit 34 may measure a change in resistance value of the skyrmion detection element 15, and may measure a change in voltage or current according to a change in resistance value of the skyrmion detection element 15. Thereby, it is possible to read the information stored in the skyrmion memory 100.
  • the skyrmion detection element 15 may be provided in the stable portion 16 closest to the end of the magnetic body 10 among the plurality of stable portions 16. In this example, the skyrmion detection element 15 is provided only in the stable portion 16-2 of the two
  • the power source 52 is connected to the upstream electrode 12 and the downstream electrode 14.
  • the power source 52 selects one of the direction from the upstream electrode 12 toward the downstream electrode 14 and the direction from the downstream electrode 14 toward the upstream electrode 12, and causes a transfer current to flow through the magnetic body 10.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred.
  • the skyrmion 40 With the transfer current flowing through the magnetic body 10, the skyrmion 40 is transferred substantially perpendicular to the direction of the current flowing between the electrodes. Specifically, the skyrmion 40 moves in the magnetic body 10 by receiving a force in a direction orthogonal to the direction of the transfer current.
  • the stable portion 16-1 and the stable portion 16-2 are connected to the upstream electrode 12 and the downstream electrode 14 so that the skyrmion 40 can easily move between the stable portion 16-1 and the stable portion 16-2. Are arranged in a direction perpendicular to the direction of the transfer current flowing between them.
  • the stable portion 16-1 is disposed on the x-axis negative side and the stable portion 16-2 is disposed on the magnetic body 10.
  • the power supply 52 positively transfers the skyrmion 40 existing in the magnetic body 10 to the magnetic body 10 in the direction from the upstream electrode 12 to the downstream electrode 14 when transferring the skyrmion 40 from the stable section 16-1 to the stable section 16-2. Apply current. In this case, the skillion 40 receives a force in a direction from the stable portion 16-1 toward the stable portion 16-2.
  • the power source 52 negatively applies to the magnetic body 10 in the direction from the upstream electrode 12 toward the downstream electrode 14.
  • the transfer current is applied.
  • the skillion 40 receives a force in a direction from the stable portion 16-2 toward the stable portion 16-1.
  • the skillion memory 100 uses the skillion 40 as an information storage medium.
  • the skyrmion memory 100 associates the position of the skyrmion 40 with information.
  • the skillmion memory 100 associates the state in which the skillmion 40 exists in the stable part 16-2 (that is, the state in which the skillmion 40 does not exist in the stable part 16-1) with the information “1”.
  • a state in which the skyrmion 40 does not exist in the stable part 16-2 that is, a state in which the skyrmion 40 exists in the stable part 16-1) is associated with information “0”.
  • the state in which the skillmion 40 exists in the stable unit 16-1 is associated with information “1”, and the state in which the skillmion 40 does not exist in the stable unit 16-1 is associated with information “0”.
  • the direction of the positive transfer current is indicated by an arrow (the direction of the electron flow is opposite to this).
  • the stable portion 16-2 is provided at the end on the positive side of the x-axis of the magnetic body 10, even if a positive transfer current flows from the upstream electrode 12 to the downstream electrode 14, the stable portion 16-2 is stable from the beginning.
  • the skillion that existed in the part 16-2 remains in the stable part 16-2.
  • the positive transfer current application from the upstream electrode 12 to the downstream electrode 14 always places the skyrmion 40 in the stable portion 2.
  • the stable portion 16-1 is provided at the end on the negative side of the x-axis of the magnetic body 10, application of negative transfer current from the upstream electrode 12 to the downstream electrode 14 always stabilizes the skyrmion 40. Arranged in section 16-1.
  • the information “1” and “0” and the stable portion 16 ⁇ 2 can be associated with the presence or absence of the skillion 40 in FIG. If the skill meon detection element 15 detects the presence or absence of the skill meon 40 arranged in the stabilizing section 16-2, the stored information can be read out.
  • the skillmion memory 100 of this example only needs to change the position of the skillmion 40 according to the stored information “1” and “0”, without generating or deleting the skillmion 40 each time information is written. Good. For this reason, it becomes possible to speed up the writing operation of the skyrmion memory 100.
  • the skillion 40 may be generated when the skillion memory 100 is shipped, or may be generated when the skillion memory 100 is operated for the first time.
  • the skyrmion 40 As a method of generating the skyrmion 40 in the initial stage, for example, there is a method of generating the skyrmion 40 by locally weakening the external magnetic field of the stable portion 16-1 using a magnetic field generated locally by a coil or the like.
  • the external magnetic field is a magnetic field that makes the stable portion 16-1 a skirmion crystal phase described later.
  • the skyrmion 40 may be generated using a local magnetic field from the outside at the time of shipment. Once generated, the skyrmion 40 exists stably even when the magnetic body 10 and the stable portion 16 become a ferromagnetic phase.
  • the magnetic body 10 may have a generation region that generates the skyrmion 40 on the negative side of the x-axis with respect to the stable portion 16-1.
  • a concave portion made of a non-magnetic material is provided at the end on the negative side of the x-axis of the region.
  • the direction of the magnetic moment rotates without applying an external magnetic field, and the skyrmion 40 is easily generated.
  • skirmions 40 are generated around the corners of the recesses.
  • the generation current for the generation region can be controlled independently of the transfer current between the upstream electrode 12 and the downstream electrode 14.
  • the magnetic field applied to the generation region by the magnetic field generation unit 20 may be the same as the region other than the stabilization unit 16 of the magnetic body 10.
  • the skyrmion 40 can be generated by locally heating the magnetic body 10 with a laser or a metal probe.
  • the local heating may be performed on the stable portion 16.
  • the magnetic moment in the region of the magnetic body 10 that has been locally heated changes transiently in various directions depending on the thermal energy, but the magnetic moment stabilizes in the state of the skillion 40.
  • the skyrmion 40 exists in the stable part 16-1 or the stable part 16-2.
  • the skill value of the skillmion detection element 15 is the minimum value when the skillion 40 is not present at the facing position, and the resistance value increases when the skillion 40 is present.
  • the high resistance (H) and the low resistance (L) of the skyrmion detection element 15 correspond to the presence or absence of the skyrmion 40, and correspond to the information “1” and “0” stored in the memory cell.
  • This kind of information recording principle has the advantage that information to be stored can always be overwritten. In other words, even if the location of the skillion 40 exists in the unintended stable part 16-1 or stable part 16-2, as long as the skillmion exists in the stable part 16-1 or stable part 16-2, new information is stored. Can be written. It is not necessary to initialize storage of old information (for example, to return the skillion to the state of the stable unit 16-1) every time new information is written.
  • the skyrmion 40 can be erased from the magnetic body 10.
  • This function can be used for resetting the skill meon memory 100 when a malfunction occurs in which the skyrmion has disappeared from both the stable parts 16-1 and 16-2 for some reason.
  • a plurality of skillion memories 100 are provided in one memory track, it can be used for batch erasing of skillion in the corresponding memory track. After that, the skyrmion 40 is generated in the stable part 16-1 of the corresponding memory track. As a result, the memory track can be initialized in a short time.
  • Skyrmion Memory 100 the time required for nano-size Skyrmion transfer by current may be about 1 nsec of an extremely short pulse. This is an order of magnitude faster than the 20 nsec required for data writing in DRAM (Dynamic Random Access Memory). In addition, the time required for writing data in a high-speed SRAM (Static Randum Access Memory) is about 2 nsec, which is equivalent to this. Moreover, once the skyrmion 40 is generated, the skyrmion memory 100 is non-volatile because it exists stably in the magnetic body 10. Since this can be realized, an ultimate memory element that is non-volatile and capable of high-speed operation can be realized.
  • the magnetic element 30 capable of generating the skyrmion 40 is, for example, an element formed in a thin layer having a thickness of 500 nm or less, and can be formed using a technique such as MBE (Molecular Beam Epitaxy) or sputtering.
  • the upstream electrode 12 and the downstream electrode 14 are made of a conductive nonmagnetic metal such as Cu, W, Ti, TiN, Al, Pt, or Au.
  • the magnetic body 10 is a chiral magnetic body and is made of FeGe, MnSi, or the like.
  • the magnetic body 10 is not a chiral magnetic body exhibiting helical magnetism but a dipole magnetic body, a frustrated magnetic body, or a structure in which a magnetic body and a nonmagnetic body are laminated.
  • a dipole magnetic body is a magnetic body in which magnetic dipole interaction is important.
  • a frustrated magnetic body is a magnetic body including a spatial structure of magnetic interaction that favors a magnetic mismatch state.
  • a magnetic body having a laminated structure of a magnetic material and a nonmagnetic material is a magnetic body in which the magnetic moment of the magnetic material in contact with the nonmagnetic material is modulated by the spin-orbit interaction of the nonmagnetic material.
  • the skyrmion memory 100 having the above-described configuration can be embodied as a magnetic element that can transfer and erase the skyrmion 40 in the magnetic body 10.
  • a method for transferring and erasing the skillion 40 in the skillion memory 100 will be described through examples.
  • Example 1 In Example 1, a simulation experiment is carried out in detail for the transfer of the skyrmion 40 by current.
  • a stable current 16-1 and a stable portion 16-2 are arranged in a direction perpendicular to the direction in which the transfer current flows, by passing a transfer current through the magnetic body 10 between the upstream electrode 12 and the downstream electrode 14 arranged in parallel.
  • Equation 3 The Hamiltonian in the chiral magnetic material can be expressed by [Equation 4]. [Equation 4]
  • X represents an outer product.
  • g ⁇ B / h (> 0) is the gyromagnetic ratio.
  • h is a Planck's constant. Mr represents magnetization.
  • e x and e y are unit vectors in the x and y directions.
  • M r + ex and M r + ey indicate magnetic moments at positions different from M r by unit vectors in the x and y directions.
  • 2eM / (pa 3 ).
  • Equation 4 the Hamiltonian H shown in [Equation 4] is a case of a chiral magnetic material.
  • the expression of H may be replaced with a description of each magnetic material.
  • the periodic boundary conditions in the x direction and the y direction are not set, the electrode made of a nonmagnetic material is arranged in parallel to the x axis, and the magnetic field is behind the magnetic material 10 (the surface facing the magnetic field generation unit 20).
  • the simulation is performed using the above equation under the condition that the voltage is applied in the front direction.
  • FIG. 4 is a phase diagram showing the magnetic field dependence of the chiral magnetic substance magnetic phase.
  • the chiral magnetic material is a magnetic material that changes from the chiral magnetic phase to the skyrmion crystal phase (SkX) by the magnetic field strength Hsk, and from the skyrmion crystal phase (SkX) to the ferromagnetic phase by the higher magnetic field strength Hf.
  • the skyrmion crystal phase (SkX) a plurality of skyrmions 40 are arranged in the close-packed structure and are generated in the xy plane.
  • the skyrmion diameter ⁇ is a substance specific constant.
  • the skyrmion diameter ⁇ is, for example, 70 nm for FeGe and 18 nm for MnSi.
  • An external magnetic field of H 0.03 J is applied to the magnetic body 10, and the magnetic body 10 is in a ferromagnetic state.
  • An external magnetic field of Ha 0.029 J is applied to the stable portion 16-1 and the stable portion 16-2.
  • the magnetic parts of the stable portion 16-1 and the stable portion 16-2 are also in a ferromagnetic state, but Ha is a weak magnetic field by 0.001 J compared to H.
  • the stable portion 16 of the skyrmion 40 is formed in the magnetic body 10 because Ha has a lower magnetic field than H. Details will be described in the following simulation.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 to the downstream electrode.
  • the skyrmion 40 exists in the stable portion 16-1.
  • the magnetic body 10 has a rectangular shape having a height Hm in the y direction and a width Wm in the x direction.
  • the shapes of the magnetic body 10 and the stable portion 16 in each simulation in this specification are the same.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement in which the direction of the skyrmion is substantially perpendicular to the direction in which the skyrmion is transferred.
  • Skyrmion 40 is about to cross the boundary between stable part 1 and stable part 2.
  • the time of 3000 (1 / J) corresponds to approximately 1 nsec.
  • a current density of 0.001 ⁇ corresponds to 1.0 ⁇ 10 6 A / cm 2 . It can be seen that the skillion 40 has moved near the boundary between the stable portion 16-1 and the stable portion 16-2.
  • an electron spin current which flows in the direction opposite to the transfer current, flows from the downstream electrode 14 to the upstream electrode 12.
  • This spin current works so as to move the skyrmion 40 in the positive x-axis direction by the Magnus force.
  • the skyrmion 40 can get over the potential wall at the boundary between the stable portion 16-1 and the stable portion 16-2.
  • the skyrmion 40 also receives a force in the direction along the spin current from the electron spin current, but the force is smaller than the spin transfer torque and does not move much in that direction.
  • the intensity of the external magnetic field H applied to the boundary region between the stable part 16-1 and the stable part 16-2 is 0.001J from the intensity of the external magnetic field Ha applied to the stable part 16-1 and the stable part 16-2. strong. Since the external magnetic field applied in the positive z-axis direction works in a direction to make the magnetic body 10 more ferromagnetic, the strong magnetic field H functions as a high potential barrier for the skyrmion 40.
  • FIG. 5C shows a lateral current arrangement in which the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is arranged substantially perpendicular to the direction in which the skyrmion is transferred.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement in which the direction of the skyrmion is substantially perpendicular to the direction in which the skyrmion is transferred.
  • the skyrmion 40 is moved in the positive direction of the x-axis by the positive transfer current and is stabilized to the stabilizing unit 16-2.
  • the height Hm of the magnetic body 10 may be in the range of 3 ⁇ ⁇ > Hm ⁇ ⁇ / 2, where ⁇ is the skyrmion diameter.
  • the lower limit of Hm is a size necessary for the skyrmion 40 to exist stably. If it is smaller than this, the skyrmion 40 cannot exist.
  • the upper limit may be larger than 3 ⁇ ⁇ , but is preferably as small as possible in order to improve the degree of integration of the memory.
  • the width Wm of the magnetic body 10 may be in a range of 5 ⁇ ⁇ > Wm ⁇ ⁇ .
  • the length L of one side of the stable portion 16 may be in a range of ⁇ > L ⁇ ⁇ / 2. When L is equal to or smaller than ⁇ / 2, the skyrmion 40 does not stay in the stable portion 16.
  • the distance d1 between the stable portion 16 and the magnetic body 10 may be in a range of ⁇ / 2> d1 ⁇ 0. In order to improve the degree of integration, it is desirable that d1 is as narrow as possible. d1 may be zero because a potential exists at the end of the magnetic material. Further, the distance d2 between the stable portions 16 may be in a range of ⁇ / 2> d2 ⁇ ⁇ / 10. In order to improve the degree of integration, d2 is desirably as narrow as possible. However, if d2 is narrower than ⁇ / 10, the skillmion 40 is not stably kept in the stable part 16, and the skillmion may move to an undesired stable part 16.
  • FIG. 6A shows the magnetic moment of the magnetic body 10 when the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a longitudinal current arrangement that is arranged substantially parallel to the direction in which the skyrmions are transferred.
  • the simulation results are shown.
  • the upstream electrode 12 and the downstream electrode 14 are arranged in the x-axis direction. That is, the direction of the current flowing from the upstream electrode 12 to the downstream electrode 14 is the same as the arrangement direction of the stable portion 16-1 and the stable portion 16-2.
  • the sizes of the magnetic body 10 and the stabilizing portion 16 are the same as those in the first embodiment. This electrode position is called a longitudinal current arrangement.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a vertical current arrangement in which the direction of the skyrmion is substantially parallel, and the upstream electrode 12 to the downstream electrode.
  • the skillion 40 receives a force in a direction along the direction of the electron flow and approaches the boundary between the stable portion 16-1 and the stable portion 16-2, but between the stable portion 16-1 and the stable portion 16-2. Can't overcome the potential barrier at the boundary.
  • FIG. 6C shows a vertical current arrangement in which the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is arranged substantially parallel to the direction in which the skyrmion is transferred.
  • Skyrmion 40 is returned to the potential barrier between stable part 16-1 and stable part 16-2 and returns to stable part 16-1.
  • the current density is 0.001 ⁇ which is the same as the lateral current arrangement of the first embodiment, the skyrmion 40 cannot get over the boundary between the stable portions 16, and the stable portion 16-1 to the stable portion 16.
  • -Skill Mion 40 cannot be transferred to -2.
  • the skyrmion 40 is disposed in the stable portion 16-1.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a longitudinal current arrangement in which the direction of the skyrmion transfer is arranged substantially parallel to the downstream electrode.
  • Skyrmion 40 gets over the boundary between stable part 16-1 and stable part 16-2.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a vertical current arrangement in which the current direction is arranged substantially parallel to the direction in which the skyrmion is transferred.
  • the skillion 40 moves to the stable part 16-2.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a vertical current arrangement in which the current direction is arranged substantially parallel to the direction in which the skyrmion is transferred.
  • the skyrmion 40 once entering the stable portion 16-2 bounces at the end of the magnetic body 10 in the positive x-axis direction.
  • the skillion 40 is pushed back in the negative x-axis direction due to inertia and returns to the stable portion 16-1.
  • the vertical current arrangement cannot overcome the boundary between the stable portion 16-1 and the stable portion 16-2 unless the current density is larger than that of the horizontal current arrangement. Further, if the current density is increased too much, the skyrmion that has overcome the boundary passes through the stable part 16-2 and returns to the stable part 16-1. Therefore, in the case of the vertical current arrangement, it is difficult to stably transfer the skyrmion 40 between the two stable portions 16 as compared with the horizontal current arrangement.
  • FIG. 8 shows a transfer current pulse that flows from the upstream electrode 12 toward the downstream electrode 14.
  • a positive first transfer current pulse is applied, and the skyrmion 40 is transferred from the stable portion 16-1 to the stable portion 16-2.
  • a negative second transfer current pulse is applied, and the skyrmion 40 is transferred from the stable portion 16-2 to the stable portion 16-1.
  • a positive third transfer current pulse is applied to transfer the skyrmion 40 from the stable portion 16-1 to the stable portion 16-2.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred.
  • the skillion 40 is an initial state existing in the stable portion 16-1.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is set to a lateral current arrangement in which the direction of the skyrmion is substantially perpendicular to the direction in which the skyrmion is transferred.
  • the skillion 40 goes to the boundary between the stable part 16-1 and the stable part 16-2.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is set as a lateral current arrangement in which the direction of the skyrmion is substantially perpendicular to the direction in which the skyrmion is transferred.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is set to a lateral current arrangement in which the direction of the skyrmion is substantially perpendicular to the direction in which the skyrmion is transferred.
  • the skillion 40 is stabilized in the stabilizing section 16-2. In this manner, the skyrmion 40 can be transferred from the stable portion 16-1 to the stable portion 16-2 by the positive first transfer current pulse.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement in which the current direction is arranged substantially perpendicular to the direction in which the skyrmion is transferred.
  • a negative current pulse that is, a current from the downstream electrode 14 toward the upstream electrode 12
  • the skyrmion 40 has a negative x-axis direction (that is, the stable portion 16-2 to the stable portion 16).
  • Spin transfer torque toward (-1 direction) works.
  • the skillion 40 exits the stable part 16-2 and moves in the boundary direction between the stable part 16-2 and the stable part 16-1.
  • Skyrmion 40 crosses the boundary between stable part 16-2 and stable part 16-1.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is set to a lateral current arrangement in which the direction of the skyrmion is substantially perpendicular to the direction in which the skyrmion is transferred.
  • the skillion 40 crosses the boundary between the stable part 16-1 and the stable part 16-2.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is set as a lateral current arrangement in which the current direction is arranged substantially perpendicular to the direction in which the skyrmion is transferred.
  • the skyrmion 40 is applied. Can be transferred from the stable section 16-1 to the stable section 16-2. Further, by applying a negative transfer current pulse having a current density of about 0.001 ⁇ for a period of about 3000 (1 / J), the skyrmion 40 can be transferred from the stable portion 16-2 to the stable portion 16-1. Further, by applying the positive transfer current pulse again, the skyrmion 40 that has returned to the stable part 16-1 can be transferred to the stable part 16-2. In summary, it is as follows.
  • the skyrmion 40 can be transferred between the stable portions 16 at a very high speed. Since the transmission of the skillmion 40 corresponds to the information “1” and “0”, the skillmion memory 100 can rewrite the information at a very high speed. This speed is comparable to that of a high-speed SRAM composed of CMOS circuits. In addition, since it is non-volatile, it is possible to prepare a suitable memory as a combination non-volatile memory with the CPU logic circuit. The current density is 0.001 ⁇ and the current consumption is small.
  • Example 4 In the lateral current arrangement, a simulation experiment is performed to erase the skyrmion 40 by applying an erasing current pulse.
  • This embodiment can be used, for example, in the following cases. If the skillmion 40 disappears from the stable part 16 for some reason in the corresponding memory cell of the specific track, this track cannot be used as a memory. In this case, if the skillmions 40 are once erased from all the memory cells in the corresponding track and the skillmions 40 are generated in the stable portions 16-1 of all the memory cells, the corresponding track can be used as a normal track. In order to have such a reset function, a device capable of completely erasing the skyrmion 40 from the memory cell is required.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement in which the current direction is arranged substantially perpendicular to the direction in which the skyrmion is transferred.
  • 14 shows a positive erasing current pulse flowing toward 14.
  • the skillion 40 is present in the stable portion 16-1.
  • a first erasing current pulse having a current density of 0.006 ⁇ was applied for an application time of 4500 (1 / J).
  • the current density of the erase current pulse is larger than the current density of the transfer current pulse.
  • the rise time and fall time of the first erasing current pulse are 1000 (1 / J), and the pulse application time is 2500 (1 / J).
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is set to a lateral current arrangement in which the direction of the skyrmion is substantially perpendicular to the direction in which the skyrmion is transferred.
  • the skyrmion 40 exists in the stable portion 16-1.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is set as a lateral current arrangement in which the direction of the skyrmion is substantially perpendicular to the direction in which the skyrmion is transferred.
  • the skyrmion 40 passes through the region near the upstream electrode 12 at the boundary between the stable portion 16-1 and the stable portion 16-2 toward the stable portion 16-2.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 to the downstream electrode.
  • the skillion 40 enters the end of the stable portion 16-2.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred, and from the upstream electrode 12 to the downstream electrode.
  • the skyrmion 40 starts to disappear after overcoming the potential barrier at the end of the magnetic body 10 in the positive x-axis direction. Thereafter, the skyrmion 40 disappears at the end in the positive y-axis direction at the boundary between the magnetic body 10 and the upstream electrode 12.
  • a simulation experiment for erasing the skillion 40 existing in the stable portion 16-2 is performed.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred.
  • 14 shows a positive erasing current pulse flowing toward 14.
  • the current density is 0.014 ⁇ .
  • the current application time is 3000 (1 / J).
  • the rise time and fall time of the third erasing current pulse are 1000 (1 / J), and the pulse application time is 1000 (1 / J).
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred.
  • the skyrmion 40 exists in the stable portion 16-2.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is set as a transverse current arrangement in which the direction of the skyrmion is substantially perpendicular to the direction in which the skyrmion is transferred.
  • the skillion 40 contacts the end of the magnetic body 10 on the positive side of the x-axis.
  • the skyrmion 40 gets over the potential barrier at the end of the magnetic body 10.
  • the direction of the current that flows between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion is transferred.
  • the skyrmion 40 moves while disappearing toward the upstream electrode 12 at the end of the magnetic body 10 on the positive side in the x-axis direction. Thereafter, the skyrmion 40 disappears at the end in the positive y-axis direction at the boundary between the magnetic body 10 and the upstream electrode 12.
  • the skyrmion erasing condition when the magnetic body 10 and the stable portion 16 of this example are used is as follows. (3) When the skyrmion 40 is present in the stable portion 16-1, the pulse density is 4500 (1 / J) or more at a current density of 0.006 ⁇ . (4) When skyrmions are present in the stable part 16-2, the current application density is 0.014 ⁇ and the pulse application time is 3000 (1 / J) or more.
  • the design rules (1) to (4) in the case of the magnetic element having the two stable portions 16 are shown as physical quantities in J. Its adaptability is high. Note that the above conditions may reduce the pulse application time when the current density is increased.
  • the design rules of the magnetic element described here do not change even in a dipole magnetic material, a frustrated magnetic material, or a laminated structure of a magnetic material and a nonmagnetic material. If the substance is determined, the exchange interaction energy J is determined. If this J is determined, the above design rule can be applied.
  • the direction of the current flowing between the upstream electrode 12 and the downstream electrode 14 is a lateral current arrangement that is arranged substantially perpendicular to the direction in which the skyrmion 40 is transferred, and depends on the current.
  • the optimal arrangement of skillmion transfer and erasure methods is shown.
  • the skyrmion memory 100 disclosed in this specification does not consume power for memory retention.
  • the skyrmion memory 100 functions as a nonvolatile memory. Therefore, a high-speed nonvolatile memory with low power consumption is realized.
  • skirmion magnetic element skirmion memory using skirmion memory
  • CMOS-LSI device with skirmion memory and personal computer, data recording medium, data recording apparatus and data communication apparatus incorporating skirmion memory It can be expected to have a big impact on the above.
  • Skyrmion has an ultrafine structure with a nanoscale size of 1 to 500 nm in diameter, and can be applied as a large-capacity storage magnetic element that can make extremely large amounts of bit information minute.
  • Skyrmion Memory 100 is a non-volatile magnetic memory that can be applied to a memory capable of high-speed storage and erasure, it can be expected as a device bearing a non-volatile memory that can replace DRAM and high-speed SRAM memory currently used for information computation.
  • the realization of the optimal arrangement of the skyrmion transfer method by the current according to the present invention greatly contributes to this feasibility.
  • FIG. 14 is a schematic diagram showing another configuration example of the skyrmion memory 100.
  • the skyrmion memory 100 of this example functions as a shift register.
  • the skyrmion memory 100 of this example includes three or more stable portions 16 arranged in a direction orthogonal to the direction in which the transfer current flows. In this example, three or more stable portions 16 are arranged on the magnetic body 10 sandwiched between the upstream electrode 12 and the downstream electrode 14.
  • the power source 52 that flows current between the upstream electrode 12 and the downstream electrode 14 is omitted.
  • the skyrmion memory 100 of this example includes a stable part 16-1, a stable part 16-2,..., A stable part 16-9.
  • the skillmion memory 100 generates a skillmion in the leftmost stabilizing unit 16-1 in response to the “1” and “0” signals of information transmitted from the external circuit.
  • the skillion memory 100 may have a magnetic body shape having a concave shape for generating a skillion in the stable portion 16-1. You may have the electric current path which has the local magnetic field by an electric current coil.
  • the skyrmion 40 moves the stable portion 16 one by one to the right.
  • the skyrmion 40 moves the stabilizing portion 16 one by one to the left.
  • the skillmion detection element 15 is installed in the stable part 16-5, the skillmion passing through the stable part 16-5 can be detected. This makes it possible to read temporarily stored information. Further, the skyrmion detection elements 15 may be provided for all the stable portions 16. Thereby, each bit of the information held in the skyrmion memory 100 can be read simultaneously. The presence / absence of the skillion 40 in each stable unit 16 corresponds to one bit of information.
  • FIG. 15 is a schematic diagram showing another configuration example of the skyrmion memory 100.
  • the magnetic body 10 in the skyrmion memory 100 of this example has a closed path shape. That is, the magnetic body 10 has an inner peripheral side end that defines an inner periphery in a plane parallel to the extending direction, and an outer peripheral side end that defines an outer periphery.
  • the magnetic body 10 of this example has an oval shape on both the outer periphery and the inner periphery, and has a circuit shape in which the interval between the outer periphery and the inner periphery is substantially constant.
  • the oval shape may be a substantially square shape. In this case, the corner is designed to have an appropriate curvature.
  • the closed path magnetic body may have a meandering shape. In addition, various closed path shape magnetic bodies may be used.
  • One of the upstream electrode 12 and the downstream electrode 14 is connected to the inner peripheral end of the magnetic body 10 and the other is connected to the outer peripheral end in a plane parallel to the extending direction of the magnetic body 10.
  • the upstream electrode 12 is connected to the outer peripheral end of the magnetic body 10
  • the downstream electrode 14 is connected to the inner peripheral end of the magnetic body 10.
  • a lateral current arrangement is adopted in which a current is passed through the magnetic body 10 in the direction from the upstream electrode 12 to the downstream electrode 14 and the skirmion 40 is transferred substantially perpendicular to the current direction.
  • spin transfer torque is applied to the skyrmion 40 so as to circulate the magnetic body 10 clockwise as viewed from the surface side of the magnetic body 10.
  • the plurality of stabilizing portions 16 are arranged so as to make one round of the closed path shape of the magnetic body 10. It is preferable to arrange the stable portions 16 so that the movement times of the skyrmions 40 between the stable portions 16 are equal.
  • the interval between the stable portions 16 may be the same.
  • each of the stable portions 16 has a square shape.
  • the stable portion 16 in the arc portion of the magnetic body 10 has a different shape from the stable portion 16 in the linear portion of the magnetic body 10. Good.
  • Each stabilizing portion 16 may have two sides parallel to the outer peripheral end and the inner peripheral end of the magnetic body 10 and two sides orthogonal to the outer peripheral end and the inner peripheral end.
  • a skyrmion detection element 15 is provided for at least one stabilizing portion 16.
  • the current pulse for transfer is applied a plurality of times so that the position of the skillion 40 sequentially shifts and each skillion 40 makes one round of the plurality of stable portions 16.
  • the skillion detection element 15 detects a pattern of the presence or absence of the skillion 40.
  • the skyrmion 40 is stably positioned inside the stable portion 16. For this reason, the position of the skillion 40 can be determined, and the presence or absence of the skillion 40 can be easily detected. Further, there is no need to constantly flow current in order to control the skyrmion 40. For this reason, power consumption can be reduced.
  • This memory can function as a non-volatile memory that does not consume power for storage.
  • the skyrmion memory 100 generates a skyrmion at any one of the stabilizing units 16 in response to the “1” and “0” signals of information transmitted from the external circuit.
  • the skillion memory 100 may have a magnetic shape having a concave shape in order to generate a skillion in the stable portion 16.
  • the skyrmion memory 100 may have a current path having a local magnetic field by a current coil.
  • FIG. 16A shows a cross-sectional structure of the skyrmion memory device 110.
  • the skyrmion memory device 110 is a device that includes at least one skyrmion memory 100.
  • the skyrmion memory device 110 includes a magnetic field generation unit 20 that is a ferromagnetic layer and a magnetic element 30 formed above the magnetic field generation unit 20.
  • the magnetic field generator 20 has a thin recess at a location corresponding to the lower portion of each stable portion 16.
  • An insulator layer 22 may be disposed in the depression.
  • a nonmagnetic material layer is provided between the magnetic element 30 and the magnetic field generator 20. This nonmagnetic layer may be made of the same material as the insulator 22.
  • the magnetic element 30 of this example has a configuration similar to that of the magnetic element 30 shown in FIG. 16A shows only the downstream electrode 14 and the upstream electrode 12 among the metal electrodes of the magnetic element 30 shown in FIG. 3, FIG. 14, or FIG. 15, and omits the other metal electrodes.
  • FIG. 16A a cross-sectional view of the measurement unit 34 is not shown.
  • the magnetic element 30 has a stacked structure in which a magnetic layer 60, a magnetic protective layer 65, a first wiring layer 70, and a second wiring layer 75 are stacked in this order.
  • the magnetic material protective layer 65 includes a magnetic material protective film 66 and a first via 67.
  • the magnetic protective film 66 protects the magnetic layer 60.
  • the first via 67 supplies current for skyrmion transfer, generation, erasure and detection to each metal electrode. In FIG. 16A, a single first via 67 is shown, but the first via 67 is provided for each metal electrode.
  • the first wiring layer 70 includes a first wiring 71, a first wiring protective film 72, and a second via 73.
  • the first wiring 71 forms a path for supplying a voltage or current for skyrmion transfer, generation, erasure, and detection.
  • the first wiring protective film 72 functions as an interlayer insulating film for forming the first wiring 71 and the second via 73. If it is difficult to route the skyrmion transfer, generation, erasure, and detection paths in the same layer, a second wiring layer 75 may be formed on the first wiring layer 70 as shown in FIG. 16A.
  • the second wiring layer 75 has a second wiring 76 and a second wiring protective film 77.
  • the second wiring 76 is connected to the second via 73.
  • the second wiring protective film 77 functions as an interlayer insulating film for insulating the second wiring 76.
  • the second via 73 connects the first wiring 71 and the second wiring 76.
  • the second wiring 76 and the first wiring 71 form a path for transmitting a voltage or current for skyrmion transfer, generation, erasure, and detection. These paths may be connected to an external power source or the like of the skyrmion memory device 110 via an external terminal.
  • FIG. 16B shows another example of the cross-sectional structure of the skyrmion memory device 110.
  • the skyrmion memory device 110 of this example includes a substrate 80, a skyrmion memory 100, and an FET 99.
  • the skyrmion memory 100 and the FET 99 are formed on the same surface of the substrate 80.
  • the substrate 80 is a semiconductor substrate such as silicon.
  • the magnetic field generator 20 of the skyrmion memory 100 has a depression.
  • An insulator layer is disposed in the depression.
  • the FET 99 may function as a switch for selecting a skillion memory 100 that transfers a skillion 40 described later.
  • the FET 99 is a general FET that can be formed by a general semiconductor process.
  • the FET 99 has well, source, and drain regions of a predetermined conductivity type formed on the surface of the substrate 80. In addition, a gate electrode is formed on the channel between the source and drain. An element isolation layer LOCOS is provided between the FET 99 and other elements such as the skyrmion memory 100.
  • the FET 99 of this example has two wiring layers. The wiring layer of the FET 99 may be the same layer as the first wiring layer 70 and the second wiring layer 75 of the skyrmion memory 100. Further, a part of the wiring of the FET 99 may be connected to a part of the wiring of the skyrmion memory 100.
  • FIG. 17 shows a skyrmion memory device 110 in which n layers of magnetic elements 30 are stacked.
  • the magnetic field generator 20 has a thickness of 3000 mm. In order to form the stable portions 16, the magnetic field generator 20 has a dent with a thin film thickness at a position corresponding to the lower portion of each stable portion 16. An insulator layer is disposed in the depression.
  • the magnetic element 30 has a structure in which magnetic elements 30-1 to 30-n are stacked.
  • the magnetic element 30 of this example has a total film thickness of 35000 mm.
  • the skyrmion memory device 110 of this example can increase the degree of integration by stacking a plurality of magnetic elements 30 on the common magnetic field generator 20.
  • the skyrmion memory device 110 of this example can realize n times as many integrations as the skyrmion memory device 110 shown in FIG. 16A.
  • the magnetic bodies 10 of the adjacent magnetic elements 30 may
  • FIG. 18 shows a skyrmion memory device 110 having a plurality of magnetic field generators 20 in the stacking direction.
  • the magnetic field generator 20 has a dent with a thin film thickness at a position corresponding to the lower portion of each stable portion 16.
  • An insulator layer is disposed in the depression.
  • the skyrmion memory device 110 of this example includes a plurality of magnetic field generators 20 stacked, and each layer has a single magnetic element 30 between the magnetic field generators 20. Thereby, the magnetic element 30 can keep the intensity of the magnetic field received from the magnetic field generator 20 constant.
  • the magnetic field generator 20 may be arranged at an appropriate interval according to the material of the magnetic element 30 or the like.
  • FIG. 19 shows an example of the structure of the skyrmion memory device 110.
  • the skyrmion memory device 110 of this example is different from the skyrmion memory device 110 described with reference to FIGS. 16A to 18 in that a CMOS-FET 90 is provided between the substrate 80 and the skyrmion memory 100.
  • the skyrmion memory device 110 of this example includes a skyrmion memory 100 and a CMOS-FET 90.
  • the CMOS-FET 90 is an example of a semiconductor element and is formed on the substrate 80.
  • the skyrmion memory 100 is formed on the CMOS-FET 90.
  • the magnetic element 30 is formed above the CMOS-FET 90.
  • the magnetic field generator 20 may be formed between the magnetic element 30 and the CMOS-FET 90.
  • the magnetic field generator 20 has a dent with a thin film thickness at a position corresponding to the lower portion of each stable portion 16.
  • An insulator layer is disposed in the depression.
  • the CMOS-FET 90 may function as a logic circuit described later.
  • the CMOS-FET 90 includes a PMOS-FET 91 and an NMOS-FET 92.
  • the CMOS-FET 90 and the PMOS-FET 91 are general FETs that can be formed by a general silicon process.
  • the CMOS-FET 90 of this example has two Cu wiring layers.
  • the skyrmion memory device 110 the CMOS-FET 90 that forms a logic circuit and the skyrmion memory 100 that is a nonvolatile magnetic element are stacked and formed in the same chip. Therefore, the skyrmion memory device 110 can reduce power consumption. This allows a large-scale CPU device that currently requires large power consumption to be reorganized with a normally-off large-scale CPU device, and plays a major role in reducing power consumption. Furthermore, it contributes to a significant improvement in CPU calculation speed. The calculation speed of the CPU is subject to major restrictions such as setting a standby time in order to measure the timing for exchange with the external memory. The skyrmion memory device 110 of this example releases this restriction at once, and since it is possible to directly exchange data with the high-speed nonvolatile magnetic element, the speed performance of the CPU is dramatically improved.
  • FIG. 20 shows an example of the circuit configuration of the skyrmion memory device 110.
  • the skyrmion memory device 110 of this example includes a plurality of skyrmion memories 100 shown in FIG. 3 in a matrix. However, the skyrmion memory 100 shown in FIG. 20 does not have the power source 52.
  • the power supply 52 is connected to the skyrmion memory 100 via the bit line 96 or the write word line 95 shown in FIG.
  • the measuring unit 34 is connected to the skyrmion memory 100 via the bit line 96 or the read word line 97 shown in FIG.
  • a detection circuit 98 illustrated in FIG. 20 functions as a part of the measurement unit 34.
  • FIG. 20 shows only the (n ⁇ 1) th column, the nth column, the m ⁇ 1th row, and the mth row among the plurality of columns and rows of the matrix.
  • the skyrmion memory device 110 includes a plurality of skyrmion memories 100, a plurality of bit lines 96, a plurality of write word lines 95, a plurality of read word lines 97, a plurality of switches 181, a plurality of switches 183, a plurality of switches 184, A plurality of detection circuits 98 are provided.
  • Bit lines 96 are provided in each column of the matrix.
  • the read word line 97 and the write word line 95 are provided in each row of the matrix.
  • the bit line 96 is connected to the upstream electrode 12 of each skyrmion memory 100 in the column.
  • the read word line 97 is connected to the skillion detection element 15 of each skillion memory 100 in the row.
  • the write word line 95 is connected to the downstream electrode 14 of each skyrmion memory in the row.
  • the switch 181 is provided for each bit line 96.
  • the switch 183 is provided for each write word line 95.
  • the switch 184 is provided for each read word line 97.
  • the switches 181, 183, and 184 are, for example, FETs.
  • the bit line 96, the write word line 95, and the read word line 97 are connected to an external power source through respective switches.
  • the external power source is, for example, the power source 52 or the measurement power source 31.
  • the power supply 52 and the measurement power supply 31 may be a common power supply.
  • the external power supply may be provided for each bit line 96 or may be provided in common for a plurality of bit lines 96.
  • the detection circuit 98 is connected to the read word line 97 and detects the current flowing through the read word line 97.
  • the detection circuit 98 functions as the ammeter 32 in the measurement unit 34.
  • the detection circuit 98 may be provided for each read word line 97 or may be provided in common for a plurality of read word lines 97.
  • any skillmion memory 100 that is, when skillmion 40 is arranged in stable part 16-2
  • the corresponding switch 181 and switch 183 are controlled to be in the ON state, and the corresponding bit Line 96 and write word line 95 are selected.
  • the switch 183 corresponding to the write word line 95 (m ⁇ 1) and the switch corresponding to the bit line 96 (n ⁇ 1) 181 is turned on.
  • the skyrmion memory 100 (m ⁇ 1, n ⁇ 1) When a positive transfer current pulse is passed from the bit line 96 (n ⁇ 1) to the write word line, the skyrmion memory 100 (m ⁇ 1, n ⁇ 1)
  • the skyrmion 40 is arranged in the stable part 16-2.
  • FIG. 21 shows an example of an operation for writing data “0” in the skyrmion memory 100.
  • an example of an operation for placing the skillion 40 in the stable portion 16-1 is shown.
  • the bit line 96 and the write word line 95 corresponding to the skyrmion memory 100 to which the data “0” is written are selected by the switch 181 and the switch 183.
  • a negative transfer current pulse is passed through the skyrmion memory 100 from the bit line 96 toward the write word line 95.
  • the skill meon 40 of the skill meon memory 100 moves to the stabilization unit 16-1, and data “0” is written.
  • the switch 183 corresponding to the write word line 95 (m ⁇ 1) and the bit line 96 (n ⁇ 1) are connected.
  • the corresponding switch 181 is turned on.
  • a negative transfer current pulse is caused to flow from the bit line 96 (n ⁇ 1) to the write word line 95 (m ⁇ 1)
  • the skyrmion memory 100 (m ⁇ 1, n-1) Skillion 40 moves to the stable part 16-1.
  • bit line 96 and the write word line 95 are supplied with the first skillmion transfer line and the second skillmion transfer for supplying the current of the skyrmion transfer for transferring the skyrmion 40 between the plurality of stable portions 16. Acts as a line.
  • FIG. 22 shows an example of an operation for erasing the skillion 40 in the skillion memory 100.
  • the bit line 96 and the write word line 95 corresponding to the skyrmion memory 100 from which the skyrmion 40 is erased are selected by the switch 181 and the switch 183 in the same manner as the data writing. Then, an erasing current is supplied to the skyrmion memory 100 from the bit line 96 toward the write word line 95.
  • the erase current has a higher current density than the transfer current.
  • the switch 183 corresponding to the write word line 95 (m ⁇ 1) and the bit line 96 (n ⁇ 1) are connected.
  • the corresponding switch 181 is turned on.
  • an erasing current pulse is applied from the bit line 96 (n ⁇ 1) to the write word line 95 (m ⁇ 1)
  • the skyrmion memory 100 (m ⁇ 1, The n-1) skyrmion 40 overcomes the potential barrier at the end of the magnetic body 10 and disappears.
  • the write word line 95 and the bit line 96 also function as a skillion erase line that supplies an erase current for erasing the skillion 40.
  • FIG. 23 shows an example of the read operation of the skyrmion memory device 110.
  • the read operation of the skillion memory device 110 refers to a case where the presence or absence of the skillion 40 is detected at a predetermined position (in this example, the stable portion 16-2) of the magnetic body 10 of each skillion memory 100.
  • the corresponding bit line 96, write word line 95, and read word line 97 are selected by the switch 181 and the switch 184.
  • the switch 181 and the switch 184 are turned on. In this case, a current corresponding to the presence or absence of the skillion 40 flows from the upstream electrode 12 to the skillion detection element 15.
  • the detection circuit 98 detects the current flowing through the skyrmion detection element 15 via the read word line 97.
  • the detection circuit 98 of this example converts the current into a voltage and outputs the voltage. The presence or absence of skirmion 40 in stable part 16-2 can be measured from the voltage.
  • the detection circuit 98 converts the current of the read word line 97 into a voltage, and detects the presence or absence of the skyrmion 40 in the stabilizing unit 16-2.
  • the detection circuit 98 of this example includes a feedback resistor Rf, an amplifier circuit C1, and a voltage comparison circuit C2, and converts a current into a voltage.
  • the current input from the read word line 97 to the detection circuit 98 is input to the amplifier circuit C1.
  • the feedback resistor Rf is provided in parallel with the amplifier circuit C1.
  • the amplifier circuit C1 converts the current from the read word line 97 into a voltage.
  • the voltage comparison circuit C2 receives the output voltage of the amplification circuit C1 and the reference voltage Vref.
  • the voltage comparison circuit C2 outputs “1” when the output voltage of the amplification circuit C1 is larger than the reference voltage Vref. On the other hand, the voltage comparison circuit C2 outputs “0” when the output voltage of the amplifier circuit C1 is smaller than the reference voltage Vref.
  • the C2 output is “0”.
  • the C2 output is “1”. The output is reversed with respect to skyrmion presence / absence. If an inverter is added after C2, the output corresponds to the presence or absence of skyrmions. Thereby, the data of the skyrmion memory 100 can be read.
  • the skillmion memory device 110 can select any skillmion memory 100 and transfer, erase, and read the skillmion 40.
  • the FETs arranged around the skyrmion memory 100, the amplification circuit C1 of the detection circuit 98, and the voltage comparison circuit C2 include FET devices.
  • the plurality of skyrmion memories 100 are arranged in a planar shape. Further, the skyrmion memories 100 arranged in a planar shape may be stacked. Since the skillmion memory 100 can be stacked, the degree of integration can be greatly increased.
  • FIG. 24A is a schematic diagram illustrating another example of the structure of the magnetic element 30.
  • 24A shows the surfaces of the upstream electrode 12, the downstream electrode 14, and the magnetic body 10 in the configuration of the magnetic element 30.
  • FIG. The magnetic body 10 of this example includes a stable portion 16-1, a stable portion 16-2, and a boundary portion 19.
  • the boundary portion 19 divides the region of the magnetic body 10 into two in a direction orthogonal to the direction in which the transfer current flows (in this example, the x-axis direction).
  • the boundary portion 19 has a property that becomes a barrier against the movement of the skyrmion 40.
  • the boundary portion 19 in this example indicates a region where the intensity of the external magnetic field is stronger than the external magnetic fields of the stable portion 16-1 and the stable portion 16-2.
  • the magnetic field generator 20 may generate the external magnetic field.
  • the boundary portion 19 may have a linear shape in which one end is in contact with the upstream electrode 12 and the other end is connected to the downstream electrode 14. Moreover, you may form the edge of the boundary part 19 between the upstream electrode 12 and the downstream electrode 14 with a curve. In addition, each end portion in the y-axis direction of the boundary portion 19 may have a gap with respect to the upstream electrode 12 and the downstream electrode 14. However, the gap is a size that the skyrmion 40 cannot pass through.
  • the stable portion 16-1 and the stable portion 16-2 in this example have the same height as the magnetic body 10 in the y-axis direction.
  • the stable portion 16-1 and the stable portion 16-2 may have the same size as the stable portion 16-1 and the stable portion 16-2 described with reference to FIG.
  • the magnetic body 10 of this example is smaller than the magnetic body 10 described with reference to FIG.
  • the width of the boundary portion 19 in the x-axis direction is a width that can function as a barrier of the skillion 40 and that the skillion 40 can be overcome by the transfer current.
  • the distance d2 between the stable portions 16, that is, the width d2 of the boundary portion 19 in the x-axis direction may be in a range of ⁇ / 2> d2 ⁇ ⁇ / 10.
  • d2 is desirably as narrow as possible.
  • the skillmion 40 is not stably kept in the stable part 16, and the skillmion may move to an undesired stable part 16.
  • FIG. 24B is a schematic diagram illustrating another example of the structure of the magnetic element 30.
  • FIG. 24B shows the surfaces of the upstream electrode 12, the downstream electrode 14, and the magnetic body 10 in the configuration of the magnetic element 30.
  • Each of the upstream electrode 12 and the downstream electrode 14 of this example has a convex portion 18 that protrudes into the magnetic body 10.
  • the convex part 18 may be located in the center part of the magnetic body 10 in the x-axis direction. That is, the convex portion 18 may be positioned so as to divide the magnetic body 10 into two in the x-axis direction.
  • segmented functions as the stable part 16, respectively.
  • the region of the magnetic body 10 on the x-axis negative direction side functions as the stable portion 16-1
  • the region of the magnetic body 10 on the x-axis positive direction side functions as the stable portion 16-2.
  • each convex portion 18 in the x-axis direction may be a height that can be a barrier to the movement of the skillion 40.
  • the height h may be about 10 with the lattice constant a of the magnetic body 10 as a unit.
  • the height h may be set so that the height of the magnetic body 10 sandwiched between the tips of the protrusions 18 is about 30 to 40 with the lattice constant a of the magnetic body 10 as a unit.
  • the convex part 18 of the upstream electrode 12 and the downstream electrode 14 is the same shape.
  • the convex part 18 may be, for example, a triangle, a quadrilateral or other polygonal shape, or an arc shape such as a semicircle.
  • the stable portion 16 when the stable portion 16 is formed only by the convex portion 18, the magnetic field generating portion 20 does not have to have a depression (insulator layer 22) at a position facing the stable portion 16. Further, the stable portion 16 may be formed by combining the convex portion 18 and the insulating layer 22. Moreover, you may combine the convex part 18 and the boundary part 19 shown to FIG. 24A.
  • FIG. 25 is a schematic diagram illustrating a configuration example of the solid electronic device 200 with skyrmion memory.
  • the skill-on-memory solid-state electronic device 200 includes a skill-ion memory 100 or a skill-on memory device 110 and a solid-state electronic device 210.
  • the skirmion memory 100 or the skirmion memory device 110 is the skirmion memory 100 or the skirmion memory device 110 described with reference to FIGS. 1 to 24B.
  • the solid-state electronic device 210 is, for example, a CMOS-LSI device.
  • the solid-state electronic device 210 has at least one function of writing data to the skyrmion memory 100 or the skyrmion memory device 110 and reading data from the skyrmion memory 100 or the skyrmion memory device 110.
  • FIG. 26 is a schematic diagram illustrating a configuration example of the data processing device 300.
  • the data processing device 300 includes a skyrmion memory 100 or a skyrmion memory device 110, and a processor 310.
  • the skirmion memory 100 or the skirmion memory device 110 is the skirmion memory 100 or the skirmion memory device 110 described with reference to FIGS. 1 to 24B.
  • the processor 310 includes, for example, a digital circuit that processes a digital signal.
  • the processor 310 has at least one function of writing data to the skillmion memory 100 or the skillmion memory device 110 and reading data from the skillmion memory 100 or the skillmion memory device 110.
  • FIG. 27 is a schematic diagram showing a configuration example of the data recording apparatus 400.
  • the data recording device 400 includes a skyrmion memory 100 or a skyrmion memory device 110, and an input / output device 410.
  • the data recording device 400 is a memory device such as a hard disk or a USB memory.
  • the skirmion memory 100 or the skirmion memory device 110 is the skirmion memory 100 or the skirmion memory device 110 described with reference to FIGS. 1 to 24B.
  • the input / output device 410 has at least one of a function of writing data from the outside to the skyrmion memory 100 or the skyrmion memory device 110 and a function of reading data from the skyrmion memory 100 or the skyrmion memory device 110 and outputting the data to the outside.
  • FIG. 28 is a schematic diagram illustrating a configuration example of the communication device 500.
  • the communication device 500 refers to all devices having a communication function with the outside, such as a mobile phone, a smartphone, and a tablet terminal. Communication device 500 may be portable or non-portable.
  • the communication device 500 includes a skillmion memory 100 or a skillmion memory device 110, and a communication unit 510.
  • the skirmion memory 100 or the skirmion memory device 110 is the skirmion memory 100 or the skirmion memory device 110 described with reference to FIGS. 1 to 24B.
  • the communication unit 510 has a communication function with the outside of the communication device 500.
  • the communication unit 510 may have a wireless communication function, may have a wired communication function, and may have both wireless communication and wired communication functions.
  • the communication unit 510 has a function of writing data received from the outside to the skyrmion memory 100 or the skyrmion memory device 110, a function of transmitting data read from the skyrmion memory 100 or the skyrmion memory device 110, and skyrmion.
  • the memory 100 or the skyrmion memory device 110 has at least one function that operates based on the control information stored.
  • any electronic device such as a personal computer or an image recording device may be used.
  • the skillmion memory 100 or the skillmion memory device 110 to a communication device (such as a mobile phone, a smartphone, or a tablet-type terminal) equipped with a CPU, image information can be captured and various large-scale application programs can be used. Since the operation can be realized at a higher speed and the high-speed response can be realized, it is possible to ensure a comfortable use environment for the user. In addition, since the display speed of the image displayed on the screen can be increased, the usage environment can be further improved.
  • the skillion memory 100 or the skillion memory device 110 by applying the skillion memory 100 or the skillion memory device 110 to an electronic device such as a digital camera, it becomes possible to record a moving image over a large capacity. Further, by applying the skyrmion memory 100 or the skyrmion memory device 110 to an electronic device such as a 4K television receiver, it is possible to realize a large capacity of image recording. As a result, it is possible to eliminate the necessity of connecting an external hard disk in the television receiver. Further, the skillmion memory 100 or the skillmion memory device 110 may be embodied as a data recording medium in addition to being applied to a data recording device such as a hard disk.
  • the skillmion memory 100 or the skillmion memory device 110 to an electronic device such as a navigation system for automobiles, it becomes possible to realize further enhancement of functions and easily store a large amount of map information. It becomes possible.
  • the skyrmion memory 100 or the skyrmion memory device 110 will have a great impact in putting the self-propelled device and the flying device into practical use.
  • complicated control processing of flight equipment, weather information processing, enhancement of passenger services by providing high-definition video, and recording of a large amount of recorded information of control of space flight equipment and observed image information And it brings a lot of knowledge to mankind.
  • the skyrmion memory 100 or the skyrmion memory device 110 uses a magnetic moment structure, and since the structure is a memory having topological stability, the skyrmion memory device 110 has high resistance against high-energy elementary particles flying in outer space.
  • the flash memory has an advantage that is different from that of a flash memory that uses electric charges accompanying electrons as a storage holding medium. Therefore, it is important as a storage medium such as a space flight device.
  • SYMBOLS 10 Magnetic body, 12 ... Upstream electrode, 14 ... Downstream electrode, 15 ... Skyrmion detection element, 16 ... Stable part, 16-1 ... Stable part, 16- DESCRIPTION OF SYMBOLS 2 ... Stable part, 18 ... Convex part, 19 ... Boundary part, 20 ... Magnetic field generation part, 22 ... Insulator layer, 30 ... Magnetic element, 31 ... For measurement Power source, 32 ... ammeter, 34 ... measuring unit, 40 ... skyrmion, 52 ... power source, 60 ... magnetic layer, 61 ... insulator, 65 ... magnetic body Protective layer, 66 ... magnetic material protective film, 67 ... first via, 70 ...
  • first wiring layer 71 ... first wiring, 72 ... first wiring protective film, 73 ... Second via 75, second wiring layer 76 ... second wiring 77 ... second wiring protective film 80 ... substrate 85 ... resist 90 ... CMOS FET, 91 ... PMOS-FET, 92 ... NMOS-FET, 95 ... Write word line, 96 ... Bit line, 97 ... Read word line, 98 ... Detection circuit, 100 ... Skyrmion memory, 110 ... Skyrmion memory device, 151 ... Non-magnetic thin film, 181 ... Switch, 183 ... Switch, 184 ... Switch, 200 ... Skyrmion memory On-board solid-state electronic device, 210 ... solid-state electronic device, 300 ... data processing device, 310 ... processor, 400 ... data recording device, 410 ... input / output device, 500 ... communication device, 510 ... Communication unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

 スキルミオン転送を行うことのできる磁気素子およびこの磁気素子を応用したスキルミオンメモリ、シフトレジスタを提供する。例えば、スキルミオンを転送可能な磁気素子であって、上流側電極から下流側電極間の電流と略垂直にスキルミオンを転送する横転送配置とし、磁性体の他の領域よりもスキルミオンが安定して存在する安定部を複数有し、スキルミオンの位置を検出するスキルミオン検出素子とを備える磁気素子を提供する。

Description

磁気素子、スキルミオンメモリ、スキルミオンメモリデバイス、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置および通信装置
 本発明は、スキルミオンを転送可能な磁気素子、当該磁気素子を用いたスキルミオンメモリ、当該磁気素子を用いたシフトレジスタ、当該磁気素子を用いたスキルミオンメモリデバイス、スキルミオンメモリ搭載固体電子デバイス、スキルミオンメモリを内蔵したデータ記録装置、スキルミオンメモリを内蔵したデータ処理装置、および、スキルミオンメモリを内蔵した通信装置に関する。
 磁性体の磁気モーメントをデジタル情報として利用する磁気素子が知られている。当該磁気素子は、情報保持時に電力を要さない不揮発性メモリの要素として機能するナノスケールの磁気構造を有する。当該磁気素子は、ナノスケールの磁気構造による超高密度性等の利点から、大容量情報記憶媒体としての応用が期待され、エレクトロニクスデバイスのメモリデバイスとして、その重要度が増している。
 次世代型の磁気メモリデバイスの候補としては、米国IBMを中心にマグネチックシフトレジスタが提案されている。マグネチックシフトレジスタは、磁気ドメイン磁壁を駆動してその磁気モーメント配置を電流で転送し、記憶情報を読み出す(特許文献1参照)。
 図29は、電流による磁気ドメイン磁壁駆動の原理を示す模式図である。互いに磁気モーメントの向きが相反する磁気領域の境界がドメイン磁壁である。図29では、マグネチックシフトレジスタ1におけるドメイン磁壁を実線で示している。マグネチックシフトレジスタ1に矢印の向きの電流を流すことにより、磁気ドメイン磁壁を駆動する。ドメイン磁壁を移動することにより、磁気センサ2の上方に位置する磁気モーメントの向きによる磁気が変化する。当該磁気変化を磁気センサ2で検知して磁気情報を引き出す。
 しかし、こうしたマグネチックシフトレジスタ1は、磁気ドメイン磁壁を動かす際に大きな電流が必要であり、また磁気ドメイン磁壁の転送速度が遅いという欠点を持っている。この結果、メモリの書き込み、消去時間が遅くなり、消費電力が大きくなる。
 そこで、本願発明者は、磁性体中に発生するスキルミオンを記憶単位として使ったスキルミオン磁気素子を提案した(特許文献2)。さらに、非特許文献1において本願発明者らは、電流方向と略平行にスキルミオンを転送する配置で、スキルミオンを転送できることを示した。
 本明細書において、駆動電流とスキルミオンの転送方向が略平行である配置を縦転送配置と定義する。非特許文献1で開示した縦転送配置をメモリとして応用する場合、スキルミオンを有する磁性体の細線構造の両端部に電流を印加する電極を設ける。このために、細線の幅がナノスケールで、長い細線の両端部間の抵抗は大きな値を持つことになり、大きな電流密度を流すことができない。そのために電流の電流密度の制限があり、スキルミオンの転送速度が遅くなる。メモリ書込み時間や読み込み時間が短時間にならない課題がある。非特許文献1は定常電流によるスキルミオン転送を記憶メモリとして提案している。定常電流が必要なために不揮発性メモリとしての利用ができない。メモリとして応用する場合のメモリ機能の実現方法が開示されていないので、実用化に大きな課題がある。
 [先行技術文献]
 [特許文献]
 [特許文献1]米国特許第6834005号明細書
 [特許文献2]特開2014-86470号公報 
 [非特許文献1] 岩崎 淳一、望月 維人、永長 直人、 "Current skyrmion dynamics in constricted geometries" Nature Nanotechnology、英国、Nature Publishing Group、2013年9月8日、Vol.8、p742-747.
 スキルミオンは、直径が1nmから500nmと極微小な磁気構造を有し、その構造を外部からの電力投入なしに長時間安定して保持できることからメモリ素子に応用することへの期待が高まっている。そこで、メモリ素子に応用可能な磁気素子等の構成を提供する。
 本発明の第1の態様においては、スキルミオンを転送可能な磁気素子であって、非磁性体に囲まれた薄層状の磁性体と、磁性体の延展方向に接続した導電体である上流側電極と、上流側電極と離間して磁性体の延展方向に接続した導電体である下流側電極と、スキルミオンの位置を検出するスキルミオン検出素子とを備え、磁性体は、磁性体の他の領域よりも前記スキルミオンが安定して存在する安定部を複数有し、上流側電極と下流側電極との間に流す電流の方向を、1又は複数のスキルミオンを転送する方向に対して略垂直に配置した横電流配置である磁気素子を提供する。
 本発明の第2の態様においては、第1の態様の磁気素子と、磁性体に対向して設けた、磁性体に磁場を印加可能な磁場発生部と、上流側電極および下流側電極に接続し、上流側電極と下流側電極との間の磁性体に電流を印加する電源と、スキルミオン検出素子に接続し、スキルミオン検出素子の検出結果に基づいて、スキルミオンの位置を測定する測定部とを備えるスキルミオンメモリを提供する。スキルミオンメモリは、磁気素子を厚さ方向に複数積層して有してよい。
 本発明の第3の態様においては、第2の態様のスキルミオンメモリと、複数のスキルミオンメモリに接続し、それぞれ対応するスキルミオンメモリに、スキルミオンを複数の安定部間で転送するスキルミオン転送用電流を供給する複数のスキルミオン転送線と、複数のスキルミオンメモリに接続し、それぞれ対応する磁気素子のスキルミオンの位置に応じた電圧または電流を伝送する複数の読出ワード線と、複数のスキルミオン転送線、および、複数の読出ワード線に設けた、スキルミオンメモリを選択する複数のスイッチと、読出ワード線に流れる電流もしくは電圧に基づいて、スイッチにより選択した磁気素子におけるスキルミオンの位置を検出する検出回路とを備えるスキルミオンメモリデバイスを提供する。
 本発明の第4の態様においては、基板と、基板上に形成した半導体素子と、半導体素子の上方に積層した少なくとも一つの第2の態様のスキルミオンメモリとを備えるスキルミオンメモリデバイスを提供する。
 本発明の第5の態様においては、第2から第4の態様のスキルミオンメモリまたはスキルミオンメモリデバイスと固体電子デバイスを同一チップ内に備えるスキルミオンメモリ搭載固体電子デバイスを提供する。
 本発明の第6の態様においては、第2から第4の態様のスキルミオンメモリまたはスキルミオンメモリデバイスを搭載したデータ記録装置を提供する。
 本発明の第7の態様においては、第2から第4の態様のスキルミオンメモリまたはスキルミオンメモリデバイスを搭載したデータ処理装置を提供する。
 本発明の第8の態様においては、第2から第4の態様のスキルミオンメモリまたはスキルミオンメモリデバイスを搭載した通信装置を提供する。
磁性体10中のナノスケール磁気構造体であるスキルミオン40の一例を示す模式図である。磁気モーメントの強さと向きを矢印で模式的に示す。 ヘリシテイγが異なるスキルミオン40を示す模式図である。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置の場合のスキルミオンメモリ100の構成例を示す模式図である。 カイラル磁性体磁性相の磁場依存性を示した相図である。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流0.001ξを定常的に流した場合のt=0(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流0.001ξを定常的に流した場合のt=2000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流0.001ξを定常的に流した場合のt=5000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流0.001ξを定常的に流した場合のt=14000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とした場合の磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流密度0.001ξを定常的に流した場合のt=3700(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流密度0.001ξを定常的に流した場合のt=7000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に生成電流パルスを流した時のt=0(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流密度0.01ξを定常的に流した場合のt=1800(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流密度0.01ξを定常的に流した場合のt=4000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流密度0.01ξを定常的に流した場合のt=11000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて流す転送用電流パルスを示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に正の第1転送用電流パルスを流した時のt=0(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に正の第1転送用電流パルスを流した時のt=2000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に正の第1転送用電流パルスを流した時のt=4000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に正の第1転送用電流パルスを流した時のt=7000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に負の第2転送用電流パルスを流した時のt=13000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に負の第2転送用電流パルスを流した時のt=18000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に正の第3転送用電流パルスを流した時のt=23000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に正の第3転送用電流パルスを流した時のt=27000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて流す正の消去用電流パルスを示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第2の消去用電流パルスを流した時のt=0(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第2の消去用電流パルスを流した時のt=2000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第2の消去用電流パルスを流した時のt=3500(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第2の消去用電流パルスを流した時のt=5000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて流す正の消去用電流パルスを示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第4の消去用電流パルスを流した時のt=0(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第4の消去用電流パルスを流した時のt=2600(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第4の消去用電流パルスを流した時のt=3400(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置としたスキルミオンメモリ100の他の構成例を示す模式図である。 上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、閉経路形状磁性体を用いたスキルミオンメモリ100の他の構成例を示す模式図である。 スキルミオンメモリデバイス110の断面構造を示す。 スキルミオンメモリデバイス110の断面構造の他の例を示す。 磁気素子30をn層積層したスキルミオンメモリデバイス110を示す。 積層方向に複数の磁場発生部20を有するスキルミオンメモリデバイス110を示す。 スキルミオンメモリデバイス110の構成の一例を示す。 スキルミオンメモリデバイス110の回路構成の一例を示す。 スキルミオンメモリ100にデータ「0」を書き込む動作の一例を示す。 スキルミオンメモリ100のスキルミオン40を消去する動作の一例を示す。 スキルミオンメモリデバイス110の読み出し動作の一例を示す。 磁気素子30の他の構成例を示す模式図である。 磁気素子30の他の構成例を示す模式図である。 スキルミオンメモリ搭載固体電子デバイス200の構成例を示す模式図である。 データ処理装置300の構成例を示す模式図である。 データ記録装置400の構成例を示す模式図である。 通信装置500の構成例を示す模式図である。 電流による磁気ドメイン駆動の原理を示す図である。
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。
 スキルミオンを生成できる磁性体の一例としてカイラル磁性体がある。カイラル磁性体は、外部磁場の印加がない場合の磁気モーメント配置が、磁気モーメントの進行方向に対して螺旋状に回転する磁気秩序相を伴う磁性体である。外部磁場を印加することにより、カイラル磁性体はスキルミオンが存在する状態を経て強磁性相となる。
 図1は、磁性体10中のナノスケール磁気構造体であるスキルミオン40の一例を示す模式図である。図1において、各矢印は、スキルミオン40における磁気モーメントの向きを示す。x軸およびy軸は互いに直交する軸であり、z軸はxy平面に直交する軸である。
 磁性体10は、x‐y平面に平行な平面を有する。磁性体10の当該平面上にあるあらゆる向きを向く磁気モーメントは、スキルミオン40を構成する。本例では、磁性体10に印加する磁場の向きはプラスz方向である。この場合に、本例のスキルミオン40の最外周の磁気モーメントは、プラスz方向に向く。
 スキルミオン40において磁気モーメントは最外周から内側へ向けて渦巻状に回転する。さらに磁気モーメントの向きは、当該渦巻き状の回転に伴い徐々にプラスz方向からマイナスz方向へ向きを変える。
 スキルミオン40は中心から最外周の間において、磁気モーメントの向きが連続的にねじれる。つまり、スキルミオン40は、磁気モーメントの渦巻き構造を有するナノスケール磁気構造体である。スキルミオン40が存在する磁性体10が薄い板状固体材料の場合、スキルミオン40を構成する磁気モーメントはその厚さ方向では同じ向きである。すなわち板の深さ方向(z方向)には表面から裏面まで同じ向きの磁気モーメントからなる。スキルミオン40の直径λとは、スキルミオン40の最外周の直径を指す。本例において最外周とは、図1に示した外部磁場と同一の方向を向く磁気モーメントの円周を指す。
 スキルミオン数Nskは、渦巻き構造を有するナノスケール磁気構造体であるスキルミオン40を特徴づける。スキルミオン数は、以下の[数1]及び[数2]で表現することができる。[数2]において、磁気モーメントとz軸との極角Θ(r)はスキルミオン40の中心からの距離rの連続関数である。極角Θ(r)は、rを0から∞まで変化させたとき、πからゼロまでまたはゼロからπまで変化する。
 [数1]
Figure JPOXMLDOC01-appb-I000001
 [数2]
Figure JPOXMLDOC01-appb-I000002
 [数1]において、n(r)は、位置rにおけるスキルミオン40の磁気モーメントの向きを示す単位ベクトルである。[数2]において、mはボルテシテイ、γはヘリシテイである。[数1]および[数2]から、rを0から∞まで変化させ、Θ(r)がπからゼロまで変化するとき、Nsk=-mとなる。
 図2は、ヘリシテイγが異なるスキルミオン40を示す模式図である。特に、スキルミオン数Nsk=-1の場合の一例を図2に示す。図2(e)は、磁気モーメントnの座標のとりかた(右手系)を示す。なお、右手系であるので、n軸およびn軸に対してn軸は、紙面の裏から手前の向きに取る。図2(a)から図2(e)において、濃淡は磁気モーメントの向きを示す。
 図2(e)における円周上の濃淡で示す磁気モーメントは、n-n平面上の向きを有する。これに対して、図2(e)における円中心の最も薄い濃淡(白)で示す磁気モーメントは、紙面の裏から手前の向きを有する。円周から中心までの間の各位置の濃淡で示さす磁気モーメントのn軸に対する角度は、中心からの距離に応じてπからゼロととる。図2(a)から図2(d)における各磁気モーメントの向きは、図2(e)において同一の濃淡で示す。なお、図2(a)から図2(d)におけるスキルミオン40の中心のように、最も濃い濃淡(黒)で示す磁気モーメントは、紙面手前から紙面の裏への向きを有する。図2(a)から図2(d)における各矢印は、磁気構造体の中心から所定の距離における磁気モーメントを示す。図2(a)から図2(d)に示す磁気構造体は、スキルミオン40と定義できる状態にある。
 図2(a)(γ=0)において、スキルミオン40の中心から所定の距離における濃淡は、図2(e)の円周上の濃淡と一致している。このため、図2(a)において矢印で示した磁気モーメントの向きは、中心から外側に放射状に向いている。図2(a)(γ=0)の各磁気モーメントに対して、図2(b)(γ=π)の各磁気モーメントの向きは、図2(a)の各磁気モーメントを180°回転した向きである。図2(a)(γ=0)の各磁気モーメントに対して、図2(c)(γ=-π/2)の各磁気モーメントの向きは、図2(a)の各磁気モーメントを-90度(右回りに90度)回転した向きである。
 図2(a)(γ=0)の各磁気モーメントに対して、図2(d)(γ=π/2)の各磁気モーメントの向きは、図2(a)の各磁気モーメントを90度(左回りに90度)回転した向きである。なお、図2(d)に示すヘリシテイγ=π/2のスキルミオンが、図1のスキルミオン40に相当する。
 図2(a)~(d)に図示した4例の磁気構造は異なるように見えるが、トポロジー的には同一の磁気構造体である。図2(a)~(d)の構造を有するスキルミオンは、一度生成すると安定して存在し、外部磁場を印加した磁性体10中で情報伝達を担うキャリアとして働く。
 図3は、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置としたスキルミオンメモリ100の構成例を示す模式図である。本例のスキルミオンメモリ100は、磁気素子30、磁場発生部20、電源52および測定部34を備える。スキルミオンメモリ100は、磁気素子30の磁性体10に転送用電流を流すことで、磁性体10におけるスキルミオン40を磁性体10の安定部16-1(第1の安定部)もしくは安定部16-2(第2の安定部)に転送、配置できる。上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置としていることに大きな特徴がある。本例では、磁性体10の安定部16-2におけるスキルミオン40の有無が、1ビットの情報に対応する。測定部34は、安定部16-2のスキルミオンの有無を検知する。
 また、磁気素子30は、磁性体10への電流印加によってスキルミオン40の検出が可能である。また、磁性体10への電流印加によってスキルミオン40の生成および消去が可能であってもよい。また、本例の磁気素子30は薄層形状を有する。本例の磁気素子30は、磁性体10、上流側電極12、下流側電極14およびスキルミオン検出素子15を有する。
 磁性体10は、薄層形状を有しており、印加磁場に応じて、少なくともスキルミオン結晶相および強磁性相が発現する。スキルミオン結晶相は、スキルミオン40が磁性体10に発生しうる状態を指す。例えば磁性体10は、カイラル磁性体である。スキルミオン40が安定して存在できるように、磁性体10は薄層状である。磁性体10は、例えばスキルミオン40の直径の10倍以下程度の厚みを有してよい。スキルミオン40の直径とは、スキルミオンの最外周の直径を指す。
 磁性体10は、複数の安定部16を有する。複数の安定部16は、磁性体10において上流側電極12および下流側電極14が挟む領域に設ける。本例の磁性体10は、安定部16-1および安定部16-2を有する。安定部16は、磁性体10の他の領域よりも、スキルミオン40が安定して存在可能な領域を指す。安定部16は、例えば電流等によって外部からスキルミオン40に力を与えなければ、スキルミオン40がその場所にとどまる領域を指してよい。このような領域を形成するためには、下記に記載するように磁場発生部20から発生する磁場強度を、安定部16周辺の磁場強度より弱い磁場強度とすれば実現できる。また、安定部16は、当該領域からスキルミオン40を移動する場合に、何らかの障壁により隔離された領域を指してもよい。この障壁は上流側電極12および下流側電極14に、磁性体10の内部に突出する凸部をもたせることにより実現できる。それぞれの安定部16は、xy平面と平行な磁性体10の表面において、予め定められた範囲を占める。磁気素子30は、転送用電流によって、複数の安定部16の間でスキルミオン40を転送可能である。
 磁場発生部20は、磁性体10に磁場Hを印加する。本例では、磁場発生部20を磁性体10に対向して設ける。磁場発生部20は、磁性体10の裏面と対向して設けてよい。本例の磁場発生部20は、磁性体10を強磁性相にする磁場Hを発生する。また、磁場発生部20は、薄膜状の磁性体10の表面に略垂直な磁場Hを、磁性体10に印加する。本例において磁性体10は、xy平面と平行な表面(一面)を有しており、磁場発生部20は、磁場発生部20中の矢印で示すようにプラスz方向の磁場Hを発生する。
 本例では、磁場発生部20は、磁性体10の安定部16-1および安定部16-2に印加する磁場が、磁性体10の他の領域に印加する磁場強度Hより小さい磁場Haとなるような構造を有する。磁場発生部20は、安定部16に対向する領域の磁気モーメントの大きさが、他の領域と比べて小さくなるような構造を有してよい。磁場発生部20は、安定部16に対向する領域と、他の領域とが異なる材料で形成してよく、安定部16に対向する領域と、他の領域とでz方向の厚みが異なっていてもよい。これにより、安定部16に印加する磁場を他の領域よりも小さくして、スキルミオン40を安定部16に安定して存在させることができる。一例として、磁場発生部20は、安定部16および他の領域を、後述する強磁性相にする磁場を印加してよい。磁場発生部20は、磁性体10と離間していてよく、接触していてもよい。磁場発生部20が金属の場合、磁場発生部20は磁性体10と離間していることが好ましい。
 上流側電極12は、磁性体10に接続する非磁性金属からなる。上流側電極12は、磁性体10の延展方向に接続する。本例において磁性体10の延展方向とは、xy平面に平行な方向を指す。上流側電極12は薄層形状を有してよい。また、上流側電極12は、磁性体10と同一の厚みを有してよい。
 下流側電極14は、上流側電極12と離間して磁性体10に接続する非磁性金属からなる。下流側電極14は、磁性体10の延展方向に接続する。上流側電極12および下流側電極14は、電圧を印加した場合にxy平面とほぼ平行な方向の転送用電流を磁性体10に流すように配置する。
 上流側電極12および下流側電極14は、磁性体10においてスキルミオン40を転送、生成または消去する電流を流すのに用いられる。なお、本例における上流側電極12および下流側電極14の少なくとも一方は、スキルミオン40の位置を検出するスキルミオン検出素子15に電流を流す電極としても機能する。
 本例のスキルミオン検出素子15は、トンネル磁気抵抗素子(TMR素子)である。スキルミオン検出素子15は、少なくとも一つの安定部に位置する。本例のスキルミオン検出素子15は、安定部16-2の位置の磁性体10の表面に接する非磁性体薄膜151と、磁性体金属152との積層構造を有する。
 磁性体金属152は、磁性体10からのプラスz方向の磁場によりプラスz方向の磁気モーメントをもつ強磁性相となる。磁性体10または上流側電極12と、磁性体金属152の磁性体10側と逆側の端部との間には、測定部34が接続する。これにより、スキルミオン検出素子15が検出する抵抗値を検知できる。スキルミオン検出素子15は、磁性体10の安定部16-2内にスキルミオン40が存在しない場合の抵抗値が最小値を示し、スキルミオン40が存在すると抵抗値が増大する。スキルミオン検出素子15の抵抗値は、非磁性体薄膜151の電子のトンネル電流の確率が磁性体10と強磁性相となった磁性体金属152との磁気モーメントの向きに依存することで決まる。スキルミオン検出素子15の高抵抗(H)と低抵抗(L)は、スキルミオン40の有り無しに対応し、メモリセルが記憶した情報「1」と「0」に対応する。測定部34は、スキルミオン検出素子15の抵抗値の変化を測定してよく、スキルミオン検出素子15の抵抗値の変化に応じた電圧または電流の変化を測定してもよい。これにより、スキルミオンメモリ100が保存した情報を読み取ることが可能である。スキルミオン検出素子15は、複数の安定部16のうち、磁性体10の端部に最も近い安定部16に設けてよい。本例では、スキルミオン検出素子15を、2つの安定部16のうち安定部16-2にのみ設ける。
 電源52は、上流側電極12および下流側電極14に接続する。電源52は、上流側電極12から下流側電極14に向かう方向、および、下流側電極14から上流側電極12に向かう方向のいずれかを選択して、磁性体10に転送用電流を流す。上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とする。磁性体10に流れる転送用電流により、電極間に流す電流方向とは略垂直にスキルミオン40を転送する。具体的には、スキルミオン40は、当該転送用電流の方向と直交する向きの力を受けて、磁性体10内を移動する。スキルミオン40が安定部16-1および安定部16-2の間を容易に移動することができるように、安定部16-1および安定部16-2は、上流側電極12および下流側電極14の間に流れる転送用電流の向きに直交する方向に配列する。
 一例として、上流側電極12をy軸正側、下流側電極14をy軸負側に配置したときに、磁性体10内において安定部16-1をx軸負側、安定部16-2をx軸正側に配置する。電源52は、磁性体10に存在するスキルミオン40を安定部16-1から安定部16-2に転送する場合、上流側電極12から下流側電極14に向かう方向に磁性体10に正の転送用電流を印加する。この場合、スキルミオン40は安定部16-1から安定部16-2に向かう方向の力を受ける。また、電源52は、磁性体10に存在するスキルミオン40を安定部16-2から安定部16-1に転送する場合、上流側電極12から下流側電極14に向かう方向に磁性体10に負の転送用電流を印加する。この場合、スキルミオン40は安定部16-2から安定部16-1に向かう方向の力を受ける。
 スキルミオンメモリ100は、スキルミオン40を情報記憶媒体に使う。例えばスキルミオンメモリ100は、スキルミオン40の位置を情報に対応付ける。本例においては、スキルミオンメモリ100は、スキルミオン40が安定部16-2に存在する状態(すなわち、スキルミオン40が安定部16-1に存在しない状態)を情報「1」に対応付け、スキルミオン40が安定部16-2に存在しない状態(すなわち、スキルミオン40が安定部16-1に存在する状態)を情報「0」に対応付ける。他の例では、スキルミオン40が安定部16-1に存在する状態を情報「1」に対応付け、スキルミオン40が安定部16-1に存在しない状態を情報「0」に対応付けてもよい。図3において正の転送用電流の方向を矢印でしめした(電子流の向きはこれとは逆向き)。この正の転送用電流により磁性体10のスキルミオン40を安定部16-1から安定部16-2へと転送できる。また負の転送用電流により磁性体10のスキルミオン40を安定部16-2から安定部16-1に転送できる。
 本例では、安定部16-2を磁性体10のx軸正側の端部に設けているので、上流側電極12から下流側電極14に正の転送用電流を流しても、最初から安定部16-2に存在したスキルミオンは安定部16-2に留まる。すなわち、上流側電極12から下流側電極14への正の転送用電流印加は、常にスキルミオン40を安定部2に配置する。また、安定部16-1を磁性体10のx軸負側の端部に設けているので、上流側電極12から下流側電極14への負の転送用電流印加は、常にスキルミオン40を安定部16-1に配置する。
 このことから情報「1」と「0」に対応して上流側電極12から下流側電極14に流す転送用電流の正負を制御すれば、情報「1」および「0」と、安定部16-2におけるスキルミオン40の有無を対応付けることができる。そして、スキルミオン検出素子15により、安定部16-2に配置したスキルミオン40の有無を検知すれば、記憶した情報を読み出すことが可能である。
 本例のスキルミオンメモリ100は、保存する情報の「1」および「0」に応じて、スキルミオン40の位置を変更すればよく、情報の書き込み毎にスキルミオン40を生成または消去しなくともよい。このため、スキルミオンメモリ100の書きこみ動作を高速化することが可能になる。スキルミオン40は、スキルミオンメモリ100の出荷時に生成してよく、また、スキルミオンメモリ100の初回の動作時に生成してもよい。
 スキルミオン40を初期に生成する方法は、たとえば、コイル等により局所的に生成した磁場を用いて、安定部16-1の外部磁場を局所的に弱くさせスキルミオン40を生成する方法がある。例えば、当該外部磁場は、安定部16-1を後述するスキルミオン結晶相にする磁場である。上述したように、出荷時に外部から局所磁場を用いてスキルミオン40を生成しておいてもよい。一度生成したスキルミオン40は、磁性体10および安定部16が強磁性相になっても安定に存在する。
 また、磁性体10の表面上に凹部をつくり、生成用電流によりスキルミオン40を生成する方法がある。例えば、磁性体10は、安定部16-1よりもx軸負側に、スキルミオン40を生成する生成領域を有してよい。当該領域のx軸負側の端辺には、非磁性体で形成した凹部を設ける。当該凹部の角部周辺においては、外部磁場を印加しない状態で、磁気モーメントの向きが回転しており、スキルミオン40を生成しやすい。当該生成領域においてy軸方向に生成用電流を流すことで、凹部の角部周辺においてスキルミオン40が発生する。当該生成領域に対する生成用電流は、上流側電極12および下流側電極14の間の転送用電流とは独立して制御できることが好ましい。磁場発生部20が当該生成領域に印加する磁場は、磁性体10の安定部16以外の領域と同一であってよい。
 また、レーザや金属探針などによって磁性体10を局所加熱しても、スキルミオン40を生成できる。当該局所加熱は、安定部16に対して行ってよい。局所加熱した磁性体10の領域における磁気モーメントは、熱エネルギーによって過渡的に様々な方向を向くように変化するが、スキルミオン40の状態で磁気モーメントが安定する。
 本例では、スキルミオン40が安定部16-1もしくは安定部16-2に存在する。スキルミオン検出素子15は、上述したように対向する位置にスキルミオン40が存在しない場合の抵抗値が最小値を示し、スキルミオン40が存在すると抵抗値が増大する。スキルミオン検出素子15の高抵抗(H)と低抵抗(L)は、スキルミオン40の有り無しに対応し、メモリセルが記憶した情報「1」と「0」に対応する。
 このような情報記録原理は、記憶すべき情報を常に重ね書きができる優位性をもつ。すなわち、スキルミオン40の所在場所が意図しない安定部16-1もしくは安定部16-2に存在しても、スキルミオンが安定部16-1もしくは安定部16-2に存在する限り、新しい情報を書きこむことができる。新たな情報を書きこむ度に、古い情報の記憶を初期化(たとえばスキルミオンを安定部16-1の状態に戻す)する必要はない。
 さらに、上流側電極12から下流側電極14に向かう方向に磁性体10に転送用電流密度より大きい電流密度を印加すると、磁性体10からスキルミオン40を消去することが可能である。この機能はもし何らかの原因でスキルミオンが安定部16-1と安定部16-2の両方の安定部から消滅してしまった誤動作が発生したときに、スキルミオンメモリ100のリセットに利用できる。また、複数のスキルミオンメモリ100を1つのメモリトラックに設けた形態において、該当メモリトラックにおけるスキルミオンの一括消去などに利用できる。その後、該当メモリトラックの安定部16-1にスキルミオン40を生成する。これにより、該当メモリトラックの初期化を短時間に実行可能となる。
 スキルミオンメモリ100の特筆すべき特徴は、電流によるナノサイズのスキルミオン転送に必要な時間は極短パルスの1nsec程度でよい。これはDRAM(Dynamic Random Access Memory)のデータ書き込みにおいて必要な20nsec程度と比べて一桁も速い。また高速SRAM(Static Randum Access Memory)のデータ書き込みに必要な時間は2nsec程度であり、これと同等である。しかもスキルミオン40は一度生成すると、磁性体10において安定に存在するので、スキルミオンメモリ100は不揮発性を有する。これが実現できることから、不揮発性且つ高速動作が可能な究極のメモリ素子を実現できる。
 スキルミオン40を生成できる磁気素子30は、例えば厚さが500nm以下の薄層状に形成した素子であり、MBE(Molecular Beam Epitaxy)やスパッター等の技術を用いて形成できる。上流側電極12および下流側電極14は、Cu、W、Ti、TiN、Al、Pt、Au等の導電性の非磁性金属よりなる。磁性体10はカイラル磁性体であり、FeGeやMnSi等よりなる。
 なお、磁性体10が螺旋磁性を示すカイラル磁性体ではなく、ダイポール磁性体、フラストレート磁性体や磁性体と非磁性体を積層した構造であっても、上述した結論を適用できる。ダイポール磁性体は、磁気双極子相互作用が重要な磁性体である。フラストレート磁性体は、磁気不整合状態を好む磁気的相互作用の空間構造を含む磁性体である。磁性材料と非磁性材料との積層構造を有する磁性体は、磁性材料の非磁性材料に接する磁気モーメントを非磁性材料のスピン軌道相互作用により変調した磁性体である。
 上述した構成からなるスキルミオンメモリ100は、磁性体10中にスキルミオン40の転送および消去できる磁気素子として具体化できる。以下、スキルミオンメモリ100におけるスキルミオン40の転送および消去方法について実施例を通じて説明をする。
 (実施例1)
 実施例1で電流によるスキルミオン40の転送について詳細にシミュレーション実験を実施する。平行に配置した上流側電極12および下流側電極14との間における磁性体10に転送用電流を流し、転送用電流が流れる方向と垂直方向に配列した安定部16-1および安定部16-2の間でスキルミオン40を転送させる横電流配置でのスキルミオンの運動をシミュレーション実験する。
 スキルミオン40の運動は以下の方程式で記述できる。以下、断熱、非断熱スピントランスファートルク項をもつ[数3]および[数4]からなる方程式を数値的に解く。
 [数3]
Figure JPOXMLDOC01-appb-I000003
 また、カイラル磁性体でのハミルトニアンは、[数4]で表すことができる。
 [数4]
Figure JPOXMLDOC01-appb-I000004
 上記[数3]および[数4]中、Xは外積を示す。ここで、Mr=M・n(r)であり、n(r)は[数2]に示した、位置rにおけるスキルミオン40の磁気モーメントの向きを示す単位ベクトルである。B eff=-(1/(hΓ))(∂H/∂M)により、[数3]と[数4]とが関連付けられる。Γ=gμ/h(>0)は磁気回転比である。hはプランク定数である。Mは磁化を示す。また、e、eは、x、y方向の単位ベクトルである。Mr+ex、Mr+eyはMに対して、x、y方向に単位ベクトル分異なる位置にある磁気モーメントを示す。ξ=2eM/(pa)である。
 ここで、[数4]で示したHなるハミルトニアンはカイラル磁性体の場合である。ダイポール磁性体、フラストレート磁性体、および磁性材料と非磁性材料との積層界面を有する磁性体に関してはこのHの表現をそれぞれの磁性体を記述するものに置換すればよい。
 本実施例では、x方向、y方向の周期境界条件は置かず、非磁性体からなる電極はx軸に平行に配置し、磁場は磁性体10の裏(磁場発生部20と対向する面)から表方向に印加する、という条件で、上記方程式を用いてシミュレーションを行っている。
 図4は、カイラル磁性体磁性相の磁場依存性を示した相図である。本実施例では、図4に示すHskおよびHfのカイラル磁性体を磁性体10として用いてシミュレーション実験を行った。カイラル磁性体は磁場強度Hskによりカイラル磁性相からスキルミオン結晶相(SkX)になり、さらに強い磁場強度Hfでスキルミオン結晶相(SkX)から強磁性相になる磁性体である。当該スキルミオン結晶相(SkX)においては、複数のスキルミオン40が最密構造に整列してxy平面内に発生する。
 次に、この磁性体の磁気交換相互作用の大きさをJとして、この量で規格した値で各種の物理量を記述する。この場合、低磁場ではらせん状の磁気モーメントの磁気構造をもつカイラル相から磁場強度Hsk=0.0075Jで、スキルミオン結晶相になる。スキルミオン40の直径λは、λ=2π√2・J×a/Dで示すことができる。ここで、aは磁性体10の格子定数であり、Dはジャロシンスキー・守谷相互作用の大きさで物質固有の物理常数である。したがって、スキルミオン直径λは物質固有常数となる。スキルミオン直径λは非特許文献1に見るようにたとえばFeGeでは70nm、MnSiでは18nmである。
 本実施例で用いるカイラル磁性体はD=0.18J、磁気モーメントM=1、ギルバート減衰係数α=0.04である。本例ではD=0.18Jであるから、λ=50aとなる。磁性体10の格子定数a=0.5nmの場合、λ=25nmのサイズである。さらに、本実施例で用いるカイラル磁性体では、磁場強度Hf=0.0252Jでスキルミオン結晶相から強磁性相になる。
 磁性体10にはH=0.03Jの外部磁場を印加しており、磁性体10は強磁性状態となっている。安定部16-1および安定部16-2にはHa=0.029Jの外部磁場を印加する。安定部16-1および安定部16-2の磁性体部位も強磁性状態であるが、Hと比較してHaは0.001Jだけ弱い磁場となっている。Hに比較してHaが低磁場になっていることで、磁性体10中にスキルミオン40の安定部16を形成する。以下のシミュレーションで詳細を述べる。
 図5Aは、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流0.001ξを定常的に流した場合のt=0(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。本例では安定部16-1にスキルミオン40が存在している。磁性体10は、y方向に高さHm、x方向にWmの幅をもつ矩形形状である。本例では、磁性体10の格子常数aを単位として、Wm×Hm=90×50のサイズである。また、安定部16-1および安定部16-2は、1辺がL=30のサイズの正方形状とした。また、安定部16-1および安定部16-2と、磁性体10の端部との距離をd1=10として、安定部16-1および安定部16-2の距離をd2=10とした。明示する場合を除き、本明細書における各シミュレーションにおける磁性体10および安定部16の形状は同一である。
 図5Bは、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流0.001ξを定常的に流した場合のt=2000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40が安定部1と安定部2の境界を乗り越えようとしている。なお、本例において3000(1/J)の時間は、おおよそ1nsecに相当する。また、0.001ξの電流密度は、1.0×10A/cmに相当する。スキルミオン40は安定部16-1と安定部16-2の境界付近に移動していることが判る。なお、転送用電流とは逆方向の流れである電子のスピン流が下流側電極14から上流側電極12に流れる。
 このスピン流は、マグナス力によりx軸正方向にスキルミオン40を移動するように働く。この結果、スキルミオン40は、安定部16-1と安定部16-2との境界のポテンシャル壁を乗り越えことができる。なお、スキルミオン40は、電子のスピン流から、スピン流に沿った方向の力も受けるが、当該力はスピントランスファートルクよりも小さく、当該方向にはあまり移動しない。安定部16-1と安定部16-2の間の境界領域に印加した外部磁場Hの強度は、安定部16-1および安定部16-2に印加した外部磁場Haの強度より0.001Jだけ強い。z軸正方向に印加した外部磁場は、磁性体10をより強磁性状態にする方向に働くから、スキルミオン40にとって、強い磁場Hは高いポテンシャル障壁として機能する。
 図5Cは、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流0.001ξを定常的に流した場合のt=5000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。安定部16-2にスキルミオン40が近づく。
 図5Dは、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流0.001ξを定常的に流した場合のt=14000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は、正の転送用電流によってx軸正方向に移動して安定部16-2に安定化する。
 磁性体10の高さHmは、スキルミオン直径をλとして、3・λ>Hm≧λ/2の範囲であってよい。Hmの下限はスキルミオン40が安定して存在するために必要なサイズである。これより小さいとスキルミオン40は存在できない。上限は、3・λよりも大きくてもよいが、メモリの集積度を向上するためになるべく小さい方が望ましい。また、磁性体10の幅Wmは、5・λ>Wm≧λの範囲であってよい。Wmの範囲はWm=2・d1+d2+2・Lであることから決まる。安定部16の1辺の長さLは、λ>L≧λ/2の範囲であってよい。Lがλ/2以下の場合スキルミオン40が安定部16に留まらない。
 また、安定部16と磁性体10との距離d1は、λ/2>d1≧0の範囲であってよい。集積度向上のために、d1はなるべく狭いことが望ましい。d1は磁性体端部にはポテンシャルが存在するためにゼロであってよい。また、安定部16間の距離d2は、λ/2>d2≧λ/10の範囲であってよい。集積度向上のために、d2はなるべく狭いことが望ましい。ただし、d2がλ/10より狭いとスキルミオン40は安定して安定部16に留まれずに、望まない安定部16にスキルミオンが移動してしまう場合がある。
 (実施例2)
 図6Aは、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とした場合の磁性体10の磁気モーメントのシミュレーション結果を示す。図6Aに示すように、上流側電極12および下流側電極14を、x軸方向に配列している。つまり、上流側電極12から下流側電極14に流れる電流の向きと、安定部16-1および安定部16-2の配列方向とは同一である。なお、磁性体10および安定部16のサイズは実施例1と同一である。この電極位置を縦電流配置と呼ぶ。図6Aは、t=0(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示している。スキルミオン40が安定部16-1に存在している。
 図6Bは、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流密度0.001ξを定常的に流した場合のt=3700(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は、電子流の方向に沿った方向に力を受けて、安定部16-1と安定部16-2との境界に近づくが、安定部16-1と安定部16-2との境界におけるポテンシャル障壁を乗り越えられない。
 図6Cは、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流密度0.001ξを定常的に流した場合のt=7000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は、安定部16-1および安定部16-2の間のポテンシャル障壁にはねかえされ、安定部16-1に戻ってしまう。結局、実施例1の横電流配置と同じ大きさの電流密度0.001ξの大きさでは、スキルミオン40が安定部16間の境界を乗り越えることができず、安定部16-1から安定部16-2にスキルミオン40を転送することはできない。
 次に、縦電流配置において磁性体10に印加する正の転送用電流密度を0.01ξと大きくする。図7Aに、上流側電極12から下流側電極14に向けて、磁性体10に生成電流パルスを流した時のt=0(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。図7Aに示す初期状態では、スキルミオン40は、安定部16-1に配置している。
 図7Bに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流密度0.01ξを定常的に流した場合のt=1800(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は安定部16-1と安定部16-2の境界を乗り越える。
 図7Cに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流密度0.01ξを定常的に流した場合のt=4000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は安定部16-2に移動する。
 図7Dに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略平行に配置した縦電流配置とし、上流側電極12から下流側電極14に向けて、正の転送用電流密度0.01ξを定常的に流した場合のt=11000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。安定部16-2に一度入ったスキルミオン40は、磁性体10のx軸正方向の端部においてバウンドする。スキルミオン40は慣性によりx軸負方向に押し返され安定部16-1に戻ってしまう。
 以上、実施例2に示したように、縦電流配置は、横電流配置よりも大きな電流密度でないと安定部16-1と安定部16-2との境界を乗り越えられない。また、電流密度を大きくしすぎると、境界を乗り越えたスキルミオンは安定部16-2を通過し、再び、安定部16-1に戻ってしまう。したがって、縦電流配置の場合、横電流配置に比べて、スキルミオン40を二つの安定部16間に安定的に転送することが難しい。
 (実施例3)
 横電流配置で転送用電流としてパルス電流を用いた場合をシミュレート実験する。
 図8に、上流側電極12から下流側電極14に向けて流す転送用電流パルスを示す。まず正の第1転送用電流パルスを与え、スキルミオン40を安定部16-1から安定部16-2に転送する。次に、負の第2転送用電流パルスを与え、スキルミオン40を安定部16-2から安定部16-1に転送する。次に、正の第3転送用電流パルスを与え、スキルミオン40を安定部16-1から安定部16-2に転送する。
 第1転送用電流パルスの一例として、まずt=0(1/J)からt=1000(1/J)にかけて、磁性体10に印加する電流密度が0ξから+0.001ξに変化する。t=1000(1/J)からt=2000(1/J)の間は、磁性体10に印加する電流密度は+0.001ξを維持する。t=2000(1/J)からt=3000(1/J)にかけて、磁性体10に印加する電流密度が+0.001ξから0に変化する。
 第2転送用電流パルスの一例として、まずt=10000(1/J)からt=11000(1/J)にかけて、磁性体10に印加する電流密度が0ξから-0.001ξに変化する。t=11000(1/J)からt=12000(1/J)の間は、磁性体10に印加する電流密度は-0.001ξを維持する。t=12000(1/J)からt=13000(1/J)にかけて、磁性体10に印加する電流密度が-0.001ξから0に変化する。
 第3転送用電流パルスの一例として、まずt=20000(1/J)からt=21000(1/J)にかけて、磁性体10に印加する電流密度が0ξから+0.001ξに変化する。t=21000(1/J)からt=22000(1/J)の間は、磁性体10に印加する電流密度は+0.001ξを維持する。t=22000(1/J)からt=23000(1/J)にかけて、磁性体10に印加する電流密度が+0.001ξから0ξに変化する。
 図9Aに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に正の第1転送用電流パルスを流した時のt=0(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は安定部16-1に存在する初期状態である。
 図9Bに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に正の第1転送用電流パルスを流した時のt=2000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は安定部16-1と安定部16-2の境界に向かう。
 図9Cに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に正の第1転送用電流パルスを流した時のt=4000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。第1転送用電流パルスはOFFの状態であるが、スキルミオン40は慣性により安定部1と安定部2の境界を横切る。
 図9Dに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に正の第1転送用電流パルスを流した時のt=7000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は、安定部16-2において安定する。このように、正の第1転送用電流パルスによって、スキルミオン40を安定部16-1から安定部16-2に転送できる。
 図9Eに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に負の第2転送用電流パルスを流した時のt=13000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。負の電流パルス、すなわち、下流側電極14から上流側電極12に向かう電流を磁性体10に印加した場合、スキルミオン40には、x軸負方向(すなわち、安定部16-2から安定部16-1に向かう方向)に向かうスピントランスファートルクが働く。スキルミオン40は安定部16-2から出て、安定部16-2と安定部16-1の境界方向に移動する。スキルミオン40は安定部16-2と安定部16-1の境界を横切る。
 図9Fに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に負の第2転送用電流パルスを流した時のt=18000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は安定部16-1に安定化する。
 図9Gに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に正の第3転送用電流パルスを流した時のt=23000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は安定部16-1および安定部16-2の境界を横切る。
 図9Hに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に正の第3転送用電流パルスを流した時のt=27000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は安定部16-2に安定化する。
 以上のように、上流側電極12から下流側電極14に向けて、電流密度が0.001J程度の正の転送用電流パルスを、3000(1/J)程度の期間印加することによりスキルミオン40を安定部16-1から安定部16-2に転送できる。また、電流密度が0.001ξ程度の負の転送用電流パルスを3000(1/J)程度の期間印加することによりスキルミオン40を安定部16-2から安定部16-1に転送できる。また、再度正の転送用電流パルスを印加することで、安定部16-1に戻ったスキルミオン40を、安定部16-2へ転送できる。
 まとめると、以下の通りである。
(1)上流側電極12から下流側電極14に、電流密度0.001ξ程度の正の転送用電流パルスを、3000(1/J)程度の期間流すと、スキルミオン40を安定部16-1から安定部16-2に転送させ、且つ、安定部16-2に安定して存在させることができる。
(2)上流側電極12から下流側電極14に、正の転送用電流パルスと同程度の電流密度の負の転送用電流パルスを、正の転送用電流パルスと同程度の期間流すと、スキルミオン40を安定部16-2から安定部16-1に転送させ、且つ、安定部16-2に安定して存在させることができる。
 すなわち、横電流配置によれば、転送用電流の方向と直交する方向に配列した複数の安定部16の間において、スキルミオン40を容易に転送することが可能である。転送時に印加する電流パルスの時間は3000(1/J)程度、すなわち、おおよそ1nsec程度である。従って、非常に高速にスキルミオン40を、安定部16間で転送できる。スキルミオン40の転送が、情報の「1」、「0」に対応するので、スキルミオンメモリ100は、非常に高速に情報を書き換えることができる。この速度はCMOS回路で構成された高速SRAMの速度に匹敵する。しかも不揮発性であることから、CPU論理回路との組み合わせ不揮発メモリとして恰好のメモリを用意することが可能となる。電流密度は0.001ξで消費電流も小さい。
 (実施例4)
 横電流配置において、消去用電流パルスを印加することでスキルミオン40を消去する動作をシミュレート実験する。この実施例は、例えば以下の場合に用いることができる。特定トラックの該当メモリセルにおいて、何らかの原因で安定部16からスキルミオン40が消失した場合、このトラックはメモリとして使用できなくなる。この場合、該当トラックにあるすべてのメモリセルからスキルミオン40を一度消去し、すべてのメモリセルの安定部16-1にスキルミオン40を生成すれば、該当トラックは正常トラックとして使用できる。このようなリセット機能を有するためにはメモリセルからスキルミオン40を完全に消去できる装置が必要である。
 図10に、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて流す正の消去用電流パルスを示す。本例では、スキルミオン40が安定部16-1に存在する。電流密度0.006ξの第1の消去用電流パルスを、印加時間4500(1/J)の間印加した。消去用電流パルスの電流密度は、転送用電流パルスの電流密度より大きい。なお、第1の消去用電流パルスの立ち上がり時間および立ち下がり時間は1000(1/J)であり、パルス印加時間を2500(1/J)とする。
 図11Aに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第2の消去用電流パルスを流した時のt=0(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。図11Aに示す初期状態において、スキルミオン40は安定部16-1に存在する。
 図11Bに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第2の消去用電流パルスを流した時のt=2000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は安定部16-1および安定部16-2の境界の上流側電極12寄りの領域を、安定部16-2に向かって通過する。
 図11Cに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第2の消去用電流パルスを流した時のt=3500(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は安定部16-2の端部に侵入する。
 図11Dに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第2の消去用電流パルスを流した時のt=5000(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。図11Cに示した状態の後、スキルミオン40は磁性体10のx軸正方向における端部におけるポテンシャル障壁を乗り越えて消滅しはじめる。その後、スキルミオン40は、磁性体10と上流側電極12との境界におけるy軸正方向の端部で消滅する。次に、安定部16-2に存在するスキルミオン40を消去する動作をシミュレート実験する。
 図12に、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて流す正の消去用電流パルスを示す。電流密度は0.014ξである。電流の印加時間を3000(1/J)とする。なお、第3の消去用電流パルスの立ち上がり時間および立ち下がり時間は1000(1/J)であり、パルス印加時間を1000(1/J)とする。
 図13Aに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第4の消去用電流パルスを流した時のt=0(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。図13Aに示す初期状態において、スキルミオン40は安定部16-2に存在する。
 図13Bに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第4の消去用電流パルスを流した時のt=2600(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は磁性体10のx軸正方向側の端部に接触する。本例では、消去用電流パルスの印加時間が長いので、スキルミオン40は、磁性体10の端部におけるポテンシャル障壁を乗り越える。
 図13Cに、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオンを転送する方向に対して略垂直に配置した横電流配置とし、上流側電極12から下流側電極14に向けて、磁性体10に第4の消去用電流パルスを流した時のt=3400(1/J)における磁性体10の磁気モーメントのシミュレーション結果を示す。スキルミオン40は、磁性体10のx軸正方向側の端部を、上流側電極12に向かって消滅しながら移動する。その後、スキルミオン40は、磁性体10と上流側電極12との境界におけるy軸正方向の端部で消滅する。
 以上から、本例の磁性体10および安定部16を用いた場合のスキルミオン消去条件は以下である。
(3)スキルミオン40が安定部16-1に存在する場合、電流密度0.006ξでパルス印加時間は4500(1/J)以上である。
(4)スキルミオンが安定部16-2に存在する場合、電流密度0.014ξでパルス印加時間は3000(1/J)以上である。
 以上2個の安定部16を有する磁気素子の場合の(1)~(4)の設計ルールはJでの物理量で示した。その適応性は高い。なお、上記条件は、電流密度を上げた場合には、パルス印加時間を下げてもよい。また、ここに述べた磁気素子の設計ルールはダイポール磁性体でもフラストレート磁性体でも磁性材料と非磁性材料との積層構造でも変更をきたさない。物質が決まれば交換相互作用エネルギーJが決まる。このJが決まれば上記設計ルールが適用できる。
 このように、本明細書では、上流側電極12と下流側電極14との間に流す電流の方向を、スキルミオン40を転送する方向に対して略垂直に配置した横電流配置とし、電流によるスキルミオン転送、消去方法の最適な配置を示した。また、本発明では、ナノ秒程度の極短パルス電流により、スキルミオン40の転送および消去をすることが可能になった。本明細書に開示したスキルミオンメモリ100は、メモリ保持のために電力を消費しない。スキルミオンメモリ100は、不揮発性メモリとして機能する。よって、低消費電力で高速な不揮発性メモリが実現する。スキルミオン磁気素子およびこの磁気素子を応用したスキルミオンメモリ、スキルミオンメモリ搭載CMOS-LSIデバイス、およびスキルミオンメモリを内蔵した、パーソナルコンピュータ、データ記録媒体、データ記録装置およびデータ通信装置を実用化する上で大きなインパクトをもたらすことが期待できる。
 スキルミオンは、直径が1~500nmとナノスケールのサイズを有する極微細構造であり、膨大なビット情報を極細密化できる大容量記憶磁気素子として応用できる。
 スキルミオンメモリ100は高速記憶や消去が可能なメモリに応用できる不揮発性磁気メモリなので、現在の情報演算として用いているDRAMや高速SRAMメモリの代替え可能な不揮発性メモリを担うデバイスとして期待できる。特に本発明により電流によりスキルミオン転送方法の最適配置が実現したことは、この実現性に大きく寄与する。
 図14は、スキルミオンメモリ100の他の構成例を示す模式図である。本例のスキルミオンメモリ100は、シフトレジスタとして機能する。本例のスキルミオンメモリ100は、転送用電流が流れる方向とは直交する方向に配列した3以上の安定部16を有する。本例では、3以上の安定部16を、上流側電極12および下流側電極14が挟む磁性体10に配置する。なお、図14においては、上流側電極12および下流側電極14の間に電流を流す電源52を省略している。
 このような構成により、データを例えば左から右の安定部16に順次転送するシフトレジスタ機能をもたらせることができる。本例のスキルミオンメモリ100は、安定部16-1、安定部16-2、・・・、安定部16-9を有する。スキルミオンメモリ100は、外部回路から伝達してきた情報の「1」「0」信号に応じて左端の安定部16-1でスキルミオンを生成する。スキルミオンメモリ100は、安定部16-1にスキルミオンを生成するための凹部形状を有する磁性体形状としてよい。電流コイルによる局所磁場を有する電流経路を有してもよい。上流側電極12から下流側電極14に正の転送用電流パルスを流すとスキルミオン40は安定部16を右にひとつずつ移動する。また、負の転送用電流パルスを流すとスキルミオン40は安定部16を左にひとつずつ移動する。スキルミオン検出素子15を安定部16-5に設置すれば安定部16-5を通過するスキルミオンを検知できる。これにより一時的にメモリした情報を読み取ることができる。また、全ての安定部16に対してスキルミオン検出素子15を設けてもよい。これにより、スキルミオンメモリ100が保持している情報の各ビットを同時に読み出すことができる。それぞれの安定部16におけるスキルミオン40の有無が、情報の1ビットに対応する。
 図15は、スキルミオンメモリ100の他の構成例を示す模式図である。本例のスキルミオンメモリ100における磁性体10は閉経路形状を有する。つまり、磁性体10は、延展方向と平行な面における内周を規定する内周側端部と、外周を規定する外周側端部とを有する。本例の磁性体10は、外周および内周の双方が長円形状を有しており、且つ、外周および内周の間隔がほぼ一定のサーキット形状を有する。長円形形状とは略四角形形状でもよい。この場合は角部を適切な曲率を有するように設計する。閉経路磁性体は蛇行する形状であってもよい。その他、各種閉経路形状磁性体であってよい。
 上流側電極12および下流側電極14は、磁性体10の延展方向と平行な面において、一方が磁性体10の内周側端部に接続し、他方が外周側端部に接続する。本例では、上流側電極12が、磁性体10の外周側端部と接続しており、下流側電極14が、磁性体10の内周側端部と接続している。この場合、上流側電極12から下流側電極14への向きに磁性体10に電流を流し、スキルミオン40を電流方向と略垂直に転送する横電流配置とする。これにより、スキルミオン40に磁性体10の表面側から見て時計回りに磁性体10を周回するように、スピントランスファートルクを作用させる。
 複数の安定部16は、磁性体10の閉経路形状を1周するように配列している。それぞれの安定部16の間におけるスキルミオン40の移動時間が等しくなるように、安定部16を配列することが好ましい。それぞれの安定部16の間隔は同一であってよい。また、図15においては、それぞれの安定部16の形状を正方形としているが、磁性体10の円弧部分における安定部16は、磁性体10の直線部分における安定部16とは異なる形状を有してよい。それぞれの安定部16は、磁性体10の外周側端部および内周側端部と平行な2辺と、外周側端部および内周側端部と直交する2辺とを有してよい。
 なお、図15においては、電源52、磁場発生部20、スキルミオン検出素子15および測定部34を省略している。スキルミオン検出素子15を、少なくとも一つの安定部16に対して設ける。情報を読み取る場合には、スキルミオン40の位置が順次シフトして、それぞれのスキルミオン40が複数の安定部16を1周するように、転送用電流パルスを複数回印加する。スキルミオン検出素子15は、スキルミオン40の有無のパターンを検出する。電流パルスを印加した後は、スキルミオン40が安定部16の内部に安定して位置する。このため、スキルミオン40の位置を確定でき、スキルミオン40の有無の検出が容易になる。また、スキルミオン40を制御するために定常的に電流を流す必要がない。このため、消費電力を低減することができる。このメモリは記憶保持に電力を消費することがない不揮発性メモリとして機能できる。
 また、スキルミオンメモリ100は、外部回路から伝達してきた情報の「1」「0」信号に応じていずれかの安定部16でスキルミオンを生成する。スキルミオンメモリ100は、当該安定部16にスキルミオンを生成するために、凹部形状を有する磁性体形状としてよい。また、スキルミオンメモリ100は、電流コイルによる局所磁場を有する電流経路を有してもよい。
 図16Aは、スキルミオンメモリデバイス110の断面構造を示す。スキルミオンメモリデバイス110は、スキルミオンメモリ100を少なくとも一つ備えるデバイスである。スキルミオンメモリデバイス110は、強磁性体層である磁場発生部20および磁場発生部20の上方に形成した磁気素子30を備える。磁場発生部20は安定部16を形成するために、それぞれの安定部16の下部に該当する箇所に膜厚が薄い窪みを有する。当該窪みには、絶縁体層22を配置してよい。磁気素子30と磁場発生部20との間には、非磁性体層を設ける。この非磁性体層は絶縁体22と同じ材料でよい。本例の磁気素子30は、図3、図14または図15に示した磁気素子30と同様の構成を有する。図16Aにおいては、図3、図14または図15に示した磁気素子30が有する金属電極のうち、下流側電極14および上流側電極12のみを示し、他の金属電極を省略している。図16Aにおいては、測定部34の断面図は図示していない。磁気素子30は、磁性体層60、磁性体保護層65、第1配線層70および第2配線層75の順に積層した積層構造を有する。
 磁性体保護層65は、磁性体保護膜66および第1ビア67を有する。磁性体保護膜66は、磁性体層60を保護する。第1ビア67は、それぞれの金属電極に、スキルミオン転送、生成、消去および検出用の電流を供給する。図16Aにおいては、単一の第1ビア67を示しているが、第1ビア67は、それぞれの金属電極に対して設ける。
 第1配線層70は、第1配線71、第1配線保護膜72および第2ビア73を有する。第1配線71は、スキルミオン転送、生成、消去および検出用の電圧または電流を供給する経路を形成する。第1配線保護膜72は、第1配線71および第2ビア73を形成するための層間絶縁膜として機能する。スキルミオン転送、生成、消去および検出用の経路を同一層内に引き回すことが困難な場合、図16Aに示すように第1配線層70上に第2配線層75を形成してもよい。
 第2配線層75は、第2配線76および第2配線保護膜77を有する。第2配線76は、第2ビア73と接続する。第2配線保護膜77は、第2配線76を絶縁するための層間絶縁膜として機能する。第2ビア73は、第1配線71と第2配線76とを接続する。第2配線76は、第1配線71とともに、スキルミオン転送、生成、消去および検出用の電圧または電流を伝送する経路を形成する。これらの経路は外部端子を介して、スキルミオンメモリデバイス110の外部の電源等と接続してよい。
 図16Bは、スキルミオンメモリデバイス110の断面構造の他の例を示す。本例のスキルミオンメモリデバイス110は、基板80、スキルミオンメモリ100およびFET99を有する。本例では、スキルミオンメモリ100およびFET99を、基板80の同一面上に形成する。基板80は、シリコン等の半導体基板である。図16Aに示したように、スキルミオンメモリ100の磁場発生部20は窪みを有する。当該窪みには絶縁体層を配置する。FET99は、後述するスキルミオン40を転送等するスキルミオンメモリ100を選択するスイッチとして機能してよい。FET99は、一般的な半導体プロセスにより形成できる一般的なFETである。
 FET99は、基板80の表面に形成した所定の導電型のウェル、ソース、ドレインの各領域を有する。また、ソースドレイン間のチャネル上に形成したゲート電極を有する。また、FET99とスキルミオンメモリ100等の他の素子との間には素子分離層LOCOSを有する。本例のFET99は、2層の配線層を有する。FET99の配線層は、スキルミオンメモリ100の第1配線層70および第2配線層75と同一層であってよい。また、FET99の一部の配線は、スキルミオンメモリ100の一部の配線に接続してよい。
 図17は、磁気素子30をn層積層したスキルミオンメモリデバイス110を示す。本例のスキルミオンメモリデバイス110は、n=12の場合である。磁場発生部20は、3000Åの膜厚を有する。磁場発生部20は安定部16を形成するためにそれぞれの安定部16の下部に該当する箇所に膜厚が薄い窪みを有する。当該窪みには、絶縁体層を配置する。磁気素子30は、磁気素子30-1から磁気素子30-nまで積層した構造を有する。本例の磁気素子30は、合計35000Åの膜厚を有する。本例のスキルミオンメモリデバイス110は、共通の磁場発生部20の上に複数の磁気素子30を積層することにより、集積度を大きくできる。本例のスキルミオンメモリデバイス110は、図16Aに示したスキルミオンメモリデバイス110のn倍の集積度を実現できる。本例では、隣接する層の磁気素子30の磁性体10を、重ならない位置に設けてよい。
 図18は、積層方向に複数の磁場発生部20を有するスキルミオンメモリデバイス110を示す。磁場発生部20は安定部16を形成するためにそれぞれの安定部16の下部に該当する箇所に膜厚が薄い窪みを有する。当該窪みには、絶縁体層を配置する。本例のスキルミオンメモリデバイス110は、複数の磁場発生部20を積層して有しており、それぞれの磁場発生部20の間に、それぞれ1層の磁気素子30を有する。これにより、磁気素子30は、磁場発生部20から受ける磁場の強度を一定に保つことができる。磁場発生部20は、磁気素子30の材料等に応じて適当な間隔で配置してもよい。
 図19は、スキルミオンメモリデバイス110の構成の一例を示す。本例のスキルミオンメモリデバイス110は、図16Aから図18において説明したスキルミオンメモリデバイス110に対して、基板80とスキルミオンメモリ100の間にCMOS-FET90を備える点で相違する。本例のスキルミオンメモリデバイス110は、スキルミオンメモリ100およびCMOS-FET90を備える。CMOS-FET90は半導体素子の一例であり、基板80上に形成する。スキルミオンメモリ100は、CMOS-FET90上に形成する。磁気素子30は、CMOS-FET90の上方に形成する。磁気素子30とCMOS-FET90の間に、磁場発生部20を形成してよい。磁場発生部20は安定部16を形成するためにそれぞれの安定部16の下部に該当する箇所に膜厚が薄い窪みを有する。当該窪みには、絶縁体層を配置する。CMOS-FET90は、後述する論理回路として機能してよい。
 CMOS-FET90は、PMOS-FET91およびNMOS-FET92を備える。CMOS-FET90およびPMOS-FET91は、一般的なシリコンプロセスにより形成できる一般的なFETである。本例のCMOS-FET90は、2層のCu配線層を有する。
 スキルミオンメモリデバイス110では、論理回路を形成するCMOS-FET90と不揮発性磁気素子であるスキルミオンメモリ100を積層し、同一のチップ内に形成した。そのため、スキルミオンメモリデバイス110は、消費電力を低減できる。これは、現在大きな消費電力を要する大規模CPUデバイスをノーマリオフの大規模CPUデバイスで再編成でき、低消費電力化に大きな役割を果たす。さらに、CPUの計算速度の大幅な向上にも貢献する。CPUの計算速度は外部メモリとのやり取りのためのタイミングを計るために待機時間設定などの大きな制約を受ける。本例のスキルミオンメモリデバイス110は、この制約を一気に解放し、しかも高速不揮発性磁気素子と直接データのやり取りが可能になることからCPUの速度性能が飛躍的に向上する。
 図20は、スキルミオンメモリデバイス110の回路構成の一例を示す。本例のスキルミオンメモリデバイス110は、図3に示したスキルミオンメモリ100を、マトリクス状に複数備える。ただし、図20に示したスキルミオンメモリ100は、電源52を有さない。電源52は、図20に示すビット線96または書込ワード線95を介して、スキルミオンメモリ100に接続する。測定部34は、図20に示すビット線96または読出ワード線97を介して、スキルミオンメモリ100に接続する。図20に示す検出回路98が、測定部34の一部として機能する。図20では、マトリクスの複数の列および行のうち、第n-1列、第n列、第m-1行および第m行のみを示している。
 スキルミオンメモリデバイス110は、複数のスキルミオンメモリ100、複数のビット線96、複数の書込ワード線95、複数の読出ワード線97、複数のスイッチ181、複数のスイッチ183、複数のスイッチ184、および、複数の検出回路98を備える。ビット線96は、マトリクスの各列に設ける。また、読出ワード線97および書込ワード線95は、マトリクスの各行に設ける。ビット線96は、当該列の各スキルミオンメモリ100の上流側電極12に接続する。読出ワード線97は、当該行の各スキルミオンメモリ100のスキルミオン検出素子15に接続する。書込ワード線95は、当該行の各スキルミオンメモリの下流側電極14に接続する。スイッチ181は、それぞれのビット線96に設ける。スイッチ183は、それぞれの書込ワード線95に設ける。スイッチ184は、それぞれの読出ワード線97に設ける。スイッチ181、183、184は、例えばFETである。
 ビット線96、書込ワード線95および読出ワード線97は、それぞれのスイッチを介して外部電源に接続する。当該外部電源は、例えば電源52または測定用電源31である。電源52および測定用電源31は共通の電源であってよい。また、外部電源は、ビット線96毎に設けてよく、複数のビット線96に共通に設けてもよい。
 検出回路98は、読出ワード線97に接続し、読出ワード線97に流れる電流を検出する。検出回路98は、測定部34における電流計32として機能する。検出回路98は、それぞれの読出ワード線97に設けてよく、複数の読出ワード線97に共通に設けてもよい。
 いずれかのスキルミオンメモリ100にデータ「1」を書き込む場合(すなわち、スキルミオン40を安定部16-2に配置する場合)、対応するスイッチ181およびスイッチ183をオン状態に制御し、対応するビット線96および書込ワード線95を選択する。例えば、スキルミオンメモリ100(m-1、n-1)にデータを書き込む場合、書込ワード線95(m-1)に対応するスイッチ183と、ビット線96(n-1)に対応するスイッチ181とがオンする。その後、図20において矢印で示すように、ビット線96(n-1)から書込ワード線に向けて正の転送用電流パルスを流すと、スキルミオンメモリ100(m-1、n-1)の安定部16-2にスキルミオン40が配置する。
 図21は、スキルミオンメモリ100にデータ「0」を書き込む動作の一例を示す。すなわち、スキルミオン40を安定部16-1に配置する動作の一例を示す。データ「1」を書き込む場合と同様に、スイッチ181およびスイッチ183により、データ「0」を書き込むスキルミオンメモリ100に対応するビット線96および書込ワード線95を選択する。ただし、データ「0」を書き込む場合には、ビット線96から書込ワード線95に向けて、スキルミオンメモリ100に負の転送電流パルスを流す。これにより、スキルミオンメモリ100のスキルミオン40が安定部16-1に移動して、データ「0」が書き込まれる。
 例えば、スキルミオンメモリ100(m-1、n-1)にデータ「0」を書き込む場合、書込ワード線95(m-1)に対応するスイッチ183と、ビット線96(n-1)に対応するスイッチ181とをオンする。その後、図21において矢印で示すように、ビット線96(n-1)から書込ワード線95(m-1)に向けて負の転送用電流パルスを流すと、スキルミオンメモリ100(m-1、n-1)のスキルミオン40が安定部16-1に移動する。このように、ビット線96および書込ワード線95は、スキルミオン40を複数の安定部16間で転送するスキルミオン転送用電流を供給する第1のスキルミオン転送線および第2のスキルミオン転送線として機能する。
 図22は、スキルミオンメモリ100のスキルミオン40を消去する動作の一例を示す。スキルミオン40を消去する場合、データの書き込みと同様に、スイッチ181およびスイッチ183により、スキルミオン40を消去するスキルミオンメモリ100に対応するビット線96および書込ワード線95を選択する。そして、ビット線96から書込ワード線95に向けて、スキルミオンメモリ100に消去用電流を流す。消去用電流は、上述したように転送用電流よりも電流密度が高い。
 例えば、スキルミオンメモリ100(m-1、n-1)のスキルミオン40を消去する場合、書込ワード線95(m-1)に対応するスイッチ183と、ビット線96(n-1)に対応するスイッチ181とをオンする。その後、図22において矢印で示すように、ビット線96(n-1)から書込ワード線95(m-1)に向けて消去用電流パルスを流すと、スキルミオンメモリ100(m-1、n-1)のスキルミオン40が磁性体10の端部のポテンシャル障壁を乗り越えて消滅する。このように、書込ワード線95およびビット線96は、スキルミオン40を消去する消去用電流を供給するスキルミオン消去線としても機能する。
 図23は、スキルミオンメモリデバイス110の読み出し動作の一例を示す。スキルミオンメモリデバイス110の読み出し動作とは、それぞれのスキルミオンメモリ100の磁性体10の所定の位置(本例では安定部16-2)におけるスキルミオン40の有無を検出する場合を指す。読み出し動作におけるスキルミオンメモリ100の選択においては、スイッチ181およびスイッチ184により、対応するビット線96、書込ワード線95および読出ワード線97を選択する。
 読み出し動作においては、スイッチ181およびスイッチ184をオンする。この場合、上流側電極12からスキルミオン検出素子15に、スキルミオン40の有無に応じた電流が流れる。検出回路98は、スキルミオン検出素子15に流れた電流を、読出ワード線97を介して検出する。本例の検出回路98は、当該電流を電圧に変換して出力する。当該電圧から安定部16-2におけるスキルミオン40の有無を測定することができる。
 例えば、スキルミオンメモリ100(m-1、n-1)のデータを読み出す場合、読出ワード線97(m-1)に対応するスイッチ184と、ビット線96(n-1)に対応するスイッチ181とをオンする。その後、ビット線96(n-1)から上流側電極に所定の電圧を印加する。これにより、スキルミオンメモリ100(m-1、n-1)の安定部16-2におけるスキルミオン40の有無に応じた読出ワード線97の電流が発生する。
 検出回路98は、読出ワード線97の電流を電圧に変換して、安定部16-2におけるスキルミオン40の有無を検出する。本例の検出回路98は、帰還抵抗Rf、増幅回路C1および電圧比較回路C2を備え、電流を電圧に変換する。読出ワード線97から検出回路98に入力した電流は、増幅回路C1に入力する。帰還抵抗Rfは、増幅回路C1と並列に設ける。増幅回路C1は、読出ワード線97からの電流を電圧に変換する。電圧比較回路C2には、増幅回路C1の出力電圧および参照電圧Vrefを入力する。電圧比較回路C2は、増幅回路C1の出力電圧が参照電圧Vrefよりも大きい場合は「1」を出力する。一方、電圧比較回路C2は、増幅回路C1の出力電圧が参照電圧Vrefよりも小さい場合は「0」を出力する。スキルミオン40が有の場合、検出回路98に流れる電流は小さくなる。C2出力は「0」を出力する。スキルミオン40が無の場合、検出回路98に流れる電流は大きくなる。C2出力は「1」を出力する。スキルミオン有り無しに対して反転した出力になる。C2の後にインバータを追加すればスキルミオン有り無しに対応した出力となる。これにより、スキルミオンメモリ100のデータを読み出すことができる。
 以上、図20から図23の通り、スキルミオンメモリデバイス110は、任意のスキルミオンメモリ100を選択し、スキルミオン40の転送、消去および読み出しができる。スキルミオンメモリ100の周辺に配置したFET、検出回路98の増幅回路C1および電圧比較回路C2は、FETデバイスを備える。複数のスキルミオンメモリ100は、平面状に配列した。また、平面状に配列したスキルミオンメモリ100を積層してよい。スキルミオンメモリ100は、積層が可能であることにより、集積度を大幅に増加できる。
 図24Aは、磁気素子30の他の構造例を示す模式図である。図24Aにおいては、磁気素子30の構成のうち上流側電極12、下流側電極14および磁性体10の表面を示す。本例の磁性体10は、安定部16-1、安定部16-2および境界部19を有する。境界部19は、転送用電流が流れる方向と直交する方向(本例ではx軸方向)において、磁性体10の領域を2つに分割する。境界部19は、スキルミオン40の移動に対する障壁となる性質を有する。本例の境界部19は、外部磁場の強度が、安定部16-1および安定部16-2の外部磁場よりも強い領域を指す。磁場発生部20が、当該外部磁場を発生してよい。
 境界部19は、一端が上流側電極12に接触し、他端が下流側電極14に接続する直線形状であってよい。また、上流側電極12および下流側電極14の間における境界部19の端辺を曲線で形成してもよい。また、境界部19のy軸方向における各端部は、上流側電極12および下流側電極14に対して間隙を有してもよい。ただし、当該間隙は、スキルミオン40が通過できない大きさである。
 本例の安定部16-1および安定部16-2は、y軸方向において磁性体10と同一の高さを有する。安定部16-1および安定部16-2は、図3に関連して説明した安定部16-1および安定部16-2と同一のサイズを有してよい。この場合、本例の磁性体10は、図3に関連して説明した磁性体10よりも小さい。境界部19のx軸方向における幅は、スキルミオン40の障壁として機能でき、且つ、転送用電流によりスキルミオン40が乗り越えられる程度の幅である。また、安定部16間の距離d2、すなわち境界部19のx軸方向の幅d2は、λ/2>d2≧λ/10の範囲であってよい。集積度向上のために、d2はなるべく狭いことが望ましい。ただし、d2がλ/10より狭いとスキルミオン40は安定して安定部16に留まれずに、望まない安定部16にスキルミオンが移動してしまう場合がある。
 図24Bは、磁気素子30の他の構造例を示す模式図である。図24Bにおいては、磁気素子30の構成のうち上流側電極12、下流側電極14および磁性体10の表面を示す。本例の上流側電極12および下流側電極14のそれぞれは、磁性体10の内部に突出する凸部18を有する。例えば凸部18は、x軸方向における磁性体10の中央部分に位置してよい。つまり、凸部18はx軸方向において磁性体10を2分割するように位置してよい。凸部18が分割した磁性体10の各領域が、それぞれ安定部16として機能する。本例では、x軸負方向側における磁性体10の領域が安定部16-1として機能して、x軸正方向側における磁性体10の領域が安定部16-2として機能する。
 それぞれの凸部18のx軸方向における高さhは、スキルミオン40の移動の障壁となれる高さであればよい。一例として高さhは、磁性体10の格子常数aを単位として10程度であってよい。また、高さhは、凸部18の先端どうしで挟まれる磁性体10の高さが、磁性体10の格子常数aを単位として30から40程度となるように設定してもよい。また、上流側電極12および下流側電極14の凸部18は、同一形状であることが好ましい。凸部18は、例えば三角形、四角形その他の多角形の形状、および、半円等の弧形状等であってよい。
 また、凸部18だけで安定部16を形成する場合、磁場発生部20は、安定部16に対向する位置に窪み(絶縁体層22)を有さなくともよい。また、凸部18および絶縁体層22を組み合わせて安定部16を形成してもよい。また、凸部18と図24Aに示した境界部19とを組み合わせてもよい。
 図25は、スキルミオンメモリ搭載固体電子デバイス200の構成例を示す模式図である。スキルミオンメモリ搭載固体電子デバイス200は、スキルミオンメモリ100またはスキルミオンメモリデバイス110と、固体電子デバイス210とを備える。スキルミオンメモリ100またはスキルミオンメモリデバイス110は、図1から図24Bにおいて説明したスキルミオンメモリ100またはスキルミオンメモリデバイス110である。固体電子デバイス210は、例えばCMOS-LSIデバイスである。固体電子デバイス210は、スキルミオンメモリ100またはスキルミオンメモリデバイス110へのデータの書き込み、および、スキルミオンメモリ100またはスキルミオンメモリデバイス110からのデータの読み出しの少なくとも一方の機能を有する。
 図26は、データ処理装置300の構成例を示す模式図である。データ処理装置300は、スキルミオンメモリ100またはスキルミオンメモリデバイス110と、プロセッサ310とを備える。スキルミオンメモリ100またはスキルミオンメモリデバイス110は、図1から図24Bにおいて説明したスキルミオンメモリ100またはスキルミオンメモリデバイス110である。プロセッサ310は、例えばデジタル信号を処理するデジタル回路を有する。プロセッサ310は、スキルミオンメモリ100またはスキルミオンメモリデバイス110へのデータの書き込み、および、スキルミオンメモリ100またはスキルミオンメモリデバイス110からのデータの読み出しの少なくとも一方の機能を有する。
 図27は、データ記録装置400の構成例を示す模式図である。データ記録装置400は、スキルミオンメモリ100またはスキルミオンメモリデバイス110と、入出力装置410とを備える。データ記録装置400は、例えばハードディスク、または、USBメモリ等のメモリデバイスである。スキルミオンメモリ100またはスキルミオンメモリデバイス110は、図1から図24Bにおいて説明したスキルミオンメモリ100またはスキルミオンメモリデバイス110である。入出力装置410は、スキルミオンメモリ100またはスキルミオンメモリデバイス110への外部からのデータの書き込み、および、スキルミオンメモリ100またはスキルミオンメモリデバイス110からデータを読み出して外部に出力する機能の少なくとも一方を有する。
 図28は、通信装置500の構成例を示す模式図である。通信装置500は、例えば携帯電話機、スマートフォン、タブレット型端末等の、外部との通信機能を有する装置全般を指す。通信装置500は携帯型であってよく、非携帯型であってもよい。通信装置500は、スキルミオンメモリ100またはスキルミオンメモリデバイス110と、通信部510とを備える。スキルミオンメモリ100またはスキルミオンメモリデバイス110は、図1から図24Bにおいて説明したスキルミオンメモリ100またはスキルミオンメモリデバイス110である。通信部510は、通信装置500の外部との通信機能を有する。通信部510は、無線通信機能を有してよく、有線通信機能を有してよく、無線通信および有線通信の双方の機能を有していてもよい。通信部510は、外部から受信したデータをスキルミオンメモリ100またはスキルミオンメモリデバイス110に書き込む機能、スキルミオンメモリ100またはスキルミオンメモリデバイス110から読み出したデータを外部に送信する機能、および、スキルミオンメモリ100またはスキルミオンメモリデバイス110が記憶した制御情報に基づいて動作する機能の少なくとも一つを有する。
 また、スキルミオンメモリ100またはスキルミオンメモリデバイス110を適用した電子機器における電力の省力化も実現できることから、搭載電池の長寿命化が実現できる。これはスキルミオンメモリ100またはスキルミオンメモリデバイス110を適用するモバイル電子機器において、さらに画期的な仕様をユーザ側に提供することが可能となる。ちなみに電子機器としては、パーソナルコンピュータ、画像記録装置等を始め、いかなるものであってもよい。
 またCPUを搭載した通信装置(携帯電話機、スマートフォン、タブレット型端末等)について、スキルミオンメモリ100またはスキルミオンメモリデバイス110を適用することにより、画像情報の取り込みや、多彩で大規模なアプリケーションプログラムの動作をより高速に実現でき、また高速な応答性を実現できることからユーザにとって快適な使用環境を確保することが可能となる。また、画面上に表示する画像表示の高速化等も実現できることから、その使用環境をさらに向上できる。
 またスキルミオンメモリ100またはスキルミオンメモリデバイス110をデジタルカメラ等の電子機器に適用することで、動画を大容量に亘り記録することが可能となる。またスキルミオンメモリ100またはスキルミオンメモリデバイス110を4Kテレビジョン受像機等の電子機器に適用することで、その画像記録の大容量化を実現することが可能となる。その結果、テレビジョン受像機において外付けハードディスクの接続の必要性を無くすことが可能となる。またスキルミオンメモリ100またはスキルミオンメモリデバイス110は、ハードディスクをはじめとしたデータ記録装置に適用する場合に加え、データ記録媒体として具体化してもよい。
 また自動車用のナビゲーションシステム等の電子機器に対してもこのスキルミオンメモリ100またはスキルミオンメモリデバイス110を適用することでさらに高機能化を実現することが可能となり、大量の地図情報も簡単に記憶可能となる。
 またスキルミオンメモリ100またはスキルミオンメモリデバイス110は、自走装置、飛行装置を実用化する上で大きなインパクトをもたらすと期待できる。即ち、飛行装置の複雑な制御処理、天候情報処理、高精細の画質からなる映像の提供による乗客用のサービスの充実、さらには宇宙飛行装置の制御や観察した画像情報の膨大な記録情報を記録し、人類に多くの知見をもたらす。
 また、スキルミオンメモリ100またはスキルミオンメモリデバイス110は磁気モーメントの構造を使い、その構造はトポロジカル安定性を有するメモリであるが故に、宇宙空間に飛び交う高エネルギー素粒子に対して高い耐性をもっている。電子に伴う電荷を記憶保持媒体として使うフラッシュメモリと大きく異なる長所を有する。このため宇宙空間飛行装置などの記憶媒体として重要である。
10・・・磁性体、12・・・上流側電極、14・・・下流側電極、15・・・スキルミオン検出素子、16・・・安定部、16-1・・・安定部、16-2・・・安定部、18・・・凸部、19・・・境界部、20・・・磁場発生部、22・・・絶縁体層、30・・・磁気素子、31・・・測定用電源、32・・・電流計、34・・・測定部、40・・・スキルミオン、52・・・電源、60・・・磁性体層、61・・・絶縁体、65・・・磁性体保護層、66・・・磁性体保護膜、67・・・第1ビア、70・・・第1配線層、71・・・第1配線、72・・・第1配線保護膜、73・・・第2ビア、75・・・第2配線層、76・・・第2配線、77・・・第2配線保護膜、80・・・基板、85・・・レジスト、90・・・CMOS-FET、91・・・PMOS-FET、92・・・NMOS-FET、95・・・書込ワード線、96・・・ビット線、97・・・読出ワード線、98・・・検出回路、100・・・スキルミオンメモリ、110・・・スキルミオンメモリデバイス、151・・・非磁性体薄膜、181・・・スイッチ、183・・・スイッチ、184・・・スイッチ、200・・・スキルミオンメモリ搭載固体電子デバイス、210・・・固体電子デバイス、300・・・データ処理装置、310・・・プロセッサ、400・・・データ記録装置、410・・・入出力装置、500・・・通信装置、510・・・通信部

Claims (29)

  1.  スキルミオンを転送可能な磁気素子であって、
     非磁性体に囲まれた薄層状の磁性体と、
     前記磁性体の延展方向に接続した非磁性金属である上流側電極と、
     前記上流側電極と離間して前記磁性体の延展方向に接続した非磁性金属である下流側電極と、
     前記スキルミオンの位置を検出するスキルミオン検出素子と、
     前記磁性体は、前記磁性体の他の領域よりも前記スキルミオンが安定して存在する安定部を複数有し、
     前記上流側電極と前記下流側電極との間に流す電流の方向を、1又は複数のスキルミオンを転送する方向に対して略垂直に配置した横電流配置であることを特徴とする磁気素子。
  2.  複数の前記安定部を、前記磁性体において前記上流側電極および前記下流側電極が挟む領域に設けた
     請求項1記載の磁気素子。
  3.  複数の前記安定部を、前記上流側電極および前記下流側電極の間に流れる電流の向きに対して略直交する方向に配列した
     請求項2記載の磁気素子。
  4.  前記磁性体は、印加磁場に応じて、前記スキルミオンが発生するスキルミオン結晶相と強磁性相とが少なくとも発現する、
     請求項1から3のいずれか1項に記載の磁気素子。
  5.  前記磁性体はカイラル磁性体、ダイポール磁性体、フラストレート磁性体、または、磁性材料と非磁性材料との積層構造のいずれかからなる
     請求項4に記載の磁気素子。
  6.  前記スキルミオン検出素子は、
     前記磁性体の一面において前記磁性体の表面に接する非磁性絶縁体薄膜と、前記非磁性絶縁体薄膜上に設けた磁性体金属との積層構造を有し、
     前記積層構造は、前記スキルミオンの位置に応じて、抵抗値が変化する請求項1から5のいずれか1項記載の磁気素子。
  7.  前記スキルミオン検出素子の前記積層構造は、前記上流側電極と前記下流側電極の間における複数の前記安定部の内、少なくとも一つの安定部に位置する請求項6に記載の磁気素子。
  8.  前記上流側電極および前記下流側電極が挟む前記磁性体の高さHmはスキルミオン直径をλとして、3・λ>Hm≧λ/2である
     請求項1から7のいずれか1項記載の磁気素子。
  9.  前記上流側電極および前記下流側電極のそれぞれは、前記磁性体の内部に突出する凸部を有し、
     それぞれの前記凸部により分割される磁性体の各領域が、前記安定部として機能する
     請求項1から8のいずれか1項記載の磁気素子。
  10.  前記上流側電極および前記下流側電極の各凸部が同一形状である
     請求項9に記載の磁気素子。
  11.  複数の前記安定部における各安定部間の距離は、スキルミオン直径をλとして、λ/2>d2≧λ/10である
     請求項1から10のいずれか一項に記載の磁気素子。
  12.  請求項1から11のいずれか1項記載の磁気素子と、
     前記磁性体に対向して設けた、前記磁性体に磁場を印加可能な磁場発生部と、
     前記上流側電極および前記下流側電極に接続し、前記上流側電極と前記下流側電極との間の前記磁性体に電流を印加する電源と、
     前記スキルミオン検出素子に接続し、前記スキルミオン検出素子の検出結果に基づいて、前記スキルミオンの位置を測定する測定部と
     を備えるスキルミオンメモリ。
  13.  前記磁気素子が、転送用電流が流れる方向とは直交する方向に配列した3以上の安定部を有しており、シフトレジスタとして機能する請求項12に記載のスキルミオンメモリ。
  14.  前記磁性体は閉経路形状を有し、
     複数の前記安定部を、前記磁性体の閉経路形状を1周するように配列した
     請求項12に記載のスキルミオンメモリ。
  15.  前記電源が、正の転送用電流パルスを前記上流側電極から下流側電極に印加することにより第1の安定部から第2の安定部に前記スキルミオンを転送し、負の転送用電流パルスを前記上流側電極から下流側電極に印加することにより前記第2の安定部から前記第1の安定部に前記スキルミオンを転送する
     請求項12から14のいずれか一項記載のスキルミオンメモリ。
  16.  前記電源が印加する正の前記転送用電流パルスと、負の前記転送用電流パルスの電流密度が等しい請求項15記載のスキルミオンメモリ。
  17.  前記電源が、前記転送用電流パルスより大きい電流密度の消去用電流パルスを印加することにより前記スキルミオンを前記磁性体から消去する請求項15または16記載のスキルミオンメモリ。
  18.  前記消去用電流パルスのパルス幅は、前記転送用電流パルスのパルス幅より長い
     請求項17に記載のスキルミオンメモリ。
  19.  前記磁場発生部は、前記磁性体の前記安定部に対向する領域の磁気モーメントの大きさが、他の領域と比べて小さい請求項12から18のいずれか1項記載のスキルミオンメモリ。
  20.  前記磁場発生部は、磁性体の前記安定部に対向する領域の膜厚が、他の領域と比べて薄い請求項12から18のいずれか1項記載のスキルミオンメモリ。
  21.  前記測定部は、前記スキルミオンの位置を、前記スキルミオン検出素子が検出する抵抗値または電圧値の変化として測定する
     請求項12から18のいずれか1項記載のスキルミオンメモリ。
  22.  前記磁気素子を、厚さ方向に複数積層して有する、
     請求項12から21のいずれか1項記載のスキルミオンメモリ。
  23.  請求項12から22のいずれか1項記載の複数のスキルミオンメモリと、
     前記複数のスキルミオンメモリに接続し、それぞれ対応する前記スキルミオンメモリに、前記スキルミオンを複数の前記安定部間で転送するスキルミオン転送用電流を供給する複数のスキルミオン転送線と、
     前記複数のスキルミオンメモリに接続し、それぞれ対応する前記磁気素子の前記スキルミオンの位置に応じた電圧または電流を伝送する複数の読出ワード線と、
     前記複数のスキルミオン転送線、および、前記複数の読出ワード線に設けた、前記スキルミオンメモリを選択する複数のスイッチと、
     前記読出ワード線に流れる電流もしくは電圧に基づいて、前記スイッチにより選択した前記磁気素子における前記スキルミオンの位置を検出する検出回路と
     を備えるスキルミオンメモリデバイス。
  24.  前記複数のスキルミオン転送線のうち、第1のスキルミオン転送線は、対応する前記スキルミオンメモリの前記上流側電極に接続し、
     前記複数のスキルミオン転送線のうち、第2のスキルミオン転送線は、対応する前記スキルミオンメモリの前記下流側電極に接続し、
     それぞれの読出ワード線は、対応する前記スキルミオンメモリのスキルミオン検出素子に接続し、
     前記複数のスイッチは、いずれかの前記スキルミオンメモリにおいて前記スキルミオンを転送および消去する場合に、対応する前記第1のスキルミオン転送線および第2のスキルミオン転送線を選択し、いずれかの前記スキルミオンメモリにおいて前記スキルミオンの有無を検出する場合に、対応する前記第1のスキルミオン転送線または第2のスキルミオン転送線のうち一つを選択し、且つ、対応する前記読出ワード線を選択する請求項23に記載のスキルミオンメモリデバイス。
  25.  基板と、
     前記基板上に形成した半導体素子と、
     前記半導体素子の上方に積層した、請求項12から22のいずれか1項記載の少なくとも一つのスキルミオンメモリと
     を備えるスキルミオンメモリデバイス。
  26.  請求項12から22のいずれか1項記載のスキルミオンメモリ、または、請求項23から25のいずれか1項記載のスキルミオンメモリデバイスと、固体電子デバイスとを同一チップ内に備えるスキルミオンメモリ搭載固体電子デバイス。
  27.  請求項12から22のいずれか1項記載のスキルミオンメモリ、または、請求項23から25のいずれか1項記載のスキルミオンメモリデバイスを搭載したデータ記録装置。
  28.  請求項12から22のいずれか1項記載のスキルミオンメモリ、または、請求項23から25のいずれか1項記載のスキルミオンメモリデバイスを搭載したデータ処理装置。
  29.  請求項12から22のいずれか1項記載のスキルミオンメモリ、または、請求項23から25のいずれか1項記載のスキルミオンメモリデバイスを搭載した通信装置。
PCT/JP2015/075118 2014-10-28 2015-09-03 磁気素子、スキルミオンメモリ、スキルミオンメモリデバイス、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置および通信装置 WO2016067744A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177005705A KR102062369B1 (ko) 2014-10-28 2015-09-03 자기 소자, 스커미온 메모리, 스커미온 메모리 장치, 스커미온 메모리 탑재 고체 전자 장치, 데이터 기록 장치, 데이터 처리 장치 및 통신 장치
KR1020197038689A KR102099068B1 (ko) 2014-10-28 2015-09-03 자기 소자, 스커미온 메모리, 스커미온 메모리 장치, 스커미온 메모리 탑재 고체 전자 장치, 데이터 기록 장치, 데이터 처리 장치 및 통신 장치
EP15855066.5A EP3214663B1 (en) 2014-10-28 2015-09-03 Magnetic device, skyrmion memory, skyrmion memory device, solid-state electronic device equipped with skyrmion memory, data recording device, data processing device, and communication device
JP2016556417A JP6674899B2 (ja) 2014-10-28 2015-09-03 磁気素子、スキルミオンメモリ、スキルミオンメモリデバイス、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置および通信装置
US15/450,003 US9859017B2 (en) 2014-10-28 2017-03-05 Magnetic element, skyrmion memory, skyrmion memory-device, solid-state electronic device, data-storage device, data processing and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-219692 2014-10-28
JP2014219692 2014-10-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/450,003 Continuation US9859017B2 (en) 2014-10-28 2017-03-05 Magnetic element, skyrmion memory, skyrmion memory-device, solid-state electronic device, data-storage device, data processing and communication device

Publications (1)

Publication Number Publication Date
WO2016067744A1 true WO2016067744A1 (ja) 2016-05-06

Family

ID=55857090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075118 WO2016067744A1 (ja) 2014-10-28 2015-09-03 磁気素子、スキルミオンメモリ、スキルミオンメモリデバイス、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置および通信装置

Country Status (5)

Country Link
US (1) US9859017B2 (ja)
EP (1) EP3214663B1 (ja)
JP (1) JP6674899B2 (ja)
KR (2) KR102062369B1 (ja)
WO (1) WO2016067744A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162843A (ja) * 2015-02-27 2016-09-05 公立大学法人大阪府立大学 磁気デバイス及び論理回路装置
WO2018092610A1 (ja) * 2016-11-18 2018-05-24 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載中央演算処理lsi、データ記録装置、データ処理装置およびデータ通信装置
WO2018092611A1 (ja) * 2016-11-18 2018-05-24 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載中央演算処理lsi、データ記録装置、データ処理装置およびデータ通信装置
JP2018195285A (ja) * 2017-05-18 2018-12-06 株式会社東芝 演算装置
WO2019087371A1 (ja) * 2017-11-02 2019-05-09 株式会社Nttドコモ ユーザ装置、及び制御情報送信方法
US11169732B2 (en) 2017-05-18 2021-11-09 Kabushiki Kaisha Toshiba Computing device

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101746698B1 (ko) * 2016-03-07 2017-06-14 울산과학기술원 스커미온 다이오드 및 그 제조 방법
CN106637416B (zh) * 2016-12-28 2018-11-20 厦门大学 矢量强磁场下分子束外延及其原位表征装置
WO2018204755A1 (en) * 2017-05-04 2018-11-08 Massachusetts Institute Of Technology Methods and apparatus for making magnetic skyrmions
KR102072069B1 (ko) * 2018-09-12 2020-01-30 한국과학기술연구원 스커미온 메모리
KR102166769B1 (ko) * 2019-09-30 2020-10-16 서울대학교산학협력단 스핀 홀 효과 조정을 이용한 스커미온 발진 소자
KR102273708B1 (ko) 2020-07-15 2021-07-06 한국과학기술연구원 고온에서 안정적으로 스커미온 격자를 생성하는 방법 및 장치
KR102361299B1 (ko) 2020-08-04 2022-02-11 한국표준과학연구원 스트라이프 스커미온에 기초한 논리 게이트
US20220181061A1 (en) * 2020-12-08 2022-06-09 Jannier Maximo Roiz-Wilson Warped Magnetic Tunnel Junctions and Bit-Patterned media
GB202107173D0 (en) * 2021-05-19 2021-06-30 Norwegian Univ Sci & Tech Ntnu Spin texture storage device
KR102656264B1 (ko) * 2022-06-28 2024-04-09 울산과학기술원 전류를 이용한 스커미온 백 형성 방법 및 장치
KR102692557B1 (ko) * 2023-08-07 2024-08-06 울산과학기술원 스커미온 백 구분 장치 및 방법

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086470A (ja) * 2012-10-19 2014-05-12 Institute Of Physical & Chemical Research スキルミオン駆動方法およびマイクロ素子

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58190710U (ja) 1982-06-15 1983-12-19 横河電機株式会社 追従回路の不良検出回路
US6834005B1 (en) 2003-06-10 2004-12-21 International Business Machines Corporation Shiftable magnetic shift register and method of using the same
GB0809403D0 (ja) * 2008-05-23 2008-07-02 Cambridge Entpr Ltd
JP5653379B2 (ja) * 2012-03-23 2015-01-14 株式会社東芝 磁気記憶素子、磁気メモリ及び磁気記憶装置
FR3009420B1 (fr) * 2013-08-01 2016-12-23 Thales Sa Dispositif a memoire, comprenant au moins un element spintronique et procede associe
WO2015118579A1 (ja) * 2014-02-10 2015-08-13 独立行政法人理化学研究所 スキルミオンの駆動方法
EP3166138B1 (en) * 2014-07-04 2020-11-11 Riken Magnetic element, skyrmion memory, solid-state electronic device, data recording device, data processor and communication device
EP3190627B1 (en) * 2014-09-02 2021-05-05 Riken Magnetic element, skyrmion memory, skyrmion memory device, solid-state electronic device, data recording device, data processing device, and data communication device
EP3196944B1 (en) * 2014-09-04 2021-05-05 Riken Magnetic element and skyrmion memory
JP6607737B2 (ja) * 2015-08-21 2019-11-20 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ及び演算処理装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086470A (ja) * 2012-10-19 2014-05-12 Institute Of Physical & Chemical Research スキルミオン駆動方法およびマイクロ素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASAHITO MOCHIZUKI ET AL.: "Peculiar thermal and current-driven dynamics of magnetic skyrmions", SOLID STATE PHYSICS, vol. 49, no. 3, 15 March 2014 (2014-03-15), pages 25 - 35, XP008183894 *
See also references of EP3214663A4 *
WATARU KOSHIBAE ET AL.: "Memory functions of magnetic skyrmions", JAPANESE JOURNAL OF APPLIED PHYSICS, vol. 54, no. 5, pages 053001 - 1 - 053001-8, XP055251134 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016162843A (ja) * 2015-02-27 2016-09-05 公立大学法人大阪府立大学 磁気デバイス及び論理回路装置
WO2018092610A1 (ja) * 2016-11-18 2018-05-24 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載中央演算処理lsi、データ記録装置、データ処理装置およびデータ通信装置
JP2018082124A (ja) * 2016-11-18 2018-05-24 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載中央演算処理lsi、データ記録装置、データ処理装置およびデータ通信装置
WO2018092611A1 (ja) * 2016-11-18 2018-05-24 国立研究開発法人理化学研究所 磁気素子、スキルミオンメモリ、スキルミオンメモリ搭載中央演算処理lsi、データ記録装置、データ処理装置およびデータ通信装置
KR20190065441A (ko) 2016-11-18 2019-06-11 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 자기 소자, 스커미온 메모리, 스커미온 메모리가 장착된 중앙 처리 lsi, 데이터 기록 장치, 데이터 처리 장치, 및 데이터 통신 장치
US10658426B2 (en) 2016-11-18 2020-05-19 Riken Magnetic element, skyrmion memory, skyrmion memory-mounted central processing LSI, data recording apparatus, data processing apparatus, and data communication apparatus
JP2018195285A (ja) * 2017-05-18 2018-12-06 株式会社東芝 演算装置
US11169732B2 (en) 2017-05-18 2021-11-09 Kabushiki Kaisha Toshiba Computing device
WO2019087371A1 (ja) * 2017-11-02 2019-05-09 株式会社Nttドコモ ユーザ装置、及び制御情報送信方法

Also Published As

Publication number Publication date
US20170178746A1 (en) 2017-06-22
KR20200001622A (ko) 2020-01-06
EP3214663B1 (en) 2021-11-03
EP3214663A4 (en) 2018-06-13
JPWO2016067744A1 (ja) 2017-08-10
KR102099068B1 (ko) 2020-04-08
US9859017B2 (en) 2018-01-02
EP3214663A1 (en) 2017-09-06
JP6674899B2 (ja) 2020-04-01
KR20170042623A (ko) 2017-04-19
KR102062369B1 (ko) 2020-01-03

Similar Documents

Publication Publication Date Title
WO2016067744A1 (ja) 磁気素子、スキルミオンメモリ、スキルミオンメモリデバイス、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置および通信装置
US9748000B2 (en) Magnetic element, skyrmion memory, solid-state electronic device data recording apparatus, data processing apparatus, and communication apparatus
US10003010B2 (en) Magnetic element, skyrmion memory, skyrmion memory device, skyrmion-memory embedded solid-state electronic device, data storage apparatus, data processing and communication apparatus
US10141068B2 (en) Magnetic element, skyrmion memory, skyrmion memory-device, solid-state electronic device, data-storage device, data processing and communication device
JP2016517165A (ja) スピンホールmtjデバイスを有するクロスポイントアレイのmram
US20170271576A1 (en) Magnetic diffusion barriers and filter in psttm mtj construction
TWI559454B (zh) Memory elements and memory devices
US9620189B2 (en) Magnetic memory
TWI566418B (zh) 儲存元件及記憶體
JP6436348B2 (ja) 磁気素子、スキルミオンメモリ、スキルミオンメモリデバイス、データ処理装置、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置及びデータ通信装置
WO2015146827A1 (ja) スキルミオンメモリ及びスキルミオンメモリを搭載した装置
JPWO2015146827A6 (ja) スキルミオンメモリ及びスキルミオンメモリを搭載した装置
JPWO2015137335A1 (ja) 磁気素子、スキルミオンメモリおよびスキルミオンメモリを搭載した装置
Kishi et al. Examination of Magnetization Switching Behavior by Bi-Directional Read of Spin-Orbit-Torque MRAM

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15855066

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177005705

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015855066

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015855066

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016556417

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE