WO2015146827A1 - スキルミオンメモリ及びスキルミオンメモリを搭載した装置 - Google Patents

スキルミオンメモリ及びスキルミオンメモリを搭載した装置 Download PDF

Info

Publication number
WO2015146827A1
WO2015146827A1 PCT/JP2015/058465 JP2015058465W WO2015146827A1 WO 2015146827 A1 WO2015146827 A1 WO 2015146827A1 JP 2015058465 W JP2015058465 W JP 2015058465W WO 2015146827 A1 WO2015146827 A1 WO 2015146827A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
metal electrode
nonmagnetic metal
magnetic body
skyrmion
Prior art date
Application number
PCT/JP2015/058465
Other languages
English (en)
French (fr)
Inventor
直人 永長
航 小椎八重
惇一 岩崎
雅司 川▲崎▼
金子 良夫
十倉 好紀
Original Assignee
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人理化学研究所 filed Critical 国立研究開発法人理化学研究所
Priority to JP2016510296A priority Critical patent/JP6526628B2/ja
Publication of WO2015146827A1 publication Critical patent/WO2015146827A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/18Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/1284Spin resolved measurements; Influencing spins during measurements, e.g. in spintronics devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1673Reading or sensing circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C19/00Digital stores in which the information is moved stepwise, e.g. shift registers
    • G11C19/02Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements
    • G11C19/08Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure
    • G11C19/0808Digital stores in which the information is moved stepwise, e.g. shift registers using magnetic elements using thin films in plane structure using magnetic domain propagation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]

Definitions

  • the present invention relates to a skillmion memory, a CMOS-LSI device equipped with a skillmion memory, a personal computer, a data recording medium, a data recording device, a mobile phone, a smart phone, a digital camera, a stick memory, a communication device, an image recording device, and a television receiver.
  • the present invention relates to an aircraft, a self-propelled device, a flying device, and a space flight device.
  • ⁇ I do not know that the demand for larger storage capacity will remain.
  • the number of pixels of the image element increases, the required storage amount is equivalent to 1 Mbit, and the moving image has an information amount exceeding 1 Gbit.
  • the storage capacity of storage devices is increasing from 1T bits.
  • the capacity of SD cards for imaging devices such as cameras and video cameras is increasing.
  • Magnetic elements that use the magnetic structure of magnetic materials as storage bits have secured their status as mass storage devices. Magnetic elements are becoming increasingly important as memory devices in electronic devices because nanoscale magnetic structures can retain their information without consuming power.
  • the purpose of this is to omit the control circuit and shorten the control time accompanying the exchange of signals between the silicon chip composed of CMOS circuits and the non-volatile element chip. It is.
  • Patent Document 1 a material having a skirmion magnetic structure in a chiral magnetic body under an external magnetic field.
  • skyrmions can be driven by current, and a magnetic element using this magnetic structure has been proposed (Patent Document 1).
  • the skyrmion has a spiral magnetic structure having a magnetic moment antiparallel to the magnetic field applied at the center and a magnetic moment parallel to the applied magnetic field at the periphery.
  • Skyrmion is expected to be applied as a large-capacity storage magnetic element having a nanoscale-sized magnetic structure with a diameter of 1 to 100 nm and capable of storing a large amount of bit information in an extremely fine manner.
  • Skyrmion is also a magnetic structure that can transfer this bit information directly and can be applied to information computation and transmission.
  • Skyrmion devices are expected to play a fundamental role in next-generation magnetic memory devices that give a breakthrough to the performance limitations of data recording media and data recording devices that require ever increasing storage capacities. Expected.
  • magnetic memory is highly resistant to various types of elementary particles and radiation in outer space.
  • Skyrmion memory has the same characteristics.
  • such a large-capacity magnetic memory does not require a rotating mechanism such as a motor. Therefore, large-capacity magnetic memory is expected to occupy a position as the main role of memory in outer space.
  • flash memories that use electrons that have recently emerged as memory media as storage bits are not suitable for such an environment. This is because electrons easily overcome the energy barrier of the silicon oxide film with high-energy elementary particles or radiation, and cause data erasure or erroneous writing.
  • a magnetic shift register 1 is proposed in which magnetic domain walls are driven around US IBM, the magnetic moment arrangement is transferred by current, and stored information is read out. (See Patent Document 2).
  • FIG. 9 is a schematic diagram showing the principle of magnetic domain domain wall drive by electric current.
  • a domain domain wall is a boundary between magnetic regions in which the directions of magnetic moments are opposite to each other.
  • the magnetic domain domain wall is driven by the current in the direction of the arrow.
  • the magnetic change caused by the movement of the domain domain wall due to the direction of the magnetic moment storing the information constituting the domain is detected by the lower magnetic sensor 2 to extract the magnetic information.
  • Such a magnetic shift register 1 has the disadvantages that a large current is required to move the magnetic domain domain wall and that the transfer speed of the magnetic domain domain wall is slow. As a result, there have been problems such as a delay in memory writing and a longer time required for erasing.
  • the inventor of the present application has proposed a skirmion magnetic element using skirmion generated in a magnetic material as a storage unit (see Patent Document 1).
  • the inventors have shown that skyrmions can be driven by current.
  • a magnetic bubble is moved on the edge by fixing a magnetic bubble to an edge of a material such as permalloy having a specific shape and rotating a magnetic field. That is, in a magnetic element memory using magnetic bubbles, a rotating magnetic field is always required.
  • Non-Patent Document 1 Naoto Naganaga, Yoshinori Tokura, “Topological properties and dynamics”, Nature Nanotechnology, United Kingdom, Nature Publishing Group, V 8, p899-911.
  • the inventor of the present application developed a skillmion memory having a high-speed reading function by the skillmion sensor after clarifying the details of the magnetic sensor for skillmion that detects the skillmion.
  • This read function is indispensable as a function that constitutes a memory.
  • an OS program stored in a non-volatile memory when information processing is performed using a CPU (Central Processing Unit) is read and RAM (Random Access Memory ) Is an indispensable function.
  • CPU Central Processing Unit
  • RAM Random Access Memory
  • the read function is also indispensable when dealing with a database having a huge amount of information.
  • the reading speed is a critical factor related to the increase in the information processing speed.
  • the present invention relates to a skirmion memory capable of reading a large amount of information with low power consumption and high speed, a CMOS-LSI device equipped with a skirmion memory, a personal computer incorporating a skirmion memory, and a data recording medium
  • An object of the present invention is to provide a data recording device, a mobile phone, a smart phone, a digital camera, a stick memory, a communication device, an image recording device, a television receiver, a self-propelled device, a flying device, and a space flight device.
  • a thin-layered magnetic body capable of generating skyrmions
  • a magnetic field generator that is provided opposite to one surface side of the magnetic body and that can apply a magnetic field to the magnetic body
  • a thin-layered first nonmagnetic metal electrode connected in the extending direction
  • a thin-layered second nonmagnetic metal connected to the magnetic material at a position facing the first nonmagnetic metal electrode in the extending direction of the magnetic material
  • a skyrmion memory comprising an electrode and a resistance detection unit that detects a resistance between a first nonmagnetic metal electrode and a second nonmagnetic metal electrode.
  • a thin-layered magnetic body capable of generating skyrmions
  • a magnetic field generator provided opposite to one surface of the magnetic body and capable of applying a magnetic field to the magnetic body
  • a thin layered first nonmagnetic metal electrode connected in the extending direction
  • a thin layered second nonmagnetic metal electrode connected to the magnetic material at a position contacting the surface of the magnetic material and spaced apart from the first nonmagnetic metal electrode
  • a skyrmion memory comprising: a resistance detection unit configured to detect a resistance between the first nonmagnetic metal electrode and the second nonmagnetic metal electrode.
  • a thin-layered magnetic body capable of generating skyrmions
  • a magnetic field generator that is provided opposite to one surface of the magnetic body and that can apply a magnetic field to the magnetic body
  • a thin first nonmagnetic metal electrode connected in the extending direction, an insulating film formed on the surface of the magnetic body, and a magnetic metal layer formed on the insulating film at a position spaced from the first nonmagnetic metal
  • a thin-layered second nonmagnetic metal electrode connected to the magnetic metal layer, and a resistance detector for detecting a resistance between the first nonmagnetic metal electrode and the second nonmagnetic metal electrode.
  • the skyrmion memories of the first to third embodiments further include a current circuit that conducts the first nonmagnetic metal electrode and the second nonmagnetic metal electrode, and the resistance detector is connected to the current circuit and flows through the current circuit. May be detected.
  • a thin-layered magnetic body capable of generating skyrmions
  • a magnetic field generator that is provided facing one surface side of the magnetic body and can apply a magnetic field to the magnetic body
  • a thin-layered first nonmagnetic metal electrode connected in the extending direction
  • a thin-layered second nonmagnetic metal connected to the magnetic material at a position facing the first nonmagnetic metal electrode in the extending direction of the magnetic material
  • An electrode and a thin third nonmagnetic metal electrode connected to the magnetic body in a direction in which the magnetic body extends and substantially perpendicular to the opposing direction of the first nonmagnetic metal electrode and the second nonmagnetic metal electrode
  • a first current circuit for conducting the first nonmagnetic metal electrode and the second nonmagnetic metal electrode
  • the magnetic body may be any one of a chiral magnetic body, a dipole magnetic body, a frustrated magnetic body, and a laminated structure of a magnetic material and a nonmagnetic material.
  • the skirmion memory-equipped CMOS-LSI wherein the skyrmion memory of any one of the first to fourth aspects and the CMOS-LSI device are formed in the same chip. Provide a device.
  • a personal computer a data recording medium, a data recording device, a mobile phone, a smart phone, a digital, which is equipped with the skillmion memory of any one of the first to fourth aspects
  • a camera a stick memory, a communication device, an image recording device, a television receiver, a self-propelled device, a flying device, and a space flight device.
  • a skirmion memory capable of reading a large amount of information with low power consumption and high speed
  • a CMOS-LSI device equipped with a skirmion memory and a personal computer incorporating the skirmion memory
  • Data recording medium, data recording device, mobile phone, smart phone, digital camera, stick memory, communication device, image recording device, television receiver, self-propelled device, flying device, and space flight device can be provided.
  • FIG. 3A is a schematic diagram illustrating a state in which a skillmion is not generated
  • FIG. 3B is a schematic diagram illustrating a state in which a skillmion is generated.
  • FIG. 3A is a schematic diagram illustrating a state in which a skillmion is not generated
  • FIG. 3B is a schematic diagram illustrating a state in which a skillmion is generated.
  • It is a schematic diagram which shows the skyrmion memory which concerns on 2nd Embodiment.
  • It is sectional drawing which shows the state which looked at the skyrmion memory of FIG. 4 from the side.
  • FIG. 1 is a schematic diagram illustrating an example of a skyrmion, which is a nanoscale magnetic structure of a magnetic moment in a magnetic material.
  • an arrow indicates the direction of the magnetic moment.
  • ⁇ Skyrmions are composed of magnetic moments that face every direction.
  • the outermost peripheral magnetic moment is upward as in the direction of the magnetic field and parallel to the magnetic field.
  • the skyrmion has a planar shape that rotates inward from the outermost periphery in a spiral shape, and the direction of the magnetic moment gradually changes accordingly.
  • the magnetic moments are regularly arranged from the center to the outermost edge, continuously changing from downward to upward, resulting in a structure in which multiple magnetic moments are regularly arranged like a vortex. Yes.
  • the direction of the magnetic moment at the center and the magnetic moment at the outermost periphery are antiparallel, and the directions are continuously twisted from the center to the outer periphery to form a spiral structure.
  • the nano-scale magnetic structure swirling in the magnetic material is characterized by the skyrmion number.
  • the number of skyrmions is expressed by the following [Equation 1] and [Equation 2] indicating how many times the magnetic moment is swirled per unit space.
  • the polar angle ⁇ (r) with the magnetic moment is a continuous function of the distance r from the center of skyrmion, and when r is changed from 0 to ⁇ , from ⁇ to zero or from zero to ⁇ Change.
  • FIG. 2 is a diagram illustrating an example of simulation results of skyrmions having different phases.
  • FIG. 2E shows how to take coordinates (right-handed system). The z-axis is taken from the back of the page to the front with respect to the x-axis and y-axis. The shading indicates the direction of the magnetic moment. The arrow indicates the magnetic moment.
  • the magnetic structure shown in FIG. 2 is in a state defined as skyrmion.
  • indicates the phase between magnetic moments.
  • FIG. 2 four examples (A) to (D) of different phases ⁇ are shown.
  • FIGS. 2A to 2D seem to be different, they are the same magnetic structure in terms of topology.
  • the skyrmion having such a structure exists stably once generated, and acts as a carrier responsible for information transmission in a chiral magnetic body under the application of an external magnetic field.
  • the magnetic body is not a chiral magnetic body exhibiting helical magnetism but a dipole magnetic body, a frustrated magnetic body, or a laminated structure of a magnetic material and a nonmagnetic material, it has the above-described skyrmion phase. be able to.
  • Dipole magnetic material is a magnetic material in which magnetic dipole interaction is important.
  • the frustrated magnetic material is a magnetic material including a spatial structure of magnetic interaction that prefers a magnetic incommensurate state.
  • a magnetic body having a laminate of a magnetic material and a nonmagnetic material is a magnetic body in which the magnetic moment of the magnetic material in contact with the nonmagnetic material is modulated by the spin-orbit interaction of the nonmagnetic material.
  • FIG. 3A and 3B show the skyrmion memory 100 according to the first embodiment, in which FIG. 3A is a schematic diagram showing a state in which the skillmion S is not generated, and FIG. 3B is a schematic diagram showing a state in which the skillion S is generated. It is.
  • the skyrmion memory 100 determines the presence or absence of the skyrmion S by detecting the resistance of the magnetic body 12, thereby reading out the information stored in the skyrmion memory 100.
  • the skyrmion memory 100 includes a magnetic element 10, a magnetic field generator 16 provided on the lower surface side of the magnetic element 10, a current circuit 17 connected to the magnetic element 10, and a current detector 15 connected to the current circuit 17. It is configured.
  • the magnetic element 10 is an element formed in a thin layer having a thickness of 500 nm or less, and is formed using a technique such as MBE (Molecular Beam Epitaxy) or sputtering.
  • MBE Molecular Beam Epitaxy
  • the magnetic element 10 includes a thin layered magnetic body 12, a thin layered first nonmagnetic metal electrode 11 connected in the extending direction of the magnetic body 12, and a first nonmagnetic metal electrode extending in the extending direction of the magnetic body 12. 11 and a thin layer-like second nonmagnetic metal electrode 13 connected to the magnetic body 12 at a position facing the magnetic body 12.
  • the magnetic body 12 is a chiral magnetic body capable of generating skyrmions, and is made of FeGe, MnSi, or the like.
  • the magnetic body 12 is a chiral magnetic phase when the applied magnetic field strength is less than or equal to a predetermined magnetic field strength Hsk, and becomes a skirmion phase when the magnetic field strength is greater than the magnetic field strength Hsk.
  • the magnetic body 12 becomes a ferromagnetic phase with a stronger magnetic field strength Hf.
  • the first nonmagnetic metal electrode 11 and the second nonmagnetic metal electrode 13 are made of a conductive nonmagnetic metal such as Cu, W, Ti, TiN, Al, Pt, or Au.
  • the magnetic field generator 16 is provided opposite to the lower surface side of the magnetic body 12 in FIG. 3 and applies a magnetic field in the direction of arrow M to the magnetic body 12.
  • the magnetic field generator 16 may apply a magnetic field greater than the above-described magnetic field strength Hf to the magnetic body 12. That is, the magnetic field generator 16 applies a magnetic field that makes the magnetic body 12 a ferromagnetic phase. Once generated, skyrmions exist stably in the magnetic substance 12 in the ferromagnetic phase.
  • the current circuit 17 is connected to and conducts the first nonmagnetic metal electrode 11 and the second nonmagnetic metal electrode 13. Further, when the skyrmion memory 100 is mounted on various devices, the current circuit 17 is connected to an external power source 14 that is a power source built in these devices, and the first nonmagnetic metal electrode 11 and the second nonmagnetic material. A current can be supplied to the metal electrode 13.
  • the current detector 15 is connected to the current circuit 17 and detects the current flowing through the current circuit 17.
  • the second nonmagnetic metal electrode 13 is connected in the extending direction of the magnetic body 12.
  • the mode of connection of the second nonmagnetic metal electrode 13 to the magnetic body 12 is not limited to this, and the second nonmagnetic metal electrode 13 may be stacked and connected to the magnetic body 12.
  • the skillion S is performed by the skillion S.
  • the skyrmion S is used as bit information, and digital information is recorded with 1 when the skyrmion S exists in the magnetic body 12 of the magnetic element 10 and 0 when it does not exist.
  • the skyrmion memory 100 is configured to include one or more such magnetic elements 10, and the number of magnetic elements 10 is adjusted according to the memory capacity.
  • skyrmion memory 100 information is read by detecting the presence or absence of the skyrmion S in the magnetic body 12.
  • the presence or absence of the skillmion S at the time of reading such information is detected by detecting the current I flowing through the magnetic body 12.
  • detection of the presence or absence of skirmion S by detecting the current I of the magnetic body 12 performed in the present embodiment will be described.
  • the magnetic field generator 16 applies a magnetic field toward the magnetic body 12 of the magnetic element 10 in the direction of the arrow M.
  • a chiral magnetic body is a magnetic body in which the magnetic moment arrangement when no magnetic field is applied rotates on a spiral with respect to the direction of progression of the magnetic moment. By applying a magnetic field, the chiral magnetic body becomes a magnetic body that stabilizes skyrmions.
  • the vertical and horizontal sizes of the magnetic body 12 are less than twice the skillion size (that is, the diameter of the skillion).
  • a is the lattice constant of the magnetic body 12
  • D is the magnitude of the Jaroshinsky-Moriya interaction and is a physical constant specific to the substance
  • J is the magnitude of the magnetic exchange interaction of the magnetic body 12. Therefore, the skyrmion diameter ⁇ is a substance specific constant.
  • the skyrmion diameter ⁇ is, for example, 70 nm for FeGe and 18 nm for MnSi as shown in Non-Patent Document 1.
  • FIG. 3B shows a state where skyrmions are present, that is, a state where information of 1 is recorded.
  • an interaction acts between the magnetic moment of the magnetic ions and the magnetic moment of the conduction electrons so that the directions are stabilized in parallel with each other. Due to this interaction, in a magnetic material having a magnetic structure that is not spatially uniform, conduction electrons are scattered by the magnetic moment of magnetic ions.
  • the current detection unit 15 functions as a resistance detection unit.
  • the external power source 14 may apply a constant current between the nonmagnetic metal electrodes.
  • a voltage detector is provided instead of the current detector 15.
  • the resistance detection unit detects a change in electrical resistance as a change in voltage.
  • the resistance detection unit may measure the voltage between the predetermined electrodes in a state where a constant voltage is applied between the predetermined electrodes, and in a state where the constant voltage is applied between the predetermined electrodes. You may measure the electric current between predetermined electrodes.
  • the size between the electrodes is several tens of nanometers. Accordingly, the time required for detecting the skyrmion is in the picosecond order, and the magnetic information stored in the skyrmion memory 100 is read out in the picosecond order, so that the skyrmion memory 100 can achieve an ultra-high speed response. it can.
  • a TMR element used for reading magnetic information from a hard disk requires several nanoseconds because it involves spin rotation of a free magnetic layer as described above.
  • the flash memory of the type stored in the electron floating gate senses the potential from the floating gate and reads the threshold change, but requires 100 nanoseconds.
  • DRAM also reads information from the charge stored in the capacitor, but it requires several nanoseconds.
  • the read time of the skyrmion memory 100 is determined only by the stray capacitance between the wirings, and enables a high-speed read performance that is faster than a flash memory as well as a hard disk and surpasses DRAM.
  • FIG. 4 is a schematic diagram showing a skyrmion memory 200 according to the second embodiment.
  • FIG. 5 is a cross-sectional view of the skyrmion memory 200 of FIG. 4 as viewed from the side.
  • the skyrmion memory 200 detects the presence or absence of the skyrmion S by taking out and measuring the current of the magnetic body 22 from the center portion of the skyrmion S formed on the magnetic body 22. Information can be read out.
  • the skyrmion memory 200 includes a magnetic element 20, a magnetic field generator 26 provided on the lower surface side of the magnetic element 20, a current circuit 27 connected to the magnetic element 20, and a contact arm 24 that contacts the magnetic element 20. And a current detection unit 25 connected to the contact arm 24 via the current circuit 29. As will be described later, the contact arm 24 and the current detection unit 25 function as current detection means in the present embodiment.
  • the magnetic field generator 26 and the current circuit 27 are the same as the magnetic field generator 16 and the current circuit 17 in the first embodiment described above.
  • the magnetic element 20 includes a thin layered magnetic body 22 and a thin layered nonmagnetic metal electrode 23 connected in the extending direction of the magnetic body 12.
  • the magnetic body 22 is a chiral magnetic body that can generate skyrmions, and is made of FeGe, MnSi, or the like.
  • the nonmagnetic metal electrode 23 is made of a conductive nonmagnetic metal such as Cu, W, Ti, TiN, Al, Pt, or Au.
  • the current circuit 27 is connected to the external power supply 28, and the current I is applied to the magnetic element 20 through the current circuit 27 connected to the nonmagnetic metal electrode 23.
  • the contact arm 24 is made of a thin layered nonmagnetic metal for taking out the current I polarized from the center where the skyrmion S generated in the magnetic body 22 of the magnetic element 20 stably exists.
  • the contact arm 24 may be formed of Cu, W, Ti, TiN, Al, Pt, Au, or the like.
  • the contact arm 24 is connected to the current detection unit 25 via a current circuit 29.
  • the protrusion 241 is made of a nonmagnetic metal such as Cu, W, Ti, TiN, Al, Pt, or Au.
  • the current detector 25 detects the current flowing through the magnetic body 22 based on the current I guided from the contact arm 24 through the current circuit 29.
  • the current circuit 29 conducts between the contact arm 24 and the current detection unit 25.
  • the current circuit 29 is a wiring made of a nonmagnetic metal such as Cu, W, Ti, TiN, Al, Pt, or Au.
  • the contact arm 24 and the current circuit 29 may have a single configuration, and the contact arm 24 may function as a wiring as it is and be connected to the current detection unit 25.
  • the advantage of the skyrmion memory 200 according to the present embodiment is that the position of the skyrmion S on the two-dimensional surface can be detected. If multiple via hole arrays are arranged in a two-dimensional plane, it is possible to detect where skyrmions are present in the two-dimensional plane based on the magnitude of the current.
  • the skyrmion memory 200 can be detected without using a large inspection apparatus such as a transmission electron microscope.
  • the skyrmion memory 200 can be manufactured by a fine processing technique. If the current microfabrication technology is used, the skyrmion memory 200 having a 15 nm level decomposition ability (detection ability of skyrmion S) can be manufactured.
  • FIG. 6 is a schematic diagram showing a skyrmion memory 200 ′ according to the third embodiment.
  • the magnetic body 22 ′ and the protruding portion 241 ′ of the contact arm 24 ′ An insulating film 243 ′ is formed between the two. Further, the protrusion 241 ′ is made of a magnetic metal.
  • the magnetic body constituting the projecting portion 241 ′ functions as a magnetic pinned layer having a magnetic moment fixed in a specific direction.
  • An insulating film 243 ′ is formed between the magnetic pinned layer and the magnetic material 22 ′ forming skyrmion.
  • the insulating film 243 ′ is an insulating thin film such as an oxide film or a nitride film having a thickness of 3 nm or less.
  • the skirmion memory 200 ′ is the skirmion memory according to the second embodiment described above.
  • the configuration is the same as 200.
  • the skyrmion memory 200 ′ according to the present embodiment is the same as the second embodiment in that the polarized current I is extracted from the central portion where the skyrmion S exists, but the insulation is provided by sandwiching an insulating film. The difference is that the tunneling current through the membrane is measured.
  • the transmission probability of the current I passing through the insulating film is determined by the direction of the magnetic moment of the magnetic body constituting the projecting portion 241 ′ which is a fixed layer sandwiching the current I and the direction of the magnetic moment of the magnetic body 22 ′ capable of the skyrmion S. Depends on.
  • t r t 0 cos ( ⁇ r / 2).
  • S is a contact area between the insulating film 243 and the magnetic body 22 ′ forming the skyrmion S.
  • the magnetic body 22 ′ capable of forming the skyrmion S is a ferromagnetic phase, and the magnetic moment is directed from the bottom to the top.
  • the magnetic moment of the magnetic material of the projecting portion 241 ′ that is the fixed layer is also directed from the bottom to the top (when the skyrmion S does not exist)
  • the conductivity ratio g (G o ⁇ G sk ) / G 0 .
  • the conductivity ratio g or difference between G 0 and G sk it is possible to detect with high sensitivity whether or not the skillmion S is formed in the skillmion memory 200 ′.
  • Information stored in the Lumion memory 200 ′ can be read out. Note that the difference is measured by utilizing the property that the tunnel probability depends on the angle between the magnetic moments sandwiching the insulating film.
  • the magnetic body 22 ′ may be formed of a laminated structure with a ferromagnetic material or an antiferromagnetic material.
  • ferromagnetic materials in this case include Fe, Co, Ni, B alloys, magnetite, CrO 2 , RXMnO 3 -y (R is a rare earth element, X is an alkaline earth element), NiMnSb, PtMnSb, ZnMnO, TiMnO. , CdMnP 2 , ZnMnP 2 and the like.
  • Co 70 Fe 30 and (Co 70 Fe 30 ) 80 No 20 are desirable.
  • antiferromagnetic material examples include FeMn, PtMn, PtCrMn, PtPdMn, NiMn, IrMn, NiO and the like.
  • the insulating material examples include Al 2 O 3 , SiO 2 , MgO, AlN, AlON, GaO, Bi 2 O 3 , SrTiO 3 , and AlLaO 3 .
  • the direction of the magnetic moment of the protruding portion 241 ′ which is the fixed layer, may not be from above to below. That is, the direction of the magnetic moment may be a fixed direction, but in the description of the above-described embodiment, the direction is from bottom to top in order to simplify the description.
  • the advantage of the skirmion memory 200 ′ according to the present embodiment is that the position of the skirmion S on the two-dimensional surface can be detected as in the skirmion memory 200 according to the second embodiment described above. If a large number of via hole arrays are arranged in a two-dimensional plane, it is possible to detect where skyrmion S is present on the two-dimensional plane based on the current ratio, and to read information stored in skyrmion memory 200 ′ Can do.
  • the skyrmion memory 200 ′ can be detected without using a large inspection apparatus such as a transmission electron microscope.
  • the skyrmion memory 200 ′ can be manufactured by a fine processing technique. If the current microfabrication technology is used, the skyrmion memory 200 having a 15 nm level decomposition ability (detection ability of skyrmion S) can be manufactured.
  • FIG. 7 is a schematic diagram showing a skyrmion memory 300 according to the fourth embodiment.
  • the skyrmion memory 300 determines the presence or absence of the skyrmion S by detecting the Hall voltage generated in the magnetic body 32, thereby reading the information stored in the skyrmion memory 300.
  • the skyrmion memory 300 includes a magnetic element 30, a magnetic field generator 36 provided on the lower surface side of the magnetic element 30, a current circuit 37 connected to the magnetic element 30, and a magnetic circuit 30 via a current circuit 39. And a voltage detection unit 350 connected to each other.
  • the magnetic field generator 36 and the current circuit 37 are the same as the magnetic field generators 16 and 26 and the current circuits 17 and 27 according to the first and second embodiments described above, and when the skyrmion memory 300 is mounted on various devices,
  • the current circuit 37 can be connected to an external power supply 38.
  • the magnetic element 30 includes a thin layered magnetic body 32, a thin layered first nonmagnetic metal electrode 31 connected in the extending direction of the magnetic body 12, and a first nonmagnetic metal electrode extending in the extending direction of the magnetic body 32.
  • a thin layer-like second nonmagnetic metal electrode 33 connected to the magnetic body 32 at a position opposite to the magnetic body 31, and the extending direction of the magnetic body 32, and the first nonmagnetic metal electrode 31 and the second nonmagnetic metal electrode 33.
  • a thin-layered third nonmagnetic metal electrode 34 connected to the magnetic body 32 in a direction perpendicular to the facing direction.
  • the magnetic body 32 is a chiral magnetic body that can generate skyrmions, and is made of FeGe, MnSi, or the like.
  • the first nonmagnetic metal electrode 31, the second nonmagnetic metal electrode 33, and the third nonmagnetic metal electrode 34 are all made of a conductive nonmagnetic metal such as Cu, W, Ti, TiN, Al, Pt, or Au. .
  • the voltage detector 350 is connected to the second non-magnetic metal electrode and the third non-magnetic metal electrode 34 via the current circuit 39, and detects the Hall voltage generated in the magnetic body 32.
  • the current circuit 39 is a wiring made of a nonmagnetic metal such as Cu, W, Ti, TiN, Al, Pt, or Au.
  • the skyrmion S When a spin-polarized current I flows between the first nonmagnetic metal electrode 31 and the second nonmagnetic metal electrode 33, the skyrmion S has a Hall voltage in a direction perpendicular to the direction of the current I flowing between these electrodes. Is generated.
  • the detection of the Hall voltage thus generated is performed by the voltage detection unit 350 connected to the second nonmagnetic metal electrode 33 and the third nonmagnetic metal electrode 34.
  • this method requires a third nonmagnetic metal electrode 34 to be provided. There is.
  • the skillmion memories 100, 200, and 200 ′ according to the first to third embodiments detect current changes, whereas the skillmion memory 300 according to the present embodiment detects voltage. Sensitivity is excellent.
  • Which of the skillmion memories according to the first to fourth embodiments described above is adopted is selected based on the size of the magnetic material from which the skillmion is generated and the size of the skillmion to be generated.
  • the presence or absence of skirmion is detected by measuring the amount of current between two nonmagnetic metal electrodes, and the information stored in skirmion memory is read out. It became clear that it was possible.
  • the present invention shows a method for detecting a skillmion.
  • the fact that a skillmion can be detected at a high speed is based on the skillmion memory using a skillmion, a CMOS-LSI device equipped with a skillmion memory, and a skimion memory.
  • FIG. 8 is a schematic diagram showing an example of an apparatus 400 on which the skyrmion memory 110 is mounted.
  • the apparatus 400 includes processing units such as a skyrmion memory 110 and a processor 140.
  • the skillion memory 110 is any one of the skillion memories 100, 200, 200 ′, and 300 described with reference to FIGS.
  • the processing unit exchanges data with the skyrmion memory 110.
  • the processing unit may process data read from the skyrmion memory 110.
  • the device 400 is, for example, a CMOS-LSI device with skyrmion memory.
  • a CMOS-LSI device is provided as a processing unit.
  • the CMOS-LS device and the magnetic element of the skyrmion memory 110 may be provided in the same chip.
  • the device 400 is a personal computer, a data recording medium, a data recording device, a mobile phone, a smartphone, a digital camera, a stick memory, a communication device, an image recording device, a television receiver, a self-propelled device, a flying device, or space. It may be a flying device.
  • Skyrmion has an ultra-fine structure with a nanoscale size of 1 to 100 nm in diameter, and can be applied as a large-capacity storage magnetic element capable of ultra-fine densification of enormous bit information.
  • Skyrmion is a magnetic structure that directly transfers this bit information and can be applied to information computation and transmission, and the next generation that breaks the limits of Si-based CMOS miniaturization devices currently used for information computation. It is expected to be a device that plays a fundamental role in type devices. In particular, the realization of the skyrmion arrangement detection method according to the present invention greatly contributes to this feasibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

 スキルミオン(S)を生成可能な薄層状の磁性体(12)と,磁性体の一面側に対向して設けられ磁性体に磁場を印加可能な磁場発生部(16)と,磁性体の延展方向に接続された薄層状の第1非磁性金属電極(11)と,磁性体の延展方向であって第1非磁性金属電極と対向する位置において磁性体に接続された薄層状の第2非磁性金属電極(13)と,第1非磁性金属電極及び第2非磁性金属電極の間の抵抗を検出する抵抗検出部(15)とを備えることを特徴とするスキルミオンメモリ(100)を提供する。

Description

スキルミオンメモリ及びスキルミオンメモリを搭載した装置
 本発明は、スキルミオンメモリ、スキルミオンメモリ搭載CMOS-LSIデバイス、パーソナルコンピュータ、データ記録媒体、データ記録装置、携帯電話、スマートホン、デジタルカメラ、スティックメモリ、通信装置、画像記録装置、テレビジョン受像機、自走装置、飛行装置及び宇宙空間飛行装置に関する。
 記憶容量の大容量化への要求はとどまることを知らない。画像素子の画素数は増大し、その要求する記憶量は1Mビット相当となり、さらに動画は1Gビットを超える情報量となっている。
 これに対応して、記憶装置も記憶容量は1Tビットからさらに大容量化しつつある。またカメラやビデオカメラ等の撮像機器用のSDカードも大容量化している。
 磁性体の磁気構造を記憶ビットとして利用する磁気素子は、大容量記憶装置としてその地位を確保してきた。磁気素子は、ナノスケールの磁気構造がその情報を電力消費することなく保持することができ、エレクトロニクスデバイスのメモリデバイスとして、その重要度はますます増している。
 さらに近年、不揮発性メモリをシリコン基板上に作られたCMOSデバイスに搭載し、計算処理能力の飛躍的向上を目的とした磁気メモリCMOS混載デバイスの研究開発が精力的に行われている。
 これは、CMOS回路で構成されたシリコンチップと不揮発性素子チップとの信号のやり取りに伴う、制御回路の省略、制御時間の短縮を目的としたもので、計算処理時間を飛躍的に向上させる技術である。
 さらに、この研究開発は、無駄な回路部分への電力を遮断した超省電力デバイスの開発も目的としている。特に近年はCMOS-LSIデバイスの省電力化が重要な課題として浮上しており、待機電力の削減という課題を解決することの重要性は増している。
 これらの技術が実現すると、これらの大容量メモリを搭載することで大規模情報が扱え、その応答(書き込み、読み出し、消去)は高速で、高機能かつ操作性に優れたヒューマンインターフェイスをもち、かつ、低消費電力のパーソナルコンピュータ、データ記録媒体、データ記録装置、携帯電話、スマートホン、デジタルカメラ、スティックメモリ、通信装置、画像記録装置、テレビ、自走装置、飛行装置、宇宙空間飛行装置等の実現が期待されている。
 こうした状況下で、本願発明者らは、外部磁場のもとでカイラル磁性体にスキルミオン磁気構造をもつ材料を見出した。また、電流によりスキルミオンを駆動できることを見出し、この磁気構造体を用いた磁気素子を提案した(特許文献1)。
 スキルミオンは中心部において印加された磁場に対して反平行の磁気モーメントを有し、周辺部においては印加された磁場に対して平行な磁気モーメントを有する、渦巻状の磁気構造を備えている。
 スキルミオンは、直径が1~100nmのナノスケールサイズの磁気構造を有し、膨大なビット情報を極細密化して記憶できる大容量記憶磁気素子として応用することが期待されている。また、スキルミオンは、このビット情報を直接転送し、情報演算や伝達に応用できる可能性をもつ磁気構造体でもある。
 こうした特徴から、スキルミオン素子は、要求される記憶容量が増加の一途をたどるデータ記録媒体およびデータ記録装置用磁気メモリの性能限界にブレークスルーを与える次世代型磁気メモリデバイスの根幹を担うものとして期待されている。
 特に磁気メモリは宇宙空間での各種の素粒子や放射線への耐性が強い。スキルミオンメモリも同じ特徴を有している。また、こうした大容量磁気メモリはモーターなどの回転機構を必要としない。そのため、大容量磁気メモリは宇宙空間におけるメモリの主役としての位置を占めると期待される。
 一方で、最近メモリ媒体として浮上している電子を記憶ビットとして利用するフラッシュメモリはこのような環境には適さない。電子は高エネルギー素粒子や放射線でシリコン酸化膜のエネルギー障壁を簡単に乗り越え、データの消去や誤書き込みを発生させるからである。
 また、大規模不揮発性スキルミオンメモリが大規模論理CMOS-LSIデバイスと同一チップ上で一体化されると、低消費電力型CMOSデバイスや高インテリジェント型CMOSデバイスにとって大変魅力的であるため、こうした技術を応用した高密度不揮発性スキルミオンメモリ混載CMOS-LSIデバイスの登場が期待されている。
 こうした次世代型のメモリ磁気デバイスの他の候補としては、米国IBMを中心に磁気ドメイン壁を駆動してその磁気モーメント配置を電流で転送し、記憶情報を読み出すマグネチックシフトレジスタ1が提案されている(特許文献2参照)。
 図9は、電流による磁気ドメイン磁壁駆動の原理を示す模式図である。互いに磁気モーメントの向きが相反する磁気領域の境界がドメイン磁壁である。矢印の向きの電流により磁気ドメイン磁壁が駆動される。ドメイン磁壁が移動することにより生じる、ドメインを構成する情報を記憶した磁気モーメントの向きによる磁気変化を、下部の磁気センサ2で検知して磁気情報を引き出す。
 しかし、こうしたマグネチックシフトレジスタ1は、磁気ドメイン磁壁を動かす際に大きな電流を必要とし、また磁気ドメイン磁壁の転送速度が遅いという欠点を持っている。その結果、メモリの書き込みの遅延や消去に要する時間の長時間化という問題が生じている。
 そこで、本願発明者は、磁性体中に発生するスキルミオンを記憶単位として使ったスキルミオン磁気素子を提案した(特許文献1参照)。この提案において本願発明者らは、スキルミオンを電流により駆動できることを示した。
 従来、特定の形状をしたパーマロイなどの材料のエッジに磁気バブルを固定するとともに、磁界を回転させることにより、磁気バブルをエッジ上に動かしていた。すなわち、磁気バブルを用いた磁気素子メモリでは、常に回転磁界が必要となっていた。
 これに対して、本願発明者らは、磁気バブルではなくスキルミオンを用いるとともに、これを回転磁界ではなく電流で直接駆動できることを示した。
 このように、スキルミオンは電流による生成及び移動が可能であることから、磁気情報の生成、移動を制御できる磁気素子としての応用が期待されている。
 このような磁気モーメントを情報の記憶単位として用いる磁気メモリでは、情報の読出しを磁気センサにより行うため、磁気モーメントを検知するセンサを必要とする。
[先行技術文献]
[特許文献]
 [特許文献1]特願2012-232324
 [特許文献2]米国特許第6834005号
 [非特許文献]
 非特許文献1 永長 直人、十倉 好紀、"Topological properties and dynamics of magnetic skyrmions"、Nature Nanotechnology、英国、Nature Publishing Group、2013年12月4日、Vol.8、p899-911.
 しかし、スキルミオンを生成可能な磁性体においてスキルミオンの有無を感知し、スキルミオンメモリの情報を読み出すことのできるセンサは存在しなかった。
 そこで、本願発明者はスキルミオンを検知するスキルミオン用磁気センサの詳細を明らかにした上で、スキルミオンセンサによる高速読み込み機能を有するスキルミオンメモリを開発した。
 この読み込み機能はメモリを構成する機能として必須のものであり、例えばCPU(Central Processing Unit)を用いて情報処理をする場合の不揮発性メモリに記憶されたOS用プログラムを読み出し、RAM(Random Access Memory)に格納するために必須の機能である。
 読み出し機能はまた、膨大な情報を有するデータベースを扱う場合にも必須の機能である。この場合、読み出し速度は、情報処理速度の高速化に関わる決定的に重要な要素である。
 すなわち、本願発明は、低消費電力かつ高速で、大容量の情報の読み出しを行うことのできるスキルミオンメモリ、スキルミオンメモリ搭載CMOS-LSIデバイス、およびスキルミオンメモリを内蔵したパーソナルコンピュータ、データ記録媒体、データ記録装置、携帯電話、スマートホン、デジタルカメラ、スティックメモリ、通信装置、画像記録装置、テレビジョン受像機、自走装置、飛行装置及び宇宙空間飛行装置の提供を目的とする。
 本発明の第1の形態においては、スキルミオンを生成可能な薄層状の磁性体と、磁性体の一面側に対向して設けられ磁性体に磁場を印加可能な磁場発生部と、磁性体の延展方向に接続された薄層状の第1非磁性金属電極と、磁性体の延展方向であって第1非磁性金属電極と対向する位置において磁性体に接続された薄層状の第2非磁性金属電極と、第1非磁性金属電極及び第2非磁性金属電極の間の抵抗を検出する抵抗検出部とを備えることを特徴とするスキルミオンメモリを提供する。
 本発明の第2の形態においては、スキルミオンを生成可能な薄層状の磁性体と、磁性体の一面側に対向して設けられ磁性体に磁場を印加可能な磁場発生部と、磁性体の延展方向に接続された薄層状の第1非磁性金属電極と、磁性体の表面に接触し第1非磁性金属電極と離間する位置において磁性体に接続された薄層状の第2非磁性金属電極と、第1非磁性金属電極及び第2非磁性金属電極の間の抵抗を検出する抵抗検出部とを備えることを特徴とするスキルミオンメモリを提供する。
 本発明の第3の形態においては、スキルミオンを生成可能な薄層状の磁性体と、磁性体の一面側に対向して設けられ磁性体に磁場を印加可能な磁場発生部と、磁性体の延展方向に接続された薄層状の第1非磁性金属電極と、磁性体の表面に形成された絶縁膜と、第1非磁性金属と離間する位置において絶縁膜上に形成された磁性体金属層と、磁性体金属層に接続された薄層状の第2非磁性金属電極と、第1非磁性金属電極及び第2非磁性金属電極の間の抵抗を検出する抵抗検出部とを備えることを特徴とするスキルミオンメモリを提供する。
 第1から第3の形態のスキルミオンメモリは、第1非磁性金属電極及び第2非磁性金属電極を導通する電流回路を更に備え、抵抗検出部は、電流回路に接続され電流回路に流れる電流を検出してよい。
 本発明の第4の形態においては、スキルミオンを生成可能な薄層状の磁性体と、磁性体の一面側に対向して設けられ磁性体に磁場を印加可能な磁場発生部と、磁性体の延展方向に接続された薄層状の第1非磁性金属電極と、磁性体の延展方向であって第1非磁性金属電極と対向する位置において磁性体に接続された薄層状の第2非磁性金属電極と、磁性体の延展方向であって第1非磁性金属電極と第2非磁性金属電極の対向方向に略垂直な方向において磁性体に接続された薄層状の第3非磁性金属電極と、第1非磁性金属電極及び第2非磁性金属電極を導通する第1電流回路と、第2非磁性金属電極と第3非磁性金属電極間に発生する電圧を測定する手段とを備えることを特徴とするスキルミオンメモリを提供する。
 第1から第4の形態のスキルミオンメモリにおいて、磁性体はカイラル磁性体、ダイポール磁性体、フラストレート磁性体、および、磁性材料と非磁性材料との積層構造のいずれかよりなってよい。
 本発明の第5の形態においては、第1から第4のいずれかの形態のスキルミオンメモリとCMOS-LSIデバイスが同一チップ内に形成されていることを特徴とするスキルミオンメモリ搭載CMOS-LSIデバイスを提供する。
 本発明の第6の形態においては、第1から第4のいずれかの形態のスキルミオンメモリを搭載したことを特徴とするパーソナルコンピュータ、データ記録媒体、データ記録装置、携帯電話、スマートホン、デジタルカメラ、スティックメモリ、通信装置、画像記録装置、テレビジョン受像機、自走装置、飛行装置および宇宙空間飛行装置を提供する。
 上述した構成からなる本発明によれば、低消費電力かつ高速で大容量の情報の読み出しを行うことのできるスキルミオンメモリ、スキルミオンメモリ搭載CMOS-LSIデバイス、およびスキルミオンメモリを内蔵したパーソナルコンピュータ、データ記録媒体、データ記録装置、携帯電話、スマートホン、デジタルカメラ、スティックメモリ、通信装置、画像記録装置、テレビジョン受像機、自走装置、飛行装置及び宇宙空間飛行装置を提供することができる。
磁性体中の磁気モーメントのナノスケール磁気構造体であるスキルミオンの一例を示す模式図である。 図2(A)から(E)は、位相が異なるスキルミオンを示すシミュレーション結果の一例を示す図である。 第1実施形態に係るスキルミオンメモリを示す、図3(A)はスキルミオンが生成していない状態を示す模式図、図3(B)はスキルミオンが生成した状態を示す模式図である。 第2実施形態に係るスキルミオンメモリを示す模式図である。 図4のスキルミオンメモリを側面から見た状態を示す断面図である。 第3実施形態に係るスキルミオンメモリを示す模式図である。 第4実施形態に係るスキルミオンメモリを示す模式図である。 スキルミオンメモリを搭載した装置を示す模式図である。 電流による磁気ドメイン駆動の原理を示す模式図である。
 以下、本発明の実施の形態について、図面を参照して説明する。
 磁気モーメントが螺旋構造をもつカイラル磁性体では、一様磁場下で、スキルミオンをもつ磁気相になる。図1は、磁性体中の磁気モーメントのナノスケール磁気構造体であるスキルミオンの一例を示す模式図である。図1において、矢印は磁気モーメントの向きを示している。
 スキルミオンは、あらゆる向きを向く磁気モーメントで構成されている。磁性体中に印加される磁場の向きが図中上向きである場合に、最外周磁気モーメントは、その磁場の向きと同様に上向きで、かつ磁場と平行とされている。
 スキルミオンは、その最外周から渦巻状に内側へ向けて回転していく平面形態とされ、これに伴って磁気モーメントの向きは徐々に向きを変えることとなる。
 そしてスキルミオンの中心を構成する磁気モーメントは、磁場と反平行となるように、下向きで安定することとなる。
 スキルミオンでは、磁気モーメントが中心から最外周に至るまで下向きから上向きに向きが連続的に遷移しつつ規則的に並ぶ結果、複数の磁気モーメントが渦のように規則的に並んだ構造をしている。中心の磁気モーメントと最外周の磁気モーメントの向きは反平行で、中心から外周の間に向きは連続的にねじれ、渦巻き構造を形成する。
 ここで、磁性体中に渦巻くナノスケール磁気構造体は、スキルミオン数で特徴づけられる。スキルミオン数は、単位空間あたり何回磁気モーメントが渦巻くかを示す、以下の[数1]及び[数2]で表現される。[数2]において、磁気モーメントとの極角Θ(r)はスキルミオンの中心からの距離rの連続関数であり、rを0から∞まで変化させたとき、πからゼロもしくはゼロからπに変化する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 このようなスキルミオン数Nsk=-1の場合の一例を図2に示した。図2は、位相が異なるスキルミオンのシミュレーション結果の一例を示す図である。図2(E)は座標のとりかた(右手系)を示している。x軸、y軸に対してz軸は紙面の裏から手前の向きに取る。濃淡は磁気モーメントの向きを示している。矢印は磁気モーメントを示している。この図2に示す磁気構造体は、スキルミオンと定義される状態にある。
 γは磁気モーメント間の位相を示している。図2では、異なる位相γの4例(A)~(D)が示されている。
 (A)γ=0に対して(B)γ=πのすべての磁気モーメントの向きは丁度180°回転した磁気モーメントの向きを持っている。この時の濃淡と磁気モーメントの向きは(E)での定義に対応している。
 (C)γ=-π/2はγ=0のすべての磁気モーメントの向きに対し、-90度(右回りに90度)磁気モーメントの向きをとる。なお、図2(D)の位相λ=π/2のスキルミオンが、図1のスキルミオンに相当する。
 すなわち、図2(A)~(D)に図示した4例の磁気構造は異なるように見えるが、トポロジー的には同一の磁気構造体である。
 このような構造を有するスキルミオンは、一度生成すると安定して存在し、外部磁場印加下のカイラル磁性体中で情報伝達を担うキャリアとして働く。
 なお、磁性体が螺旋磁性を示すカイラル磁性体ではなく、ダイポール磁性体、フラストレート磁性体、或いは磁性材料と非磁性材料との積層構造からなるものであっても、上述したスキルミオン相をもつことができる。
 ダイポール磁性体は、磁気双極子相互作用が重要な磁性体である。
 フラストレート磁性体は、磁気不整合状態を好む磁気的相互作用の空間構造を含む磁性体である。
 磁性材料と非磁性材料との積層を有する磁性体は、磁性材料の非磁性材料に接する磁気モーメントを非磁性材料のスピン軌道相互作用により変調した磁性体である。
 次に、このようなスキルミオン数Nsk=-1のナノスケール磁気構造体であるスキルミオンが存在する場合にこれを読み取るセンサの実施形態について説明する。
 [第1実施形態]
 図3は、第1実施形態に係るスキルミオンメモリ100を示す、(A)はスキルミオンSが生成していない状態を示す模式図、(B)はスキルミオンSが生成した状態を示す模式図である。
 本実施形態に係るスキルミオンメモリ100は、スキルミオンSの有無を磁性体12の抵抗を検出することで判定し、これによりスキルミオンメモリ100に記憶された情報の読み出しが行われる。
 スキルミオンメモリ100は、磁気素子10、磁気素子10の下面側に設けられた磁場発生部16、磁気素子10に接続される電流回路17及び電流回路17に接続される電流検出部15を備えて構成されている。
 磁気素子10は、厚さが500nm以下の薄層状に形成された素子であり、MBE(Molecular Beam Epitaxy)やスパッター等の技術を用いて形成されている。
 磁気素子10は、薄層状の磁性体12と、磁性体12の延展方向に接続された薄層状の第1非磁性金属電極11と、磁性体12の延展方向であって第1非磁性金属電極11と対向する位置において磁性体12に接続された薄層状の第2非磁性金属電極13と、を備えて構成されている。
 磁性体12は、スキルミオンを生成可能なカイラル磁性体であり、FeGeやMnSi等よりなる。磁性体12は、印加される磁場強度が所定の磁場強度Hsk以下ではカイラル磁性相であり、磁場強度Hskより大きくなるとスキルミオン相になる。磁性体12は、さらに強い磁場強度Hfで強磁性相になる。
 第1非磁性金属電極11及び第2非磁性金属電極13は、Cu、W、Ti、TiN、Al、Pt、Au等の導電性の非磁性金属よりなる。
 磁場発生部16は、磁性体12の図3における下面側に対向して設けられ、磁性体12に対し矢印Mの向きで磁場を印加する。磁場発生部16は、上述した磁場強度Hfより大きい磁場を磁性体12に印加してよい。つまり、磁場発生部16は、磁性体12を強磁性相にする磁場を印加する。一度発生したスキルミオンは、強磁性相の磁性体12においても安定的に存在する。
 電流回路17は、第1非磁性金属電極11及び第2非磁性金属電極13に接続されこれらを導通する。また、電流回路17は、スキルミオンメモリ100を各種機器に実装した際にはこれらの機器に内蔵されている電源である外部電源14と接続され、第1非磁性金属電極11及び第2非磁性金属電極13に電流を供給することができる。
 電流検出部15は、電流回路17に接続され電流回路17に流れる電流を検出する。
 本実施形態においては、第2非磁性金属電極13は、磁性体12の延展方向に接続されている。しかし、第2非磁性金属電極13の磁性体12への接続の態様はこれに限らず、第2非磁性金属電極13を、磁性体12に積層して接続する態様としてもよい。
 上述したスキルミオンメモリ100への情報の記録は、スキルミオンSにより行われる。スキルミオンメモリ100ではスキルミオンSはビット情報として用いられていて、磁気素子10の磁性体12にスキルミオンSが存在する場合を1、存在しない場合を0としてデジタル情報が記録されている。
 スキルミオンメモリ100は、こうした磁気素子10を1つ以上備えて構成され、メモリ容量に合わせて磁気素子10の数が調節される。
 そして、スキルミオンメモリ100では、情報の読み出しは、磁性体12中のスキルミオンSの有無を検出することで行われる。
 本実施形態では、こうした情報の読み出し時のスキルミオンSの有無の検出は、磁性体12を流れる電流Iを検出することで行われる。以下、本実施形態において行われる磁性体12の電流Iの検出によるスキルミオンSの有無の検出について説明する。
 電流回路17に接続された外部電源14から第1非磁性金属電極11に電流Iが印加されると、電流Iは第1非磁性金属電極11から磁性体12を経て第2非磁性金属電極13へと流れていく。
 また、磁場発生部16が磁気素子10の磁性体12に対して、矢印Mの向きに向けて磁場を印加する。カイラル磁性体は、磁場の印加がない場合の磁気モーメント配置が、磁気モーメントの進行の向きに対して螺旋上に回転する磁性体である。磁場を印加することにより、カイラル磁性体はスキルミオンを安定化する磁性体となる。
 磁性体12の縦横のサイズはスキルミオンサイズ(すなわち、スキルミオンの直径)の2倍未満の大きさである。スキルミオンの直径λは、λ=2√2・πJ×a/Dで与えられる。aは磁性体12の格子定数であり、Dはジャロシンスキー・守谷相互作用の大きさで物質固有の物理常数であり、Jは磁性体12の磁気交換相互作用の大きさである。したがって、スキルミオン直径λは物質固有常数となる。スキルミオン直径λは非技術文献1に見るようにたとえばFeGeでは70nm、MnSiでは18nmである。
 図3(B)はスキルミオンがある状態、すなわち1の情報が記録されている状態を示している。
 磁性体中では、磁性イオンの磁気モーメントと伝導電子の磁気モーメントの間に、その向きが互いに平行な状態で安定化するように相互作用が働く。この相互作用のため、空間的に一様でない磁気構造を持つ磁性体では、伝導電子が磁性イオンの磁気モーメントにより散乱される。
 第1非磁性金属電極11と第2非磁性金属電極13の間で電流Iを流すとき、図3(A)と(B)では磁性体12の磁気構造が異なるため、磁性イオンの磁気モーメントにより伝導電子が受ける散乱の影響が異なる。
 伝導電子が受ける散乱の影響の違いは、電気抵抗の違いとして現れる。この電気抵抗の変化を電流の変化I'-Iとして検出することにより、上下の非磁性金属電極間のスキルミオンの有無を検出する。電流検出部15は、抵抗検出部として機能する。なお他の例においては、外部電源14が定電流を非磁性金属電極間に印加してよい。この場合、電流検出部15に代えて電圧検出部を有する。この場合、抵抗検出部は電気抵抗の変化を電圧の変化として検出する。図4以降の各例においても、抵抗検出部は、所定の電極間に定電圧を印加した状態で所定の電極間の電圧を測定してよく、所定の電極間に定電圧を印加した状態で所定の電極間の電流を測定してもよい。
 電極間のサイズは数十ナノmである。したがって、スキルミオンの検出に要する時間はピコ秒オーダーであり、スキルミオンメモリ100に記憶されている磁気情報の読み出しはピコ秒オーダーで行われ、スキルミオンメモリ100の超高速応答を実現することができる。
 実際にスキルミオンメモリ100を作成する場合には、ワード線の浮遊容量等に起因する信号遅延が発生するが、その遅延は普通のCMOS-LSIデバイスの信号遅延と同レベルに留まる。
 この磁気メモリの読み出しの超高速化は大きなブレークスルーを起こす。例えば、ハードディスクの磁気情報の読み出しに使用されるTMR素子は説明したように自由磁性層のスピン回転を伴うことから数ナノ秒の時間を必要とする。電子浮遊ゲートに蓄える方式のフラッシュメモリは浮遊ゲートからの電位を感じてその閾値変化を読み取るが百ナノ秒は必要である。DRAMもキャパシターに蓄積された電荷から情報を読み出すが数ナノ秒は必要である。
 一方、スキルミオンメモリ100の読み出し時間は、配線間の浮遊容量のみで決まることになり、ハードディスクはもちろん、フラッシュメモリより高速で、DRAMを凌駕する超高速の読み出し性能を可能にする。
 [第2実施形態]
 図4は、第2実施形態に係るスキルミオンメモリ200を示す模式図である。図5は、図4のスキルミオンメモリ200を側面から見た状態を示す断面図である。
 第1実施形態の説明で述べたように、磁性体22にスキルミオンSが形成されると、磁性体22の抵抗が変化するとともに、電流Iも変化する。そのため、本実施形態に係るスキルミオンメモリ200は、磁性体22の電流を、磁性体22に形成されたスキルミオンSの中心部分より取り出し測定することで、スキルミオンSの存在の有無を検出し、情報の読み出しを行うことができる。
 本実施形態に係るスキルミオンメモリ200は、磁気素子20、磁気素子20の下面側に設けられた磁場発生部26、磁気素子20に接続される電流回路27、磁気素子20に当接するコンタクトアーム24及び電流回路29を介してコンタクトアーム24に接続される電流検出部25を備えて構成されている。後述するように、コンタクトアーム24及び電流検出部25は、本実施形態における電流検出手段として機能する。
 磁場発生部26及び電流回路27は、上述した第1実施形態における磁場発生部16及び電流回路17と同様である。
 磁気素子20は、薄層状の磁性体22と、磁性体12の延展方向に接続された薄層状の非磁性金属電極23と、を備えて構成されている。
 磁性体22は、スキルミオンを生成可能なカイラル磁性体であり、FeGeやMnSi等よりなる。
 非磁性金属電極23は、Cu、W、Ti、TiN、Al、Pt、Au等の導電性の非磁性金属よりなる。
 スキルミオンメモリ200の実装時には、電流回路27が外部電源28に接続され、非磁性金属電極23に接続された電流回路27を通じて磁気素子20に電流Iが印加されるようになっている。
 コンタクトアーム24は、磁気素子20の磁性体22に生成するスキルミオンSが安定して存在する中心部から偏極した電流Iを取り出すための薄層状の非磁性金属により形成されている。コンタクトアーム24は、Cu、W、Ti、TiN、Al、Pt、Au等で形成されてよい。コンタクトアーム24は、電流回路29を介して電流検出部25に接続されている。
 コンタクトアーム24の先端には、磁性体22の方向に突出する円筒状の突出部241が形成されている。突出部241はCu、W、Ti、TiN、Al、Pt、Au等の非磁性金属よりなる。
 この突出部241により磁性体22に形成されたスキルミオンSの中心部分から電流Iを取り出し、コンタクトアーム24に導くことが可能となっている。
 電流検出部25は、コンタクトアーム24から電流回路29を通じて導かれる電流Iに基づき磁性体22を流れる電流を検出する。
 電流回路29はコンタクトアーム24と電流検出部25とを導通する。電流回路29は、Cu、W、Ti、TiN、Al、Pt、Au等の非磁性金属よりなる配線である。なお、コンタクトアーム24と電流回路29を単一の構成とし、コンタクトアーム24がそのまま配線として機能して電流検出部25に接続する態様としてもよい。
 本実施形態に係るスキルミオンメモリ200の利点は、スキルミオンSの二次元面での位置を検知できることである。二次元面状に多数ビアホールアレイを配置すれば、二次元平面のどこにスキルミオンが存在しているかを電流の大きさに基づき検知することができる。
 また、本実施形態に係るスキルミオンメモリ200を用いれば、スキルミオンSの検出を透過電子顕微鏡などの大掛かりな検査装置を用いずに行うことができる。スキルミオンメモリ200は、微細加工技術により製造することが可能である。現在の微細加工技術を用いれば、15nmレベルの分解能力(スキルミオンSの検出能力)を有するスキルミオンメモリ200を製造することができる。
 [第3実施形態]
 図6は、第3実施形態に係るスキルミオンメモリ200'を示す模式図である。
 図6に示すように、本実施形態に係るスキルミオンメモリ200'では、上述した第2実施形態に係るスキルミオンメモリ200とは異なり、磁性体22'とコンタクトアーム24'の突出部241'との間に絶縁膜243'が形成されている。また、突出部241'は、磁性体金属により形成されている。
 突出部241'を構成する磁性体は、特定の向きに固定された磁気モーメントを持つ磁気固定層として機能する。この磁気固定層とスキルミオンを形成する磁性体22'との間に絶縁膜243'が形成されている。絶縁膜243'は3nm以下の膜厚を有する、酸化膜、窒化膜等の絶縁体薄膜である。
 この絶縁膜243'を有する点と、突出部241'が磁性体金属により形成されている点以外は、本実施形態に係るスキルミオンメモリ200'は、上述した第2実施形態に係るスキルミオンメモリ200と同様の構成をしている。
 本実施形態に係るスキルミオンメモリ200'は、スキルミオンSが存在する中心部から偏極した電流Iを取り出す方法である点では第2実施形態と同じであるが、絶縁膜を挟むことにより絶縁膜を通過するトンネル電流を測定する点で異なる。
 この絶縁膜を透過する電流Iの透過確率は、それを挟む固定層である突出部241'を構成する磁性体の磁気モーメントの向きと、スキルミオンSができる磁性体22'の磁気モーメントの向きに依存する。
 第1実施形態で述べた伝導電子の磁気モーメントと磁性イオンの磁気モーメントの間に相互作用が十分大きいとき、絶縁膜243'を挟む上下の磁性体の磁気モーメントのなす角をΘrとすると、流れる導伝率Gは[数3]で表すことができる。
 [数3]
 G=∫s|tr|2d2
 ここで、tr=t0cos(Θr/2)である。Sは絶縁膜243とスキルミオンSを形成する磁性体22'との接触面積である。
 スキルミオンSを形成できる磁性体22'は、強磁性相で磁気モーメントは下から上に向いている。そして、固定層である突出部241'の磁性体の磁気モーメントも下から上に向いている場合(スキルミオンSが存在しない場合)、Θr=0であるからtr=t0となる。
 この時のGの値をG0、磁性体22'にスキルミオンSが形成された状態におけるスキルミオンSの磁気モーメントをGskとすると、Gsk<G0である。この結果、伝導率比gは、g=(Go-Gsk)/G0となる。
 このことから、G0とGskとの導伝率比g、もしくは差分を測定すれば、スキルミオンメモリ200'にスキルミオンSが形成されているか否かを感度良く検出することができ、スキルミオンメモリ200'に記憶されている情報を読み出すことができる。なお、差分の測定は、トンネル確率が絶縁膜を挟む磁気モーメント間のなす角に依存する性質を利用して行われる。
 この実施例3において、磁性体22'は、強磁性体材料や反強磁性体材料との積層構造により形成されてもよい。
 この場合の強磁性体材料としては、Fe、Co、Ni、Bの合金、マグネタイト、CrO2、RXMnO3-y(Rは希土類元素、Xはアルカリ土類元素)、NiMnSb、PtMnSb、ZnMnO、TiMnO、CdMnP2、ZnMnP2等が挙げられる。特にCo70Fe30や(Co70Fe3080No20等が望ましい。
 また、反強磁性材料としては、FeMn、PtMn、PtCrMn、PtPdMn、NiMn、IrMn、NiO等が挙げられる。
 また、絶縁材料としては、Al23、SiO2、MgO、AlN、AlON、GaO、Bi23、SrTiO3、AlLaO3等が挙げられる。
 なお、固定層である突出部241'の磁気モーメントの向きは、上述した上から下ではなくてもよい。すなわち、この磁気モーメントの向きは、固定された向きであればよいが、上述した実施形態の説明においては説明を簡単にするために下から上とした。
 本実施形態に係るスキルミオンメモリ200'の利点も、上述した第2実施形態に係るスキルミオンメモリ200と同様に、スキルミオンSの二次元面での位置を検知できることである。二次元面状に多数ビアホールアレイを配置すれば、二次元平面のどこにスキルミオンSが存在しているかを電流比により検知することができ、スキルミオンメモリ200'に記憶されている情報を読み出すことができる。
 また、本実施形態に係るスキルミオンメモリ200'を用いれば、スキルミオンSの検出を透過電子顕微鏡などの大掛かりな検査装置を用いずに行うことができる。スキルミオンメモリ200'は、微細加工技術により製造することが可能である。現在の微細加工技術を用いれば、15nmレベルの分解能力(スキルミオンSの検出能力)を有するスキルミオンメモリ200を製造することができる。
 [第4実施形態]
 図7は、第4実施形態に係るスキルミオンメモリ300を示す模式図である。
 本実施形態に係るスキルミオンメモリ300は、スキルミオンSの有無を磁性体32に発生するホール電圧を検出することで判定し、これによりスキルミオンメモリ300に記憶された情報の読み出しが行われる。
 本実施形態に係るスキルミオンメモリ300は、磁気素子30、磁気素子30の下面側に設けられた磁場発生部36、磁気素子30に接続される電流回路37及び磁気素子30に電流回路39を介して接続された電圧検出部350を備えて構成されている。
 磁場発生部36及び電流回路37は、上述した第1及び第2実施形態に係る磁場発生部16、26及び電流回路17、27と同様であり、スキルミオンメモリ300の各種機器への実装時には、電流回路37は外部電源38に接続可能となっている。
 磁気素子30は、薄層状の磁性体32と、磁性体12の延展方向に接続された薄層状の第1非磁性金属電極31と、磁性体32の延展方向であって第1非磁性金属電極31と対向する位置において磁性体32に接続された薄層状の第2非磁性金属電極33と、磁性体32の延展方向であって第1非磁性金属電極31と第2非磁性金属電極33の対向方向に垂直な方向において磁性体32に接続された薄層状の第3非磁性金属電極34と、を備えて構成されている。
 磁性体32は、スキルミオンを生成可能なカイラル磁性体であり、FeGeやMnSi等よりなる。
 第1非磁性金属電極31、第2非磁性金属電極33及び第3非磁性金属電極34は、何れもCu、W、Ti、TiN、Al、Pt、Au等の導電性の非磁性金属よりなる。
 電圧検出部350は、電流回路39を介して第2非磁性金属電極及び第3非磁性金属電極34に接続され、磁性体32に発生するホール電圧の検出を行う。
 電流回路39は、Cu、W、Ti、TiN、Al、Pt、Au等の非磁性金属よりなる配線である。
 第1非磁性金属電極31と第2非磁性金属電極33との間にスピン偏極した電流Iを流すと、スキルミオンSはこれらの電極間を流れる電流Iの方向と垂直な方向にホール電圧を発生させる。
 こうして発生するホール電圧の検出は、第2非磁性金属電極33及び第3非磁性金属電極34に接続された電圧検出部350により行われる。
 そして、ホール電圧を検知することで、磁性体32中のスキルミオンSの有無が検知され、スキルミオンメモリ300に記憶されている情報の読み出しが行われる。
 この方法は上述した第1実施委形態~第3実施形態に係るスキルミオンメモリ100、200、200'と比較し、第3非磁性金属電極34を更に設ける必要があることから集積度を損なうリスクがある。
 しかし、第1実施委形態~第3実施形態に係るスキルミオンメモリ100、200、200'はいずれも電流変化を検知しているのに対し、本実施形態に係るスキルミオンメモリ300は電圧を検知することから感度が優れている。
 上述した第1~第4実施形態に係るスキルミオンメモリのうち何れの態様を採用するかは、スキルミオンが生成される磁性体のサイズや、生成するスキルミオンのサイズに基づき選択される。
 第1~第3実施形態に係る説明で示したように、2つの非磁性金属電極間の電流量を測定することによりスキルミオンの有無を検知し、スキルミオンメモリに記憶された情報を読み出すことができることが明らかになった。
 また、第4実施形態に係る説明で示したように、対向する非磁性金属電極間に電流を流し、その電流と略垂直に発生するホール電圧を測定することによりスキルミオンの有無を検知し、スキルミオンメモリに記憶された情報を読み出すことができることが明らかになった。
 なお、上述したカイラル磁性体を用いた各実施形態における結論は、定性的にはダイポール磁性体、フラストレート磁性体、磁性材料と非磁性材料との積層構造の何れを用いた場合においても変更をきたさない。
 このように、本願発明は、スキルミオンの検知方法を示し、高速でスキルミオンの検知が可能になったことは、スキルミオンを用いたスキルミオンメモリ、スキルミオンメモリ搭載CMOS-LSIデバイス、およびスキルミオンメモリを内蔵した、パーソナルコンピュータ、データ記録媒体、データ記録装置、携帯電話、スマートホン、デジタルカメラ、スティックメモリ、通信装置、画像記録装置、テレビジョン受像機、自走装置、飛行装置、宇宙空間飛行装置等を実用化する上で大きなインパクトをもたらすと期待できる。
 図8は、スキルミオンメモリ110を搭載した装置400の一例を示す模式図である。装置400は、スキルミオンメモリ110およびプロセッサ140等の処理部を備える。スキルミオンメモリ110は、図3から図7において説明したスキルミオンメモリ100、200、200'、300のいずれかである。処理部は、スキルミオンメモリ110との間でデータをやりとりする。処理部は、スキルミオンメモリ110から読み出したデータを処理してよい。
 装置400としては、一例としてスキルミオンメモリ搭載CMOS-LSIデバイスである。この場合、処理部としてCMOS-LSIデバイスを設ける。CMOS-LSデバイスと、スキルミオンメモリ110の磁気素子は、同一チップ内に設けてよい。また装置400は、パーソナルコンピュータ、データ記録媒体、データ記録装置、携帯電話機、スマートフォン、デジタルカメラ、スティックメモリ、通信装置、画像記録装置、テレビジョン受像機、自走装置、飛行装置、または、宇宙空間飛行装置であってよい。
 スキルミオンは、直径が1~100nmとナノスケールのサイズを有する極微細構造であり、膨大なビット情報を極細密化できる大容量記憶磁気素子として応用することができる。
 また、スキルミオンはこのビット情報を直接転送し、情報演算や伝達に応用できる磁気構造体であり、現在の情報演算として用いられているSiベースのCMOS微細化デバイスの限界をブレークスルーする次世代型デバイスの根幹を担うデバイスとして期待される。特に本発明によりスキルミオンの配置の検知方法が実現したことは、この実現性に大きく寄与する。
1 マグネチックシフトレジスタ
2 磁気センサ
10、20、20'、30 磁気素子
16、26、26'、36 磁場発生部
11、31 第1非磁性金属電極
12、22、32 磁性体
13、33 第2非磁性金属電極
23、23' 非磁性金属電極
24、24' コンタクトアーム
14、28、38 外部電源
15、25、25' 電流検出部
34 第3非磁性金属電極
100、110、200、200'、300 スキルミオンメモリ
140 プロセッサ
350 電圧検出部
400 装置
S スキルミオン

Claims (20)

  1.  スキルミオンを生成可能な薄層状の磁性体と、
     前記磁性体の一面側に対向して設けられ前記磁性体に磁場を印加可能な磁場発生部と、
     前記磁性体の延展方向に接続された薄層状の第1非磁性金属電極と、
     前記磁性体の延展方向であって前記第1非磁性金属電極と対向する位置において前記磁性体に接続された薄層状の第2非磁性金属電極と、
     前記第1非磁性金属電極及び前記第2非磁性金属電極の間の抵抗を検出する抵抗検出部と
     を備えることを特徴とするスキルミオンメモリ。
  2.  スキルミオンを生成可能な薄層状の磁性体と、
     前記磁性体の一面側に対向して設けられ前記磁性体に磁場を印加可能な磁場発生部と、
     前記磁性体の延展方向に接続された薄層状の第1非磁性金属電極と、
     前記磁性体の表面に接触し前記第1非磁性金属電極と離間する位置において前記磁性体に接続された薄層状の第2非磁性金属電極と、
     前記第1非磁性金属電極及び前記第2非磁性金属電極の間の抵抗を検出する抵抗検出部と
     を備えることを特徴とするスキルミオンメモリ。
  3.  スキルミオンを生成可能な薄層状の磁性体と、
     前記磁性体の一面側に対向して設けられ前記磁性体に磁場を印加可能な磁場発生部と、
     前記磁性体の延展方向に接続された薄層状の第1非磁性金属電極と、
     前記磁性体の表面に形成された絶縁膜と、
     前記第1非磁性金属と離間する位置において前記絶縁膜上に形成された磁性体金属層と、
     前記磁性体金属層に接続された薄層状の第2非磁性金属電極と、
     前記第1非磁性金属電極及び前記第2非磁性金属電極の間の抵抗を検出する抵抗検出部と
     を備えることを特徴とするスキルミオンメモリ。
  4.  前記第1非磁性金属電極及び前記第2非磁性金属電極を導通する電流回路を更に備え、
     前記抵抗検出部は、前記電流回路に接続され前記電流回路に流れる電流を検出することを特徴とする請求項1から3の何れか1項記載のスキルミオンメモリ。
  5.  スキルミオンを生成可能な薄層状の磁性体と、
     前記磁性体の一面側に対向して設けられ前記磁性体に磁場を印加可能な磁場発生部と、
     前記磁性体の延展方向に接続された薄層状の第1非磁性金属電極と、
     前記磁性体の延展方向であって前記第1非磁性金属電極と対向する位置において前記磁性体に接続された薄層状の第2非磁性金属電極と、
     前記第1非磁性金属電極及び前記第2非磁性金属電極を導通する第1電流回路と、
     前記磁性体の延展方向であって前記第1非磁性金属電極と前記第2非磁性金属電極の対向方向に略垂直な方向において前記磁性体に接続された薄層状の第3非磁性金属電極と、
     前記第2非磁性金属電極と前記第3非磁性金属電極間に発生する電圧を測定する手段と、
     を備えることを特徴とするスキルミオンメモリ。
  6.  前記磁性体はカイラル磁性体、ダイポール磁性体、フラストレート磁性体、および、磁性材料と非磁性材料との積層構造のいずれかよりなることを特徴とする請求項1から5の何れか1項記載のスキルミオンメモリ。
  7.  請求項1から6の何れか1項記載のスキルミオンメモリとCMOS-LSIデバイスが同一チップ内に形成されていることを特徴とするスキルミオンメモリ搭載CMOS-LSIデバイス。
  8.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とするパーソナルコンピュータ。
  9.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とするデータ記録媒体。
  10.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とするデータ記録装置。
  11.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とする携帯電話。
  12.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とするスマートホン。
  13.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とするデジタルカメラ。
  14.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とするスティックメモリ。
  15.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とする通信装置。
  16.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とする画像記録装置。
  17.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とするテレビジョン受像機。
  18.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とする自走装置。
  19.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とする飛行装置。
  20.  請求項1から6の何れか1項記載のスキルミオンメモリを搭載したことを特徴とする宇宙空間飛行装置。
PCT/JP2015/058465 2014-03-24 2015-03-20 スキルミオンメモリ及びスキルミオンメモリを搭載した装置 WO2015146827A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016510296A JP6526628B2 (ja) 2014-03-24 2015-03-20 スキルミオンメモリ及びスキルミオンメモリを搭載した装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014060150 2014-03-24
JP2014-060150 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015146827A1 true WO2015146827A1 (ja) 2015-10-01

Family

ID=54195345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/058465 WO2015146827A1 (ja) 2014-03-24 2015-03-20 スキルミオンメモリ及びスキルミオンメモリを搭載した装置

Country Status (2)

Country Link
JP (1) JP6526628B2 (ja)
WO (1) WO2015146827A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109192853A (zh) * 2018-07-02 2019-01-11 南开大学 连续可控产生磁性斯格明子的器件及方法
EP3499595A4 (en) * 2016-08-10 2020-04-08 Alps Alpine Co., Ltd. REPLACEMENT COUPLING FILM, MAGNETORESISTIVE ELEMENT AND MAGNETIC DETECTION DEVICE THEREFOR
US11145805B2 (en) 2017-08-01 2021-10-12 The Regents Of The University Of California Topological spin textures in 3-dimensional magnetic structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086470A (ja) * 2012-10-19 2014-05-12 Institute Of Physical & Chemical Research スキルミオン駆動方法およびマイクロ素子

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014086470A (ja) * 2012-10-19 2014-05-12 Institute Of Physical & Chemical Research スキルミオン駆動方法およびマイクロ素子

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KARIN EVERSCHOR: "Current-induced rotational torques in the skyrmion lattice phase of chiral magnets", PHYS. REV. B, vol. 84, 2011, pages 064401 - 1 -064401-10, XP055224916 *
N. S. KISELEV: "Chiral skyrmions in thin magnetic films: new objects for magnetic storage technologies?", JOURNAL OF PHYSICS D: APPLIED PHYSICS, vol. 44, no. 39, pages 392001 - 1 -392001-4, XP055224919, ISSN: 0022-3727 *
X.Z. YU ET AL.: "Skyrmion flow near room temperature in an ultralow current density", NATURE COMMUNICATIONS, vol. 3, no. 988, pages 1 - 6, XP055214847 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3499595A4 (en) * 2016-08-10 2020-04-08 Alps Alpine Co., Ltd. REPLACEMENT COUPLING FILM, MAGNETORESISTIVE ELEMENT AND MAGNETIC DETECTION DEVICE THEREFOR
EP3499596A4 (en) * 2016-08-10 2020-05-27 Alps Alpine Co., Ltd. REPLACEMENT COUPLED FILM AND MAGNETORESISTIVE EFFECT ELEMENT AS WELL AS MAGNETISM DETECTOR THEREFOR
US11145805B2 (en) 2017-08-01 2021-10-12 The Regents Of The University Of California Topological spin textures in 3-dimensional magnetic structures
US11744162B2 (en) 2017-08-01 2023-08-29 The Regents Of The University Of California Topological spin textures in 3-dimensional magnetic structures
CN109192853A (zh) * 2018-07-02 2019-01-11 南开大学 连续可控产生磁性斯格明子的器件及方法

Also Published As

Publication number Publication date
JPWO2015146827A1 (ja) 2017-04-13
JP6526628B2 (ja) 2019-06-05

Similar Documents

Publication Publication Date Title
KR102062369B1 (ko) 자기 소자, 스커미온 메모리, 스커미온 메모리 장치, 스커미온 메모리 탑재 고체 전자 장치, 데이터 기록 장치, 데이터 처리 장치 및 통신 장치
KR101869149B1 (ko) 외부 강자성 바이어싱 필름을 사용하는 전압 제어 자기 이방성 전환 디바이스
JP6176882B2 (ja) スピンホールmtjデバイスを有するクロスポイントアレイのmram
EP3100271B1 (en) High density low power gshe-stt mram
JP6195974B2 (ja) 高安定スピントロニクスメモリ
US8514615B2 (en) Structures and methods for a field-reset spin-torque MRAM
JP6637429B2 (ja) 磁気素子、スキルミオンメモリ、スキルミオンメモリデバイス、スキルミオンメモリ搭載固体電子デバイス、データ記録装置、データ処理装置および通信装置
CN1708810A (zh) 磁电阻随机存取存储器
US8537607B2 (en) Staggered magnetic tunnel junction
KR20170042622A (ko) 자기 소자, 스커미온 메모리, 스커미온 메모리 장치, 고체 전자 장치, 데이터 기록 장치, 데이터 처리 장치 및 통신 장비
JP6463697B2 (ja) 磁気素子及びスキルミオンメモリ
WO2015146827A1 (ja) スキルミオンメモリ及びスキルミオンメモリを搭載した装置
JPWO2015146827A6 (ja) スキルミオンメモリ及びスキルミオンメモリを搭載した装置
US8519495B2 (en) Single line MRAM
WO2015125708A1 (ja) 磁気素子及びスキルミオンメモリ
JP6449392B2 (ja) 装置、方法およびメモリ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770304

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016510296

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15770304

Country of ref document: EP

Kind code of ref document: A1