WO2016056480A1 - ポリイミド溶液、耐熱性不織布およびその製造方法 - Google Patents

ポリイミド溶液、耐熱性不織布およびその製造方法 Download PDF

Info

Publication number
WO2016056480A1
WO2016056480A1 PCT/JP2015/078028 JP2015078028W WO2016056480A1 WO 2016056480 A1 WO2016056480 A1 WO 2016056480A1 JP 2015078028 W JP2015078028 W JP 2015078028W WO 2016056480 A1 WO2016056480 A1 WO 2016056480A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyimide solution
nonwoven fabric
polyimide
mol
Prior art date
Application number
PCT/JP2015/078028
Other languages
English (en)
French (fr)
Inventor
茶山奈津子
富川真佐夫
弓場智之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to EP15848947.6A priority Critical patent/EP3216819A4/en
Priority to US15/517,783 priority patent/US10669377B2/en
Priority to JP2015553944A priority patent/JP6728680B2/ja
Priority to CN201580054919.1A priority patent/CN106795285B/zh
Priority to KR1020177009041A priority patent/KR102339152B1/ko
Publication of WO2016056480A1 publication Critical patent/WO2016056480A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1075Partially aromatic polyimides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1039Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors comprising halogen-containing substituents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1042Copolyimides derived from at least two different tetracarboxylic compounds or two different diamino compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D1/00Treatment of filament-forming or like material
    • D01D1/02Preparation of spinning solutions
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/74Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
    • D04H1/728Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is used for base materials of low dielectric constant substrates, sound absorbing materials such as aircraft, electromagnetic wave shielding materials, separation filters, heat-resistant bag filters, electrodes and separators of lithium ion secondary batteries, electrodes and separators of electric double layer capacitors, etc.
  • the present invention relates to a heat-resistant non-woven fabric and a method for producing the same. More specifically, the present invention relates to a nonwoven fabric that is not easily affected by humidity during yarn production and has excellent heat resistance, and a method for producing the same.
  • heat-resistant materials having voids are required.
  • a heat-resistant nonwoven fabric that can withstand the solder process as a base material of such a material is one of the promising candidates.
  • heat-resistant non-woven fabrics are attracting attention as materials having excellent ion permeability and high mechanical strength and heat resistance by metal plating.
  • Specific applications include lightweight and excellent electromagnetic shielding materials, electrode materials for light and high capacity lithium ion secondary batteries and electric double layer capacitors, and heat-resistant bag filters that remove dust from combustion gases emitted from factories, etc. And separators for gas separation membranes, water separation membranes, lithium ion secondary batteries and electric double layer capacitors.
  • Patent Document 1 discloses a polyimide composition having a specific structure suitable for an electrospinning method (ESP method) and a method for producing a nonwoven fabric for a bag filter used at a high temperature.
  • ESP method electrospinning method
  • Patent Document 2 a polyimide solution is obtained by discharging a polyimide solution from a nozzle and applying a high-speed air flow intersecting with the nozzle, and applied to a heat-resistant bag filter, a heat-absorbing sound-absorbing material, heat-resistant clothing, and the like. It is disclosed.
  • Patent Document 3 discloses a separator for a lithium ion secondary battery using a resin solution obtained by reacting a polyamic acid and an alkoxysilane partial condensate containing an epoxy group.
  • Patent Document 4 discloses a separator obtained by applying a highly branched polymer to a porous structure material such as a nonwoven fabric.
  • Patent Document 5 discloses a non-woven fabric made of polyimide short fibers by beating a foam using a polyimide having a specific structure.
  • Patent Document 6 discloses a separator having a high insulating property while increasing the liquid absorption rate by using a separator in which a porous film and a nonwoven fabric are laminated on a lithium ion secondary battery.
  • Patent Document 7 describes a thin and tough material suitable for the production of capacitors with high energy density and low internal resistance using aliphatic polyketone non-woven fabrics, with heat resistance, dimensional stability, electrical insulation, chemical resistance, and low water absorption.
  • Patent Document 8 discloses a high-performance oleophobic polyimide film obtained by electrospinning a polyimide fiber having a diameter of 10 nm to 50 ⁇ m to form a nonwoven fabric composed of a plurality of polyimide fibers and treating the nonwoven fabric with a perfluoropolymer.
  • Patent Document 9 discloses that an electrospinning method can be obtained by using a polyimide solution having a specific structure of nano-sized fine fibers.
  • Patent Document 10 discloses that heat resistance and solubility are both achieved by using an assembly including polyimide fibers for a lithium ion battery separator, a bag filter, and a fuel exhaust gas filter.
  • Patent Document 11 discloses that a decrease in capacity of a lithium ion battery can be suppressed by using polyamideimide, polyamide, or polyimide for a separator including an organic fiber layer produced by an electrospinning method (ESP method).
  • ESP method electrospinning method
  • JP 2011-132611 A (Claims) JP 2011-9769 A (Claims) International Publication No. 2009/054349 (Claims) JP 2012-134145 A (Claims) International Publication No. 2011-074641 JP 2011-210680 A JP 2006-351733 A JP 2013-217008 A JP 2011-132651 A Japanese Patent Laid-Open No. 2015-74866 JP 2014-41817 A
  • the polyimides disclosed in Patent Documents 1 and 10 have a problem that the water absorption is high and the swelling due to the electrolytic solution or water is large, so that the opening size of the obtained nonwoven fabric is easily changed.
  • the spinning method disclosed in Patent Document 3 requires a high-temperature air flow to be constantly applied to the yarn, which increases energy consumption.
  • clogging is likely to occur when the temperature of the base increases and the solvent evaporates.
  • the present invention does not require a high-temperature ring-closing step to obtain a heat-resistant polyimide nonwoven fabric, and is not easily affected by atmospheric humidity during yarn production by the electrospinning method. It aims at providing the polyimide resin composition which can be obtained, a heat resistant nonwoven fabric using the same, and its manufacturing method.
  • the present invention (A) a resin containing the structural unit represented by the general formula (1) at 50% mol or more of the whole resin, and (b) a polyimide solution containing a solvent.
  • R 1 and R 2 each independently represents an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, a cyano group, or a nitro group
  • Z represents a hydroxyl group or a carboxyl group
  • Y represents a carbon number.
  • 4 represents a tetravalent organic group of 4 to 30.
  • X is a structure represented by the following structure, and p, q, r, and s are integers of 0 to 4, provided that p + q> 1 N represents an integer of 0 to 4.
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group, or a phenyl group
  • R 5 to R 11 Represents an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group, or a phenyl group, all of which may be the same or different
  • t is an integer of 0 to 3.
  • the present invention is a nonwoven fabric formed using the polyimide solution of the present invention. Moreover, this invention is a manufacturing method of the nonwoven fabric which spins a polyimide on a board
  • a polyimide having a water-soluble substituent can be obtained although the hygroscopicity of the polyimide itself is low. Therefore, even if the amount of water in the polyimide solution increases, it is possible to obtain a polyimide solution in which the solubility of the polyimide in the polyimide solution is not lowered and the solution is not whitened.
  • this polyimide solution it is possible to form a yarn having a stable shape even if the temperature and humidity at the time of yarn production change somewhat. As a result, it is not necessary to put the apparatus in a booth where large-scale temperature / humidity management is possible, and the desired nonwoven fabric can be obtained.
  • the polyimide solution of the present invention is a polyimide solution containing a resin containing the structural unit represented by the general formula (1) in an amount of 50 mol% or more of the total resin and (b) a solvent.
  • the polyimide structure it is essential that the structure be soluble in a solvent, and the relative dielectric constant is preferably 3.2 or more from the viewpoint of forming a yarn having a stable shape.
  • the nonwoven fabric of the present invention is obtained by spinning a polyimide solution by an electrospinning method.
  • the structure represented by the general formula (1) is a structural unit of polyimide.
  • the structural unit represented by the general formula (1) contains highly polar components such as a sulfone group, a ketone group, and a hydroxyl group, and even if water is mixed in the solvent of the polyimide solution, the polyimide is difficult to precipitate from the solvent. Has characteristics. In addition, it increases the solubility in aprotic organic solvents such as N-methylpyrrolidone and dimethylacetamide.
  • aprotic organic solvents such as N-methylpyrrolidone and dimethylacetamide.
  • the electrospinning method is particularly suitable for obtaining a thin yarn having a diameter of ⁇ m or less.
  • the humidity of the atmosphere in which a voltage is applied to the polyimide solution to be blown is high, water enters the polyimide solution. As a result, the polyimide is precipitated from the polyimide solution on the way, and a white brittle film-like solid is generated. In order to suppress this, it has been generally necessary to control the humidity of the atmosphere in which electrospinning is performed.
  • the polyimide used in the polyimide solution of the present invention is less likely to be whitened due to the highly polar component introduced into the polyimide even when moisture enters the solvent.
  • X is any structure represented by the structure shown below
  • Z represents a hydroxyl group or a carboxyl group
  • p and q are 0 to It is an integer of 4. From the viewpoint of forming a stable finely shaped yarn, p + q> 1 due to the introduction of a hydroxyl group or a carboxyl group that contributes to an increase in dielectric constant.
  • R 3 and R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group, or a phenyl group. From the viewpoint of suppressing moisture absorption of the resulting polyimide solution and forming a more stable fine-shaped yarn, R 3 and R 4 are preferably an alkyl group having 1 to 4 carbon atoms or a fluoroalkyl group, and preferably an isopropyl group or hexafluoride group. An isopropyl group is more preferable.
  • R 5 to R 11 represent an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group, or a phenyl group, and may be all the same or different.
  • t is an integer of 0 to 3.
  • diamine having a hydroxyl group or a carboxyl group examples include 2,2-bis (aminohydroxyphenyl) hexafluoropropane and bis (aminohydroxyphenyl) fluorene.
  • preferred diamines include 3,4'-diaminodiphenylsulfone, 3,3'-diaminodiphenylsulfone, and 4,4'-diamino. Examples thereof include diphenyl sulfone, 3,4'-diaminodiphenyl ketone, 3,3'-diaminodiphenyl ketone, and 4,4'-diaminodiphenyl ketone.
  • the structure represented by the general formula (1) in the present invention is a structure in which an alkyl group having 1 to 10 carbon atoms, a fluoroalkyl group, a cyano group, or a nitro group represented by R 1 and R 2 is bonded to a benzene ring.
  • R 1 and R 2 each have at least one methyl group, ethyl group, propyl group, butyl group, trifluoromethyl group, pentafluoroethyl group, perfluoropropyl group, or perfluorobutyl group bonded to the benzene ring. It preferably includes a structure.
  • Examples include diaminotoluene, diaminotrifluoromethylbenzene, diaminoxylene, bis (trifluoromethyl) diaminobiphenyl, diaminodimethylbiphenyl, bis (trifluoromethyl) diaminobiphenyl, diaminodiethylbiphenyl, bis (tripentafluoro And ethyl) diaminobiphenyl.
  • hydrogen atoms added to an aromatic ring contained in 2,2-bis (aminohydroxyphenyl) hexafluoropropane, bis (aminohydroxyphenyl) fluorene, etc. are represented by R 1 and R 2.
  • the structure represented by (a) general formula (1) in the present invention is a structural unit of polyimide.
  • Polyimide can be obtained by reacting diamine and tetracarboxylic acid.
  • tetracarboxylic dianhydride in particular, in order to facilitate the reaction, it is preferable to react tetracarboxylic dianhydride with diamine. It can also be obtained by reacting a tetracarboxylic acid dichloride or diester with a diamine.
  • the tetracarboxylic acid residue corresponds to a moiety represented by Y, and Y represents a tetravalent organic group having 4 to 30 carbon atoms.
  • the tetracarboxylic acid residue represented by Y is benzene, cyclobutane, cycloheptane, cyclohexane, naphthalene, biphenyl, terphenyl, diphenyl ether, triphenyl ether, diphenylmethane, or diphenylhexafluoropropane, diphenylsulfone, diphenylketone. It preferably contains an organic group.
  • tetracarboxylic acids containing such a structure include pyromellitic acid, naphthalenetetracarboxylic acid, biphenyltetracarboxylic acid, terphenyltetracarboxylic acid, diphenylethertetracarboxylic acid, triphenylethertetracarboxylic acid, diphenylmethanetetracarboxylic acid, Aromatic tetracarboxylic acids such as diphenylhexafluoropropanetetracarboxylic acid, diphenylsulfonetetracarboxylic acid, diphenylketonetetracarboxylic acid, monocyclic tetramers such as cyclobutanetetracarboxylic acid, cyclohexanetetracarboxylic acid, cycloheptanetetracarboxylic acid Examples thereof include carboxylic acid.
  • perfluoropentanetetracarboxylic acid bis (trifluoromethyl) pyromellitic acid, bis (perfluoroethyl) pyromellitic acid, cyclopropanetetracarboxylic acid, cyclopentanetetracarboxylic acid, cyclooctanetetracarboxylic acid, Bicyclic [2] having a monocyclic tetracarboxylic acid such as cyclononanetetracarboxylic acid, cyclodecanetetracarboxylic acid, cycloundecanetetracarboxylic acid, cyclododecanetetracarboxylic acid, aromatic benzophenonetetracarboxylic acid, condensed ring structure .2.2] oct-7-ene-2,3,5,6-tetracarboxylic acid, pentacyclo [8.2.1.1 4,7 0 2,9.
  • tricarboxylic acid such as trimellitic acid, terephthalic acid, isophthalic acid, maleic acid, succinic acid, adipic acid, pentanedicarboxylic acid, decanedicarboxylic acid and other dicarboxylic acids such as 50 mol of acid component are used. % Or less can be copolymerized.
  • tetracarboxylic acid residue represented by Y include diphenylsulfonetetracarboxylic acid and diphenylketone having a large proportion of polar groups contributing to high dielectric constant. Tetracarboxylic acid. Further, it is more preferable that these residues are 40 mol% or more of Y.
  • Y is a residue of diphenylsulfone tetracarboxylic acid and / or diphenyl ketone tetracarboxylic acid, and at the same time 5 to 50 mol% of Y is pyromellitic acid. Most preferred are residues of When the above residues are not included in this range, thread formation tends to become unstable.
  • the resin used in the present invention is a solution in the form of a polyamic acid or polyamic acid ester which is a polyimide precursor, it is necessary to heat and close the ring after electrospinning to form a polyimide, so it is desirable to use polyimide.
  • the component (a) used in the present invention may contain a polyimide precursor structure as long as it contains 50 mol% or more of the structural unit of polyimide represented by the general formula (1) in the whole resin.
  • the polyimide solution of the present invention is a polyimide solution that contains a resin represented by the general formula (2) and (b) a solvent and is used for forming a nonwoven fabric.
  • R 12 represents a diamine residue.
  • R 12 is a divalent organic group having at least 2 carbon atoms, and among them, an organic group having 5 to 40 carbon atoms containing an aromatic ring or a cyclic aliphatic group is preferable.
  • diamines include 3,4'-diaminodiphenyl ether, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylmethane, 3,4'-diaminodiphenylsulfone, 3,3′-diaminodiphenyl sulfone, 4,4′-diaminodiphenyl sulfone, 3,4′-diaminodiphenyl ketone, 3,3′-diaminodiphenyl ketone, 4,4′-diaminodiphenyl ketone, 3,4′- Diaminodiphenylsulfide, 4,4'-diaminodiphenylsulfide, 1,4-bis (4-aminophenoxy) benzene, benzidine, m-phenylenediamine, p-phenylenediamine,
  • preferred specific examples include 9,9-bis (aminohydroxyphenyl) fluorene and 2,2-bis (aminohydroxyphenyl), which have a large proportion of polar groups contributing to high dielectric constant.
  • R 13 represents an acid dianhydride residue.
  • R 13 is a tetravalent organic group having at least 2 carbon atoms, and among them, an organic group having 5 to 40 carbon atoms containing an aromatic ring or a cyclic aliphatic group is preferable.
  • the acid dianhydride include pyromellitic dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic Acid dianhydride, 2,2 ′, 3,3′-biphenyltetracarboxylic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,2 ′, 3,3 ′ -Benzophenone tetracarboxylic dianhydride, 2,2-bis (3,4-dicarboxyphenyl) propane dianhydride, 2,2-bis (2,3-dicarboxyphenyl) propane dianhydride, 1,1
  • Bonn dianhydride, butane tetracarboxylic dianhydride, and the like aliphatic tetracarboxylic dianhydrides such as 1,2,3,4-cyclopentane tetracarboxylic dianhydride. Two or more of these may be used.
  • preferred specific examples include pyromellitic dianhydride and 3,3 ′, 4,4′-benzophenonetetracarboxylic acid having a large proportion of polar groups contributing to high dielectric constant. Examples thereof include dianhydrides, 2,2 ′, 3,3′-benzophenonetetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) sulfone dianhydride, and the like.
  • the polyimide precursor and polyimide used in the present invention can be obtained by reacting an acid anhydride and a diamine in a generally known aprotic solvent such as N-methylpyrrolidone or dimethylacetamide.
  • aprotic solvent such as N-methylpyrrolidone or dimethylacetamide.
  • polyamic acid is obtained at 60 ° C. or lower
  • polyimide is obtained at a temperature higher than 60 ° C.
  • an acid anhydride and an alcohol are reacted in the presence of a catalyst such as pyridine or triethylamine, and then the dicarboxylic acid is acid chloride with sulfonyl chloride, succinic chloride, thionyl chloride or the like.
  • a condensing agent such as dicyclohexylcarbodiimide.
  • the organic solvent used as the reaction solvent can be used as long as it is a solvent in which the polyimide of the present invention is dissolved.
  • aprotic polar solvents are preferred.
  • diphenyl sulfone, dimethyl sulfoxide, sulfolane, dimethyl sulfone, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, diethyl sulfone, diethyl sulfoxide, 1,4-dimethylbenzazolidinone examples include hexamethyltriamide and 1,3-dimethylimidazolidinone.
  • high boiling ketone solvents such as cyclohexanone, ethylene glycol dimethyl ether, diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, propylene glycol dimethyl ether, propylene glycol methyl ethyl ether, propylene glycol diethyl ether, dipropylene glycol dimethyl ether, dipropylene
  • glycol solvents such as glycol methyl ethyl ether and dipropylene glycol diethyl ether, and aromatic hydrocarbon solvents such as toluene and xylene, and ester solvents such as propylene glycol monomethyl ether acetate and methyl-methoxybutanol acetate. You can also.
  • the amount of the solvent used in the polycondensation is preferably 50 parts by weight or more and more preferably 200 parts by weight or more with respect to 100 parts by weight of the total monomers.
  • an operation such as stirring becomes easy and the polycondensation reaction easily proceeds smoothly.
  • 2000 parts by weight or less is preferable, and 800 parts by weight or less is more preferable.
  • the solvent used as the reaction solvent for the resin can be used as it is as the solvent for the polyimide solution.
  • the weight average molecular weight of the resin in the present invention is preferably in the range of 5,000 to 100,000, particularly preferably in the range of 10,000 to 100,000.
  • the weight average molecular weight in the present invention by gel permeation chromatography (GPC) method, measuring the molecular weight of the polyimide resin using the solvent was added lithium chloride concentration of 1M in a mixed solvent of NMP / H 3 PO 4 And a value calculated using a calibration curve of standard polystyrene.
  • a surfactant can be added to the polyimide solution of the present invention. It is also possible to add a photodegradable diazonaphthoquinone compound, a coumarin compound in order to improve the decomposability, a silane coupling agent, a titanium chelate, an aluminum chelate or the like in order to improve the adhesiveness. Furthermore, a bifunctional or higher functional epoxy compound, an oxetane compound, a methylol compound, an alkoxymethylol compound, or the like, which is a crosslinkable compound, can be added for the purpose of improving chemical resistance. Also, fine particles such as silica can be added to increase the hardness. These additive components can be added from 1 ppm to about 30% by weight with respect to the polyimide component.
  • the non-woven fabric formed using the polyimide solution of the present invention will be described.
  • the nonwoven fabric manufactured using the polyimide solution of the present invention is manufactured by an electrospinning method.
  • the electrospinning method is a method in which a high voltage is applied to a polyimide solution to collect charges in the droplets at the tip of the nozzle, the droplets repel each other and spread, and the solution flow is stretched to perform spinning. .
  • This method it is possible to obtain a thin yarn. Therefore, according to the electrospinning method, a thin yarn having a diameter of several tens nm to several ⁇ m can be obtained, and as a result, a thin nonwoven fabric having a thickness of 10 ⁇ m can be formed.
  • this nonwoven fabric is spun from a polyimide solution that has already been imidized, no heat treatment for imidization is required after spinning, and a nonwoven fabric excellent in heat resistance and mechanical properties can be obtained very simply. .
  • the polyimide solution of the present invention is characterized by containing a highly polar sulfone group, ketone group, hydroxyl group or carboxyl group. Therefore, even if water is mixed in the solvent of the polyimide solution, the solubility of the polyimide itself can be kept high, so that the polyimide hardly deposits from the solvent. Therefore, until now, when the electrospinning process was performed in a high humidity atmosphere, water entered the polyimide solution, and the polymer precipitated in the polyimide solution during the spinning process, resulting in a white brittle film-like solid. There was a problem that occurred.
  • the nonwoven fabric can be stably obtained in a simple booth without having to put the electrospinning apparatus in a booth capable of managing temperature and humidity at a large scale.
  • the highly polar polyimide structure since the highly polar polyimide structure has a strong intermolecular force of the polymer, it exhibits a high glass transition point in the solvent removal state after electrospinning. From the viewpoint of application to a heat resistant nonwoven fabric, the glass transition point is preferably 200 ° C. or higher. If it is lower than this, the structure of the non-woven fabric is modified by heat softening, so that there is a possibility that the performance will deteriorate due to changes over time.
  • the non-woven fabric of the present invention can be used as a high-order processed product for a heat-resistant bag filter, an electromagnetic shielding material, a core material for a low dielectric constant substrate, a gas separation membrane, a battery or capacitor electrode, a separator, a heat insulating sound absorbing material, or the like.
  • batteries and electric double layer capacitors using the nonwoven fabric of the present invention as a separator have a high heat resistance and a small thickness. Therefore, the porosity is increased, and a battery and a capacitor excellent in short-time charging and discharging characteristics can be obtained.
  • the polyimide solution was spin-coated on a 6-inch silicon wafer so that the film thickness after drying at 120 ° C. for 4 minutes was about 15 ⁇ m. After spin coating, 120 minutes at 120 ° C., dried on a hot plate attached to a coating and developing apparatus SCW-636 manufactured by Dainippon Screen, and then used for 1 hour at 300 ° C. using an inert oven INH-9CD manufactured by Koyo Thermo Systems Heat treatment was performed to obtain a polyimide film.
  • the wafer on which this film was formed was immersed in a 45% aqueous hydrofluoric acid solution at room temperature for 3 minutes, washed with deionized water for 10 minutes, and peeled off from the wafer.
  • the film was weighed and then dried at 200 ° C. for 1 hour to determine the absolute dry weight.
  • the water absorption was determined from the weight at the time of water absorption and the absolute dry weight using the following formula.
  • Water absorption rate (water absorption weight ⁇ absolute dry weight) / absolute dry weight ⁇ 100 (%). ⁇ Measurement of relative permittivity>
  • a polyimide solution was spin-coated on an aluminum substrate.
  • the wafer on which this film was formed was immersed in a 45% aqueous hydrofluoric acid solution at room temperature for 3 minutes, washed with deionized water for 10 minutes, and peeled off from the wafer.
  • the membrane was dried at 120 ° C. for 2 hours, dehydrated, and cut into a weight of 5 mg to obtain a sample.
  • This sample was heated from room temperature to 400 ° C. using a DSC-50 manufactured by Shimadzu Corporation at a heating rate of 10 ° C./min, and the glass transition point was measured.
  • Example 1 In a 500 mL three-necked flask equipped with a nitrogen inlet tube, a stir bar, and a thermometer, 3.66 g (0.01 mol) of 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane under a dry nitrogen stream AZ Materials), 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl 3.20 g (0.01 mol, manufactured by Wakayama Seika) was added to N-methyl-2-pyrrolidone (NMP). , Manufactured by Mitsubishi Chemical Co., Ltd.) and 30 g of toluene (manufactured by Tokyo Chemical Industry) at 40 ° C. or lower.
  • NMP N-methyl-2-pyrrolidone
  • the resin solution thus obtained was filtered through a 2 ⁇ m polytetrafluoroethylene membrane filter to obtain a polyimide solution.
  • this polyimide solution was spin-coated on a 4-inch silicon wafer in an atmosphere of room temperature and 50% humidity, the solution did not whiten even if left for 120 seconds after coating.
  • the water absorption was 1.9%, the relative dielectric constant was 2.9, and the glass transition point was 170 ° C.
  • Example 2 22.8 g of bis (3-amino-4-hydroxyphenyl) fluorene (0.06 mol, manufactured by AZ Materials) in a 500 mL three-necked flask equipped with a nitrogen inlet tube, a stir bar, and a thermometer under a dry nitrogen stream Then, it was dissolved in 2.88 g of 2,4-diaminotoluene (0.04 mol, manufactured by Tokyo Chemical Industry) NMP235 g and 10 g of toluene (produced by Tokyo Chemical Industry) at 40 ° C. or lower.
  • the resin solution thus obtained was filtered through a 2 ⁇ m polytetrafluoroethylene membrane filter to obtain a polyimide solution.
  • this polyimide solution was spin-coated on a 4-inch silicon wafer in an atmosphere of room temperature and 50% humidity, the solution did not whiten even if left for 120 seconds after coating.
  • the water absorption was 1.5%
  • the relative dielectric constant was 3.2
  • the glass transition point was 200 ° C.
  • Example 3 In a 500 mL three-necked flask equipped with a nitrogen inlet tube, a stir bar, and a thermometer, 11.5 g of 2,2-bis (3-carboxyl-4-aminophenyl) methane (made by Wakayama Seika, 0 .05 mol), 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl 12.8 g (manufactured by Wakayama Seika, 0.04 mol), 1,3-bis (3-aminopropyl) 2.48 g of tetramethyldisiloxane (manufactured by Shin-Etsu Chemical Co., 0.01 mol) was dissolved in 240 g of NMP at 40 ° C.
  • the resin solution thus obtained was filtered through a 2 ⁇ m polytetrafluoroethylene membrane filter to obtain a polyimide solution.
  • this polyimide solution was spin-coated on a 4-inch silicon wafer in an atmosphere of room temperature and 50% humidity, the solution did not whiten even if left for 120 seconds after coating.
  • the water absorption was 2.5%
  • the relative dielectric constant was 3.0
  • the glass transition point was 180 ° C.
  • Example 4 25.0 g of bis (3-amino-4-hydroxyphenyl) sulfone (0.1 mol, manufactured by AZ Materials) in a 500 mL three-necked flask equipped with a nitrogen introduction tube, a stirring rod, and a thermometer under a dry nitrogen stream was dissolved in 10 g of NMP 230 g toluene at 40 ° C.
  • pyromellitic dianhydride 10.9 g (0.05 mol, manufactured by Daicel Chemical Industries), 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride 17.9 g (0.05 mol, New Nippon Rika Co., Ltd.) is added and stirred at 40 ° C for 2 hours, then the temperature of the solution is raised to 180 ° C and further stirred for 4 hours to carry out the reaction while removing distilled toluene and water. It was. The resin solution thus obtained was filtered through a 2 ⁇ m polytetrafluoroethylene membrane filter to obtain a polyimide solution.
  • Example 5 In a 500 mL three-necked flask equipped with a nitrogen introduction tube, a stirring rod, and a thermometer, 14.9 g of bis (3-amino-4-hydroxyphenyl) cyclohexane (0.05 mol, manufactured by Tokyo Chemical Industry) under a dry nitrogen stream, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl 12.8 g (0.04 mol, manufactured by Wakayama Seika), 1,3-bis (3-aminopropyl) tetramethyldisiloxane 2 .48 g (0.01 mol, manufactured by Shin-Etsu Chemical Co., Ltd.) was dissolved in 205 g of NMP at 40 ° C.
  • the resin solution thus obtained was filtered through a 2 ⁇ m polytetrafluoroethylene membrane filter to obtain a polyimide solution.
  • this polyimide solution was spin-coated on a 4-inch silicon wafer in an atmosphere of room temperature and 50% humidity, the solution did not whiten even if left for 120 seconds after coating.
  • the water absorption was 1.4%
  • the relative dielectric constant was 2.9
  • the glass transition point was 190 ° C.
  • the resin solution thus obtained was filtered through a 2 ⁇ m polytetrafluoroethylene membrane filter to obtain a polyimide solution.
  • this polyimide solution was spin-coated on a 4-inch silicon wafer in an atmosphere of room temperature and 50% humidity, the solution did not whiten even if left for 120 seconds after coating.
  • Comparative Example 1 In a 500 mL three-necked flask equipped with a nitrogen inlet tube, a stirring rod, and a thermometer, 2.8 g (0.05 mol, manufactured by Wakayama Seika), 2,2 ′ under a dry nitrogen stream -Bis (trifluoromethyl) -4,4'-diaminobiphenyl 1.60 g (0.05 mol, manufactured by Wakayama Seika) was dissolved in 40 g of NMP 40 g toluene (manufactured by Tokyo Chemical Industry Co., Ltd.) at 40 ° C.
  • NMP 40 g toluene manufactured by Tokyo Chemical Industry Co., Ltd.
  • the resin solution thus obtained was filtered through a 2 ⁇ m polytetrafluoroethylene membrane filter to obtain a polyimide solution.
  • this polyimide solution was spin-coated on a 4-inch silicon wafer in an atmosphere of room temperature and 50% humidity, the entire coating film was whitened due to moisture absorption in 30 seconds after coating.
  • the water absorption was 1.0%, the relative dielectric constant was 2.6, and the glass transition point was 170 ° C.
  • Example 7 The polyimide solution obtained in Example 1 was diluted to a concentration of 12%, and the inner diameter of the nozzle was 0.84 mm on an earthed aluminum foil using an electrospray coater in an environment of a temperature of 24 ° C. and a humidity of 50% ( Using the needle of G18), the distance between the nozzle and the aluminum foil was 250 mm, and the solution was fed at a total liquid volume of 20 ⁇ L / min and applied at a voltage of 15 kV. As a result, a polyimide nonwoven fabric was obtained on the aluminum foil.
  • Comparative Example 2 A polyimide nonwoven fabric was prepared from the polyimide solution obtained in Comparative Example 1 in the same manner as in Example 7. However, moisture absorption occurred, a white fragile film was formed, and a tough nonwoven fabric was not formed. Examples 8 to 25, Comparative Example 3 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane 3.66 g (0.01 mol, manufactured by AZ Materials), 2,2′-bis (trifluoromethyl) -4,4′- 3.20 g of diaminobiphenyl (0.01 mol, manufactured by Wakayama Seika), 30 g of N-methyl-2-pyrrolidone (NMP, manufactured by Mitsubishi Chemical) and 4.36 g of pyromellitic dianhydride (0.02 mol, A polyimide solution was obtained in the same manner as in Example 1 except that the diamine, NMP amount, and acid dianhydride shown in Tables 1 and 2 were used instead of Daicel Chemical Industries).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Electrochemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Nonwoven Fabrics (AREA)
  • Cell Separators (AREA)
  • Filtering Materials (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、耐熱性のあるポリイミド不織布を得るにあたり、高温での閉環工程も必要なく、また電界紡糸法による製糸時に雰囲気の湿度の影響を受けにくく、どのような状況でも安定した径の糸を得ることができる、ポリイミド溶液を提供する。 (a)一般式(1)で表される構造単位を樹脂全体の50モル%以上含む樹脂、および(b)溶剤を含むポリイミド溶液。

Description

ポリイミド溶液、耐熱性不織布およびその製造方法
 本発明は、低誘電率基板の基材、航空機などの吸音材、電磁波シールド材、分離フィルター、耐熱バグフィルター、リチウムイオン二次電池の電極やセパレーター、電気二重層キャパシターの電極やセパレーターなどに用いることができる耐熱性不織布とその製造方法に関する。より詳しくは、製糸時の湿度の影響を受けにくく、耐熱性に優れた不織布とその製造方法に関する。
 近年、電子デバイスでは低誘電率化が求められ、そのため空隙のある耐熱材料が求められている。このような材料の基材として半田プロセスに耐える耐熱性のある不織布は有力な候補の一つである。また、耐熱性不織布は金属メッキをすることにより、イオン透過性に優れ、かつ高い機械強度と耐熱性を有した材料として注目されている。具体的な用途としては、軽量で優れた電磁波シールド材、リチウムイオン二次電池や電気二重層キャパシターの軽量で高容量になる電極材、工場などから出る燃焼ガスにある粉じんを除去する耐熱バグフィルター、気体分離膜や水分離膜、リチウムイオン二次電池や電気二重層キャパシターのセパレーターなどが挙げられる。
 また、航空機などでは高温、低温環境で高い信頼性のある空隙の多い断熱吸音材への要求が高まっている。
 特許文献1には、高温で使用するバグフィルター用に電界紡糸法(ESP法)に適した特定の構造を有するポリイミド組成物と不織布の製造方法が開示されている。
特許文献2には、ポリイミド溶液をノズルから吐出させ、これと交差する高速の気流をあてることでポリイミド繊維を得て、それを用いた耐熱バグフィルター、断熱吸音材、耐熱服などへの適用が開示されている。
特許文献3には、ポリアミド酸とエポキシ基を含有するアルコキシシラン部分縮合物を反応させた樹脂溶液を用いたリチウムイオン二次電池用のセパレーターが開示されている。
特許文献4には、高分枝ポリマーを不織布などの多孔質構造材料に塗布したセパレーターが開示されている。
特許文献5には、特定の構造のポリイミドを用いた発泡体を叩解することで、ポリイミド短繊維からなる不織布が開示されている。
特許文献6には、リチウムイオン二次電池に多孔質フィルムと不織布を積層したセパレーターを用いることで、電解液の吸液速度が高まるとともに、高い絶縁性を有したセパレーターが開示されている。
特許文献7には、脂肪族ポリケトン不織布を用いた高エネルギー密度で内部抵抗の低いコンデンサーの生産に適した薄く強靱で、耐熱性、寸法安定性、電気絶縁性、耐薬品性、低吸水性に優れ、均一で多孔性のコンデンサー用電極セパレーターが開示されている。
特許文献8には、10nm~50μmの直径を有するポリイミド繊維を電気紡績して、複数のポリイミド繊維よりなる不織布を形成し、この不織布をパーフルオロポリマーで処理した高性能疎油性ポリイミド膜が開示されている。
特許文献9には、ナノサイズの微細繊維を特定の構造を有するポリイミド溶液を用いることで、電界紡糸法が得られることが開示されている。
特許文献10には、ポリイミド繊維を含む集合体をリチウムイオン電池セパレーター、バグフィルター、燃料排ガスフィルターに用いることで、耐熱性と可溶性の両立を図ることが開示されている。
特許文献11には電界紡糸法(ESP法)で作製した有機繊維の層を含むセパレーターにポリアミドイミド、ポリアミド、ポリイミドを使用することで、リチウムイオン電池の容量低下を抑制できることが開示されている。
特開2011-132611号公報(特許請求の範囲) 特開2011-9769号公報(特許請求の範囲) 国際公開第2009/054349(特許請求の範囲) 特開2012-134145号公報(特許請求の範囲) 国際公開第2011/074641号 特開2011-210680号公報 特開2006-351733号公報 特開2013-217008号公報 特開2011-132651号公報 特開2015―74866号公報 特開2014―41817号公報
 しかしながら、特許文献1、10などで開示されているポリイミドは吸水率が高く、電解液や水による膨潤が大きく、そのため得られた不織布の開口寸法が変化しやすいという問題がある。また、特許文献3に開示されている紡糸方法は、高温の気流を常に糸に当てる必要があり、エネルギー消費が大きくなる。また、口金部の温度が上がり、溶媒が蒸発すると詰まりやすくなるという問題がある。
 本発明は、耐熱性のあるポリイミド不織布を得るにあたり、高温での閉環工程も必要なく、また電界紡糸法による製糸時に雰囲気の湿度の影響を受けにくく、どのような状況でも安定した径の糸を得ることができる、ポリイミド樹脂組成物とそれを用いた耐熱性不織布およびその製造方法を提供することを目的とする。
 本発明は、
(a)一般式(1)で表される構造単位を樹脂全体の50%モル以上含む樹脂、および(b)溶剤を含むポリイミド溶液である。
Figure JPOXMLDOC01-appb-C000006
(式中、R,Rは、それぞれ独立に炭素数1~10のアルキル基、フルオロアルキル基、シアノ基、またはニトロ基を表し、Zは、水酸基またはカルボキシル基を表す。Yは炭素数4~30の4価の有機基を表す。Xは下記に示す構造で表されるいずれかの構造である。p、q、r、sは0~4の整数である。ただし、p+q>1である。nは0~4の整数を表す。RおよびRは、それぞれ独立に水素原子、炭素数1~4のアルキル基、フルオロアルキル基、またはフェニル基を表す。R~R11は、炭素数1~4のアルキル基、フルオロアルキル基、またはフェニル基を表し、全てが同一でも異なっていても良い。tは0~3の整数である。)
Figure JPOXMLDOC01-appb-C000007
 本発明は、本発明のポリイミド溶液を用いて形成される不織布である。また、本発明は、電界紡糸法で基板上にポリイミドを紡糸し不織布を製造する不織布の製造方法である。また、本発明は、本発明の不織布を用いた吸音材、電磁波シールド材、分離フィルター、耐熱バグフィルター、電池用セパレーター、電気二重層キャパシター用セパレーターである。 
 本発明によれば、ポリイミド自体の吸湿性は低いものの、水溶性の置換基を有するポリイミドが得られる。そのため、ポリイミド溶液中の水分量が増えても、ポリイミド溶液中のポリイミドの溶解度が低下して溶液が白化することがない、ポリイミド溶液を得ることができる。このポリイミド溶液を用いることにより、製糸時の温度、湿度が多少変化しても安定な形状の糸を形成することができる。この結果、装置を大がかりな温度・湿度管理できるブースに入れる必要がなく、目的とする不織布を得ることができる。
 本発明のポリイミド溶液は、一般式(1)で表される構造単位を樹脂全体の50モル%以上含む樹脂と、(b)溶剤を含有したポリイミド溶液である。
ポリイミド構造については、溶剤に可溶な構造であることが必須であり、安定な形状の糸を形成させる観点から好ましくは比誘電率が3.2以上であることが好ましい。
また、本発明の不織布は、ポリイミド溶液を電界紡糸法で紡糸することによって得ることを特徴とする。
Figure JPOXMLDOC01-appb-C000008
 一般式(1)で表される構造は、ポリイミドの構造単位である。一般式(1)で表される構造単位は、スルホン基、ケトン基、水酸基などの高極性成分を含んでおり、ポリイミド溶液の溶媒内に水が混入してもポリイミドが溶媒から析出しにくいという特徴を有する。また、N-メチルピロリドン、ジメチルアセトアミドなどの非プロトン性有機溶媒への溶解性を高める。電界紡糸法では、ポリイミド溶液に高電圧を印加することで、ノズル先端の液滴に電荷が集まり、それが互いに反発することで液滴が広がり、溶液流が引き伸ばされることで紡糸することができる。電界紡糸法は、特にμmサイズ以下の細い径の糸を得るのに適している。しかし、このポリイミド溶液に電圧を印加して飛ばす雰囲気の湿度が高い場合、ポリイミド溶液に水が浸入する。その結果、途中でポリイミドがポリイミド溶液から析出し、白色のもろい膜状の固形物が発生してしまう。これを抑制するため、これまでは一般に電界紡糸を行う雰囲気の湿度を低く制御する必要があった。
 本発明のポリイミド溶液に用いるポリイミドは、溶媒に水分が入ってきても、ポリイミドに導入した高極性成分のために白色化しにくくなっている。
 本発明における(a)一般式(1)で表される構造中、Xは下記に示す構造で表されるいずれかの構造であり、Zは水酸基またはカルボキシル基を表し、p、qは0~4の整数である。安定な微細形状の糸を形成させる観点から高誘電率化に寄与する水酸基、カルボキシル基の導入のためp+q>1である。
 また、 安定な微細形状の糸を形成させる観点からXが高誘電率化に寄与する極性基であるスルホン基、ケトン基の場合においてのみp=q=0であっても良い。
Figure JPOXMLDOC01-appb-C000009
およびRは、それぞれ独立に水素原子、炭素数1~4のアルキル基、フルオロアルキル基、またはフェニル基を表す。
得られるポリイミド溶液の吸湿を押さえ、さらに安定な微細形状の糸を形成させる観点から、RおよびRは、炭素数1~4のアルキル基、フルオロアルキル基が好ましく、イソプロピル基、6フッ化イソプロピル基がより好ましい。
~R11は、炭素数1~4のアルキル基、フルオロアルキル基、またはフェニル基を表し、全てが同一でも異なっていても良い。tは0~3の整数である。
 水酸基またはカルボキシル基を有するジアミンとしては、例えば2,2-ビス(アミノヒドロキシフェニル)ヘキサフルオロプロパン、ビス(アミノヒドロキシフェニル)フルオレンなどを挙げることができる。また、この他にも、ビス(アミノヒドロキシフェニル)アントラセン、ビス(アミノヒドロキシフェニル)ナフタレン、またはビス(アミノヒドロキシフェニル)パーフルオロブタンなどを用いることも好ましい。また、この他にも、ジアミノトルエン、ジアミノトリフルオロメチルベンゼン、ジアミノキシレン、ビス(トリフルオロメチル)ジアミノビフェニル、ジアミノジメチルビフェニル、ビス(トリフルオロメチル)ジアミノビフェニル、ジアミノジエチルビフェニル、ビス(トリペンタフルオロエチル)ジアミノビフェニルなどのジアミン化合物である芳香族環に付加した水素原子を、水酸基またはカルボキシル基で置換したジアミン化合物を挙げることができる。
 Xが高誘電率化に寄与する極性基であるスルホン基、ケトン基の場合、好ましいジアミンとしては、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルケトン、3,3’-ジアミノジフェニルケトン、4,4’-ジアミノジフェニルケトンを挙げることができる。
 本発明における一般式(1)で表される構造は、RおよびRで示される炭素数1~10のアルキル基、フルオロアルキル基、シアノ基、またはニトロ基がベンゼン環に結合した構造を含む。RおよびRは、メチル基、エチル基、プロピル基、ブチル基、トリフルオロメチル基、ペンタフルオロエチル基、パーフルオロプロピル基、またはパーフルオロブチル基が1つ以上ベンゼン環に結合している構造を含むことが好ましい。このような例としては、ジアミノトルエン、ジアミノトリフルオロメチルベンゼン、ジアミノキシレン、ビス(トリフルオロメチル)ジアミノビフェニル、ジアミノジメチルビフェニル、ビス(トリフルオロメチル)ジアミノビフェニル、ジアミノジエチルビフェニル、ビス(トリペンタフルオロエチル)ジアミノビフェニルなどを挙げることができる。また、この他にも、2,2-ビス(アミノヒドロキシフェニル)ヘキサフルオロプロパン、ビス(アミノヒドロキシフェニル)フルオレンなどに含まれる芳香族環に付加した水素原子を、RおよびRで示される炭素数1~10のアルキル基、フルオロアルキル基、シアノ基、またはニトロ基で置換したジアミン化合物の残基を挙げることができる。
r、sは0~4の整数である。得られるポリイミド不織布の強度の点からr=s=0であることが好ましい。
Xの構造としてより好ましいのは、5~50モル%が下記に示すいずれかの構造であることである。この範囲より小さいと、吸湿抑制による安定な微細形状の糸を形成させる効果がなく、この範囲より大きいと吸湿抑制よりも極性低下による糸の不安定化の寄与が大きくなる。
Figure JPOXMLDOC01-appb-C000010
安定な微細形状の糸を形成させる観点から、さらにはXの40~95モル%が下記に示すいずれかの構造であることが最も好ましい。
Figure JPOXMLDOC01-appb-C000011
 本発明における(a)一般式(1)で表される構造はポリイミドの構造単位である。ポリイミドは、ジアミンとテトラカルボン酸とを反応させることで得ることができる。
特に反応を容易に進行させるためには、テトラカルボン酸二無水物とジアミンを反応させるのが良い。また、テトラカルボン酸のジクロリドやジエステルとジアミンを反応させて得ることもできる。
一般式(1)で表される構造のうち、テトラカルボン酸の残基は、Yで示された部分に該当し、Yは炭素数4~30の4価の有機基を表す。また、Yで示されるテトラカルボン酸の残基は、ベンゼン、シクロブタン、シクロヘプタン、シクロヘキサン、ナフタレン、ビフェニル、ターフェニル、ジフェニルエーテル、トリフェニルエーテル、ジフェニルメタン、またはジフェニルヘキサフルオロプロパン、ジフェニルスルホン、ジフェニルケトンを含む有機基を含むことが好ましい。
このような構造を含むテトラカルボン酸の例として、ピロメリット酸、ナフタレンテトラカルボン酸、ビフェニルテトラカルボン酸、ターフェニルテトラカルボン酸、ジフェニルエーテルテトラカルボン酸、トリフェニルエーテルテトラカルボン酸、ジフェニルメタンテトラカルボン酸、ジフェニルヘキサフルオロプロパンテトラカルボン酸、ジフェニルスルホンテトラカルボン酸、ジフェニルケトンテトラカルボン酸などの芳香族系のテトラカルボン酸、シクロブタンテトラカルボン酸、シクロヘキサンテトラカルボン酸、シクロヘプタンテトラカルボン酸などの単環状のテトラカルボン酸などが挙げられる。
この他にも、パーフルオロペンタンテトラカルボン酸、ビス(トリフルオロメチル)ピロメリット酸、ビス(パーフルオロエチル)ピロメリット酸、シクロプロパンテトラカルボン酸、シクロペンタンテトラカルボン酸、シクロオクタンテトラカルボン酸、シクロノナンテトラカルボン酸、シクロデカンテトラカルボン酸、シクロウンデカンテトラカルボン酸、シクドデカンテトラカルボン酸などの単環状のテトラカルボン酸、芳香族系のベンゾフェノンテトラカルボン酸、縮合環構造を有する、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸、ペンタシクロ[8.2.1.14,72,9.03,8]テトラデカン-5,6,11,12-テトラカルボン酸、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸、ペンタシクロ[8.2.1.14,72,9.03,8]テトラデカン-5,6,11,12-テトラカルボン酸、ペンタシクロ[8.2.1.14,7.02,9.03,8]テトラデカン-5,6,11,12-テトラカルボン酸、ビシクロ[2.2.2]オクト-7-エン-2,3,5,6-テトラカルボン酸、ペンタシクロ[8.2.1.14,7.02,9.03,8]テトラデカン-5,6,11,12-テトラカルボン酸、1,2,4,5-ビシクロヘキセンテトラカルボン酸などのテトラカルボン酸、これらのエステル化合物、酸クロリド化合物、アミド化合物などを組み合わせて用いることができる。
 また、より溶解性を高めるために、トリメリット酸などのトリカルボン酸、テレフタール酸、イソフタール酸、マレイン酸、コハク酸、アジピン酸、ペンタンジカルボン酸、デカンジカルボン酸などのジカルボン酸を酸成分の50モル%以下で共重合することができる。
 安定な微細形状の糸を形成させる観点から、Yで示されるテトラカルボン酸の残基の好ましい具体例としては、高誘電率化に寄与する極性基の割合の多いジフェニルスルホンテトラカルボン酸、ジフェニルケトンテトラカルボン酸である。また、これらの残基がYの40モル%以上であることがさらに好ましい。
 さらにポリマー全体の極性基の割合を増やすため、Yの40モル%以上がジフェニルスルホンテトラカルボン酸および/またはジフェニルケトンテトラカルボン酸の残基であると同時にYの5~50モル%はピロメリット酸の残基であることが最も好ましい。 上記の残基がこの範囲に含まれない場合、糸形成が不安定化しやすい。
 本発明に用いられる樹脂は、ポリイミドの前駆体であるポリアミド酸やポリアミド酸エステルの状態の溶液の場合は、電界紡糸後に加熱して閉環しポリイミドとする必要があるため、ポリイミドを用いることが望ましい。本発明に用いられる(a)成分は、一般式(1)で表されるポリイミドの構造単位を樹脂全体の50モル%以上含むのであれば、ポリイミド前駆体構造を含んでいてもよい。
 また本発明のポリイミド溶液は、一般式(2)で表される樹脂、および(b)溶剤を含有し、不織布形成用である、ポリイミド溶液である。
Figure JPOXMLDOC01-appb-C000012
 R12はジアミンの残基を表す。R12は少なくとも2個以上の炭素原子を有する2価の有機基であり、なかでも芳香族環または環状脂肪族基を含有する炭素原子数5~40の有機基が好ましい。
 ジアミンの具体的な例としては、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルケトン、3,3’-ジアミノジフェニルケトン、4,4’-ジアミノジフェニルケトン、3,4’-ジアミノジフェニルスルヒド、4,4’-ジアミノジフェニルスルヒド、1,4-ビス(4-アミノフェノキシ)ベンゼン、ベンジジン、m-フェニレンジアミン、p-フェニレンジアミン、1,5-ナフタレンジアミン、2,6-ナフタレンジアミン、ビス(4-アミノフェノキシフェニル)スルホン、ビス(3-アミノフェノキシフェニル)スルホン、ビス(4-アミノフェノキシ)ビフェニル、ビス{4-(4-アミノフェノキシ)フェニル}エーテル、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2’-ジメチル-4,4’-ジアミノビフェニル、2,2’-ジエチル-4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジエチル-4,4’-ジアミノビフェニル、2,2’,3,3’-テトラメチル-4,4’-ジアミノビフェニル、3,3’,4,4’-テトラメチル-4,4’-ジアミノビフェニル、2,2’-ジ(トリフルオロメチル)-4,4’-ジアミノビフェニル、9,9-ビス(4-アミノフェニル)フルオレン、2,2-ビス(アミノフェニル)ヘキサフルオロプロパン、ビス(アミノフェニル)スルホンあるいはこれらの芳香族環の水素原子の少なくとも一部をアルキル基、ハロゲン原子、水酸基、カルボキシル基で置換した化合物や、脂肪族のシクロヘキシルジアミン、メチレンビスシクロヘキシルアミンなどが挙げられる。これらを2種以上用いてもよい。
 安定な形状の糸を形成させる観点から、好ましい具体例としては高誘電率化に寄与する極性基の割合の多い9,9-ビス(アミノヒドロキシフェニル)フルオレン、2,2-ビス(アミノヒドロキシフェニル)ヘキサフルオロプロパン、ビス(アミノヒドロキシフェニル)スルホン、3,4’-ジアミノジフェニルスルホン、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、3,4’-ジアミノジフェニルケトン、3,3’-ジアミノジフェニルケトン、4,4’-ジアミノジフェニルケトンなどが挙げられる。
13は酸二無水物の残基を表す。R13は少なくとも2個以上の炭素原子を有する4価の有機基であり、なかでも芳香族環または環状脂肪族基を含有する炭素原子数5~40の有機基が好ましい。
酸二無水物の具体的な例としては、ピロメリット酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)プロパン二無水物、2,2-ビス(2,3-ジカルボキシフェニル)プロパン二無水物、1,1-ビス(3,4-ジカルボキシフェニル)エタン二無水物、1,1-ビス(2,3-ジカルボキシフェニル)エタン二無水物、ビス(3,4-ジカルボキシフェニル)メタン二無水物、ビス(2,3-ジカルボキシフェニル)メタン二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン酸二無水物、9,9-ビス{4-(3,4-ジカルボキシフェノキシ)フェニル}フルオレン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、2,2-ビス(3,4-ジカルボキシフェニル)ヘキサフルオロプロパン二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物および下記に示した構造の酸二無水物などの芳香族テトラカルボン酸二無水物や、ブタンテトラカルボン酸二無水物、1,2,3,4-シクロペンタンテトラカルボン酸二無水物などの脂肪族のテトラカルボン酸二無水物などを挙げることができる。これらを2種以上用いてもよい。
安定な形状の糸を形成させる観点から、好ましい具体例としては高誘電率化に寄与する極性基の割合の多いピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)スルホン二無水物などが挙げられる。
 本発明に用いられるポリイミド前駆体、およびポリイミドは、一般に知られているN-メチルピロリドン、ジメチルアセトアミドなどの非プロトン性溶媒中で酸無水物とジアミンを反応させることで得られる。この反応は60℃以下ではポリアミド酸が得られ、それ以上の温度ではポリイミドが得られる。また、ポリアミド酸エステルを得る場合、一般的には酸無水物とアルコールをピリジンやトリエチルアミンなどの触媒の存在下で反応させ、その後、ジカルボン酸をスルホニルクロリド、コハク酸クロリド、チオニルクロリドなどで酸クロリド化するか、ジシクロヘキシルカルボジイミドなどの縮合剤を用いて重合させることで得ることが出来る。
 反応溶媒として用いる有機溶媒は、本発明のポリイミドが溶解する溶媒であれば使用することができる。一般的には非プロトン性極性溶媒が好ましい。例えば、ジフェニルスルホン、ジメチルスルホキシド、スルホラン、ジメチルスルホン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、ジエチルスルホン、ジエチルスルホキシド、1,4-ジメチルベンダゾリジノン、ヘキサメチルトリアミド、1,3-ジメチルイミダゾリジノンなどが挙げられる。
また、シクロヘキサノンなどの高沸点のケトン系溶媒、エチレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールメチルエチルエーテル、プロピレングリコールジエチルエーテル、ジプロピレングリコールジメチルエーテル、ジプロピレングリコールメチルエチルエーテル、ジプロピレングリコールジエチルエーテルなどのグリコール系溶媒、およびこれらにトルエン、キシレンなどの芳香族炭化水素系溶媒、プロピレングリコールモノメチルエーテルアセテート、メチル-メトキシブタノールアセテートなどのエステル系溶媒などを加えることもできる。
 重縮合で使用される溶媒の量は、全モノマーの重量100重量部に対して50重量部以上が好ましく、200重量部以上がより好ましい。溶媒の量を全モノマーの重量に対して50重量部以上とすることにより、撹拌などの操作が容易となり、重縮合反応が順調に進行し易くなる。一方、2000重量部以下が好ましく、800重量部以下がより好ましい。2000重量部以下とすることによって、溶媒中のモノマー濃度が高くなり重合速度が向上するため、重量平均分子量30,000以上の高分子量の重合体を容易に得ることができる。本発明においては、樹脂の反応溶媒として用いた溶媒をそのままポリイミド溶液の溶剤として用いることも可能である。
 本発明における樹脂の重量平均分子量は5,000~100,000の範囲が好ましく、特に好ましくは10,000~100,000の範囲が良い。なお、本発明における重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、NMP/HPOの混合溶媒に1Mの濃度の塩化リチウムを加えた溶媒を用いてポリイミド樹脂の分子量を測定し、標準ポリスチレンの校正曲線を用いて算出した値を指す。
 また、本発明のポリイミド溶液には、界面活性剤を添加することもできる。また、分解性を向上させるために光分解性のジアゾナフトキノン化合物、クマリン化合物、接着性を高めるためにシランカップリング剤、チタンキレート、アルミキレートなどを添加することも可能である。さらに、耐薬品性を高める目的で架橋性の化合物である2官能以上のエポキシ化合物、オキセタン化合物、メチロール化合物、アルコキシメチロール化合物などを添加することもできる。また、硬度を高めるためにシリカなどの微粒子を添加することもできる。これらの添加成分は、ポリイミド成分に対して1ppmから30重量%程度まで添加することができる。
 本発明のポリイミド溶液を用いて、形成される不織布について説明する。本発明のポリイミド溶液を用いて製造する不織布は、電界紡糸法によって製造される。電界紡糸法は、ポリイミド溶液に高電圧を印加することによって、ノズル先端の液滴に電荷が集まり、それが互いに反発することで液滴が広がり、溶液流が引き伸ばされることで紡糸する方法である。この方法では、細径の糸を得ることが可能である。そのため、電界紡糸法によると数十nm~数μmの径の細い糸が得られ、結果として厚みが10μmの薄い不織布を形成することができる。さらにこの不織布は既にイミド化の完了したポリイミド溶液から紡糸するために、紡糸した後にイミド化のための加熱処理を必要とせず、極めて簡便に耐熱性、機械特性に優れた不織布を得ることができる。
 また、本発明のポリイミド溶液は、高極性のスルホン基、ケトン基、水酸基またはカルボキシル基を含むという特徴がある。そのため、ポリイミド溶液の溶媒内に水が混入したとしても、ポリイミド自体の溶解性を高く保つことができるためポリイミドが溶媒から析出しにくいという特徴を有する。したがって、これまでは電界紡糸工程を高湿度の雰囲気中で行ったとき、ポリイミド溶液に水が浸入して紡糸工程の途中でポリイミド溶液中にポリマーが析出し、白色のもろい膜状の固形物が発生するという問題があった。しかし、本発明のポリイミド溶液を用いた場合は、ポリイミド溶液からのポリマーの析出が起こりにくく、電界紡糸工程の湿度が多少変化したとしても安定な形状の糸を形成することができる。その結果、電界紡糸装置を大がかりな温度および湿度管理できるブースに入れる必要なく、簡便なブース内で安定的に不織布を得ることができる。
 また、高極性のポリイミド構造はポリマーの分子間力が強いため、電界紡糸後の脱溶媒状態においては高いガラス転移点を示す。耐熱不織布への適用の観点からガラス転移点は200℃以上であることが好ましい。これより低いと、熱による軟化によって不織布の構造が変性するため、経時変化による性能低下が起こる可能性がある。
 本発明の不織布は、高次加工品として、耐熱バグフィルター、電磁波シールド材、低誘電率基板のコア材、ガス分離膜、電池やキャパシターの電極、セパレーター、断熱吸音材などに用いることが出来る。特に、本願発明の不織布をセパレーターとして用いた電池、電気二重層キャパシターは、セパレーターの耐熱性が高くかつ厚みが薄い。そのため空孔度が大きくなり、短時間の充電や放電特性に優れた電池、キャパシターを得ることが出来る。
 以下実施例および技術をあげて本発明を説明するが、本発明はこれらの例によって限定されるものではない。
<吸水率の測定>
 ポリイミド溶液を6インチのシリコンウェハーに、120℃で4分乾燥後の膜厚が約15μmになるようにスピン塗布した。スピン塗布後に120℃で4分、大日本スクリーン製造製の塗布現像装置SCW-636に付随しているホットプレートで乾燥後、光陽サーモシステム社製イナートオーブン INH-9CDを用いて300℃で1時間加熱処理を行い、ポリイミドフィルムを得た。このフィルムを形成したウェハーを45%のフッ化水素酸水溶液に室温で3分浸漬し、脱イオン水で10分間水洗し、ウェハーから剥がした。このフィルムの重量を測定し、その後、200℃で1時間乾燥させて、絶乾重量を求めた。吸水時の重量と絶乾重量から下記式を用いて吸水率を求めた。
吸水率=(吸水重量-絶乾重量)/絶乾重量×100(%)。
<比誘電率の測定>
アルミ基板にポリイミド溶液をスピン塗布した。スピン塗布後に120℃で4分、大日本スクリーン製造製の塗布現像装置SCW-636に付随しているホットプレートで乾燥後、光陽サーモシステム社製イナートオーブン INH-9CDを用いて300℃で1時間加熱処理を行い、厚み5μmのポリイミドフィルムを得た。この膜の上に上部アルミ電極を日本真空技術(株)製真空蒸着機EBH-6を用いて蒸着し測定サンプルとした。
次いで1MHzにおける静電容量を横川ヒューレットパッカード製のLCRメーター4284Aを用いて測定し、下記式により比誘電率(ε)を求めた。
ε=C・d/ε0・S(但し、Cは静電容量(単位:F)、dは試料膜厚(単位:m)、
ε0は真空中の誘電率、Sは上部電極面積(単位:m2)である。)
<ガラス転移点の測定>
シリコン基板にポリイミド溶液をスピン塗布した。スピン塗布後に120℃で4分、大日本スクリーン製造製の塗布現像装置SCW-636に付随しているホットプレートで乾燥後、光陽サーモシステム社製イナートオーブン INH-9CDを用いて300℃で1時間加熱処理を行い、厚み10μmのポリイミドフィルムを得た。このフィルムを形成したウェハーを45%のフッ化水素酸水溶液に室温で3分浸漬し、脱イオン水で10分間水洗し、ウェハーから剥がした。この膜を120℃で2時間乾燥して脱水し、5mgの重さになるよう切り出しサンプルとした。このサンプルについて島津製作所製DSC-50を用いて、昇温速度10℃/minで室温から400℃まで加熱し、ガラス転移点の測定を行った。
 実施例1
 窒素導入管、撹拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン 3.66g(0.01モル、AZマテリアルズ製)、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル 3.20g(0.01モル、和歌山精化製)をN-メチル-2-ピロリドン(NMP、三菱化学製)30g、トルエン(東京化成製)10gに40℃以下で溶解させた。ここにピロメリット酸二無水物4.36g(0.02モル、ダイセル化学工業製)を添加し、40℃で2時間撹拌を行い、その後、液温を180℃に昇温し、さらに4時間撹拌を行ない、留出するトルエンと水を除去しながら反応を行った。
 このようにして得られた樹脂溶液を2μmのポリテトラフルオロエチレン製のメンブレンフィルターでろ過を行い、ポリイミド溶液を得た。このポリイミド溶液を室温、湿度50%の雰囲気で4インチシリコンウェハー上にスピンコートしたところ、コート後、120秒放置しても溶液が白化することはなかった。
また、吸水率は1.9%、比誘電率は2.9、ガラス転移点は170℃であった。
 実施例2
 窒素導入管、撹拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ビス(3-アミノ-4-ヒドロキシフェニル)フルオレン22.8g(0.06モル、AZマテリアルズ製)と、2,4-ジアミノトルエン4.88g(0.04モル、東京化成製)NMP235g、トルエン(東京化成製)10gに40℃以下で溶解させた。ここに3,3‘,4,4’-ジフェニルエーテルテトラカルボン酸二無水物31.0g(0.1モル、マナック製)、を添加し、40℃で1時間、その後溶液の温度を180℃にして6時間撹拌を行った。
 このようにして得られた樹脂溶液を2μmのポリテトラフルオロエチレン製のメンブレンフィルターでろ過を行い、ポリイミド溶液を得た。このポリイミド溶液を室温、湿度50%の雰囲気で4インチシリコンウェハー上にスピンコートしたところ、コート後、120秒放置しても溶液が白化することはなかった。
また、吸水率は1.5%、比誘電率は3.2、ガラス転移点は200℃であった。
 実施例3
 窒素導入管、撹拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、2,2-ビス(3-カルボキシル-4-アミノフェニル)メタン11.5g(和歌山精化製、0.05モル)、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル12.8g (和歌山精化製、0.04モル)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン2.48g(信越化学製、0.01モル)をNMP、240gに40℃以下で溶解させた。ここにピロメリット酸二無水物10.9(ダイセル化学工業製0.05モル)、2,2-ビス(ヘキサフルオロプロパン)フタル酸無水物22.2g(0.05モル、ダイキン工業製)を添加し、40℃で2時間撹拌を行い、その後、液温を180℃に昇温し、さらに4時間撹拌を行ない、留出するトルエンと水を除去しながら反応を行った。
 このようにして得られた樹脂溶液を2μmのポリテトラフルオロエチレン製のメンブレンフィルターでろ過を行い、ポリイミド溶液を得た。このポリイミド溶液を室温、湿度50%の雰囲気で4インチシリコンウェハー上にスピンコートしたところ、コート後、120秒放置しても溶液が白化することはなかった。
また、吸水率は2.5%、比誘電率は3.0、ガラス転移点は180℃であった。
 実施例4
 窒素導入管、撹拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ビス(3-アミノ-4-ヒドロキシフェニル)スルホン28.0g(0.1モル、AZマテリアルズ製)をNMP230gトルエン10gに40℃で溶解させた。ここにピロメリット酸二無水物 10.9g(0.05モル、ダイセル化学工業製)、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物17.9g (0.05モル、新日本理化製)を添加し、40℃で2時間撹拌を行い、その後、液温を180℃に昇温し、さらに4時間撹拌を行ない、留出するトルエンと水を除去しながら反応を行った。
このようにして得られた樹脂溶液を2μmのポリテトラフルオロエチレン製のメンブレンフィルターでろ過を行い、ポリイミド溶液を得た。このポリイミド溶液を室温、湿度50%の雰囲気で4インチシリコンウェハー上にスピンコートしたところ、コート後、120秒放置しても溶液が白化することはなかったが、吸水率は9.0%、比誘電率は3.6、ガラス転移点は220℃であった。
 実施例5
 窒素導入管、撹拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ビス(3-アミノ-4-ヒドロキシフェニル)シクロヘキサン14.9g(0.05モル、東京化成製)、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル 12.8g (0.04モル、和歌山精化製)、1,3-ビス(3-アミノプロピル)テトラメチルジシロキサン2.48g(0.01モル、、信越化学製)をNMP205gに40℃以下で溶解させた。ここにピロメリット酸二無水物10.9(0.05モル、ダイセル化学工業製)、シクロブタン酸二無水物9.8g(0.05モル、東京化成製)を添加し、40℃で2時間撹拌を行い、その後、液温を180℃に昇温し、さらに4時間撹拌を行ない、留出するトルエンと水を除去しながら反応を行った。
 このようにして得られた樹脂溶液を2μmのポリテトラフルオロエチレン製のメンブレンフィルターでろ過を行い、ポリイミド溶液を得た。このポリイミド溶液を室温、湿度50%の雰囲気で4インチシリコンウェハー上にスピンコートしたところ、コート後、120秒放置しても溶液が白化することはなかった。
また、吸水率は1.4%、比誘電率は2.9、ガラス転移点は190℃であった。
 実施例6
 窒素導入管、撹拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、ビス(3-アミノ-4-ヒドロキシフェニル)シクロペンタン1.04g(0.05モル、東京化成製)、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル (0.05モル、和歌山精化製)をN-メチル-2-ピロリドン(NMP、三菱化学(株)製)40gに40℃以下で溶解させた。ここにピロメリット酸二無水物10.9(0.05モル、ダイセル化学工業製)、シクロブタン酸二無水物22.2g(0.05モル、東京化成製)を添加し、40℃で2時間撹拌を行い、その後、液温を180℃に昇温し、さらに4時間撹拌を行ない、留出するトルエンと水を除去しながら反応を行った。
 このようにして得られた樹脂溶液を2μmのポリテトラフルオロエチレン製のメンブレンフィルターでろ過を行い、ポリイミド溶液を得た。このポリイミド溶液を室温、湿度50%の雰囲気で4インチシリコンウェハー上にスピンコートしたところ、コート後、120秒放置しても溶液が白化することはなかった。
 また、吸水率は1.5%、比誘電率は2.9、ガラス転移点は180℃であった。
 比較例1
 窒素導入管、撹拌棒、温度計を取り付けた500mLの3つ口フラスコに乾燥窒素気流下、4,4’-ジアミノジフェニルエーテル 2.8g(0.05モル、和歌山精化製)、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル1.60g(0.05モル、和歌山精化製)をNMP40gトルエン(東京化成(株)製)10gに40℃で溶解させた。ここに2,2-ビス(ヘキサフルオロイソプロピリデン)フタル酸無水物 22.2g(0.05モル、ダイキン工業製)を添加し、40℃で2時間撹拌を行い、その後、液温を180℃に昇温し、さらに4時間撹拌を行ない、留出するトルエンと水を除去しながら反応を行った。
 このようにして得られた樹脂溶液を2μmのポリテトラフルオロエチレン製のメンブレンフィルターでろ過を行い、ポリイミド溶液を得た。このポリイミド溶液を室温、湿度50%の雰囲気で4インチシリコンウェハー上にスピンコートしたところ、コート後、30秒で吸湿のために塗膜全体が白化した。
 また、吸水率は1.0%、比誘電率は2.6、ガラス転移点は170℃であった。
 実施例7
 実施例1で得たポリイミド溶液を濃度12%に希釈して、エレクトロスプレーコーターを用いて、アースしたアルミ箔上に、温度24℃、湿度50%の環境下、ノズルの内径が0.84mm(G18)のニードルを用いて、ノズルとアルミ箔の距離を250mmとして、溶液を20μL/minの総液量で送り、電圧15kVで塗布した。この結果、ポリイミドの不織布がアルミ箔上に得られた。
 比較例2
 比較例1で得られたポリイミド溶液を実施例7と同じようにしてポリイミドの不織布を作成したが、吸湿が起こり、白色のもろい膜が形成され、強靱な不織布にならなかった。
実施例8~25、比較例3
2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン 3.66g(0.01モル、AZマテリアルズ製)、2,2’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル 3.20g(0.01モル、和歌山精化製)をN-メチル-2-ピロリドン(NMP、三菱化学製)30g、および、ピロメリット酸二無水物4.36g(0.02モル、ダイセル化学工業製)の代わりに表1および表2に示したジアミン、NMP量、酸二無水物を使用する以外は実施例1と同様にしてポリイミド溶液を得た。このポリイミド溶液を室温、湿度50%の雰囲気で4インチシリコンウェハー上にスピンコートし塗膜全体の白化の有無、吸水率、比誘電率、ガラス転移点を測定した。
実施例26~48、比較例4
実施例2~6、実施例8~25、比較例3で得られたポリイミド溶液を実施例7と同様の方法で不織布形成テストを実施し、不織布形成状態、不織布を形成している繊維直径の平均値を測定した。
実施例および比較例の結果を表1、表2および表3に示す。
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015

Claims (17)

  1. (a)一般式(1)で表される構造単位を樹脂全体の50モル%以上含む樹脂、および(b)溶剤を含むポリイミド溶液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R,Rは、それぞれ独立に炭素数1~10のアルキル基、フルオロアルキル基、シアノ基、またはニトロ基を表し、Zは、水酸基またはカルボキシル基を表す。Yは炭素数4~30の4価の有機基を表す。Xは下記に示す構造で表されるいずれかの構造である。p、q、r、sは0~4の整数である。ただし、p+q>1である。nは0~4の整数を表す。RおよびRは、それぞれ独立に水素原子、炭素数1~4のアルキル基、フルオロアルキル基、またはフェニル基を表す。R~R11は、炭素数1~4のアルキル基、フルオロアルキル基、またはフェニル基を表し、全てが同一でも異なっていても良い。tは0~3の整数である。)
    Figure JPOXMLDOC01-appb-C000002
  2. 前記樹脂の比誘電率が3.2以上である、請求項1に記載のポリイミド溶液。
  3. 前記一般式(1)において、Yがジフェニルスルホンまたはジフェニルケトンを含む有機基を表す請求項1または2に記載のポリイミド溶液。
  4. 前記一般式(1)において、Yはベンゼン、シクロブタン、シクロヘプタン、シクロヘキサン、ナフタレン、ビフェニル、ターフェニル、ジフェニルエーテル、トリフェニルエーテル、ジフェニルメタン、またはジフェニルヘキサフルオロプロパンを含む有機基を表す請求項1または2に記載のポリイミド溶液。
  5. 前記一般式(1)に記載のXがスルホン基、またはケトン基のいずれかであって、p=q=0である、請求項1~4のいずれかに記載のポリイミド溶液。
  6. Xの5~50モル%が下記に示すいずれかの構造である請求項1~5のいずれかに記載のポリイミド溶液。
    Figure JPOXMLDOC01-appb-C000003
  7. Xの40~95モル%が下記に示すいずれかの構造である請求項に1~5のいずれかに記載のポリイミド溶液。
    Figure JPOXMLDOC01-appb-C000004
  8. Yの40モル%以上がジフェニルスルホンまたはジフェニルケトンである、請求項3に記載のポリイミド溶液。
  9. Yの5~50モル%がベンゼンである、請求項4に記載のポリイミド溶液。
  10. 一般式(2)で表される樹脂、および(b)溶剤を含有し、不織布形成用である、ポリイミド溶液。
    Figure JPOXMLDOC01-appb-C000005
    (式中、R12は少なくとも2個以上の炭素原子を有する2価の有機基、R13は少なくとも2個以上の炭素原子を有する4価の有機基を表す。)
  11. 請求項1~9のいずれかに記載のポリイミド溶液を用いて形成される不織布。
  12. 請求項11に記載の不織布を製造する方法であって、電界紡糸法により前記不織布を形成する、不織布の製造方法。
  13. 電界紡糸法により形成される請求項11に記載の不織布。
  14. ガラス転移点が200℃以上である請求項11に記載の不織布。
  15. 請求項11、13、14のいずれかに記載の不織布を用いる高次加工品。
  16. 電池用セパレーター、吸音材、電磁波シールド材、分離フィルター、または耐熱バグフィルターに用いられる請求項15に記載の高次加工品。
  17. 請求項11、13、14のいずれかに記載の不織布を用いる電気二重層キャパシター用セパレーター。
PCT/JP2015/078028 2014-10-10 2015-10-02 ポリイミド溶液、耐熱性不織布およびその製造方法 WO2016056480A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15848947.6A EP3216819A4 (en) 2014-10-10 2015-10-02 Polyimide solution, heat-resistant non-woven fabric, and method for manufacturing same
US15/517,783 US10669377B2 (en) 2014-10-10 2015-10-02 Polyimide solution, heat-resistant non-woven fabric, and method for manufacturing same
JP2015553944A JP6728680B2 (ja) 2014-10-10 2015-10-02 耐熱性不織布およびその製造方法
CN201580054919.1A CN106795285B (zh) 2014-10-10 2015-10-02 聚酰亚胺溶液、耐热性无纺布及其制造方法
KR1020177009041A KR102339152B1 (ko) 2014-10-10 2015-10-02 내열성 부직포 및 그 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014208592 2014-10-10
JP2014-208592 2014-10-10

Publications (1)

Publication Number Publication Date
WO2016056480A1 true WO2016056480A1 (ja) 2016-04-14

Family

ID=55653092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078028 WO2016056480A1 (ja) 2014-10-10 2015-10-02 ポリイミド溶液、耐熱性不織布およびその製造方法

Country Status (7)

Country Link
US (1) US10669377B2 (ja)
EP (1) EP3216819A4 (ja)
JP (1) JP6728680B2 (ja)
KR (1) KR102339152B1 (ja)
CN (1) CN106795285B (ja)
TW (1) TWI732745B (ja)
WO (1) WO2016056480A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019009037A1 (ja) 2017-07-03 2019-01-10 東レ株式会社 樹脂、樹脂組成物、および、これらを用いた不織布、繊維製品、セパレーター、二次電池、および、電気二重層キャパシターならびに不織布の製造方法
JP2019039096A (ja) * 2017-08-24 2019-03-14 宇部興産株式会社 ポリイミド繊維およびその製造方法
KR20190070322A (ko) * 2016-10-28 2019-06-20 도레이 카부시키가이샤 비수 전해질 전지용 세퍼레이터 및 비수 전해질 전지
JP2019133922A (ja) * 2018-02-01 2019-08-08 東京応化工業株式会社 二次電池、及び二次電池用多孔質セパレータ
JP2020033460A (ja) * 2018-08-30 2020-03-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. ポリイミド樹脂、感光性樹脂組成物、及び、硬化物
WO2022097547A1 (ja) * 2020-11-04 2022-05-12 東レ株式会社 樹脂組成物、不織布ならびにそれを用いた繊維製品、蓄電素子用セパレーター、二次電池および電気二重層キャパシター

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108346766A (zh) * 2018-01-24 2018-07-31 长沙新材料产业研究院有限公司 一种热稳定的锂离子电池隔膜及其制备方法
CN110112354B (zh) * 2018-02-01 2023-04-28 东京应化工业株式会社 二次电池及二次电池用多孔质隔膜
CN108565385B (zh) * 2018-03-14 2020-10-30 东华大学 一种功能性锂硫电池隔膜及其制备方法
CN108807796A (zh) * 2018-07-04 2018-11-13 东华大学 一种功能性锂硫电池隔膜及其制备方法
WO2020219411A1 (en) * 2019-04-23 2020-10-29 Dupont Electronics, Inc. Polymers for use in electronic devices
CN111850822B (zh) * 2020-06-29 2022-02-18 吉祥三宝高科纺织有限公司 基于鹅绒结构熔喷保暖隔音材料及其制备方法
CN114703603B (zh) * 2022-01-05 2023-03-21 威海新元科盛新材料有限公司 一种聚酰亚胺纤维膜及其制备方法和应用
CN117070062B (zh) * 2023-07-27 2024-05-07 广东新会美达锦纶股份有限公司 一种弹性复合面料及其制备方法与应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141732A (ja) * 1984-12-14 1986-06-28 Ube Ind Ltd 透明な芳香族ポリイミドおよび組成物
JPH0978031A (ja) * 1995-09-11 1997-03-25 Shin Etsu Chem Co Ltd 反射防止膜材料
JP2001206948A (ja) * 2000-01-24 2001-07-31 Dainippon Printing Co Ltd 溶媒可溶性耐熱性ポリイミド樹脂及びその製造方法
JP2002003715A (ja) * 2000-06-26 2002-01-09 Kanegafuchi Chem Ind Co Ltd 組成物とそれを用いた感光性組成物及びカバーレイフィルム
JP2011132651A (ja) * 2009-11-25 2011-07-07 Ube Industries Ltd 高耐熱性ポリイミド微細繊維の製造方法、高耐熱性ポリイミド微細繊維及び該ポリイミド微細繊維からなる不織布
JP2011140563A (ja) * 2010-01-07 2011-07-21 Hitachi Chem Co Ltd ポリイミド及び樹脂組成物
JP2011178855A (ja) * 2010-02-26 2011-09-15 Pi R & D Co Ltd 半導体装置用ポリイミド樹脂組成物並びにそれを用いた半導体装置中の膜形成方法及び半導体装置
JP2013091885A (ja) * 2011-10-07 2013-05-16 Nippon Steel & Sumikin Chemical Co Ltd ポリイミド繊維、その製造方法及び繊維用ポリイミド樹脂
JP2014111723A (ja) * 2012-10-29 2014-06-19 Hitachi Chemical Dupont Microsystems Ltd 可溶性ポリイミド、該可溶性ポリイミドを用いたパターン硬化膜の製造方法及び電子部品

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2874741B2 (ja) * 1993-03-02 1999-03-24 宇部興産株式会社 非対称性中空糸ポリイミド気体分離膜
KR100532590B1 (ko) * 2002-11-07 2005-12-01 삼성전자주식회사 감광성 폴리이미드 전구체용 가용성 폴리이미드 및, 이를포함하는 감광성 폴리이드 전구체 조성물
US7629225B2 (en) 2005-06-13 2009-12-08 Infineon Technologies Ag Methods of manufacturing semiconductor devices and structures thereof
JP2006351733A (ja) 2005-06-14 2006-12-28 Asahi Kasei Chemicals Corp コンデンサーおよびコンデンサー用電極セパレーター
US8080319B2 (en) * 2005-10-21 2011-12-20 Kippon Kayaku Kabushiki Kaisha Thermosetting resin composition and use thereof
CN100593520C (zh) * 2006-05-26 2010-03-10 中国科学院化学研究所 用于含酚废水处理的聚酰亚胺共聚物渗透汽化分离膜及其制备方法
JP5529542B2 (ja) * 2007-10-26 2014-06-25 株式会社カネカ ポリイミド繊維集合体、吸音材料、断熱材料、難燃マット、濾布、耐熱服、不織布、航空機用途断熱吸音材、及び耐熱性バグフィルター
WO2009142434A2 (ko) * 2008-05-19 2009-11-26 한양대학교 산학협력단 중공사, 중공사 형성용 도프 용액 조성물 및 이를 이용한 중공사의 제조방법
JP5206977B2 (ja) * 2009-03-12 2013-06-12 信越化学工業株式会社 新規ポリイミドシリコーン及びこれを含有する感光性樹脂組成物並びにパターン形成方法
EP2514859A4 (en) 2009-12-16 2015-09-02 Ube Industries SHORT POLYIMIDE FIBERS AND HEAT-RESISTANT PAPER COMPRISING THE SAME
JP2011132611A (ja) 2009-12-22 2011-07-07 Sojitz Corp ポリイミド繊維、それから得られるポリイミド不織布およびそれらの製造方法
JP2011210680A (ja) 2010-03-30 2011-10-20 Tomoegawa Paper Co Ltd 電池用セパレータ
TWI425700B (zh) 2010-12-22 2014-02-01 Ind Tech Res Inst 二次電池、電池隔離膜及其製造方法
CN102560894A (zh) * 2011-11-17 2012-07-11 江西先材纳米纤维科技有限公司 聚苯并二噁唑纳米纤维非织造布的制备方法及其应用
US9272247B2 (en) 2012-04-11 2016-03-01 Xerox Corporation Polyimide membranes
KR101585839B1 (ko) 2012-07-24 2016-01-14 가부시끼가이샤 도시바 2차 전지
JP6289014B2 (ja) 2013-10-11 2018-03-07 ソマール株式会社 ポリイミド繊維および集合体
US10050005B2 (en) * 2013-11-27 2018-08-14 Toray Industries, Inc. Semiconductor resin composition, semiconductor resin film, and semiconductor device using the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61141732A (ja) * 1984-12-14 1986-06-28 Ube Ind Ltd 透明な芳香族ポリイミドおよび組成物
JPH0978031A (ja) * 1995-09-11 1997-03-25 Shin Etsu Chem Co Ltd 反射防止膜材料
JP2001206948A (ja) * 2000-01-24 2001-07-31 Dainippon Printing Co Ltd 溶媒可溶性耐熱性ポリイミド樹脂及びその製造方法
JP2002003715A (ja) * 2000-06-26 2002-01-09 Kanegafuchi Chem Ind Co Ltd 組成物とそれを用いた感光性組成物及びカバーレイフィルム
JP2011132651A (ja) * 2009-11-25 2011-07-07 Ube Industries Ltd 高耐熱性ポリイミド微細繊維の製造方法、高耐熱性ポリイミド微細繊維及び該ポリイミド微細繊維からなる不織布
JP2011140563A (ja) * 2010-01-07 2011-07-21 Hitachi Chem Co Ltd ポリイミド及び樹脂組成物
JP2011178855A (ja) * 2010-02-26 2011-09-15 Pi R & D Co Ltd 半導体装置用ポリイミド樹脂組成物並びにそれを用いた半導体装置中の膜形成方法及び半導体装置
JP2013091885A (ja) * 2011-10-07 2013-05-16 Nippon Steel & Sumikin Chemical Co Ltd ポリイミド繊維、その製造方法及び繊維用ポリイミド樹脂
JP2014111723A (ja) * 2012-10-29 2014-06-19 Hitachi Chemical Dupont Microsystems Ltd 可溶性ポリイミド、該可溶性ポリイミドを用いたパターン硬化膜の製造方法及び電子部品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3216819A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190070322A (ko) * 2016-10-28 2019-06-20 도레이 카부시키가이샤 비수 전해질 전지용 세퍼레이터 및 비수 전해질 전지
EP3534431A4 (en) * 2016-10-28 2020-03-11 Toray Industries, Inc. SEPARATOR FOR NONAQUEOUS ELECTROLYTE CELL, AND NONAQUEOUS ELECTROLYTE CELL
US10992009B2 (en) 2016-10-28 2021-04-27 Toray Industries, Inc. Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
KR102407590B1 (ko) * 2016-10-28 2022-06-10 도레이 카부시키가이샤 비수 전해질 전지용 세퍼레이터 및 비수 전해질 전지
WO2019009037A1 (ja) 2017-07-03 2019-01-10 東レ株式会社 樹脂、樹脂組成物、および、これらを用いた不織布、繊維製品、セパレーター、二次電池、および、電気二重層キャパシターならびに不織布の製造方法
KR20200026200A (ko) 2017-07-03 2020-03-10 도레이 카부시키가이샤 수지, 수지 조성물, 및 이들을 사용한 부직포, 섬유 제품, 세퍼레이터, 이차 전지, 및 전기 이중층 커패시터 그리고 부직포의 제조 방법
JP2019039096A (ja) * 2017-08-24 2019-03-14 宇部興産株式会社 ポリイミド繊維およびその製造方法
JP2019133922A (ja) * 2018-02-01 2019-08-08 東京応化工業株式会社 二次電池、及び二次電池用多孔質セパレータ
JP7246182B2 (ja) 2018-02-01 2023-03-27 東京応化工業株式会社 二次電池、及び二次電池用多孔質セパレータ
JP2020033460A (ja) * 2018-08-30 2020-03-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. ポリイミド樹脂、感光性樹脂組成物、及び、硬化物
JP7167402B2 (ja) 2018-08-30 2022-11-09 サムソン エレクトロ-メカニックス カンパニーリミテッド. ポリイミド樹脂、感光性樹脂組成物、及び、硬化物
WO2022097547A1 (ja) * 2020-11-04 2022-05-12 東レ株式会社 樹脂組成物、不織布ならびにそれを用いた繊維製品、蓄電素子用セパレーター、二次電池および電気二重層キャパシター

Also Published As

Publication number Publication date
US20170342214A1 (en) 2017-11-30
JP6728680B2 (ja) 2020-07-22
CN106795285A (zh) 2017-05-31
EP3216819A4 (en) 2018-09-05
KR102339152B1 (ko) 2021-12-15
CN106795285B (zh) 2020-06-05
US10669377B2 (en) 2020-06-02
JPWO2016056480A1 (ja) 2017-07-20
TW201623445A (zh) 2016-07-01
EP3216819A1 (en) 2017-09-13
KR20170067749A (ko) 2017-06-16
TWI732745B (zh) 2021-07-11

Similar Documents

Publication Publication Date Title
JP6728680B2 (ja) 耐熱性不織布およびその製造方法
CN101473080B (zh) 聚酰亚胺无纺布及其制造方法
US9988534B2 (en) Polyimide precursor composition and method for producing polyimide precursor composition
Chen et al. Low dielectric constant polyimide nanomats by electrospinning
CN102911595B (zh) 一种苯并咪唑型湿敏高分子涂料及其制备方法与应用
JP6962538B2 (ja) 塗液、積層体およびその使用
JP6147069B2 (ja) 未焼成複合膜、ポリイミド−微粒子複合膜、及び多孔質ポリイミド膜の製造方法
KR20190093502A (ko) 다공질 폴리이미드 필름 원단, 그 제조 방법, 및 조성물
JP6003261B2 (ja) ポリイミド繊維の製造方法
JP6878808B2 (ja) ポリイミド多孔質体の製造方法
KR20200054997A (ko) 폴리이미드, 폴리이미드 바니시, 및 폴리이미드 필름
JP2007099842A (ja) 新規なポリイミド樹脂
JP2013256732A (ja) ポリイミド繊維の製造方法
JP6127845B2 (ja) ポリイミド前駆体溶液、多孔質膜又は被覆物の製造方法、ポリイミド多孔質膜、及び被覆物
WO2022097547A1 (ja) 樹脂組成物、不織布ならびにそれを用いた繊維製品、蓄電素子用セパレーター、二次電池および電気二重層キャパシター
TWI496816B (zh) 聚醯亞胺前驅體水溶液組成物及聚醯亞胺前驅體水溶液組成物之製造方法
JP2010265559A (ja) ポリイミド繊維及びその製造方法
TWI670329B (zh) 用以形成聚醯亞胺的組成物、聚醯亞胺及聚醯亞胺膜
Su et al. Synthesis and properties of soluble copolyimides containing phthalazinone moieties for flexible copper-clad laminates
CN115725077A (zh) 聚酰亚胺前体溶液、多孔质聚酰亚胺膜以及绝缘电线
CN116903845A (zh) 一种聚环氧烷封端剂、低介电常数的聚酰亚胺薄膜及其制备方法和应用
CN114381012A (zh) 粒子分散聚酰亚胺前体溶液、多孔聚酰亚胺薄膜的制造方法及多孔聚酰亚胺薄膜
CN115109272A (zh) 聚酰亚胺前体溶液及其制造方法、聚酰亚胺膜的制造方法及多孔质聚酰亚胺膜的制造方法
JP2007099841A (ja) 新規なポリイミド樹脂

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015553944

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848947

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177009041

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015848947

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015848947

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15517783

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE