WO2016056471A1 - チューブラモータ、ブラシレスモータの制御方法、ブレーキ付きモータ - Google Patents

チューブラモータ、ブラシレスモータの制御方法、ブレーキ付きモータ Download PDF

Info

Publication number
WO2016056471A1
WO2016056471A1 PCT/JP2015/078005 JP2015078005W WO2016056471A1 WO 2016056471 A1 WO2016056471 A1 WO 2016056471A1 JP 2015078005 W JP2015078005 W JP 2015078005W WO 2016056471 A1 WO2016056471 A1 WO 2016056471A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
motor
output side
planetary gear
rotor
Prior art date
Application number
PCT/JP2015/078005
Other languages
English (en)
French (fr)
Inventor
正明 安藤
伸一 吉川
五郎 中村
博徳 黒沢
優 鮎澤
正 武田
芦部 昇
Original Assignee
日本電産サンキョー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014206270A external-priority patent/JP6509517B2/ja
Priority claimed from JP2014239173A external-priority patent/JP6567815B2/ja
Priority claimed from JP2014263860A external-priority patent/JP2016127611A/ja
Application filed by 日本電産サンキョー株式会社 filed Critical 日本電産サンキョー株式会社
Priority to US15/312,300 priority Critical patent/US10298093B2/en
Priority to CN201580030622.1A priority patent/CN106464081B/zh
Priority to EP15848625.8A priority patent/EP3206284A4/en
Publication of WO2016056471A1 publication Critical patent/WO2016056471A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H18/00Winding webs
    • B65H18/08Web-winding mechanisms
    • B65H18/10Mechanisms in which power is applied to web-roll spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/24Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member
    • F16D55/26Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member without self-tightening action
    • F16D55/36Brakes with a plurality of rotating discs all lying side by side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/18Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for drawing members together, e.g. for disc brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H1/00Toothed gearings for conveying rotary motion
    • F16H1/28Toothed gearings for conveying rotary motion with gears having orbital motion
    • F16H1/46Systems consisting of a plurality of gear trains each with orbital gears, i.e. systems having three or more central gears
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/20Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for measuring, monitoring, testing, protecting or switching
    • H02K11/21Devices for sensing speed or position, or actuated thereby
    • H02K11/215Magnetic effect devices, e.g. Hall-effect or magneto-resistive elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/102Structural association with clutches, brakes, gears, pulleys or mechanical starters with friction brakes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/02Details of stopping control
    • H02P3/04Means for stopping or slowing by a separate brake, e.g. friction brake or eddy-current brake
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P3/00Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters
    • H02P3/06Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter
    • H02P3/18Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor
    • H02P3/22Arrangements for stopping or slowing electric motors, generators, or dynamo-electric converters for stopping or slowing an individual dynamo-electric motor or dynamo-electric converter for stopping or slowing an ac motor by short-circuit or resistive braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/24Arrangements for stopping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2207/00Specific aspects not provided for in the other groups of this subclass relating to arrangements for handling mechanical energy
    • H02K2207/03Tubular motors, i.e. rotary motors mounted inside a tube, e.g. for blinds
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/10Structural association with clutches, brakes, gears, pulleys or mechanical starters
    • H02K7/116Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears
    • H02K7/1163Structural association with clutches, brakes, gears, pulleys or mechanical starters with gears where at least two gears have non-parallel axes without having orbital motion

Definitions

  • the present invention (second invention) relates to a method for controlling a brushless motor used in an electric shutter device or the like.
  • the present invention (third invention) relates to a motor with a brake having a built-in brake for applying a braking force to a motor shaft.
  • a motor unit and a planetary gear unit are arranged in an axial direction inside a cylindrical case (see Patent Document 1).
  • the planetary gear unit is arranged directly adjacent to the output side with respect to the partition wall portion that rotatably supports the rotor on the output side of the rotor in the motor unit.
  • the planetary gear rotates while being supported from the non-output side by the flat surface on the output side of the partition wall.
  • the brushless motor has a rotor with a rotor magnet, a stator with a plurality of drive coils, a magnetic sensor element that detects the rotation of the rotor magnet, and the like, and supplies the drive coil based on the detection result of the magnetic sensor element.
  • the motor current to be controlled is controlled.
  • a load such as the weight of the shutter or the urging force of a spring connected to the winding shaft of the shutter is applied to the rotor from the outside. For this reason, when rotating the rotor in a direction in which an external load is applied, there is a possibility that the rotor may rotate at a speed higher than a specified speed, and problems such as damage to the brushless motor occur.
  • a motor unit and a planetary gear unit are arranged in an axial direction inside a cylindrical case (see Patent Document 1).
  • Such a tubular motor is configured as a motor with a brake having a built-in brake for applying a braking force to a motor shaft for the purpose of stopping a shutter or the like at a predetermined position (Patent Document 3).
  • the brake unit has three brake disks opposed in the motor axial direction, and the three brake disks are brought into contact with each other in the axial direction. Braking force is generated against the motor shaft.
  • the central brake disc is provided with a projection protruding radially outward from the outer peripheral surface, while being axially formed on the inner surface of the cylindrical holder surrounding the three brake discs. An extending groove is formed, and the protrusion fits into the groove to prevent rotation around the axis of the central brake disc.
  • the problem of the present invention is that even when a recess is provided on the output side end plate of the motor unit, the number of parts can be reduced and the assembly can be efficiently performed. It is in providing the tubular motor which can perform.
  • the subject of the present invention is to control the rotation of a rotor to which a load is applied from the outside without adding a position sensor such as an encoder or a rotation sensor such as a tachometer.
  • An object of the present invention is to provide a brushless motor control method that can handle the above-mentioned problem.
  • an object of the present invention is to provide a brake capable of obtaining a large braking force by bringing members that generate a braking force into contact with each other on the outer side in the radial direction as much as possible. It is to provide a motor.
  • a tubular motor according to the present invention includes a cylindrical case extending in the motor axial direction, a motor unit provided inside the case, and the motor unit inside the case.
  • a first planetary gear unit disposed on the output side in the motor axial direction, and in the motor unit, the output side of the output side end plate portion that rotatably supports the rotor on the output side of the rotor
  • the planetary carrier overlaps with the planetary gear on the counter-output side and supports the planetary gear from the counter-output side on the end surface.
  • the first planetary gear unit is directly adjacent to the output side end plate portion on the output side.
  • the output side end face of the output side end plate is formed with a recess recessed toward the opposite output side, so that the grease applied to the first planetary gear unit leaked from the first planetary gear unit. Even in the case, the leaked grease accumulates in the recess. Therefore, it is difficult for grease to flow into the motor unit.
  • the planetary carrier of the first planetary gear unit includes a support plate that overlaps the planetary gear on the non-output side and supports the planetary gear from the non-output side. Therefore, the first planetary gear unit is the first planetary gear unit. It is independent by itself.
  • the first planetary gear unit includes a cylindrical body having an internal gear formed on an inner peripheral surface, and the non-output side end portion of the cylindrical body is in contact with the output side end plate portion.
  • the connection between the first planetary gear unit and the motor unit is easy, so that the tubular motor can be efficiently assembled.
  • the cylindrical body of the first planetary gear unit and the output side end plate portion of the motor unit are directly connected, the coaxial accuracy between the cylindrical body and the output side end plate portion of the motor unit can be improved. . Therefore, the coaxial accuracy between the first planetary gear unit and the motor unit can be improved.
  • the output side end plate portion projects from the output side end surface to the output side, an inner peripheral side annular convex portion, and radially outwardly from the inner peripheral side annular convex portion to the output side from the output side end surface. It is preferable that the outer circumferential side annular convex portion protrudes, and the concave portion is formed between the inner circumferential side annular convex portion and the outer circumferential side annular convex portion. According to this configuration, it is difficult for grease to flow into the motor unit.
  • a step portion having an inner diameter of a portion located on the counter-output side larger than an inner diameter of a portion where the internal gear is formed is formed in an annular shape at the counter-output-side end portion of the cylindrical body.
  • a first portion facing the non-output side in the stepped portion is in contact with the outer peripheral annular convex portion from the output side, and a second portion facing the radially inner side in the stepped portion is radially outward of the outer peripheral annular convex portion. It is preferable that it touches. According to such a configuration, it is difficult for grease to leak outward from between the output side end plate portion and the cylinder.
  • a second planetary gear unit is arranged on the output side with respect to the first planetary gear unit inside the cylindrical body, and in the second planetary gear unit, the planet carrier is opposite to the planetary gear on the output side. It is preferable that a support plate for supporting the planetary gear from the non-output side is provided. According to such a configuration, the first planetary gear unit and the second planetary gear unit can be easily arranged along the motor axis, so that the tubular motor can be efficiently assembled.
  • a third planetary gear unit is disposed on the output side with respect to the second planetary gear unit inside the cylindrical body, and in the third planetary gear unit, the planet carrier is opposite to the planetary gear on the output side. It is preferable that a support plate for supporting the planetary gear from the non-output side is provided. According to such a configuration, the third planetary gear unit can also be easily arranged along the motor axis, so that the tubular motor can be assembled efficiently.
  • the internal gear of the first planetary gear unit, the internal gear of the second planetary gear unit, and the internal gear of the third planetary gear unit are all formed on the inner peripheral surface of the cylindrical body. Preferably it is. According to such a configuration, the third planetary gear unit, the second planetary gear unit, and the first planetary gear unit need only be sequentially mounted inside the cylindrical body, so that the tubular motor can be efficiently assembled.
  • the inner diameter of the cylindrical body is gradually increased from the output side to the non-output side. According to such a configuration, the third planetary gear unit, the second planetary gear unit, and the first planetary gear unit can be easily mounted inside the cylindrical body. Moreover, an internal gear can be easily formed on the inner peripheral surface of the cylinder.
  • a configuration in which a brake unit for braking the rotor of the motor unit at a position adjacent to the motor unit on the side opposite to the output side can be adopted inside the case. Even in such a configuration, the grease hardly flows into the brake unit, so that the operation of the brake unit is stabilized.
  • the present invention provides a brushless including a rotor including a rotor magnet, a stator including a plurality of drive coils, and a magnetic sensor element that generates a position detection signal corresponding to the rotation of the rotor magnet.
  • a motor control method in a first direction driving step in which the rotor to which a load that rotates from the outside in the first direction is applied is rotated in the first direction, before feeding power to the drive coil is started.
  • a rotation detection process for detecting the rotation of the rotor is performed, and in the detection result of the rotation detection process, the rotation speed of the rotor is less than a threshold value,
  • a drive current for rotating the rotor in the first direction is supplied to the plurality of drive coils, and the rotational speed of the rotor is equal to or higher than the threshold value It is characterized by applying a braking force to the rotor.
  • a rotation detection process for detecting the rotation of the rotor is performed before power supply to the drive coil is started.
  • the rotational speed of the rotor is equal to or higher than the threshold value, a braking force is applied to the rotor. For this reason, it can suppress that a rotor rotates at speed more than target speed.
  • the rotation detection process since a magnetic sensor element for generating a position detection signal is used, there is no need to provide a position sensor such as an encoder or a rotation sensor such as a tachometer. Therefore, cost can be reduced.
  • the braking force is generated by short-circuiting both ends of at least one of the plurality of drive coils. According to this configuration, it is possible to generate a braking force by controlling energization to the drive coil.
  • the command speed when the rotor is rotationally driven in the first direction is compared with the rotational speed of the rotor detected by the magnetic sensor element, It is preferable to change the magnitude of the braking force based on a comparison result between the command speed and the rotation speed. According to such a configuration, an appropriate braking force can be applied to the rotor.
  • the second direction driving step of rotating the rotor in a second direction opposite to the first direction, driving for rotating the rotor in the second direction without performing the rotation detection process.
  • current is supplied to the plurality of drive coils. According to this configuration, the number of processes can be reduced, so that the control load can be reduced.
  • the rotation of the rotor is detected based on the detection result of the magnetic sensor element, and the rotation speed of the rotor is lower than the speed instruction value.
  • the drive current is increased, and the drive current is decreased when the rotational speed of the rotor is lower than the speed instruction value. According to such a configuration, the actual rotational speed can be fed back to the drive current, so that the rotational speed of the rotor can be brought close to the speed instruction value.
  • the rotor is connected to a rotating shaft for winding the shutter via a reduction gear train.
  • the weight of the shutter and the urging force of the urging member connected to the rotating shaft for winding the shutter (winding shaft) are applied to the rotor as an external load that rotates the rotor in the first direction. Even in such a case, the rotor can be prevented from rotating at a speed higher than the target speed.
  • a motor with a brake includes a motor unit including a motor shaft that can rotate around an axis, and a brake unit that applies a braking force to the motor shaft,
  • the brake unit includes a disk-shaped first plate that rotates integrally with the motor shaft, a second plate that faces the first plate in the axial direction, and a cylindrical holder that is disposed around the second plate;
  • the second plate has a plate-like portion facing the first plate, and a convex portion protruding from the plate-like portion to the opposite side of the first plate, and the rotation preventing mechanism Is the convex portion and the When the first plate and the second plate are in contact with each other by the plate driving mechanism, the
  • the second plate is driven by the plate driving mechanism to bring the first plate and the second plate into contact with each other to generate a braking force.
  • a rotation prevention mechanism that prevents rotation around the axis of the second plate is configured, and the rotation prevention mechanism is opposite to the first plate from the plate-like portion in the second plate. It is comprised between the convex part and the cylindrical holder which protruded to the side. For this reason, since the braking force can be generated by bringing at least the first plate and the second plate into contact with each other at the radially outer portion as much as possible, the outer diameter of the first plate and the outer diameter of the second plate are excessively increased. Even if it is not increased, a large braking force can be generated.
  • the rotation preventing mechanism includes a shaft portion protruding radially outward from the convex portion, an inner surface of the cylindrical holder, extending along the axial direction, and a radially outer end of the shaft portion.
  • channel in which the part was fitted is employable.
  • the shaft portion includes an end portion of a connecting shaft that connects the convex portion and the linear motion shaft of the plate driving mechanism.
  • the rotation preventing mechanism can be configured using the connecting shaft that connects the second plate and the linear motion shaft of the plate driving mechanism, so that the configuration of the brake portion can be simplified.
  • the first plate is a friction plate
  • the outer diameter of the second plate is larger than the outer diameter of the first plate
  • the first plate and the second plate are driven by the plate driving mechanism. It is preferable that at least the outermost radial end of the first plate is in contact with the second plate to generate the braking force. According to such a configuration, a large braking force can be generated between the first plate and the second plate by making maximum use of the outer diameter of the first plate configured as a friction plate.
  • the first plate includes a first annular convex portion protruding toward the second plate at an end portion on the outermost radial direction of a surface facing the second plate.
  • the first annular convex portion (radially outer end portion) of the first plate is surely in contact with the second plate, so that a large braking force is generated between the first plate and the second plate. be able to.
  • the said 2nd plate has a receiving surface which opposes the said 2nd plate on the opposite side with respect to the said 1st plate, and the movement of the said axial direction and the rotation around the said axial line are impossible,
  • the said 2nd plate is a said 1st plate.
  • the receiving surface is preferably in contact with at least the radially outer portion of the first plate. According to this configuration, a large braking force can be generated even between the first plate (friction plate) and the receiving surface.
  • the outer diameter of the receiving surface is larger than the outer diameter of the first plate, and when the first plate and the second plate are in contact with each other by the plate driving mechanism, the receiving surface is It is preferable to contact at least the outermost radial end of the first plate. According to such a configuration, a large braking force can be obtained between the first plate (friction plate) and the receiving surface by making maximum use of the outer diameter of the first plate configured as a friction plate.
  • the first plate includes a second annular convex portion protruding toward the receiving surface at an end portion on the outermost radial direction of the surface facing the receiving surface. According to this configuration, since the second annular convex portion (radially outer end portion) of the first plate is securely in contact with the receiving surface, a large braking force can be generated between the first plate and the receiving surface. it can.
  • the receiving surface may be a surface on the first plate side of a third plate fixed to a bearing holder that holds a radial bearing for the motor shaft.
  • the plate driving mechanism includes a spring member that biases the second plate toward the first plate, and a linear motion actuator that stops biasing by the spring member. can do.
  • the output side end face of the output side end plate is formed with a recess recessed toward the opposite output side, so that the grease applied to the first planetary gear unit leaked from the first planetary gear unit. Even in the case, the leaked grease accumulates in the recess. Therefore, it is difficult for grease to flow into the motor unit.
  • the planetary carrier of the first planetary gear unit includes a support plate that overlaps the planetary gear on the non-output side and supports the planetary gear from the non-output side. Therefore, the first planetary gear unit is the first planetary gear unit. It is independent by itself.
  • the second plate is driven by the plate driving mechanism to bring the first plate and the second plate into contact with each other to generate a braking force.
  • a rotation prevention mechanism that prevents rotation around the axis of the second plate is configured.
  • the rotation prevention mechanism is different from the first plate from the plate-like portion in the second plate. It is comprised between the convex part and the cylindrical holder which protruded on the opposite side. For this reason, at least the first plate and the second plate can be brought into contact with each other at the radially outer portion to generate a braking force, so that the outer diameter of the first plate and the outer diameter of the second plate are not excessively increased. However, a large braking force can be generated.
  • FIG. 1 is an explanatory view of a tubular motor 1 to which the present invention is applied.
  • FIGS. 1A, 1B, and 1C are perspective views of the tubular motor 1, and a state in which a case 2 is omitted from the tubular motor 1.
  • FIG. FIG. 2 is an exploded perspective view of the unit housed in the case.
  • FIG. 2 is a cross-sectional view of the tubular motor 1 to which the present invention is applied.
  • FIGS. 2A and 2B are cross-sectional views of the entire tubular motor 1 and a boundary portion between the motor unit and the speed reduction unit 6. It is sectional drawing expanded and shown.
  • a tubular motor 1 shown in FIG. 1 and FIG. 2 is a motor used for the purpose of winding up curtains such as shutters and sunshades, and has a cylindrical case 2 extending in the motor axial direction L. ing. Inside the case 2, the circuit board 3, the brake unit 4, the motor unit 5, and the reduction unit 6 are arranged in this order from the non-output side L 2 to the output side L 1, and from the reduction unit 6 to the output side L 1.
  • the motor shaft 10 protrudes.
  • a substrate holder 30 is attached to an end of the circuit board 3 opposite to the output side L2, and the circuit substrate 3 is held by the case 2 via the substrate holder 30.
  • a connector 12 for connecting the circuit board 3 and the wiring 11 is provided at the end of the case 2 opposite to the output side L2, and the connector 12 and the circuit board 3 are connected by a lead wire (not shown) or the like. It is connected.
  • the brake unit 4 is a friction brake unit having a solenoid 41 supported by a holder 40, a friction plate 42, and the like.
  • FIG. 3 is a perspective view showing the appearance of the motor unit 5 and the speed reduction unit 6 in the tubular motor 1 to which the present invention is applied.
  • FIG. 4 is an explanatory view of the motor unit 5 used in the tubular motor 1 to which the present invention is applied.
  • FIGS. 4A and 4B are an exploded perspective view of a stator and the like, and a perspective view of a rotor and the like. .
  • the motor unit 5 and the speed reduction unit 6 are arranged coaxially, and a rotary shaft 59 protruding from the motor unit 5 to the output side L ⁇ b> 1 has an output gear to the speed reduction unit 6. 61 is attached.
  • the stator 51 includes a plurality of cores 511 arranged in the circumferential direction, an insulator 512 covering both ends of the core 511, and a coil wound around the core 511 via the insulator 512.
  • the plurality of cores 511 are held by a cylindrical core holder 52.
  • a motor substrate 514 is held on the end surface of the stator 51 on the counter-output side L2.
  • the rotor 53 includes a rotary shaft 59 extending in the motor axis L direction, a cylindrical yoke 531 fixed to the outer peripheral surface of the rotary shaft 59, and a cylindrical shape fixed to the outer peripheral surface of the yoke 531. Magnet 532.
  • the output gear 61 is attached to the output side shaft portion 59a that protrudes to the output side L1 of the rotary shaft 59, and the counter output side shaft portion 59b that protrudes to the counter output side L2 is connected to the brake unit 4.
  • a counter output side end plate portion 54 that rotatably supports the rotor 53 is disposed on the counter output side L 2 of the rotor 53, and the rotor 53 is rotatably supported on the output side L 1 of the rotor 53.
  • An output side end plate portion 55 is disposed.
  • the non-output side end plate portion 54 includes a disc portion 541 having a shaft hole 540 formed in the center, a cylindrical portion 542 extending from the outer edge of the disc portion 541 to the output side L1, and a motor axis L of the cylindrical portion 542.
  • the shaft hole 540 is a stepped hole with the stepped portion facing the output side L1, and the shaft bearing 540 has an annular bearing 56 that rotatably supports the non-output-side shaft portion 59b of the rotating shaft 59. Is retained.
  • the bearing 56 is composed of a sintered oil-impregnated bearing or the like.
  • the output side end plate portion 55 includes a disc portion 551 having a shaft hole 550 formed in the center, and a cylindrical portion 552 extending from the outer edge of the disc portion 551 to the opposite output side L2.
  • the shaft hole 550 is a stepped hole with the stepped portion facing the non-output side L2, and an annular bearing 57 that rotatably supports the output side shaft portion 59a of the rotating shaft 59 is provided in the shaft hole 550. Is retained.
  • the bearing 57 is made of a sintered oil-impregnated bearing or the like.
  • an annular inner circumferential convex portion 567 is formed on the output side end surface 556 of the disc portion 551 so as to protrude radially inward to the output side L 1.
  • a shaft hole 550 is opened inside the convex portion 567.
  • the output side end surface 556 of the disc portion 551 is a circle that protrudes toward the output side L1 on the radially outer side from the inner peripheral annular convex portion 567 and on the radially inner side from the outer edge of the disc portion 551.
  • annular outer circumferential convex portion 558 is formed, and an annular concave portion 569 that is recessed toward the non-output side L2 is formed between the inner circumferential annular convex portion 567 and the outer circumferential annular convex portion 558.
  • an engaging convex portion 552 a and a convex portion 552 b that protrude radially outward are formed on the outer peripheral surface of the cylindrical portion 552. Therefore, when the cylindrical portion 552 of the output side end plate portion 55 is fitted inside the core holder 52, the output side end portion 521 of the core holder 52 comes into contact with the convex portion 552b. Further, a step portion 523 is formed on the inner peripheral surface of the core holder 52 so that the inner diameter of the output side end 521 is larger than the inner diameter of the portion 522 located on the counter-output side L2 from the output side end 521.
  • the outer diameter of the counter output side end portion 553 located at the end of the counter output side L2 is larger than the counter output side end portion 553 on the output side.
  • a step portion 555 that is smaller than the outer diameter of the portion 554 positioned at L1 is formed. Therefore, as shown in FIG. 2B, when the cylindrical portion 552 of the output side end plate portion 55 is fitted inside the core holder 52, the output side end portion 521 of the core holder 52 is opposite to the output side end plate portion 55. While overlapping with the output side end portion 553 from the outside in the radial direction, the step portion 555 contacts the portion facing the counter output side L2 from the counter output side L2. Thus, the positioning of the output side end plate portion 55 with respect to the core holder 52 in the motor axis L direction is performed.
  • FIG. 5 is an explanatory view of the speed reduction unit 6 used in the tubular motor 1 to which the present invention is applied.
  • FIGS. 5 (a), 5 (b), and 5 (c) are exploded perspective views of the speed reduction unit 6, and a cylindrical body. It is sectional drawing and sectional drawing which expands and shows the counter output side edge part of a cylindrical body.
  • FIG. 6 is an explanatory diagram of the planetary gear unit used in the reduction unit 6 of the tubular motor 1 to which the present invention is applied.
  • FIGS. 6 (a), (b), and (c) are diagrams of the first planetary gear unit 7.
  • FIG. 4 is an exploded perspective view, an exploded perspective view of a second planetary gear unit 8, and an exploded perspective view of a third planetary gear unit 9.
  • the first planetary gear unit 7, the second planetary gear unit 8, and the third planetary gear unit 9 are directed from the non-output side L2 in the motor axial direction L toward the output side L1.
  • a cylindrical cylinder 65 is arranged on the radially outer side of the first planetary gear unit 7, the second planetary gear unit 8, and the third planetary gear unit 9.
  • the internal gear 70 is formed on the inner peripheral surface 68 of the cylindrical body 65 at the portion on the counter-output side L 2.
  • the internal gear 80 of the second planetary gear unit 8 is formed on the inner peripheral surface 68 of the cylindrical body 65 at a portion on the output side L1 with respect to the internal gear 70.
  • the internal gear 90 of the third planetary gear unit 9 is formed on the inner peripheral surface 68 of the cylindrical body 65 at a portion on the output side L1 with respect to the internal gear 80.
  • the internal gear 80 and the internal gear 90 are formed continuously in the motor axial direction L. According to such a configuration, even when the first planetary gear unit 7, the second planetary gear unit 8, and the third planetary gear unit 9 are provided, the configuration of the reduction unit 6 can be simplified.
  • the inner diameter of the cylindrical body 65 increases stepwise from the output side L1 toward the non-output side L2. More specifically, the cylindrical body 65 has an end plate portion 66 on the output side L1, and the inner diameter of the thick first cylindrical portion 651 adjacent to the end plate portion 66 on the non-output side L2, The inner diameter of the second cylinder portion 652 adjacent to the first cylinder portion 651 on the counter-output side L2 and the inner diameter of the third cylinder portion 653 adjacent to the second cylinder portion 652 on the counter-output side L2 are as follows. Part 651 ⁇ second cylinder part 652 ⁇ third cylinder part 653 It has become. Among such cylindrical portions, the internal gear 80 and the internal gear 90 are formed in the second cylindrical portion 652, and the internal gear 70 is formed in the third cylindrical portion 653.
  • the tube portion 661 protrudes toward the output side L1, and the inside of the tube portion 661 is a shaft hole 662 through which the motor shaft 10 passes.
  • the end plate portion 66 is formed with a hole 663 that is open on a side surface, and a screw 68 (see FIG. 1) that fixes the case 2 and the cylindrical body 65 is stopped in the hole 663.
  • an engaging portion 64 that engages with an engaging convex portion 552a (see FIG. 4) of the output-side end plate portion 55 protrudes from the end portion on the counter-output side L2 of the cylindrical body 65 toward the counter-output side L2. ing.
  • the screw 69 is fixed to the hole 552c (see FIG. 4) of the engagement convex portion 552a, and the case 2, the cylindrical body 65, and the output side end plate portion 55 are fixed.
  • the first planetary gear unit 7 uses the output gear 61 (see FIGS. 3 and 4) fixed to the rotating shaft 59 of the motor unit 5 as a sun gear, and meshes with the output gear 61 3. It has two planetary gears 71 and a planetary carrier 75 that supports the planetary gears 71.
  • the planet carrier 75 has a holder 76 having three support shafts 761 that rotatably support the three planetary gears 71, and the holder 76 is a disc located on the output side L ⁇ b> 1.
  • a support shaft 761 extends from the portion 762 toward the non-output side L2.
  • the holder 76 has a support plate portion 763 that protrudes from the outer edge of the disc portion 762 to the counter-output side L2.
  • the support plate portion 763 is formed at three locations spaced apart in the circumferential direction, and the planetary gear 71 partially protrudes radially outward from between the support plate portions 763 and meshes with the internal gear 70.
  • a support plate 79 is fixed to the end portion of the support plate portion 763 on the non-output side L2 by a screw 799.
  • the support plate 79 has an annular shape in which a hole 790 that allows the rotation shaft 59 to pass therethrough is formed in the center.
  • a hole 791 through which the shaft portion of the screw 799 passes and a counter-output side L2 of the support shaft 761 are provided.
  • the planetary gear 71 has a circumferential groove 712 formed around a shaft hole 711 into which the support shaft 761 is fitted, and a coil spring 72 is disposed in the circumferential groove 712. For this reason, the planetary gear 71 is biased toward the counter-output side L2 by the coil spring 72 and is supported by the support plate 79 on the counter-output side L2.
  • a concave portion 764 is formed on the output side L 1 surface of the disc portion 762, and an end portion 741 on the counter-output side L 2 of the output gear 74 is fixed to the concave portion 764 with a screw 749.
  • the output gear 74 is used as a sun gear of the second planetary gear unit 8.
  • the planet carrier 75 is rotatably supported by the output gear 61 via the output gear 74.
  • the second planetary gear unit 8 has three planetary gears 81 that mesh with the output gear 74 and a planet carrier 85 that supports the planetary gears 81.
  • the planetary carrier 85 has a holder 86 having three support shafts 861 that rotatably support the three planetary gears 81, and the holder 86 is a disk located on the output side L1.
  • a support shaft 861 extends from the portion 862 toward the non-output side L2.
  • the holder 86 has a support plate portion 863 that protrudes from the outer edge of the disc portion 862 to the counter-output side L2, and the support plate portion 863 is formed at three locations that are separated in the circumferential direction.
  • the planetary gear 81 partially projects radially outward from between the plate portions 863 and meshes with the internal gear 80.
  • a support plate 89 is fixed to the end of the support plate portion 863 on the opposite output side L2 by a screw 899.
  • the support plate 89 has an annular shape in which a hole 890 that allows the output gear 74 to pass therethrough is formed at the center.
  • An engagement hole 892 is formed to engage with the end of the.
  • the support plate 89 supports the planetary gear 81 on the non-output side L2.
  • a concave portion 864 is formed on the surface of the disk portion 862 on the output side L 1, and the end portion 841 on the counter-output side L 2 of the output gear 84 is fixed to the concave portion 864 with a screw 849.
  • the output gear 84 is used as a sun gear of the third planetary gear unit 9.
  • the planet carrier 85 is rotatably supported by the output gear 74 via the output gear 84.
  • a support plate 99 is fixed to the end of the support shaft 961 on the non-output side L2.
  • the support plate 99 has an annular shape in which a hole 990 that allows the output gear 84 to pass therethrough is formed in the center, and an engagement hole 992 that engages with the end of the support shaft 961 on the counter-output side L2 around the hole 990. Is formed.
  • the support plate 99 supports the planetary gear 91 on the non-output side L2.
  • the non-output side end portion 67 of the cylindrical body 65 is in direct contact with the output side end plate portion 55 of the motor unit 5.
  • a step portion 670 whose inner diameter of the portion located on the counter-output side L2 is larger than the inner diameter of the third cylinder portion 653 on which the internal gear 70 is formed at the counter-output side end portion 67 of the cylindrical body 65. Is formed in a ring shape. Accordingly, the first portion 671 facing the non-output side L2 in the step portion 670 is in contact with the outer peripheral annular convex portion 568 of the output side end plate portion 55 from the output side L1, and the second portion facing the radially inner side in the step portion 670. 672 is in contact with the outer peripheral annular convex portion 568 of the output side end plate portion 55 from the outside in the radial direction.
  • the cylindrical body 65 is used as a common internal tooth forming body in the first planetary gear unit 7, the second planetary gear unit 8, and the third planetary gear unit 9, the first planetary gear unit 7 and the second planetary gear unit 7 are used.
  • the coaxial accuracy of the gear unit 8 and the third planetary gear unit 9 can be improved, and the coaxial accuracy of the entire reduction unit 6 and the motor unit 5 can be improved.
  • the present invention is applied to the tubular motor 1 having three planetary gear units, but the tubular motor 1 having two planetary gear units (the first planetary gear unit 7 and the second planetary gear unit 8) You may apply this invention to the tubular motor 1 which has one planetary gear unit (1st planetary gear unit 7).
  • FIG. 7 is an explanatory diagram of an electric shutter device to which the present invention is applied.
  • FIGS. 7A and 7B are explanatory diagrams schematically showing the configuration of the electric shutter device, and a drive source of the electric shutter device. It is a block diagram which shows the structure of the control apparatus with respect to the used brushless motor.
  • the electric shutter device 1 has a cylindrical rotating shaft 12 around which the shutter 11 is wound, and the rotating shaft 12 is fixed to a building or the like via brackets 13 and 14. ing. Further, the electric shutter device 1 includes a tubular motor 10 fixed to a building or the like via a bracket 13 and an operation panel 15 for instructing an opening / closing operation of the shutter 11.
  • the drive control unit 20 In the tubular motor 10, the drive control unit 20, the electromagnetic brake unit 30, the brushless motor 40, and the reduction gear unit 50 are arranged in order, and the drive control unit 20 drives and controls the brushless motor 40.
  • the drive control unit 20 is electrically connected to the control unit 16 configured on the operation panel 15. When an operation is performed on the operation panel 15, the drive control unit 20 performs drive control corresponding to the operation content. .
  • the electromagnetic brake unit 30 operates based on a command from the control unit 16 configured on the operation panel 15.
  • the shutter 11 is extended from the rotating shaft 12 and moves in the closing direction C.
  • the stop button 153 is pressed on the operation panel 15 while the shutter 11 is moving in the opening direction or in the closing direction, a signal to that effect is output from the control unit 16 to the drive control unit 20, and the drive control unit 20 stops the rotation of the motor shaft 41 and stops the shutter 11.
  • the control unit 16 operates the electromagnetic brake unit 30 and stops the shutter 11.
  • the rotating shaft 12 is connected to an assist spring 17 made of a coil spring or the like that generates an urging force against the weight of the shutter 11, and the rotating shaft 12 is attached to wind up the shutter 11 (opening direction O). It is energized. For this reason, when the urging force of the assist spring 17 becomes larger than the dead weight of the shutter 11 as the shutter 11 moves, a load rotating in one direction is applied to the motor shaft 41 of the brushless motor 40. For example, since the biasing force of the assist spring 17 is equal to or less than the dead weight of the shutter 11 until the shutter 11 is in the middle of the opening direction O, a load that rotates in one direction is not applied to the motor shaft 41 of the brushless motor 40. However, when the shutter 11 moves further in the opening direction O from the midway position P, the biasing force of the assist spring 17 exceeds the weight of the shutter 11, so that a load rotating in one direction is applied to the motor shaft 41 of the brushless motor 40. Will be.
  • one direction in which the load from the assist spring 17 is applied (the direction in which the shutter 11 is driven in the opening direction O) among the rotation directions of the motor shaft 41 is referred to as the “first direction” in the present invention.
  • the direction opposite to the side to which the load from the assist spring 17 is applied (the rotation in the other direction, the direction in which the shutter 11 is driven in the closing direction C) will be described as the “second direction” in the present invention.
  • the brushless motor 40 includes a rotor 43 having a motor shaft 41 and a rotor magnet 42, a stator 44 having a plurality of drive coils 45, and position detection corresponding to the rotation of the rotor magnet 42.
  • the stator 44 includes three drive coils 45 corresponding to the U phase, the V phase, and the W phase. Further, three magnetic sensor elements 47 are provided corresponding to the U phase, the V phase, and the W phase.
  • the drive control unit 20 includes a controller 21 and a driving IC 22 that drives the brushless motor 40 under the command of the controller 21.
  • the driving IC 22 is electrically connected to the driving coil 45 via the connector 23 and supplies a driving current to the driving coil 45.
  • the driving IC 22 is electrically connected to the magnetic sensor element 47 via the connector 24, and the detection result of the magnetic sensor element 47 is input.
  • the controller 21 and the driving IC 22 are electrically connected via a signal line.
  • the controller 21 is a signal F / R that commands a voltage Vs corresponding to a speed instruction frequency Tsj, which will be described later, and a rotation direction of the rotor 43. Are output to the driving IC 22. Further, the driving IC 22 outputs the detection result FG at the magnetic sensor element 47 to the controller 21.
  • a direction instruction signal Dir is output.
  • a position signal Sp that indicates the load position is output to the drive control unit 20 from the control unit 16 illustrated in FIG.
  • the position signal Sp is information indicating whether or not the shutter 11 is in the opening direction from the midway position P shown in FIG. 7A, and information indicating whether or not a load in the opening direction O is applied to the shutter 11. Contains.
  • the detection result FG from the magnetic sensor element 47 is output from the controller 21 to the control unit 16.
  • step ST5 When it is determined in step ST4 that the electromagnetic brake unit 30 has been released, it is determined in step ST5 whether the rotational direction command is an open direction or a close direction. In step ST5, when the rotation direction command is the second direction (the closing direction), the second direction driving step is performed.
  • step ST11 when it is determined in step ST11 that the electromagnetic brake unit 30 has not been released (the electromagnetic brake unit 30 is in operation), the driving of the shutter 11 is terminated, and the operation panel returns to step ST3. 15 until the open button 151 and the close button 152 are pressed.
  • step ST24 when the frequency of the signal FG output from the magnetic sensor element 47 is less than 20 Hz (threshold value), it is determined that the rotor 43 is not rotated by the external load, and in step ST25, the standby time of 0.2 seconds After waiting for time, in step ST22, a signal indicating that the rotation direction is the first direction is output to the driving IC 22, and then in step ST7, servo processing is started.
  • step ST81 when the speed instruction frequency Tsj is equal to the frequency Tfg of the signal FG, the speed command voltage Vs is left as it is in step ST82, and the process ends in step ST76.
  • step ST81 when the frequency Tfg of the signal FG is higher than the speed instruction frequency Tsj, the speed command voltage Vs is decreased by a predetermined constant in step ST83.
  • step ST84 it is determined whether or not the changed speed command voltage Vs is less than the minimum value. If it is less than the minimum value, the speed command voltage Vs is set to the minimum value in step ST85, and the process is performed in step ST76. Exit. On the other hand, if it is determined in step ST84 that the changed speed command voltage Vs is not less than the minimum value, the process ends in step ST76.
  • FIG. 11 is an explanatory diagram showing a method for setting the braking force applied to the rotor 43 in the method for controlling the brushless motor 40 to which the present invention is applied.
  • FIGS. 11A and 11B are processes for setting the braking force.
  • FIG. 4 is a flowchart illustrating the above and an explanatory diagram of a period during which a braking force is applied.
  • step ST47 If the speed instruction frequency Tsj is equal to the frequency Tfg of the signal FG in step ST47, the application period Ta1 is left as it is in step ST48 and the speed command voltage Vs is output in step ST49. The process ends at.
  • step ST47 when the frequency Tfg of the signal FG is higher than the speed instruction frequency Tsj, the application period Ta1 is extended by a predetermined constant in step ST51.
  • step ST52 it is determined whether or not the changed application period Ta1 exceeds the maximum value. If the maximum value is exceeded, the application period Ta1 is set to the maximum value in step ST53, and if the maximum value is not exceeded, The application period Ta1 is kept at the current value. Then, after outputting the speed command voltage Vs in step ST49, the process ends in step ST50.
  • the braking force is generated by short-circuiting both ends of at least one drive coil 45 among the plurality of drive coils 45. For this reason, there is an advantage that a braking force can be generated by controlling energization to the drive coil 45.
  • the command speed when the rotor 43 is rotationally driven in the first direction is compared with the rotation speed of the rotor 43 detected by the magnetic sensor element 47.
  • the magnitude of the braking force is changed based on the comparison result between the speed and the rotational speed. For this reason, an appropriate braking force can be applied to the rotor 43.
  • the rotation of the rotor 43 is detected based on the detection result of the magnetic sensor element 47, and the rotation speed of the rotor 43 is lower than the speed instruction value.
  • the drive current is increased, and when the rotational speed of the rotor 43 is lower than the speed instruction value, the drive current is decreased. For this reason, since the actual rotational speed can be fed back to the drive current, the rotational speed of the rotor 43 can be brought close to the speed instruction value.
  • the braking force is generated by short-circuiting both ends of the drive coil 45, but the braking force may be applied using the electromagnetic brake unit 30.
  • the present invention is applied to the electric shutter device 1 in which the urging force of the assist spring 17 (the urging member) is applied as an external load that rotates the rotor 43 in the first direction.
  • the present invention may be applied to the electric shutter device 1 applied as an external load that rotates the rotor 43 in the first direction.
  • the first direction is the closing direction of the shutter 11.
  • a motor 1 with a brake shown in FIGS. 12 and 13 is a tubular motor used for the purpose of winding up curtains such as a shutter and a sunshade, and a cylindrical case 2 extending in the motor axial direction L is used.
  • a circuit board 3 Inside the case 2, a circuit board 3, a brake unit 4 (brake part), a motor unit 5 (motor part), and a speed reduction unit 6 (speed reduction part) are arranged in this order from the non-output side L 2 to the output side L 1.
  • the output shaft 10 protrudes from the deceleration unit 6 to the output side L1.
  • Substrate holders 31 and 32 are attached to the end of the output side L1 and the end of the non-output side L2 of the circuit board 3, and the circuit board 3 is held by the case 2 via the substrate holders 31 and 32. Yes.
  • a connector 12 for connecting the circuit board 3 and the wiring 11 is provided at the end of the case 2 opposite to the output side L2, and the connector 12 and the circuit board 3 are connected by a lead wire (not shown) or the like. It is connected.
  • the brake unit 4 includes a friction brake unit. When the brake-equipped motor 1 is used in an electric shutter device, the brake unit 4 stops the shutter at a predetermined position against the weight of the shutter.
  • the motor unit 5 and the speed reduction unit 6 are arranged coaxially, and the motor shaft 59 protruding from the motor unit 5 to the output side L ⁇ b> 1 is connected to the speed reduction unit 6.
  • the output gear 61 (see FIG. 14) is attached.
  • the stator 51 is wound around the core 511 via the core 511 arranged in the circumferential direction, the insulator 512 covering both ends of the core 511, and the insulator 512.
  • the plurality of cores 511 are held by a cylindrical core holder 52.
  • a motor substrate 514 is held on the end surface of the stator 51 on the counter-output side L2.
  • the rotor 53 includes a motor shaft 59 extending in the motor axis L direction, a cylindrical yoke 531 fixed to the outer peripheral surface of the motor shaft 59, a yoke And a cylindrical magnet 532 fixed to the outer peripheral surface of 531.
  • an output gear 61 is attached to an output side shaft portion 59a that protrudes to the output side L1
  • a counter output side shaft portion 59b that protrudes to the counter output side L2 is connected to a brake unit 4 described later. Yes.
  • a bearing holder 54 on the counter-output side L 2 that rotatably supports the rotor 53 is disposed on the counter-output side L 2 of the rotor 53, and the rotor 53 can be rotated on the output side L 1 of the rotor 53.
  • a bearing holder 55 on the output side L1 to be supported is disposed.
  • the bearing holder 54 includes a disc portion 541 having a shaft hole 540 formed in the center, a cylindrical portion 542 extending from the outer edge of the disc portion 541 to the output side L1, and a motor axis L on the outer peripheral surface of the disc portion 541.
  • a rib-like convex portion 543 that protrudes radially outward at the center in the direction, and the convex portion 543 is formed on the entire circumference of the disc portion 541.
  • the shaft hole 540 is a stepped hole with the step portion directed to the output side L1, and the shaft bearing 540 has an annular bearing 56 that rotatably supports the non-output side shaft portion 59b of the motor shaft 59. Is retained.
  • the bearing 56 is composed of a sintered oil-impregnated bearing or the like.
  • the bearing holder 55 includes a disc portion 551 having a shaft hole 550 formed at the center, and a cylindrical portion 552 extending from the outer edge of the disc portion 551 to the counter-output side L2.
  • the shaft hole 550 is a stepped hole with the step portion facing the non-output side L2, and an annular bearing 57 that rotatably supports the output side shaft portion 59a of the motor shaft 59 is provided in the shaft hole 550. Is retained.
  • the bearing 57 is made of a sintered oil-impregnated bearing or the like.
  • An annular inner circumferential convex portion 557 is formed on the output side end surface 556 of the disc portion 551 so as to protrude radially inward to the output side L1, and a shaft hole is formed inside the inner circumferential annular convex portion 557. 550 is open. Further, an annular outer circumferential convex portion 558 that protrudes toward the output side L1 is formed on the output side end surface 556 of the disc portion 551 on the radially inner side from the outer edge of the disc portion 551.
  • an engagement convex portion 552a and a convex portion 552b projecting radially outward are formed on the outer peripheral surface of the disc portion 551. Therefore, when the cylindrical portion 552 of the bearing holder 55 is fitted inside the core holder 52 shown in FIG. 15A, the output side end portion 521 of the core holder 52 abuts on the convex portion 552b. Further, a step portion 523 is formed on the inner peripheral surface of the core holder 52 so that the inner diameter of the output side end 521 is larger than the inner diameter of the portion 522 located on the counter-output side L2 from the output side end 521.
  • the internal gear 80 of the second planetary gear unit 8 is formed on the inner peripheral surface of the cylindrical body 65 at a portion on the output side L1 with respect to the internal gear 70.
  • the internal gear 90 of the third planetary gear unit 9 is formed on the inner peripheral surface of the cylindrical body 65 at a portion on the output side L1 with respect to the internal gear 80.
  • the cylindrical body 65 has an end plate portion 66 on the output side L1.
  • the cylinder part 661 protrudes toward the output side L1, and the inside of the cylinder part 661 is a shaft hole 662 through which the output shaft 10 passes.
  • the end plate portion 66 is formed with a hole 663 that is open on a side surface, and a screw 68 (see FIG. 12) that fixes the case 2 and the cylindrical body 65 is stopped in the hole 663.
  • an engaging portion 64 (see FIG. 14) that engages with an engaging convex portion 552a (see FIG.
  • FIG. 16 is an exploded perspective view of the brake unit 4 in the motor 1 with brake to which the present invention is applied.
  • FIGS. 16 (a), 16 (b), and 16 (c) show a cylindrical holder 49 (cylinder) in the brake unit 4.
  • FIG. 17 The disassembled perspective view seen from the output side L1 in a state where the shape holder is removed, the exploded perspective view seen from the output side L1 in the state where each plate of the brake unit 4 is removed, and the plates etc. of the brake unit 4 removed It is the disassembled perspective view which looked at the state from the non-output side L2.
  • FIG. 17 is an explanatory view of a rotation prevention mechanism of the brake unit 4 in the motor 1 with brake to which the present invention is applied.
  • FIGS. 17A and 17B are perspective views of the rotation prevention mechanism as viewed from the counter-output side L2.
  • FIG. 4 is an exploded perspective view of a state where the rotation prevention mechanism is disassembled, as viewed from the non-output side L2.
  • a cylindrical cylindrical holder 49 is disposed around the second plate 42.
  • the first plate 41 and the plate drive are disposed inside the cylindrical holder 49.
  • a mechanism 46 is arranged.
  • the cylindrical holder 49 includes a cylindrical cylindrical portion 491, a first plate-shaped portion 492 extending from the cylindrical portion 491 to the counter-output side L 2, and a counter-acting portion from the cylindrical portion 491 so as to face the first plate-shaped portion 492.
  • a second plate-like portion 493 extending to the output side L2. Hooks 492a and 493a for holding the substrate holder 31 shown in FIG. 1 are formed at the opposite end L2 of the first plate-like portion 492 and the second plate-like portion 493.
  • a concave portion 495 in which a hole 495a is formed is formed at the end portion of the output side L1 in the cylindrical portion 491.
  • the bearing holder 54 has a rib-like convex portion 544 that protrudes from the outer edge of the disc portion 541 toward the counter-output side L2, and a hole 545 is formed on the surface of the disc portion 541 on the counter-output side L2. Is formed.
  • a central hole 430 through which the motor shaft 59 is passed is formed in the center of the plate-like convex portion 432, and holes 435 are formed in the plate-like convex portion 432 at three locations in the circumferential direction. Therefore, if the screw (not shown) is fixed to the holes 435 and 545 in a state where the third plate 43 is overlaid on the surface of the bearing holder 54 opposite to the output side L2, the third plate 43 is fixed to the bearing holder 54. The As a result, the third plate 43 is fixed around the motor axis L and in the motor axis L direction. Therefore, the receiving surface 437 of the third plate 43 is fixed around the motor axis L and in the motor axis L direction. Is in a state.
  • the plate drive mechanism 46 includes a spring member 44 that urges the second plate 42 toward the first plate 41 and a linear actuator 45 that stops urging by the spring member 44.
  • the spring member 44 is composed of a compression coil spring.
  • the linear motion actuator 45 is a solenoid actuator, and includes a linear motion shaft 453 (solenoid plunger) made of an axial iron core and a cylindrical solenoid holder 515 surrounding the linear motion shaft 453 (see FIG. 13B)) And a solenoid coil 452 wound around the solenoid holder 451. Further, the linear actuator 45 has a solenoid base 47 that holds a solenoid holder 451.
  • the first plate 41 includes the first annular protrusion 416 and the second plate 42. And a frictional force between the second annular convex portion 417 and the third plate 43 act on each other, so that a braking force is applied to the first plate 41 and the motor shaft 59.
  • the rotation preventing mechanism 40 includes a shaft portion 481 protruding radially outward from the convex portion 422 of the second plate 42 and a groove 496 extending along the motor axis L direction on the inner surface of the cylindrical holder 49.
  • the shaft portion 481 includes an end portion of the connecting shaft 48 that connects the convex portion 422 of the second plate 42 and the linear motion shaft 453 of the plate driving mechanism 46.
  • the first plate 41 is a friction plate, and the outer diameter of the second plate 42 is larger than the outer diameter of the first plate 41. For this reason, when the first plate 41 and the second plate 42 are in contact with each other by the plate driving mechanism 46, the end portion on the outermost radial direction of the first plate 41 is in contact with the second plate 42. Therefore, a large braking force can be generated between the first plate 41 and the second plate 42 by making maximum use of the outer diameter of the first plate 41 configured as a friction plate.
  • the first plate 41 includes a first annular convex portion 416 at the outermost radial end of the first surface 411 facing the second plate 42.
  • the first annular convex portion 416 (end on the outermost radial direction) of the first plate 41 is surely in contact with the second plate 42, so that a large braking force is generated between the first plate 41 and the second plate 42. Can be generated.
  • a receiving surface 437 that cannot move in the direction of the motor axis L and cannot rotate about the motor axis L is opposed, and the second plate 42 is in the first direction.
  • the receiving surface 437 contacts at least the radially outer portion of the first plate 41. For this reason, a large braking force can be generated between the first plate 41 (friction plate) and the receiving surface 437.
  • the receiving surface 437 is at least The first plate 41 is in contact with the outermost end portion in the radial direction. For this reason, a large braking force can be obtained between the first plate 41 (friction plate) and the receiving surface 437 by making maximum use of the outer diameter of the first plate 41 configured as a friction plate.
  • the first plate 41 includes a second annular convex portion 417 that protrudes toward the receiving surface 437 at the outermost radial end of the second surface 412 that faces the receiving surface 437.
  • the first plate 41 is configured as a friction plate
  • the second plate 42 may be configured as a friction plate.
  • the problem is to provide a motor with a brake capable of obtaining a large braking force by bringing members that generate a braking force into contact with each other as radially as possible.
  • the solution means that the plate driving mechanism 46 drives the second plate 42 to bring the first plate 41 (friction plate) and the second plate 42 into contact with each other to generate a braking force.
  • a rotation prevention mechanism 40 that prevents the rotation of the second plate 42 around the motor axis L is configured, and the rotation prevention mechanism 40 includes a plate-like portion in the second plate 42.
  • a convex portion 422 protruding from the side opposite to the first plate 41 from 421 and the cylindrical holder 49 are configured. Therefore, at least the first plate 41 and the second plate 42 can be brought into contact with each other at the radially outer portion to generate a braking force (see FIG. 13).
  • Output side end face 567 .. Inner peripheral side annular convex part, 568 .. Outer peripheral side annular convex part, 568 .. Recessed part, 670 .. Step part, 671 .. First part, 672. Second part, L ⁇ ⁇ Motor axial direction, L1 ⁇ Output side, L2 ⁇ Non-output side
  • FIGS. 12 to 17. A reference numeral added in FIGS. 12 to 17. 1 .... Motor with brake, 2 .... Case, 4 .... Brake unit (brake part), 5 .... Motor unit (motor part), 6 .... Deceleration unit (deceleration part), 10..Output shaft, 40. ..Rotation prevention mechanism, 41..First plate, 42..Second plate, 43..Third plate, 44..Spring member, 45..Linear actuator, 46..Plate drive mechanism, 47..Solenoid Base, 48 ... Connection shaft, 49 ... Tube holder, 421 ... Plate, 422 ... Projection, 451 ... Solenoid holder, 416 ... First annular projection, 417 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

 本発明はモータユニットの出力側端板部の出力側端面に凹部を設けた場合でも、部品点数が少なく済むとともに、効率よく組み立てを行うことのできるチューブラモータを提供することである。例えば、チューブラモータ1において、第1遊星歯車ユニット7の遊星キャリア75は、遊星歯車71に反出力側L2で重なって遊星歯車71を反出力側L2から支持する支持板79を備えている。このため、第1遊星歯車ユニット7は、第1遊星歯車ユニット自身で独立しており、遊星歯車71をモータユニット5の出力側端板部55等で支持する必要がない。このため、出力側端板部55の出力側端面556に、第1遊星歯車ユニット7から漏れたグリスが流入する凹部569を設けた場合でも、モータユニット5の出力側に第1遊星歯車ユニット7を直接、隣り合わせることができる。

Description

チューブラモータ、ブラシレスモータの制御方法、ブレーキ付きモータ
 本発明(第1の発明)は、筒状のケースの内側にモータユニットおよび遊星歯車ユニットが軸線方向に配置されたチューブラモータに関するものである。
 本発明(第2の発明)は、電動シャッター装置等に用いられるブラシレスモータの制御方法に関するものである。
 本発明(第3の発明)は、モータ軸に制動力を印加するブレーキを内蔵したブレーキ付きモータに関するものである。
 (第1の発明)
 シャッターや日よけなどの幕状物を巻き取る目的等に用いられるチューブラモータは、筒状のケースの内側にモータユニットおよび遊星歯車ユニットが軸線方向に配置されている(特許文献1参照)。特許文献1の図3に記載のチューブラモータでは、モータユニットにおいてロータの出力側でロータを回転可能に支持する隔壁部に対して出力側に遊星歯車ユニットが直接、隣り合うように配置されており、遊星歯車は、隔壁部の出力側の平坦な面によって反出力側から支持された状態で回転する。
 但し、特許文献1の図3に記載の構成では、遊星歯車ユニットに塗布したグリスが漏出した際、グリスを受ける空間がない。そこで、特許文献1の図1に記載のモータでは、隔壁部の出力側にグリスが流入可能な凹部を設けるとともに、隔壁部と遊星歯車ユニットとの間にギアカバーを配置し、遊星歯車をギアカバーによって反出力側から支持されている。ここで、ギアカバーの径方向外側部分は、遊星歯車ユニットにおいて内歯歯車が形成された円筒体と隔壁部の径方向外側端部との間に挟まれている。
 (第2の発明)
 ブラシレスモータは、ロータマグネットを備えたロータ、複数の駆動コイルを備えたステータ、ロータマグネットの回転を検出する磁気センサ素子等を備えており、磁気センサ素子による検出結果に基づいて、駆動コイルに供給されるモータ電流が制御される。このようなブラシレスモータを電動シャッター装置等に用いた場合、ロータには、シャッターの自重や、シャッターの巻き取り軸に接続したバネの付勢力等といった負荷が外部から印加されることになる。このため、ロータを外部負荷が加わる方向に回転させる際、指定された速度より速い速度で回転するおそれがあり、ブラシレスモータが損傷する等の問題が発生する。
 一方、シャッター巻き取り装置にエンコーダ等の位置センサやタコジェネレータ等の回転センサを設け、実際の回転数と、設定した回転数との比較結果に基づいてモータの駆動を制御する技術が提案されている(特許文献2参照)。
 (第3の発明)
 シャッターや日よけなどの幕状物を巻き取る目的等に用いられるチューブラモータは、筒状のケースの内側にモータユニットおよび遊星歯車ユニットが軸線方向に配置されている(特許文献1参照)。かかるチューブラモータでは、シャッター等を所定の位置に停止させておくことを目的に、モータ軸に制動力を印加するブレーキを内蔵したブレーキ付きモータとして構成されている(特許文献3)。
 より具体的には、特許文献3に記載のブレーキ付きモータにおいて、ブレーキ部は、モータ軸線方向で対向する3枚のブレーキディスクを有しており、3枚のブレーキディスクを軸線方向で当接させてモータ軸に対する制動力を発生させている。ここで、3枚のブレーキディスクのうち、中央のブレーキディスクについては、外周面から径方向外側に向けて突出した突起を設ける一方、3枚のブレーキディスクを囲む筒状ホルダの内面に軸線方向に延在する溝を形成し、突起が溝に嵌ることによって、中央のブレーキディスクの軸線周りの回転を阻止するようになっている。
 (第1の発明)
特開2007-195284号公報の図1および図3
 (第2の発明)
特開2001-288970号公報
 (第3の発明)
特開2003-262242号公報
 (第1の発明)
 しかしながら、特許文献1の図1および図3のいずれに記載のチューブラモータでも、モータユニットの出力側に遊星歯車ユニットを重ねた時点、あるいはモータユニットの出力側にギアカバーを介して遊星歯車ユニットを重ねた時点で遊星歯車が反出力側から支持された構成となる。このため、チューブラモータの組み立て効率が低いという問題点がある。また、特許文献1の図1に記載のチューブラモータでは、モータユニットの出力側で遊星歯車を支持するギアカバーが必要であるため、部品点数が増えるという問題点がある。
 以上の問題点に鑑みて、本発明(第1の発明)の課題は、モータユニットの出力側端板部の出力側端面に凹部を設けた場合でも、部品点数が少なく済むとともに、効率よく組み立てを行うことのできるチューブラモータを提供することにある。
 (第2の発明)
 しかしながら、特許文献2に記載の構成では、エンコーダ等の位置センサやタコジェネレータ等の回転センサを設ける必要があるため、電動シャッター装置のコストが増大するという問題点がある。
 以上の問題点に鑑みて、本発明(第2の発明)の課題は、エンコーダ等の位置センサやタコジェネレータ等の回転センサを追加しなくても、外部から負荷が加わるロータの回転を制御することのできるブラシレスモータの制御方法を提供することにある。
 (第3の発明)
 ブレーキ部を構成するには、複数のブレーキディスクのいずれかを軸線周りに回転不能とする必要がある。また、ブレーキ部では、ブレーキディスク同士がより径方向外側で接触し合う方が大きな制動力を得ることができる。
 しかしながら、特許文献3に記載の構成のように、中央のブレーキディスクの外周面から径方向外側に向けて突出した突起を利用した場合、中央のブレーキディスクの径方向外側部分に突起が形成されているため、かかる径方向外側部分を他のブレーキディスクと接触させる構成を採用することができない。このため、特許文献3に記載の構成では、中央のブレーキディスクの外径寸法の割には制動力が小さいという問題点がある。
 以上の問題点に鑑みて、本発明(第3の発明)の課題は、制動力を発生させる部材同士を可能な限り径方向外側で接触させることにより、大きな制動力を得ることができるブレーキ付きモータを提供することにある。
 (第1の発明)
 上記課題を解決するために、本発明に係るチューブラモータは、モータ軸線方向に延在する筒状のケースと、該ケースの内側に設けられたモータユニットと、前記ケースの内側において前記モータユニットに対して前記モータ軸線方向の出力側に配置された第1遊星歯車ユニットと、を有し、前記モータユニットにおいて、ロータの出力側で当該ロータを回転可能に支持する出力側端板部の出力側端面には、反出力側に向けて凹んだ凹部が形成され、前記第1遊星歯車ユニットにおいて、遊星キャリアは、遊星歯車に反出力側で重なって当該遊星歯車を反出力側から支持する支持板を備え、前記第1遊星歯車ユニットは、前記出力側端板部に対して出力側で直接、隣り合っていることを特徴とする。
 本発明では、出力側端板部の出力側端面には、反出力側に向けて凹んだ凹部が形成されているため、第1遊星歯車ユニットに塗布したグリスが第1遊星歯車ユニットから漏出した場合でも、漏出したグリスは凹部内に溜まる。従って、モータユニットの側にグリスが流入しにくい。また、第1遊星歯車ユニットの遊星キャリアは、遊星歯車に反出力側で重なって遊星歯車を反出力側から支持する支持板を備えているため、第1遊星歯車ユニットは、第1遊星歯車ユニット自身で独立している。このため、出力側端板部の出力側端面に凹部を形成した場合でも、ギアカバー等で遊星歯車を支持する必要がない。それ故、部品点数の削減を図ることができる。また、チューブラモータを効率よく組み立てることができる。
 本発明において、前記第1遊星歯車ユニットは、内歯歯車が内周面に形成された筒体を備え、当該筒体の前記反出力側端部が前記出力側端板部に接していることが好ましい。かかる構成によれば、第1遊星歯車ユニットとモータユニットとの連結が容易であるため、チューブラモータを効率よく組み立てることができる。また、第1遊星歯車ユニットの筒体とモータユニットの出力側端板部とが直接、連結されているので、筒体とモータユニットの出力側端板部との同軸精度を向上することができる。それ故、第1遊星歯車ユニットとモータユニットとの同軸精度を向上することができる。
 本発明において、前記出力側端板部は、前記出力側端面から出力側に突出した内周側環状凸部と、該内周側環状凸部より径方向外側で前記出力側端面から出力側に突出した外周側環状凸部と、を備え、前記内周側環状凸部と前記外周側環状凸部との間が前記凹部になっていることが好ましい。かかる構成によれば、モータユニットの側にグリスが流入しにくい。
 本発明において、前記筒体の前記反出力側端部には、前記内歯歯車が形成された部分の内径より反出力側に位置する部分の内径を大とする段部が環状に形成されており、前記段部において反出力側を向く第1部分が前記外周側環状凸部に出力側から接し、前記段部において径方向内側に向く第2部分が前記外周側環状凸部に径方向外側から接していることが好ましい。かかる構成によれば、出力側端板部と筒体との間から外側にグリスが漏れにくい。
 本発明において、前記筒体の内部では、前記第1遊星歯車ユニットに対して出力側に第2遊星歯車ユニットが配置され、前記第2遊星歯車ユニットにおいて、遊星キャリアは、遊星歯車に反出力側で重なって当該遊星歯車を反出力側から支持する支持板を備えていることが好ましい。かかる構成によれば、第1遊星歯車ユニットおよび第2遊星歯車ユニットをモータ軸線に沿って容易に配置することができるので、チューブラモータを効率よく組み立てることができる。
 本発明において、前記筒体の内部では、前記第2遊星歯車ユニットに対して出力側に第3遊星歯車ユニットが配置され、前記第3遊星歯車ユニットにおいて、遊星キャリアは、遊星歯車に反出力側で重なって当該遊星歯車を反出力側から支持する支持板を備えていることが好ましい。かかる構成によれば、第3遊星歯車ユニットについても、モータ軸線に沿って容易に配置することができるので、チューブラモータを効率よく組み立てることができる。
 本発明において、前記第1遊星歯車ユニットの内歯歯車、前記第2遊星歯車ユニットの内歯歯車、および前記第3遊星歯車ユニットの内歯歯車が全て前記筒体の内周面に形成されていることが好ましい。かかる構成によれば、筒体の内側に第3遊星歯車ユニット、第2遊星歯車ユニット、および第1遊星歯車ユニットを順次搭載すればよいので、チューブラモータを効率よく組み立てることができる。
 本発明において、前記筒体の内径は、出力側から反出力側に向けて段階的に大きくなっていることが好ましい。かかる構成によれば、筒体の内側に第3遊星歯車ユニット、第2遊星歯車ユニット、および第1遊星歯車ユニットを容易に搭載することができる。また、筒体の内周面に内歯歯車を容易に形成することができる。
 本発明において、前記ケースの内側には、前記モータユニットに対して反出力側で隣り合う位置に当該モータユニットのロータを制動させるブレーキユニットが設けられている構成を採用することができる。かかる構成でも、ブレーキユニットにグリスが流入しにくいので、ブレーキユニットの動作が安定する。
 (第2の発明)
 上記課題を解決するために、本発明は、ロータマグネットを備えたロータ、複数の駆動コイルを備えたステータ、および前記ロータマグネットの回転に対応する位置検出信号を生成する磁気センサ素子を備えたブラシレスモータの制御方法であって、外部から第1方向に回転させる負荷が加わっている前記ロータを前記第1方向に回転駆動する第1方向駆動工程では、前記駆動コイルへの給電を開始する前に、前記磁気センサ素子の検出結果に基づいて、前記ロータの回転を検出する回転検出処理を行い、当該回転検出処理での検出結果において前記ロータの回転速度がしきい値未満である場合には、前記ロータを前記第1方向に回転駆動する駆動電流を前記複数の駆動コイルに供給し、前記ロータの回転速度が前記しきい値以上である場合には、前記ロータに制動力を印加することを特徴とする。
 本発明では、外部から第1方向に回転させる負荷が加わっているロータを第1方向に回転駆動する際、駆動コイルへの給電を開始する前に、ロータの回転を検出する回転検出処理を行い、ロータの回転速度がしきい値以上である場合には、ロータに制動力を印加する。このため、ロータが目標速度以上の速度で回転することを抑制することができる。また、回転検出処理では、位置検出用信号生成用の磁気センサ素子を用いるため、エンコーダ等の位置センサやタコジェネレータ等の回転センサを設ける必要がない。それ故、コストの低減を図ることができる。
 本発明において、前記制動力は、前記複数の駆動コイルのうち、少なくとも1つの駆動コイルの両端を短絡させることにより発生させることが好ましい。かかる構成によれば、駆動コイルに対する通電を制御することにより制動力を発生させることができる。
 本発明において、前記ロータに前記制動力を印加するにあたっては、前記ロータを前記第1方向に回転駆動する際の指令速度と前記磁気センサ素子によって検出した前記ロータの回転速度とを比較し、前記指令速度と前記回転速度との比較結果に基づいて前記制動力の大きさを変更することが好ましい。かかる構成によれば、ロータに適正な制動力を印加することができる。
 本発明において、前記ロータを前記第1方向とは反対の第2方向に回転駆動する第2方向駆動工程では、前記回転検出処理を行わずに、前記ロータを前記第2方向に回転駆動する駆動電流を前記複数の駆動コイルに供給することが好ましい。かかる構成によれば、処理数を減らすことができるので、制御の負荷を軽減することができる。
 本発明において、前記駆動電流を前記複数の駆動コイルに供給した後、前記磁気センサ素子の検出結果に基づいて、前記ロータの回転を検出し、前記ロータの回転速度が速度指示値より低い場合には、前記駆動電流を増大させ、前記ロータの回転速度が前記速度指示値より低い場合には、前記駆動電流を減小させることが好ましい。かかる構成によれば、実際の回転速度を駆動電流にフィードバックすることができるので、ロータの回転速度を速度指示値に近づけることができる。
 本発明において、前記ロータは、減速輪列を介してシャッター巻き取り用の回転軸に連結されている構成を採用することができる。かかる構成の場合、ロータには、シャッターの自重や、シャッター巻き取り用の回転軸(巻き取り軸)に接続された付勢部材の付勢力が、ロータを第1方向に回転させる外部負荷として加わることになるが、その場合でも、ロータが目標速度以上の速度で回転することを抑制することができる。
 (第3の発明)
 上記課題を解決するために、本発明に係るブレーキ付きモータは、軸線周りに回転可能なモータ軸を備えたモータ部と、前記モータ軸に制動力を印加するブレーキ部と、を有し、前記ブレーキ部は、前記モータ軸と一体に回転する円板状の第1プレートと、該第1プレートに軸線方向で対向する第2プレートと、該第2プレートの周りに配置された筒状ホルダと、前記第2プレートの前記軸線周りの回転を阻止する回転阻止機構と、前記第1プレートと前記第2プレートとが接する方向、および離間する方向に前記第2プレートを駆動するプレート駆動機構と、を有し、前記第2プレートは、前記第1プレートと対向する板状部と、該板状部から前記第1プレートとは反対側に突出した凸部と、を有し、前記回転阻止機構は、前記凸部と前記筒状ホルダとの間で前記第2プレートの回転を阻止し、前記プレート駆動機構によって前記第1プレートと前記第2プレートとが接したときに、前記第1プレートと前記第2プレートとが少なくとも径方向外側部分で接して前記制動力を発生させることを特徴とする。
 本発明では、プレート駆動機構によって第2プレートを駆動して第1プレートと第2プレートとを接触させて制動力を発生させる。ここで、第2プレートに対しては、第2プレートの軸線周りの回転を阻止する回転阻止機構が構成されており、回転阻止機構は、第2プレートにおいて板状部から第1プレートとは反対側に突出した凸部と筒状ホルダとの間に構成されている。このため、少なくとも第1プレートと第2プレートとを可能な限り径方向外側部分で接触させて制動力を発生させることができるので、第1プレートの外径および第2プレートの外径を過度に大きくしなくても、大きな制動力を発生させることができる。
 本発明において、前記回転阻止機構は、前記凸部から径方向外側に突出した軸部と、前記筒状ホルダの内面で前記軸線方向に沿って延在し、前記軸部の径方向外側の端部が嵌った溝と、を有している構成を採用することができる。
 本発明において、前記軸部は、前記凸部と前記プレート駆動機構の直動軸とを連結する連結軸の端部からなることが好ましい。かかる構成によれば、第2プレートとプレート駆動機構の直動軸とを連結する連結軸を利用して回転阻止機構を構成することができるので、ブレーキ部の構成を簡素化することができる。
 本発明において、前記第1プレートは、摩擦板であり、前記第2プレートの外径は、前記第1プレートの外径より大であり、前記プレート駆動機構によって前記第1プレートと前記第2プレートとが接したときに、少なくとも前記第1プレートの最も径方向外側の端部と前記第2プレートとが接して前記制動力を発生させることが好ましい。かかる構成によれば、第1プレートと第2プレートとの間では、摩擦板として構成された第1プレートの外径を最大限利用して大きな制動力を発生させることができる。
 本発明において、前記第1プレートは、前記第2プレートと対向する面の最も径方向外側の端部に、前記第2プレートに向けて突出した第1環状凸部を備えていることが好ましい。かかる構成によれば、第1プレートの第1環状凸部(径方向外側の端部)が第2プレートに確実に接するので、第1プレートと第2プレートとの間で大きな制動力を発生させることができる。
 本発明において、前記第1プレートに対して前記第2プレートと反対側で対向し、前記軸線方向の移動および前記軸線周りの回転が不能な受け面を有し、前記第2プレートが前記第1プレートに接した際、前記受け面は、少なくとも前記第1プレートの径方向外側部分に接することが好ましい。かかる構成によれば、第1プレート(摩擦板)と受け面との間でも大きな制動力を発生させることができる。
 本発明において、前記受け面の外径は、前記第1プレートの外径より大であり、前記プレート駆動機構によって前記第1プレートと前記第2プレートとが接したときに、前記受け面は、少なくとも前記第1プレートの最も径方向外側の端部と接することが好ましい。かかる構成によれば、第1プレート(摩擦板)と受け面との間では、摩擦板として構成された第1プレートの外径を最大限利用して大きな制動力を得ることができる。
 本発明において、前記第1プレートは、前記受け面と対向する面の最も径方向外側の端部に、前記受け面に向けて突出した第2環状凸部を備えていることが好ましい。かかる構成によれば、第1プレートの第2環状凸部(径方向外側の端部)が受け面に確実に接するので、第1プレートと受け面との間で大きな制動力を発生させることができる。
 本発明において、前記受け面は、前記モータ軸に対するラジアル軸受を保持する軸受ホルダに固定された第3プレートの前記第1プレート側の面である構成を採用することができる。
 本発明において、前記プレート駆動機構は、前記第2プレートを前記第1プレートに向けて付勢するバネ部材と、該バネ部材による付勢を停止させる直動アクチュエータと、を備えている構成を採用することができる。
 この場合、前記直動アクチュエータは、ソレノイドアクチュエータである構成を採用することができる。
 本発明において、前記モータ部に対して前記ブレーキ部とは反対側に、前記モータ軸の回転を減速して出力部材に伝達する減速部を有している構成を採用することができる。
 (第1の発明)
 本発明では、出力側端板部の出力側端面には、反出力側に向けて凹んだ凹部が形成されているため、第1遊星歯車ユニットに塗布したグリスが第1遊星歯車ユニットから漏出した場合でも、漏出したグリスは凹部内に溜まる。従って、モータユニットの側にグリスが流入しにくい。また、第1遊星歯車ユニットの遊星キャリアは、遊星歯車に反出力側で重なって遊星歯車を反出力側から支持する支持板を備えているため、第1遊星歯車ユニットは、第1遊星歯車ユニット自身で独立している。このため、出力側端板部の出力側端面に凹部を形成した場合でも、ギアカバー等で遊星歯車を支持する必要がない。それ故、部品点数の削減を図ることができる。また、チューブラモータを効率よく組み立てることができる。
 (第2の発明)
 本発明では、外部から第1方向に回転させる負荷が加わっているロータを第1方向に回転駆動する際、駆動コイルへの給電を開始する前に、ロータの回転を検出する回転検出処理を行い、ロータの回転速度がしきい値以上である場合には、複数の駆動コイルを短絡させてロータに制動力を印加する。このため、ロータが目標速度以上の速度で回転することを抑制することができる。また、回転検出処理では、FG信号生成用の磁気センサ素子を用いるため、エンコーダ等の位置センサやタコジェネレータ等の回転センサを設ける必要がない。それ故、コストの低減を図ることができる。
 (第3の発明)
 本発明では、プレート駆動機構によって第2プレートを駆動して第1プレートと第2プレートとを接触させて制動力を発生させる。ここで、第2プレートに対しては、第2プレートの軸線周りの回転を阻止する回転阻止機構が構成されているが、回転阻止機構は、第2プレートにおいて板状部から第1プレートとは反対側に突出した凸部と筒状ホルダとの間に構成されている。このため、少なくとも第1プレートと第2プレートとを径方向外側部分で接触させて制動力を発生させることができるので、第1プレートの外径および第2プレートの外径を過度に大きくしなくても、大きな制動力を発生させることができる。
 (第1の発明)
本発明を適用したチューブラモータの説明図である。 本発明を適用したチューブラモータの断面図である。 本発明を適用したチューブラモータにおけるモータユニットおよび減速ユニットの外観を示す斜視図である。 本発明を適用したチューブラモータに用いたモータユニットの説明図である。 本発明を適用したチューブラモータに用いた減速ユニットの説明図である。 本発明を適用したチューブラモータの減速ユニットに用いた遊星歯車ユニットの説明図である。 (第2の発明) 本発明を適用したチューブラモータの説明図である。 本発明を適用したブラシレスモータの制御方法のフローチャートである。 本発明を適用したブラシレスモータの制御方法において処理を終了するときの処理を示すフローチャートである。 本発明を適用したブラシレスモータの制御方法においてブラシレスモータの回転速度を制御するときの処理を示すフローチャートである。 本発明を適用したブラシレスモータの制御方法においてロータに印加する制動力の設定方法を示す説明図である。 (第3の発明) 本発明を適用したブレーキ付きモータの説明図である。 本発明を適用したブレーキ付きモータの断面図である。 本発明を適用したブレーキ付きモータにおけるモータユニットおよび減速ユニットの外観を示す斜視図である。 本発明を適用したブレーキ付きモータに用いたモータユニットの説明図である。 本発明を適用したブレーキ付きモータにおけるブレーキユニットの分解斜視図である。 本発明を適用したブレーキ付きモータにおけるブレーキユニットの回転阻止機構の説明図である。
 (第1の発明)
 第1の発明は段落番号(0054)から(0088)、(0175)および図1から図6に用いて説明する。
 以下、図面を参照して、本発明を適用したチューブラモータを説明する。以下の説明では、モータ軸線にLを付し、モータ軸が突出している出力側にL1を付し、モータ軸が突出している側とは反対側(反出力側)にL2を付して説明する。
 (全体構成)
 図1は、本発明を適用したチューブラモータ1の説明図であり、図1(a)、(b)、(c)は、チューブラモータ1の斜視図、チューブラモータ1からケース2を省略した状態の斜視図、ケースの内部に収容されていたユニットの分解斜視図である。図2は、本発明を適用したチューブラモータ1の断面図であり、図2(a)、(b)は、チューブラモータ1全体の断面図、およびモータユニットと減速ユニット6との境界部分等を拡大して示す断面図である。
 図1および図2に示すチューブラモータ1は、シャッターや日よけなどの幕状物を巻き取る目的等に用いられるモータであり、モータ軸線方向Lに延在する筒状のケース2を有している。ケース2の内側には、反出力側L2から出力側L1に向けて、回路基板3、ブレーキユニット4、モータユニット5、減速ユニット6が順に配置されており、減速ユニット6から出力側L1にはモータ軸10が突出している。回路基板3に対して反出力側L2の端部には基板ホルダ30が取り付けられており、回路基板3は、基板ホルダ30を介してケース2に保持されている。ケース2の反出力側L2の端部には、回路基板3と配線11とを接続するためのコネクタ12が設けられており、コネクタ12と回路基板3とはリード線(図示せず)等で接続されている。ブレーキユニット4は、ホルダ40によって支持されたソレノイド41、摩擦板42等を有する摩擦式ブレーキユニットである。
 (モータユニット5の構成)
 図3は、本発明を適用したチューブラモータ1におけるモータユニット5および減速ユニット6の外観を示す斜視図である。図4は、本発明を適用したチューブラモータ1に用いたモータユニット5の説明図であり、図4(a)、(b)は、ステータ等の分解斜視図、およびロータ等の斜視図である。
 図2および図3に示すように、モータユニット5と減速ユニット6とは同軸状に配置されており、モータユニット5から出力側L1に突出する回転軸59には、減速ユニット6への出力歯車61が取り付けられている。
 図4に示すように、モータユニット5において、ステータ51は、周方向に複数配置されたコア511と、コア511の両端に被さるインシュレータ512と、インシュレータ512を介してコア511に巻回されたコイル513とを有しており、複数のコア511は円筒状のコアホルダ52によって保持されている。また、ステータ51の反出力側L2の端面にはモータ基板514が保持されている。
 モータユニット5において、ロータ53は、モータ軸線L方向に延在する回転軸59と、回転軸59の外周面に固定された筒状のヨーク531と、ヨーク531の外周面に固定された円筒状のマグネット532とを有している。回転軸59のうち、出力側L1に突出する出力側軸部59aには出力歯車61が取り付けられ、反出力側L2に突出する反出力側軸部59bはブレーキユニット4に連結されている。
 モータユニット5において、ロータ53の反出力側L2には、ロータ53を回転可能に支持する反出力側端板部54が配置され、ロータ53の出力側L1には、ロータ53を回転可能に支持する出力側端板部55が配置されている。反出力側端板部54は、中央に軸穴540が形成された円板部541と、円板部541の外縁から出力側L1に延在する円筒部542と、円筒部542のモータ軸線L方向の中央で径方向外側に突出したリブ状の凸部543とを備えており、凸部543は、円筒部542の全周に形成されている。軸穴540は、出力側L1に段部を向けた段付き穴になっており、軸穴540には、回転軸59の反出力側軸部59bを回転可能に支持する円環状の軸受56が保持されている。軸受56は、焼結含油軸受等からなる。
 出力側端板部55は、中央に軸穴550が形成された円板部551と、円板部551の外縁から反出力側L2に延在する円筒部552とを備えている。軸穴550は、反出力側L2に段部を向けた段付き穴になっており、軸穴550には、回転軸59の出力側軸部59aを回転可能に支持する円環状の軸受57が保持されている。軸受57は、焼結含油軸受等からなる。
 出力側端板部55において、円板部551の出力側端面556には、径方向内側で出力側L1に突出する円環状の内周側環状凸部567が形成されており、内周側環状凸部567の内側で軸穴550が開口している。また、円板部551の出力側端面556には、内周側環状凸部567より径方向外側であって、円板部551の外縁より径方向内側で、出力側L1に向けて突出する円環状の外周側環状凸部558が形成されており、内周側環状凸部567と外周側環状凸部558との間は、反出力側L2に凹んだ円環状の凹部569になっている。
 出力側端板部55において、円筒部552の外周面には、径方向外側に突出する係合凸部552aや、凸部552bが形成されている。従って、出力側端板部55の円筒部552をコアホルダ52の内側に嵌めた際、コアホルダ52の出力側端部521が凸部552bに当接する。また、コアホルダ52の内周面には、出力側端部521の内径を出力側端部521より反出力側L2に位置する部分522の内径より大とする段部523が形成されている。これに対して、出力側端板部55の円筒部552の外周面には、反出力側L2の端部に位置する反出力側端部553の外径を反出力側端部553より出力側L1に位置する部分554の外径より小とする段部555が形成されている。従って、図2(b)に示すように、出力側端板部55の円筒部552をコアホルダ52の内側に嵌めた際、コアホルダ52の出力側端部521が、出力側端板部55の反出力側端部553に対して径方向外側から重なるとともに、段部555において反出力側L2に向く部分に反出力側L2から当接する。このようにして、コアホルダ52に対する出力側端板部55のモータ軸線L方向の位置決めが行われる。
 (減速ユニット6の構成)
 図5は、本発明を適用したチューブラモータ1に用いた減速ユニット6の説明図であり、図5(a)、(b)、(c)は、減速ユニット6の分解斜視図、円筒体の断面図、および円筒体の反出力側端部を拡大して示す断面図である。図6は、本発明を適用したチューブラモータ1の減速ユニット6に用いた遊星歯車ユニットの説明図であり、図6(a)、(b)、(c)は、第1遊星歯車ユニット7の分解斜視図、第2遊星歯車ユニット8の分解斜視図、および第3遊星歯車ユニット9の分解斜視図である。
 図5に示すように、減速ユニット6では、モータ軸線方向Lの反出力側L2から出力側L1に向けて、第1遊星歯車ユニット7、第2遊星歯車ユニット8、および第3遊星歯車ユニット9が順に配置されており、第1遊星歯車ユニット7、第2遊星歯車ユニット8、および第3遊星歯車ユニット9の径方向外側には円筒状の筒体65が配置されている。
 第1遊星歯車ユニット7において、内歯歯車70は、筒体65の内周面68において反出力側L2の部分に形成されている。また、第2遊星歯車ユニット8の内歯歯車80は、筒体65の内周面68において、内歯歯車70に対して出力側L1の部分に形成されている。また、第3遊星歯車ユニット9の内歯歯車90は、筒体65の内周面68において、内歯歯車80に対して出力側L1の部分に形成されている。本形態において、内歯歯車80と内歯歯車90は、モータ軸線方向Lにおいて連続して形成されている。かかる構成によれば、第1遊星歯車ユニット7、第2遊星歯車ユニット8、および第3遊星歯車ユニット9を設けた場合でも、減速ユニット6の構成の簡素化を図ることができる。
 ここで、筒体65の内径は、出力側L1から反出力側L2に向けて段階的に大きくなっている。より具体的には、筒体65は、出力側L1に端板部66を有しており、端板部66に対して反出力側L2で隣接する肉厚の第1筒部651の内径、第1筒部651に反出力側L2で隣接する第2筒部652の内径、および第2筒部652に反出力側L2で隣接する第3筒部653の内径は、以下の関係
  第1筒部651<第2筒部652<第3筒部653
になっている。かかる筒部のうち、第2筒部652に内歯歯車80および内歯歯車90が形成され、第3筒部653に内歯歯車70が形成されている。
 端板部66の中央では、出力側L1に向けて筒部661が突出しており、筒部661の内側は、モータ軸10が貫通する軸穴662になっている。また、端板部66には、側面で開口する穴663が形成されており、かかる穴663は、ケース2と筒体65とを固定するねじ68(図1参照)が止められる。また、筒体65の反出力側L2の端部からは、出力側端板部55の係合凸部552a(図4参照)に係合する係合部64が反出力側L2に向けて突出している。係合凸部552aの穴552c(図4参照)には、ねじ69が止められて、ケース2、筒体65および出力側端板部55が固定されている。
 図5および図6において、第1遊星歯車ユニット7は、モータユニット5の回転軸59に固定された出力歯車61(図3および図4参照)を太陽歯車としており、出力歯車61に噛合する3つの遊星歯車71と、遊星歯車71を支持する遊星キャリア75とを有している。本形態において、遊星キャリア75は、3つの遊星歯車71を各々回転可能に支持する3本の支軸761を備えたホルダ76を有しており、ホルダ76では、出力側L1に位置する円板部762から反出力側L2に向けて支軸761が延在している。また、ホルダ76は、円板部762の外縁から反出力側L2に突出した支持板部763を有している。支持板部763は、周方向で離間する3個所に形成されており、支持板部763の間から遊星歯車71が径方向外側に部分的に突出し、内歯歯車70と噛合している。
 支持板部763の反出力側L2の端部には、ねじ799によって支持板79が固定されている。支持板79は、中央に回転軸59を貫通させる穴790が形成された円環状であり、穴790の周りには、ねじ799の軸部を通す穴791と、支軸761の反出力側L2の端部が嵌る穴792とが形成されている。本形態において、遊星歯車71には、支軸761が嵌る軸穴711の周りに周溝712が形成されており、周溝712にはコイルバネ72が配置されている。このため、遊星歯車71は、コイルバネ72によって反出力側L2に向けて付勢され、支持板79によって反出力側L2で支持されている。
 遊星キャリア75において、円板部762の出力側L1の面には凹部764が形成されており、凹部764には、出力歯車74の反出力側L2の端部741がねじ749によって固定されている。出力歯車74は、第2遊星歯車ユニット8の太陽歯車として用いられている。かかる遊星キャリア75は、出力歯車74を介して出力歯車61に回転可能に支持されている。
 第2遊星歯車ユニット8は、出力歯車74に噛合する3つの遊星歯車81と、遊星歯車81を支持する遊星キャリア85とを有している。本形態において、遊星キャリア85は、3つの遊星歯車81を各々回転可能に支持する3本の支軸861を備えたホルダ86を有しており、ホルダ86では、出力側L1に位置する円板部862から反出力側L2に向けて支軸861が延在している。また、ホルダ86は、円板部862の外縁から反出力側L2に突出した支持板部863を有しており、支持板部863は、周方向で離間する3個所に形成されており、支持板部863の間から遊星歯車81が径方向外側に部分的に突出し、内歯歯車80と噛合している。
 支持板部863の反出力側L2の端部には、ねじ899によって支持板89が固定されている。支持板89は、中央に出力歯車74を貫通させる穴890が形成された円環状であり、穴890の周りには、ねじ899の軸部を通す穴891と、支軸861の反出力側L2の端部に係合する係合穴892とが形成されている。かかる支持板89は、遊星歯車81を反出力側L2で支持している。
 遊星キャリア85において、円板部862の出力側L1の面には凹部864が形成されており、凹部864には、出力歯車84の反出力側L2の端部841がねじ849によって固定されている。出力歯車84は、第3遊星歯車ユニット9の太陽歯車として用いられている。かかる遊星キャリア85は、出力歯車84を介して出力歯車74に回転可能に支持されている。
 第3遊星歯車ユニット9は、出力歯車84に噛合する3つの遊星歯車91と、遊星歯車91を支持する遊星キャリア95とを有している。本形態において、遊星キャリア95は、円板状のホルダ96を有しており、ホルダ96では、反出力側L2に向けて3本の支軸961が延在している。支軸961は、ネジ969によりホルダ96の円板部962に固定されており、3本の支軸961は、3つの遊星歯車91を各々回転可能に支持している。遊星歯車91の間から径方向外側に部分的に突出し、内歯歯車90と噛合している。
 ここで、支軸961の反出力側L2の端部には支持板99が固定されている。支持板99は、中央に出力歯車84を貫通させる穴990が形成された円環状であり、穴990の周りには、支軸961の反出力側L2の端部に係合する係合穴992が形成されている。かかる支持板99は、遊星歯車91を反出力側L2で支持している。
 遊星キャリア95において、円板部962の出力側L1の面には凹部964が形成されており、凹部964には、モータ軸10の反出力側L2の端部101がねじ949によって固定されている。かかる遊星キャリア95は、モータ軸10を介して出力歯車84に回転可能に支持されている。
 このように構成した減速ユニット6では、モータユニット5が動作して回転軸59が回転すると、回転軸59の回転が第1遊星歯車ユニット7、第2遊星歯車ユニット8、および第3遊星歯車ユニット9の各々で減速されてモータ軸10に伝達される。
 (モータユニット5と減速ユニット6との連結構造)
 本形態のチューブラモータ1の第1遊星歯車ユニット7、第2遊星歯車ユニット8、および第3遊星歯車ユニット9において、遊星キャリア75、85、95は各々、遊星歯車71、81、91を反出力側L2で支持する支持板79、89、99を備えており、各々が完結した構造になっている。従って、チューブラモータ1を組み立てる際、筒体65の内側に反出力側L2から第3遊星歯車ユニット9、第2遊星歯車ユニット8、および第1遊星歯車ユニット7を順に搭載した後、筒体65の反出力側端部67をモータユニット5の出力側端板部55に連結すれば、モータユニット5と減速ユニット6とを連結することができる。
 この状態で、第1遊星歯車ユニット7は、出力側端板部55に対して出力側L1で直接、隣り合った状態にあり、第1遊星歯車ユニット7と出力側端板部55との間にはギアカバー等が介在しない。
 ここで、筒体65の反出力側端部67をモータユニット5の出力側端板部55に直接、接している。本形態では、筒体65の反出力側端部67には、内歯歯車70が形成された第3筒部653の内径より反出力側L2に位置する部分の内径を大とする段部670が環状に形成されている。従って、段部670において反出力側L2を向く第1部分671は、出力側端板部55の外周側環状凸部568に出力側L1から接し、段部670において径方向内側に向く第2部分672が出力側端板部55の外周側環状凸部568に径方向外側から接している。
 この状態で、第1遊星歯車ユニット7と出力側端板部55との間には、出力側端板部55の出力側端面556において反出力側L2に向けて凹んだ凹部569が形成されている。このため、第1遊星歯車ユニット7等に塗布したグリスが第1遊星歯車ユニット7から反出力側L2に漏出した場合でも、漏出したグリスは凹部569内に溜まる。従って、モータユニット5の側にグリスが流入しにくい。このため、モータユニット5では、グリスに起因する過熱等が発生しにくい。また、グリスがモータユニット5からさたにブレーキユニット4まで流入しにくいので、グリスに起因するブレーキ動作の不具合等が発生しにくい。また、出力側端板部55では、内周側環状凸部567と外周側環状凸部568との間が環状の凹部569になっているため、グリスは、出力側端板部55の径方向内側および径方向外側のいずれからも漏れにくい。また、筒体65の反出力側端部67は、段部670において反出力側L2を向く第1部分671が出力側端板部55の外周側環状凸部568に出力側L1から接し、段部670において径方向内側に向く第2部分672が出力側端板部55の外周側環状凸部568に径方向外側から接している。このため、出力側端板部55と筒体65との間から外側にグリスが漏れにくい。
 (本形態の主な効果)
 以上説明したように、本形態のチューブラモータ1において、第1遊星歯車ユニット7の遊星キャリア75は、遊星歯車71に反出力側L2で重なって遊星歯車71を反出力側L2から支持する支持板79を備えている。このため、第1遊星歯車ユニット7は、第1遊星歯車ユニット自身で独立しており、遊星歯車71をモータユニット5の出力側端板部55等で支持する必要がない。このため、チューブラモータ1を効率よく組み立てることができる。また、第1遊星歯車ユニット7の遊星キャリア75は、遊星歯車71に反出力側L2で重なって遊星歯車71を反出力側L2から支持する支持板79を備えているため、出力側端板部55の出力側端面556に、グリスが流入する凹部569を設けた場合でも、遊星歯車71を反出力側L2で支持するギアカバー等を設ける必要がない。従って、チューブラモータ1の部品点数の削減を図ることができるとともに、チューブラモータ1を効率よく組み立てることができる。
 また、第1遊星歯車ユニット7は、内歯歯車70が内周面68に形成された筒体65を備え、筒体65の反出力側端部67がモータユニット5の出力側端板部55に接している。このため、第1遊星歯車ユニット7とモータユニット5との連結が容易であるため、チューブラモータ1を効率よく組み立てることができる。また、第1遊星歯車ユニット7の筒体65とモータユニット5の出力側端板部55とが直接、連結されているので、筒体65と出力側端板部55との同軸精度を向上することができる。それ故、第1遊星歯車ユニット7とモータユニット5との同軸精度を向上することができる。さらに、筒体65が第1遊星歯車ユニット7、第2遊星歯車ユニット8および第3遊星歯車ユニット9において共通の内歯形成体として用いられているので、第1遊星歯車ユニット7、第2遊星歯車ユニット8および第3遊星歯車ユニット9の同軸精度を向上することができるとともに、減速ユニット6全体とモータユニット5との同軸精度を向上することができる。
 また、筒体65の内径は、出力側L1から反出力側L2に向けて段階的に大きくなっているため、筒体65の内側に第3遊星歯車ユニット9、第2遊星歯車ユニット8、および第1遊星歯車ユニット7を順に容易に搭載することができる。また、筒体65の内周面68に内歯歯車70、80、90を容易に形成することができる。また、第1遊星歯車ユニット7の内歯歯車70、第2遊星歯車ユニット8の内歯歯車80、および第3遊星歯車ユニット9の内歯歯車90が全て筒体65の内周面68に形成されているため、部品点数を削減することができるとともに、チューブラモータ1を効率よく組み立てることができる。
 また、第1遊星歯車ユニット7、第2遊星歯車ユニット8、および第3遊星歯車ユニット9の全てが、遊星歯車71、81、91を反出力側L2から支持する支持板79、89、99を備えているため、チューブラモータ1を効率よく組み立てることができる。
 (他の実施の形態)
 上記実施の形態では、3つの遊星歯車ユニットを有するチューブラモータ1に本発明を適用したが、2つの遊星歯車ユニット(第1遊星歯車ユニット7および第2遊星歯車ユニット8)を有するチューブラモータ1や、1つの遊星歯車ユニット(第1遊星歯車ユニット7)を有するチューブラモータ1に本発明を適用してもよい。
 (第2の発明)
 第2の発明は段落番号(0089)から(0135)、(0176)および図7から図11に用いて説明する。
 以下、図面を参照して、本発明を適用したブラシレスモータの制御方法を説明する。なお、以下の説明では、電動シャッター装置の駆動源として用いたブラシレスモータの制御方法を中心に説明する。
 (電動シャッター装置の構成)
 図7は、本発明を適用した電動シャッター装置の説明図であり、図7(a)、(b)は、電動シャッター装置の構成を模式的に示す説明図、および電動シャッター装置の駆動源として用いたブラシレスモータに対する制御装置の構成を示すブロック図である。
 図7(a)に示すように、電動シャッター装置1は、シャッター11を巻き取る筒状の回転軸12を有しており、回転軸12は、ブラケット13、14を介して建屋等に固定されている。また、電動シャッター装置1は、ブラケット13を介して建屋等に固定されたチューブラモータ10と、シャッター11の開閉動作を指示する操作盤15とを有している。
 チューブラモータ10では、駆動制御部20、電磁ブレーキユニット30、ブラシレスモータ40および減速歯車ユニット50が順に配置されており、駆動制御部20は、ブラシレスモータ40の駆動および制御を行う。駆動制御部20は、操作盤15に構成された制御部16に電気的に接続されており、操作盤15で操作が行われると、駆動制御部20は、操作内容に対応する駆動制御を行う。また、電磁ブレーキユニット30は、操作盤15に構成された制御部16からの指令に基づいて作動する。
 チューブラモータ10は、出力軸51が回転軸12に連結されている。従って、ブラシレスモータ40のモータ軸41が回転した際、モータ軸41の回転は減速歯車ユニット50を介して出力軸51に伝達されるので、回転軸12が軸線L周りに回転する。
 かかる電動シャッター装置1において、操作盤15で開ボタン151が押されると、その旨の信号が制御部16から駆動制御部20に出力され、駆動制御部20は、モータ軸41を一方方向に回転させる。このため、出力軸51および回転軸12が軸線L周りの時計回りCWに回転するので、シャッター11は、回転軸12に巻き取られ、開方向Oに移動する。これに対して、操作盤15で閉ボタン152が押されると、その旨の信号が制御部16から駆動制御部20に出力され、駆動制御部20は、モータ軸41を他方方向に回転させる。このため、出力軸51および回転軸12が軸線L周りの反時計回りCCWに回転するので、シャッター11は、回転軸12から繰り出され、閉方向Cに移動する。また、シャッター11が開方向に移動中、あるいは閉方向に移動中、操作盤15で停止ボタン153が押されると、その旨の信号が制御部16から駆動制御部20に出力され、駆動制御部20は、モータ軸41の回転を停止させ、シャッター11を停止させる。また、操作盤15で停止ボタン153が押されると、制御部16は、電磁ブレーキユニット30を作動させ、シャッター11を停止させる。
 ここで、回転軸12には、シャッター11の自重に抗する付勢力を発生させるコイルバネ等からなるアシストバネ17が接続されており、回転軸12はシャッター11を巻き取る(開方向O)に付勢されている。このため、シャッター11の移動に伴って、アシストバネ17の付勢力がシャッター11の自重より大となった場合、ブラシレスモータ40のモータ軸41には、一方方向に回転する負荷が印加される。例えば、シャッター11が開方向Oの途中位置Pまでは、アシストバネ17の付勢力がシャッター11の自重以下であるため、ブラシレスモータ40のモータ軸41には、一方方向に回転する負荷が印加されないが、シャッター11が途中位置Pよりさらに開方向Oに移動すると、アシストバネ17の付勢力がシャッター11の自重を超えるため、ブラシレスモータ40のモータ軸41には、一方方向に回転する負荷が印加されることになる。
 従って、以下の説明では、モータ軸41の回転方向のうち、アシストバネ17からの負荷が印加される一方方向(シャッター11を開方向Oに駆動する方向)を本発明における「第1方向」とし、アシストバネ17からの負荷が印加される側とは反対方向(他方方向の回転、シャッター11を閉方向Cに駆動する方向)を本発明における「第2方向」として説明する。
 (ブラシレスモータ40に対する駆動制御系の電気的構成)
 図7(b)に示すように、ブラシレスモータ40は、モータ軸41およびロータマグネット42を備えたロータ43、複数の駆動コイル45を備えたステータ44、およびロータマグネット42の回転に対応する位置検出信号(FG信号)を生成する磁気センサ素子47を備えている、本形態において、ステータ44は、U相、V相およびW相に対応する3つの駆動コイル45を備えている。また、磁気センサ素子47は、U相、V相およびW相に対応して3つ設けられている。
 また、駆動制御部20は、コントローラ21と、コントローラ21の指令の下、ブラシレスモータ40を駆動する駆動用IC22とを備えている。駆動用IC22は、駆動コイル45とコネクタ23を介して電気的に接続されており、駆動コイル45に駆動電流を供給する。また、駆動用IC22は、磁気センサ素子47とコネクタ24を介して電気的に接続されており、磁気センサ素子47での検出結果が入力される。コントローラ21と駆動用IC22とは信号線を介して電気的に接続されており、コントローラ21は、後述する速度指示周波数Tsjに対応する電圧Vsや、ロータ43の回転方向を指令する信号F/R等を駆動用IC22に出力する。また、駆動用IC22は、コントローラ21に磁気センサ素子47での検出結果FGを出力する。
 駆動制御部20には、図7(a)に示す制御部16から、シャッター11の移動速度に対応するロータ43の回転速度に対応する速度指示周波数Tsj、およびロータ43の回転方向を指令する回転方向指示信号Dirが出力される。また、駆動制御部20には、図7(a)に示す制御部16から、負荷位置を指示する位置信号Spが出力される。かかる位置信号Spは、図7(a)に示す途中位置Pよりシャッター11が開方向にあるか否を示す情報であり、シャッター11に開方向Oの負荷が印加されているか否かの情報を含んでいる。また、コントローラ21から制御部16には磁気センサ素子47での検出結果FGが出力される。
 また、チューブラモータ10では、制御部16から、コントローラ21および駆動用IC22の駆動電圧Vcc、グランド電位GND、ブラシレスモータ40の駆動に用いるモータ電源Vm、および電磁ブレーキユニット30を制御するブレーキ駆動電圧Br等が供給されている。
 ここで、コントローラ21は、CPUや各種メモリを有しており、メモリに格納されている動作プログラムに基づいて、図8~図11を参照して以下に説明する処理を行う。
 (ブラシレスモータ40に対する制御方法)
 図8は、本発明を適用したブラシレスモータ40の制御方法のフローチャートである。図9は、本発明を適用したブラシレスモータ40の制御方法において処理を終了するときの処理を示すフローチャートである。
 図7を参照して説明した電動シャッター装置1において、操作盤15に対して開ボタン151および閉ボタン152のいずれかが押されると、図8に示すステップST1で処理がスタートし、ステップST2において、エラーポート(図示せず)のオフや回転方向の設定等の初期設定が行われる。次に、ステップST3において速度指令電圧Vsを0Vに設定した後、ステップST4において電磁ブレーキユニット30が解除されているか判断する。ステップST4において電磁ブレーキユニット30が解除されていないと判断したときには、電磁ブレーキユニット30が解除されるまで、ステップST3、4を行う。
 ステップST4に電磁ブレーキユニット30が解除されていると判断したときには、ステップST5において、回転方向の指令が開方向および閉方向の何れかを判断する。ステップST5において、回転方向の指令が第2方向(閉方向)である場合には、第2方向駆動工程を行う。
 ここで、第2方向の駆動の場合には、ロータ43に第2方向の外部負荷が印加されていないので、ステップST6において回転方向の指令を駆動用IC22に出力する。その結果、コントローラ21は、ステップST7において、図10を参照して後述するサーボ処理を行いながら、ロータ43が第2方向に回転するようにブラシレスモータ40を駆動する。かかる駆動の際、速度指令電圧Vsが変更になるので、ステップST8では、新たなに設定された速度指令電圧Vsを駆動用IC22に出力する。その結果、ブラシレスモータ40では、ロータ43が第2方向に回転する。
 そして、ステップST9において駆動電流が1Aを超えているか否かを判断し、駆動電流が1Aを超えていると判断した場合、図9に示す異常停止処理によって処理を停止する。すなわち、図9に示す異常停止処理では、まず、ステップST91において速度指令電圧Vsを0Vに設定した後、ステップST92においてエラーポート(図示せず)をオンにして、異常が発生したことを制御部16に出力し、ステップST93において異常停止を行う。
 ステップST9において駆動電流が1Aを超えていないと判断した場合、ステップST10において通電時間が40秒を超えたか否かを判断する。ステップST10において通電時間が40秒を超えたと判断したときには、図9に示す異常停止処理を行う。これに対して、ステップST10において通電時間が40秒を超えていないと判断したときには、ステップST11において電磁ブレーキユニット30が解除された状態にあるか否かを判断する。ステップST11において電磁ブレーキユニット30が解除されている状態と判断したときには、再びステップST7に戻って前記した処理を行う。これに対して、ステップST11において電磁ブレーキユニット30が解除されていない状態(電磁ブレーキユニット30が作動している状態)と判断したときには、シャッター11の駆動を終了し、ステップST3に戻り、操作盤15に対して開ボタン151および閉ボタン152が押されるまで待機する。
 (第1方向駆動工程)
 ステップST5において、回転方向の指令が第2方向(閉方向)である場合、第1方向駆動工程を行う。ここで、第1方向の駆動の場合には、ロータ43に第1方向の外部負荷が印加されている場合があるので、ステップST21において、位置信号Spに基づいて、シャッター11の位置がロータ43に第1方向の外部負荷が印加されている位置か否かを確認する。ステップST21において、シャッター11の位置がロータ43に第1方向の外部負荷が印加されている位置でないと判断したときには、ステップST22において、回転方向が第1方向である旨の信号を駆動用IC22に出力した後、ステップST7においてサーボ処理を開始する。
 これに対して、シャッター11の位置がロータ43に第1方向の外部負荷が印加されている位置であると判断したときには、ステップST23において、第1方向の駆動を開始せずに、0.2秒の間にロータ43の回転を検出する回転検出処理を行う。かかる回転検出処理は、ステップST24において、磁気センサ素子47から出力される信号FGの周波数が20Hz(しきい値)未満か否かによって行われる。ステップST24において、磁気センサ素子47から出力される信号FGの周波数が20Hz(しきい値)未満である場合、外部負荷によってロータ43が回転していないとして、ステップST25において、0・2秒の待機時間を待ってから、ステップST22において、回転方向が第1方向である旨の信号を駆動用IC22に出力し、その後、ステップST7においてサーボ処理を開始する。
 これに対して、ステップST24において、磁気センサ素子47から出力される信号FGの周波数が20Hz(しきい値)以上である場合、外部負荷によってロータ43が第1方向に回転しているとして、ステップST40において、ロータ43に制動力を印加した後、指定された速度指令電圧Vsを駆動用IC22に出力し、ロータ43の駆動を開始する。
 本形態において、制動力の印加は、図11を参照して後述するように、U相、V相およびW相に対応する3つの駆動コイル45の少なくとも1つの駆動コイルの端子を短絡させる。その際、3つの駆動コイル45の2つの駆動コイルの端子を短絡させてもよいし、3つの駆動コイル45の全ての駆動コイルの端子を短絡させてもよい。いずれも場合も、ロータ43を外部負荷が第1方向に回転させようとするトルクに抗する制動力を発生させることができる。また、シャッター11の自重、アシストバネ17の付勢力、チューブラモータ10のパワーに応じて、短絡させる駆動コイル45の数を適正に設定すれば、ロータ43を外部負荷が第1方向に回転させようとするトルクに抗する制動力を適正な大きさとすることができる。
 このようにして制動力を印加した後、ステップST27において、磁気センサ素子47から出力される信号FGの周波数が20Hz未満か否かを判断する。ステップST27において、磁気センサ素子47から出力される信号FGの周波数が20Hz未満であると判断した場合、制動力を印加したため、外部負荷によってロータ43が回転していないとして、ステップST28において、速度指令電圧Vsを0Vに設定した後、ステップST29において100m秒待機し、その後、ステップST22において、回転方向が第1方向である旨の信号を駆動用IC22に出力した後、ステップST7においてサーボ処理を開始する。
 これに対して、ステップST27において、磁気センサ素子47から出力される信号FGの周波数が20Hz以上であると判断した場合、ステップST30において、通電中か否かを判断し、通電中であれば、図9に示す異常停止処理を行う。ステップST30において、通電中でないと判断した場合、ステップST31において、電磁ブレーキユニット30が解除されているかを判断する。
 ステップST31において電磁ブレーキユニット30が解除されていると判断したときには、再び、ステップST40において、ロータ43に制動力を印加する。これに対して、ステップST31において電磁ブレーキユニット30が解除されていないと判断したときには、シャッター11の駆動を終了し、ステップST3に戻り、操作盤15に対して開ボタン151および閉ボタン152が押されるまで待機する。
 (ブラシレスモータ40でのサーボ制御)
 図10は、本発明を適用したブラシレスモータ40の制御方法においてブラシレスモータ40の回転速度を制御するときの処理を示すフローチャートである。
 図8に示すステップST7において、ロータ43に対して回転速度を制御するには、図10に示すように、ステップST71で処理を開始した後、まず、ステップST72で周期計測を行って速度指示周波数Tsjを得た後、ステップST73において、磁気センサ素子47から出力される信号FGの周期計測を行った周波数Tfgを得る。次に、ステップST74において、速度指令電圧Vsが0Vであるか否かを判断する。ステップST74において、速度指令電圧Vsが0Vであると判断した場合、ステップST75において、速度指令電圧Vsを初期値に設定し、ステップST76において処理を終了する。
 これに対して、ステップST74において、速度指令電圧Vsが0Vでないと判断した場合、ステップST81において、速度指示周波数Tsjと信号FGの周波数Tfgとを比較する。
 ステップST81において、速度指示周波数Tsjと信号FGの周波数Tfgとが等しい場合、ステップST82に速度指令電圧Vsを現状の値のままにしてステップST76において処理を終了する。
 ステップST81において、速度指示周波数Tsjより信号FGの周波数Tfgが高い場合、ステップST83において、速度指令電圧Vsを所定の定数、低下させる。そして、ステップST84において、変更した速度指令電圧Vsが最小値未満であるか否かを判断し、最小値未満の場合、ステップST85におい、速度指令電圧Vsを最小値に設定し、ステップST76において処理を終了する。これに対して、ステップST84において、変更した速度指令電圧Vsが最小値未満でないと判断した場合、ステップST76において処理を終了する。
 ステップST81において、速度指示周波数Tsjより信号FGの周波数Tfgが低い場合、ステップST86において、速度指令電圧Vsを所定の定数、増大させる。そして、ステップST87において、変更した速度指令電圧Vsが最大値を超えるか否かを判断し、最大値を超える場合、ステップST88において、速度指令電圧Vsを最大値に設定し、ステップST76において処理を終了する。これに対して、ステップST87において、変更した速度指令電圧Vsが最大値を超えないと判断した場合、ステップST76において処理を終了する。
 (制動力の設定方法)
 図11は、本発明を適用したブラシレスモータ40の制御方法においてロータ43に印加する制動力の設定方法を示す説明図であり、図11(a)、(b)は、制動力を設定する処理を示すフローチャート、および制動力を印加する期間の説明図である。
 図8に示すステップST40において、ロータ43に制動力を印加するにあたって、本形態では、U相、V相およびW相に対応する3つの駆動コイル45の少なくとも1つの駆動コイルの端子を短絡させる。その際、3つの駆動コイル45の2つの駆動コイルの端子を短絡させてもよいし、3つの駆動コイル45の全ての駆動コイルの端子を短絡させてもよい。いれずれも場合も、本形態では、図11(b)に示すように、制動力を一定周期をもって間欠的に印加するとともに、印加する期間(印加期間)Ta1を変化さることによって制動力を調整する。
 本形態では、図11(a)において、ステップST41において処理を開始した後、ステップST41において印加期間Ta1を初期値に設定する。そして、ステップST43では、周期計測を行って速度指示周波数Tsjを得た後、ステップST44では、速度指示周波数Tsjが最小値未満であるか否かを判断し、速度指示周波数Tsjが最小値未満であると判断した場合、ステップST45においては、速度指示周波数Tsjを最小値に設定する。これに対して、速度指示周波数Tsjが最小値未満でないと判断した場合、速度指示周波数Tsjを現在の値とする。次に、ステップST46において、磁気センサ素子47から出力される信号FGの周期計測を行った周波数Tfgを得る。
 次に、ステップST47において、速度指示周波数Tsjと信号FGの周波数Tfgとを比較する。
 ステップST47において、速度指示周波数Tsjと信号FGの周波数Tfgとが等しい場合、ステップST48において、印加期間Ta1を現状の値のままにして、ステップST49において、速度指令電圧Vsを出力した後、ステップST50において処理を終了する。
 ステップST47において、速度指示周波数Tsjより信号FGの周波数Tfgが高い場合、ステップST51において、印加期間Ta1を所定の定数、延長する。そして、ステップST52において、変更した印加期間Ta1が最大値を超えるか否かを判断し、最大値を超える場合、ステップST53において、印加期間Ta1を最大値に設定し、最大値を超えない場合、印加期間Ta1を現状の値のままにする。そして、ステップST49において、速度指令電圧Vsを出力した後、ステップST50において処理を終了する。
 ステップST47において、速度指示周波数Tsjより信号FGの周波数Tfgが低い場合、ステップST55において、印加期間Ta1を所定の定数、短縮させる。そして、ステップST56において、変更した印加期間Ta1が最小値未満である否かを判断し、最小値未満であると判断した場合、ステップST57において、印加期間Ta1を最小値に設定し、最小値未満でない場合、印加期間Ta1を現状の値のままにする。そして、ステップST49において、速度指令電圧Vsを出力した後、ステップST50において処理を終了する。
 (本形態の主な効果)
 以上説明したように、本形態では、外部から第1方向に回転させる負荷が加わっているロータ43を第1方向に回転駆動する際、駆動コイル45への給電を開始する前に、ロータ43の回転を検出する回転検出処理を行い、ロータ43の回転速度がしきい値以上である場合には、ロータに制動力を印加する。このため、ロータ43が目標速度以上の速度で回転することを抑制することができる。また、回転検出処理では、位置検出用信号生成用の磁気センサ素子47を用いるため、エンコーダ等の位置センサやタコジェネレータ等の回転センサを設ける必要がない。それ故、コストの低減を図ることができる。
 また、本形態において、制動力は、複数の駆動コイル45のうち、少なくとも1つの駆動コイル45の両端を短絡させることにより発生させる。このため、駆動コイル45に対する通電を制御することにより制動力を発生させることができるという利点がある。
 また、本形態において、ロータ43に制動力を印加するにあたっては、ロータ43を第1方向に回転駆動する際の指令速度と磁気センサ素子47によって検出したロータ43の回転速度とを比較し、指令速度と回転速度との比較結果に基づいて制動力の大きさを変更する。このため、ロータ43に適正な制動力を印加することができる。
 また、ロータ43を第1方向とは反対の第2方向に回転駆動する第2方向駆動工程では、回転検出処理を行わずに、ロータ43を第2方向に回転駆動する駆動電流を複数の駆動コイル45に供給する。このため、処理数を減らすことができるので、制御の負荷を軽減することができる。
 また、本形態では、駆動電流を複数の駆動コイル45に供給した後、磁気センサ素子47の検出結果に基づいて、ロータ43の回転を検出し、ロータ43の回転速度が速度指示値より低い場合には、駆動電流を増大させ、ロータ43の回転速度が速度指示値より低い場合には、駆動電流を減小させる。このため、実際の回転速度を駆動電流にフィードバックすることができるので、ロータ43の回転速度を速度指示値に近づけることができる。
 また、本形態において、ロータ43は、電動シャッター装置1において減速歯車ユニット50(減速輪列)を介してシャッター巻き取り用の回転軸12に連結されている。かかる構成の場合、ロータ43には、シャッター11の自重や、シャッター巻き取り用の回転軸(巻き取り軸)に接続されたアシストバネ17(付勢部材)の付勢力が、ロータ43を第1方向に回転させる外部負荷として加わることになるが、その場合でも、ロータ43が目標速度以上の速度で回転することを抑制することができる。
 (他の実施の形態)
 上記実施の形態では、駆動コイル45の両端を短絡させることにより制動力を発生させたが、電磁ブレーキユニット30を利用して制動力を印加してもよい。
 上記実施の形態では、アシストバネ17(付勢部材)の付勢力が、ロータ43を第1方向に回転させる外部負荷として加わる電動シャッター装置1に本発明を適用したが、シャッター11の自重が、ロータ43を第1方向に回転させる外部負荷として加わる電動シャッター装置1に本発明を適用してもよい。この場合、第1方向はシャッター11の閉方向となる。
 (要約書)
 課題は、タコジェネレータ等の回転センサを追加しなくても、外部から負荷が加わるロータの回転を制御することのできるブラシレスモータの制御方法を提供すること。
 解決手段は、ブラシレスモータ40において、外部から第1方向に回転させる負荷が加わっているロータ43を第1方向に回転駆動する際、駆動コイル45への給電を開始する前に、ロータ43の回転を検出する回転検出処理を行い、ロータ43の回転速度がしきい値以上である場合には、ロータ43に制動力を印加する。その際の回転検出処理では、位置検出用信号生成用の磁気センサ素子47の出力信号を用いるため、エンコーダ等の位置センサやタコジェネレータ等の回転センサを設ける必要がない(図7参照)。
 (第3の発明)
 第3の発明は段落番号(0136)から(0174)、(0177)および図12から図17に用いて説明する。
 以下、図面を参照して、本発明を適用したブレーキ付きモータを説明する。以下の説明では、モータ軸線にLを付し、出力軸が突出している出力側にL1を付し、出力軸が突出している側とは反対側(反出力側)にL2を付して説明する。
 (全体構成)
 図12は、本発明を適用したブレーキ付きモータ1の説明図であり、図12(a)、(b)、(c)は、ブレーキ付きモータ1の斜視図、ブレーキ付きモータ1からケース2を省略した状態の斜視図、ケース2の内部に収容されていたユニットの分解斜視図である。図13は、本発明を適用したブレーキ付きモータ1の断面図であり、図13(a)、(b)、(c)は、ブレーキ付きモータ1全体の断面図、ブレーキユニットを拡大して示す断面図、ブレーキユニットの要部を拡大して示す断面図である。
 図12および図13に示すブレーキ付きモータ1は、シャッターや日よけなどの幕状物を巻き取る目的等に用いられるチューブラモータであり、モータ軸線方向Lに延在する筒状のケース2を有している。ケース2の内側には、反出力側L2から出力側L1に向けて、回路基板3、ブレーキユニット4(ブレーキ部)、モータユニット5(モータ部)、減速ユニット6(減速部)が順に配置されており、減速ユニット6から出力側L1には出力軸10が突出している。回路基板3の出力側L1の端部および反出力側L2の端部には基板ホルダ31、32が取り付けられており、回路基板3は、基板ホルダ31、32を介してケース2に保持されている。ケース2の反出力側L2の端部には、回路基板3と配線11とを接続するためのコネクタ12が設けられており、コネクタ12と回路基板3とはリード線(図示せず)等で接続されている。ブレーキユニット4は、後述するように、摩擦式ブレーキユニットからなる。かかるブレーキユニット4は、ブレーキ付きモータ1を電動シャッター装置に用いた際、シャッターの自重等に抗してシャッターを所定の位置で停止させる。
 (モータユニット5の構成)
 図14は、本発明を適用したブレーキ付きモータ1におけるモータユニット5および減速ユニット6の外観を示す斜視図である。図15は、本発明を適用したブレーキ付きモータ1に用いたモータユニット5の説明図であり、図15(a)、(b)は、ステータ等の分解斜視図、およびロータ等の斜視図である。
 図13(a)および図3に示すように、モータユニット5と減速ユニット6とは同軸状に配置されており、モータユニット5から出力側L1に突出するモータ軸59には、減速ユニット6への出力歯車61(図14参照)が取り付けられている。
 図15(a)に示すように、モータユニット5において、ステータ51は、周方向に複数配置されたコア511と、コア511の両端に被さるインシュレータ512と、インシュレータ512を介してコア511に巻回されたモータコイル513とを有しており、複数のコア511は円筒状のコアホルダ52によって保持されている。また、ステータ51の反出力側L2の端面にはモータ基板514が保持されている。
 図15(b)に示すように、モータユニット5において、ロータ53は、モータ軸線L方向に延在するモータ軸59と、モータ軸59の外周面に固定された筒状のヨーク531と、ヨーク531の外周面に固定された円筒状のマグネット532とを有している。モータ軸59のうち、出力側L1に突出する出力側軸部59aには出力歯車61が取り付けられ、反出力側L2に突出する反出力側軸部59bは、後述するブレーキユニット4に連結されている。
 モータユニット5において、ロータ53の反出力側L2には、ロータ53を回転可能に支持する反出力側L2の軸受ホルダ54が配置され、ロータ53の出力側L1には、ロータ53を回転可能に支持する出力側L1の軸受ホルダ55が配置されている。
 軸受ホルダ54は、中央に軸穴540が形成された円板部541と、円板部541の外縁から出力側L1に延在する円筒部542と、円板部541の外周面のモータ軸線L方向の中央で径方向外側に突出したリブ状の凸部543とを備えており、凸部543は、円板部541の全周に形成されている。軸穴540は、出力側L1に段部を向けた段付き穴になっており、軸穴540には、モータ軸59の反出力側軸部59bを回転可能に支持する円環状の軸受56が保持されている。軸受56は、焼結含油軸受等からなる。
 軸受ホルダ55は、中央に軸穴550が形成された円板部551と、円板部551の外縁から反出力側L2に延在する円筒部552とを備えている。軸穴550は、反出力側L2に段部を向けた段付き穴になっており、軸穴550には、モータ軸59の出力側軸部59aを回転可能に支持する円環状の軸受57が保持されている。軸受57は、焼結含油軸受等からなる。円板部551の出力側端面556には、径方向内側で出力側L1に突出する円環状の内周側環状凸部557が形成されており、内周側環状凸部557の内側で軸穴550が開口している。また、円板部551の出力側端面556には、円板部551の外縁より径方向内側で、出力側L1に向けて突出する円環状の外周側環状凸部558が形成されている。
 軸受ホルダ55において、円板部551の外周面には、径方向外側に突出する係合凸部552aや、凸部552bが形成されている。従って、軸受ホルダ55の円筒部552を、図15(a)に示すコアホルダ52の内側に嵌めた際、コアホルダ52の出力側端部521が凸部552bに当接する。また、コアホルダ52の内周面には、出力側端部521の内径を出力側端部521より反出力側L2に位置する部分522の内径より大とする段部523が形成されている。これに対して、軸受ホルダ55の円筒部552の外周面には、反出力側L2の端部に位置する反出力側端部553の外径を小とする段部555が形成されている。従って、軸受ホルダ55の円筒部552をコアホルダ52の内側に嵌めた際、コアホルダ52の出力側端部521が、軸受ホルダ55の反出力側端部553に対して径方向外側から重なってコアホルダ52に対する軸受ホルダ55の位置決めが行われる。
 (減速ユニット6等の構成)
 図13(a)に示すように、減速ユニット6では、モータ軸線方向Lの反出力側L2から出力側L1に向けて、第1遊星歯車ユニット7、第2遊星歯車ユニット8、および第3遊星歯車ユニット9が順に配置されており、第1遊星歯車ユニット7、第2遊星歯車ユニット8、および第3遊星歯車ユニット9の径方向外側には円筒状の筒体65が配置されている。第1遊星歯車ユニット7において、内歯歯車70は、筒体65の内周面において反出力側L2の部分に形成されている。また、第2遊星歯車ユニット8の内歯歯車80は、筒体65の内周面において、内歯歯車70に対して出力側L1の部分に形成されている。また、第3遊星歯車ユニット9の内歯歯車90は、筒体65の内周面において、内歯歯車80に対して出力側L1の部分に形成されている。
 図14に示すように、筒体65は、出力側L1に端板部66を有している。端板部66の中央では、出力側L1に向けて筒部661が突出しており、筒部661の内側は、出力軸10が貫通する軸穴662になっている。また、端板部66には、側面で開口する穴663が形成されており、かかる穴663は、ケース2と筒体65とを固定するねじ68(図12参照)が止められる。また、筒体65の反出力側L2の端部からは、軸受ホルダ55の係合凸部552a(図15(b)参照)に係合する係合部64(図14参照)が反出力側L2に向けて突出している。係合凸部552aの穴552c(図14および図15(b)参照)には、ねじ69(図12参照)が止められて、ケース2、筒体65および軸受ホルダ55が固定されている。
 このように構成した減速ユニット6では、モータユニット5が動作してモータ軸59が回転すると、モータ軸59の回転が第1遊星歯車ユニット7、第2遊星歯車ユニット8、および第3遊星歯車ユニット9の各々で減速されて出力軸10に伝達される。
 (ブレーキユニット4の構成)
 図16は、本発明を適用したブレーキ付きモータ1におけるブレーキユニット4の分解斜視図であり、図16(a)、(b)、(c)は、ブレーキユニット4において円筒状のホルダ49(筒状ホルダ)等を外した状態を出力側L1からみた分解斜視図、ブレーキユニット4の各プレート等を外した状態を出力側L1からみた分解斜視図、およびブレーキユニット4の各プレート等を外した状態を反出力側L2からみた分解斜視図である。図17は、本発明を適用したブレーキ付きモータ1におけるブレーキユニット4の回転阻止機構の説明図であり、図17(a)、(b)は、回転阻止機構を反出力側L2からみた斜視図、および回転阻止機構を分解した様子を反出力側L2からみた分解斜視図である。
 本形態のブレーキ付きモータ1において、モータユニット5に対して反出力側L2には、モータユニット5および減速ユニット6に対して同軸状にブレーキユニット4が構成されており、かかるブレーキユニット4は、モータ軸59を介して出力軸10に制動力を印加する。
 図13、図16および図17に示すように、ブレーキユニット4は、モータ軸59と一体に回転する円板状の第1プレート41と、第1プレート41にモータ軸線L方向の反出力側L2で対向する第2プレート42と、第2プレート42のモータ軸線L周りの回転を阻止する回転阻止機構40と、第2プレート42に対してモータ軸線L方向の反出力側L2に配置されたプレート駆動機構46とを有している。また、ブレーキユニット4は、第1プレート41に対して第2プレート42と反対側(出力側L1)で対向する受け面437を有している。本形態において、受け面437は、第1プレート41に対して第2プレート42と反対側(出力側L1)で対向する金属製の第3プレート43の反出力側L2の端面によって構成されている。
 第2プレート42および第3プレート43は金属製であり、第1プレート41は、第2プレート42および第3プレート43より柔らかい材質の摩擦板である。かかる摩擦板(第1プレート41)は、例えば、フェノール樹脂等の熱硬化性樹脂と有機・無機繊維、セラミックス等の摩擦調整材、黒鉛等の潤滑材の粉末を混合した後、成形し、しかる後に、熱硬化を行うことにより製造される。
 第1プレート41は、中央に角形の軸穴410が形成されている一方、モータ軸59の反出力側軸部59bも角形になっている。従って、モータ軸59の反出力側軸部59bを第1プレート41の軸穴410に圧入すれば、第1プレート41とモータ軸59とが連結されるので、第1プレート41は、モータ軸59と一体に回転する。
 また、第1プレート41は、第2プレート42と対向する反出力側L2の第1面411に、第1面411の外縁(最も径方向外側の端部)から反出力側L2に突出した円環状の第1環状凸部416を有している。また、第1プレート41は、第3プレート43と対向する出力側L1の第2面412に、第2面412の外縁(最も径方向外側の端部)から出力側L1に突出した円環状の第2環状凸部417を有している。
 ブレーキユニット4において、第2プレート42の周りには、円筒状の筒状ホルダ49が配置されており、筒状ホルダ49の内側には、第2プレート42の他、第1プレート41およびプレート駆動機構46が配置されている。筒状ホルダ49は、円筒状の筒部491と、筒部491から反出力側L2に延在する第1板状部492と、第1板状部492に対向するように筒部491から反出力側L2に延在する第2板状部493とを有している。第1板状部492および第2板状部493の反出力側L2の端部には、図1に示す基板ホルダ31を保持するフック492a、493aが形成されている。
 筒部491において出力側L1の端部には、穴495aが形成された凹部495が形成されており、筒部491の内側に軸受ホルダ54の円板部541を嵌めた状態で、穴495aおよび軸受ホルダ54の穴548に、図12(b)に示すねじ499が止められて、筒状ホルダ49と軸受ホルダ54とが結合される。軸受ホルダ54は、円板部541の外縁から反出力側L2に向けて突出したリブ状の凸部544が形成されているとともに、円板部541の反出力側L2の面には穴545が形成されている。
 第3プレート43は、円環部431と、円環部431の内縁から出力側L1に向けて突出した板状凸部432とを有しており、円環部431の反出力側L2の面によって第1プレート41の第2環状凸部417に対向する受け面437が構成されている。本形態において、第3プレート43の円環部431の外径は、第1プレート41の外径(第2環状凸部417の外径)よりわずかに大きい。
 板状凸部432の中央には、モータ軸59を通す中央穴430が形成されているとともに、板状凸部432には周方向の3箇所に穴435が形成されている。従って、軸受ホルダ54の反出力側L2の面に第3プレート43を重ねた状態で、穴435、545にねじ(図示せず)を止めれば、第3プレート43は、軸受ホルダ54に固定される。その結果、第3プレート43は、モータ軸線L周りおよびモータ軸線L方向において固定された状態になるので、第3プレート43の受け面437は、モータ軸線L周りおよびモータ軸線L方向において固定された状態にある。
 第2プレート42は、第1プレート41よりわずかに外径が大きな円形の板状部421と、板状部421から第1プレート41とは反対側(反出力側L2)に突出した凸部422とを有している。本形態において、凸部422は、板状部421の中央から反出力側L2に突出した円筒部からなる。本形態では、第2プレート42の円筒部からなる凸部422にプレート駆動機構46が接続されているとともに、凸部422と筒状ホルダ49との間に、第2プレート42のモータ軸線L周りの回転を阻止する回転阻止機構40が構成されている。
 より具体的には、プレート駆動機構46は、第2プレート42を第1プレート41に向けて付勢するバネ部材44と、バネ部材44による付勢を停止させる直動アクチュエータ45とを備えている。本形態において、バネ部材44は、圧縮コイルバネからなる。
 直動アクチュエータ45は、ソレノイドアクチュエータであり、軸状の鉄心からなる直動軸453(ソレノイドプランジャ)と、直動軸453の周りを囲む筒状のソレノイドホルダ515(図13(b)参照))と、ソレノイドホルダ451の周りに巻回されたソレノイドコイル452とを備えている。また、直動アクチュエータ45は、ソレノイドホルダ451を保持するソレノイドベース47を有している。ソレノイドベース47は、ソレノイドホルダ451の反出力側L2の端部を保持する角形の底板部471と、底板部471の1つの辺から出力側L1に延在する第1側板部472と、第1側板部472と対向するように底板部471の他の辺から出力側L1に延在する第2側板部473とを有しており、第1側板部472および第2側板部473の出力側L1の端部には、直動軸453が貫通する端板454が保持されている。第1側板部472および第2側板部473には、穴474が形成されている一方、筒状ホルダ49にも穴494が形成されている。従って、穴474、494にねじ(図示せず)を止めれば、ソレノイドベース47と筒状ホルダ49とを固定することができる。本形態においては、直動軸453のうち、端板454から出力側L1に突出する部分の周りに、圧縮コイルバネからなるバネ部材44が設けられている。
 本形態において、直動軸453の出力側L1の端部は、第2プレート42の円筒状の凸部422の内側に嵌っている。ここで、凸部422には、モータ軸線Lに対して直交する方向に貫通する穴423が形成されている一方、直動軸453の出力側L1の端部にも、モータ軸線Lに対して直交する方向に貫通する穴453aが形成されている。そこで、本形態では、直動軸453の穴453aおよび凸部422の穴423を貫通するように連結軸48が嵌められており、連結軸48によって、直動軸453と第2プレート42とが連結されている。従って、第2プレート42は、直動軸453と一体にモータ軸線L方向に移動可能である。
 第2プレート42の円筒状の凸部422からは、連結軸48によって径方向外側に2つの軸部481が突出しており、端板454と軸部481とによってバネ部材44のモータ軸線L方向の長さが規定されている。
 また、本形態では、第2プレート42の凸部422と筒状ホルダ49との間に、第2プレート42のモータ軸線L周りの回転を阻止する回転阻止機構40が構成されている。より具体的には、図17に示すように、筒状ホルダ49の内面には、2つの軸部481(連結軸48の両端)が各々嵌る一対の溝496が形成されており、溝496は、モータ軸線L方向に延在している。従って、第2プレート42は、モータ軸線L方向において、溝496が形成されている範囲において移動可能であるが、モータ軸線L周りに回転は不可能である。
 (ブレーキユニット4の動作)
 本形態のブレーキ付きモータ1において、モータユニット5のモータコイル513への給電が停止している期間中、ソレノイドコイル452への給電も停止している。このため、第2プレート42は、バネ部材44によって出力側L1に付勢される結果、第1プレート41の第1環状凸部416に接し、この状態で第1プレート41を出力側L1に付勢する。その結果、第1プレート41の第2環状凸部417は第3プレート43の受け面437に押し付けられる。このため、第1プレート41には、第1環状凸部416と第2プレート42との摩擦力、および第2環状凸部417と第3プレート43との摩擦力が作用するため、第1プレート41およびモータ軸59に制動力が印加される。
 この状態で、モータユニット5のモータコイル513に給電が行われると、ソレノイドコイル452への給電も行われる。このため、直動軸453は、バネ部材44に抗して、反出力側L2に移動する結果、第2プレート42も反出力側L2に移動する。その結果、第1環状凸部416と第2プレート42との間、および第2環状凸部417と第3プレート43との間に摩擦力が発生しないので、第1プレート41およびモータ軸59はモータ軸線L周りに回転する。
 この状態から、再び、モータユニット5のモータコイル513への給電が停止すると、ソレノイドコイル452への給電も停止するため、第1プレート41には、第1環状凸部416と第2プレート42との摩擦力、および第2環状凸部417と第3プレート43との摩擦力が作用するため、第1プレート41およびモータ軸59に制動力が印加される。
 (本形態の主な効果)
 以上説明したように、本形態のブレーキ付きモータ1においては、プレート駆動機構46によって第2プレート42を駆動して第1プレート41(摩擦板)と第2プレート42とを接触させて制動力を発生させる。ここで、第2プレート42に対しては、第2プレート42のモータ軸線L周りの回転を阻止する回転阻止機構40が構成されており、回転阻止機構40は、第2プレート42において板状部421から第1プレート41とは反対側に突出した凸部422と筒状ホルダ49との間に構成されている。すなわち、第2プレート42の径方向外側端部を利用して回転阻止機構40が構成されていない。このため、第1プレート41と第2プレート42とを可能な限り径方向外側部分で接触させて制動力を発生させることができる。従って、第1プレート41の外径および第2プレート42の外径を過度に大きくしなくても、大きな制動力を発生させることができる。
 ここで、回転阻止機構40は、第2プレート42の凸部422から径方向外側に突出した軸部481と、筒状ホルダ49の内面でモータ軸線L方向に沿って延在する溝496とによって構成されており、軸部481は、第2プレート42の凸部422とプレート駆動機構46の直動軸453とを連結する連結軸48の端部からなる。このため、第2プレート42と直動軸453とを連結する連結軸48を利用して回転阻止機構40を構成することができるので、ブレーキユニット4の構成を簡素化することができる。
 また、第1プレート41は、摩擦板であり、第2プレート42の外径は、第1プレート41の外径より大である。このため、プレート駆動機構46によって第1プレート41と第2プレート42とが接したときに、第1プレート41の最も径方向外側の端部と第2プレート42とが接する。従って、第1プレート41と第2プレート42との間では、摩擦板として構成された第1プレート41の外径を最大限利用して大きな制動力を発生させることができる。しかも、第1プレート41は、第2プレート42と対向する第1面411の最も径方向外側の端部に第1環状凸部416を備えている。このため、第1プレート41の第1環状凸部416(最も径方向外側の端部)が第2プレート42に確実に接するので、第1プレート41と第2プレート42との間で大きな制動力を発生させることができる。
 また、第1プレート41に対して第2プレート42と反対側では、モータ軸線L方向の移動およびモータ軸線L周りの回転が不能な受け面437が対向しており、第2プレート42が第1プレート41に接した際、受け面437は、少なくとも第1プレート41の径方向外側部分に接する。このため、第1プレート41(摩擦板)と受け面437との間でも大きな制動力を発生させることができる。
 また、受け面437の外径は、第1プレート41の外径より大であるため、プレート駆動機構46によって第1プレート41と第2プレート42とが接したときに、受け面437は、少なくとも第1プレート41の最も径方向外側の端部と接する。このため、第1プレート41(摩擦板)と受け面437との間では、摩擦板として構成された第1プレート41の外径を最大限利用して大きな制動力を得ることができる。しかも、第1プレート41は、受け面437と対向する第2面412の最も径方向外側の端部に、受け面437に向けて突出した第2環状凸部417を備えている。このため、第1プレート41の第2環状凸部417(最も径方向外側の端部)が受け面437に確実に接するので、第1プレート41と受け面437との間で大きな制動力を発生させることができる。
 (他の実施の形態)
 上記実施の形態では、第1プレート41を摩擦板として構成したが、第2プレート42を摩擦板として構成してもよい。
 (要約書)
 課題は、制動力を発生させる部材同士を可能な限り径方向外側で接触させることにより、大きな制動力を得ることができるブレーキ付きモータを提供すること。
 解決手段は、ブレーキ付きモータ1においては、プレート駆動機構46によって第2プレート42を駆動して第1プレート41(摩擦板)と第2プレート42とを接触させて制動力を発生させる。ここで、第2プレート42に対しては、第2プレート42のモータ軸線L周りの回転を阻止する回転阻止機構40が構成されており、回転阻止機構40は、第2プレート42において板状部421から第1プレート41とは反対側に突出した凸部422と筒状ホルダ49との間に構成されている。このため、少なくとも第1プレート41と第2プレート42とを径方向外側部分で接触させて制動力を発生させることができる(図13参照)。
 (第1の発明)図1から図6で付記された符号の説明である。
1・・チューブラモータ、2・・ケース、4・・ブレーキユニット、5・・モータユニット、6・・減速ユニット、7・・第1遊星歯車ユニット、8・・第2遊星歯車ユニット、9・・第3遊星歯車ユニット、10・・モータ軸、51・・ステータ、53・・ロータ、55・・出力側端板部、59・・回転軸、61、74、84・・出力歯車、65・・筒体、67・・反出力側端部、70、80、90・・内歯歯車、71、81、91・・遊星歯車、75、85、95・・遊星キャリア、79、89、99・・支持板、556・・出力側端面、567・・内周側環状凸部、568・・外周側環状凸部、569・・凹部、670・・段部、671・・第1部分、672・・第2部分、L・・モータ軸線方向、L1・・出力側、L2・・反出力側
 (第2の発明)図7から図11で付記された符号の説明である。
1・・電動シャッター装置、10・・チューブラモータ、11・・シャッター、12・・回転軸、15・・操作盤、16・・制御部、17・・アシストバネ、20・・駆動制御部、21・・コントローラ、30・・電磁ブレーキユニット、40・・ブラシレスモータ、42・・ロータマグネット、43・・ロータ、44・・ステータ、45・・駆動コイル、47・・磁気センサ素子、50・・減速歯車ユニット、C・・閉方向(第2方向)、O・・開方向(第1方向)、Dir・・回転方向指示信号、FG・・磁気センサ素子で検出された信号、Sp・・位置信号、Ta1・・印加期間、Tfg・・磁気センサ素子で検出された信号の周波数、Tsj・・速度指示周波数、Vs・・速度指令電圧
 (第3の発明)図12から図17で付記された符号の説明である。
1・・ブレーキ付きモータ、2・・ケース、4・・ブレーキユニット(ブレーキ部)、5・・モータユニット(モータ部)、6・・減速ユニット(減速部)、10・・出力軸、40・・回転阻止機構、41・・第1プレート、42・・第2プレート、43・・第3プレート、44・・バネ部材、45・・直動アクチュエータ、46・・プレート駆動機構、47・・ソレノイドベース、48・・連結軸、49・・筒状ホルダ、421・・板状部、422・・凸部、451・・ソレノイドホルダ、416・・第1環状凸部、417・・第2環状凸部、437・・受け面、452・・ソレノイドコイル、453・・直動軸、481・・軸部、496・・溝、59・・モータ軸、L・・モータ軸線、L1・・出力側、L2・・反出力側

Claims (27)

  1.  モータ軸線方向に延在する筒状のケースと、該ケースの内側に設けられたモータユニットと、前記ケースの内側において前記モータユニットに対して前記モータ軸線方向の出力側に配置された第1遊星歯車ユニットと、を有し、
     前記モータユニットにおいて、ロータの出力側で当該ロータを回転可能に支持する出力側端板部の出力側端面には、反出力側に向けて凹んだ凹部が形成され、
     前記第1遊星歯車ユニットにおいて、遊星キャリアは、遊星歯車に反出力側で重なって当該遊星歯車を反出力側から支持する支持板を備え、
     前記第1遊星歯車ユニットは、前記出力側端板部に対して出力側で直接、隣り合っていることを特徴とするチューブラモータ。
  2.  前記第1遊星歯車ユニットは、内歯歯車が内周面に形成された筒体を備え、
     当該筒体の反出力側端部が前記出力側端板部に接していることを特徴とする請求項1に記載のチューブラモータ。
  3.  前記出力側端板部は、前記出力側端面から出力側に突出した内周側環状凸部と、該内周側環状凸部より径方向外側で前記出力側端面から出力側に突出した外周側環状凸部と、を備え、
     前記内周側環状凸部と前記外周側環状凸部との間が前記凹部になっていることを特徴とする請求項2に記載のチューブラモータ。
  4.  前記筒体の前記反出力側端部には、前記内歯歯車が形成された部分の内径より反出力側に位置する部分の内径を大とする段部が環状に形成されており、
     前記段部において反出力側を向く第1部分が前記外周側環状凸部に出力側から接し、前記段部において径方向内側に向く第2部分が前記外周側環状凸部に径方向外側から接していることを特徴とする請求項3に記載のチューブラモータ。
  5.  前記筒体の内部では、前記第1遊星歯車ユニットに対して出力側に第2遊星歯車ユニットが配置され、
     前記第2遊星歯車ユニットにおいて、遊星キャリアは、遊星歯車に反出力側で重なって当該遊星歯車を反出力側から支持する支持板を備えていることを特徴とする請求項2乃至4の何れか一項に記載のチューブラモータ。
  6.  前記筒体の内部では、前記第2遊星歯車ユニットに対して出力側に第3遊星歯車ユニットが配置され、
     前記第3遊星歯車ユニットにおいて、遊星キャリアは、遊星歯車に反出力側で重なって当該遊星歯車を反出力側から支持する支持板を備えていることを特徴とする請求項5に記載のチューブラモータ。
  7.  前記第1遊星歯車ユニットの内歯歯車、前記第2遊星歯車ユニットの内歯歯車、および前記第3遊星歯車ユニットの内歯歯車が全て前記筒体の内周面に形成されていることを特徴とする請求項6に記載のチューブラモータ。
  8.  前記筒体の内径は、出力側から反出力側に向けて段階的に大きくなっていることを特徴とする請求項7に記載のチューブラモータ。
  9.  前記ケースの内側には、前記モータユニットに対して反出力側で隣り合う位置に当該モータユニットのロータを制動させるブレーキユニットが設けられていることを特徴とする請求項1乃至8の何れか一項に記載のチューブラモータ。
  10.  ロータマグネットを備えたロータ、複数の駆動コイルを備えたステータ、および前記ロータマグネットの回転に対応する位置検出信号を生成する磁気センサ素子を備えたブラシレスモータの制御方法であって、
     外部から第1方向に回転させる負荷が加わっている前記ロータを前記第1方向に回転駆動する第1方向駆動工程では、前記駆動コイルへの給電を開始する前に、前記磁気センサ素子の検出結果に基づいて、前記ロータの回転を検出する回転検出処理を行い、当該回転検出処理での検出結果において前記ロータの回転速度がしきい値未満である場合には、前記ロータを前記第1方向に回転駆動する駆動電流を前記複数の駆動コイルに供給し、前記ロータの回転速度が前記しきい値以上である場合には、前記ロータに制動力を印加することを特徴とするブラシレスモータの制御方法。
  11.  前記制動力は、前記複数の駆動コイルのうち、少なくとも1つの駆動コイルの両端を短絡させることにより発生させることを特徴とする請求項10に記載のブラシレスモータの制御方法。
  12.  前記ロータに前記制動力を印加するにあたっては、前記ロータを前記第1方向に回転駆動する際の指令速度と前記磁気センサ素子によって検出した前記ロータの回転速度とを比較し、前記指令速度と前記回転速度との比較結果に基づいて前記制動力の大きさを変更する請求項10または11に記載のブラシレスモータの制御方法。
  13.  前記ロータを前記第1方向とは反対の第2方向に回転駆動する第2方向駆動工程では、前記回転検出処理を行わずに、前記ロータを前記第2方向に回転駆動する駆動電流を前記複数の駆動コイルに供給することを特徴とする請求項10乃至12の何れか一項に記載のブラシレスモータの制御方法。
  14.  前記駆動電流を前記複数の駆動コイルに供給した後、前記磁気センサ素子の検出結果に基づいて、前記ロータの回転を検出し、
     前記ロータの回転速度が速度指示値より低い場合には、前記駆動電流を増大させ、
     前記ロータの回転速度が前記速度指示値より低い場合には、前記駆動電流を減小させることを特徴とする請求項10乃至13の何れか一項に記載のブラシレスモータの制御方法。
  15.  前記ロータは、減速輪列を介してシャッター巻き取り用の回転軸に連結されていることを特徴とする請求項10乃至14の何れか一項に記載のブラシレスモータの制御方法。
  16.  軸線周りに回転可能なモータ軸を備えたモータ部と、前記モータ軸に制動力を印加するブレーキ部と、を有し、
     前記ブレーキ部は、前記モータ軸と一体に回転する円板状の第1プレートと、該第1プレートに軸線方向で対向する第2プレートと、該第2プレートの周りに配置された筒状ホルダと、前記第2プレートの前記軸線周りの回転を阻止する回転阻止機構と、前記第1プレートと前記第2プレートとが接する方向、および離間する方向に前記第2プレートを駆動するプレート駆動機構と、を有し、
     前記第2プレートは、前記第1プレートと対向する板状部と、該板状部から前記第1プレートとは反対側に突出した凸部と、を有し、
     前記回転阻止機構は、前記凸部と前記筒状ホルダとの間で前記第2プレートの回転を阻止し、
     前記プレート駆動機構によって前記第1プレートと前記第2プレートとが接したときに、前記第1プレートと前記第2プレートとが少なくとも径方向外側部分で接して前記制動力を発生させることを特徴とするブレーキ付きモータ。
  17.  前記回転阻止機構は、前記凸部から径方向外側に突出した軸部と、前記筒状ホルダの内面で前記軸線方向に沿って延在し、前記軸部の径方向外側の端部が嵌った溝と、を有していることを特徴とする請求項16に記載のブレーキ付きモータ。
  18.  前記軸部は、前記凸部と前記プレート駆動機構の直動軸とを連結する連結軸の端部からなることを特徴とする請求項17に記載のブレーキ付きモータ。
  19.  前記第1プレートは、摩擦板であり、
     前記第2プレートの外径は、前記第1プレートの外径より大であり、
     前記プレート駆動機構によって前記第1プレートと前記第2プレートとが接したときに、少なくとも前記第1プレートの最も径方向外側の端部と前記第2プレートとが接して前記制動力を発生させることを特徴とする請求項16乃至18の何れか一項に記載のブレーキ付きモータ。
  20.  前記第1プレートは、前記第2プレートと対向する面の最も径方向外側の端部に、前記第2プレートに向けて突出した第1環状凸部を備えていることを特徴とする請求項19に記載のブレーキ付きモータ。
  21.  前記第1プレートに対して前記第2プレートと反対側で対向し、前記軸線方向の移動および前記軸線周りの回転が不能な受け面を有し、
     前記第2プレートが前記第1プレートに接した際、前記受け面は、少なくとも前記第1プレートの径方向外側部分に接することを特徴とする請求項19または20に記載のブレーキ付きモータ。
  22.  前記受け面の外径は、前記第1プレートの外径より大であり、
     前記プレート駆動機構によって前記第1プレートと前記第2プレートとが接したときに、前記受け面は、少なくとも前記第1プレートの最も径方向外側の端部と接することを特徴とする請求項21に記載のブレーキ付きモータ。
  23.  前記第1プレートは、前記受け面と対向する面の最も径方向外側の端部に、前記受け面に向けて突出した第2環状凸部を備えていることを特徴とする請求項22に記載のブレーキ付きモータ。
  24.  前記受け面は、前記モータ軸に対するラジアル軸受を保持する軸受ホルダに固定された第3プレートの前記第1プレート側の面であることを特徴とする請求項21乃至23の何れか一項に記載のブレーキ付きモータ。
  25.  前記プレート駆動機構は、前記第2プレートを前記第1プレートに向けて付勢するバネ部材と、該バネ部材による付勢を停止させる直動アクチュエータと、を備えていることを特徴とする請求項16乃至24の何れか一項に記載のブレーキ付きモータ。
  26.  前記直動アクチュエータは、ソレノイドアクチュエータであることを特徴とする請求項25に記載のブレーキ付きモータ。
  27.  前記モータ部に対して前記ブレーキ部とは反対側に、前記モータ軸の回転を減速して出力部材に伝達する減速部を有していることを特徴とする請求項16乃至26の何れか一項に記載のブレーキ付きモータ。
PCT/JP2015/078005 2014-10-07 2015-10-02 チューブラモータ、ブラシレスモータの制御方法、ブレーキ付きモータ WO2016056471A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/312,300 US10298093B2 (en) 2014-10-07 2015-10-02 Tubular motor, control method for brushless motor, and motor equipped with brake
CN201580030622.1A CN106464081B (zh) 2014-10-07 2015-10-02 管状马达
EP15848625.8A EP3206284A4 (en) 2014-10-07 2015-10-02 Tubular motor, brushless motor control method, and motor with brake

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2014206270A JP6509517B2 (ja) 2014-10-07 2014-10-07 チューブラモータ
JP2014-206270 2014-10-07
JP2014-239173 2014-11-26
JP2014239173A JP6567815B2 (ja) 2014-11-26 2014-11-26 ブラシレスモータの制御方法
JP2014-263860 2014-12-26
JP2014263860A JP2016127611A (ja) 2014-12-26 2014-12-26 ブレーキ付きモータ

Publications (1)

Publication Number Publication Date
WO2016056471A1 true WO2016056471A1 (ja) 2016-04-14

Family

ID=55653083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078005 WO2016056471A1 (ja) 2014-10-07 2015-10-02 チューブラモータ、ブラシレスモータの制御方法、ブレーキ付きモータ

Country Status (4)

Country Link
US (1) US10298093B2 (ja)
EP (1) EP3206284A4 (ja)
CN (3) CN106464081B (ja)
WO (1) WO2016056471A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106411039A (zh) * 2016-09-18 2017-02-15 奉化市国瑞机电科技有限公司 一种外挂式管状电机

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102319204B1 (ko) * 2014-12-29 2021-10-29 엘지이노텍 주식회사 모터 및 이를 포함하는 클러치 액츄에이터
US10480628B2 (en) * 2015-10-08 2019-11-19 Soucy International Inc. Electric actuator
US11564452B2 (en) * 2016-12-09 2023-01-31 Adamant Namiki Precision Jewel Co., Ltd. Winding device
CN109004795B (zh) * 2017-06-06 2019-09-20 宁波市拓泰智能科技有限公司 一种管状电机
CN108032328B (zh) * 2017-12-18 2023-08-04 深圳市优必选科技有限公司 一种舵机组件、机器人关节结构及机器人
CN111902655A (zh) * 2018-01-11 2020-11-06 利纳克有限公司 线性致动器
EP3527846A1 (de) * 2018-02-19 2019-08-21 IMS Gear SE & Co. KGaA Motor-getriebeanordnung
JP6770033B2 (ja) * 2018-09-06 2020-10-14 ファナック株式会社 エンコーダの回転部材の取り付け構造およびエンコーダの回転部材の取り付け方法
US10843675B2 (en) * 2019-03-28 2020-11-24 Keyang Electric Machinery Co., Ltd. Actuator for electromechanical parking brake having housing with brush card assembly
JP7318450B2 (ja) * 2019-09-24 2023-08-01 株式会社ジェイテクト 転舵装置
EP4037162A1 (en) 2021-02-02 2022-08-03 Black & Decker, Inc. Brushless dc motor for a body-grip power tool
CN113794322B (zh) * 2021-08-19 2023-01-10 北京自动化控制设备研究所 一种串联传动电动伺服作动器
CN115664128B (zh) * 2022-11-16 2023-03-28 南昌艾依家居用品有限公司 静音电机及包括该静音电机的电动晾衣架

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135009A (ja) * 1974-09-20 1976-03-25 Hitachi Ltd Mootainhoiiru
JPH0366552U (ja) * 1989-10-30 1991-06-27
JPH0775365A (ja) * 1993-09-04 1995-03-17 Toyo Shutter Co Ltd 電動機の駆動制御装置
JPH10225054A (ja) * 1997-02-05 1998-08-21 Kyowa Seisakusho:Kk 減速機付き電動機
JP2001124162A (ja) * 1999-10-21 2001-05-08 Asmo Co Ltd 遊星減速機構付モータ
JP2003164179A (ja) * 2001-11-20 2003-06-06 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ駆動方法
JP2003259679A (ja) * 2002-02-26 2003-09-12 Toshiba Corp ベクトル制御インバータ装置及び回転駆動装置
JP2005057852A (ja) * 2003-07-31 2005-03-03 Ito Denki Kk ブラシレスモータの駆動装置
JP2005280919A (ja) * 2004-03-30 2005-10-13 Shinsei Seiki Co Ltd 巻き取り装置
JP2007195284A (ja) * 2006-01-17 2007-08-02 Shinsei Seiki Co Ltd チューブラモータ
JP2008271705A (ja) * 2007-04-20 2008-11-06 Fuji Electric Systems Co Ltd ドア駆動制御装置及びドア駆動制御方法
JP2009012569A (ja) * 2007-07-03 2009-01-22 Ntn Corp インホイールモータ駆動装置
JP2009177905A (ja) * 2008-01-23 2009-08-06 Shinano Kenshi Co Ltd 電磁ブレーキ付電動機
JP2009257494A (ja) * 2008-04-17 2009-11-05 Ntn Corp モータ駆動装置およびインホイールモータ駆動装置
JP2010221964A (ja) * 2009-03-25 2010-10-07 Ntn Corp インホイールモータ駆動装置

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288970A (ja) 2000-04-04 2001-10-19 Harmony:Kk 電動シャッターの閉動方法及び装置
EP1233500A1 (en) * 2001-02-16 2002-08-21 Chun-Pu Hsu Drum-type motor with inner gear
FR2834391B1 (fr) 2001-12-28 2004-04-02 Somfy Dispositif de frein a disques et de transmission de couple
ITVI20020042A1 (it) * 2002-03-13 2003-09-15 Fitem Srl Dispositivo di trascinamento per elementi avvolgibili quali tende o tapparelle
US6700244B2 (en) * 2002-06-04 2004-03-02 Chun-Pu Hsu Three-in-one structural combination magneto motor power system
JP5420140B2 (ja) * 2006-02-27 2014-02-19 東芝エレベータ株式会社 エレベータ制御装置
US7839035B2 (en) * 2007-10-04 2010-11-23 Su-Yuan Hwaung Power-driven rolling and receiving apparatus
JP5080993B2 (ja) * 2008-01-18 2012-11-21 株式会社ミツバ 電動アクチュエータ、および電動ベッド
JP5137683B2 (ja) * 2008-05-20 2013-02-06 キヤノン株式会社 コアレスモータ
EP2161223B2 (en) * 2008-09-07 2023-02-22 Itoh Denki Co., Ltd. Motorized roller and motor unit for motorized roller
IL195613A0 (en) * 2008-11-30 2009-09-01 S P F Productions Ltd Compact gear motor assembly
JP5264639B2 (ja) * 2009-07-23 2013-08-14 株式会社ツバキエマソン モータ駆動装置
FR2957628B1 (fr) * 2010-03-19 2012-04-20 Somfy Sas Reducteur et actionneur electrique comprenant un tel reducteur
EP2580847B1 (en) * 2010-06-14 2021-11-17 Black & Decker Inc. Rotor assembly for brushless motor for a power tool
US8324775B2 (en) * 2010-08-05 2012-12-04 Hiwin Mikrosystem Corp. Brush DC motor with reduction mechanism
CN102545748A (zh) * 2012-02-10 2012-07-04 希美克(广州)实业有限公司 一种减速直流电机的同步控制装置
JP5616409B2 (ja) * 2012-09-06 2014-10-29 ファナック株式会社 永久磁石の不可逆減磁を防止する永久磁石同期電動機の制御装置及びそのような制御装置を備える制御システム
CA2907143A1 (en) * 2013-03-15 2014-09-18 Springs Window Fashions, Llc Window covering motorized lift and control operating system
CN103501144B (zh) * 2013-09-18 2016-04-20 宁波杜亚机电技术有限公司 电机的速度控制方法
CN203674878U (zh) * 2014-01-02 2014-06-25 咸宁三鼎机电有限公司 一种双制动电动机

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135009A (ja) * 1974-09-20 1976-03-25 Hitachi Ltd Mootainhoiiru
JPH0366552U (ja) * 1989-10-30 1991-06-27
JPH0775365A (ja) * 1993-09-04 1995-03-17 Toyo Shutter Co Ltd 電動機の駆動制御装置
JPH10225054A (ja) * 1997-02-05 1998-08-21 Kyowa Seisakusho:Kk 減速機付き電動機
JP2001124162A (ja) * 1999-10-21 2001-05-08 Asmo Co Ltd 遊星減速機構付モータ
JP2003164179A (ja) * 2001-11-20 2003-06-06 Matsushita Electric Ind Co Ltd モータ駆動装置及びモータ駆動方法
JP2003259679A (ja) * 2002-02-26 2003-09-12 Toshiba Corp ベクトル制御インバータ装置及び回転駆動装置
JP2005057852A (ja) * 2003-07-31 2005-03-03 Ito Denki Kk ブラシレスモータの駆動装置
JP2005280919A (ja) * 2004-03-30 2005-10-13 Shinsei Seiki Co Ltd 巻き取り装置
JP2007195284A (ja) * 2006-01-17 2007-08-02 Shinsei Seiki Co Ltd チューブラモータ
JP2008271705A (ja) * 2007-04-20 2008-11-06 Fuji Electric Systems Co Ltd ドア駆動制御装置及びドア駆動制御方法
JP2009012569A (ja) * 2007-07-03 2009-01-22 Ntn Corp インホイールモータ駆動装置
JP2009177905A (ja) * 2008-01-23 2009-08-06 Shinano Kenshi Co Ltd 電磁ブレーキ付電動機
JP2009257494A (ja) * 2008-04-17 2009-11-05 Ntn Corp モータ駆動装置およびインホイールモータ駆動装置
JP2010221964A (ja) * 2009-03-25 2010-10-07 Ntn Corp インホイールモータ駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3206284A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106411039A (zh) * 2016-09-18 2017-02-15 奉化市国瑞机电科技有限公司 一种外挂式管状电机

Also Published As

Publication number Publication date
CN109525066A (zh) 2019-03-26
CN109525067A (zh) 2019-03-26
EP3206284A1 (en) 2017-08-16
CN106464081A (zh) 2017-02-22
CN106464081B (zh) 2019-09-10
EP3206284A4 (en) 2018-10-03
US10298093B2 (en) 2019-05-21
US20170271947A1 (en) 2017-09-21

Similar Documents

Publication Publication Date Title
WO2016056471A1 (ja) チューブラモータ、ブラシレスモータの制御方法、ブレーキ付きモータ
CN110892175B (zh) 用于车门的驱动装置
JP2014161152A (ja) ステッピングモータ及びそれを用いた電動弁
JP4831416B2 (ja) 電磁クラッチ装置
JP2017172179A (ja) 開閉体制御装置
US9297430B2 (en) Wrap spring park brake system, apparatus and method
JP2017141804A (ja) スタータ
JP2017123775A (ja) ステッピングモータ及びそれを用いた電動弁
JP4840156B2 (ja) 永久磁石式発電機
JP2018029453A (ja) 電動モータ装置
JPWO2013157316A1 (ja) 自己保持型ソレノイド及びツースクラッチ
JP5096178B2 (ja) 電磁ブレーキ付電動機
US11545872B2 (en) Motor with brake
JP5821277B2 (ja) アクチュエータ
JPH09200987A (ja) モータ
JP3641346B2 (ja) 自己保持型ロータリソレノイド
JP2016101076A (ja) ブラシレスモータの制御方法
JP5955237B2 (ja) ブレーキ付き回転電機
JP2000014114A (ja) モータ駆動装置
KR100537819B1 (ko) 기어드 모터
JP2002374654A (ja) クラッチ動作手段
JPH09163777A (ja) 電動機
JP2016127611A (ja) ブレーキ付きモータ
JP2009302362A (ja) ソレノイド
TWI407679B (zh) 旋轉控制系統及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848625

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015848625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015848625

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15312300

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE