WO2016052932A1 - 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법 - Google Patents

애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법 Download PDF

Info

Publication number
WO2016052932A1
WO2016052932A1 PCT/KR2015/010117 KR2015010117W WO2016052932A1 WO 2016052932 A1 WO2016052932 A1 WO 2016052932A1 KR 2015010117 W KR2015010117 W KR 2015010117W WO 2016052932 A1 WO2016052932 A1 WO 2016052932A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
layer
silicon
metal
anode
Prior art date
Application number
PCT/KR2015/010117
Other languages
English (en)
French (fr)
Inventor
장민철
김정규
손병국
이승호
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP15845711.9A priority Critical patent/EP3203548B1/en
Priority to JP2017516687A priority patent/JP6599449B2/ja
Priority to CN201580052138.9A priority patent/CN106716686B/zh
Priority to US15/510,813 priority patent/US10199693B2/en
Publication of WO2016052932A1 publication Critical patent/WO2016052932A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present specification relates to an anode, a lithium secondary battery including the same, a battery module including the lithium secondary battery, and a method of manufacturing the anode.
  • Lithium secondary batteries have been put to practical use as small, light weight and high capacity rechargeable batteries, and are used in portable electronic devices and communication devices such as small video cameras, mobile phones, and notebook computers.
  • Lithium secondary batteries are energy storage devices having high energy and power, and have an advantage of higher capacity and operating voltage than other batteries.
  • a high energy is a problem of the safety of the battery has a risk of explosion or fire.
  • such a hybrid car has been in the spotlight, so high energy and output characteristics are required such safety can be seen more important.
  • a lithium secondary battery is composed of a cathode, an anode, and an electrolyte, and transfers energy while reciprocating both electrodes such that lithium ions from the cathode active material are inserted into the anode active material, ie, carbon particles, and desorbed upon discharge by the first charge. Since it plays a role, it becomes possible to charge and discharge.
  • the present specification provides an anode, a lithium secondary battery including the same, a battery module including the lithium secondary battery, and a method of manufacturing the anode.
  • the present specification is a current collector; A lithium metal layer provided on the current collector; And it provides an anode comprising a silicon layer or a silicon oxide layer provided on the lithium metal layer.
  • the present specification is a current collector; A lithium metal layer provided on the current collector; And a lithium-silicon composite layer provided on the lithium metal layer and containing a lithium-silicon composite in which silicon or silicon oxide is alloyed with lithium.
  • the present specification provides a lithium secondary battery including the anode and the cathode, and including an electrolyte provided between the anode and the cathode.
  • the present disclosure provides a battery module including the lithium secondary battery as a unit cell.
  • the anode according to one embodiment of the present specification improves the chemical stability and safety of lithium metal.
  • Figure 1 shows that the protective layer (passivation layer) is peeled off because the volume of the lithium metal changes with the charge and discharge of the battery.
  • FIG. 3 shows that the metal layer or the metal oxide layer is not peeled from the lithium metal layer when repeatedly charging and discharging a battery including an anode according to another exemplary embodiment of the present specification.
  • FIG. 5 shows that the lithium metal layer and the silicon layer do not peel off when the battery including the anode according to another exemplary embodiment of the present disclosure is repeatedly charged and discharged.
  • 6 to 7 is a structure of the anode according to another embodiment of the present specification.
  • a lithium metal layer a metal layer or a metal oxide layer provided on the lithium metal layer and containing a metal or metal oxide capable of alloying with lithium.
  • the thickness of the anode may be 1 micrometer or more and 1,000 micrometers or less.
  • the anode may be used in a battery, and the anode means an electrode which emits electrons when the battery is discharged.
  • the anode may be used in a secondary battery, and the anode may refer to an electrode that emits electrons based on discharge of the battery, and may serve as a cathode (reduction electrode) when charging the battery.
  • the lithium metal layer means a layer containing a lithium metal element.
  • the material of the lithium metal layer may be lithium alloy, lithium metal, oxide of lithium alloy or lithium oxide.
  • the lithium metal layer may be a layer composed only of lithium metal.
  • a part of the lithium metal layer may be altered by oxygen or moisture or include impurities.
  • Lithium metal of the lithium metal layer is a metal having a standard reduction potential of -3.040 V, and is a metal having a strong tendency to oxidize. When such lithium metal encounters a heterogeneous material that tends to oxidize, such as oxygen, sulfur, or polysulfide, oxidation (corrosion) of the lithium metal proceeds rapidly.
  • a dendritic phase is formed on the surface of the lithium metal, thereby reducing the reactivity of the lithium metal.
  • lithium salts having relatively stable lithium ions were used as electrode materials, as batteries of high capacity continue to be required, the necessity of stably using high capacity lithium metal as electrode materials is increasing.
  • the metal layer or metal oxide layer may be a layer containing a metal or metal oxide capable of alloying with lithium.
  • the metal layer or metal oxide layer may contain a metal or metal oxide that expands in volume by reacting with lithium.
  • the metal layer may be a layer containing a metal capable of alloying with lithium.
  • the metal layer may be a layer made of only metal capable of alloying with lithium.
  • the metal oxide layer may be a layer containing a metal oxide capable of alloying with lithium.
  • the metal oxide layer may be a layer made of only an oxide of a metal capable of alloying with lithium.
  • the metal contained in the metal layer or the metal oxide layer is not particularly limited as long as it can be alloyed with lithium.
  • the metal oxide is not particularly limited as long as the metal oxide contains at least one of silicon (Si), tin (Sn), germanium (Ge), and cobalt (Co).
  • the metal layer or the metal oxide layer is any one of silicon, tin and germanium; Two or more alloys; Or at least one oxide.
  • the metal layer or the metal oxide layer may be a silicon layer or a silicon oxide layer containing a silicon element as a metal capable of alloying with the lithium.
  • the lithium metal layer may further include a lithium-metal composite layer provided between the metal layer or the metal oxide layer.
  • the lithium-metal composite layer may be a lithium-metal composite or a lithium-metal oxide composite in which a lithium metal element of a lithium metal layer and a metal element of a metal layer or a metal oxide layer are formed at an interface between the lithium metal layer and the metal layer or metal oxide layer. It may include.
  • the metal layer or the metal oxide layer is a silicon layer or a silicon oxide layer containing a silicon element as a metal capable of alloying with the lithium, the lithium metal layer and the silicon layer or silicon oxide layer It may further comprise a lithium-silicon composite layer provided between.
  • the content of the lithium-metal composite formed by alloying the metal or metal oxide with lithium may be influenced by the content of the metal or metal oxide capable of alloying with lithium. Some or all of the metal or metal oxide that is alloyable with lithium included in the anode may be alloyed with lithium to form a lithium-metal composite.
  • the metal layer or the metal oxide layer is a silicon layer or a silicon oxide layer containing silicon as a metal or metal oxide capable of alloying with the lithium
  • the weight ratio of the lithium element and the silicon element in the anode is 100: 1 to 1 50 may be.
  • the content of the lithium-silicon composite formed by alloying the silicon with lithium may be affected according to the content of silicon. Some or all of the silicon contained in the anode may be alloyed with lithium to form a lithium-silicon composite.
  • the lithium-silicon composite layer may include a lithium-silicon composite or a lithium-silicon oxide composite.
  • the lithium-silicon composite layer may include a lithium-silicon composite represented by the following Chemical Formula 1 or a lithium-silicon oxide composite represented by the following Chemical Formula 2.
  • x is a real number of 1.0 to 4.0
  • o is a real number of 0.3 to 4.0
  • p is a real number of 0.1 to 2.0, respectively.
  • the metal layer or the metal oxide layer may include a lithium-metal composite bonded to the metal element of the metal layer or the metal oxide layer by receiving ions containing lithium metal from the interface or electrolyte of the lithium metal layer.
  • some of the metal elements of the metal layer or the metal oxide layer may combine with the received lithium-containing ions to form a lithium-metal composite or a lithium-metal oxide composite.
  • the metal layer or the metal oxide layer may be formed of a lithium-metal composite or a lithium-metal oxide composite that receives lithium-containing ions from an interface or electrolyte of the lithium metal layer and is bonded to the metal element of the metal layer or the metal oxide layer.
  • all of the metal elements of the metal layer or the metal oxide layer may combine with the received lithium-containing ions to form a lithium-metal composite or a lithium-metal oxide composite.
  • the metal layer or the metal oxide layer is a silicon layer or silicon oxide layer containing a silicon element as a metal or metal oxide capable of alloying with the lithium
  • the silicon layer or silicon oxide layer is a lithium-silicon composite or It may comprise a lithium-silicon oxide composite.
  • the metal layer or the metal oxide layer is a silicon layer or a silicon oxide layer containing a silicon element as a metal or metal oxide capable of alloying with the lithium
  • the silicon layer or the silicon oxide layer is an interface of the lithium metal layer or It may include a lithium-silicon composite or a metal-silicon oxide composite coupled with the silicon element of the silicon layer by receiving ions containing lithium metal from the electrolyte.
  • some of the silicon elements of the silicon layer or the silicon oxide layer may be combined with the received lithium-containing ions to form a lithium-silicon composite or a metal-silicon oxide composite.
  • the metal layer or the metal oxide layer is a silicon layer or silicon oxide layer containing a silicon element as a metal or metal oxide capable of alloying with the lithium
  • the silicon layer or silicon oxide layer is a lithium-silicon composite or It may be made of a metal-silicon oxide composite.
  • all of the silicon elements of the silicon layer may be combined with ions containing the received lithium metal to form a lithium-silicon composite or a metal-silicon oxide composite.
  • lithium metal is a material having high reactivity with moisture
  • the surface of the lithium metal electrode may be altered or dendritic crystals may be formed on the surface of the lithium metal electrode by reacting with moisture.
  • a protective film can be formed on the lithium metal electrode, but lithium metal is lithium metal because the volume changes while repeating the charging and discharging of the battery
  • the protective film provided on the garment may be peeled off.
  • the anode of the present specification has the advantage that the protective metal layer or the metal oxide layer is not peeled off by the volume change of the lithium metal layer by repeated charging and charging.
  • the protective metal layer or the metal oxide layer includes a metal or a metal oxide capable of alloying with lithium.
  • a lithium-metal composite layer may be formed between the phosphorus metal layer or the metal oxide layer so that the interface between the lithium metal layer and the metal layer or the metal oxide layer may be maintained without peeling. Accordingly, there is an advantage that the chemical safety and stability of the lithium metal is improved.
  • the metal layer or the metal oxide layer is a silicon layer containing a silicon element as a metal or metal oxide capable of alloying with the lithium
  • the volume of the lithium metal layer is consumed as shown in FIGS. 4 and 5.
  • the silicon element which can be alloyed with lithium of the silicon layer or the silicon oxide layer, reacts with the lithium metal element of the lithium metal layer even though it is reduced, to form a lithium-silicon composite layer at the interface between the lithium metal layer and the silicon layer or the silicon oxide layer.
  • the interface between the silicon layers can be maintained without peeling off.
  • Initial charge and discharge efficiency of the battery to which the anode according to an embodiment of the present disclosure can be improved. Since the interface between the lithium metal layer and the metal or metal oxide layer is maintained without peeling, the initial and cycle efficiency is improved.
  • the anode may further include a current collector.
  • the anode may include a current collector, a lithium metal layer provided on the current collector, and a metal layer or a metal oxide layer provided on the lithium metal layer.
  • the current collector may be any material having electrical conductivity as the current collector of the anode, and may be manufactured using materials and methods generally used in the art. For example, one, two or more selected from the group consisting of carbon, stainless, nickel, aluminum, iron, and titanium may be used.
  • the shape of the current collector may be various forms such as a film, a sheet, a foil, a net, a porous body, a foam, or a nonwoven fabric, respectively.
  • the present specification is a current collector; A lithium metal layer provided on the current collector; And it provides an anode comprising a silicon layer or a silicon oxide layer provided on the lithium metal layer.
  • the anode may further include a lithium-silicon composite layer provided between the lithium metal layer and the silicon layer or silicon oxide layer.
  • the silicon layer or silicon oxide layer may include a lithium-silicon composite or a lithium-silicon oxide composite in which the silicon or silicon oxide is alloyed with lithium.
  • the weight ratio of the lithium element and the silicon element in the anode may be 100: 1 to 50.
  • the lithium-silicon composite layer may include a lithium-silicon composite represented by Chemical Formula 1 or a lithium-silicon oxide composite represented by Chemical Formula 2.
  • a lithium metal layer a lithium metal layer; And a lithium-metal composite layer provided on the lithium metal layer and capable of alloying with lithium, the lithium-metal composite layer containing a lithium-metal composite or a lithium-metal oxide composite alloyed with lithium.
  • the lithium-metal composite layer may be formed of a lithium-metal composite or a lithium-metal oxide composite by combining all of metal elements capable of alloying with lithium of the metal layer or metal oxide layer with ions containing lithium metal.
  • the anode is a lithium metal layer; And a lithium-metal composite layer on the lithium metal layer.
  • the lithium-metal composite layer may be a lithium-silicon composite layer containing a silicon element as a metal or metal oxide capable of alloying with lithium.
  • all of the silicon elements of the silicon layer or the silicon oxide layer may be combined with ions containing lithium metal to form a lithium-silicon composite or a lithium-silicon oxide composite.
  • the anode includes a lithium metal layer; And it may include a lithium-silicon composite layer on the lithium metal layer.
  • the lithium-silicon composite layer may include a lithium-silicon composite represented by the following Formula 1 or a lithium-silicon oxide composite represented by the following Formula 2.
  • x is a real number of 1.0 to 4.0
  • o is a real number of 0.3 to 4.0
  • p is a real number of 0.1 to 2.0, respectively.
  • the present specification is a current collector; A lithium metal layer provided on the current collector; And a lithium-silicon composite layer provided on the lithium metal layer and containing a lithium-silicon composite in which silicon or silicon oxide is alloyed with lithium.
  • the lithium-silicon composite layer may include a lithium-silicon composite represented by Chemical Formula 1 or a lithium-silicon oxide composite represented by Chemical Formula 2.
  • the anode comprises a cathode, it provides a lithium secondary battery comprising an electrolyte provided between the anode and the cathode.
  • the shape of the lithium secondary battery is not limited, and may be, for example, coin type, flat plate type, cylindrical type, horn type, button type, sheet type, or stacked type.
  • the lithium secondary battery may be a lithium air battery.
  • the cathode of the lithium secondary battery may be an air electrode.
  • the lithium secondary battery may further include a tank for storing a cathode electrolyte and an anode electrolyte, and a pump for moving each electrolyte to an electrode cell, thereby manufacturing a flow battery.
  • the electrolyte may be an electrolyte solution in which the anode and the cathode are impregnated.
  • the lithium secondary battery may further include a separator provided between the anode and the cathode.
  • the separator located between the anode and the cathode may be used as long as it separates or insulates the anode and the cathode from each other and enables ion transport between the anode and the cathode.
  • it may be a non-conductive porous membrane or an insulating porous membrane. More specifically, nonwoven fabrics such as polypropylene nonwoven fabric or polyphenylene sulfide nonwoven fabric; Or the porous film of olefin resin, such as polyethylene and a polypropylene, can be illustrated, It is also possible to use these 2 or more types together.
  • the lithium secondary battery may further include a cathode electrolyte on the cathode side and an anode electrolyte on the anode side separated by a separator.
  • the cathode electrolyte and the anode electrolyte may each include a solvent and an electrolyte salt.
  • the cathode electrolyte and the anode electrolyte may include the same or different solvents.
  • the electrolyte solution may be an aqueous electrolyte solution or a non-aqueous electrolyte solution.
  • the aqueous electrolyte may include water as a solvent
  • the non-aqueous electrolyte may include a non-aqueous solvent as a solvent.
  • the non-aqueous solvent may be selected generally used in the art, and is not particularly limited, for example, carbonate-based, ester-based, ether-based, ketone-based, organosulfur-based, organophosphorous ), Aprotic solvents, and combinations thereof.
  • the electrolytic salt refers to dissociation into cations and anions in water or a non-aqueous organic solvent, and is not particularly limited as long as it can transfer lithium ions in a lithium secondary battery, and may be generally used in the art.
  • the concentration of the electrolyte salt in the electrolyte solution may be 0.1 M or more and 3 M or less. In this case, the charge and discharge characteristics of the lithium secondary battery may be effectively expressed.
  • the electrolyte may be a solid electrolyte membrane or a polymer electrolyte membrane.
  • the material of the solid electrolyte membrane and the polymer electrolyte membrane is not particularly limited, and those generally used in the art may be employed.
  • the solid electrolyte membrane may include a composite metal oxide
  • the polymer electrolyte membrane may be a membrane having a conductive polymer inside the porous substrate.
  • the cathode refers to an electrode that accepts electrons and reduces lithium-containing ions when the battery is discharged in a lithium secondary battery. On the contrary, when the battery is charged, the cathode active material is oxidized to emit electrons and lose lithium-containing ions.
  • the cathode may include a cathode current collector and a cathode active material layer formed on the cathode current collector.
  • the material of the cathode active material of the cathode active material layer is not particularly limited as long as it is applied to a lithium secondary battery together with the anode to reduce lithium-containing ions during discharge and to be oxidized during charging.
  • the present specification provides a battery module including the lithium secondary battery as a unit cell.
  • the battery module may be formed by stacking a bipolar plate provided between two or more lithium secondary batteries according to one embodiment of the present specification.
  • the bipolar plate may be porous to supply air supplied from the outside to the cathode included in each of the lithium air batteries.
  • it may comprise porous stainless steel or porous ceramics.
  • the battery module may be used as a power source for an electric vehicle, a hybrid electric vehicle, a plug-in hybrid electric vehicle, or a power storage device.
  • the metal layer or the metal oxide layer may be a silicon layer or a silicon oxide layer containing a silicon element as a metal or metal oxide capable of alloying with the lithium.
  • the method of attaching the lithium metal layer and the metal layer or the metal oxide layer may be compressed by pressure or thermocompressed by heat and pressure.
  • the metal layer or the metal oxide layer may be a silicon layer or a silicon oxide layer containing a silicon element as a metal or metal oxide capable of alloying with the lithium.
  • the method of forming a metal layer or a metal oxide layer on the lithium metal layer may be formed by depositing a metal or metal oxide on the lithium metal layer or applying a composition including the metal or metal oxide on the lithium metal layer.
  • composition including the metal or metal oxide may further include a binder resin.
  • the composition may include silicon or silicon oxide, a binder resin and a solvent.
  • the binder resin may include polyvinylidene fluoride (PVdF).
  • the content of the binder resin may be 5 parts by weight to 20 parts by weight.
  • the metal layer or the metal oxide layer may be a silicon layer or a silicon oxide layer containing a silicon element as a metal or metal oxide capable of alloying with the lithium.
  • a lithium metal layer may be formed by depositing lithium metal, applying soft lithium metal, or sputtering.
  • the metal layer or the metal oxide layer is a silicon layer or silicon oxide layer containing a silicon element as a metal or metal oxide capable of alloying with the lithium
  • the silicon layer or silicon oxide layer is formed by depositing silicon, or a silane-based It can be prepared by depositing or applying a compound to form a layer and reducing it.
  • the silane-based compound may include an organic compound in which silicon hydride (Si n H 2n +2 ) and hydrogen atoms of the silicon hydride are substituted with a hydrocarbon group, a halogen group, an alkoxy group, a hydroxy group, and the like.
  • Chlorosilane, dichlorosilane, trichlorosilane, tetraalkylsilane, chlorotrialkylsilane, dichlorodialkylsilane and trichloroalkylsilane may include, but are not limited to.
  • the hydrocarbon group is a functional group of an organic compound consisting of only carbon and hydrogen, and the hydrocarbon group is any one or two of linear or branched alkyl, alkenyl, fluorene, cycloalkyl and aryl groups. The group mentioned above may be connected.
  • the halogen group may be fluorine, chlorine, bromine, iodine or the like, but is not limited thereto.
  • the alkoxy group preferably has 1 to 12 carbon atoms, more specifically methoxy, ethoxy, isopropyloxy, and the like, but is not limited thereto.
  • the alkyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 1 to 12. Specific examples include, but are not limited to, methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl, hexyl, heptyl, and the like.
  • the alkenyl group may be linear or branched chain, carbon number is not particularly limited, but is preferably 2 to 12. Specific examples thereof include butenyl group; Pentenyl group; Or alkenyl group, such as a stilbenyl group (stylbenyl), styrenyl group (styrenyl) is connected, but is not limited thereto.
  • the fluorenyl group is a structure in which two ring organic compounds are connected through one atom, for example Etc.
  • the fluorenyl group includes a structure of an open fluorenyl group, wherein the open fluorenyl group is a structure in which one ring compound is disconnected in a structure in which two ring compounds are connected through one atom, For example Etc.
  • the cycloalkyl group may be monocyclic or polycyclic, and the number of carbon atoms is not particularly limited, but is preferably 6 to 40. Specific examples include, but are not limited to, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and the like.
  • the aryl group may be monocyclic or polycyclic, and the carbon number is not particularly limited, but is preferably 6 to 40.
  • the monocyclic aryl group include phenyl group, biphenyl group, terphenyl group, stilbene, and the like.
  • the polycyclic aryl group include naphthyl group, anthracenyl group, phenanthrene group, pyrenyl group, perrylenyl group, and cryo. Although a cenyl group, a fluorene group, etc. are mentioned, It is not limited to this.
  • the description of the lithium metal layer and the metal layer or metal oxide layer may be cited above.
  • the anode was manufactured by forming a passivation layer by coating a composition including silicon and PVdF in a 90:10 weight ratio on a lithium foil by 10 ⁇ m.
  • An anode was prepared by forming a protective layer having a thickness of 10 ⁇ m using a lithium phosphorous oxynitride (LiPON) as a sputter instead of the protective layer of Example 1 on a lithium foil.
  • LiPON lithium phosphorous oxynitride
  • the efficiency of the battery was constituted by the battery cell under the following conditions, and the cycle efficiency characteristics were measured. The results are shown in Table 1 below.
  • Electrolyte Carbonate-based electrolyte and solvent containing lithium salt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Inorganic Chemistry (AREA)
  • Cell Separators (AREA)

Abstract

본 명세서는 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법에 관한 것이다.

Description

애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법
본 발명은 2014년 09월 29일에 한국특허청에 제출된 한국 특허 출원 제 10-2014-0130622 호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법에 관한 것이다.
최근 전자기기의 소형화 및 경량화 추세에 따라 전원으로 작용하는 전지도 소형화 및 경향화가 요구되고 있다. 소형 경량화 및 고용량으로 충방전 가능한 전지로서 리튬 이차 전지가 실용화되고 있으며, 소형 비디오 카메라, 휴대전화, 노트북 등의 휴대용 전자기기 및 통신기기 등에 이용되고 있다.
리튬 이차 전지는 높은 에너지와 파워를 갖는 에너지 저장 장치로서 다른 전지에 비해 용량이나 작동 전압이 높다는 우수한 장점을 가지고 있다. 그러나, 이러한 높은 에너지로 인해 전지의 안전성이 문제가 되어 폭발이나 화재 등의 위험성을 가지고 있다. 특히, 근래에 각광받고 있는 하이브리드 자동차 등에서는 높은 에너지와 출력특성이 요구되므로 이러한 안전성이 더욱 중요하다 볼 수 있다.
일반적으로 리튬 이차 전지는 캐소드, 애노드 및 전해질로 구성되며, 첫번째 충전에 의해 캐소드 활물질로부터 나온 리튬 이온이 애노드 활물질, 즉 카본 입자 내에 삽입되고 방전시 다시 탈리되는 등의 양 전극을 왕복하면서 에너지를 전달하는 역할을 하기 때문에 충방전이 가능하게 된다.
한편, 휴대용 전자기기의 발달로 인하여 고용량의 전지가 계속 요구됨에 따라 기존 애노드재로 사용되는 탄소보다 단위 무게당 용량이 월등히 높은 고용량 애노드재가 활발하게 연구되고 있다.
본 명세서는 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법을 제공하고자 한다.
본 명세서는 집전체; 상기 집전체 상에 구비된 리튬금속층; 및 상기 리튬금속층 상에 구비된 실리콘층 또는 실리콘옥사이드층을 포함하는 애노드를 제공한다.
또한, 본 명세서는 집전체; 상기 집전체 상에 구비된 리튬금속층; 및 상기 리튬금속층 상에 구비되고 실리콘 또는 실리콘옥사이드가 리튬과 합금화된 리튬-실리콘 복합체를 함유하는 리튬-실리콘 복합체층을 포함하는 애노드를 제공한다.
또한, 본 명세서는 상기 애노드 및 캐소드를 포함하고, 상기 애노드와 캐소드 사이에 구비된 전해질을 포함하는 것인 리튬 이차 전지를 제공한다.
또한, 본 명세서는 상기 리튬 이차 전지를 단위 전지로 포함하는 전지 모듈을 제공한다.
본 명세서의 일 실시상태에 따른 애노드는 리튬금속의 화학적 안정성 및 안전성이 향상된다.
본 명세서의 일 실시상태에 따른 애노드가 적용된 전지의 초기 충방전 효율이 향상된다.
본 명세서의 일 실시상태에 따른 애노드가 적용된 전지의 충방전 사이클 특성이 향상된다.
도 1은 전지의 충방전에 따라 리튬금속의 부피가 변하기 때문에 보호층(패시베이션층)이 박리되는 것을 나타내는 것이다.
도 2는 본 명세서의 일 실시상태에 따른 애노드를 포함하는 전지를 반복하여 충방전할 때, 금속층 또는 금속산화물층이 리튬금속층으로부터 박리되지 않는 것을 나타내는 것이다.
도 3은 본 명세서의 또 다른 실시상태에 따른 애노드를 포함하는 전지를 반복하여 충방전할 때,금속층 또는 금속산화물층이 리튬금속층으로부터 박리되지 않는 것을 나타내는 것이다.
도 4는 본 명세서의 또 다른 실시상태에 따른 애노드를 포함하는 전지를 반복하여 충방전할 때, 리튬금속층과 실리콘층 또는 실리콘옥사이드층이 박리되지 않는 것을 나타내는 것이다.
도 5는 본 명세서의 또 다른 실시상태에 따른 애노드를 포함하는 전지를 반복하여 충방전할 때, 리튬금속층과 실리콘층이 박리되지 않는 것을 나타내는 것이다.
도 6 내지 도 7는 본 명세서의 다른 실시상태에 따른 애노드의 구조이다.
이하에서 본 명세서에 대하여 상세히 설명한다.
본 명세서는 리튬금속층; 및 상기 리튬금속층 상에 구비되고 리튬과 합금화가 가능한 금속 또는 금속산화물을 함유하는 금속층 또는 금속산화물층을 포함하는 것인 애노드를 제공한다.
상기 애노드의 두께는 1 마이크로미터이상 1,000 마이크로미터이하일 수 있다.
본 명세서에서, 상기 애노드는 전지에 사용될 수 있고, 상기 애노드는 전지가 방전될 때 전자를 내보내는 전극을 의미한다. 상기 애노드는 이차 전지에 사용될 수 있고, 상기 애노드는 전지의 방전 시를 기준으로 전자를 내보내는 전극을 의미하며, 전지의 충전 시에 캐소드(환원전극)의 역할을 수행할 수 있다.
상기 리튬금속층은 리튬금속 원소를 포함하는 층을 의미한다. 상기 리튬금속층의 재질은 리튬합금, 리튬금속, 리튬합금의 산화물 또는 리튬산화물일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 리튬금속층은 리튬금속으로만 이루어진 층일 수 있다. 이때, 상기 리튬금속층은 일부가 산소나 수분에 의해 변질되거나 불순물을 포함할 수 있다.
리튬금속층의 리튬 금속은 표준 환원 전위가 -3.040V인 금속이며, 산화되고자 하는 경향이 매우 강한 금속이다. 이러한 리튬 금속이 산소, 황, 또는 폴리설파이드(polysulfide)과 같이 산화시키는 경향이 있는 이종 물질과 만나게 되면 리튬 금속의 산화(부식)는 급속도로 진행된다.
리튬 금속을 전극으로 사용하는 경우, 리튬 금속 표면에 수지상이 형성되어 리튬금속의 반응성이 저하된다.
이에 따라, 상대적으로 안정적인 리튬 이온을 갖는 리튬염을 전극재로 사용했으나, 고용량의 전지가 계속 요구됨에 따라, 고용량인 리튬 금속을 안정적으로 전극재로서 사용할 필요성이 증가하고 있다.
상기 금속층 또는 금속산화물층은 리튬과 합금화가 가능한 금속 또는 금속산화물을 함유하는 층일 수 있다. 구체적으로, 상기 금속층 또는 금속산화물층은 리튬과 반응하여 부피가 팽창하는 금속 또는 금속산화물을 함유할 수 있다.
상기 금속층은 리튬과 합금화가 가능한 금속을 함유하는 층일 수 있다. 구체적으로, 상기 금속층은 리튬과 합금화가 가능한 금속만으로 이루어진 층일 수 있다.
상기 금속산화물층은 리튬과 합금화가 가능한 금속산화물을 함유하는 층일 수 있다. 구체적으로, 상기 금속산화물층은 리튬과 합금화가 가능한 금속의 산화물만으로 이루어진 층일 수 있다.
상기 금속층 또는 금속산화물층이 함유하는 금속은 리튬과 합금화가 가능하다면 특별히 한정하지 않으나, 예를 들면, 실리콘(Si), 주석(Sn), 게르마늄(Ge) 및 코발트(Co) 중 어느 하나; 둘 이상의 합금; 또는 적어도 하나의 산화물을 포함할 수 있다. 상기 금속산화물은 실리콘(Si), 주석(Sn), 게르마늄(Ge) 및 코발트(Co) 중 적어도 하나를 함유하는 산화물이라면 특별히 한정하지 않으나, 예를 들면, 실리콘옥사이드(SiO2), 산화주석(SnO2), 산화게르마늄(GeO2) 및 산화코발트(CoO, Co2O3 , CoO2, Co3O4) 등일 수 있다.
상기 금속층 또는 금속산화물층은 실리콘, 주석 및 게르마늄 중 어느 하나; 둘 이상의 합금; 또는 적어도 하나의 산화물을 포함할 수 있다.
상기 금속층 또는 금속산화물층은 상기 리튬과 합금화가 가능한 금속으로서 규소 원소를 함유하는 실리콘층 또는 실리콘산화물층일 수 있다.
상기 리튬금속층과 상기 금속층 또는 금속산화물층 사이에 구비된 리튬-금속 복합체층을 더 포함할 수 있다.
상기 리튬-금속 복합체층은 상기 리튬금속층과 상기 금속층 또는 금속산화물층의 계면에서 리튬금속층의 리튬금속 원소와 금속층 또는 금속산화물층의 금속 원소가 만나 생성된 리튬-금속 복합체 또는 리튬-금속산화물 복합체를 포함할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 금속층 또는 금속산화물층이 상기 리튬과 합금화가 가능한 금속으로서 규소 원소를 함유하는 실리콘층 또는 실리콘산화물층인 경우에는, 상기 리튬금속층과 상기 실리콘층 또는 실리콘산화물층 사이에 구비된 리튬-실리콘 복합체층을 더 포함할 수 있다.
상기 애노드에서, 리튬과 합금화가 가능한 금속 또는 금속산화물의 함량에 따라 상기 금속 또는 금속산화물이 리튬과 합금화되어 형성된 리튬-금속 복합체의 함량이 영향을 받을 수 있다. 상기 애노드 내에 포함된 리튬과 합금화가 가능한 금속 또는 금속산화물의 일부 또는 전부는 리튬과 합금화되어 리튬-금속 복합체를 형성할 수 있다.
상기 금속층 또는 금속산화물층이 상기 리튬과 합금화가 가능한 금속 또는 금속산화물로서 규소 원소를 함유하는 실리콘층 또는 실리콘옥사이드층인 경우, 상기 애노드 내에서 상기 리튬 원소와 상기 규소 원소의 중량비는 100: 1 내지 50일 수 있다.
상기 애노드에서, 실리콘의 함량에 따라 상기 실리콘이 리튬과 합금화되어 형성된 리튬-실리콘 복합체의 함량이 영향을 받을 수 있다. 상기 애노드 내에 포함된 실리콘의 일부 또는 전부는 리튬과 합금화되어 리튬-실리콘 복합체를 형성할 수 있다.
상기 리튬-실리콘 복합체층은 리튬-실리콘 복합체 또는 리튬-실리콘옥사이드 복합체를 포함할 수 있다. 구체적으로, 상기 리튬-실리콘 복합체층은 하기 화학식 1로 표시되는 리튬-실리콘 복합체 또는 하기 화학식 2로 표시되는 리튬-실리콘옥사이드 복합체를 포함할 수 있다.
[화학식 1]
LixSi
[화학식 2]
LioSiOp
상기 화학식 1 및 2에서, x는 1.0 내지 4.0인 실수이고, o는 각각 0.3 내지 4.0인 실수이며, p는 각각 0.1 내지 2.0인 실수이다.
상기 금속층 또는 금속산화물층은 리튬금속층의 계면 또는 전해질로부터 리튬금속을 함유한 이온을 전달받아 상기 금속층 또는 금속산화물층의 금속 원소와 결합된 리튬-금속 복합체를 포함할 수 있다. 다시 말하면, 상기 금속층 또는 금속산화물층의 금속 원소 중 일부가 전달받은 리튬을 함유한 이온과 결합하여 리튬-금속 복합체또는 리튬-금속산화물 복합체를 형성할 수 있다.
상기 금속층 또는 금속산화물층은 리튬금속층의 계면 또는 전해질로부터 리튬금속을 함유한 이온을 전달받아 상기 금속층 또는 금속산화물층의 금속 원소와 결합된 리튬-금속 복합체 또는 리튬-금속산화물 복합체로 이루어질 수 있다. 다시 말하면, 상기 금속층 또는 금속산화물층의 금속 원소 중 전부가 전달받은 리튬을 함유한 이온과 결합하여 리튬-금속 복합체 또는 리튬-금속산화물 복합체를 형성할 수 있다.
본 명세서에서, 상기 금속층 또는 금속산화물층이 상기 리튬과 합금화가 가능한 금속 또는 금속산화물로서 규소 원소를 함유하는 실리콘층 또는 실리콘산화물층인 경우에는, 상기 실리콘층 또는 실리콘산화물층은 리튬-실리콘 복합체 또는 리튬-실리콘옥사이드 복합체를 포함할 수 있다.
본 명세서에서, 상기 금속층 또는 금속산화물층이 상기 리튬과 합금화가 가능한 금속 또는 금속산화물로서 규소 원소를 함유하는 실리콘층 또는 실리콘산화물층인 경우에는, 상기 실리콘층 또는 실리콘산화물층은 리튬금속층의 계면 또는 전해질로부터 리튬금속을 함유한 이온을 전달받아 실리콘층의 규소 원소와 결합된 리튬-실리콘 복합체 또는 금속-실리콘옥사이드 복합체를 포함할 수 있다. 다시 말하면, 상기 실리콘층 또는 실리콘산화물층의 규소 원소 중 일부가 전달받은 리튬을 함유한 이온과 결합하여 리튬-실리콘 복합체 또는 금속-실리콘옥사이드 복합체를 형성할 수 있다.
본 명세서에서, 상기 금속층 또는 금속산화물층이 상기 리튬과 합금화가 가능한 금속 또는 금속산화물로서 규소 원소를 함유하는 실리콘층 또는 실리콘산화물층인 경우에는, 상기 실리콘층 또는 실리콘산화물층은 리튬-실리콘 복합체 또는 금속-실리콘옥사이드 복합체로 이루어질 수 있다. 다시 말하면, 상기 실리콘층의 규소 원소 중 전부가 전달받은 리튬금속을 함유한 이온과 결합하여 리튬-실리콘 복합체 또는 금속-실리콘옥사이드 복합체를 형성할 수 있다.
리튬금속은 수분과 반응성이 높은 물질이므로 수분과 반응하여 리튬금속전극의 표면이 변질되거나 리튬금속전극 표면 위에 수지상의 결정이 형성될 수 있다.
이러한 리튬금속의 화학적 안전성 및 안정성을 확보하기 위해, 도 1에 도시된 바와 같이, 리튬금속전극 상에 보호막을 형성할 수 있으나 리튬금속은 전지의 충전 및 방전을 반복하면서 부피가 변화하기 때문에 리튬금속의 상에 구비되었던 보호막이 박리될 수 있다.
그러나, 본 명세서의 애노드는 반복되는 충반전에 의한 리튬금속층의 부피변화에 의해 보호층인 금속층 또는 금속산화물층이 박리되지 않는 장점이 있다. 구체적으로, 도 2 및 도 3에 도시된 바와 같이 리튬금속층의 리튬이 소모되면서 부피가 줄어들어도 보호층인 금속층 또는 금속산화물층이 리튬과 합금화가 가능한 금속 또는 금속산화물을 포함하므로 리튬금속층과 보호층인 금속층 또는 금속산화물층 사이에 리튬-금속 복합체층이 형성되어 리튬금속층과 금속층 또는 금속산화물층 사이의 계면이 박리되지 않고 유지될 수 있다. 이에 따라 리튬금속의 화학적 안전성 및 안정성이 향상되는 장점이 있다.
본 명세서에서, 상기 금속층 또는 금속산화물층이 상기 리튬과 합금화가 가능한 금속 또는 금속산화물로서 규소 원소를 함유하는 실리콘층인 경우에는, 도 4 및 5에 도시된 바와 같이 리튬금속층의 리튬이 소모되면서 부피가 줄어들어도 실리콘층 또는 실리콘산화물층의 리튬과 합금화가 가능한 규소 원소가 리튬금속층의 리튬금속 원소와 반응하여 리튬금속층과 실리콘층 또는 실리콘산화물층의 계면에서 리튬-실리콘 복합체층을 형성하여 리튬금속층과 실리콘층 사이의 계면이 박리되지 않고 유지될 수 있다.
본 명세서의 일 실시상태에 따른 애노드가 적용된 전지의 초기 충방전 효율이 향상될 수 있다. 리튬금속층과 금속 또는 금속산화물층 사이의 계면이 박리되지 않고 유지되기 때문에 초기 및 사이클의 효율이 향상된다.
상기 애노드는 집전체를 더 포함할 수 있다. 구체적으로, 상기 애노드는 집전체, 상기 집전체 상에 구비된 리튬금속층 및 상기 리튬금속층 상에 구비된 금속층 또는 금속산화물층을 포함할 수 있다.
상기 집전체는 애노드의 집전을 실시하는 것으로서 전기전도성을 가지는 재료이면 어느 것이든 무방하며, 당 기술분야에 일반적으로 사용되는 재료 및 방법을 이용하여 제조될 수 있다. 예를 들면, 카본, 스테인레스, 니켈, 알루미늄, 철 및 티탄으로 이루어진 군에서 선택되는 하나 또는 둘 이상을 사용할 수 있다.
상기 집전체의 형태는 각각 필름, 시트, 호일, 네트, 다공질체, 발포체 또는 부직포체 등 다양한 형태가 가능하다.
본 명세서는 집전체; 상기 집전체 상에 구비된 리튬금속층; 및 상기 리튬금속층 상에 구비된 실리콘층 또는 실리콘옥사이드층을 포함하는 애노드를 제공한다.
상기 리튬금속층 상에 실리콘층 또는 실리콘옥사이드층이 구비된 애노드에 대하여 중복되는 설명을 생략하며, 상술한 바를 인용할 수 있다.
상기 애노드는 상기 리튬금속층과 상기 실리콘층 또는 실리콘옥사이드층 사이에 구비된 리튬-실리콘 복합체층을 더 포함할 수 있다.
상기 실리콘층 또는 실리콘옥사이드층은 상기 실리콘 또는 실리콘옥사이드가 리튬과 합금화된 리튬-실리콘 복합체 또는 리튬-실리콘옥사이드 복합체를 포함할 수 있다.
상기 애노드 내에서 상기 리튬 원소와 상기 규소 원소의 중량비는 100: 1 내지 50일 수 있다.
상기 리튬-실리콘 복합체층은 상기 화학식 1로 표시되는 리튬-실리콘 복합체 또는 상기 화학식 2로 표시되는 리튬-실리콘옥사이드 복합체를 포함할 수 있다.
본 명세서는 리튬금속층; 및 상기 리튬금속층 상에 구비되고 리튬과 합금화가 가능한 금속 또는 금속산화물이 리튬과 합금화된 리튬-금속 복합체 또는 리튬-금속산화물 복합체를 함유하는 리튬-금속 복합체층을 포함하는 것인 애노드를 제공한다.
상기 리튬-금속 복합체층은 상기 금속층 또는 금속산화물층의 리튬과 합금화가 가능한 금속 원소 중 전부가 리튬금속을 함유한 이온과 결합하여 리튬-금속 복합체 또는 리튬-금속산화물 복합체를 형성한 것일 수 있다.
도 6에 도시된 바와 같이, 상기 애노드는 리튬금속층; 및 상기 리튬금속층 상에 리튬-금속 복합체층을 포함할 수 있다.
상기 리튬-금속 복합체층은 리튬과 합금화가 가능한 금속 또는 금속산화물로서 규소 원소가 함유된 리튬-실리콘 복합체층일 수 있다.
상기 리튬-실리콘 복합체층은 상기 실리콘층 또는 실리콘산화물층의 실리콘 원소 중 전부가 리튬금속을 함유한 이온과 결합하여 리튬-실리콘 복합체 또는 리튬-실리콘옥사이드 복합체를 형성한 것일 수 있다.
도 7에 도시된 바와 같이, 상기 애노드는 리튬금속층; 및 상기 리튬금속층 상에 리튬-실리콘 복합체층을 포함할 수 있다.
상기 리튬-실리콘 복합체층은 하기 화학식 1로 표시되는 리튬-실리콘 복합체 또는 하기 화학식 2로 표시되는 리튬-실리콘옥사이드 복합체를 포함할 수 있다.
[화학식 1]
LixSi
[화학식 2]
LioSiOp
상기 화학식 1 및 2에서, x는 1.0 내지 4.0인 실수이고, o는 각각 0.3 내지 4.0인 실수이며, p는 각각 0.1 내지 2.0인 실수이다.
본 명세서는 집전체; 상기 집전체 상에 구비된 리튬금속층; 및 상기 리튬금속층 상에 구비되고 실리콘 또는 실리콘옥사이드가 리튬과 합금화된 리튬-실리콘 복합체를 함유하는 리튬-실리콘 복합체층을 포함하는 애노드를 제공한다.
상기 리튬금속층 상에 리튬-실리콘 복합체층이 구비된 애노드에 대하여 중복되는 설명을 생략하며, 상술한 바를 인용할 수 있다.
상기 리튬-실리콘 복합체층은 상기 화학식 1로 표시되는 리튬-실리콘 복합체 또는 상기 화학식 2로 표시되는 리튬-실리콘옥사이드 복합체를 포함할 수 있다.
본 명세서는 상기 애노드; 및 캐소드를 포함하고, 상기 애노드와 캐소드 사이에 구비된 전해질을 포함하는 것인 리튬 이차 전지를 제공한다.
상기 리튬 이차 전지의 형태는 제한되지 않으며, 예를 들어, 코인형, 평판형, 원통형, 뿔형, 버튼형, 시트형 또는 적층형일 수 있다.
상기 리튬 이차 전지는 리튬 공기 전지일 수 있다. 구체적으로, 상기 리튬 이차 전지의 캐소드는 공기극일 수 있다.
상기 리튬 이차 전지는 캐소드 전해액 및 애노드 전해액을 보관하는 각각의 탱크 및 각각의 전해액을 전극셀로 이동시키는 펌프를 더 포함하여, 플로우 배터리로 제조될 수 있다.
상기 전해질은 상기 애노드 및 캐소드가 함침된 전해질액일 수 있다.
상기 리튬 이차 전지는 상기 애노드와 캐소드 사이에 구비된 분리막을 더 포함할 수 있다. 상기 애노드와 캐소드 사이에 위치하는 분리막은 애노드와 캐소드를 서로 분리 또는 절연시키고, 애노드와 캐소드 사이에 이온 수송을 가능하게 하는 것이면, 어느 것이나 사용 가능하다. 예를 들어, 비전도성 다공성막 또는 절연성 다공성막일 수 있다. 더욱 구체적으로 폴리프로필렌 소재의 부직포나 폴리페닐렌 설파이드 소재의 부직포와 같은 고분자 부직포; 또는 폴리에틸렌이나 폴리프로필렌과 같은 올레핀계 수지의 다공성 필름을 예시할 수 있으며, 이들을 2종 이상 병용하는 것도 가능하다.
상기 리튬 이차 전지는 분리막에 의해 구분된 캐소드 측의 캐소드 전해액 및 애노드 측의 애노드 전해액을 더 포함할 수 있다. 상기 캐소드 전해액 및 애노드 전해액은 각각 용매 및 전해염을 포함할 수 있다. 상기 캐소드 전해액 및 애노드 전해액은 동일하거나 서로 상이한 용매를 포함할 수 있다.
상기 전해액은 수계 전해액 또는 비수계 전해액일 수 있다. 상기 수계 전해액은 용매로서 물을 포함할 수 있으며, 상기 비수계 전해액은 용매로서 비수계 용매를 포함할 수 있다.
상기 비수계 용매는 당 기술분야에서 일반적으로 사용하는 것을 선택할 수 있으며, 특별히 한정하지 않으나, 예를 들면, 카보네이트계, 에스테르계, 에테르계, 케톤계, 유기황(organosulfur)계, 유기인(organophosphorous)계, 비양성자성 용매 및 이들의 조합으로 이루어지는 군으로부터 선택될 수 있다.
상기 전해염은 물 또는 비수계 유기용매에서 양이온 및 음이온으로 해리되는 것을 말하며, 리튬 이차 전지에서 리튬 이온을 전달할 수 있다면 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용하는 것을 선택할 수 있다.
상기 전해액에서 전해염의 농도는 0.1 M 이상 3 M 이하일 수 있다. 이 경우 리튬 이차 전지의 충방전 특성이 효과적으로 발현될 수 있다.
상기 전해질은 고체 전해질막 또는 고분자 전해질막일 수 있다.
상기 고체 전해질막 및 고분자 전해질막의 재질은 특별히 한정하지 않으며, 당 기술분야에서 일반적으로 사용되는 것을 채용할 수 있다. 예를 들면, 상기 고체 전해질막은 복합금속산화물을 포함할 수 있으며, 상기 고분자 전해질막은 다공성 기재의 내부에 전도성 고분자가 구비된 막일 수 있다.
상기 캐소드는 리튬 이차 전지에서 전지가 방전될 때 전자를 받아들이며 리튬 함유 이온이 환원되는 전극을 의미한다. 반대로, 전지의 충전 시에는 애노드(산화전극)의 역할을 수행하여 캐소드 활물질이 산화되어 전자를 내보내고 리튬 함유 이온을 잃게 된다.
상기 캐소드는 캐소드 집전체 및 상기 캐소드 집전체 상에 형성된 캐소드 활물질층을 포함할 수 있다.
본 명세서에서, 상기 애노드와 함께 리튬 이차 전지에 적용되어 방전시 리튬 함유 이온이 환원하고 충전시에 산화될 수 있다면 상기 캐소드 활물질층의 캐소드 활물질의 재질은 특별히 한정되지 않는다. 예를 들면, 전이금속 산화물일 수 있으며, 구체적으로 LiCoO2, LiNiO2, LiFePO4, LiMn2O4, LiNixCoyMnzO2(여기서, x+y+z=1), Li2FeSiO4, Li2FePO4F 및 Li2MnO3 중 적어도 하나를 포함할 수 있다.
본 명세서는 상기 리튬 이차 전지를 단위 전지로 포함하는 전지 모듈을 제공한다.
상기 전지 모듈은 본 명세서의 하나의 실시 상태에 따른 2 이상의 리튬 이차 전지 사이에 구비된 바이폴라(bipolar) 플레이트로 스택킹(stacking)하여 형성될 수 있다.
상기 리튬 이차 전지가 리튬 공기 전지인 경우, 상기 바이폴라 플레이트는 외부에서 공급되는 공기를 리튬 공기 전지 각각에 포함된 캐소드에 공급할 수 있도록 다공성일 수 있다. 예를 들어, 다공성 스테인레스 스틸 또는 다공성 세라믹을 포함할 수 있다.
상기 전지 모듈은 구체적으로 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 또는 전력저장장치의 전원으로 사용될 수 있다.
본 명세서는 리튬금속층을 준비하는 단계; 금속층 또는 금속산화물층을 준비하는 단계; 및 제조된 리튬금속층과 금속층 또는 금속산화물층을 부착하는 단계를 포함하는 애노드의 제조방법을 제공한다. 상기 금속층 또는 금속산화물층은 상기 리튬과 합금화가 가능한 금속 또는 금속산화물로서 규소 원소를 함유하는 실리콘층 또는 실리콘산화물층일 수 있다.
상기 리튬금속층과 금속층 또는 금속산화물층을 부착하는 방법은 압력에 의한 압착하거나 열과 압력에 의해 열압착할 수 있다.
본 명세서는 리튬금속층을 준비하는 단계; 및 상기 리튬금속층 상에 금속층 또는 금속산화물층을 형성하는 단계를 포함하는 애노드의 제조방법을 제공한다. 상기 금속층 또는 금속산화물층은 상기 리튬과 합금화가 가능한 금속 또는 금속산화물로서 규소 원소를 함유하는 실리콘층 또는 실리콘산화물층일 수 있다.
상기 리튬금속층 상에 금속층 또는 금속산화물층을 형성하는 방법은 리튬금속층 상에 금속 또는 금속산화물을 증착하거나 금속 또는 금속산화물을 포함하는 조성물을 리튬금속층 상에 도포하여 형성할 수 있다.
상기 금속 또는 금속산화물을 포함하는 조성물은 바인더 수지를 더 포함할 수 있다.
상기 리튬과 합금화가 가능한 금속 또는 금속산화물로서 규소 원소를 함유하는 실리콘층 또는 실리콘산화물층을 준비하는 경우, 상기 조성물은 실리콘 또는 실리콘산화물, 바인더 수지 및 용매를 포함할 수 있다.
상기 바인더 수지 및 용매의 종류는 특별히 한정하지 않으나, 당 기술분야에서 일반적으로 사용하는 것을 채용할 수 있다. 예를 들면, 상기 바인더 수지는 폴리비닐리덴 플루오라이드(PVdF, polyvinylidene fluoride)를 포함할 수 있다.
상기 실리콘 또는 실리콘산화물의 100 중량부를 기준으로, 상기 바인더 수지의 함량은 5중량부 내지 20중량부일 수 있다.
본 명세서는 금속층 또는 금속산화물층을 준비하는 단계; 및 금속층 또는 금속산화물층 상에 리튬금속층을 형성하는 단계를 포함하는 애노드의 제조방법을 제공한다. 상기 금속층 또는 금속산화물층은 상기 리튬과 합금화가 가능한 금속 또는 금속산화물로서 규소 원소를 함유하는 실리콘층 또는 실리콘산화물층일 수 있다.
상기 금속층 또는 금속산화물층 상에 리튬금속층을 형성하는 방법은 리튬금속을 증착하거나, 연질의 리튬금속을 도포하거나 스퍼터링법으로 리튬금속층을 형성할 수 있다.
상기 금속층 또는 금속산화물층이 상기 리튬과 합금화가 가능한 금속 또는 금속산화물로서 규소 원소를 함유하는 실리콘층 또는 실리콘산화물층인 경우에, 상기 실리콘층 또는 실리콘산화물층은 실리콘을 증착하여 형성되거나, 실란계 화합물을 증착 또는 도포하여 층을 형성하고 이를 환원시켜 제조될 수 있다. 이때, 상기 실란계 화합물은 수소화 규소(SinH2n +2) 및 상기 수소화 규소의 수소원자가 탄화수소기, 할로겐기, 알콕시기, 히드록시기 등으로 치환된 유기 화합물을 포함할 수 있으며, 예를 들면 실란, 클로로실란, 디클로로실란, 트리클로로실란, 테트라알킬실란, 클로로트리알킬실란, 디클로로디알킬실란 및 트리클로로알킬실란 중 적어도 하나를 포함할 수 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 상기 탄화수소기는 탄소와 수소로만 이루어져 있는 유기화합물의 기능기이며, 상기 탄화수소기는 직쇄 또는 분지쇄의 알킬기, 알케닐기, 플루오렌기, 사이클로알킬기 및 아릴기 중 어느 하나의 기 또는 둘 이상의 기가 연결된 기일 수 있다.
본 명세서에 있어서, 상기 할로겐기로는 불소, 염소, 브롬, 요오드 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알콕시기는 탄소수 1 내지 12인 것이 바람직하고, 보다 구체적으로 메톡시, 에톡시, 이소프로필옥시 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 12인 것이 바람직하다. 구체적인 예로는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, t-부틸기, 펜틸기, 헥실기, 헵틸기 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있으며, 탄소수는 특별히 한정되지 않으나 2 내지 12인 것이 바람직하다. 구체적인 예로는 부테닐기; 펜테닐기; 또는 스틸베닐기(stylbenyl), 스티레닐기(styrenyl) 등의 아릴기가 연결된 알케닐기가 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 2개의 고리 유기화합물이 1개의 원자를 통하여 연결된 구조로서, 예로는
Figure PCTKR2015010117-appb-I000001
등이 있다.
본 명세서에 있어서, 플루오레닐기는 열린 플루오레닐기의 구조를 포함하며, 여기서 열린 플루오레닐기는 2개의 고리 화합물이 1개의 원자를 통하여 연결된 구조에서 한쪽 고리 화합물이 연결이 끊어진 상태의 구조로서, 예로는
Figure PCTKR2015010117-appb-I000002
등이 있다.
본 명세서에 있어서, 상기 사이클로알킬기는 단환 또는 다환일 수 있으며, 탄소수는 특별히 한정되지 않으나 6 내지 40인 것이 바람직하다. 구체적인 예로는 사이클로프로필기, 사이클로부틸기, 사이클로펜틸기, 사이클로헥실기, 사이클로헵틸기 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 상기 아릴기는 단환식 또는 다환식일 수 있고, 탄소수는 특별히 한정되지 않으나 6 내지 40인 것이 바람직하다. 단환식 아릴기의 예로는 페닐기, 비페닐기, 터페닐기, 스틸벤 등을 들 수 있고, 다환식 아릴기의 예로는 나프틸기, 안트라세닐기, 페난트렌기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오렌기 등을 들 수 있으나, 이에만 한정되는 것은 아니다.
상기 애노드의 제조방법에서, 상기 리튬금속층 및 금속층 또는 금속산화물층에 대한 설명은 상술한 바를 인용할 수 있다.
이하에서, 실시예를 통하여 본 명세서를 더욱 상세하게 설명한다. 그러나, 이하의 실시예는 본 명세서를 예시하기 위한 것일 뿐, 본 명세서를 한정하기 위한 것은 아니다.
[실시예]
[실시예 1]
실리콘과 PVdF를 90: 10 중량비로 포함하는 조성물을 리튬 호일 상에 10㎛ 코팅하여 보호층(passivation layer)을 형성하여 애노드를 제조했다.
[비교예 1]
보호층없이 순수한 리튬 호일을 애노드로 사용했다.
[비교예 2]
리튬호일 상에 실시예 1의 보호층 대신 Lithium phosphorous oxynitride (LiPON)을 스퍼터로 10㎛의 보호층을 형성하여 애노드를 제조했다.
[실험예 1]
전지의 효율을 하기의 조건으로 전지셀을 구성하여 사이클 효율 특성을 측정했다. 그 결과는 하기 표 1에 나타냈다.
- Working electrode: 실시예 1과 비교예 1 및 2의 애노드
- Counter electrode: 리튬 금속 전극
- 전해액: 리튬염이 포함된 카보네이트계 전해질 및 용매
[표 1]
Figure PCTKR2015010117-appb-I000003

Claims (12)

  1. 집전체;
    상기 집전체 상에 구비된 리튬금속층; 및
    상기 리튬금속층 상에 구비된 실리콘층 또는 실리콘옥사이드층을 포함하는 애노드.
  2. 청구항 1에 있어서, 상기 리튬금속층과 상기 실리콘층 또는 실리콘옥사이드층 사이에 구비된 리튬-실리콘 복합체층을 더 포함하는 것인 애노드.
  3. 청구항 1에 있어서, 상기 실리콘층 또는 실리콘옥사이드층은 상기 실리콘 또는 실리콘옥사이드가 리튬과 합금화된 리튬-실리콘 복합체를 포함하는 것인 애노드.
  4. 청구항 1에 있어서, 상기 애노드 중 리튬 원소와 규소 원소의 중량비는 100: 1 내지 50인 것인 애노드.
  5. 청구항 2에 있어서, 상기 리튬-실리콘 복합체층은 하기 화학식 1로 표시되는 리튬-실리콘 복합체 또는 하기 화학식 2로 표시되는 리튬-실리콘옥사이드 복합체를 포함하는 것인 애노드:
    [화학식 1]
    LixSi
    [화학식 2]
    LioSiOp
    상기 화학식 1 및 2에서, x는 1.0 내지 4.0인 실수이고, o는 각각 0.3 내지 4.0인 실수이며, p는 각각 0.1 내지 2.0인 실수이다.
  6. 집전체;
    상기 집전체 상에 구비된 리튬금속층; 및
    상기 리튬금속층 상에 구비되고 실리콘 또는 실리콘옥사이드가 리튬과 합금화된 리튬-실리콘 복합체를 함유하는 리튬-실리콘 복합체층을 포함하는 애노드.
  7. 청구항 6에 있어서, 상기 리튬-실리콘 복합체층은 하기 화학식 1로 표시되는 리튬-실리콘 복합체 또는 하기 화학식 2로 표시되는 리튬-실리콘옥사이드 복합체를 포함하는 것인 애노드:
    [화학식 1]
    LixSi
    [화학식 2]
    LioSiOp
    상기 화학식 1 및 2에서, x는 1.0 내지 4.0인 실수이고, o는 각각 0.3 내지 4.0인 실수이며, p는 각각 0.1 내지 2.0인 실수이다.
  8. 청구항 1 내지 7 중 어느 한 항에 따른 애노드; 및 캐소드를 포함하고,
    상기 애노드와 캐소드 사이에 구비된 전해질을 포함하는 것인 리튬 이차 전지.
  9. 청구항 8에 있어서, 상기 전해질은 상기 애노드 및 캐소드가 함침된 전해질액인 것인 리튬 이차 전지.
  10. 청구항 9에 있어서, 상기 리튬 이차 전지는 상기 애노드와 캐소드 사이에 구비된 분리막을 더 포함하는 것인 리튬 이차 전지.
  11. 청구항 8에 있어서, 상기 전해질은 고체 전해질막 또는 고분자 전해질막인 것인 리튬 이차 전지.
  12. 청구항 8의 리튬 이차 전지를 단위 전지로 포함하는 전지 모듈.
PCT/KR2015/010117 2014-09-29 2015-09-24 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법 WO2016052932A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15845711.9A EP3203548B1 (en) 2014-09-29 2015-09-24 Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery
JP2017516687A JP6599449B2 (ja) 2014-09-29 2015-09-24 アノード、これを含むリチウム二次電池、前記リチウム二次電池を含む電池モジュール、およびアノードの製造方法
CN201580052138.9A CN106716686B (zh) 2014-09-29 2015-09-24 负极、包含该负极的锂二次电池、包含该锂二次电池的电池模块以及制造该负极的方法
US15/510,813 US10199693B2 (en) 2014-09-29 2015-09-24 Anode, lithium secondary battery comprising same, battery module comprising the lithium secondary battery, and method for manufacturing anode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0130622 2014-09-29
KR20140130622 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016052932A1 true WO2016052932A1 (ko) 2016-04-07

Family

ID=55630903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/010117 WO2016052932A1 (ko) 2014-09-29 2015-09-24 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법

Country Status (6)

Country Link
US (1) US10199693B2 (ko)
EP (1) EP3203548B1 (ko)
JP (1) JP6599449B2 (ko)
KR (1) KR101751601B1 (ko)
CN (1) CN106716686B (ko)
WO (1) WO2016052932A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3449519A4 (en) * 2016-04-29 2020-01-08 University of Maryland, College Park METAL ALLOY LAYERS ON SUBSTRATES, METHODS OF MAKING SAME AND USES THEREOF

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102264691B1 (ko) * 2017-08-11 2021-06-15 (주)엘지에너지솔루션 리튬금속과 무기물 복합층을 이용한 전리튬화
KR102617672B1 (ko) * 2017-08-29 2023-12-26 한양대학교 산학협력단 보호막이 코팅된 리튬 전극 및 이를 포함하는 리튬 이차전지
CN108063222B (zh) * 2017-08-31 2024-04-02 广东猛狮新能源科技股份有限公司 一种锂离子电池负极材料、其制备方法和锂离子电池
KR101979349B1 (ko) * 2017-09-11 2019-05-16 한국과학기술연구원 리튬 금속 전극, 그 제조방법 및 이를 포함하는 이차전지
KR102358448B1 (ko) * 2017-11-21 2022-02-04 주식회사 엘지에너지솔루션 리튬 이차전지용 음극 및 이의 제조 방법
KR102490867B1 (ko) 2017-12-04 2023-01-20 삼성에스디아이 주식회사 리튬금속전지용 음극 및 이를 포함한 리튬금속전지
KR102601605B1 (ko) 2017-12-27 2023-11-14 삼성전자주식회사 음극, 이를 포함하는 리튬전지 및 음극 제조방법
KR102362887B1 (ko) 2018-01-03 2022-02-14 주식회사 엘지에너지솔루션 리튬이차전지용 음극의 전리튬화 방법 및 이에 사용되는 리튬 메탈 적층체
US10910653B2 (en) 2018-02-26 2021-02-02 Graphenix Development, Inc. Anodes for lithium-based energy storage devices
JP7399191B2 (ja) * 2019-05-03 2023-12-15 エルジー エナジー ソリューション リミテッド 固体電解質膜及びそれを含む全固体電池
US11024842B2 (en) 2019-06-27 2021-06-01 Graphenix Development, Inc. Patterned anodes for lithium-based energy storage devices
JP2022544959A (ja) 2019-08-13 2022-10-24 グラフェニクス ディベロップメント,インコーポレイテッド リチウムベースのエネルギー貯蔵装置用のアノードおよびその製造方法
US11489154B2 (en) 2019-08-20 2022-11-01 Graphenix Development, Inc. Multilayer anodes for lithium-based energy storage devices
CA3148530A1 (en) 2019-08-20 2021-02-25 Graphenix Development, Inc. Structured anodes for lithium-based energy storage devices
US11495782B2 (en) 2019-08-26 2022-11-08 Graphenix Development, Inc. Asymmetric anodes for lithium-based energy storage devices
EP3907810A4 (en) * 2019-10-11 2022-04-13 LG Energy Solution, Ltd. LITHIUM SECONDARY BATTERY AND METHOD OF MAKING A LITHIUM SECONDARY BATTERY
CN111653727B (zh) * 2020-06-30 2022-05-17 陕西煤业化工技术研究院有限责任公司 一种预锂化硅基薄膜负极材料及其制备方法
CN111647863B (zh) * 2020-07-02 2022-03-25 河北大学 Li2FexSiO4正极薄膜的制备方法及应用
CN112909433B (zh) * 2021-01-28 2022-12-16 山东大学 一氧化硅/聚丙烯酸改性高安全电池隔膜及其制备方法和应用
JP2022140029A (ja) * 2021-03-12 2022-09-26 ソフトバンク株式会社 負極用材料、負極、リチウム二次電池、及び、負極用材料の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070122700A1 (en) * 2003-12-26 2007-05-31 Mariko Miyachi Anode material for secondary battery, anode for secondary battery and secondary battery therewith
US20070202408A1 (en) * 2006-02-24 2007-08-30 Shinji Nakanishi Non-aqueous electrolyte secondary battery, negative electrode thereof, and method for manufacturing negative electrode
JP2007280926A (ja) * 2006-03-14 2007-10-25 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極の製造方法とそれを用いた非水電解質二次電池
US20110136012A1 (en) * 2008-08-04 2011-06-09 Hiromasa Yagi Lithium secondary battery manufacturing method and lithium secondary battery
JP5095863B2 (ja) * 2010-04-23 2012-12-12 パナソニック株式会社 リチウムイオン電池用負極およびその製造方法、ならびにリチウムイオン電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3721734B2 (ja) * 1997-09-01 2005-11-30 ソニー株式会社 非水電解液二次電池
CN1179432C (zh) 2001-05-31 2004-12-08 三星Sdi株式会社 锂电池的锂金属阳级保护层的形成方法
JP4368193B2 (ja) 2003-12-26 2009-11-18 三洋電機株式会社 リチウム前駆体電池及びリチウム二次電池の製造方法
US7754390B2 (en) 2006-03-14 2010-07-13 Panasonic Corporation Manufacturing method of negative electrode for nonaqueous electrolytic rechargeable battery, and nonaqueous electrolytic rechargeable battery using it
JP2011233402A (ja) * 2010-04-28 2011-11-17 Sumitomo Electric Ind Ltd 正極体、正極体の製造方法および非水電解質電池
JP5735111B2 (ja) * 2010-09-16 2015-06-17 エルジー・ケム・リミテッド 新規電極活物質およびそれを含むリチウム二次電池
KR101336082B1 (ko) 2011-05-23 2013-12-03 주식회사 엘지화학 출력 밀도 특성이 향상된 고출력의 리튬 이차전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070122700A1 (en) * 2003-12-26 2007-05-31 Mariko Miyachi Anode material for secondary battery, anode for secondary battery and secondary battery therewith
US20070202408A1 (en) * 2006-02-24 2007-08-30 Shinji Nakanishi Non-aqueous electrolyte secondary battery, negative electrode thereof, and method for manufacturing negative electrode
JP2007280926A (ja) * 2006-03-14 2007-10-25 Matsushita Electric Ind Co Ltd 非水電解質二次電池用負極の製造方法とそれを用いた非水電解質二次電池
US20110136012A1 (en) * 2008-08-04 2011-06-09 Hiromasa Yagi Lithium secondary battery manufacturing method and lithium secondary battery
JP5095863B2 (ja) * 2010-04-23 2012-12-12 パナソニック株式会社 リチウムイオン電池用負極およびその製造方法、ならびにリチウムイオン電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3203548A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3449519A4 (en) * 2016-04-29 2020-01-08 University of Maryland, College Park METAL ALLOY LAYERS ON SUBSTRATES, METHODS OF MAKING SAME AND USES THEREOF
US11043696B2 (en) 2016-04-29 2021-06-22 University Of Maryland, College Park Metal alloy layers on substrates, methods of making same, and uses thereof

Also Published As

Publication number Publication date
US20170279163A1 (en) 2017-09-28
US10199693B2 (en) 2019-02-05
EP3203548A4 (en) 2018-04-18
CN106716686B (zh) 2020-09-22
KR20160037782A (ko) 2016-04-06
JP6599449B2 (ja) 2019-10-30
JP2017528893A (ja) 2017-09-28
EP3203548A1 (en) 2017-08-09
KR101751601B1 (ko) 2017-06-30
EP3203548B1 (en) 2019-01-23
CN106716686A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2016052932A1 (ko) 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법
WO2016052934A1 (ko) 애노드, 이를 포함하는 리튬 이차 전지, 상기 리튬 이차 전지를 포함하는 전지 모듈 및 애노드의 제조방법
WO2018070847A1 (ko) 리튬이온 이차 전지용 음극 및 이를 제조하는 방법
WO2016048002A1 (ko) 둘 이상의 케이스 부재들을 포함하는 각형 전지셀
WO2020145753A1 (ko) 리튬 전극 및 이를 포함하는 리튬 이차전지
WO2016167457A1 (ko) 전극 탭들과 전극 리드의 탭-리드 결합부가 공간부에 위치하는 전극조립체
WO2016137147A1 (ko) 이차 전지용 분리막, 그 제조 방법, 및 이를 포함하는 리튬 이차 전지
WO2012036519A2 (ko) 마그네슘 이차전지용 전극 및 이를 구비한 마그네슘 이차전지
CN107799726B (zh) 电极活性材料的化学锂化
WO2015102221A1 (ko) 계단 구조의 하이브리드 전극조립체
WO2013180434A1 (ko) 리튬 이차전지용 음극 활물질 및 이를 포함하는 리튬 이차전지
WO2021006704A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2015005694A1 (ko) 전지 수명을 향상시키는 전극 및 이를 포함하는 리튬 이차전지
JP2020038838A (ja) 電力供給システム
WO2019009576A1 (ko) 비대칭 노치가 형성된 전극리드를 포함하는 파우치형 이차전지
WO2020071814A1 (ko) 실리콘계 화합물을 포함하는 다층 구조 음극 및 이를 포함하는 리튬 이차전지
US6489061B1 (en) Secondary non-aquenous electrochemical cell configured to improve overcharge and overdischarge acceptance ability
WO2020080800A1 (ko) 리튬 이차전지용 양극 첨가제의 제조방법 및 이로부터 제조된 리튬 이차전지용 양극 첨가제
WO2018021746A1 (ko) 리튬 전지 전해질용 첨가제, 이를 포함하는 리튬 전지용 전해질 및 상기 전해질을 채용한 리튬 전지
WO2020166803A1 (ko) 이차 전지 및 전지 모듈
WO2022098049A1 (ko) 음극보다 면적이 넓은 양극을 포함하는 전고체전지 및 이의 제조방법
WO2019022358A1 (ko) 리튬-황 전지용 양극 및 이를 포함하는 리튬-황 전지
WO2013065918A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
WO2017146357A1 (ko) 리튬 이차전지용 전극 조립체, 이를 포함하는 리튬 이차전지 및 전지모듈
WO2021085946A1 (ko) 음극 활물질의 제조 방법, 음극 활물질, 이를 포함하는 음극, 및 상기 음극을 포함하는 이차 전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845711

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015845711

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015845711

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15510813

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017516687

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE