WO2016061727A1 - Procédé de synthèse de tamis moléculaire sapo-34 nanométrique de la forme d'une tranche - Google Patents

Procédé de synthèse de tamis moléculaire sapo-34 nanométrique de la forme d'une tranche Download PDF

Info

Publication number
WO2016061727A1
WO2016061727A1 PCT/CN2014/088921 CN2014088921W WO2016061727A1 WO 2016061727 A1 WO2016061727 A1 WO 2016061727A1 CN 2014088921 W CN2014088921 W CN 2014088921W WO 2016061727 A1 WO2016061727 A1 WO 2016061727A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
sapo
nano
sheet
initial gel
Prior art date
Application number
PCT/CN2014/088921
Other languages
English (en)
Chinese (zh)
Inventor
郜贝贝
田鹏
杨淼
刘中民
王德花
刘琳
Original Assignee
中国科学院大连化学物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院大连化学物理研究所 filed Critical 中国科学院大连化学物理研究所
Priority to PCT/CN2014/088921 priority Critical patent/WO2016061727A1/fr
Publication of WO2016061727A1 publication Critical patent/WO2016061727A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/06Aluminophosphates containing other elements, e.g. metals, boron
    • C01B37/08Silicoaluminophosphates [SAPO compounds], e.g. CoSAPO
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/82Phosphates
    • B01J29/84Aluminophosphates containing other elements, e.g. metals, boron
    • B01J29/85Silicoaluminophosphates [SAPO compounds]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/54Phosphates, e.g. APO or SAPO compounds

Definitions

  • the present application relates to a method for preparing a SAPO-34 molecular sieve, and belongs to the field of molecular sieve synthesis.
  • the silica-phosphorus aluminum molecular sieve SAPO-34 with CHA topology exhibits excellent catalytic performance in methanol to olefin (MTO) reaction due to its special pore structure and suitable acid properties, and the methanol conversion rate is 100% or Near 100%, the C2-C4 olefin selectivity is about 90%, and there is almost no C5 or higher product.
  • MTO methanol to olefin
  • the SAPO-34 molecular sieve catalyst prepared by the conventional method is easily deactivated and has a short single life. Studies have shown that reducing the grain size of SAPO-34 can effectively increase the specific surface area of the catalyst, reduce the diffusion limit, and prolong the life of the catalyst.
  • the present application provides a method for synthesizing a sheet-like nano-SAPO-34 molecular sieve, which is suitable for large-scale industrial production and production by using an inexpensive templating agent such as triethylamine, adding nano-seed crystals and multi-stage crystallization to synthesize nano-SAPO-34 molecular sieve.
  • the rate is higher.
  • the synthesized SAPO-34 molecular sieve has a lamellar morphology with a thickness of nanometer, and has a very short diffusion path in the direction of the sheet, the catalyst life The life is greatly extended and has important industrial application significance.
  • a method of preparing a sheet-like nano-SAPO-34 molecular sieve which is suitable for large-scale industrial production and has a high yield.
  • the synthesized SAPO-34 molecular sieve has a lamellar morphology with a thickness of nanometer, and exhibits a long life as a catalyst for the acid-catalyzed reaction and the MTO reaction.
  • the method for preparing a sheet-like nano SAPO-34 molecular sieve characterized in that it comprises at least the following synthetic steps:
  • nano-SAPO-34 molecular sieve seed crystal is added in an amount of 1 to 30% by weight of the dry basis in the initial gel mixture;
  • step b) After the step b) is completed, the solid product is separated, washed and dried to obtain the sheet-like nano SAPO-34 molecular sieve.
  • the phosphorus source is added in an amount of P 2 O 5
  • the aluminum source is added in a molar amount of Al 2 O 3
  • the silicon source is added in an amount of SiO 2 . Molar count.
  • the aluminum source in step a) is selected from at least one of an aluminum salt, activated alumina, alkoxy aluminum, and metakaolin.
  • the phosphorus source in step a) is selected from at least one of orthophosphoric acid, metaphosphoric acid, phosphate, and phosphite.
  • the silicon source in step a) is selected from at least one of silica sol, active silica, orthosilicate, metakaolin.
  • the templating agent R in step a) is selected from the group consisting of diethylamine, triethylamine, tetraethylammonium hydroxide, morpholine, diisopropylamine, diethanolamine, triethanolamine, N,N-dimethylethanolamine And at least one of N,N-diethylethanolamine.
  • the alcohol compound A in the step a) is at least one selected from the group consisting of ethanol, ethylene glycol, n-propanol, n-butanol, glycerol, and 1,3-butylene glycol.
  • the aluminum source is added in an amount of moles of Al 2 O 3 , and the molar ratio of the template R to the aluminum source is R: the upper limit of the range of Al 2 O 3 is selected from 6 4, 3, the lower limit is selected from 1.5, 2, 2.5.
  • the particle size of the nano-SAPO-34 seed crystal in step b) does not exceed 800 nm.
  • the nano SAPO-34 seed crystal in step b) has an average particle diameter of 100 to 800 nm.
  • the nano SAPO-34 seed crystals in step b) have an average particle diameter of from 100 to 500 nm.
  • the nano SAPO-34 seed crystal in step b) has an average particle diameter of 200 to 400 nm.
  • the nano-SAPO-34 molecular sieve seed crystal can be obtained by direct synthesis, or can be obtained by post-processing a large particle size SAPO-34 molecular sieve such as a ball milling method.
  • the nano-SAPO-34 molecular sieve seed in step b) is added in an amount of from 11 to 30% by weight of the dry basis in the initial gel mixture.
  • the morphology of the sheet-like nano-SAPO-34 molecular sieve obtained in the step c) is lamellar, and the thickness of the single sheet is 50 to 200 nm.
  • the surface of the sheet is not smooth, has a flower-like structure, and the size of the sheet layer is 0.4 to 1 ⁇ m at the maximum.
  • the method for preparing a sheet-like nano SAPO-34 molecular sieve comprises at least the following steps:
  • step 2) Adding SAPO-34 molecular sieve equivalent to 1 to 30% of the dry weight of the gel oxide to the gel obtained in the step 1) as a seed crystal, stirring uniformly, and then immersing in the reaction vessel at 100 to 120 ° C for aging 1 After ⁇ 12h, the temperature is raised to 180 ⁇ 220 ° C hydrothermal crystallization for 3 ⁇ 48h;
  • step 2) After the step 2) crystallization is completed, the solid product is centrifuged, washed with deionized water to neutrality, and dried in air at 120 ° C to obtain the sheet-like nano SAPO-34 molecular sieve.
  • an acid catalyst characterized in that the sheet-like nano SAPO-34 molecular sieve synthesized according to any of the above methods is obtained by calcination in air at 400 to 700 °C.
  • a catalyst for the conversion of an oxygen-containing compound to an olefin characterized in that the sheet-like nano-SAPO-34 molecular sieve synthesized according to any of the above methods is obtained by calcination in air at 400 to 700 °C.
  • an adsorption separation material of methane and/or nitrogen and carbon dioxide It is characterized in that the sheet-like nano SAPO-34 molecular sieve synthesized according to any of the above methods is obtained by calcination in air at 400 to 700 °C.
  • a flaky nano-molecular sieve can be obtained by using an inexpensive templating agent such as triethylamine, without adding HF or the like, Conducive to its industrial applications.
  • the particle size of the SAPO-34 molecular sieve can be effectively controlled to have a grain size of 0.4 to 1 ⁇ m and a thickness of 50 to 200 nm. .
  • the solid product of the synthetic product has a high yield, usually higher than 80% by weight, and is economically high in mass production.
  • the prepared SAPO-34 molecular sieve has a significantly increased lifetime in the conversion of methanol or dimethyl ether to a lower olefin, and the total selectivity of ethylene and propylene can be as high as 85% or more.
  • Figure 1 is a scanning electron micrograph of sample 1#.
  • Figure 2 is a scanning electron micrograph of Comparative Sample 1#.
  • Figure 3 is a scanning electron micrograph of Comparative Sample 2#.
  • Figure 4 is a scanning electron micrograph of Comparative Sample 3#.
  • test conditions of this application are as follows:
  • the SEM morphology analysis was performed using the SU8020 and TM3000 scanning electron microscopes of the Scientific Instrument Factory of the Chinese Academy of Sciences.
  • nano-SAPO-34 seed crystal It was synthesized by the method of WO2003/048042 and tetraethylammonium hydroxide TEAOH as a template. The crystal product was nearly cubic and the average particle size was 300 nm.
  • a seed crystal corresponding to 12% of the dry weight of the gel was added, stirred uniformly, transferred to a stainless steel autoclave, aged at 100 ° C for 6 h, and heated to 200 ° C for 24 h. After the crystallization was completed, the solid product was centrifuged, washed, and dried in air at 100 ° C to obtain the sheet-like nano SAPO-34 molecular sieve, which was designated as sample ##.
  • the obtained samples 1# to 10# were calcined at 500 ° C and weighed, and the yields were all above 80%.
  • the yield was calculated as follows: the quality of the product after calcination (inorganic dry basis mass + input seed crystal in the initial gel) Quality) ⁇ 100%.
  • the proportion of the ingredients was the same as that of the sample 1# in Example 1, except that there was no low temperature aging process, and the initial gel was directly heated to 200 ° C for 24 hours under dynamic conditions, and the obtained sample was recorded as Comparative Sample 3#.
  • XRD analysis was performed on Sample 1# to Sample 10# in Example 1, and sample 1# was typically represented, and the XRD data results are shown in Table 2.
  • the XRD data results of sample 2# to sample 10# are close to those of Table 2, that is, the peak position and shape are the same, and the peak relative peak intensity fluctuates within ⁇ 10% depending on the synthesis conditions, indicating that the synthesized product has the characteristics of SAPO-34 structure. .
  • the average slice size and slice thickness of sample 2# to sample 10# are shown in the last column of Table 1.
  • Comparative Sample 1# is a cubic crystal grain having an average particle diameter of about 900 nm, and the crystal surface has no flower-like morphology.
  • the scanning electron micrograph of Comparative Sample 2# is shown in Fig. 3.
  • Comparative Sample 2# is a cubic crystal grain having an average particle diameter of about 4 ⁇ mm, and the crystal surface is smooth.
  • the scanning electron micrograph of Comparative Sample 3# is shown in Fig. 4.
  • Comparative Sample 3# is a cubic crystal grain having an average particle diameter of about 1.4 ⁇ m, and the crystal surface is smooth.
  • Example 3 Methanol conversion to olefin reaction performance test
  • Sample 1#, Comparative Sample 1# and Comparative Sample 2# were respectively subjected to air baking at 550 ° C for 4 hours, and then tableted and crushed to 20 to 40 mesh.
  • 1.0 g of the sample was weighed into a fixed bed reactor, and MTO reaction evaluation was performed. It was activated by nitrogen at 550 ° C for 1 hour and then cooled to a reaction temperature of 450 ° C. Nitrogen gas was turned off, and a 40 wt% aqueous methanol solution was fed by a plunger pump at a methanol weight space velocity of 4.0 h -1 .
  • the reaction product was analyzed by on-line gas chromatography (Varian 3800, FID detector, capillary column PoraPLOT Q-HT), and the results are shown in Table 3. It can be seen that the sample prepared according to the method of the present application is used as a catalyst for the methanol conversion to olefin reaction, and the life is greatly improved as compared with the sample synthesized by the conventional method.
  • Selectivity refers to the highest selectivity when methanol conversion is maintained above 99%.
  • Sample 1# was calcined in air at 550 ° C for 4 hours.
  • the adsorption isotherms of CO 2 and CH 4 N 2 were measured by a Micrometrics Gemini II apparatus. Before the measurement, the sample was degassed and pretreated at 350 ° C for 4 hours under vacuum, and the adsorption test temperature was 25 ° C.
  • the adsorption results are shown in Table 4. As can be seen from the data in the table, the sample prepared according to the method of the present application can be used as an adsorption separation material for methane and/or nitrogen and carbon dioxide.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)

Abstract

L'invention concerne un procédé de préparation de tamis moléculaire SAPO-34 nanométrique de la forme d'une tranche, et des matériaux de séparation par adsorption et catalyse préparés au moyen du tamis moléculaire SAPO-34 nanométrique de la forme d'une tranche. Le procédé comprend au moins les étapes suivantes consistant à: a) mélanger une source d'aluminium, une source de phosphore, une source de silicium, un agent structurant R, un composé A d'alcool et de l'eau pour obtenir un mélange de gel initial; b) ajouter un germe de tamis moléculaire SAPO-34 nanométrique au mélange de gel initial obtenu à l'étape a), et vieillir et cristalliser le mélange, la quantité du germe de tamis moléculaire SAPO-34 nanométrique ajouté étant comprise entre 1 et 30 % du poids sec du mélange de gel initial; c) une fois la cristallisation achevée à l'étape b), séparer, laver et sécher un produit solide pour obtenir le tamis moléculaire SAPO-34 nanométrique de la forme d'une tranche.
PCT/CN2014/088921 2014-10-20 2014-10-20 Procédé de synthèse de tamis moléculaire sapo-34 nanométrique de la forme d'une tranche WO2016061727A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088921 WO2016061727A1 (fr) 2014-10-20 2014-10-20 Procédé de synthèse de tamis moléculaire sapo-34 nanométrique de la forme d'une tranche

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/088921 WO2016061727A1 (fr) 2014-10-20 2014-10-20 Procédé de synthèse de tamis moléculaire sapo-34 nanométrique de la forme d'une tranche

Publications (1)

Publication Number Publication Date
WO2016061727A1 true WO2016061727A1 (fr) 2016-04-28

Family

ID=55760024

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088921 WO2016061727A1 (fr) 2014-10-20 2014-10-20 Procédé de synthèse de tamis moléculaire sapo-34 nanométrique de la forme d'une tranche

Country Status (1)

Country Link
WO (1) WO2016061727A1 (fr)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107954434A (zh) * 2016-10-14 2018-04-24 中国石油化工股份有限公司 纳米片sapo分子筛聚集体、制备方法及其用途
CN108675316A (zh) * 2018-08-06 2018-10-19 山西大同大学 一种片状sapo-34分子筛的制备方法
CN110407220A (zh) * 2019-08-27 2019-11-05 中化泉州能源科技有限责任公司 一种大比表面积sapo-34分子筛的快速制备方法
CN110668465A (zh) * 2019-09-30 2020-01-10 福建师范大学 一种MeAPSO-44分子筛及其制备方法
CN111013650A (zh) * 2019-12-25 2020-04-17 山东江岳科技开发股份有限公司 一种sapo-34分子筛薄层催化剂及其制备方法
CN111704145A (zh) * 2020-06-05 2020-09-25 浙江天地环保科技股份有限公司 一种原位合成纳米氢型Cu-SSZ-13分子筛的方法
CN113149031A (zh) * 2021-05-21 2021-07-23 大连理工大学盘锦产业技术研究院 一种以花粉为辅助模板制备sapo-34分子筛的方法
CN113493212A (zh) * 2020-04-01 2021-10-12 中国石油化工股份有限公司 一种sapo-34分子筛及其制备方法和应用
CN113753915A (zh) * 2020-06-01 2021-12-07 中国石油化工股份有限公司 小晶粒sapo-34分子筛的制法、制备的分子筛和用途
CN114195171A (zh) * 2021-12-28 2022-03-18 山西大学 一种针状off分子筛的制备方法
CN114477209A (zh) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 一种硅铝分子筛及其制备方法和应用
CN114538461A (zh) * 2020-11-26 2022-05-27 中国科学院大连化学物理研究所 一种ssz-13硅铝分子筛及其制备方法与应用
CN114797497A (zh) * 2022-05-30 2022-07-29 江西师范大学 一种醇加速制备AlPO-18分子筛膜的方法与应用
CN114804147A (zh) * 2021-01-29 2022-07-29 中国石油化工股份有限公司 一种花状aei型分子筛及其制备方法和应用
CN114849765A (zh) * 2022-05-13 2022-08-05 苏州大学 一种分子筛催化剂的超快制备方法
CN114890434A (zh) * 2022-06-22 2022-08-12 中国石油大学(华东) 一种用mto废催化剂制备的富含介孔的sapo-34分子筛及其制备方法
CN114890437A (zh) * 2022-06-22 2022-08-12 中国石油大学(华东) 一种利用mto废催化剂快速合成的小粒度sapo-34分子筛及其制备方法
CN115196648A (zh) * 2022-07-20 2022-10-18 天津派森新材料技术有限责任公司 一种无模板剂合成sapo-5分子筛的方法
CN116159591A (zh) * 2022-09-27 2023-05-26 厦门大学 一种氧化物-分子筛复合催化剂及其制备方法和应用
CN116199239A (zh) * 2022-12-23 2023-06-02 中触媒新材料股份有限公司 一种低硅纳米片状sapo-34分子筛及其制备方法和应用
CN116351458A (zh) * 2023-03-28 2023-06-30 中化泉州石化有限公司 一种c4~c6烯烃耦合含氧化合物共裂解制低碳烯烃的催化剂制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557072A (zh) * 2010-12-29 2012-07-11 中国科学院大连化学物理研究所 Sapo-34分子筛的溶剂热合成方法和由其制备的催化剂
CN102616810A (zh) * 2012-04-17 2012-08-01 吉林大学 具有立方体或薄片形貌的纳米sapo-34分子筛及其应用
CN103011188A (zh) * 2013-01-05 2013-04-03 上海中科高等研究院 具有球形或片状形貌的纳米sapo-34分子筛及其合成方法及由其制备的催化剂和应用
CN103130241A (zh) * 2013-03-21 2013-06-05 上海绿强新材料有限公司 一种低硅纳米sapo-34分子筛的合成方法
CN103641131A (zh) * 2013-12-10 2014-03-19 吉林大学 较低硅含量的薄片状纳米sapo-34分子筛、制备方法及其应用
CN104192860A (zh) * 2014-09-03 2014-12-10 太原大成环能化工技术有限公司 一种薄层状形貌sapo-34分子筛的合成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102557072A (zh) * 2010-12-29 2012-07-11 中国科学院大连化学物理研究所 Sapo-34分子筛的溶剂热合成方法和由其制备的催化剂
CN102616810A (zh) * 2012-04-17 2012-08-01 吉林大学 具有立方体或薄片形貌的纳米sapo-34分子筛及其应用
CN103011188A (zh) * 2013-01-05 2013-04-03 上海中科高等研究院 具有球形或片状形貌的纳米sapo-34分子筛及其合成方法及由其制备的催化剂和应用
CN103130241A (zh) * 2013-03-21 2013-06-05 上海绿强新材料有限公司 一种低硅纳米sapo-34分子筛的合成方法
CN103641131A (zh) * 2013-12-10 2014-03-19 吉林大学 较低硅含量的薄片状纳米sapo-34分子筛、制备方法及其应用
CN104192860A (zh) * 2014-09-03 2014-12-10 太原大成环能化工技术有限公司 一种薄层状形貌sapo-34分子筛的合成方法

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107954434A (zh) * 2016-10-14 2018-04-24 中国石油化工股份有限公司 纳米片sapo分子筛聚集体、制备方法及其用途
CN107954434B (zh) * 2016-10-14 2021-06-18 中国石油化工股份有限公司 纳米片sapo分子筛聚集体、制备方法及其用途
CN108675316A (zh) * 2018-08-06 2018-10-19 山西大同大学 一种片状sapo-34分子筛的制备方法
CN110407220A (zh) * 2019-08-27 2019-11-05 中化泉州能源科技有限责任公司 一种大比表面积sapo-34分子筛的快速制备方法
CN110407220B (zh) * 2019-08-27 2022-08-12 中化泉州能源科技有限责任公司 一种大比表面积sapo-34分子筛的快速制备方法
CN110668465A (zh) * 2019-09-30 2020-01-10 福建师范大学 一种MeAPSO-44分子筛及其制备方法
CN110668465B (zh) * 2019-09-30 2022-10-11 福建师范大学 一种MeAPSO-44分子筛及其制备方法
CN111013650A (zh) * 2019-12-25 2020-04-17 山东江岳科技开发股份有限公司 一种sapo-34分子筛薄层催化剂及其制备方法
CN113493212A (zh) * 2020-04-01 2021-10-12 中国石油化工股份有限公司 一种sapo-34分子筛及其制备方法和应用
CN113493212B (zh) * 2020-04-01 2023-03-03 中国石油化工股份有限公司 一种sapo-34分子筛及其制备方法和应用
CN113753915A (zh) * 2020-06-01 2021-12-07 中国石油化工股份有限公司 小晶粒sapo-34分子筛的制法、制备的分子筛和用途
CN111704145A (zh) * 2020-06-05 2020-09-25 浙江天地环保科技股份有限公司 一种原位合成纳米氢型Cu-SSZ-13分子筛的方法
CN114477209B (zh) * 2020-10-23 2023-10-13 中国石油化工股份有限公司 一种硅铝分子筛及其制备方法和应用
CN114477209A (zh) * 2020-10-23 2022-05-13 中国石油化工股份有限公司 一种硅铝分子筛及其制备方法和应用
CN114538461B (zh) * 2020-11-26 2023-08-08 中国科学院大连化学物理研究所 一种ssz-13硅铝分子筛及其制备方法与应用
CN114538461A (zh) * 2020-11-26 2022-05-27 中国科学院大连化学物理研究所 一种ssz-13硅铝分子筛及其制备方法与应用
CN114804147A (zh) * 2021-01-29 2022-07-29 中国石油化工股份有限公司 一种花状aei型分子筛及其制备方法和应用
CN114804147B (zh) * 2021-01-29 2024-01-30 中国石油化工股份有限公司 一种花状aei型分子筛及其制备方法和应用
CN113149031A (zh) * 2021-05-21 2021-07-23 大连理工大学盘锦产业技术研究院 一种以花粉为辅助模板制备sapo-34分子筛的方法
CN114195171A (zh) * 2021-12-28 2022-03-18 山西大学 一种针状off分子筛的制备方法
CN114195171B (zh) * 2021-12-28 2023-07-18 山西大学 一种针状off分子筛的制备方法
CN114849765B (zh) * 2022-05-13 2023-05-26 苏州大学 一种分子筛催化剂的超快制备方法
CN114849765A (zh) * 2022-05-13 2022-08-05 苏州大学 一种分子筛催化剂的超快制备方法
CN114797497A (zh) * 2022-05-30 2022-07-29 江西师范大学 一种醇加速制备AlPO-18分子筛膜的方法与应用
CN114890437B (zh) * 2022-06-22 2023-08-25 中国石油大学(华东) 一种利用mto废催化剂快速合成的小粒度sapo-34分子筛及其制备方法
CN114890437A (zh) * 2022-06-22 2022-08-12 中国石油大学(华东) 一种利用mto废催化剂快速合成的小粒度sapo-34分子筛及其制备方法
CN114890434B (zh) * 2022-06-22 2023-08-25 中国石油大学(华东) 一种用mto废催化剂制备的富含介孔的sapo-34分子筛及其制备方法
CN114890434A (zh) * 2022-06-22 2022-08-12 中国石油大学(华东) 一种用mto废催化剂制备的富含介孔的sapo-34分子筛及其制备方法
CN115196648A (zh) * 2022-07-20 2022-10-18 天津派森新材料技术有限责任公司 一种无模板剂合成sapo-5分子筛的方法
CN115196648B (zh) * 2022-07-20 2024-01-09 天津派森新材料技术有限责任公司 一种无模板剂合成sapo-5分子筛的方法
CN116159591A (zh) * 2022-09-27 2023-05-26 厦门大学 一种氧化物-分子筛复合催化剂及其制备方法和应用
CN116199239A (zh) * 2022-12-23 2023-06-02 中触媒新材料股份有限公司 一种低硅纳米片状sapo-34分子筛及其制备方法和应用
CN116351458A (zh) * 2023-03-28 2023-06-30 中化泉州石化有限公司 一种c4~c6烯烃耦合含氧化合物共裂解制低碳烯烃的催化剂制备方法

Similar Documents

Publication Publication Date Title
WO2016061727A1 (fr) Procédé de synthèse de tamis moléculaire sapo-34 nanométrique de la forme d'une tranche
CN103641131B (zh) 较低硅含量的薄片状纳米sapo-34分子筛、制备方法及其应用
JP5982064B2 (ja) Sapo−34分子篩及びその合成方法
JP5667311B2 (ja) Sapo分子篩の溶剤熱合成方法及びそれにより調製された触媒
CN105585022B (zh) 一种片状纳米sapo‑34分子筛的合成方法
CN107434252B (zh) 低硅纳米sapo-34分子筛的制备方法
WO2008019586A1 (fr) Procédé de synthèse sur site d'un catalyseur à microsphère utilisé pour convertir un composé oxygène en oléfine
EP3495320B1 (fr) Procédé de synthèse d'un tamis moléculaire nano sapo-34, et catalyseur de tamis moléculaire sapo-34 et son application
WO2016090612A1 (fr) Procédé de synthèse de tamis moléculaire sapo-34 mésoporeux et microporeux
CN110127721A (zh) 立方体状纳米sapo-34分子筛、制备方法及应用
Wu et al. Synthesis of nanosized SAPO-34 with the assistance of bifunctional amine and seeds
KR101920959B1 (ko) 디글리콜아민을 주형제로 하는 sapo-34 분자체 및 그 합성 방법
CN112794338B (zh) Zsm-5分子筛及其制备方法和应用
CN101214974A (zh) 一种制备小晶粒sapo-34分子筛的方法
CN102836741A (zh) Sapo-34分子筛催化剂及其在甲醇制低碳烯烃中的应用
Di et al. Green and efficient dry gel conversion synthesis of SAPO-34 catalyst with plate-like morphology
Guo et al. Morphology control of SAPO-34 and its catalytic performance for methanol to olefin reaction
CN105731484A (zh) 一种中微孔sapo-34分子筛的合成方法
CN104192860B (zh) 一种薄层状形貌sapo-34分子筛的合成方法
CN106542547B (zh) 一种高活性低硅含量的sapo-34分子筛的制备方法
WO2014089738A1 (fr) N-méthyl-diéthanolamine comme modèle de tamis moléculaire sapo -34 et son procédé de synthèse
WO2019113948A1 (fr) Méthode de préparation de tamis moléculaire sapo-34, catalyseur acide et catalyseur de réaction pour la préparation d'oléfine par conversion d'un composé contenant de l'oxygène
CN114804147B (zh) 一种花状aei型分子筛及其制备方法和应用
CN112517058B (zh) 一种aei型分子筛及其制备方法和应用
Hussein et al. Studying Influence of Aging and Crystallization Temperature on Characteristics of SAPO-11 Catalyst Using Hydrothermal Method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14904400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14904400

Country of ref document: EP

Kind code of ref document: A1