WO2016052676A1 - 磁気ディスク用ガラス基板の製造方法 - Google Patents

磁気ディスク用ガラス基板の製造方法 Download PDF

Info

Publication number
WO2016052676A1
WO2016052676A1 PCT/JP2015/077870 JP2015077870W WO2016052676A1 WO 2016052676 A1 WO2016052676 A1 WO 2016052676A1 JP 2015077870 W JP2015077870 W JP 2015077870W WO 2016052676 A1 WO2016052676 A1 WO 2016052676A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass substrate
water
liquid
cleaning
magnetic disk
Prior art date
Application number
PCT/JP2015/077870
Other languages
English (en)
French (fr)
Inventor
スパウィティパッタナー シワット
スリーカム パンニー
Original Assignee
Hoya株式会社
ホーヤ ガラスディスク タイランド リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya株式会社, ホーヤ ガラスディスク タイランド リミテッド filed Critical Hoya株式会社
Priority to CN201580052307.9A priority Critical patent/CN106688038B/zh
Priority to JP2016552150A priority patent/JP6246946B2/ja
Priority to SG11201701761XA priority patent/SG11201701761XA/en
Publication of WO2016052676A1 publication Critical patent/WO2016052676A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B3/00Cleaning by methods involving the use or presence of liquid or steam
    • B08B3/04Cleaning involving contact with liquid
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C23/00Other surface treatment of glass not in the form of fibres or filaments
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers

Definitions

  • the present invention relates to a method for producing a glass substrate for a magnetic disk.
  • a glass substrate is suitably used for a magnetic disk used as one of information recording media.
  • the density of magnetic recording has been increased.
  • the magnetic recording information area is miniaturized by extremely shortening the flying distance from the magnetic recording surface of the magnetic head.
  • the magnetic layer is formed on the main surface of the glass substrate, the main surface is strictly controlled so that unnecessary foreign matters due to organic components or the like do not remain on the main surface. For this reason, the importance of the cleaning process and the drying process of the main surface of the glass substrate after the final polishing is high.
  • a cleaning process and a drying process are known to prevent the glass from being modified and deteriorated (so-called burns) by foreign matter adhering to the main surface of the magnetic disk glass substrate having a texture formed on the main surface.
  • the cleaning process mainly includes at least cleaning with pure water or an aqueous solution containing water as a main component, and then using a water-soluble solvent having a boiling point lower than that of water. A liquid having a component and a water content of 1.0% by weight or less is washed as a washing liquid.
  • At least a dehydration process is performed in which a liquid vapor mainly composed of a water-soluble solvent having a boiling point lower than that of water is brought into contact with the glass substrate for magnetic disk.
  • the amount of water contained in the liquid in this dehydration treatment is 1.0% by weight or less.
  • this defect is referred to as a cleaning stain.
  • This cleaning stain is different from the above-mentioned burn that is formed so that the alkali metal component on the main surface of the glass reacts with the water in the air so that the entire main surface becomes white and cloudy. It is thought that it remained partially on the surface.
  • Such cleaning spots are not preferable from the viewpoint of producing a magnetic disk by forming a magnetic film on the main surface of the glass substrate.
  • an object of the present invention is to provide a method for producing a glass substrate for magnetic disk that can suppress the occurrence of cleaning spots on the main surface of the glass substrate when producing a glass substrate for magnetic disk.
  • the cleaning stain is a cleaning agent used in the cleaning treatment or an organic component foreign matter adhering to the glass substrate before the cleaning treatment. It was derived and a part of this organic component was found to remain on the glass substrate in the drying process. Therefore, even when the organic component is a glass substrate attached to the surface of the glass substrate, the inventors of the present application have studied the measures that can sufficiently remove the organic component by the cleaning treatment and the drying treatment. It came to invent the aspect.
  • one aspect of the present invention is a method for manufacturing a glass substrate for a magnetic disk.
  • the manufacturing method includes the following modes.
  • the cleaning treatment includes a first liquid treatment in which the glass substrate is immersed in a first liquid containing a water-soluble solvent having a boiling point lower than that of water and water,
  • the glass substrate is disposed in a vapor of a second liquid containing a water-soluble solvent having a boiling point lower than that of water and water, and droplets are formed on the surface of the glass substrate. And dropping at least a part of the droplets from the glass substrate, and drying the glass substrate,
  • Form 4 A method of manufacturing a glass substrate for a magnetic disk, A cleaning process for the surface of the glass substrate, and a drying process for drying the surface after the cleaning process,
  • the glass substrate is disposed in a vapor of a second liquid containing a water-soluble solvent having a boiling point lower than that of water and water, and droplets are formed on the surface of the glass substrate. Dripping a part of the liquid droplet from the glass substrate,
  • the cleaning treatment includes a first liquid treatment in which the glass substrate is immersed in a first liquid containing a water-soluble solvent having a boiling point lower than that of water and water,
  • the glass substrate contains an alkali metal component, The magnetic disk according to any one of modes 1 to 3 and 5, wherein the cleaning treatment includes a water treatment in which the glass substrate is immersed in water having a temperature of 40 ° C. or higher and 50 ° C. or lower to clean the surface.
  • Method for manufacturing glass substrate is a water treatment in which the glass substrate is immersed in water having a temperature of 40 ° C. or higher and 50 ° C. or lower to clean the surface.
  • Form 7 The method for producing a glass substrate for a magnetic disk according to mode 6, wherein the glass substrate is processed in the order of the water treatment, the first liquid treatment, and the drying treatment.
  • the glass substrate for a magnetic disk has a disc shape and a ring shape in which a central portion is cut out concentrically.
  • the glass substrate for a magnetic disk rotates about the center of the ring shape as a rotation axis.
  • a magnetic disk is obtained by laminating a magnetic layer or the like on a magnetic disk glass substrate.
  • an adhesion layer, a soft magnetic layer, a nonmagnetic underlayer, a perpendicular magnetic recording layer, a protective layer, a lubricating layer, and the like are formed on a glass substrate.
  • a magnetic disk is manufactured. Therefore, the surface of the magnetic disk glass substrate is strictly controlled so as to be cleaned cleanly.
  • Such a glass substrate for a magnetic disk is produced by the following manufacturing method. Hereinafter, each process of the manufacturing method of this glass substrate is demonstrated.
  • a glass blank is plate-shaped glass used as the origin of a glass substrate.
  • a float method is used.
  • molten glass is continuously poured into a bath filled with molten metal such as tin to obtain plate-like glass.
  • the molten glass flows along the traveling direction in a bathtub that has been subjected to a strict temperature operation, and finally a plate-like glass adjusted to a desired thickness and width is formed.
  • a plate-shaped glass blank having a predetermined shape for example, a quadrangular shape in plan view
  • a press molding method can be used for forming the plate-shaped glass blank. Furthermore, it can manufacture using well-known manufacturing methods, such as a downdraw method, a redraw method, and a fusion method. A disk-shaped glass blank serving as a base of the magnetic disk glass substrate is cut out by appropriately performing shape processing on the plate-shaped glass produced by these known manufacturing methods.
  • a disk-shaped glass substrate having circular through holes is formed by forming a circular hole using a known processing method after the glass blank forming treatment. Thereafter, further chamfering may be performed. Further, the main surface may be ground for the purpose of adjusting the plate thickness or reducing the flatness.
  • a first polishing treatment is performed on the main surface of the glass substrate.
  • the first polishing treatment aims at mirror polishing of the main surface. Specifically, the main surfaces on both sides of the glass substrate are polished while holding the glass substrate in a holding hole provided in a holding member (carrier) attached to the double-side polishing apparatus.
  • the machining allowance by the first polishing is, for example, about several ⁇ m to 100 ⁇ m.
  • the first polishing treatment is intended to remove, for example, scratches and distortions remaining on the main surface, or to adjust minute surface irregularities. Note that the first polishing process may be divided into a plurality of polishing processes in order to further reduce the surface unevenness or to perform more precise adjustment.
  • the glass substrate is polished while applying polishing slurry using a known double-side polishing apparatus having an upper surface plate, a lower surface plate, an internal gear, a carrier, and a sun gear and having a planetary gear mechanism.
  • a polishing slurry containing polishing abrasive grains (free abrasive grains) is used.
  • free abrasive grains used in the first polishing treatment for example, abrasive grains of cerium oxide, zirconia, colloidal silica, etc. (particle size: diameter of about 0.3 to 3 ⁇ m) are used.
  • the glass substrate is held between a pair of upper and lower surface plates.
  • An annular flat polishing pad (for example, a resin polisher) is attached to the upper surface of the lower surface plate and the bottom surface of the upper surface plate. Then, by moving either the upper surface plate or the lower surface plate, or both, the glass substrate and each surface plate are relatively moved, thereby polishing both main surfaces of the glass substrate.
  • a resin polisher for example, a resin polisher
  • the glass substrate can be appropriately chemically strengthened.
  • the chemical strengthening liquid for example, a molten liquid obtained by heating potassium nitrate or sodium nitrate or a mixture thereof to 300 ° C. to 500 ° C. can be used. Then, the glass substrate is immersed in the chemical strengthening solution for 1 hour to 10 hours, for example. The timing for performing the chemical strengthening treatment can be appropriately determined.
  • the chemical strengthening process is not an essential process and is not necessarily performed.
  • a second polishing process is performed on the glass substrate after the chemical strengthening process.
  • the second polishing treatment aims at mirror polishing of the main surface.
  • a double-side polishing apparatus having the same configuration as the double-side polishing apparatus used for the first polishing is used.
  • the machining allowance by the second polishing is, for example, about 0.5 ⁇ m to 10 ⁇ m.
  • polishing is performed using a slurry containing loose abrasive grains.
  • Colloidal silica is preferably used as the free abrasive.
  • the average particle diameter of colloidal silica is, for example, 5 nm or more and 50 nm or less.
  • the arithmetic average roughness Ra of the main surface of the glass substrate is set to 0.15 nm or less, preferably 0.1 nm or less, and the root mean square roughness Rq of minute undulations at a wavelength of 50 to 200 ⁇ m is set to 0.06 nm or less.
  • a cleaning process and a drying process are performed so that the organic component does not remain as a film, for example, on the main surface of the glass substrate whose surface roughness satisfies the quality requirements of the magnetic disk glass substrate.
  • FIG. 1 is a diagram schematically illustrating a glass substrate surface cleaning process and a glass substrate surface drying process performed after the cleaning process in the present embodiment.
  • one process of the cleaning process includes a first liquid process in which the glass substrate is immersed in a first liquid containing a water-soluble solvent having a boiling point lower than that of water and water.
  • the first liquid contains a water-soluble solvent as a main component, and contains 3.0% by weight or more of water.
  • the first liquid preferably contains 5% by weight or more of water.
  • the upper limit of the water content of the first liquid is not particularly limited, but is, for example, 40% by weight, preferably 35% by weight, and more preferably 30% by weight.
  • the main component means that the content is more than 50% by weight.
  • IPA isopropyl alcohol
  • the glass substrate is disposed in the vapor of the second liquid containing a water-soluble solvent having a boiling point lower than that of water and water.
  • a part of the droplet of the glass substrate is dropped from the glass substrate while forming the droplet on the surface of the glass substrate.
  • some of the droplets remaining on the glass substrate are evaporated.
  • the second liquid contains the water-soluble solvent as a main component and contains more than 1.0% by weight of water.
  • the water content is preferably 1.1% by weight or more.
  • the water content is preferably 5.0% by weight or less, and the water content is more preferably 2.8% by weight or less.
  • IPA isopropyl alcohol
  • the main component means that the content is more than 50% by weight.
  • IPA will be described as an example of the water-soluble solvent in the first liquid and the second liquid.
  • the glass substrate 10 that has been subjected to the final polishing process is sequentially sent to an alkali cleaning tank 12, a pure water cleaning tank 14, a neutral detergent cleaning tank 16, a pure water cleaning tank 18, and an IPA cleaning tank 20.
  • an alkali cleaning tank 12 a pure water cleaning tank 14
  • a neutral detergent cleaning tank 16 a pure water cleaning tank 18
  • an IPA cleaning tank 20 an IPA cleaning tank 20.
  • ultrasonic cleaning may be applied to the glass substrate 10 and the liquid to perform ultrasonic cleaning.
  • the cleaning liquid in the alkali cleaning tank 12 be a weak alkaline solution as much as possible so that the main surface of the glass substrate 10 is not etched and the surface roughness is not increased.
  • the pure water washing tank 14 the glass substrate 10 is immersed in water and rinsed.
  • the neutral detergent cleaning tank 16 the glass substrate is dipped in a neutral detergent solution, and the surface of the glass substrate including the main surface is cleaned. Thereby, the foreign substance of the organic component adhering to the main surface, etc. can be removed.
  • the glass substrate 10 is immersed in water and rinsed. Further, the glass substrate 10 is immersed in a solution (first liquid) containing IPA as a main component in the IPA cleaning tank 20.
  • IPA is suitably used in the drying process described later.
  • IPA as a main component means that IPA is contained in the solution in an amount of more than 50% by weight.
  • a drying process is performed with the vapor of IPA in the drying tank 22 to dry the glass substrate 10.
  • a water-containing solution (second liquid) containing IPA and water accumulates at the bottom to form a liquid.
  • the second liquid is heated to the boiling point temperature of IPA (82.4 ° C.), IPA is in a boiling state, and the vapor phase of the drying treatment tank 22 is filled with the vapor of IPA and water.
  • the glass substrate 10 is disposed in the gas phase of the drying treatment tank 22.
  • the second liquid contains IPA as a main component.
  • the main component means that IPA is contained in the second liquid in an amount of more than 50% by weight.
  • the following mechanism is estimated.
  • the temperature of the surface of the glass substrate 10 is lower than the temperature of the vapor of the second liquid.
  • a film of the first liquid containing IPA as a main component remains on the main surface of the glass substrate 10 by the treatment of dipping in the first liquid of the IPA cleaning tank 20.
  • a large number of new liquid droplets are newly formed on the surface of the glass substrate 10, and the first liquid remaining by the formation of the second liquid droplets is the glass substrate. Drop from 10 and fall into the second liquid.
  • the first liquid remaining on the surface of the glass substrate 10 is replaced with the second liquid.
  • the glass substrate 10 is gradually warmed by the temperature of the vapor, and droplets are not formed on the surface of the glass substrate 10.
  • the surface of the glass substrate 10 is gradually dried.
  • the surface of the glass substrate 10 taken out from the drying treatment tank 22 is in a dry state, and a magnetic disk glass substrate is obtained.
  • the water content of the first liquid in the IPA cleaning tank 20 is 3.0% by weight or more.
  • the upper limit of the water content is, for example, 40% by weight, preferably 35% by weight, and more preferably 30% by weight. By determining the water content in this way, it is possible to suppress the occurrence of cleaning spots in the glass substrate 10 after the drying treatment.
  • the second liquid used for the drying treatment contains IPA as a main component and contains water in excess of 1.0% by weight, preferably 1.1% by weight or more.
  • the upper limit of the water content is preferably 5.0% by weight, more preferably 2.8% by weight or less.
  • the cleaning stain is derived from the organic component residue that has adhered to the surface of the glass substrate 10 before the cleaning treatment or the organic component of the detergent used in the aqueous cleaning tank.
  • the occurrence of cleaning spots can be considered as follows.
  • the organic component residue and the organic component of the detergent adhering to the surface of the glass substrate 10 are brought into the water of the pure water cleaning tank 18 and the first liquid of the IPA cleaning tank 20, and a part thereof is the surface of the glass substrate 10. Adhere to and move further to the back tank.
  • the glass substrate 10 on which the organic component residue and the foreign substance of the organic component of the detergent (hereinafter also referred to as organic foreign matter) adhere to the surface is brought into the IPA cleaning tank 20 and further to the drying treatment tank 22.
  • the organic foreign matter is difficult to be removed by the IPA droplets in the drying treatment tank 22.
  • the support rod for arranging in the vapor in the vapor phase supports the outer peripheral end surface of the glass substrate 10 from below, A liquid pool is created at the contact portion between the rod and the outer peripheral end face.
  • This liquid reservoir is not easily exchanged by liquid droplets, and is dried while keeping in contact with the outer peripheral end surface of the glass substrate 10. For this reason, a cleaning stain is formed in a region on the main surface of the glass substrate 10 in the vicinity of the outer peripheral end surface of the glass substrate 10 that comes into contact with the support rod.
  • a weak alkaline or neutral cleaning agent is used in the cleaning process with a weak etching power on the main surface.
  • Such a cleaning agent may not sufficiently remove organic component residues adhering to the glass substrate 10.
  • the glass substrate 10 to which organic foreign matters or the like are attached is easily brought into the IPA cleaning tank 20.
  • the organic components are also accumulated in the IPA cleaning tank 20, and when the glass substrate 10 is brought from the IPA cleaning tank 20 to the drying treatment tank 22, it tends to adhere to or remain on the surface of the glass substrate 10. .
  • the drying process in the drying tank 22 is intended to dry the glass substrate 10 and has a small cleaning function.
  • the glass substrate 10 was dried with organic component residues and detergent organic component foreign matters remaining on the surface of the glass substrate 10 to create a cleaning stain.
  • the content rate of the water of the 1st liquid used for the IPA washing tank 20 shall be 3.0 weight% or more.
  • the water content is, for example, 40% by weight or less, preferably 35% by weight or less, and more preferably 30% by weight or less.
  • the second liquid contains water in excess of 1.0% by weight in addition to IPA. Since water has a higher polarity than IPA, it is considered that water is likely to be adsorbed by organic component residues and foreign matters of organic components of detergents (hereinafter referred to as organic foreign matters). Furthermore, since the glass substrate surface has high hydrophilicity, water tends to enter around the organic foreign matter strongly adhered to the surface of the glass substrate 10 and between the organic foreign matter and the glass substrate.
  • the content of water in the second liquid is more than 1.0% by weight and preferably 1.1% by weight or more from the viewpoint of suppressing generation of cleaning spots. More preferably, it is 1.3% by weight or more. Further, it is preferably 5.0% by weight or less, more preferably 2.8% by weight or less, from the viewpoint of sufficiently evaporating water droplets in the drying treatment tank 22 and sufficient drying. .
  • a neutral detergent or a weak alkaline detergent having a low etching power is used in order to suppress an increase in the surface roughness of the glass substrate subjected to the final polishing process.
  • the glass substrate 10 with the organic component residue adhered to the surface is easily brought into the drying treatment tank 22. That is, in the cleaning process, a cleaning agent is selected such that the change in the surface roughness Ra (arithmetic mean roughness) of the main surface of the glass substrate 10 is 0.05 nm or less before and after the cleaning process.
  • the water content of the first liquid used in the IPA cleaning tank 20 is 3.0% by weight or more and 40% by weight or less, preferably 35% by weight or less, and more preferably 30% by weight or less.
  • the IPA cleaning tank 20 it is possible to prevent organic component residues and foreign matter from adhering to the surface of the glass substrate 10.
  • the content rate of water exceeds 1.0 wt% and the second liquid containing IPA as a main component is used in the drying treatment tank 22, organic foreign matters are removed from the main surface of the glass substrate 10. Occurrence of cleaning spots can be suppressed.
  • the water content in the second liquid in the drying treatment tank 22 is set to 1.0% by weight or less in order to prevent burns.
  • the glass composition has changed.
  • the content of alkali metal components such as Li 2 O, Na 2 O, and K 2 O in the glass composition of the glass substrate 10 is 22 mol% or less.
  • it is 20 mol% or less, and the content rate of an alkali metal component is low compared with the past. For this reason, even if the content rate of water in the second liquid exceeds 1.0% by weight, burns hardly occur.
  • the glass substrate 10 contains alkaline earth metal components of MgO, CaO, SrO and BaO.
  • the glass substrate 10 of the present embodiment is a smooth surface having no texture on the main surface. Therefore, the surface roughness of the glass substrate 10 of the present embodiment is isotropic and has no anisotropy.
  • the water content of the first liquid used in the IPA cleaning tank 20 is set to 3.0% by weight or more, and the drying treatment tank 22 It is preferable that the content of water contained in the second liquid exceeds 1.0% by weight. In this case, droplets containing IPA and water are formed in the drying treatment tank 22.
  • water since water has a higher polarity than IPA, it is easily adsorbed with organic component residues and detergent organic components, and the glass substrate is hydrophilic. For this reason, water tends to enter around the organic foreign matter adhering to the surface of the glass substrate 10 and further into the gap between the organic foreign matter and the glass substrate.
  • the organic foreign matter is easily dissolved in a droplet containing water, and the organic foreign matter is easily removed from the glass substrate 10 by dropping the droplet. For this reason, generation
  • the content rate of water in the second liquid exceeds 5.0% by weight, the water droplets are not sufficiently evaporated in the drying treatment tank 22, and the drying treatment cannot be performed sufficiently.
  • the content of water in the second liquid is less than 1.0% by weight, the generation of cleaning spots cannot be suppressed.
  • the water content in the second liquid is more preferably 2.8% by weight or less.
  • the content rate of the water of the 2nd liquid of the drying process tank 22 is lower than the content rate of the water of the 1st liquid of the IPA washing tank 20, and it suppresses a cleaning spot and dries the glass substrate 10. It is preferable because it can be performed.
  • the content rate of the water of the second liquid is equal to or higher than the content rate of the water of the first liquid, if the second liquid in the drying treatment tank 22 is used for a long time, the dry state of the glass substrate 10 may be deteriorated. is there.
  • the water content of the second liquid is, for example, more than 1.0% by weight.
  • the cleaning treatment is performed by immersing the glass substrate 10 in water having a temperature of 40 ° C. or more and 50 ° C. or less. It is preferable to include a water treatment for washing.
  • the water in the pure water cleaning tank 14 or the pure water cleaning tank 18 shown in FIG. 1 is preferably warm water of 40 ° C. or higher and 50 ° C. or lower.
  • warm water of 40 ° C. or more and 50 ° C. or less the alkali metal component on the surface of the glass substrate 10 is easily dissolved in water, and it is possible to easily prevent burn that has been a problem in the past. For this reason, even if water is contained in the second liquid in the drying treatment tank 22, burns are less likely to occur.
  • the cleaning treatment is a water treatment (treatment with a pure water washing tank 14 or a pure water washing tank 18) in which the glass substrate 10 is immersed in water having a temperature of 40 ° C. or more and 50 ° C. or less to wash the surface of the glass substrate 10. ) And the treatment with the first liquid in the IPA washing tank 20, it is preferable to treat the glass substrate 10 in the order of water treatment, washing treatment with the first liquid, and drying treatment. By performing the treatment in this order, the alkali metal component on the surface of the glass substrate 10 is dissolved in water by water treatment, and then washed with the second liquid containing IPA. Is less prone to scorching and cleaning stains.
  • Example 1 In order to confirm the effect of this embodiment, the water stain in the first liquid of the IPA cleaning tank 20 was changed in various ways, and cleaning spots were observed.
  • a glass substrate having the following glass composition was used in terms of mol% based on oxide. SiO 2 : 66.2%, Al 2 O 3 : 12.0%, Li 2 O: 11.1% Na 2 O: 5.5%, K 2 O: 3.4% ZrO 2 : 1.8%.
  • the cleaning stain was visually observed and evaluated in three stages according to the frequency of occurrence of the cleaning stain.
  • Level A means that no cleaning spots occur on all 100 glass substrates (acceptable level).
  • Level B shows only one cleaning spot on 100 glass substrates, but 99 sheets.
  • the glass substrate does not show cleaning stains, and the frequency of occurrence of cleaning stains is extremely low (acceptable level), meaning that level C is unacceptable due to the occurrence of cleaning stains on two or more glass substrates out of 100. Means (failed level).
  • the time until a poorly dried batch was generated due to an increase in the water content in the drying treatment tank 22 was evaluated.
  • the increase in the water content in the drying treatment tank 22 is caused by bringing water from the IPA tank 20 into the drying treatment tank 22.
  • the poorly dried batch refers to a batch in which the dry state of the surface of the glass substrate immediately after the drying treatment is examined by visual observation, and a non-dry state occurs in two or more glass substrates in one batch.
  • the second liquid in the drying treatment tank 22 was IPA, and no water was added. That is, the water content of the second liquid is 0% by weight. Table 1 below shows the evaluation result of the cleaning stain when the water content in the first liquid is changed and the time until the poorly dried batch is generated.
  • the occurrence of cleaning spots can be suppressed by setting the water content of the first liquid in the IPA cleaning tank 20 to 3.0% by weight or more. Further, as shown in Example 8, it was confirmed that no cleaning stain was generated even when the water content of the first liquid was 35.0% by weight or even when the water content was 40-50% by weight. did. Furthermore, as Example 12, the glass substrate was washed and dried under the same conditions as in Example 3 except that 2.0 wt% of water was added to the second liquid in the drying treatment tank 22. The main surface of 100 glass substrates obtained in Example 3 and Example 12 is observed in detail using a laser type surface inspection apparatus, and the number of cleaning spots generated at the outer peripheral edge is so small that it cannot be visually observed. I counted.
  • Example 3 was 3 out of 100 sheets, whereas Example 12 was 1 sheet. From this, the improvement of a cleaning spot was seen by making the 2nd liquid of the drying process tank 22 contain water. Further, when the water content of the first liquid is set to 45.0 wt% and 50.0 wt% as in Example 10 and Example 11, the time until the poorly dried batch is rapidly shortened. Become. In the water content of the first liquid in Examples 10 and 11, the amount of water brought into the drying treatment tank 22 increases during mass production, and when the continuous production volume increases, the time until a poorly dried batch rapidly occurs Shorter. For this reason, replacement
  • the water stain in the second liquid in the drying treatment tank 22 was changed in various ways, and the cleaning stain was observed.
  • the water content of the first liquid was fixed at 0.0% by weight.
  • the cleaning stain was visually observed and evaluated in three stages according to the frequency of occurrence of the cleaning stain.
  • Level A means that no cleaning spots occur on all 100 glass substrates (acceptable level).
  • Level B shows only one cleaning spot on 100 glass substrates, but 99 sheets.
  • the glass substrate does not show cleaning stains, and the frequency of occurrence of cleaning stains is extremely low (acceptable level), meaning that level C is unacceptable due to the occurrence of cleaning stains on two or more glass substrates out of 100. Means (failed level).
  • the dry state of the surface of the glass substrate immediately after the drying treatment was examined visually.
  • the dry state was evaluated in three stages according to the frequency of occurrence of a non-dried glass substrate.
  • Level A means that the glass substrate is dry on all 100 glass substrates.
  • Level B means that only one of the 100 glass substrates is not sufficiently dried, but 99 glass substrates are dry.
  • level C means that two or more glass substrates out of 100 glass substrates are in a non-dry state.
  • a non-dry or non-dry state here means that the state immediately before drying is observed in the contact part vicinity of a glass substrate and the holding jig holding it. In addition, all of these non-drying states finally disappeared.
  • Table 2 shows the evaluation result of the cleaning stain when the water content in the second liquid is changed.
  • the occurrence of cleaning spots can be suppressed by setting the water content of the second liquid to more than 1.0% by weight, preferably 1.1% by weight or more.
  • the water content is preferably 5.0% by weight or less, less than 3.0% by weight, more specifically 2 It was found that it was more preferable to set the content to 8% by weight or less. From this, the effect of this embodiment is clear.
  • the content of the alkali metal component contained in the glass substrate is preferably 22.0 mol% or less, and preferably 20.0 mol% or less from the viewpoint of preventing burns in addition to the cleaning stain. Is preferably twisted.
  • Example 4 The water content in the second liquid in the drying tank 22 was examined in more detail, and cleaning spots were observed. At this time, when the water content of the first liquid is fixed to 3.0% by weight and the water content of the second liquid is variously changed, the cleaning spots are acceptable levels in visual observation. However, at this time, the cleaning stain was observed in detail with a laser surface inspection apparatus. Thus, the cleaning spots were evaluated in detail by examining the number of glass substrates in which fine cleaning spots (cleaning spots generated in the vicinity of the outer periphery of the glass substrate) that could not be visually observed in 100 glass substrates were generated. . Table 4 below shows the evaluation results.
  • the water content of the second liquid is more than 1.0% by weight, preferably 1.5%. It can be seen that by setting the weight% or more, the number of glass substrates on which fine cleaning spots are generated can be suppressed to 1 or less per 100 sheets.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Cleaning By Liquid Or Steam (AREA)
  • Surface Treatment Of Glass (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

 ガラス基板の主表面において、洗浄シミの発生を抑制する磁気ディスク用ガラス基板の製造方法は、前記ガラス基板の表面の洗浄処理と、前記洗浄処理後に行う前記表面の乾燥処理と、を含む。前記洗浄処理は、水よりも沸点の低い水溶性溶剤と水を含む第1の液体に、前記ガラス基板を浸漬する第1の液体処理を含み、前記第1の液体は、前記水溶性溶剤を主成分として含み、水を、3.0重量%以上含む。あるいは、前記乾燥処理は、水よりも沸点の低い水溶性溶剤と水を含む第2の液体の蒸気中に前記ガラス基板を配して、前記ガラス基板の表面に液滴を形成させながら、前記ガラス基板の液滴の一部を前記ガラス基板から滴下させることを含む。前記第2の液体は、前記水溶性溶剤を主成分として含み、前記水を1.0重量%超含む。

Description

磁気ディスク用ガラス基板の製造方法
 本発明は、磁気ディスク用ガラス基板の製造方法に関する。
 情報記録媒体の1つとして用いられる磁気ディスクには、従来より、ガラス基板が好適に用いられている。今日、ハードディスクドライブ装置における記憶容量の増大の要請を受けて、磁気記録の高密度化が図られている。これに伴って、磁気ヘッドの磁気記録面からの浮上距離を極めて短くして磁気記録情報エリアを微細化することが行われている。このような磁気ディスク用ガラス基板においては、高記録密度ハードディスクドライブ装置に必須の磁気ヘッド低浮上量化を達成するために、基板の表面凹凸、特に微小うねりに対する低減要求はますます強まっている。さらに、ガラス基板の主表面には、磁性層が形成されるので、主表面に有機成分等による不要な異物が残存することがないように主表面は厳しく管理される。このため、最終研磨後のガラス基板の主表面の洗浄処理及び乾燥処理の重要性は高い。
 例えば、主表面上にテクスチャが形成された磁気ディスク用ガラス基板の主表面上に付着した異物によりガラスが改質し、劣化すること(いわゆるヤケ)を防止するための洗浄処理、乾燥処理が知られている(特許文献1)
 具体的には、磁気ディスク用ガラス基板を製造するとき、洗浄処理では、少なくとも、純水、または、水を主成分とする水溶液による洗浄と、その後、水よりも沸点の低い水溶性溶剤を主成分とし、かつ、含水量が1.0重量%以下である液体を洗浄液として洗浄する。乾燥処理では、少なくとも、水よりも沸点の低い水溶性溶剤を主成分とする液体の蒸気と磁気ディスク用ガラス基板とを接触させる脱水処理を行う。この脱水処理の前記液体に含まれる水分量は1.0重量%以下である。
特許5032758号公報
 しかし、近年、洗浄処理及び乾燥処理を行ったガラス基板の主表面上の外周側端面近傍の周上の一部の領域に、白濁したシミのように見える欠陥が発生する問題が生じてきた。以降では、この欠陥を洗浄シミと称する。この洗浄シミは、ガラス中の主表面にあるアルカリ金属成分と空気中の水とが反応して主表面全面が白く濁るように形成される上述したヤケとは異なるものであり、乾燥処理時に主表面に部分的に残ったものと考えられる。このような洗浄シミは、磁性膜をガラス基板の主表面に形成することにより磁気ディスクを作製する点から好ましくない。
 そこで、本発明は、磁気ディスク用ガラス基板を製造するとき、ガラス基板の主表面において、洗浄シミの発生を抑制することができる磁気ディスク用ガラス基板の製造方法を提供することを目的とする。
 本願発明者は、上記洗浄シミの原因を探索するために洗浄シミの組成等を調べた結果、洗浄シミは、洗浄処理で用いる洗浄剤や洗浄処理前にガラス基板に付着した有機成分の異物に由来したものであり、この有機成分の一部が乾燥処理においてガラス基板に残存したものであることがわかった。そこで、有機成分がガラス基板の表面に付着したガラス基板であっても、洗浄処理及び乾燥処理で有機成分を十分に除去することができるような対策を検討した結果、本願発明者は、以下の態様の発明をするに至った。
 すなわち、本発明の一態様は、磁気ディスク用ガラス基板の製造方法である。当該製造方法は、以下の形態を含む。
[形態1]
 磁気ディスク用ガラス基板の製造方法であって、
 前記ガラス基板の表面の洗浄処理と、前記洗浄処理後に前記表面を乾燥させる乾燥処理と、を含み、
 前記洗浄処理は、水よりも沸点の低い水溶性溶剤と水を含む第1の液体に、前記ガラス基板を浸漬する第1の液体処理を含み、
 前記第1の液体は、前記水溶性溶剤を主成分として含み、水を3.0重量%以上含む、ことを特徴とする磁気ディスク用ガラス基板の製造方法。
[形態2]
 前記乾燥処理は、水よりも沸点の低い水溶性溶剤と水を含む第2の液体の蒸気中に前記ガラス基板を配して、前記ガラス基板の表面に液滴を形成させながら、前記ガラス基板の液滴の少なくとも一部を前記ガラス基板から滴下させるとともに、前記ガラス基板を乾燥させる処理であり、
 前記第2の液体の水の含有率は、前記第1の液体の水の含有率よりも低い、形態1に記載の磁気ディスク用ガラス基板の製造方法。
[形態3]
 前記第2の液体の水の含有率は、1.0重量%超である、形態2に記載の磁気ディスク用ガラス基板の製造方法。
[形態4]
 磁気ディスク用ガラス基板の製造方法であって、
 前記ガラス基板の表面の洗浄処理と、前記洗浄処理後に前記表面を乾燥させる乾燥処理と、を含み、
 前記乾燥処理は、水よりも沸点の低い水溶性溶剤と水を含む第2の液体の蒸気中に前記ガラス基板を配して、前記ガラス基板の表面に液滴を形成させながら、前記ガラス基板の液滴の一部を前記ガラス基板から滴下させることを含み、
 前記第2の液体は、前記水溶性溶剤を主成分として含み、前記水を1.0重量%超含む、ことを特徴とする磁気ディスク用ガラス基板の製造方法。
[形態5]
 前記洗浄処理は、水よりも沸点の低い水溶性溶剤と水を含む第1の液体に、前記ガラス基板を浸漬する第1の液体処理を含み、
 前記第1の液体の水の含有率は、前記第2の液体の水の含有率よりも高い、形態4に記載の磁気ディスク用ガラス基板の製造方法。
[形態6]
 前記ガラス基板は、アルカリ金属成分を含有し、
 前記洗浄処理は、前記ガラス基板を、温度が40℃以上50℃以下の水に浸漬して前記表面を洗浄する水処理を含む、形態1~3及び5のいずれか1つに記載の磁気ディスク用ガラス基板の製造方法。
[形態7]
 前記水処理、前記第1の液体処理、及び前記乾燥処理の順番で前記ガラス基板を処理する、形態6に記載の磁気ディスク用ガラス基板の製造方法。
[形態8]
 前記水溶性溶剤はイソプロピルアルコールである、形態1~7のいずれか1つに記載の磁気ディスク用ガラス基板の製造方法。
[形態9]
 前記ガラス基板のアルカリ金属成分の合計の含有率は、22.0モル%以下である、形態1~8のいずれか1項に記載の磁気ディスク用ガラス基板の製造方法。
 上述の磁気ディスク用基板の製造方法では、磁気ディスク用ガラス基板を製造するとき、ガラス基板の主表面において、洗浄シミの発生を抑制することができる。
本実施形態における、洗浄処理及び乾燥処理を模式的に説明する図である。
 以下、本発明の磁気ディスク用ガラス基板の製造方法について詳細に説明する。
 本実施形態では、磁気ディスク用ガラス基板は、円板形状であって、中心部分が同心円形状にくり抜かれたリング形状を成している。磁気ディスク用ガラス基板は、このリング形状の中心を回転軸として回転する。磁気ディスクは、磁気ディスク用ガラス基板に磁性層等を積層して得られる。例えば、付着層、軟磁性層、非磁性下地層、垂直磁気記録層、保護層および潤滑層等がガラス基板上に成膜される。これにより、磁気ディスクが製造される。したがって、磁気ディスク用ガラス基板の表面は、きれいに清浄されるよう厳しく管理されている。このような磁気ディスク用ガラス基板は以下の製造方法によりつくられる。
 以下、このガラス基板の製造方法の各処理について、説明する。
 (a)ガラスブランク成形処理
 ガラスブランクは、ガラス基板の元となる板状ガラスである。ガラスブランクの成形では、例えばフロート法が用いられる。ガラスブランクの成形処理では先ず、錫などの溶融金属の満たされた浴槽内に、溶融ガラスを連続的に流し入れることで板状ガラスを得る。溶融ガラスは厳密な温度操作が施された浴槽内で進行方向に沿って流れ、最終的に所望の厚さ、幅に調整された板状ガラスが形成される。この板状ガラスから、磁気ディスク用ガラス基板の元となる所定形状(例えば平面視四角形状)の板状のガラスブランクが切り出される。
 また、板状のガラスブランクの成形は、フロート法の他に、例えばプレス成形法を用いることもできる。さらに、ダウンドロー法、リドロー法、フュージョン法などの公知の製造方法を用いて製造することができる。これらの公知の製造方法で作られた板状ガラスに対し、適宜形状加工を行うことによって磁気ディスク用ガラス基板の元となる円板状のガラスブランクが切り出される。
 (b)形状加工処理
 次に、形状加工処理では、ガラスブランク成形処理後、公知の加工方法を用いて円孔を形成することにより円形状の貫通孔があいたディスク状のガラス基板を作る。その後、さらに面取りを実施してもよい。また、板厚調整や平坦度低減などの目的で、主表面の研削を実施してもよい。
 (c)第1研磨処理
 次に、ガラス基板の主表面に第1研磨処理が施される。第1研磨処理は、主表面の鏡面研磨を目的とする。具体的には、ガラス基板を、両面研磨装置に装着される保持部材(キャリア)に設けられた保持孔内に保持しながらガラス基板の両側の主表面の研磨が行われる。第1研磨による取り代は、例えば数μm~100μm程度である。第1研磨処理は、例えば主表面に残留したキズや歪みの除去、あるいは微小な表面凹凸の調整を目的とする。なお、表面凹凸についてさらに低減したり、より精密な調整を行うために、第1研磨処理を複数の研磨処理に分けて実施してもよい。
 第1研磨処理では、上定盤、下定盤、インターナルギヤ、キャリア、太陽ギヤを備え、遊星歯車機構を有する公知の両面研磨装置を用いて、研磨スラリーを与えながらガラス基板が研磨される。第1研磨処理では、研磨砥粒(遊離砥粒)を含んだ研磨スラリーが用いられる。第1研磨処理に用いる遊離砥粒として、例えば、酸化セリウムやジルコニア、コロイダルシリカの砥粒等(粒子サイズ:直径0.3~3μm程度)が用いられる。両面研磨装置では、上下一対の定盤の間にガラス基板が狭持される。下定盤の上面及び上定盤の底面には、全体として円環形状の平板の研磨パッド(例えば、樹脂製のポリッシャ)が取り付けられている。そして、上定盤または下定盤のいずれか一方、または、双方を移動操作させることで、ガラス基板と各定盤とを相対的に移動させることにより、ガラス基板の両主表面を研磨する。
 (d)化学強化処理
 ガラス基板は適宜化学強化することができる。化学強化液として、例えば硝酸カリウムや硝酸ナトリウム、またはそれらの混合物を300℃~500℃に加熱して得られる溶融液を用いることができる。そして、ガラス基板を化学強化液中に例えば1時間~10時間浸漬する。化学強化処理を行うタイミングは、適宜決定することができる。化学強化処理は、必須の処理ではなく、必ずしも行う必要はない。
 (e)第2研磨(最終研磨)処理
 次に、化学強化処理後のガラス基板に第2研磨処理が施される。第2研磨処理は、主表面の鏡面研磨を目的とする。第2研磨においても、第1研磨に用いる両面研磨装置と同様の構成を有する両面研磨装置が用いられる。第2研磨による取り代は、例えば0.5μmから10μm程度である。
第2研磨処理では、遊離砥粒を含むスラリーを用いて研磨が行われる。遊離砥粒としてコロイダルシリカが好適に用いられる。コロイダルシリカの平均粒径は、例えば、5nm以上50nm以下である。この処理により、ガラス基板の主表面の算術平均粗さRaを0.15nm以下、好ましくは、0.1nm以下にし、波長50~200μmにおける微小うねりの二乗平均平方根粗さRqを0.06nm以下にすることができる。次に、表面粗さが磁気ディスク用ガラス基板の品質要求を満足するガラス基板の主表面に有機成分が例えば膜となって残存しないように、洗浄処理及び乾燥処理が行われる。 
 (f)洗浄処理、乾燥処理
 図1は、本実施形態における、ガラス基板の表面の洗浄処理、及び洗浄処理後に行うガラス基板の表面の乾燥処理を模式的に説明する図である。
 ここで、洗浄処理の一処理は、水よりも沸点の低い水溶性溶剤と水を含む第1の液体に、ガラス基板を浸漬する第1の液体処理を含む。このとき、第1の液体は、水溶性溶剤を主成分として含み、水を3.0重量%以上含む。さらに、第1の液体は、水を5重量%以上含むことが好ましい。第1の液体の水の含有量の上限は、特に制限されないが、例えば40重量%、好ましくは35重量%、更に好ましくは30重量%である。主成分とは、含有率が50重量%超を意味する。ここで、水よりも沸点の低い水溶性溶剤として、IPA(イソプロピルアルコール)が好適に用いられる。
 さらに、洗浄処理後に行う乾燥処理では、水よりも沸点の低い水溶性溶剤と水を含んだ第2の液体の蒸気中にガラス基板を配する。このとき、ガラス基板の表面に液滴を形成させながら、ガラス基板の液滴の一部をガラス基板から滴下させる。この後、ガラス基板に残存する液滴の一部を蒸発させる。このとき、第2の液体は、上記水溶性溶剤を主成分として含み、水を1.0重量%超含む。水の含有率は、1.1重量%以上であることが好ましい。より好ましくは、1.3重量%以上である。一方、水の含有率は5.0重量%以下であることが好ましく、水の含有率は2.8重量%以下であることがより好ましい。また、水よりも沸点の低い水溶性溶剤として、IPA(イソプロピルアルコール)が好適に用いられる。主成分とは、含有率が50重量%超を意味する。
以下、第1の液体及び第2の液体における水溶性溶剤としてIPAを例にして説明する。
 以下、洗浄処理、乾燥処理の順番に説明する。
 図1に示すように、最終研磨処理をなされたガラス基板10は、アルカリ洗浄槽12、純水洗浄槽14、中性洗剤洗浄槽16、純水洗浄槽18及びIPA洗浄槽20に順次送られる。場合によっては、ガラス基板10が各槽の各液に浸漬されるとき、ガラス基板10及び液に超音波が与えられて超音波洗浄されてもよい。
 アルカリ洗浄槽12では、ガラス基板10の主表面に残る異物をガラス基板10の表面から引き剥がすために、アルカリ性溶液が用いられる。このとき、ガラス基板10の主表面のエッチングが進み、表面粗さが増加することがないように、アルカリ洗浄槽12の洗浄液はできる限り弱アルカリ性溶液とすることが好ましい。
 次に、純水洗浄槽14において、ガラス基板10は水に漬され、濯がれる。
 この後、中性洗剤洗浄槽16において、ガラス基板は中性洗剤の溶液に漬され、主表面を含むガラス基板の表面が洗浄される。これにより、主表面に付着した有機成分の異物等を除去することができる。
 この後、純水洗浄槽18において、ガラス基板10は水に漬され、濯がれる。
 さらに、ガラス基板10は、IPA洗浄槽20のIPAを主成分とする溶液(第1の液体)に漬される。本実施形態で溶液の主成分としてIPAを用いるのは、後述する乾燥処理においてIPAが好適に用いられるためである。IPA洗浄槽20において乾燥処理槽22と同じ種類の溶剤を用いることで、乾燥処理槽22における溶剤の成分が変化しにくくなり、安定した乾燥処理が可能となる。IPAを主成分とするとは、IPAが溶液中に50重量%超含まれることをいう。
 次に、乾燥処理槽22においてIPAの蒸気によって乾燥処理を行い、ガラス基板10を乾燥させる。
 乾燥処理槽22には、IPAと水を含んだ水含有の溶液(第2の液体)が底部に溜まって液を形成している。第2の液体はIPAの沸点の温度(82.4℃)まで加熱されて、IPAは沸騰状態になっており、乾燥処理槽22の気相は、IPA及び水の蒸気で充満している。この乾燥処理槽22の気相中にガラス基板10は配される。第2の液体は、IPAを主成分として含む。主成分とは、IPAが第2の液体中に50重量%超含まれることをいう。
 本実施形態の乾燥処理では、以下のようなメカニズムが推定される。
 乾燥処理では、IPAと水を含んだ第2の液体の蒸気中にガラス基板10が配されるとき、ガラス基板10の表面の温度は、第2の液体の蒸気の温度よりも低いので、蒸気はガラス基板10の表面で凝集してガラス基板10の表面で液滴となる。このとき、ガラス基板10には、IPA洗浄槽20の第1の液体に漬す処理によって主表面にIPAを主成分とする第1の液体の膜が残存している。乾燥処理では、ガラス基板10の表面に第2の液体の液滴が新たに多数形成されるので、この第2の液体の液滴の形成により、残存していた第1の液体は、ガラス基板10から滴下して第2の液体中に落下する。これにより、ガラス基板10の表面に残留していた第1の液体が第2の液体に置換される。その後、ガラス基板10は蒸気の温度によって徐々に暖められてガラス基板10の表面に液滴が形成されなくなる。こうして、ガラス基板10の表面は、徐々に乾燥する。乾燥処理槽22から取り出したガラス基板10の表面は、乾燥状態になり、磁気ディスク用ガラス基板が得られる。
 このような乾燥処理前に行う洗浄処理において、IPA洗浄槽20の第1の液体の水の含有率は、3.0重量%以上である。水の含有率の上限は例えば40重量%であり、好ましくは35重量%、更に好ましくは30重量%である。このように水の含有率を定めることにより、乾燥処理後のガラス基板10において、洗浄シミの発生を抑制することができる。
 また、上記乾燥処理に用いる第2の液体はIPAを主成分として含み、水を1.0重量%超、好ましくは、1.1重量%以上含んでいる。水の含有率の上限は、5.0重量%であることが好ましく、より好ましくは、2.8重量%以下である。
 このように第2の液体に水を1.0重量%超含ませることにより、上述した洗浄シミの発生を抑制することができる。
 さらに、洗浄処理の水を上記数値範囲に含有した上記第1の液体及び上記第2の液体を用いることにより、上述した洗浄シミの発生をよりいっそう抑制することができる。
 洗浄シミは、洗浄処理前からガラス基板10の表面に付着していた有機成分の残留物や水溶液系の洗浄槽で用いられる洗剤の有機成分に由来するものである。そして、洗浄シミの発生は以下のように考えることができる。
 すなわち、ガラス基板10の表面に付着した有機成分の残留物や洗剤の有機成分が純水洗浄槽18の水やIPA洗浄槽20の第1の液体に持ち込まれ、この一部分がガラス基板10の表面に付着して、さらに後ろの槽に移動する。この有機成分の残留物や洗剤の有機成分の異物(以降、有機系異物ともいう)が表面に付着したガラス基板10がIPA洗浄槽20さらには乾燥処理槽22に持ち込まれる。しかし、この有機系異物は乾燥処理槽22におけるIPAの液滴によって除去され難い。上記有機系異物がガラス基板10の表面から剥がれ液滴に含まれたとしても、気相の蒸気中に配するための支持棒がガラス基板10の外周端面を下方から支持しているため、支持棒と外周端面との接触部分において液溜まりをつくる。この液溜まりは液滴による液交換が起き難く、ガラス基板10の外周端面と接触し続けたまま乾燥する。このため、支持棒と接触する、ガラス基板10の外周端面近傍の、ガラス基板10の主表面上の領域に洗浄シミが形成される。
 さらに、ガラス基板10の主表面の表面粗さの算術平均粗さRaを0.2nm以下にするために、主表面に対するエッチング力の弱い洗浄処理では弱アルカリ性あるいは中性の洗浄剤が用いられるが、このような洗浄剤では、ガラス基板10に付着した有機成分の残留物を十分に除去できない場合がある。このため、近年、有機系異物等が付着したガラス基板10がIPA洗浄槽20に持ち込まれ易くなっていると考えられる。その結果、IPA洗浄槽20にも有機成分が溜まるようになり、IPA洗浄槽20から乾燥処理槽22にガラス基板10を持ち込む際にガラス基板10の表面に付着し、あるいは残留しやすくなっていた。さらに、乾燥処理槽22における乾燥処理は、ガラス基板10の乾燥が目的であり洗浄の機能は小さい。この結果、ガラス基板10の表面に有機成分の残留物や洗剤の有機成分の異物が残ったまま乾燥し、洗浄シミをつくっていた。
 本実施形態では、IPA洗浄槽20に用いる第1の液体の水の含有率を3.0重量%以上にする。水の含有率は、例えば40重量%以下、好ましくは35重量%以下、更に好ましくは30重量%以下にする。
 乾燥処理直前のIPA洗浄槽20に用いる第1の液体の水の含有率を上記範囲にすることにより、第1の液体中にガラス基板10を介して持ち込まれた有機系異物がガラス基板10表面に吸着(再付着)することを抑制する。水はIPAよりも極性が高いため、有機系異物がガラス基板10の表面に付着することを抑制することができる。このため、乾燥処理に持ち込まれるガラス基板に付着する有機系異物は少なくなる。このため、ガラス基板10の主表面において、洗浄シミの発生を抑制することができる。
 また、本実施形態では、乾燥処理槽22において、第2の液体には、IPAの他に水を1.0重量%超含む。水はIPAに比べて高い極性をもつので、有機成分の残留物や洗剤の有機成分の異物(以後、有機系異物と呼ぶ)に吸着し易いと考えられる。さらに、ガラス基板表面は親水性が高いことから、ガラス基板10の表面に強く付着した有機系異物の周りや有機系異物とガラス基板の隙間に水が進入しやすい。このため、有機系異物は液滴を形成する水に溶解しやすくなり、この液滴が滴下することでガラス基板10から有機成分の残留物や洗剤の有機成分の異物は容易に除去される。この結果、乾燥処理において、有機成分の残留物や洗剤の有機成分の異物からなる洗浄シミの発生を抑制することができる。
 第2の液体における水の含有率は、洗浄シミの発生を抑制する点から、1.0重量%超であり、1.1重量%以上であることが好ましい。より好ましくは、1.3重量%以上である。また、乾燥処理槽22で、水の液滴を十分に蒸発させて十分な乾燥をする点から、5.0重量%以下であることが好ましく、2.8重量%以下であることがより好ましい。
 上述したように、洗浄処理では、最終研磨処理したガラス基板の表面粗さが増大することを抑制するために、エッチング力の低い中性洗剤あるいは弱アルカリ性の洗剤を用いる。この結果、有機成分の残留物が表面に付着したガラス基板10が乾燥処理槽22に持ち込まれ易い。すなわち、洗浄処理では、洗浄処理の前後でガラス基板10の主表面の表面粗さRa(算術平均粗さ)の変化が0.05nm以下となるような洗浄剤が選択される。このような場合でも、IPA洗浄槽20に用いる第1の液体の水の含有率を3.0重量%以上、40重量%以下、好ましくは35重量%以下、更に好ましくは30重量%以下とすることにより、IPA洗浄槽20において、有機成分の残留物や異物がガラス基板10の表面に付着することを抑制することができる。また、水の含有率を1.0重量%超にし、IPAを主成分として含む第2の液体を乾燥処理槽22で用いることにより、有機系異物をガラス基板10の主表面から除去するので、洗浄シミの発生を抑制することができる。
 従来、ヤケ防止のために、乾燥処理槽22の第2の液体における水の含有率を1.0重量%以下とした。しかし、近年、ガラス組成が変化し、例えば、ガラス基板10のガラス組成のうち、LiO,NaO,KO等のアルカリ金属成分の含有率は22モル%以下,
好ましくは20モル%以下であり、従来に比べてアルカリ金属成分の含有率は低い。このため、第2の液体における水の含有率を1.0重量%超にしてもヤケは発生し難い。
 また、ガラス基板10は、MgO、CaO、SrOおよびBaOのアルカリ土類金属成分を含有している。このため、第1の液体における水の含有率を1.0重量%超にしてもヤケは発生し難くなっている。
 また、従来のガラス基板のように主表面にテクスチャを形成しないので、ヤケは発生し難い。テクスチャを形成する場合、意図的に表面に多数の溝を形成するため、表面からアルカリ金属成分等が溶出しやすく、ヤケが発生しやすかったと考えられる。本実施形態のガラス基板10は、主表面にテクスチャがない平滑面である。したがって、本実施形態のガラス基板10の表面粗さに異方性はなく、等方的である。
 本実施形態では、洗浄シミの発生をより効果的に抑制するには、IPA洗浄槽20に用いる第1の液体の水の含有率を3.0重量%以上にする他、乾燥処理槽22の第2の液体に含まれる水の含有率を1.0重量%超にすることが好ましい。この場合、乾燥処理槽22において、IPAと水を含んだ液滴が形成される。上述したように、水はIPAに比べて高い極性をもつことから、有機成分の残留物や洗剤の有機成分の異物と吸着し易く、さらに、ガラス基板は親水性である。このため、ガラス基板10の表面に付着した有機系異物の周り、さらには有機系異物とガラス基板の隙間に水が進入しやすい。このため、有機系異物は水を含む液滴に溶解し易くなり、この液滴が滴下することでガラス基板10から有機系異物は除去され易くなる。このため、乾燥処理において、有機系異物からなる洗浄シミの発生を効果的に抑制することができる。
 第2の液体における水の含有率が5.0重量%を超えると、乾燥処理槽22では、水の液滴が十分に蒸発せず、乾燥処理が十分にできない。一方、第2の液体における水の含有率が1.0重量%未満であると、洗浄シミの発生を抑制できない。第2の液体における水の含有率は、2.8重量%以下であることがより好ましい。
 また、乾燥処理槽22の第2の液体の水の含有率は、IPA洗浄槽20の第1の液体の水の含有率よりも低いことが、洗浄シミを抑制し、ガラス基板10の乾燥をすることができる点から好ましい。第2の液体の水の含有率が第1の液体の水の含有率以上である場合、乾燥処理槽22の第2の液体を長時間使用すると、ガラス基板10の乾燥状態が悪化する虞がある。第2の液体の水の含有率は、例えば1.0重量%超である。
 ガラス基板10は、LiO,NaO,KO等のアルカリ金属成分を含有するとき、洗浄処理は、ガラス基板10を、温度が40℃以上50℃以下の水に浸漬して表面を洗浄する水処理を含むことが好ましい。例えば、図1に示す純水洗浄槽14あるいは純水洗浄槽18における水を40℃以上50℃以下の温水にすることが好ましい。40℃以上50℃以下の温水にすることで、ガラス基板10の表面にあるアルカリ金属成分は、水に溶解し易くなり、従来問題となっていたヤケを容易に防止できる。このため、乾燥処理槽22の第2の液体に水を含有させても、ヤケは発生し難くなる。
 また、洗浄処理は、ガラス基板10を、温度が40度以上50℃以下の水に浸漬してガラス基板10の表面を洗浄する水処理(純水洗浄槽14、あるいは純水洗浄槽18による処理)と、IPA洗浄槽20の第1の液体による処理を含むとき、水処理、第1の液体による洗浄処理、乾燥処理の順番でガラス基板10を処理することが好ましい。このような順番で処理を行なうことで、水処理により、ガラス基板10の表面にあるアルカリ金属成分を水に溶解させた後、IPAを含む第2の液体で洗浄処理するので、ガラス基板10には、ヤケが発生し難く、洗浄シミの発生し難い。
(実験例1)
 本実施形態の効果を確かめるために、IPA洗浄槽20の第1の液体における水含有率を種々変化させて、洗浄シミの観察を行なった。なお、実験例1及び後述する実験例2、4では、酸化物基準のモル%表示で、以下のガラス組成のガラス基板を用いた。
SiO:66.2%、
Al:12.0%、
LiO:11.1%、
NaO:5.5%、
O:3.4%、
ZrO:1.8%。
 洗浄シミは、目視により観察し、洗浄シミの発生頻度によって3段階で評価した。レベルAは、100枚のガラス基板の全てで洗浄シミが全く発生しないことを意味し(合格レベル)、レベルBは、100枚のガラス基板中1枚だけ洗浄シミが見られるが、99枚のガラス基板は洗浄シミが見られず、洗浄シミの発生頻度が極めて低いため許容できることを意味し(合格レベル)、レベルCは、100枚中2枚以上のガラス基板に洗浄シミが発生し許容できないことを意味する(不合格レベル)。
さらに、乾燥処理槽22における水の含有量が増加することによる乾燥不良バッチが発生するまでの時間を評価した。乾燥処理槽22における水の含有量の増加は、IPA槽20から乾燥処理槽22への水の持ち込みに起因する。具体的には、1バッチ100枚のガラス基板について、洗浄処理、乾燥処理を行う各槽における処理時間を5分として処理を実施した。乾燥不良バッチとは、乾燥処理直後のガラス基板の表面の乾燥状態を目視により調べ、1バッチ100枚中2枚以上のガラス基板で非乾燥状態が発生するバッチをいう。
 乾燥処理槽22の第2の液体はIPAとし、水を添加しなかった。すなわち、第2の液体の水含有率は0重量%である。
 下記表1は、第1の液体における水含有率を変化させたときの洗浄シミの評価結果と乾燥不良バッチが発生するまでの時間を示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果より、IPA洗浄槽20の第1の液体の水含有率を3.0重量%以上とすることにより、洗浄シミの発生を抑制させることができる。また、例8に示すように、第1の液体の水含有率を35.0重量%にしても、さらには、水含有率を40~50重量%にしても洗浄シミが発生しないことを確認した。
 さらに、例12として、乾燥処理槽22の第2の液体に、水を2.0重量%添加した他は例3と同様の条件でガラス基板の洗浄処理及び乾燥処理を行った。例3及び例12で得られた100枚のガラス基板の主表面について、レーザー式表面検査装置を用いて詳細な観察をし、目視では見えないほど僅かな外周端部の洗浄シミの発生枚数をカウントした。その結果、例3は100枚中3枚であったのに対し、例12では1枚であった。これより、乾燥処理槽22の第2の液体に、水を含有させることで、洗浄シミの改善が見られた。
 また、例10、例11のように、第1の液体の水含有率を45.0重量%、50.0重量%とした場合には、乾燥不良バッチが発生するまでの時間が急激に短くなる。例10,11の第1の液体の水含有率では、乾燥処理槽22への水の持ち込み量が量産時多くなり、連続生産量が多くなると、乾燥不良バッチが発生するまでの時間が急激に短くなる。このため、乾燥処理槽22の第2の液体の交換が頻繁になり、生産性が低下する虞がある。この観点から、第1の液体の水含有率の上限は40.0重量%であり、好ましくは35.0重量%である。
(実験例2)
 さらに、本実施形態の効果を確かめるために、乾燥処理槽22の第2の液体における水含有率を種々変化させて、洗浄シミの観察を行なった。このとき、第1の液体の水含有率を0.0重量%に固定した。
 洗浄シミは、目視により観察し、洗浄シミの発生頻度によって3段階で評価した。レベルAは、100枚のガラス基板の全てで洗浄シミが全く発生しないことを意味し(合格レベル)、レベルBは、100枚のガラス基板中1枚だけ洗浄シミが見られるが、99枚のガラス基板は洗浄シミが見られず、洗浄シミの発生頻度が極めて低いため許容できることを意味し(合格レベル)、レベルCは、100枚中2枚以上のガラス基板に洗浄シミが発生し許容できないことを意味する(不合格レベル)。
 また、乾燥処理直後のガラス基板の表面の乾燥状態を目視により調べた。乾燥状態は、非乾燥状態のガラス基板の発生頻度によって3段階で評価した。レベルAは、100枚のガラス基板の全てでガラス基板が乾燥していることを意味し、レベルBは、100枚のガラス基板中1枚だけ乾燥が十分でないが、99枚のガラス基板は乾燥し、非乾燥の発生頻度が極めて低いことを意味し、レベルCは、100枚のガラス基板の中2枚以上のガラス基板で非乾燥状態であることを意味する。なお、ここで非乾燥又は非乾燥状態とは、ガラス基板とそれを保持する保持治具との接触部近傍において、乾ききる直前の状態が観察されることを言う。なお、これらの非乾燥状態は、最終的には全て解消した。
 下記表2は、第2の液体における水含有率を変化させたときの洗浄シミの評価結果を示す。
Figure JPOXMLDOC01-appb-T000002
 
 表2の結果より、第2の液体の水含有率を1.0重量%超、好ましくは、1.1重量%以上とすることにより、洗浄シミの発生を抑制することができることがわかった。乾燥処理槽22による乾燥処理でガラス基板の表面を確実に乾燥させるためには、水含有率を5.0重量%以下とすることが好ましく、3.0重量%未満、より具体的には2.8重量%以下とすることがより好ましいことがわかった。これより、本実施形態の効果は明らかである。
(実験例3)
 ガラス基板におけるガラス組成のうち、LiO,NaO,KO等のアルカリ金属成分に注目して、アルカリ金属成分の合計の含有率を種々変化させて、洗浄シミとヤケについて目視により観察して評価した。アルカリ金属成分の含有率を増減させる場合、SiO以外の成分の含有率を一定に維持し、SiOの含有率を増減させた。洗浄シミ及びヤケの評価は、実験例1と同じレベルA~Cで評価した。表3は、その評価結果を示す。
Figure JPOXMLDOC01-appb-T000003
 
表3の結果より、洗浄シミの他にヤケ防止の点から、ガラス基板に含まれるアルカリ金属成分の含有率は22.0モル%以下であることが好ましく、20.0モル%以下であることが撚り好ましい。
(実験例4)
 乾燥処理槽22の第2の液体における水含有率について、さらに詳細に検討し、洗浄シミの観察を行なった。このとき、第1の液体の水含有率を3.0重量%に固定して、第2の液体における水含有率を種々変化させた場合、いずれも目視による観察において洗浄シミは合格レベルであるが、このとき、洗浄シミをレーザー式表面検査装置で詳細に観察した。これにより、100枚のガラス基板の中で、目視では見えない細かな洗浄シミ(ガラス基板の外周近傍に生じる洗浄シミ)が発生するガラス基板の枚数を調べることにより、洗浄シミを詳細に評価した。下記表4は、評価結果を示す。
Figure JPOXMLDOC01-appb-T000004
 
 表4の結果より、第1の液体の水含有率を3.0重量%以上にした場合であっても、第2の液体の水含有率を1.0重量%超、好ましくは1.5重量%以上にすることにより、細かな洗浄シミの発生したガラス基板の枚数を100枚当たり1枚以下に抑制することができることがわかる。
 以上、本発明の磁気ディスク用ガラス基板の製造方法について詳細に説明したが、本発明は上記実施形態及び実施例に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良や変更をしてもよいのはもちろんである。
10 ガラス基板
12 アルカリ洗浄槽
14,18 純水洗浄槽
16 中性洗剤洗浄槽
20 IPA洗浄槽
22 乾燥処理槽
 
 

Claims (9)

  1.  磁気ディスク用ガラス基板の製造方法であって、
     前記ガラス基板の表面の洗浄処理と、前記洗浄処理後に前記表面を乾燥させる乾燥処理と、を含み、
     前記洗浄処理は、水よりも沸点の低い水溶性溶剤と水を含む第1の液体に、前記ガラス基板を浸漬する第1の液体処理を含み、
     前記第1の液体は、前記水溶性溶剤を主成分として含み、水を3.0重量%以上含む、ことを特徴とする磁気ディスク用ガラス基板の製造方法。
  2.  前記乾燥処理は、水よりも沸点の低い水溶性溶剤と水を含む第2の液体の蒸気中に前記ガラス基板を配して、前記ガラス基板の表面に液滴を形成させながら、前記ガラス基板の液滴の少なくとも一部を前記ガラス基板から滴下させるとともに、前記ガラス基板を乾燥させる処理であり、
     前記第2の液体の水の含有率は、前記第1の液体の水の含有率よりも低い、請求項1に記載の磁気ディスク用ガラス基板の製造方法。
  3.  前記第2の液体の水の含有率は、1.0重量%超である、請求項2に記載の磁気ディスク用ガラス基板の製造方法。
  4.  磁気ディスク用ガラス基板の製造方法であって、
     前記ガラス基板の表面の洗浄処理と、前記洗浄処理後に前記表面を乾燥させる乾燥処理と、を含み、
     前記乾燥処理は、水よりも沸点の低い水溶性溶剤と水を含む第2の液体の蒸気中に前記ガラス基板を配して、前記ガラス基板の表面に液滴を形成させながら、前記ガラス基板の液滴の一部を前記ガラス基板から滴下させることを含み、
     前記第2の液体は、前記水溶性溶剤を主成分として含み、前記水を1.0重量%超含む、ことを特徴とする磁気ディスク用ガラス基板の製造方法。
  5.  前記洗浄処理は、水よりも沸点の低い水溶性溶剤と水を含む第1の液体に、前記ガラス基板を浸漬する第1の液体処理を含み、
     前記第1の液体の水の含有率は、前記第2の液体の水の含有率よりも高い、請求項4に記載の磁気ディスク用ガラス基板の製造方法。
  6.  前記ガラス基板は、アルカリ金属成分を含有し、
     前記洗浄処理は、前記ガラス基板を、温度が40℃以上50℃以下の水に浸漬して前記表面を洗浄する水処理を含む、請求項1~3及び5のいずれか1項に記載の磁気ディスク用ガラス基板の製造方法。
  7.  前記水処理、前記第1の液体処理、及び前記乾燥処理の順番で前記ガラス基板を処理する、請求項6に記載の磁気ディスク用ガラス基板の製造方法。
  8.  前記水溶性溶剤はイソプロピルアルコールである、請求項1~7のいずれか1項に記載の磁気ディスク用ガラス基板の製造方法。
  9.  前記ガラス基板のアルカリ金属成分の合計の含有率は、酸化物基準で22.0モル%以下である、請求項1~8のいずれか1項に記載の磁気ディスク用ガラス基板の製造方法。
PCT/JP2015/077870 2014-09-30 2015-09-30 磁気ディスク用ガラス基板の製造方法 WO2016052676A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580052307.9A CN106688038B (zh) 2014-09-30 2015-09-30 磁盘用玻璃基板的制造方法
JP2016552150A JP6246946B2 (ja) 2014-09-30 2015-09-30 磁気ディスク用ガラス基板の製造方法、磁気ディスクの製造方法、及び洗浄装置
SG11201701761XA SG11201701761XA (en) 2014-09-30 2015-09-30 Method for manufacturing magnetic-disk glass substrate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014202058 2014-09-30
JP2014-202008 2014-09-30
JP2014202008 2014-09-30
JP2014-202058 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052676A1 true WO2016052676A1 (ja) 2016-04-07

Family

ID=55630697

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077870 WO2016052676A1 (ja) 2014-09-30 2015-09-30 磁気ディスク用ガラス基板の製造方法

Country Status (5)

Country Link
JP (2) JP6246946B2 (ja)
CN (2) CN109107971B (ja)
MY (1) MY180792A (ja)
SG (2) SG10201912461PA (ja)
WO (1) WO2016052676A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170345A (ja) * 1992-07-17 1994-06-21 Daiko Technol:Kk 洗浄装置
JP2006282429A (ja) * 2005-03-31 2006-10-19 Hoya Corp 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
WO2011125477A1 (ja) * 2010-03-31 2011-10-13 Hoya株式会社 磁気記録媒体ガラス基板用ガラスブランクの製造方法、磁気記録媒体ガラス基板の製造方法および磁気記録媒体の製造方法
WO2012093516A1 (ja) * 2011-01-07 2012-07-12 旭硝子株式会社 情報記録媒体用ガラス基板、その製造方法および磁気記録媒体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722364A (ja) * 1993-07-05 1995-01-24 Hitachi Ltd ウェハ洗浄方法および装置
JP3725051B2 (ja) * 2001-07-27 2005-12-07 大日本スクリーン製造株式会社 基板処理装置
TW200303581A (en) * 2002-02-28 2003-09-01 Tech Ltd A Method and apparatus for cleaning and drying semiconductor wafer
JP4808985B2 (ja) * 2005-03-31 2011-11-02 Hoya株式会社 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP5032758B2 (ja) * 2005-09-26 2012-09-26 Hoya株式会社 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
JP4976341B2 (ja) * 2008-06-18 2012-07-18 東京エレクトロン株式会社 基板洗浄装置および基板洗浄方法、ならびに記憶媒体
JP2011187714A (ja) * 2010-03-09 2011-09-22 Dai Ichi Kogyo Seiyaku Co Ltd 切削物用洗浄剤組成物
CN202729846U (zh) * 2012-06-12 2013-02-13 北京京东方光电科技有限公司 一种微生物去除装置和基板清洗设备
CN103396903B (zh) * 2013-07-24 2015-07-01 惠晶显示科技(苏州)有限公司 用于tft基板清洗的免损伤清洗液

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06170345A (ja) * 1992-07-17 1994-06-21 Daiko Technol:Kk 洗浄装置
JP2006282429A (ja) * 2005-03-31 2006-10-19 Hoya Corp 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
WO2011125477A1 (ja) * 2010-03-31 2011-10-13 Hoya株式会社 磁気記録媒体ガラス基板用ガラスブランクの製造方法、磁気記録媒体ガラス基板の製造方法および磁気記録媒体の製造方法
WO2012093516A1 (ja) * 2011-01-07 2012-07-12 旭硝子株式会社 情報記録媒体用ガラス基板、その製造方法および磁気記録媒体

Also Published As

Publication number Publication date
CN109107971B (zh) 2021-07-09
JP6246946B2 (ja) 2017-12-13
JP2018067368A (ja) 2018-04-26
JP6637945B2 (ja) 2020-01-29
SG10201912461PA (en) 2020-02-27
CN106688038B (zh) 2018-08-17
CN106688038A (zh) 2017-05-17
JPWO2016052676A1 (ja) 2017-06-29
SG11201701761XA (en) 2017-04-27
MY180792A (en) 2020-12-09
CN109107971A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
US8919150B2 (en) Method of manufacturing an ion-exchanged glass article
JP5339010B1 (ja) Hdd用ガラス基板の製造方法
JP2010079948A (ja) 磁気ディスク用ガラス基板の製造方法
JP6419578B2 (ja) ハードディスク用ガラス基板の製造方法
JP6246946B2 (ja) 磁気ディスク用ガラス基板の製造方法、磁気ディスクの製造方法、及び洗浄装置
JP5083477B2 (ja) 情報記録媒体用ガラス基板の製造方法
JP5778165B2 (ja) 情報記録媒体用ガラス基板の製造方法および情報記録媒体の製造方法
JP2010238298A (ja) 磁気ディスク用ガラス基板の製造方法
JP2015069662A (ja) Hdd用ガラス基板の製造方法
JP6034580B2 (ja) Hdd用ガラス基板の製造方法
WO2012090755A1 (ja) 記録媒体用ガラス基板を製造する方法
JP5859756B2 (ja) Hdd用ガラス基板の製造方法
JP2010238303A (ja) 磁気ディスク用ガラス基板の製造方法
JP2011067901A (ja) 磁気ディスク用ガラス基板の製造方法
WO2013099083A1 (ja) Hdd用ガラス基板の製造方法
JP2014175023A (ja) 磁気記録媒体用ガラス基板の製造方法
JP2013140650A (ja) 磁気ディスク用ガラス基板の製造方法および磁気ディスク用ガラス基板
WO2012090597A1 (ja) 記録媒体用ガラス基板を製造する方法
WO2014115495A1 (ja) ハードディスク用ガラス基板の製造方法
JP2010080026A (ja) 磁気ディスク用基板の製造方法
WO2014175292A1 (ja) 磁気ディスク用ガラス基板の製造方法及び磁気ディスクの製造方法
WO2012090598A1 (ja) 記録媒体用ガラス基板を製造する方法
WO2012133373A1 (ja) 磁気ディスク用ガラス基板の製造方法
WO2012090754A1 (ja) 記録媒体用ガラス基板を製造する方法
WO2013046576A1 (ja) 研磨パッドおよび該研磨パッドを用いたガラス基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15846275

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016552150

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15846275

Country of ref document: EP

Kind code of ref document: A1