WO2016052661A1 - 低温走行環境での防錆性に優れる自動車用塗装金属板 - Google Patents

低温走行環境での防錆性に優れる自動車用塗装金属板 Download PDF

Info

Publication number
WO2016052661A1
WO2016052661A1 PCT/JP2015/077845 JP2015077845W WO2016052661A1 WO 2016052661 A1 WO2016052661 A1 WO 2016052661A1 JP 2015077845 W JP2015077845 W JP 2015077845W WO 2016052661 A1 WO2016052661 A1 WO 2016052661A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating film
coating
metal plate
resin
particles
Prior art date
Application number
PCT/JP2015/077845
Other languages
English (en)
French (fr)
Inventor
湯淺 健正
森 陽一郎
和田 裕介
光孝 南保
Original Assignee
新日鐵住金株式会社
日本ペイント・インダストリアルコーティングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社, 日本ペイント・インダストリアルコーティングス株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2016552144A priority Critical patent/JP6466954B2/ja
Priority to US15/515,946 priority patent/US10913860B2/en
Priority to PL15845812T priority patent/PL3202569T3/pl
Priority to CA2962729A priority patent/CA2962729C/en
Priority to KR1020177010872A priority patent/KR101979520B1/ko
Priority to RU2017114647A priority patent/RU2656031C1/ru
Priority to ES15845812T priority patent/ES2757305T3/es
Priority to EP15845812.5A priority patent/EP3202569B1/en
Priority to CN201580064540.9A priority patent/CN107000379B/zh
Publication of WO2016052661A1 publication Critical patent/WO2016052661A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/001Superstructures, understructures, or sub-units thereof, characterised by the material thereof characterised by combining metal and synthetic material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/24Electrically-conducting paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/48Stabilisers against degradation by oxygen, light or heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D

Definitions

  • the present invention relates to a coated metal sheet for automobiles that has chipping resistance and is excellent in rust resistance in a low temperature driving environment.
  • Most automobile body members are made of a metal plate such as a steel plate, and [1] a blanking process for cutting the metal plate into a predetermined size, [2] an oil washing process for washing the metal plate with oil, and [3] a blank. [4] a joining step for assembling the molded material into a member having a desired shape by spot welding or adhesion, [5] a step for degreasing and washing the press oil on the member surface, [6] a chemical conversion treatment step, [ 7] Manufactured through many processes called an electrodeposition coating process.
  • the body member used as the outer plate is further subjected to a coating process such as [8] intermediate coating process and [9] top coating process. Therefore, in the automobile industry, there is a high need for cost reduction by omitting or simplifying the manufacturing process, particularly the chemical conversion treatment process and the painting process.
  • a coated metal plate (pre-coated metal plate) is used for automobile body parts in order to eliminate the chemical conversion treatment process at the time of automobile manufacturing, to omit or simplify the electrodeposition coating process, and to eliminate or reduce the use of secondary materials.
  • the use has been studied in the past.
  • Chipping resistance refers to a phenomenon in which stones and the like that are thrown up when the automobile is traveling collide with the vehicle body, and at that time, the coating film and the plating film are destroyed and peeled off. This phenomenon is an important problem in cold regions and is called a low temperature chipping phenomenon. In a cold region, the coating film is exposed to a low temperature, and internal stress that tries to shrink is working. When an impact such as a stone jump is applied to the coating film, not only the coating film is damaged, but also the underlying plating film is damaged, and further, a crack may be generated at the interface between the plating film and the steel plate. This is considered to be because the internal stress of the coating film acts on the plating film. Such a peeled portion of the plating film immediately leads to a decrease in corrosion resistance, which is a major problem of the automobile body coating system.
  • a chipping primer is inserted between the electrodeposition coating film and the intermediate coating film.
  • the purpose of the chipping primer is to alleviate the impact on the coating film when a stone collides by functioning as a cushion layer. Therefore, the properties of the chipping primer are required to be high in the elasticity of the coating film, high in the elongation rate of the coating film and high in coating film strength.
  • an aqueous chipping primer having a glass transition temperature (Tg) adjusted to 0 to ⁇ 75 ° C. is described in Patent Document 1 (Japanese Patent Laid-Open No. 2003-251272).
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-245605
  • Patent Document 3 Japanese Patent Laid-Open No. 2005-155516
  • rubber particles that absorb the impact of chipping are contained in the intermediate coating film to prevent chipping.
  • a method for forming a laminated coating film that imparts properties and does not apply a chipping primer is described.
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2003-253211 discloses a water-based intermediate coating composition having a chipping resistance comprising a coating film-forming resin, a curing agent, a color pigment, talc and a silane coupling agent. ing.
  • Patent Documents 2 to 4 are all for the purpose of omitting a chipping primer by imparting chipping resistance to an intermediate coating layer to be laminated after applying an undercoat paint such as an electrodeposition paint to an automobile steel plate. Yes. On the other hand, there is still no automobile body coating system in which a coated metal plate is used for a member for an automobile body, chipping resistance is imparted to the coating film itself of the coated metal plate, and a chipping primer is omitted.
  • the present invention has been made in view of the above-described problems, and relates to a coated metal sheet for automobiles that has chipping resistance and is excellent in rust resistance in a low-temperature traveling environment.
  • the inventors have a high elongation rate used in conventional chipping primers, and an organic resin having a glass transition temperature Tg of 0 ° C. or less is applied to the coating film of the coated metal plate to impart chipping resistance. It has been found that the chipping primer can be omitted.
  • a coating film formed from an organic resin having a glass transition temperature Tg of 0 ° C. or lower has a problem that it has adhesiveness at room temperature, and the upper and lower coated metal plates stick together when stored in a laminated state. It was.
  • the present inventors have solved this problem by including particles having a specific hardness in the coating film, and obtain a coated metal sheet for automobiles having chipping resistance according to the present invention. Was able to.
  • a coated metal plate for automobiles comprising a metal plate, and a coating film ( ⁇ ) on at least one surface of the metal plate,
  • the coating film ( ⁇ ) includes an organic resin (A), a conductive pigment (B), and a rust preventive pigment (C),
  • the micro-Martens hardness at ⁇ 20 ° C. on the surface of the coating film ( ⁇ ) is HM 10 to 200 (mg / mm 2 ) when 100 points are measured, and the micro-Martens at 40 ° C. on the surface of the coating film ( ⁇ ).
  • a painted metal sheet for automobiles having a hardness of HM200 to 200,000 (mg / mm 2 ) when the hardness is measured at 100 points.
  • the organic resin (A) is selected from the group consisting of a polyester resin, a polyurethane resin, an acrylic resin, or a modified product thereof.
  • the conductive pigment (B) is selected from at least one of boride, carbide, nitride, and silicide, and has an electrical resistivity at 25 ° C. of 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ 10 ⁇ 6 ⁇ cm.
  • the painted metal sheet for automobiles according to [1] which is oxide ceramic particles.
  • the antirust pigment (C) is a compound capable of releasing silicate ion, phosphate ion, vanadate ion, tungstate ion or molybdate ion, and / or a metal element selected from the group consisting of Si, Ti, Al and Zr
  • Martens hardness at 40 ° C. contains 200mg / mm 2 ⁇ 200000mg / mm 2 of granular particles (D) in the coating film, automotive coated metal plate according to [1].
  • the coating metal plate for automobiles of the present invention has a chipping resistance
  • the coating metal plate is provided with a chipping primer coating process after the coating metal plate is processed and molded into an automobile part. There is no need.
  • the chipping resistance of this coating film is particularly effective in a low temperature environment of ⁇ 15 ° C. or less, and can provide a coated metal sheet for automobiles having excellent corrosion resistance.
  • FIG. 1 represents a schematic cross-sectional view of a conventional automotive coating composition having a chipping primer.
  • FIG. 2 is a schematic diagram of a coating film cross section when a flying object collides with a member for an automobile body and the surface of the metal plate is exposed.
  • FIG. 3 shows that a flying object collides with an automobile body member using the painted metal plate for automobiles of the present invention, the metal plate is exposed, and then the rust preventive component eluted from the coating film ( ⁇ ) is exposed by getting wet with water.
  • coat by reacting on the surface of the metal plate which did is represented.
  • FIG. 1 represents a schematic cross-sectional view of a conventional automotive coating composition having a chipping primer.
  • FIG. 2 is a schematic diagram of a coating film cross section when a flying object collides with a member for an automobile body and the surface of the metal plate is exposed.
  • FIG. 3 shows that a flying
  • FIG. 4 shows that a flying object collides with an automobile body member using a coated metal plate for automobiles whose physical properties of the coating film ( ⁇ ) do not conform to the scope of the present invention, and the internal stress of the coating film ( ⁇ ) is Due to its large size, the upper layer film, including the plating layer, is largely peeled off, and the surface of the metal plate is exposed to a large extent.
  • the schematic diagram of the coating-film cross section when not fully covered is represented.
  • FIG. 5 shows a schematic view of a cross section of a coated metal sheet for automobiles of the present invention when there is a ground treatment.
  • FIG. 6 shows a schematic view of a cross section of a painted metal sheet for automobiles according to the present invention when there is no ground treatment.
  • FIG. 7 is a schematic view showing a distribution state of particles (P) in a cross section of the automobile coated metal plate of the present invention.
  • the painted metal plate for automobiles of the present invention is, for example, a metal plate with a plating film in which at least a part of the surface is coated with a specific conductive coating film.
  • the metal plate may be coated on both sides of the metal plate with a conductive coating film, or may be coated on only one side, or even if part of the surface is coated, It may be coated.
  • the part covered with the conductive coating of the metal plate has excellent resistance weldability and corrosion resistance.
  • the constituent metal of the metal plate with a plating film that can be used for the painted metal plate of the present invention can include, for example, aluminum, titanium, zinc, copper, nickel, and steel.
  • the components of these metals are not particularly limited.
  • steel when steel is used, it may be ordinary steel or steel containing additive elements such as chromium.
  • additive elements such as chromium.
  • the metal plate of the present invention is press-molded, the type and amount of additive elements and the metal structure are appropriately controlled so as to have the desired formability followability in any metal plate. Is preferred.
  • the type of the surface plating film is not particularly limited.
  • Applicable plating films include, for example, plating containing any one of zinc, aluminum, cobalt, tin, and nickel, and alloy plating containing these metal elements, other metal elements, and nonmetal elements. Etc.
  • a zinc-based plating film for example, plating made of zinc, alloy plating of zinc and at least one of aluminum, cobalt, tin, nickel, iron, chromium, titanium, magnesium, manganese, or other
  • Various zinc-based alloy plating containing metal elements and non-metal elements for example, quaternary alloy plating of zinc, aluminum, magnesium, and silicon
  • alloy components other than zinc are not particularly limited.
  • these plating films contain small amounts of foreign metal elements or impurities such as cobalt, molybdenum, tungsten, nickel, titanium, chromium, aluminum, manganese, iron, magnesium, lead, bismuth, antimony, tin, copper, cadmium, arsenic. Etc. may be contained, and those in which inorganic substances such as silica, alumina, titania and the like are dispersed may be included.
  • Examples of the aluminum-based plating film include plating made of aluminum, or alloy plating of at least one of aluminum and silicon, zinc, and magnesium (for example, alloy plating of aluminum and silicon, alloy plating of aluminum and zinc, aluminum, silicon, and magnesium). Ternary alloy plating) and the like.
  • multi-layer plating in combination with the above-mentioned plating and other types of plating such as iron plating, iron-phosphorus alloy plating, nickel plating, cobalt plating and the like is also applicable.
  • the method for forming the plating film is not particularly limited.
  • electroplating, electroless plating, hot dipping, vapor deposition plating, dispersion plating, or the like can be used.
  • the plating method may be either a continuous type or a batch type.
  • post-plating treatments include zero spangle treatment, which is a uniform appearance after hot dipping, annealing treatment, which is a modification of the plating film, temper rolling for surface condition and material adjustment, etc.
  • the present invention is not particularly limited to these, and any of them can be applied.
  • the coating film ( ⁇ ) for coating the metal plate of the present invention contains an organic resin (A), a conductive pigment (B), and a rust preventive pigment (C), and is ⁇ 20 ° C. on the surface of the coating film ( ⁇ ).
  • A organic resin
  • B conductive pigment
  • C a rust preventive pigment
  • the point or more is HM200 to 200,000 (mg / mm 2 ).
  • the micro Martens hardness HM is usually an index indicating hardness, but in the present invention, the hardness of the surface of the coating film ( ⁇ ) is defined.
  • the micro Martens hardness HM can be measured by using a nanoindenter HM500 manufactured by Fischer Instruments and setting the indentation depth to 5 ⁇ m or less in a coating film having a thickness of 10 ⁇ m or more. For coatings with a thickness of less than 10 ⁇ m, it can be measured by setting the indentation depth to 1/5 of the coating thickness. In this case, since the dispersion of measurement increases, the number of measurements is increased as appropriate, and the average value is used as the measured value. To do.
  • HM is 10 to 200 (at 20 points or more).
  • mg / mm 2 in and, when measured at 100 points randomly micro Martens hardness HM at and 40 ° C., in the case of HM is from 200 to 200,000 with them five points or more (mg / mm 2), the present invention It was assumed that it was a painted metal plate for automobiles.
  • HM minute Martens hardness HM at ⁇ 20 ° C.
  • HM was 10 to 200 (mg / mm 2 ) at 40 points or more
  • minute Martens hardness HM at 40 ° C. was randomized.
  • 100 points of minute Martens hardness HM at ⁇ 20 ° C. are measured randomly
  • the HM is 10 to 200 (mg / mm 2 ) at 60 points or more and the micro-Martens hardness HM at 40 ° C. is randomly measured at 100 points
  • the HM is 200 to 200,000 (mg / mm at 20 or more points).
  • mm 2 is more preferable.
  • random means to eliminate arbitraryness that results in biased measurement results when selecting 100 measurement points. For example, two arbitrary points are set, and 100 points are selected at regular intervals or at random intervals between them, and the micro-Martens hardness HM at 20 ° C. and the micro-Martens hardness HM at 40 ° C. can be measured. In that case, it is desirable that the interval between adjacent measurement points be a position where the measurement points are not affected by the hardness of each other. In addition, although the number is 100, it is considered that as the number of measurement points increases, the measurement values are averaged and the accuracy is further improved.
  • the coating film ( ⁇ ) of the present invention which has been subjected to electrodeposition coating, intermediate coating, and top coating for automobiles, is subjected to a stone jump that has come in a low temperature environment
  • the coating film When ( ⁇ ) is sufficiently flexible even in a low temperature environment, it has been found that significant damage leading to the peeling of the plating layer due to the impact of hopping is suppressed as compared with the case where it is not. Further, it has been found that when the coating film ( ⁇ ) has a low Martens hardness in a low temperature range of 10 to 200 (mg / mm 2 ), significant scratches are suppressed.
  • the coating film ( ⁇ ) When the coating film ( ⁇ ) is not sufficiently flexible at a low temperature, the top coating film, intermediate coating film, and electrodeposition coating film are destroyed by the impact of hopping, and in addition, the coating film ( ⁇ ) is destroyed. In this case, it was found that the shrinkage stress of these coating films released by breakage is transmitted as the stress that peels the plating layer, and as a result, the plating layer is largely peeled off.
  • HM micro-Martens hardness measured from the surface of the coating film ( ⁇ ) is -20 ° C., 20 points or more per 100 random points, and 10 to 200
  • the coating film ( ⁇ ) was flexible to the extent that the above effects were sufficiently exhibited.
  • HM exceeded 200, the coating film ( ⁇ ) was not flexible, and the effect of suppressing the transfer of the shrinkage stress of the coating film to the plating layer was insufficient.
  • the lower limit of HM at ⁇ 20 ° C. is not particularly defined, but a resin that realizes a coating film ( ⁇ ) of less than 10 cannot be obtained at ordinary industrial cost, so this value is substantially The lower limit.
  • a low-temperature, flexible coating ( ⁇ ) having a part where the HM at ⁇ 20 is 200 or less is a range between 20 and 40 ° C. so-called room temperature storage and transportation, etc.
  • the coating films ( ⁇ ) are adhered or fused to each other, and industrial handling tends to be hindered.
  • the micro-Martens hardness HM measured from the surface of the coating film ( ⁇ ) is 200 to 200,000 at 40 ° C. and 5 or more per 100 measurement points at random, The mutual adhesion or fusion between the coating films ( ⁇ ) was sufficiently suppressed.
  • the HM at 40 ° C is thus high on the surface of the coating ( ⁇ ). Presumed that the presence of the part suppresses the contact between the parts having a low HM of ⁇ 10 to 200 at ⁇ 20 ° C., and as a result, the adhesion or fusion between the coating films ( ⁇ ) is prevented. Is done. When the portion where the micro-Martens hardness HM is 200 to 200,000 at 40 ° C. is less than 5 points per 100 random measurement points, the above-described effect is lowered.
  • the fine Martens hardness HM at ⁇ 20 ° C. of the coating film ( ⁇ ) can be generally controlled by appropriately selecting the organic resin (A) and the curing agent of the coating film composition.
  • the resin molecular structure includes a flexible structure in which the molecular weight between cross-linking points is large and easily deformed, and the cross-linking density between resin molecular chains is kept low by adjusting the type and addition amount of the curing agent. It is possible to use a technique such as reducing the crosslinking reaction by the curing agent by reducing the baking temperature of the coating film and shortening the baking time.
  • the coating composition for obtaining the coating film ( ⁇ ) in the present invention is referred to as a coating composition ( ⁇ ).
  • examples of the coating composition ( ⁇ ) include a water-based coating composition and an organic solvent-based coating composition.
  • the “water-based coating composition” refers to a composition formed using an “water-based solvent” in which water is 50% by mass or more of the entire solvent.
  • the “organic solvent-based coating composition” refers to a composition formed using an “organic solvent-based solvent” in which the organic solvent is 50% by mass or more of the entire solvent.
  • components other than water in the “aqueous solvent” include inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, boric acid, and hydrofluoric acid, which are well mixed with water, and metal salts and ammonium salts of the inorganic acids.
  • inorganic salts such as those that dissolve in water, inorganic compounds such as silicates, thiosulfates, and thiocyanates that dissolve in water, and organic compounds that are miscible with water.
  • an organic solvent can also be added to said "aqueous solvent” as needed.
  • the “water-based coating composition” of the present invention uses organic solvents, etc.
  • a method for forming a film on a metal plate for example, in the case of a water-based or solvent-based coating composition, known coating such as roll coating, groove roll coating, curtain flow coating, roller curtain coating, dipping (dip), air knife drawing, etc.
  • a method for curing these dry coating films polymerization and curing by baking an organic resin in the coating film is preferable.
  • the resin in the coating film can be polymerized with ultraviolet rays, polymerization or curing by ultraviolet irradiation is performed.
  • the resin in the coating film can be polymerized with an electron beam, polymerization or curing by electron beam irradiation may be used.
  • an undercoat film may be provided between the coating film and the metal plate surface.
  • the number and composition of the layers are not limited, but the ground treatment film is formed on the metal plate so as not to impair the processing followability and corrosion resistance of the coating film ( ⁇ ) when forming the metal plate.
  • the undercoat film has a chromate-free configuration.
  • the thickness of the base treatment film be 0.5 ⁇ m or less.
  • the method for forming the base treatment film is not limited as long as it is an industrially applicable film formation method.
  • the method for forming the surface treatment film include methods such as coating, vapor deposition, and film sticking of the surface treatment composition. From the viewpoint of film formation cost (productivity) and versatility, an aqueous or solvent-based substrate is used. A method of coating and drying the treatment composition is preferred. When using a water-based or solvent-based surface treatment composition, a plurality of coating films including the surface treatment film are coated and dried repeatedly (sequential coating method) for each layer from the bottom layer to the top surface layer. A layer coating may be formed.
  • the wet-on-wet coating method is a method in which a coating solution is applied onto a metal plate, and another coating solution is applied on the solvent-containing state (wet state) before the coating solution is dried.
  • the solvent of the laminated coating solution obtained is simultaneously dried and cured to form a film.
  • the multi-layer simultaneous coating method is a method in which multiple layers of coating liquid are applied simultaneously on a metal plate in a laminated state using a multilayer slide curtain coder, slot die coater, etc. It is a method to form a film.
  • the average thickness of the coating film ( ⁇ ) covering the metal plate of the present invention is preferably in the range of 0.5 to 30 ⁇ m, more preferably in the range of 1 to 15 ⁇ m. If the thickness is less than 0.5 ⁇ m, the coating film is too thin to hold a sufficient amount of rust preventive pigment, and corrosion resistance may not be obtained. When the coating film thickness exceeds 30 ⁇ m, the amount of the coating composition ( ⁇ ) to be used increases, resulting in an increase in production cost, and the coating film may be cohesively broken or peeled off during press molding. In addition, since the film is thick, electrical insulation in the film thickness direction is increased, and resistance welding becomes difficult. Furthermore, when a water-based coating composition is used, there is a high possibility of occurrence of coating film defects such as armpits, and it is not easy to stably obtain the appearance necessary for industrial products.
  • the thickness of the coating film ( ⁇ ) can be measured by observing the section of the coating film. Note that the mass of the coating film adhering to the unit area of the metal plate is calculated by dividing by the specific gravity of the coating film or the specific gravity after drying of the coating composition ( ⁇ ), but when measured by cross-sectional observation Since it should be the same measurement value, it can also be based on the method of calculating with specific gravity simply.
  • the adhesion mass of the coating film is the mass difference before and after coating, the mass difference before and after peeling of the coating film after coating, or the presence of an element whose content in the coating film is known in advance by fluorescent X-ray analysis. It is possible to appropriately select from existing methods such as measuring the amount.
  • the specific gravity of the coating film or the coating composition ( ⁇ ) after drying is determined by measuring the volume and mass of the isolated coating film after taking an appropriate amount of the coating composition ( ⁇ ) in a container and drying it. It can be appropriately selected from existing methods such as measuring the volume and mass, or calculating from the blending amount of the coating film components and the known specific gravity of each component.
  • the organic resin (A) of the present invention is a binder component of the coating film ( ⁇ ), and by selecting it appropriately, the fine martens at ⁇ 20 ° C. required for the coating film of the automobile coated metal sheet of the present invention. Hardness HM and Tg can be obtained.
  • the organic resin (A) may be either water-based or organic solvent-based resin, and is particularly the resin (A1) described later.
  • the organic resin (A) can further contain a reaction derivative (A2) of the resin (A1).
  • the organic resin (A) of the present invention is described in detail below, but preferably has a glass transition temperature Tg of ⁇ 80 ° C. to ⁇ 20 ° C.
  • the coating composition ( ⁇ ) used for forming the coating film ( ⁇ ) in the present invention can be used in either an aqueous system or an organic solvent system, and the resin (A1) described later contains 50 to 100 mass of nonvolatile components. % Is included.
  • the resin (A1) is stably present in the coating composition ( ⁇ ). When such a coating composition ( ⁇ ) is applied to a metal plate and heated, in many cases, the resin (A1) does not react and is dried as it is.
  • at least a part of the resin (A1) contains a silane coupling agent, a curing agent, a crosslinking agent, etc. in the coating composition ( ⁇ ), it reacts with them to produce a derivative (A2) of the resin (A1) Form.
  • the organic resin (A) that is a binder component of the coating film ( ⁇ ) includes the unreacted resin (A1) and the reaction derivative (A2) of the resin (A1).
  • a polyurethane resin for example, a polyester resin, an epoxy resin, a (meth) acrylic resin, polyolefin Examples thereof include resins or modified products thereof.
  • a polyurethane resin for example, a polyester resin, an epoxy resin, a (meth) acrylic resin, polyolefin Examples thereof include resins or modified products thereof.
  • One or two or more of these may be mixed and used as the resin (A1), or one or more organic resins obtained by modifying at least one organic resin may be mixed and You may use as resin (A1).
  • said resin (A1) it is preferable to use a polyurethane resin, a polyurethane resin modified body, a polyurethane resin composite, a mixture of these and other resins, and the like. Since the urethane group (—NHCOO—) in the polyurethane resin has higher molecular cohesive energy (8.74 kcal / mol) than many other organic groups, if the polyurethane resin is contained in the resin (A1), The adhesion of the coating film becomes high, and during press molding, peeling and galling of the coating film do not easily occur. In addition, the corrosion factor shielding (coating density) is improved by the relatively high cohesive energy, thereby improving the corrosion resistance. There is an effect to increase.
  • Organic groups other than urethane groups such as methylene group (—CH 2 —), ether group (—O—), secondary amino group (imino group, —NH—), ester group (—COO—), benzene ring
  • the molecular aggregation energy is 0.68 kcal / mol, 1.00 kcal / mol, 1.50 kcal / mol, 2.90 kcal / mol, 3.90 kcal / mol, respectively, and the molecular aggregation energy of the urethane group (—NHCOO—) is , Quite high compared to these.
  • a coating film containing a polyurethane resin has higher adhesion and higher corrosion resistance than a coating film made of many other resins such as a polyester resin, a (meth) acrylic resin, and a polyolefin resin.
  • the type of the resin (A1) is not particularly limited as long as it has a necessary glass transition temperature Tg.
  • a carboxyl group (—COOH), a carboxylate group (—COO ⁇ M + , M + is a monovalent cation), a sulfonate group (—SO 3 H), a sulfonate group (—SO 3 ⁇ M + ;
  • M + is a monovalent cation), primary amino group (—NH 2 ), secondary amino group (—NHR 1 ; R 1 is a hydrocarbon group), tertiary amino group (—NR 1 R 2 R 1 and R 2 are hydrocarbon groups), quaternary ammonium base (—N + R 1 R 2 R 3 X ⁇ ; R 1 , R 2 and R 3 are hydrocarbon groups, X ⁇ is a monovalent anion), Sulfonium base (—S + R 1 R 2 X ⁇ ; R 1 and R 2 are hydrocarbon groups,
  • the resin used for the coating composition ( ⁇ ) for obtaining the coating film ( ⁇ ) includes water-soluble and solvent-soluble resins that are completely soluble in water and organic solvents, and emulsions and suspensions.
  • (meth) acrylic resin means acrylic resin and methacrylic resin.
  • examples of the polyurethane resin include those obtained by reacting a polyol compound with a polyisocyanate compound and then further chain-extending with a chain extender.
  • the polyol compound is not particularly limited as long as it is a compound containing two or more hydroxyl groups per molecule.
  • examples include glycols, glycerin, trimethylol ethane, trimethylol propane, polycarbonate polyols, polyester polyols, polyether polyols such as bisphenol hydroxypropyl ether, polyester amide polyols, acrylic polyols, polyurethane polyols, or mixtures thereof.
  • the polyisocyanate compound is not particularly limited as long as it is a compound containing two or more isocyanate groups per molecule, and examples thereof include aliphatic isocyanates such as hexamethylene diisocyanate (HDI) and fats such as isophorone diisocyanate (IPDI).
  • An aromatic diisocyanate such as cyclic diisocyanate, tolylene diisocyanate (TDI), an araliphatic diisocyanate such as diphenylmethane diisocyanate (MDI), or a mixture thereof.
  • the chain extender is not particularly limited as long as it is a compound containing one or more active hydrogens in the molecule, and water or an amine compound can be applied.
  • amine compounds include aliphatic polyamines such as ethylenediamine, propylenediamine, hexamethylenediamine, diethylenetriamine, dipropylenetriamine, triethylenetetramine, and tetraethylenepentamine, and aromatic polyamines such as tolylenediamine, xylylenediamine, and diaminodiphenylmethane.
  • alicyclic polyamines such as diaminocyclohexylmethane, piperazine, 2,5-dimethylpiperazine, and isophoronediamine; hydrazines such as hydrazine, succinic dihydrazide, adipic dihydrazide, and phthalic dihydrazide; and hydroxyethyldiethylenetriamine, 2- And alkanolamines such as [(2-aminoethyl) amino] ethanol and 3-aminopropanediol.
  • an aqueous polyurethane resin for example, at the time of resin production, at least a part of the polyol compound is replaced with a carboxyl group-containing polyol compound, reacted with a polyisocyanate compound to introduce a carboxyl group into the resin chain, Can be neutralized with a base to form a water-based resin.
  • at the time of resin production at least a part of the polyol compound is replaced with a polyol compound having a secondary amino group or a tertiary amino group in the molecule and reacted with a polyisocyanate compound to form a secondary amino group or tertiary on the resin chain.
  • water-based resin examples include neutralization with an acid after introduction of an amino group.
  • the resin chain has a tertiary amino group, it can be made quaternized by introducing an alkyl group into the tertiary amino group to be an aqueous cationic resin having a quaternary ammonium base.
  • These compounds can be used alone or in a mixture of two or more.
  • the polyurethane resin that can be used as the resin (A1) it is preferable to use a polyurethane resin containing a large number of aromatic rings in the molecular structure.
  • Such polyurethane resins have a higher glass transition temperature, a rigid molecular chain, a higher resistance to deformation of the coating film, and a longer elongation of the coating film than polyurethane resins having no or few aromatic rings in the molecular structure. Since the deformation rate is low, the hardness and brittleness of the coating film ( ⁇ ) required in the present invention are high compared to a polyurethane resin having no aromatic rings or few aromatic rings.
  • the polyol compound, polyisocyanate compound, and chain extender used for resin production are not particularly limited, but it is preferable to use an araliphatic or araliphatic compound containing a large amount of aromatic rings.
  • the polyester resin is not particularly limited as long as it has the necessary HM and glass transition temperature Tg.
  • Tg glass transition temperature
  • the epoxy resin is not particularly limited as long as it has the necessary HM and glass transition temperature Tg.
  • bisphenol A type epoxy resin, bisphenol F type epoxy resin, resorcin type epoxy resin, hydrogenated bisphenol A type epoxy resin, hydrogenated bisphenol F type epoxy resin, resorcin type epoxy resin, novolac type epoxy resin, etc. It can be obtained by reacting with an amine compound such as N-methylethanolamine. Furthermore, these are neutralized with an organic acid or inorganic acid to form an aqueous resin, or after radical polymerization of a high acid value acrylic resin in the presence of the epoxy resin, neutralized with ammonia or an amine compound to make an aqueous system. Can be mentioned.
  • the (meth) acrylic resin is not particularly limited as long as it has the necessary HM and glass transition temperature Tg.
  • examples thereof include those obtained by radical polymerization of (meth) acrylates such as (meth) acrylates with (meth) acrylic acid in water using a polymerization initiator.
  • the polymerization initiator is not particularly limited, and for example, persulfates such as potassium persulfate and ammonium persulfate, azo compounds such as azobiscyanovaleric acid and azobisisobutyronitrile can be used.
  • persulfates such as potassium persulfate and ammonium persulfate
  • azo compounds such as azobiscyanovaleric acid and azobisisobutyronitrile
  • (meth) acrylate” means acrylate and methacrylate
  • (meth) acrylic acid” means acrylic acid and methacrylic acid.
  • the polyolefin resin is not particularly limited as long as it has a necessary glass transition temperature Tg.
  • examples thereof include radical polymerization of ethylene and unsaturated carboxylic acids such as methacrylic acid, acrylic acid, maleic acid, fumaric acid, itaconic acid and crotonic acid under high temperature and high pressure. Further, these can be further neutralized with ammonia, amine compounds, basic metal compounds such as KOH, NaOH, LiOH, or ammonia or amine compounds containing the above metal compounds to obtain water-based resins.
  • the resin (A1) may be used alone or in combination of two or more. Further, as a main component of the coating composition ( ⁇ ), one or more composite resins obtained by modifying at least part of the resin (A1) in the presence of at least one resin (A1) or Two or more kinds may be collectively used as the resin (A1).
  • the glass transition temperature Tg of the organic resin (A) is preferably ⁇ 80 ° C. to ⁇ 20 ° C.
  • the glass transition temperature Tg is obtained by heating and curing the organic resin forming the coating film at an ultimate temperature of 200 ° C. to form a film having a film thickness of 15 ⁇ m, and measuring the peak temperature or dynamic viscoelasticity of a differential scanning calorimeter (DSC). It can be measured as the transition temperature in the machine.
  • Tg is preferably from ⁇ 80 ° C. to ⁇ 20 ° C. Resins having a Tg higher than ⁇ 20 ° C.
  • Tg is not particularly defined, but organic resins having a low Tg exceeding -80 ° C. are difficult to obtain industrially at low cost. Furthermore, Tg is preferably ⁇ 60 ° C. or higher and ⁇ 30 ° C. or lower.
  • conductive pigment (B) As the conductive pigment (B), it is preferable to use one or more selected from metals, alloys, conductive carbon, iron phosphide, carbides, and semiconductor oxides.
  • metals such as zinc, nickel, iron, aluminum, cobalt, manganese, copper, tin, chromium or their alloy powder, conductive carbon powder such as conductive carbon and graphite powder, iron phosphide powder, titanium carbide, carbonized
  • carbide powder such as silicon, conductive semiconductor powder, and ceramic particles.
  • non-oxide ceramic particles are particularly preferable in the coated metal plate of the present invention.
  • non-oxide ceramic particles when used, even when the coating composition ( ⁇ ) for obtaining the coating film ( ⁇ ) is an aqueous composition, these non-oxide ceramic particles do not deteriorate in the composition, High conductivity is permanently retained. Therefore, superior resistance weldability can be maintained for a very long period of time compared to conductive particles that deteriorate due to moisture, such as base metal particles and ferrosilicon particles.
  • the non-oxide ceramic constituting the non-oxide ceramic particles contained in the coating film ( ⁇ ) of the present invention has an electrical resistivity (volume resistivity, specific resistance) at 25 ° C. of 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ .
  • the non-oxide ceramic referred to here is a ceramic made of an element or compound not containing oxygen.
  • the boride ceramics, carbide ceramics, nitride ceramics, and silicide ceramics referred to here are non-oxide ceramics containing boron B, carbon C, nitrogen N, and silicon Si as the main non-metallic constituent elements, respectively. It is.
  • the non-oxide ceramic particles contained in the coating film ( ⁇ ) of the present invention have high conductivity, a smaller amount may be added for imparting sufficient conductivity to the resin coating film. The adverse effect on the corrosion resistance and formability of the metal plate is reduced.
  • the electrical resistivity of a pure metal is in the range of 1.6 ⁇ 10 ⁇ 6 ⁇ cm (Ag simple substance) to 185 ⁇ 10 ⁇ 6 ⁇ cm (Mn simple substance), and is used as a conductive particle in the present invention. It can be seen that oxide ceramics (electrical resistivity 0.1 ⁇ 10 ⁇ 6 to 185 ⁇ 10 ⁇ 6 ⁇ cm) have excellent conductivity equivalent to that of pure metal.
  • non-oxide ceramics examples include the following. That is, as boride ceramics, transition metal of group IV (Ti, Zr, Hf), group V (V, Nb, Ta), group VI (Cr, Mo, W) of the periodic table, Mn, Fe, Examples thereof include borides of alkaline earth metals (Ca, Sr, Ba) other than Co, Ni, rare earth elements, or Be, Mg.
  • Be borides whose electrical resistivity at 25 ° C. exceeds 185 ⁇ 10 ⁇ 6 ⁇ cm are not sufficiently conductive, and thus are applicable to the present invention. Not suitable for. Also, Mg borides (Mg 3 B 2 , MgB 2, etc.) are not suitable for application to the present invention because they are unstable to water and acids.
  • carbide ceramics include Group IV, Group V, Group VI transition metals, and carbides of Mn, Fe, Co, and Ni.
  • carbides of rare earth elements or alkaline earth metals that may be hydrolyzed in a humid atmosphere for example, YC 2 , LaC 2 , CeC 2 , PrC 2 , Be 2 C, Mg 2 C 3 , SrC 2, etc. Is not suitable for application to the present invention.
  • nitride ceramics include group IV, group V, and group VI transition metals, or nitrides of Mn, Fe, Co, and Ni.
  • rare earth elements and alkaline earth metal nitrides for example, LaN, Mg 3 N 2 , Ca 3 N 2, etc.
  • silicide ceramics include Group IV, Group V, and Group VI transition metals, or silicides of Mn, Fe, Co, and Ni.
  • silicides of rare earth elements or alkaline earth metals for example, LaSi, Mg 2 Si, SrSi 2 , BaSi 2, etc.
  • silicides of rare earth elements or alkaline earth metals that may generate hydrogen by reacting with water in a humid atmosphere are not included in the present invention. Not suitable for application.
  • a mixture of two or more selected from these borides, carbides, nitrides and silicides, or cermets obtained by mixing these ceramics with a metal binder and sintering them can be exemplified.
  • the standard electrode potential of the metal constituting a part of the cermet is ⁇ 0.3 V or more and is water-resistant.
  • the standard electrode potential of the metal constituting a part of the cermet is less than ⁇ 0.3 V, if this cermet particle is present in the aqueous coating composition for a long time, a rust layer or a thick oxide insulating layer is formed on the surface of the particle. This is because the conductivity of the particles may be lost.
  • water-resistant cermet particles include WC-12Co, WC-12Ni, TiC-20TiN-15WC-10Mo 2 C-5Ni, and the like.
  • the standard electrode potentials of Co and Ni are ⁇ 0.28 V and ⁇ 0.25 V, respectively, which are nobler than ⁇ 0.3 V, and both metals are resistant to water.
  • non-oxide ceramics Of the non-oxide ceramics described above, Cr-based ceramics (CrB, CrB 2 , Cr 3 C 2 , Cr 2 N, CrSi, etc.) are concerned with environmental load, and Hf-based ceramics (HfB 2 , HfC, HfN). Etc.), since many of rare earth element-based ceramics on the side of rare earth than Tb are expensive and are not distributed in the market, in the present invention, non-oxide ceramics excluding these from the above group, Alternatively, it is preferable to use a mixture of two or more selected from these.
  • non-oxide ceramics are more preferable from the viewpoints of the presence or absence of industrial products, stable distribution in domestic and overseas markets, price, electrical resistivity, and the like. That is, BaB 6 (electric resistivity 77 ⁇ 10 ⁇ 6 ⁇ cm), CeB 6 (30 ⁇ 10 ⁇ 6 ⁇ cm), Co 2 B (33 ⁇ 10 ⁇ 6 ⁇ cm), CoB (76 ⁇ 10 ⁇ 6 ⁇ cm).
  • non-oxide ceramics having an electrical resistivity at 25 ° C. of 0.1 ⁇ 10 ⁇ 6 to 100 ⁇ 10 ⁇ 6 ⁇ cm are particularly preferable. Because they have higher electrical conductivity than non-oxide ceramics whose electrical resistivity at 25 ° C. is in the range of more than 100 ⁇ 10 ⁇ 6 ⁇ cm and up to 185 ⁇ 10 ⁇ 6 ⁇ cm, it is sufficient for resin coatings. This is because the amount of particles added for imparting electrical conductivity may be smaller, and only a small number of corrosion current conduction paths penetrating the coating film are formed, and the corrosion resistance is hardly lowered. In addition, since the addition of particles is small, the moldability hardly deteriorates without inducing peeling or galling of the coating film during press molding.
  • the electrical resistivity indicated in parentheses of the non-oxide ceramic is a representative value (literature value) of what is sold and used as an industrial material. Since these electrical resistivity increases and decreases depending on the type and amount of impurity elements that have entered the crystal lattice of the non-oxide ceramics, when used in the present invention, for example, a resistivity meter manufactured by Mitsubishi Chemical Analytech Co., Ltd.
  • the conductive pigment (B) has a particle shape of spherical particles, pseudo-spherical particles (for example, elliptical sphere shape, egg shape, rugby ball shape, etc.) or polyhedral particles (for example, soccer ball shape, dice shape, brilliant of various jewels).
  • Slender shapes eg, rods, needles, fibers, etc.
  • flat shapes eg, flakes, flat plates, flakes, etc.
  • the average particle diameter of the conductive pigment (B) is not particularly limited, but is preferably present as particles having a volume average diameter of 0.2 to 20 ⁇ m in the coating composition ( ⁇ ) of the present invention. It is more preferable that the particles have an average diameter of 0.5 to 12 ⁇ m, and it is particularly preferable that the particles have a volume average diameter of 1 to 8 ⁇ m.
  • Dispersed particles with these volume average diameters are used in the coating composition ( ⁇ ) manufacturing process, storage and transport, and as a base material for coating, a metal plate (if the metal surface has a ground treatment, a ground treatment layer) As long as it is stably present in the coating composition ( ⁇ ) in the coating step or the like, it may be a single particle or a secondary particle in which a plurality of single particles are strongly aggregated.
  • the (B) particles may be aggregated during the drying and film formation of the coating film, and the volume average diameter in the coating film may increase.
  • the volume average diameter referred to here is the volume-based average diameter obtained from the volume distribution data of the particles. This may be determined using any generally known particle size distribution measurement method, but it is preferable to use the average value of the sphere volume equivalent diameter distribution measured by the Coulter method (pore electrical resistance method). preferable. This is because the Coulter method uses other particle size distribution measurement methods (for example, (a) Calculate from the volume distribution obtained by the laser diffraction scattering method, (b) The circular area equivalent diameter distribution obtained by the image analysis method is the volume distribution. Compared to (c) calculated from mass distribution obtained by centrifugal sedimentation method, etc.), there is almost no difference in measured values by measuring machine manufacturers and models, and accurate and highly accurate measurement can be performed.
  • the test particles are suspended in an aqueous electrolyte solution, a constant current is passed through the pores of the glass tube, and the particles are set to pass through the pores by negative pressure.
  • Non-oxide ceramic particles having a volume average diameter of less than 0.2 ⁇ m are generally more expensive than non-oxide ceramic particles having a volume average diameter larger than that, and few are marketed as industrial products.
  • the specific surface area is relatively large, it is difficult to wet and disperse the entire particle surface using a wetting and dispersing agent when preparing a water-based or organic solvent-based coating composition. It is better not to use it in the present invention, because there are many cases where no splints or lumps occur.
  • non-oxide ceramic particles having a volume average diameter exceeding 20 ⁇ m are more likely to settle faster in water-based or organic solvent-based coating compositions than non-oxide ceramic particles having a volume average diameter smaller than that (Stokes' formula).
  • the available conductive pigment (B) is generally prepared to a predetermined particle size by pulverizing the raw material and classifying as necessary, so that the particle size in which particles having different particle sizes are mixed is used. Have a distribution. Therefore, even if the volume average diameter is in the above-mentioned particle size range, the weldability is affected depending on the particle size distribution.
  • (B1) having a volume particle diameter of 0.25 to 24 ⁇ m has an effect particularly on good weldability.
  • the content of the conductive pigment (B) in the coating film ( ⁇ ) at 25 ° C. is preferably 0.5 to 65% by volume, and the electrical conductivity during resistance welding, ensuring the formability, and the conductive pigment. From the viewpoint of an increase in cost due to the increase, it is more preferably 1 to 40% by volume, and further preferably 2 to 20% by volume. From the viewpoint of securing sufficient resistance weldability in addition to ensuring sufficient corrosion resistance and formability, the range of 4 to 20% by volume is particularly preferable.
  • the reason why the coating film ( ⁇ ) exhibits good conductivity is that the conductive pigment (B) which is conductive particles hardly aggregates in the coating film ( ⁇ ), It is considered that it is sufficiently uniformly dispersed over the entire surface of the coating film, and the electrical conduction path to the underlying metal plate is not unevenly distributed in the coating film.
  • the conductive particles are agglomerated in the coating film, an electric conduction path in a state of being uniformly dispersed over the entire coating surface is difficult to be formed in the coating film, and there is no electric conduction path in the coating film. There is a tendency to create areas that hinder resistance welding. In such a case, more conductive material must be added in order to secure a conduction path, and the possibility that good corrosion resistance and moldability cannot be maintained increases. In the coated metal plate of the present invention, such a problem is very unlikely to occur.
  • the content of the conductive pigment (B) in the coating film ( ⁇ ) exceeds 65% by volume, sufficient conductivity can be maintained, but coating film peeling or galling is likely to occur during press molding, and good moldability. May not be retained, and the corrosion resistance of the film peeling site may be reduced. Moreover, when it exceeds 65 volume%, although the improvement effect of weldability will be saturated, the cost of electroconductive particle will become high.
  • the addition of conductive particles of 0.5 vol% or more and less than 1 vol% of the coating film may result in insufficient electrical conductivity during resistance welding, and more than 40 vol% of the coating film,
  • the moldability and cost compatibility may be insufficient, so the volume ratio of the conductive pigment (B) may be 1% by volume or more and less than 40% by volume. More preferred.
  • the electrical conductivity during resistance welding may be slightly insufficient.
  • the moldability and the cost compatibility may be slightly insufficient.
  • addition of 2% by volume or more and less than 20% by volume is more preferable.
  • 2% by volume or more and less than 4% by volume of conductive particles are added to the coating film, if resistance welding conditions are greatly changed, there is a risk that high and stable weldability cannot always be secured.
  • Addition of less than volume% is particularly preferred.
  • the content of the conductive pigment (B) in the coating film ( ⁇ ) is less than 0.5% by volume, good conductivity cannot be ensured because the amount of non-oxide ceramic particles dispersed in the coating film is small. Depending on the thickness of the coating film ( ⁇ ), sufficient resistance weldability may not be imparted to the coating film.
  • Anti-rust pigment (C) Although it does not specifically limit as a kind of rust preventive pigment (C) used for this invention, It contains 1 type, or 2 or more types chosen from a silicate compound, a phosphate compound, a vanadate compound, and metal oxide fine particles. preferable.
  • the silicate compound, phosphate compound, and vanadate compound are used in the coating composition ( ⁇ ) and the coating film ( ⁇ ), the moisture in the composition and the coating film, contact with coexisting substances and the substrate surface, Depending on environmental changes such as pH, silicate ions, phosphate ions, vanadate ions, and counter cations of these anions (eg, alkaline earth metal ions, Zn ions, Al ions, etc.) can be released, respectively. .
  • the ions that have already eluted in the coating composition ( ⁇ ) are taken into the coating film ( ⁇ ) during film formation, and the increase or decrease of moisture in the coating film, the coexisting substances and the substrate surface It is considered that, depending on the contact with the substrate, pH change, etc., it forms a film of a hardly soluble salt or oxide with other coexisting atoms or atomic groups to suppress corrosion.
  • a silicate compound, a phosphate compound, and a vanadate compound incorporated in the coating film ( ⁇ ) the anion and cation are gradually released according to the environmental change after the coating film is formed. It is thought to form a film of sparingly soluble salt or oxide to suppress corrosion.
  • the above-mentioned action also releases silicate ions, phosphate ions, vanadate ions, and counter cations of these anions even when the coating film is scratched and the plating film on the metal plate or the underlying metal under plating is exposed. It is exhibited by reaching the exposed plating film or the surface of the underlying metal. This effect is more effectively exhibited when the degree of scratches is suppressed to be small and the exposed area of the plating film or base metal is limited to a small size.
  • silicate compound examples include alkaline earth metal silicates such as magnesium silicate and calcium silicate, alkali metal silicates such as lithium silicate, sodium silicate, and potassium silicate, and aluminum silicate.
  • alkaline earth metal silicates such as magnesium silicate and calcium silicate
  • alkali metal silicates such as lithium silicate, sodium silicate, and potassium silicate
  • aluminum silicate can be mentioned.
  • lithium silicate, sodium silicate, and potassium silicate the constituent molar ratio of silicon oxide (SiO 2 ) and lithium oxide (Li 2 O) is 0.5 ⁇ (SiO 2 / Li 2 O) ⁇ 8.
  • lithium orthosilicate Li 4 SiO 4 ; 2Li 2 O ⁇ SiO 2
  • ortholithium hexalithium Li 6 Si 2 O 7 ; 3Li 2 O ⁇ 2SiO 2
  • lithium metasilicate Li 2 SiO 3; Li 2 O ⁇ SiO 2)
  • lithium disilicate Li 2 Si 2 O 5; Li 2 O ⁇ 2SiO 2
  • seven silicate four lithium (2Li 2 O ⁇ 7SiO 2) seven silicate four lithium (2Li 2 O ⁇ 7SiO 2)
  • four lithium silicate Li 2 Si 4 O 9; Li 2 O ⁇ 4SiO 2)
  • nine silicate four lithium (2Li 2 O ⁇ 9SiO 2) fifteen silicate four lithium (2Li 2 O ⁇ 15SiO 2)
  • sodium orthosilicate Na 4 SiO 4 ; 2Na 2 O ⁇ SiO 2)
  • sodium metasilicate Na 2 SiO 3; Na 2 O ⁇ SiO 2
  • sodium disilicate Na 2 Si 2 O 5; Na 2
  • Examples of the phosphate compound that can be used in the present invention include orthophosphoric acid, polyphosphoric acid (a linear polymer having a degree of polymerization of orthophosphoric acid up to 6 or a mixture of two or more thereof), metaphosphoric acid ( Orthophosphoric acid cyclic polymer having a degree of polymerization of 3 to 6 or a mixture of two or more thereof, metal salts such as tetrametaphosphoric acid and hexametaphosphoric acid, phosphorous pentoxide, monetite, torphyllite, witrockite, xenotime , Phosphate minerals such as starcolite, struvite, orbite ore, commercially available complex phosphate pigments such as polyphosphate silica and tripolyphosphate, phytic acid, phosphonic acid (phosphorous acid), phosphinic acid (hypophosphorous acid) Or a metal salt thereof, or a mixture of two or more thereof.
  • orthophosphoric acid polyphosphoric acid (a linear poly
  • the orthophosphate referred to here includes its monohydrogen salt (HPO 4 2 ⁇ ) and dihydrogen salt (H 2 PO 4 ⁇ ).
  • the polyphosphate includes a hydrogen salt.
  • the cationic species that form the phosphate such as Co, Cu, Fe, Mn, Nb, Ni, Sn, Ti, V, Y, Zr, Al, Ba, Ca, Mg, Sr, and Zn.
  • Metal ions, vanadyl, titanyl, zirconyl, and other oxo cations, and Al, Ca, Mg, Mn, and Ni are preferably used.
  • the said phosphate compound may be used independently and may use 2 or more types together.
  • alkali metal phosphate it is not preferable to use a large amount of alkali metal as the cationic species forming phosphate.
  • the product obtained by firing in an industrial production process tends to be excessively dissolved in water.
  • the solubility in water can be controlled by using anti-rust pigments, coating compositions, coatings on metal plates, or using painted metal plates. If it can be carried out at times, it may be used slightly more. Such control can be achieved by, for example, coexisting rust preventive pigments with other additives that suppress water solubility, or coexisting with highly crosslinked resin-based or inorganic polymers. Examples include a method of controlling the elution rate.
  • the vanadate compound that can be used in the present invention is a composite compound in which the valence of vanadium is any one of 0, 2, 3, 4, or 5, or two or more kinds, These oxides, hydroxides, oxyacid salts of various metals, vanadyl compounds, halides, sulfates, metal powders, and the like. These decompose when heated or in the presence of water and react with the coexisting oxygen.
  • a vanadium metal powder or a divalent compound finally changes to a trivalent, tetravalent, or pentavalent compound.
  • Zero-valent ones, such as vanadium metal powder can be used for the above reasons, but are not preferred in practice because of problems such as insufficient oxidation reaction.
  • vanadium compounds include vanadium (II) compounds such as vanadium oxide (II) and vanadium hydroxide (II), vanadium (III) compounds such as vanadium oxide (III), vanadium oxide (IV), and vanadyl halide.
  • Vanadium (IV) compounds such as vanadium (IV) compounds, vanadium oxide (V), vanadate (ortho vanadates of various metals, metavanadate, pyrovanadate, etc.), etc., or a mixture thereof Can be mentioned.
  • the preferred metal species constituting the vanadate are the same as the metals shown for the phosphate.
  • alkali metal vanadate When alkali metal vanadate is used, the product obtained by calcination in an industrial manufacturing process tends to dissolve too much in water. Large amounts are not preferred. However, as long as the solubility in water can be controlled as in the case of using an alkali metal phosphate, these can be used. The same applies to vanadium halides and sulfates.
  • the total amount of the silicate compound, phosphate compound, and vanadate compound is 1 to 40% by volume, preferably 1 to 20% by volume of the coating film ( ⁇ ). 2 to 15% by volume is more preferable. If it is less than 1% by volume, the silicate compound, the phosphate compound, and the vanadate compound are insufficient in action, and the corrosion resistance may be lowered. If it exceeds 20% by volume, the coating film becomes brittle, and the coating film adhesion and coating followability at the time of molding may decrease due to coating film cohesive failure, or the weldability may decrease.
  • the rust preventive pigment (C) preferably contains one or more of silicate compounds, phosphate compounds, and vanadate compounds.
  • the phosphate compound (phosphate ion source) and the silicate compound (silicic acid) It is more preferable that at least one kind of ion source) or vanadate compound (vanadate ion source) coexists in order to enhance the rust prevention effect.
  • the ratio of the phosphate ion source and the total amount of the silicate ion source and vanadate ion source to be blended is the ratio of [number of moles of P 2 O 5 ]: [total number of moles of SiO 2 and V 2 O 5 ]: 25 More preferably, it is 75 to 99: 1.
  • the rust preventive effect due to the phosphate ions may be reduced.
  • the molar ratio of the total amount of the source and vanadate ion source is less than 1%, the effect of oxidizing and fixing peripheral chemical species by silicate ions (or vanadate ions) may be insufficient.
  • the anticorrosive pigment (C) used in the present invention fine metal oxide particles composed of one or more metal elements selected from the group consisting of Si, Ti, Al and Zr can be used. Corrosion resistance can be further improved by using these metal oxide fine particles alone or by blending them together with a silicate compound, a phosphate compound and a vanadate compound. It is preferable that a silicate compound, a phosphate compound, a vanadate compound and silica coexist because the corrosion resistance is further improved.
  • Examples of silica include fumed silica, colloidal silica, and agglomerated silica. Calcium deposited silica can also be used.
  • metal oxide fine particles examples include silica fine particles having a volume average diameter of about 0.2 to 10 ⁇ m, alumina fine particles, titania fine particles, zirconia fine particles, and the like.
  • Metal oxide nanoparticles having a size of about 0.5 to 30 nm are more preferable. These may be used alone or in combination of two or more. Among these, silica nanoparticles can be added when both improvement in corrosion resistance and toughening of the coating film are required.
  • the metal oxide nanoparticle having a particle size of 0.5 nm or more and less than 30 nm for example, colloidal silica, colloidal titania, colloidal zirconia can be used. Since these are different in production method from those obtained by pulverizing the above metal oxide, the fine primary particle diameter (0.5 nm to 30 nm) remains in the paint and in the coating film of the painted metal material after painting. Easy to disperse. These metal oxide nanoparticles have a higher antirust effect than metal oxide particles having the same composition and a larger particle size. However, such metal oxide nanoparticles may impair weldability in current resistance welding, such as spot welding, in which current is applied while applying a load with an electrode and welding is performed by Joule heat.
  • current resistance welding such as spot welding
  • the amount of metal oxide nanoparticles is such that the ratio of the total volume of metal oxide nanoparticles in the coating film to the total volume of non-oxidized ceramic particles (B) (metal oxide nanoparticles / B) is 20 or less. It is preferable. When emphasizing the weldability, 10 or less is more preferable.
  • the lower limit of (metal oxide nanoparticle / B) is preferably 0.1 or more. When (metal oxide nanoparticle / B) is less than 0.1, there are too many non-oxidized ceramic particles (B) in the coating film or too few metal oxide nanoparticles.
  • the coating film becomes brittle, and coating film cracking or coating film dropping during molding may occur.
  • a crack in the coating film or a drop in the coating film leads to a decrease in corrosion resistance due to the coating film or a poor appearance of the coated metal plate.
  • the amount of the metal oxide nanoparticles in the coating film is insufficient, the effect of improving the corrosion resistance may not be sufficiently obtained.
  • the antirust property which is lowered by suppressing the amount of the metal oxide nanoparticle in order to ensure the weldability can be supplemented by adding an antirust pigment (C) having a particle size of 100 nm or more.
  • the anticorrosive pigment (C) having a particle size of 100 nm or more is formed between the electrode and (B) and (B) in a state where the coating film is applied on the metal plate or in a state where the coating film is deformed by a load by the welding electrode. Or, since it is difficult to enter between (B) and the metal plate, the adverse effect on current resistance welding is small compared to metal oxide nanoparticles.
  • the amount of the rust preventive pigment (C) is preferably 1 to 40% by volume of the coating film ( ⁇ ), and the total amount with the amount of the conductive pigment (B) preferably does not exceed 80% by volume.
  • the amount of the anticorrosive pigment (C) is preferably 3 to 40% by volume, more preferably 7.5 to 40% by volume.
  • the amount of the rust preventive pigment (C) is more preferably 13 to 40% by volume. If the amount is less than 1% by volume, the amount of the anticorrosive pigment (C) is insufficient, and thus the effect of enhancing the corrosion resistance may not be sufficiently obtained. If it exceeds 40% by volume, the coating plate will be embrittled or the adhesion of the coating to the metal plate will be reduced. The effect of improving the corrosion resistance by the coating film may be reduced.
  • the amount of the conductive pigment (B) and the amount of the anticorrosive pigment (C) are determined by observing the cross section of the coating film with an electron microscope and identifying each particle, counting the number per section, It can be calculated after conversion. In this case, each particle can be identified using an EDX spectroscopic device or the like as necessary. It is also possible to calculate the amount of each particle in the coating film from the amounts of (B) and (C) contained in the coating material before painting and the coating film adhesion amount to the metal plate. If the charged amounts of (B) and (C) in the paint before painting are known, the amount of each particle in the coating film can be calculated from the charged amount and the amount of paint adhered to the metal plate.
  • the amount charged is unknown, for example, it can be calculated by identifying and counting the particles in the paint diluted to an appropriate concentration by image analysis using a device such as Malvern's particle image analyzer Morphologi G3. It is. This technique can also be used when the number of particles is counted by dissolving the coating film adhering to the metal plate.
  • the amount of the conductive pigment (B) and the amount of the rust preventive pigment (C) in the coating film ( ⁇ ) are the mixing ratio of the organic resin (A), the conductive pigment (B) and the rust preventive pigment (C). Even if it is calculated based on each specific gravity after drying, it should be the same measurement value as that measured by observing the cross section, so that it can be simply calculated from the blending ratio.
  • an appropriate amount of the various antirust pigments is previously dissolved or dispersed and stabilized in the coating composition ( ⁇ ) and then introduced into the organic resin (A) in the coating film ( ⁇ ).
  • ⁇ Particle (D)> The conductive pigments (B), in addition to the rust-preventive pigment (C), as the particles in the coating film of the present invention, the Martens hardness of the granular 200mg / mm 2 ⁇ 200000mg / mm 2 at 40 ° C., the wax or resin Particles (D) such as beads may be included. Martens hardness at 40 ° C. particulate wax or resin beads 200mg / mm 2 ⁇ 200000mg / mm 2 can be arbitrarily selected in consideration of ease of addition to the coating material.
  • polyolefin wax, polyethylene wax, polypropylene wax, polybutylene wax, modified polyolefin wax, acrylic resin particles, silicone resin particles, fluorine resin particles, polyacrylonitrile resin, and the like can be used.
  • the resin (A) is used when the surfaces of the coated metal plates of the present invention are in contact with each other or with other materials, instruments, or tools. Are also preferentially contacted, and the effect of preventing the coating film ( ⁇ ) from sticking or melting is small. Particles (D) whose Martens hardness at 40 ° C. exceeds 200,000 mg / mm 2 are difficult to find industrially easily, and are substantially the upper limit of HM. Furthermore, the hardness range of the Martens hardness is more preferably in the range of 300 mg / m 2 to 2000 mg / m 2 .
  • Particles selected from the above conductive pigment (B), rust preventive pigment (C), and particles (D) and having a primary particle diameter of 1 ⁇ m to 10 ⁇ m are defined as particles (P).
  • the particles (P) are composed of at least one of a conductive pigment (B) and a rust preventive pigment (C), and may contain particles (D) as necessary.
  • the exposed state of the particles (P) and the particle diameter thereof can be confirmed from above the painted metal plate or by observing the cross section with a microscope.
  • the density of the exposed particles (P) can also be confirmed by observation from above the coated metal plate.
  • the particle diameter and the number of particles of the raw material of the particles (P) are known, they may be calculated from the blending amount in the paint.
  • the particles (P) exposed on the surface of the coating film ( ⁇ ) have a micro-Martens hardness HM at 40 ° C. of 200 to 200,000 (mg / mm 2 ) and constitute at least a part of the surface of the coating film ( ⁇ ).
  • the particles (P) exposed on the surface of the coating film ( ⁇ ) are less likely to be deformed than the resin (A) constituting the coating film ( ⁇ ).
  • they When contacting the surfaces of each other, or with other materials, instruments and tools, they have priority over the coating film ( ⁇ ) and prevent the coating film ( ⁇ ) from sticking or melting. be able to.
  • FIG. 7 is a schematic view showing a state where the particles (P) are exposed from the coating film ( ⁇ ).
  • the relationship between the thickness (T) of the coated film after drying and the particle size (R) of the particles (P) is preferred so that the particles (P) come into contact with other materials more preferentially than the coated film ( ⁇ ).
  • T / R 0.6-2.5
  • R is the volume average particle diameter ( ⁇ m) of the particles P) It is preferable to satisfy.
  • the T / R is less than 0.6, most of the individual particles of the particles (P) protrude from the coating film ( ⁇ ), so that the particles (P) easily fall off, and the particles (P) This is not preferable because the particles (P) that do not exhibit sufficient effects or fall off are likely to be mixed into the process and cause quality problems. Moreover, when it exceeds 2.5, since the exposure from the coating film ((alpha)) of particle
  • the effect was remarkable when the diameter of the primary particles of the particles (P) was 1 to 10 ⁇ m and the exposure density was 100 to 2.0 ⁇ 10 6 particles / mm 2 .
  • the exposure density is preferably 1.0 ⁇ 10 3 to 2.0 ⁇ 10 5 pieces / mm 2 , and the exposure density is 5.0 ⁇ 10 3 to 2.0 ⁇ 10 4 pieces / mm 2 . Further preferred.
  • the diameter of the primary particles is less than 1 ⁇ m, since the particles (P) are buried in the coating film ( ⁇ ), it is difficult to exert an effect that the particles (P) come into contact with priority.
  • the diameter of the primary particles is more than 10 ⁇ m, it is difficult for the particles (P) to be stably present in the coating material for forming the coating film ( ⁇ ), resulting in poor economics of coating storage and coating.
  • the exposure density of the particles (P) is less than 100 particles / mm 2 , the density is too low, so that the effect that the particles (P) come into contact with priority is difficult to be exhibited.
  • the exposure density exceeds 2.0 ⁇ 10 6 particles / mm 2 , the amount of particles (P) in the coating film ( ⁇ ) is too large, and the coating film is easily peeled off, which makes coating difficult. Problems arise.
  • the manufacturing method of the coating composition ( ⁇ ) used for forming the coating film ( ⁇ ) of the present invention is not particularly limited.
  • a method of adding each coating film ( ⁇ ) forming component in water or an organic solvent, stirring with a disperser such as a disper, and dissolving, dispersing or crushing and dispersing can be mentioned.
  • a known hydrophilic solvent or the like may be added, if necessary, in order to improve the solubility or dispersibility of each coating film ( ⁇ ) forming component.
  • the resin (A1), the conductive pigment (B), and the rust-preventing pigment (C) may be added to the particles (D) as necessary.
  • Various water-soluble or water-dispersible additives may be added as long as the aqueous property and coating property are not impaired.
  • various water-soluble or water-dispersible rust preventives that do not take the form of pigments, surfactants such as antifoaming agents, anti-settling agents, leveling agents, wetting and dispersing agents, thickeners, viscosity adjustments An agent or the like may be added.
  • the coating film ( ⁇ ) of the present invention is formed from the aqueous coating composition ( ⁇ ), since it is aqueous, the surface tension is higher than that of the organic solvent coating composition, and the metal plate as the substrate (If there is a base treatment, the base treatment layer), conductive pigment (B), rust preventive pigment (C), inferior wettability to particles (D), etc., when applying a predetermined amount to the substrate, Uniform paintability and particle dispersibility may not be obtained. In such a case, it is preferable to add the above-mentioned wetting and dispersing agent or thickener.
  • a surfactant that lowers the surface tension can be used, but it is better to use a polymer surfactant (polymer dispersant) having a molecular weight of 2000 or more.
  • Low molecular surfactants can move relatively easily through moisture-containing resin coatings, so that water adsorbed on polar groups of surfactants and corrosive factors such as dissolved oxygen and dissolved salts can be removed via the water. It is easy to attract to the metal surface, and bleeds out on its own, so that it is easy to elute and often deteriorates the rust prevention property of the coating film.
  • polymer surfactants can be adsorbed on the surface of metals, ceramic particles and pigments at multiple points, so that they are difficult to separate once adsorbed, and are effective in improving wettability even at low concentrations.
  • the molecules are bulky, it is difficult to move through the resin coating film, and it is difficult to attract the corrosion factor to the metal surface.
  • Part of the acrylic resin recommended to be added to the organic resin (A) in the section ⁇ Organic resin (A)> has the function of such a polymer surfactant, and is used for water-based coating.
  • the conductive pigment (B), the rust preventive pigment (C), the particles (D) and the like are prevented from being settled and uniformly dispersed.
  • Thickener is sufficient when wetting and dispersing agent alone does not provide sufficient surface coverage for the repellent area of the substrate surface, or the viscosity of the aqueous coating composition is too low to ensure the required coating thickness It can be added as a countermeasure when not. Many have a molecular weight of several thousand to several tens of thousands, adsorbed on the surface of pigments and the like, and the thickeners themselves associate with each other to form a weak network structure, thereby increasing the viscosity of the coating composition.
  • the aqueous coating composition ( ⁇ ) contains conductive pigment (B), rust preventive pigment (C), and particles (D) with high specific gravity, if necessary, impart thixotropic properties (thixotropic properties) to the paint. It is better to add a viscosity modifier that can be used. As in the case of the thickener, the viscosity modifier is adsorbed on the surface of a pigment or the like in the aqueous coating composition to form a network structure. Since the molecular weight of such a viscosity modifier is very high at hundreds of thousands to millions, it forms a strong network structure with a large yield value in the aqueous coating composition ( ⁇ ), and thus the coating composition.
  • an organic solvent-based coating composition ( ⁇ ) a coating composition in which a resin is dissolved in an organic solvent has a relatively high viscosity and is easy to adjust the viscosity. Therefore, the viscosity of the coating composition can be easily and stably maintained at 100 mPa ⁇ s or more, which is advantageous for suppressing pigment settling.
  • non-oxide ceramics used as conductive materials are substances that also have hydrophobic sites on the surface, they are generally easy to disperse in organic solvent-based coating compositions ( ⁇ ), and coating Since the conductive pigment (B) in the coating composition ( ⁇ ) can sometimes be coated without settling, it is preferable.
  • a coating composition having an organic solvent-based coating composition ( ⁇ ) forming a coating film having a viscosity of 100 to 2000 mPa ⁇ s is applied onto a metal plate with a roll coater or a curtain coater and then dried and baked
  • the conductive pigment (B) is more preferable because it is difficult to settle.
  • the viscosity of the coating composition ( ⁇ ) is less than 100 mPa ⁇ s, the conductive pigment (B) tends to settle, and when it exceeds 2000 mPa ⁇ s, the viscosity is too high and is generally referred to as living etc. May cause poor appearance. More preferably, it is 250 to 1000 mPa ⁇ s.
  • the viscosity of the organic solvent-based coating composition ( ⁇ ) can be measured using a B-type viscometer at the same temperature as that of the coating composition when applied by a roll coater or a curtain coater.
  • Viscosity can be adjusted by the type of organic solvent used and the amount of solvent.
  • the organic solvent generally known solvents can be used, but organic solvents having a high boiling point are preferable. In the metal plate production line of the present invention, since the baking time is short, if a solvent having a low boiling point is used, there is a possibility that a coating defect generally called boiling will occur. It is preferable to use a solvent having a boiling point of 120 ° C. or higher.
  • known solvents such as cyclohexane and aromatic hydrocarbon organic solvent Solvesso (product name of ExxonMobil Co., Ltd.) can be used.
  • the coating film ( ⁇ ) of the present invention is a roll coat or groove roll when the coating composition ( ⁇ ) is an aqueous or organic solvent composition.
  • a coating method such as coating, curtain flow coating, roller curtain coating, dipping (dip), air knife drawing, etc.
  • the coating composition ( ⁇ ) is applied on the metal plate.
  • a film forming method for drying the solvent is preferred.
  • moisture or solvent is dried, and ultraviolet rays or electron beams are applied. It is preferable to polymerize by irradiation.
  • the baking drying method in the case where the coating composition ( ⁇ ) is a water-based or organic solvent-based baking curable composition will be specifically described.
  • the baking and drying method is not particularly limited, either by heating the metal plate in advance or heating the metal plate after application, Or you may dry these combining these.
  • limiting in particular in a heating method A hot air, induction heating, near infrared rays, a direct fire, etc. can be used individually or in combination.
  • the coating composition ( ⁇ ) is a water-based baking curable composition
  • it is preferably 120 ° C. to 250 ° C. at the metal plate surface arrival temperature.
  • the coating film is not sufficiently cured and the corrosion resistance may be lowered.
  • the temperature exceeds 250 ° C. the bake hardening becomes excessive, and the corrosion resistance and the moldability may be lowered.
  • the baking and drying time is preferably 1 to 60 seconds, and more preferably 3 to 20 seconds. If it is less than 1 second, the bake hardening is insufficient and the corrosion resistance may be lowered, and if it exceeds 60 seconds, the productivity may be lowered.
  • the metal plate surface arrival temperature is preferably 180 ° C. to 260 ° C.
  • the coating film is not sufficiently cured, and the corrosion resistance may be lowered.
  • the temperature exceeds 260 ° C. the bake hardening becomes excessive, and the corrosion resistance and formability may be lowered.
  • the baking and drying time is preferably 10 to 80 seconds, and more preferably 40 to 60 seconds. If it is less than 10 seconds, the bake hardening is insufficient and the corrosion resistance may be lowered, and if it exceeds 80 seconds, the productivity may be lowered.
  • the coating composition ( ⁇ ) is a water-based or organic solvent-based ultraviolet curable composition or electron beam curable composition
  • the moisture and solvent content of the wet coating film are dried, and then irradiated with ultraviolet rays or electron beams. Since the coating film is cured and formed mainly from radicals generated by irradiation with ultraviolet rays or electron beams, the drying temperature may be lower than that for the bake curable composition. In the drying process, it is preferable to irradiate with ultraviolet rays or electron beams after volatilizing most of moisture and solvent at a relatively low metal surface reaching temperature of about 80 to 120 ° C.
  • the UV irradiation for radical polymerization of the UV curable resin in the coating film by UV irradiation and curing is usually performed in an air atmosphere, in an inert gas atmosphere, in a mixed atmosphere of air and an inert gas, or the like.
  • the adhesion to the conductive pigment (B) and the metal plate surface is increased, and as a result, the corrosion resistance of the coating film is improved as compared with the case of ultraviolet curing in the air atmosphere.
  • the inert gas used here include nitrogen gas, carbon dioxide gas, argon gas, and mixed gas thereof.
  • the ultraviolet light source can be irradiated with ultraviolet rays by using, for example, a metal vapor discharge type high pressure mercury lamp, a metal halide lamp, a rare gas discharge type xenon lamp, an electrodeless lamp using microwaves, or the like.
  • any lamp may be used as long as the ultraviolet curable coating film can be sufficiently cured and desired resistance weldability, corrosion resistance, and formability can be obtained.
  • the peak illuminance and integrated light intensity of the ultraviolet rays received by the coating film influence the curability of the coating film, but the UV curing type coating film can be sufficiently cured, and the desired corrosion resistance and moldability can be obtained. If there is, ultraviolet irradiation conditions are not particularly limited.
  • the coating composition ( ⁇ ) is an electron beam curable composition
  • a normal electron beam irradiation apparatus used in the fields of printing, painting, film coating, packaging, sterilization, etc. is used for electron beam curing. be able to. These are accelerated by applying a high voltage to thermoelectrons generated from a hot filament in a high vacuum, and the resulting electron stream is taken out in an inert gas atmosphere and irradiated to a polymerizable substance.
  • any apparatus may be used as long as the electron beam curable coating film can be sufficiently cured and desired resistance weldability, corrosion resistance, and formability can be obtained.
  • the acceleration voltage of the electron beam absorbed by the coating film affects the depth at which the electron beam penetrates the coating film, and the absorbed dose affects the polymerization rate (curability of the coating film).
  • the irradiation conditions of the electron beam are not particularly limited as long as the coating film of the mold can be sufficiently cured and desired corrosion resistance and moldability can be obtained.
  • the inert gas used here include nitrogen gas, carbon dioxide gas, argon gas, and mixed gas thereof.
  • Example I Hereinafter, the present invention will be specifically described by Example I using a water-based coating composition.
  • Preparation of metal plate Prepare the following five types of galvanized steel sheets and immerse them in a 2.5% by weight, 40 ° C aqueous solution of an aqueous alkaline degreasing agent (FC-301 manufactured by Nihon Parkerizing Co., Ltd.) for 2 minutes. After degreasing, it was washed with water and dried to obtain a metal plate for painting.
  • FC-301 aqueous alkaline degreasing agent manufactured by Nihon Parkerizing Co., Ltd.
  • EG electrogalvanized steel sheet (plate thickness 0.8 mm, plating adhesion 30 g / m 2 )
  • ZL Electric Zn-10% Ni alloy plated steel sheet (plate thickness 0.8 mm, plating adhesion 30 g / m 2 )
  • GI Hot dip galvanized steel sheet (plate thickness 0.8 mm, plating adhesion 40 g / m 2 ) SD: Hot-dip Zn-11% Al-3% Mg-0.2% Si alloy-plated steel sheet (plate thickness 0.8 mm, plating deposit 40 g / m 2 )
  • GA Alloyed hot-dip galvanized steel sheet (plate thickness 0.8 mm, 10% Fe, plating adhesion 45 g / m 2 )
  • an aqueous coating composition comprising a polyester resin, silica fine particles, and a silane coupling agent was prepared.
  • the above composition was bar-coated on the above-mentioned metal plate for coating so as to have a film thickness of 0.08 ⁇ m, dried in a hot air oven at a metal surface reaching temperature of 70 ° C., and air-dried.
  • Resin (A1) Commercially available resins A1 to A8 shown in Table 1 were prepared as examples (invention examples) and comparative examples.
  • Conductive pigment (B) Commercially available fine particles (reagents) shown in Table 2 were used (Examples). The volume average particle diameter was measured using Multisizer 3 (precision particle size distribution measuring apparatus based on the Coulter principle) manufactured by Beckman Coulter, Inc. The electrical resistivity is 80 mm long, 50 mm wide, and 2 to 4 mm thick sintered plate made from each fine particle. Resistivity meter Loresta EP (MCP-T360 type) manufactured by Mitsubishi Chemical Analytech Co., Ltd. and ESP The measurement was performed at 25 ° C. in accordance with JIS K7194 by a four-terminal four-probe method using a probe (diameter 2 mm of the flat head of the terminal) and a constant current application method.
  • Multisizer 3 precision particle size distribution measuring apparatus based on the Coulter principle
  • the electrical resistivity is 80 mm long, 50 mm wide, and 2 to 4 mm thick sintered plate made from each fine particle.
  • Resistivity meter Loresta EP M
  • TiB TiB 2 fine particles (TII11PB manufactured by Purifying Research Institute Co., Ltd., volume average diameter 2.9 ⁇ m, electrical resistivity 30 ⁇ 10 ⁇ 6 ⁇ cm)
  • ZrB ZrB 2 fine particles (manufactured by Wako Pure Chemical Industries, Ltd., volume average diameter 2.2 ⁇ m, electrical resistivity 70 ⁇ 10 ⁇ 6 ⁇ cm)
  • MoB Mo 2 B fine particles (manufactured by Mitsuwa Chemical Co., Ltd., dimolybdenum boride, volume average diameter 5.2 ⁇ m, electrical resistivity 30 ⁇ 10 ⁇ 6 ⁇ cm)
  • LaB LaB 6 fine particles (Zeon Boron, lanthanum hexaboride, volume average diameter 2.8 ⁇ m, electrical resistivity 20 ⁇ 10 ⁇ 6 ⁇ cm)
  • VC VC fine particles (manufactured by Wako Pure Chemical Industries, Ltd., volume average diameter 2.3 ⁇ m, electrical resistivity 140 ⁇ 10
  • SUS SUS304 particles (volume average diameter 3.3 ⁇ m, electrical resistivity 70 ⁇ 10 ⁇ 6 ⁇ cm)
  • ZrB + VC mixture of ZrB and VC (volume ratio 1: 1)
  • ZrB + TiC mixture of ZrB and TiC (volume ratio 1: 1)
  • VC + TiN mixture of VC and TiN (volume ratio 1: 1)
  • Rust prevention pigment Commercially available reagents shown in Table 3 and Table 4, industrial products, or blends thereof were used (Examples).
  • aqueous coating compositions were prepared at various blending ratios using the resin (A), conductive pigment (B), rust preventive pigment (C), particles (D) and distilled water.
  • the concentration of the non-volatile content of the water-based coating composition was appropriately adjusted by changing the amount of water added in order to obtain the target coating amount and good coating properties.
  • the “nonvolatile content” means a component remaining after volatilizing water and organic solvents mixed as a solvent in the paint or composition.
  • Table 6 shows the component composition and the content (volume fraction%) in the coating film of the coating film ( ⁇ ) prepared using the coating film constituent components.
  • each component is uniformly dispersed, it is applied to the metal plate for coating or a metal plate provided with a base treatment film using a roll coater, and this is applied to the metal surface in a hot air oven. It was dried at an ultimate temperature of 200 ° C., water-cooled and air-dried.
  • Table 7 shows the coating thickness ( ⁇ m unit) after film formation. The coating thickness was calculated by dividing the mass difference before and after peeling of the coating after coating by the specific gravity of the coating. The specific gravity of the coating film was calculated from the blending amount of the coating film components and the known specific gravity of each component.
  • Table 6 shows the HM distribution at ⁇ 20 ° C. and the HM distribution at 40 ° C. on the surface of the coating film ( ⁇ ) on the surface of the coated metal plate.
  • Each distribution state is shown as follows.
  • the measurement site is 60 points or more.
  • (2) HM distribution at 40 ° C. 1 The measurement site where the micro Martens hardness HM at 40 ° C. is 200 to 200,000 mg / mm 2 is 0 points out of 100 random measurement points.
  • Up to 4 point state 2 Measurement site with HM of 200 to 200000 mg / mm 2 5 to 9 point State 3: Measurement site with HM of 200 to 200000 mg / mm 2 10 to 19 points
  • State 4 20 or more measurement sites with HM of 200 to 200,000 mg / mm 2
  • Number of hit points is 1000 points or more 3: 200 points or more, less than 1000 points 2: less than 200 points 1: Nugget is not generated and one point cannot be welded
  • test pieces cut to 50 mm x 50 mm are stacked so that the front and back surfaces are in surface contact with each other, and subjected to hot pressing at 40 ° C for 100 kg / cm 2 ⁇ 24 hours. Thereafter, the degree of stacking (sticking) of the coating film was evaluated according to the following criteria.
  • Table 7 (Tables 7-1 and 7-2) shows the evaluation results.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Architecture (AREA)
  • Laminated Bodies (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Paints Or Removers (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

 金属板、および前記金属板の少なくとも一方の表面上にある塗膜(α)を含む自動車用塗装金属板であって、前記塗膜(α)が、有機樹脂(A)と、導電性顔料(B)と、防錆顔料(C)とを含み、塗膜(α)表面の-20℃における微小マルテンス硬度が、100点測定した際に20点以上がHM10~200(mg/mm2)であり、塗膜(α)表面の40℃における微小マルテンス硬度が、100点測定した際に5点以上がHM200~200000(mg/mm2)である。

Description

低温走行環境での防錆性に優れる自動車用塗装金属板
 本発明は、耐チッピング性を有し、低温走行環境での防錆性に優れる自動車用塗装金属板に関する。
 以下、本発明の背景技術について説明する。
 自動車車体用部材の多くは、鋼板等の金属板を素材とし、[1]金属板を所定のサイズに切断するブランク工程、[2]金属板を油で洗浄する油洗工程、[3]ブランクをプレス成形する工程、[4]成形材をスポット溶接や接着等で所望形状の部材に組み立てる接合工程、[5]部材表面のプレス油を脱脂及び洗浄する工程、[6]化成処理工程、[7]電着塗装工程という多くの工程を経て製造される。外板として使われる車体用部材は、更に、[8]中塗り工程、[9]上塗り工程等の塗装工程を経るのが一般的である。従って、自動車業界では、製造工程、特に化成処理工程や塗装工程の省略や簡略化によるコスト削減のニーズが高い。
 これらのニーズに応え、自動車製造時の化成処理工程の省略、電着塗装工程の省略や簡略化、副資材の省略や削減のために、自動車車体用部材に塗装金属板(プレコート金属板)を用いることが従来から検討されている。
 自動車車体用部材に要求される重要な性能の一つは、耐チッピング性である。チッピングは、自動車の走行時に跳ね上げられた石等が、車体に衝突し、その際塗膜およびめっき皮膜が破壊され、剥離する現象をいう。この現象は、寒冷地域で重要な問題となっており、低温チッピング現象といわれる。寒冷地域では、塗膜は低温にさらされ、縮もうとする内部応力が働いている。塗膜に、石跳ね等の衝撃が加わると、塗膜が損傷するだけでなく、その下にあるめっき皮膜が損傷し、さらにはめっき皮膜と鋼板の界面にまで亀裂が生じることがある。これは、めっき皮膜に塗膜の内部応力が作用するためであると考えられている。このようなめっき皮膜の剥離部は、直ちに耐食性の低下につながり、自動車車体塗膜系の大きな問題点である。
 自動車車体用部材のチッピング対策として、従来行われているのは、電着塗膜と中塗り塗膜との間にチッピングプライマーを挿入することである。チッピングプライマーの目的は、クッション層として機能することにより、石の衝突時の塗膜への衝撃を緩和することである。したがって、チッピングプライマーの性質としては、塗膜の弾性が高いこと、塗膜の伸び率が大きく塗膜強度が高いことが求められている。
 塗膜の伸び率が大きいチッピングプライマーとしては、ガラス転移温度(Tg)が0~-75℃に調整した水性チッピングプライマーが特許文献1(特開2003-251272公報)に記載されている。
 一方、上述したように、自動車業界では、製造工程、特に塗装工程の省略や簡略化によるコスト削減のニーズが高く、チッピングプライマー塗布のような付属の工程を省略できる、自動車車体塗膜系が求められている。
 例えば、特許文献2(特開2003-245605公報)、特許文献3(特開2005-15516号公報)には、中塗り塗膜中にチッピングの衝撃を吸収するゴム粒子を含有させて、耐チッピング性を付与して、チッピングプライマーを塗布しない積層塗膜の形成方法が記載されている。
 特許文献4(特開2003-253211号公報)には、塗膜形成性樹脂、硬化剤、着色顔料、タルク及びシランカップリング剤からなる、耐チッピング性を有する水性中塗り塗料組成物が開示されている。
 特許文献2~4はいずれも、自動車用鋼板に、電着塗料などの下塗り塗料を塗布した後に、積層される中塗り層に耐チッピング性を付与して、チッピングプライマーを省略することを目的としている。これに対して、自動車車体用部材に、塗装金属板を用い、この塗装金属板の塗膜自体に耐チッピング性を付与して、チッピングプライマーを省略する自動車車体塗膜系は未だない。
特開2003-251272号公報 特開2003-245605号公報 特開2005-15516号公報 特開2003-253211号公報
 本発明は、上記の課題に鑑みてなされたものであり、耐チッピング性を有し、且つ低温走行環境での防錆性に優れる自動車用塗装金属板に関する。
 本発明者らは、従来のチッピングプライマーに使用されている伸び率が高く、ガラス転移温度Tgが0℃以下の有機樹脂を塗装金属板の塗膜に採用して耐チッピング性を付与して、チッピングプライマーを省略できることを見出した。しかし、ガラス転移温度Tgが0℃以下の有機樹脂から形成された塗膜は、常温では、粘着性を有し、積層して保存すると上下の塗装金属板がくっ付くという問題点を有していた。本発明者らは、さらに研究を行った結果、塗膜中に特定の硬度を有する粒子を含有させることにより、この問題を解決し、本発明の耐チッピング性を有する自動車用塗装金属板を得ることができたものである。
 本発明は、具体的には、以下の通りである。
[1]
 金属板、および前記金属板の少なくとも一方の表面上にある塗膜(α)を含む自動車用塗装金属板であって、
 前記塗膜(α)が、有機樹脂(A)と、導電性顔料(B)と、防錆顔料(C)とを含み、
 塗膜(α)表面の-20℃における微小マルテンス硬度が、100点測定した際に20点以上がHM10~200(mg/mm2)であり、塗膜(α)表面の40℃における微小マルテンス硬度が、100点測定した際に5点以上がHM200~200000(mg/mm2)である、自動車用塗装金属板。
[2]
 前記有機樹脂(A)のガラス転移温度Tgが、-80℃~-20℃である、[1]に記載の自動車用塗装金属板。
[3]
 前記有機樹脂(A)が、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、またはそれらの変性体から成る群より選ばれる、[1]に記載の自動車用塗装金属板。
[4]
 前記導電性顔料(B)が、硼化物、炭化物、窒化物、珪化物の少なくとも1種から選ばれる、25℃の電気抵抗率が0.1×10-6~185×10-6Ωcmの非酸化物セラミックス粒子である、[1]に記載の自動車用塗装金属板。
[5]
 前記塗膜(α)が、0.5vol%~65vol%の量の導電性顔料(B)を含有する、[1]に記載の自動車用塗装金属板。
[6]
 前記防錆顔料(C)が、珪酸イオン、燐酸イオン、バナジン酸イオン、タングステン酸イオン、又はモリブデン酸イオンを放出できる化合物、およびまたはSi、Ti、Al、およびZrからなる群より選ばれる金属元素を含む粒子から選ばれる1種または2種以上を含む、[1]に記載の自動車用塗装金属板。
[7]
 前記塗膜(α)が、1vol%~40vol%の量の防錆顔料(C)を含有する、[1]に記載の自動車用塗装金属板。
[8]
 40℃でのマルテンス硬度が200mg/mm2~200000mg/mm2の粒状の粒子(D)を塗膜中に含む、[1]に記載の自動車用塗装金属板。
[9]
 [1]に記載の自動車用塗装金属板を加工、成形して形成された自動車部品。
[10]
 [9]に記載の自動車部品に、さらに電着塗膜層、中塗り塗膜層、上塗り塗膜層のうちいずれか一層以上を塗布して形成された自動車部品。
 本発明の自動車用塗装金属板は、塗膜それ自体が耐チッピング性を有しているので、この塗装金属板を自動車部品に加工、成形した後の塗装工程において、チッピングプライマーの塗布工程を設ける必要が無い。また、この塗膜の耐チッピング性は、特に-15℃以下の低温環境において有効であり、耐食性に優れる自動車用塗装金属板を提供することができる。
図1は、チッピングプライマーを有する従来の自動車塗膜構成の断面の模式図を表す。 図2は、自動車車体用部材に飛来物が衝突し、金属板の表面が露出した際の塗膜断面の模式図を表す。 図3は、本発明の自動車用塗装金属板を用いた自動車車体用部材に飛来物が衝突して金属板が露出し、その後水に濡れて塗膜(α)から溶出した防錆成分が露出した金属板表面で反応することで保護性の皮膜を形成した際の塗膜断面の模式図を表す。 図4は、塗膜(α)の物性が本発明の範囲に適合していない自動車用塗装金属板を用いた自動車車体用部材に飛来物が衝突して、塗膜(α)の内部応力が大きいためにめっき層も含めて上層皮膜が大きく剥離し、金属板表面の露出が大きいので、その後水に濡れても塗膜(α)からの防錆成分による保護性の皮膜に金属板表面が十分には覆われない際の塗膜断面の模式図を表す。 図5は、下地処理がある場合の本発明の自動車用塗装金属板の断面の模式図を表す。 図6は、下地処理がない場合の本発明の自動車用塗装金属板の断面の模式図を表す。 図7は、本発明の自動車用塗装金属板の断面での粒子(P)の分布状態を示す模式図を表す。
 以下、本発明について詳細に説明する。
<金属板>
 本発明の自動車用塗装金属板は、特定の導電性塗膜で表面の少なくとも一部が被覆された、例えばめっき皮膜つき金属板である。当該金属板は、用途に応じ、金属板の両面が導電性塗膜で被覆されていても、片面のみが被覆されていてもよく、また、表面の一部が被覆されていても、全面が被覆されていてもよい。金属板の導電性塗膜で被覆された部位は抵抗溶接性、耐食性が優れるものである。
 本発明の塗装金属板に用いることができるめっき皮膜つき金属板の構成金属としては、例えば、アルミニウム、チタン、亜鉛、銅、ニッケル、そして鋼等を含むことができる。これらの金属の成分は特に限定されず、例えば、鋼を使用する場合には、普通鋼であっても、クロム等の添加元素含有鋼であってもよい。ただし、本発明の金属板はプレス成形されるため、いずれの金属板の場合も、所望の成形加工追従性を備えるように、添加元素の種類と添加量、および金属組織を適正に制御したものが好ましい。
 また、金属板として鋼板を使用する場合、その表面めっき皮膜の種類は特に限定されない。適用可能なめっき皮膜としては、例えば、亜鉛、アルミニウム、コバルト、錫、ニッケルのうちのいずれか1種を含むめっき、および、これらの金属元素やさらに他の金属元素、非金属元素を含む合金めっき等が挙げられる。特に、亜鉛系めっき皮膜としては、例えば、亜鉛からなるめっき、亜鉛と、アルミニウム、コバルト、錫、ニッケル、鉄、クロム、チタン、マグネシウム、マンガンの少なくとも1種との合金めっき、または、さらに他の金属元素、非金属元素を含む種々の亜鉛系合金めっき(例えば、亜鉛と、アルミニウム、マグネシウム、シリコンの4元合金めっき)が挙げられるが、亜鉛以外の合金成分は特に限定されない。さらには、これらのめっき皮膜は、少量の異種金属元素または不純物としてコバルト、モリブデン、タングステン、ニッケル、チタン、クロム、アルミニウム、マンガン、鉄、マグネシウム、鉛、ビスマス、アンチモン、錫、銅、カドミウム、ヒ素等を含有してもよく、シリカ、アルミナ、チタニア等の無機物を分散させたものを含んでもよい。
 アルミニウム系めっき皮膜としては、アルミニウムからなるめっき、またはアルミニウムとシリコン、亜鉛、マグネシウムの少なくとも1種との合金めっき(例えば、アルミニウムとシリコンの合金めっき、アルミニウムと亜鉛の合金めっき、アルミニウム、シリコン、マグネシウムの3元合金めっき)等が挙げられる。
 更に、前記めっきと他の種類のめっき、例えば鉄めっき、鉄と燐の合金めっき、ニッケルめっき、コバルトめっき等と組み合わせた複層めっきも適用可能である。
 めっき皮膜の形成方法は特に限定されない。例えば、電気めっき、無電解めっき、溶融めっき、蒸着めっき、分散めっき等を用いることができる。めっき処理方法は、連続式、バッチ式のいずれでもよい。また、鋼板を使用する場合、めっき後の処理として、溶融めっき後の外観均一処理であるゼロスパングル処理、めっき皮膜の改質処理である焼鈍処理、表面状態や材質調整のための調質圧延等があり得るが、本発明においては特にこれらに限定されず、いずれを適用することも可能である。
<塗膜(α)>
 本発明の金属板を被覆する塗膜(α)は、有機樹脂(A)と、導電性顔料(B)と、防錆顔料(C)とを含み、塗膜(α)表面の-20℃における微小マルテンス硬度が、100点測定した際に20点以上がHM10~200(mg/mm2)であり、塗膜(α)表面の40℃における微小マルテンス硬度が、100点測定した際に5点以上がHM200~200000(mg/mm2)である。
 微小マルテンス硬度HMは通常、硬さを示す指標であるが、本発明では塗膜(α)の表面の硬さを規定する。微小マルテンス硬度HMは、フィッシャーインストルメンツ製、ナノインデンターHM500を用い、厚み10μm以上の塗膜において、押し込み深さを5μm以下に設定することで測定できる。厚み10μm未満の塗膜では、押し込み深さを塗膜厚みの1/5とすることで測定できるが、その場合は測定のばらつきが大きくなるので測定回数を適宜増やし、その平均値をもって測定値とする。本発明では、塗装金属板の塗膜(α)表面の任意の点において、-20℃における微小マルテンス硬度HMを無作為に100点測定した際に、そのうち20点以上でHMが10~200(mg/mm)であり、且つ40℃における微小マルテンス硬度HMを無作為に100点測定した際に、そのうち5点以上でHMが200~200000(mg/mm)である場合に、本発明の自動車用塗装金属板であるとした。さらに-20℃における微小マルテンス硬度HMを無作為に100点測定した際に、そのうち40点以上でHMが10~200(mg/mm)であり、且つ40℃における微小マルテンス硬度HMを無作為に100点測定した際に、そのうち10点以上でHMが200~200000(mg/mm)である場合が好ましく、-20℃における微小マルテンス硬度HMを無作為に100点測定した際に、そのうち60点以上でHMが10~200(mg/mm)であり、且つ40℃における微小マルテンス硬度HMを無作為に100点測定した際に、そのうち20点以上でHMが200~200000(mg/mm)である場合がより好ましい。
 ここで、「無作為」とは、測定点である100点を選択する際に、測定結果が偏るような恣意性を排除することを意味する。例えば任意の2点を設定し、その間で等間隔あるいはランダムの間隔で100点を選択し、20℃における微小マルテンス硬度HMと40℃における微小マルテンス硬度HMを測定することができる。その場合、隣接する測定点同士の間隔は、測定点の硬度の影響を互いに受けない位置とすることが望ましい。また100点としたが、測定点が増えれば増えるほど、測定値は平均化され、より精度が向上すると考えられる。
 発明者は、自動車向けの電着塗装、中塗り塗装、上塗り塗装が施された、本発明の塗膜(α)を有する金属板が、低温環境で飛来した石跳ねを受けた際、塗膜(α)が低温環境下でも十分に柔軟な場合は、そうでない場合に比較して、石跳ねの衝撃によってめっき層の剥離にまでいたる著しい傷つきが抑制されることを見出した。また、塗膜(α)の低温環境下での微小マルテンス硬度が10~200(mg/mm2)の低い範囲にある場合に、著しい傷付きが抑制されることを見出した。
 塗膜(α)が低温で十分に柔軟でない場合は、石跳ねの衝撃により上塗り塗膜、中塗り塗膜、電着塗膜が破壊され、さらに加えて塗膜(α)が破壊される。この場合、破壊により解放されたこれらの塗膜の収縮応力がめっき層を剥離する応力として伝わり、その結果としてめっき層が大きく剥離することを見出した。その一方で、塗膜(α)が低温で十分な柔軟性を有する場合は、石跳ねの衝撃で塗膜(α)の上にある塗膜が破壊されても、その収縮応力は塗膜(α)が変形することで吸収され、めっき層には伝わらず、その結果めっき層の剥離は抑制されることを見出した。このように、上にある塗膜に傷がついてもめっき層の剥離が抑制される場合は、塗膜(α)が含有する防錆顔料の作用により傷付き部で露出しためっき層及び下地金属板表面の腐食が抑制されるので、チッピング耐食性が高いことを見出した。
 発明者の検討によれば、塗膜(α)の表面から測定した微小マルテンス硬度HMが、-20℃で、無作為な測定箇所100点あたり20点以上で、10~200である場合に、前述の効果を十分発揮する程度に塗膜(α)は柔軟であった。HMが200を超えると、塗膜(α)は柔軟ではなくなり、塗膜の収縮応力のめっき層への伝達を抑制する効果が不十分であった。なお、-20℃でのHMの下限は特に定めるところではないが、10未満であるような塗膜(α)を実現する樹脂は通常の工業的コストで得られないので、この値が実質的な下限となる。
 -20でのHMが200以下である部位を持つような低温で柔軟な塗膜(α)は、20~40℃程度のいわゆる常温での保管や運搬などの状況で、塗膜つきの金属板同士を重ねて保持すると、塗膜(α)同士が相互に粘着あるいは融着し、工業的な取り扱いに支障をきたしやすい。発明者の検討によれば、塗膜(α)の表面から測定した微小マルテンス硬度HMが、40℃で、無作為な測定箇所100点あたり5点以上にて200~200000である場合に、前記の、塗膜(α)同士の相互粘着あるいは融着は十分に抑制された。20~40℃程度のいわゆる常温での保管や運搬などの状況で、塗膜つきの金属板同士を重ねて保持する際、塗膜(α)の表面に、このように40℃でのHMが高い部位があることで、先に述べた-20℃でのHMが10~200と低い部位同士の接触が抑制され、その結果、塗膜(α)同士の粘着あるいは融着は防止されると推測される。微小マルテンス硬度HMが、40℃で200~200000である部位が、無作為な測定箇所100点あたり5点未満の場合には、前述の効果は低下する。
 塗膜(α)の-20℃での微小マルテンス硬度HMは、一般的に、塗膜用組成物の、有機樹脂(A),硬化剤を適宜選択することによって、コントロールすることができる。具体的には、樹脂分子構造が、架橋点間の分子量が大きく変形しやすい柔軟な構造を含むこと、硬化剤の種類や添加量を調節することにより樹脂の分子鎖同士の架橋密度を低く保つこと、塗膜焼き付け温度の低下、焼き付け時間の短縮により、硬化剤による架橋反応を緩和すること、等の手法を用いることができる。
 以下、本発明において塗膜(α)を得るための塗装用組成物を塗装用組成物(β)と記す。塗装用組成物(β)としては、水系塗装用組成物、有機溶剤系塗装用組成物が挙げられる。
 本発明において、「水系塗装用組成物」とは、水が溶媒全体の50質量%以上である「水系溶媒」を用いて構成された組成物のことを言う。また、「有機溶剤系塗装用組成物」とは、有機溶剤が溶媒全体の50質量%以上である「有機溶剤系溶媒」を用いて構成された組成物のことを言う。
 上記の「水系溶媒」の水以外の構成成分としては、例えば、水によく混和する硫酸、硝酸、塩酸、燐酸、硼酸、弗化水素酸等の無機酸、前記無機酸の金属塩やアンモニウム塩等の無機塩類のうち水に溶解するもの、水に溶解する珪酸塩、チオ硫酸塩、チオシアン酸塩等の無機化合物、及び水に混和する有機化合物が挙げられる。また、必要に応じて、上記の「水系溶媒」に有機溶媒を加えることもできる。しかし、労働衛生上の観点から、本発明の「水系塗装用組成物」では、労働安全衛生法施行令(有機溶剤中毒予防規則第一章第一条)で定義される有機溶剤等(第1種有機溶剤、第2種有機溶剤、第3種有機溶剤、または、前記有機溶剤を、5質量%を超えて含有するもの)に該当しない塗装用組成物となるよう、有機溶媒の種類や添加量を調整することが好ましい。
 金属板への製膜方法としては、例えば、水系や溶剤系塗装用組成物の場合、ロールコート、グルーブロールコート、カーテンフローコート、ローラーカーテンコート、浸漬(ディップ)、エアナイフ絞り等の公知の塗装方法で金属板上に塗装用組成物(β)を塗布し、その後、ウェット塗膜の水分や溶剤を乾燥する方法が好ましい。これらの乾燥塗膜の硬化方法としては、塗膜中の有機樹脂を加熱焼付することによる重合、硬化が好ましいが、塗膜中の樹脂が紫外線で重合可能であれば、紫外線照射による重合又は硬化を用いてもよく、塗膜中の樹脂が電子線で重合可能であれば、電子線照射による重合又は硬化を用いてもよい。
 前記塗膜(α)の金属板への密着性や耐食性等を更に改善する目的で、該塗膜と金属板表面の間に下地処理皮膜を設けてもよい。下地処理皮膜を設ける場合は、その層の数、組成は限定されないが、金属板を成形加工する際の塗膜(α)の加工追従性や耐食性を損なわないよう、下地処理皮膜が、金属板と上層塗膜(α)への密着性に優れている必要がある。環境への適合性を考慮すれば、下地処理皮膜はクロメートフリーの構成が好ましい。また、皮膜厚方向の十分な導電性を確保するため、下地処理皮膜厚を0.5μm以下とするのが好ましい。
 下地処理皮膜を設ける場合、工業的に適用できる製膜方法であれば、下地処理皮膜の製膜方法は限定されない。下地処理皮膜の製膜方法は、下地処理用組成物の塗装、蒸着、フィルム貼付等の方法を例示できるが、製膜コスト(生産性)や汎用性等の観点から、水系または溶剤系の下地処理用組成物の塗装、乾燥による方法が好ましい。水系または溶剤系の下地処理用組成物を用いる場合、下地処理皮膜を含めた複数の塗膜の最下層から最表面層まで1層毎に、塗布と乾燥を繰返すこと(逐次塗装法)により複層塗膜を形成してもよい。また、簡便にかつ効率的に塗膜を金属板表面に形成する方法として、金属板表面に接する最下層から最表層までの各層の塗膜を、ウェット状態で、順次または同時に複層被覆する工程(塗装用組成物のウェット・オン・ウェット塗装または多層同時塗装工程)、ウェット状態の各層皮膜の水分や溶剤を同時に乾燥させる乾燥工程、前記複層塗膜を硬化する製膜工程をこの順序で含む積層方法で製膜してもよい。ここで、ウェット・オン・ウェット塗装法とは、金属板上に塗液を塗布後、この塗液が乾燥する前の含溶媒状態(ウェット状態)のうちに、その上に他の塗液を塗布し、得られる積層塗液の溶媒を同時に乾燥、硬化させ、製膜する方法である。また、多層同時塗装法とは、多層スライド式カーテンコーダーやスロットダイコーター等により、複数層の塗液を積層状態で同時に金属板上に塗布後、積層塗液の溶媒を同時に乾燥、硬化させ製膜する方法である。
 本発明の金属板を被覆する塗膜(α)の平均の厚みは、0.5~30μm厚の範囲が好ましく、1~15μm厚の範囲がより好ましい。0.5μm未満の厚では、塗膜が薄すぎて、十分な量の防錆顔料を保持することができず、耐食性が得られないことがある。塗膜厚が30μmを超えると、使用する塗装用組成物(β)の量が増えて製造コスト高になるだけでなく、プレス成形時に塗膜が凝集破壊したり剥離することがある。また、厚膜のため膜厚方向の電気的な絶縁性が高まり、抵抗溶接が困難になる。更に、水系塗装用組成物を用いた場合、ワキ等の塗膜欠陥が発生する可能性が高くなり、工業製品として必要な外観を安定して得ることが容易でない。
 前記塗膜(α)の厚みは、塗膜の断面観察等により測定できる。なお、金属板の単位面積に付着した塗膜の質量を、塗膜の比重、または塗装用組成物(β)の乾燥後の比重で除算して算出しても、断面観察により測定した場合と同様の測定値となるはずであるので、簡便的に比重で算出する方法によることもできる。塗膜の付着質量は、塗装前後の質量差、塗装後の塗膜の剥離前後の質量差、または、塗膜を蛍光X線分析して予め塗膜中の含有量が分かっている元素の存在量を測定する等、既存の手法から適切に選択することができる。塗膜の比重または塗装用組成物(β)の乾燥後の比重は、単離した塗膜の容積と質量を測定する、適量の塗装用組成物(β)を容器に取り乾燥させた後の容積と質量を測定する、または、塗膜構成成分の配合量と各成分の既知の比重から計算する等、既存の手法から適切に選択することができる。
<有機樹脂(A)>
 本発明の有機樹脂(A)は、塗膜(α)のバインダー成分であり、これを適宜選択することにより、本発明の自動車用塗装金属板の塗膜に必要な-20℃での微小マルテンス硬度HM及びTgを得ることができる。有機樹脂(A)は、水系、有機溶剤系樹脂のいずれでもよく、特に、後述する樹脂(A1)である。有機樹脂(A)は、更に追加して樹脂(A1)の反応誘導体(A2)を含むことができる。
 本発明の有機樹脂(A)は以下に詳細に述べるが、-80℃~-20℃のガラス転移温度Tgを有することが好ましい。
 本発明で塗膜(α)を形成するために用いる塗装用組成物(β)は、水系、有機溶剤系のいずれでも用いることができ、後述する樹脂(A1)を不揮発分の50~100質量%含む。樹脂(A1)は、塗装用組成物(β)中で安定に存在している。このような塗装用組成物(β)を金属板に塗布し、加熱すると、多くの場合、樹脂(A1)が反応せずそのまま乾燥する。樹脂(A1)の少なくとも一部が、前記塗装用組成物(β)中にシランカップリング剤、硬化剤、架橋剤等を含む場合は、それらと反応して樹脂(A1)の誘導体(A2)を形成する。従って、この場合、未反応の樹脂(A1)と樹脂(A1)の反応誘導体(A2)を包含したものが、塗膜(α)のバインダー成分である有機樹脂(A)となる。
 前記樹脂(A1)の種類としては特に限定されないが、必要な微小マルテンス硬度HM及びガラス転移温度Tgを有していれば、例えば、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、(メタ)アクリル樹脂、ポリオレフィン樹脂、またはそれらの変性体等を挙げることができる。これらの1種または2種以上を混合して前記樹脂(A1)として用いてもよいし、少なくとも1種の有機樹脂を変性することによって得られる有機樹脂を1種または2種以上混合して前記樹脂(A1)として用いてもよい。
 前記樹脂(A1)としては、ポリウレタン樹脂、ポリウレタン樹脂変性体、ポリウレタン樹脂複合物、これらと他樹脂との混合物等を用いるのが好ましい。ポリウレタン樹脂中のウレタン基(-NHCOO-)は、他の多くの有機基に比べ高い分子凝集エネルギー(8.74kcal/mol)を持つため、樹脂(A1)中にポリウレタン樹脂が含まれていれば塗膜の密着性が高くなり、プレス成形の際、塗膜の剥離やかじりが生じにくく、加えて、比較的高い凝集エネルギーにより腐食因子遮蔽性(塗膜の緻密性)が向上して耐食性を高める効果がある。ウレタン基以外の有機基、例えば、メチレン基(-CH2-)、エーテル基(-O-)、2級アミノ基(イミノ基、-NH-)、エステル基(-COO-)、ベンゼン環の分子凝集エネルギーは、それぞれ0.68kcal/mol、1.00kcal/mol、1.50kcal/mol、2.90kcal/mol、3.90kcal/molであり、ウレタン基(-NHCOO-)の分子凝集エネルギーは、これらに比べかなり高い。そのため、多くの場合、ポリウレタン樹脂を含む塗膜は、他の多くの樹脂、例えば、ポリエステル樹脂、(メタ)アクリル樹脂、ポリオレフィン樹脂等からなる塗膜よりも密着性が高く、高耐食性である。
 前記樹脂(A1)は、既に述べたように、必要なガラス転移温度Tgを有しているものであれば、その種類に特に制限はない。樹脂(A1)の構造中に、カルボキシル基(-COOH)、カルボン酸塩基(-COO-+、M+は1価カチオン)、スルホン酸基(-SO3H)、スルホン酸塩基(-SO3 -+;M+は1価カチオン)、1級アミノ基(-NH2 )、2級アミノ基(-NHR1;R1は炭化水素基)、3級アミノ基(-NR12;R1とR2は炭化水素基)、4級アンモニウム塩基(-N+123-;R1、R2、R3は炭化水素基、X-は1価アニオン)、スルホニウム塩基(-S+12-;R1、R2は炭化水素基、X-は1価アニオン)、ホスホニウム塩基-P+123-;R1、R2、R3は炭化水素基、X-は1価アニオン)から選ばれる少なくとも1種の官能基を構造中に含む樹脂であることが好ましい。これらの詳細や具体例については後述する。
 なお、本発明において塗膜(α)を得るための塗装用組成物(β)に用いられる樹脂には、水や有機溶剤に完全溶解する水溶性や溶剤溶解型の樹脂、および、エマルションやサスペンジョン等の形態で水や溶剤中に均一に微分散している樹脂(水分散性樹脂や溶剤分散性樹脂)を含めることができる。またここで、「(メタ)アクリル樹脂」とはアクリル樹脂およびメタクリル樹脂を意味する。
 前記樹脂(A1)のうち、ポリウレタン樹脂としては、例えば、ポリオール化合物とポリイソシアネート化合物とを反応させ、その後に更に鎖伸長剤によって鎖伸長して得られるもの等を挙げることができる。前記ポリオール化合物としては、1分子当たり2個以上の水酸基を含有する化合物であれば特に限定されず、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、1,6-へキサンジオール、ネオペンチルグリコール、トリエチレングリコール、グリセリン、トリメチロールエタン、トリメチロールプロパン、ポリカーボネートポリオール、ポリエステルポリオール、ビスフェノールヒドロキシプロピルエーテル等のポリエーテルポリオール、ポリエステルアミドポリオール、アクリルポリオール、ポリウレタンポリオール、またはそれらの混合物が挙げられる。前記ポリイソシアネート化合物としては、1分子当たり2個以上のイソシアネート基を含有する化合物であれば特に限定されず、例えば、ヘキサメチレンジイソシアネート(HDI)等の脂肪族イソシアネート、イソホロンジイソシアネート(IPDI)等の脂環族ジイソシアネート、トリレンジイソシアネート(TDI)等の芳香族ジイソシアネート、ジフェニルメタンジイソシアネート(MDI)等の芳香脂肪族ジイソシアネート、またはそれらの混合物が挙げられる。前記鎖伸長剤としては、分子内に1個以上の活性水素を含有する化合物であれば特に限定されず、水またはアミン化合物を適用できる。アミン化合物としては、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン、ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン、テトラエチレンペンタミン等の脂肪族ポリアミンや、トリレンジアミン、キシリレンジアミン、ジアミノジフェニルメタン等の芳香族ポリアミンや、ジアミノシクロヘキシルメタン、ピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン等の脂環式ポリアミンや、ヒドラジン、コハク酸ジヒドラジド、アジピン酸ジヒドラジド、フタル酸ジヒドラジド等のヒドラジン類や、ヒドロキシエチルジエチレントリアミン、2-[(2-アミノエチル)アミノ]エタノール、3-アミノプロパンジオール等のアルカノールアミン等が挙げられる。
 水系ポリウレタン樹脂を得たい場合は、例えば、樹脂製造時に、前記ポリオール化合物の少なくとも一部をカルボキシル基含有ポリオール化合物に替え、ポリイソシアネート化合物と反応させて樹脂鎖にカルボキシル基を導入した後、カルボキシル基を塩基で中和し水系樹脂としたものを挙げることができる。あるいは、樹脂製造時に、前記ポリオール化合物の少なくとも一部を2級アミノ基または3級アミノ基を分子内に持つポリオール化合物に替え、ポリイソシアネート化合物と反応させて樹脂鎖に2級アミノ基または3級アミノ基を導入した後、酸で中和し水系樹脂としたものを挙げることができる。3級アミノ基を樹脂鎖に持つ場合は、3級アミノ基へのアルキル基導入により4級化し、4級アンモニウム塩基を持つ水系カチオン樹脂とすることもできる。これらの化合物は、単独で、または2種類以上の混合物で使用することができる。
 このように、前記樹脂(A1)として用いることができるポリウレタン樹脂は分子構造中に芳香環を多く含むポリウレタン樹脂を用いるのが好ましい。このようなポリウレタン樹脂は、分子構造中に芳香環を持たない、あるいは芳香環が少ないポリウレタン樹脂よりガラス転移温度が高く、分子鎖が剛直で塗膜の変形への抵抗が強く、塗膜の伸び変形率が低いため、本発明で必要とされる塗膜(α)の硬さおよび脆さが、芳香環を持たない、あるいは芳香環が少ないポリウレタン樹脂と比較して高い。従って、樹脂製造に用いるポリオール化合物、ポリイソシアネート化合物、鎖伸長剤には特に制限がないが、芳香環を多く含む芳香脂肪族や芳香脂環族等の化合物を用いるのが好ましい。
 前記樹脂(A1)のうち、ポリエステル樹脂としては、必要なHM及びガラス転移温度Tgを有しているものであれば、特に限定されない。例えば、エチレングリコール、1,3-プロパンジオール、1,2-プロパンジオール、プロピレングリコール、ジエチレングリコール、1,6-へキサンジオール、ネオペンチルグリコール、トリエチレングリコール、ビスフェノールヒドロキシプロピルエーテル、2-メチル-1,3-プロパンジオール、2,2-ジメチル-1,3-プロパンジオール、2-ブチル-2-エチル1,3-プロパンジオール、1,4-ブタンジオール、2-メチル-1,4-ブタンジオール、2-メチル-3-メチル-1,4-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、1,3-シクロヘキサンジメタノール、1,2-シクロヘキサンジメタノール、水添ビスフェノール-A、ダイマージオール、トリメチロールエタン、トリメチロールプロパン、グリセリン、ペンタエリスリトール等のポリオールと、フタル酸、無水フタル酸、テトラヒドロフタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロフタル酸、ヘキサヒドロ無水フタル酸、メチルテトラフタル酸、メチルテトラヒドロ無水フタル酸、イソフタル酸、テレフタル酸、無水コハク酸、アジピン酸、セバシン酸、マレイン酸、無水マレイン酸、イタコン酸、フマル酸、無水ハイミック酸、トリメリット酸、無水トリメリット酸、ピロメリット酸、無水ピロメリット酸、アゼライン酸、コハク酸、無水コハク酸、乳酸、ドデセニルコハク酸、ドデセニル無水コハク酸、シクロヘキサン-1,4-ジカルボン酸、無水エンド酸等の多価カルボン酸とを、脱水重縮合させたものを挙げることができる。更に、これらをアンモニアやアミン化合物等で中和し、水系樹脂としたもの等を挙げることができる。
 前記樹脂(A1)のうち、エポキシ樹脂としては、必要なHM及びガラス転移温度Tgを有しているものであれば、特に限定されない。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、レゾルシン型エポキシ樹脂、水素添加ビスフェノールA型エポキシ樹脂、水素添加ビスフェノールF型エポキシ樹脂、レゾルシン型エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ樹脂をジエタノールアミン、N-メチルエタノールアミン等のアミン化合物と反応させて得られる。更に、これらを有機酸または無機酸で中和、水系樹脂としたものや、前記エポキシ樹脂の存在下で、高酸価アクリル樹脂をラジカル重合した後、アンモニアやアミン化合物等で中和し水系化したもの等を挙げることができる。
 前記樹脂(A1)のうち、(メタ)アクリル樹脂としては、必要なHM及びガラス転移温度Tgを有しているものであれば、特に限定されない。例えば、エチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-ブチル(メタ)アクリレート等のアルキル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート等のヒドロキシアルキル(メタ)アクリレート、アルコキシシラン(メタ)アクリレート等の(メタ)アクリル酸エステルを、(メタ)アクリル酸と共に水中で重合開始剤を用いてラジカル重合することにより得られるものを挙げることができる。前記重合開始剤は特に限定されず、例えば、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、アゾビスシアノ吉草酸、アゾビスイソブチロニトリル等のアゾ化合物等を使用することができる。ここで、「(メタ)アクリレート」とはアクリレートとメタクリレートを意味し、「(メタ)アクリル酸」とはアクリル酸とメタクリル酸を意味する。
 前記樹脂(A1)のうち、ポリオレフィン樹脂としては、必要なガラス転移温度Tgを有しているものであれば、特に限定されない。例えば、エチレンとメタクリル酸、アクリル酸、マレイン酸、フマル酸、イタコン酸、クロトン酸等の不飽和カルボン酸類とを高温高圧下でラジカル重合したものを挙げることができる。また、これらを更にアンモニアやアミン化合物、KOH、NaOH、LiOH等の塩基性金属化合物あるいは前記金属化合物を含有するアンモニアやアミン化合物等で中和し、水系樹脂としたもの等を挙げることができる。
 前記樹脂(A1)は、1種または2種以上を混合して用いてもよい。また、前記塗装用組成物(β)の主成分として、少なくとも1種の樹脂(A1)の存在下で、少なくともその一部の樹脂(A1)を変性することによって得られる複合樹脂の1種または2種以上を総括して樹脂(A1)として用いてもよい。
<有機樹脂(A)のガラス転移温度Tg>
 前記有機樹脂(A)のガラス転移温度Tgは-80℃~-20℃であることが好ましい。ガラス転移温度Tgは、塗膜を形成する有機樹脂を、到達温度200℃で加熱硬化することで膜厚15μmのフィルムを形成し、示差走査熱量計(DSC)のピーク温度又は動的粘弾性測定機装置での転移温度として測定することができる。Tgは-80℃以上-20℃以下であることが好ましい。-20℃よりもTgの高い樹脂は、柔軟性が低いため石跳ねの衝突による塗膜の傷付きに伴い解放される塗膜の収縮応力がめっき層に伝わることを緩和する能力が小さい。Tgの下限は特に定めるところではないが、-80℃を超えて低いTgを有する有機樹脂は、工業的に安価に入手しにくい。さらに、Tgは-60℃以上-30℃以下であることが好ましい。
<導電性顔料(B)>
 導電性顔料(B)としては、金属、合金、導電性炭素、燐化鉄、炭化物、半導体酸化物の中から選ばれる1種以上を用いることが好ましい。例えば、亜鉛、ニッケル、鉄、アルミニウム、コバルト、マンガン、銅、錫、クロムなどの金属またはそれらの合金粉末、導電性カーボン、黒鉛粉末などの導電性炭素粉末、燐化鉄粉末、炭化チタン、炭化珪素などの炭化物粉末、導電性半導体粉末、セラミクス粒子等を挙げることができる。これらの中でも、本発明の塗装金属板においては、非酸化物セラミクス粒子が、特に好ましい。
 非酸化物セラミクス粒子を用いた場合、塗膜(α)を得るための塗装用組成物(β)が水系組成物の場合でも、これらの非酸化物セラミクス粒子は組成物中で劣化せず、高い導電能を恒久的に保持する。そのため、水分により劣化する導電性粒子、例えば、卑な金属粒子やフェロシリコン粒子等に比べ、優れた抵抗溶接性を非常に長い期間保持できる。
 本発明の塗膜(α)に含まれる非酸化物セラミクス粒子を構成する非酸化物セラミクスは、25℃の電気抵抗率(体積抵抗率、比抵抗)が0.1×10-6~185×10-6Ωcmの範囲にあるホウ化物セラミクス、炭化物セラミクス、窒化物セラミクス、またはケイ化物セラミクスである。ここでいう非酸化物セラミクスとは、酸素を含まない元素や化合物からなるセラミクスのことである。また、ここでいうホウ化物セラミクス、炭化物セラミクス、窒化物セラミクス、ケイ化物セラミクスとは、それぞれ、ホウ素B、炭素C、窒素N、ケイ素Siを主要な非金属構成元素とする非酸化物セラミクスのことである。これらのうち、25℃の電気抵抗率が0.1×10-6Ωcm未満のものは見当たらない。また、非酸化物セラミクスの25℃の電気抵抗率(体積抵抗率、比抵抗)が185×10-6 cmを超える場合、樹脂塗膜に十分な導電性を付与するために塗膜への多量添加が必要Ωとなり、本発明の塗装金属板をプレス成形する際に著しい塗膜剥離やかじりが生じ、耐食性が低下するため不適である。
 本発明の塗膜(α)に含まれる非酸化物セラミクス粒子は、高い導電性を有するため、樹脂塗膜に十分な導電性を付与するための添加量がより少量でよく、その結果、塗装金属板の耐食性や成形性への悪影響がより少なくなる。なお、参考までに、純金属の電気抵抗率は1.6×10-6Ωcm(Ag単体)~185×10-6Ωcm(Mn単体)の範囲にあり、本発明で導電性粒子として用いる非酸化物セラミクス(電気抵抗率0.1×10-6~185×10-6Ωcm)は、純金属と同程度の優れた導電性を持つことがわかる。
 本発明に用いることができる非酸化物セラミクスとしては、以下を例示できる。即ち、ホウ化物セラミクスとしては、周期律表のIV族(Ti、Zr、Hf)、V族(V、Nb、Ta)、VI族(Cr、Mo、W)の各遷移金属、Mn、Fe、Co、Ni、希土類元素、またはBe、Mg以外のアルカリ土類金属(Ca、Sr、Ba)のホウ化物を例示できる。
 但し、Beのホウ化物のうち25℃に於ける電気抵抗率が185×10-6Ωcmを超えるもの(例えば、Be2B、BeB6等)は、導電性能が十分でないため本発明への適用には不適である。また、Mgのホウ化物(Mg32、MgB2等)は水や酸に対し不安定なため、本発明への適用には不適である。
 炭化物セラミクスとしては、IV族、V族、VI族の各遷移金属、Mn、Fe、Co、Niの炭化物を例示できる。ただし、湿潤雰囲気下で加水分解する恐れのある、希土類元素やアルカリ土類金属の炭化物(例えば、YC2、LaC2、CeC2、PrC2、Be2C、Mg23、SrC2等)は、本発明への適用には不適である。
 窒化物セラミクスとしては、IV族、V族、VI族の各遷移金属、またはMn、Fe、Co、Niの窒化物を例示できる。ただし、湿潤雰囲気下で加水分解する恐れのある、希土類元素やアルカリ土類金属の窒化物(例えば、LaN、Mg32、Ca32等)は本発明への適用には不適である。ケイ化物セラミクスとしては、IV族、V族、VI族の各遷移金属、またはMn、Fe、Co、Niのケイ化物を例示できる。ただし、湿潤雰囲気下で水と反応し水素を発生する恐れのある、希土類元素やアルカリ土類金属のケイ化物(例えば、LaSi、Mg2Si、SrSi2、BaSi2等)は、本発明への適用には不適である。更に、これらホウ化物、炭化物、窒化物、ケイ化物から選ばれる2種以上の混合物、または、これらのセラミクスを金属の結合材と混合して焼結したサーメット等を例示できる。
 塗膜(α)を水系塗装用組成物から作製する場合は、サーメットの一部を構成する金属の標準電極電位は-0.3V以上で耐水劣化性であることが好ましい。サーメットの一部を構成する金属の標準電極電位が-0.3V未満の場合、このサーメット粒子が水系塗装用組成物中に長期間存在すると、粒子の表面に錆層や厚い酸化絶縁層が生じ、粒子の導電性が失われる恐れがあるからである。耐水劣化性のサーメット粒子の例としては、WC-12Co、WC-12Ni、TiC-20TiN-15WC-10Mo2C-5Ni等が挙げられる。Co、Niの標準電極電位はそれぞれ-0.28V、-0.25Vでいずれも-0.3Vより貴であり、いずれの金属も耐水劣化性である。
 前記の非酸化物セラミクスのうち、Cr系セラミクス(CrB、CrB2、Cr32、Cr2N、CrSi等)は環境負荷への懸念から、また、Hf系セラミクス(HfB2、HfC、HfN等)、Tbより重希土側の希土類元素系のセラミクスの多くは高価格であり、また市場に流通していないため、本発明においては、上記の群からこれらを除いた非酸化物セラミクス、または、これらから選ばれる2種以上の混合物を用いるのが好ましい。
 更に、工業製品の有無や国内外市場での安定流通性、価格、電気抵抗率等の観点から、以下の非酸化物セラミクスがより好ましい。即ち、BaB6(電気抵抗率77×10-6Ωcm)、CeB6(同30×10-6Ωcm)、Co2B(同33×10-6Ωcm)、CoB(同76×10-6Ωcm)、FeB(同80×10-6Ωcm)、GdB4(同31×10-6Ωcm)、GdB6(同45×10-6Ωcm)、LaB4(同12×10-6Ωcm)、LaB6(同15×10-6Ωcm)、Mo2B(同40×10-6Ωcm)、MoB(同35×10-6Ωcm)、MoB2(同45×10-6Ωcm)、Mo25(同26×10-6Ωcm)、Nb32(同45×10-6Ωcm)、NbB(同6.5×10-6Ωcm)、Nb3(同34×10-6Ωcm)、NbB2(同10×10-6Ωcm)、NdB4(同39×10-6Ωcm)、NdB6(同20×10-6Ωcm)、PrB4(同40×10-6Ωcm)、PrB6(同20×10-6Ωcm)、SrB6(同77×10-6Ωcm)、TaB(同100×10-6Ωcm)、TaB2(同100×10-6Ωcm)、TiB(同40×10-6Ωcm)、TiB2(同28×10-6Ωcm)、VB(同35×10-6Ωcm)、VB2(同150×10-6Ωcm)、W25(同80×10-6Ωcm)、YB4(同29×10-6Ωcm)、YB6(同40×10-6Ωcm)、YB12(同95×10-6Ωcm)、ZrB2(同60×10-6Ωcm)、MoC(同97×10-6Ωcm)、Mo2C(同100×10-6Ωcm)、Nb2C(同144×10-6Ωcm)、NbC(同74×10-6Ωcm)、Ta2C(同49×10-6Ωcm)、TaC(同30×10-6Ωcm)、TiC(同180×10-6Ωcm)、V2C(同140×10-6Ωcm)、VC(同150×10-6Ωcm)、WC(同80×10-6Ωcm)、W2C(同80×10-6Ωcm)、ZrC(同70×10-6Ωcm)、Mo2N(同20×10-6Ωcm)、Nb2N(同142×10-6Ωcm)、NbN(同54×10-6Ωcm)、ScN(同25×10-6Ωcm)、Ta2N(同135×10-6Ωcm)、TiN(同22×10-6Ωcm)、ZrN(同14×10-6Ωcm)、CoSi2(同18×10-6Ωcm)、Mo3Si(同22×10-6Ωcm)、Mo5Si3(同46×10-6Ωcm)、MoSi2(同22×10-6Ωcm)、NbSi2 (同6.3×10-6Ωcm)、Ni2Si(同20×10-6Ωcm)、Ta2Si(同124×10-6Ωcm)、TaSi2(同8.5×10-6Ωcm)、TiSi(同63×10-6Ωcm)、TiSi2(同123×10-6Ωcm)、V5Si3(同115×10-6Ωcm)、VSi2(同9.5×10-6Ωcm)、W3Si(同93×10-6Ωcm)、WSi2 (同33×10-6Ωcm)、ZrSi(同49×10-6Ωcm)、ZrSi2(同76×10-6Ωcm)、または、これらから選ばれる2種以上の混合物を用いるのが好ましい。
 これらの中でも、25℃の電気抵抗率が0.1×10-6~100×10-6Ωcmにある、非酸化物セラミクスが、特に好ましい。何故なら、これらは、25℃の電気抵抗率が100×10-6Ωcmを超え185×10-6Ωcmまでの範囲にある非酸化物セラミクスより高い導電性を有するため、樹脂塗膜に十分な導電性を付与するための粒子添加量がより少ない量でよく、塗膜を貫通する腐食電流の導通路が僅かしか形成されず、耐食性が殆ど低下しないからである。また、粒子添加が少量のためプレス成形時に塗膜剥離やかじりを誘発することなく、成形性が殆ど低下しないからである。
 前記の非酸化物セラミクスの括弧内に付記した電気抵抗率は、それぞれ、工業用素材として販売され使用されているものの代表値(文献値)である。これらの電気抵抗率は、非酸化物セラミクスの結晶格子に入り込んだ不純物元素の種類や量により増減するため、本発明での使用に際しては、例えば、(株)三菱化学アナリテック製の抵抗率計ロレスタEP(MCP-T360型)とESPプローブ(端子の平頭部の直径2mm)を用いた4端子4探針法、定電流印加方式で、JIS K7194に準拠して25℃の電気抵抗率を実測し、0.1×10-6~185×10-6Ωcmの範囲にあることを確認してから使用すればよい。
 前記導電性顔料(B)の粒子形状は、球状粒子、または、擬球状粒子(例えば楕円球体状、鶏卵状、ラグビーボール状等)や多面体粒子(例えばサッカーボール状、サイコロ状、各種宝石のブリリアントカット形状等)のような、球に近い形状が好ましい。細長い形状(例えば棒状、針状、繊維状等)や平面形状(例えばフレーク状、平板状、薄片状等)のものは、塗装過程で塗膜面に平行に配列したり、塗装用基材である金属板(金属面に下地処理がある場合は下地処理層)と塗膜の界面付近に沈積したりして、塗膜の厚方向を貫く有効な通電路を形成しにくいため、本発明の用途に適さない。
 前記導電性顔料(B)の平均粒子径は特に限定しないが、本発明の塗装用組成物(β)中にて、体積平均径が0.2~20μmの粒子で存在するのが好ましく、体積平均径が0.5~12μmの粒子で存在するのがより好ましく、体積平均径が1~8μmの粒子で存在するのが特に好ましい。これらの体積平均径を持つ分散粒子は、塗装用組成物(β)の製造工程、保管・運搬時や、塗装用基材である金属板(金属面に下地処理がある場合は下地処理層)への塗装工程等にて、塗装用組成物(β)中で安定に存在すれば、単一粒子であっても、複数の単一粒子が強く凝集した二次粒子であってもよい。塗装用組成物の基材への塗装工程にて、塗膜の乾燥、製膜の際に前記(B)粒子が凝集し、塗膜中での体積平均径が大きくなっても差支えない。
 なお、ここで言う体積平均径とは、粒子の体積分布データから求めた体積基準の平均径のことである。これは、一般に知られているどのような粒子径分布測定方法を用いて求めても良いが、コールター法(細孔電気抵抗法)により測定される球体積相当径分布の平均値を用いるのが好ましい。何故なら、コールター法は、他の粒子径分布測定方法(例えば、(a)レーザー回折散乱法で得た体積分布から算出する、(b)画像解析法で得た円面積相当径分布を体積分布に換算する、(c)遠心沈降法で得た質量分布から算出する、等)に比べ、測定機メーカーや機種による測定値の違いが殆どなく、正確で高精度な測定ができるからである。コールター法では、電解質水溶液中に被験粒子を懸濁させ、ガラス管の細孔に一定の電流を流し、陰圧により粒子が細孔を通過するように設定する。粒子が細孔を通過すると、粒子が排除した電解質水溶液の体積(=粒子の体積)によって、細孔の電気抵抗が増加する。一定電流を印加すれば、粒子通過時の抵抗変化が電圧パルス変化に反映されるため、この電圧パルス高さを1個ずつ計測処理することにより、個々の粒子の体積を直接測定できる。粒子は不規則形状の場合が多いので、粒子と同一体積の球体を仮定し、その球体の径(=球体積相当径)に換算する。このようなコールター法による球体積相当径の測定方法は、よく知られており、例えば文献:ベックマン・コールター(株)インターネット公式サイト上のウェブページ〔http://www.beckmancoulter.co.jp/product/product03/Multisizer3.html(精密粒度分布測定装置Multisizer3)〕に、詳細に記載されている。
 体積平均径が0.2μm未満の非酸化物セラミクス粒子は、体積平均径がそれより大きな非酸化物セラミクス粒子より一般に高価で、工業製品として市場に流通しているものが少ない。また、比表面積が比較的大きいため、水系または有機溶剤系の塗装用組成物を調製する際、湿潤分散剤を用いても粒子表面全体を濡らし分散させるのが困難で、水や有機溶剤になじまない継粉(ままこ)、ダマが生じることが多いため、本発明では使用しない方がよい。また、体積平均径が20μmを超える非酸化物セラミクス粒子は、体積平均径がそれより小さな非酸化物セラミクス粒子より、水系または有機溶剤系の塗装用組成物中で速く沈降しやすい(ストークスの式により明らか)。従って、分散剤を工夫しても分散安定性を確保することが難しく、粒子が浮遊せず短時間で沈降し、凝集・固化し再分散が困難になる等の不具合を生じる場合があるため、本発明では使用しない方がよい。
 入手可能な導電性顔料(B)は、一般的に、原料を粉砕し必要に応じて分級して所定の粒子径に調製されることが多いので、粒子径の異なる粒子が混合された粒径分布を有している。したがって、体積平均径が上述した粒径範囲中にあっても、その粒径分布によっては、溶接性に影響を与える。導電性顔料(B)のうち、それぞれの体積粒子径が0.25~24μmの(B1)が、良好な溶接性に対してとくに効果を示す。
 塗膜(α)中の導電性顔料(B)の25℃での含有量は、0.5~65体積%であるのが好ましく、抵抗溶接時の電気導通性、成形性確保及び導電性顔料増加によるコスト増の観点から1~40体積%であるのがより好ましく、2~20体積%であるのが更に好ましい。十分な耐食性と成形性確保に加え、十分な抵抗溶接性も確保するとの観点から、4~20体積%の範囲が特に好ましい。
 本発明の塗装金属板において、塗膜(α)が良好な導電性を発現する理由は、塗膜(α)中で、導電性粒子である導電性顔料(B)が殆ど凝集することなく、塗膜面全体にわたって十分に均一に分散されており、下にある金属板への電気導通路が塗膜内に偏在していないからであると考えられる。導電性粒子が塗膜内で凝集をおこしていると、塗膜面全体にわたり均一に撒き散らされた状態の電気導通路が塗膜内に形成されにくく、塗膜内に、電気導通路が全くない抵抗溶接に支障を与える領域が生じやすい。そのような場合は、導通路を確保するためにより多くの導電材料を添加しなければならず、良好な耐食性と成形性を保持できなくなる可能性が高まる。本発明の塗装金属板では、そのような問題が生じる可能性が非常に低い。
 塗膜(α)中の導電性顔料(B)の含有量が65体積%を超えると、十分な導電性を保持できるが、プレス成形時に塗膜剥離やかじりが生じやすくなり、良好な成形性を保持できず、塗膜剥離部位の耐食性が低下するおそれがある。また、65体積%を超えると、溶接性の向上効果が飽和するにもかかわらず導電性粒子のコストが高くなる。
 なお、塗膜の0.5体積%以上、1体積%未満の導電性粒子添加では、抵抗溶接時の電気導通性が不十分になる可能性があり、また、塗膜の40体積%以上、65体積%以下の導電性粒子添加では、成形性とコスト適合性が不十分となることがあるため、導電性顔料(B)の体積比は1体積%以上、40体積%未満までの添加がより好ましい。また、塗膜の1体積%以上、2体積%未満の導電性粒子添加でも、抵抗溶接時の電気導通性がやや不十分になる可能性があり、また、塗膜の20体積%以上、40体積%未満の導電性粒子添加でも、成形性とコスト適合性がやや不十分となる可能性があるため、2体積%以上、20体積%未満までの添加が更に好ましい。しかし塗膜の2体積%以上、4体積%未満の導電性粒子添加では、抵抗溶接条件を大きく変えた場合、常に高く安定した溶接性を確保できなくなるおそれがあるため、4体積%以上、20体積%未満の添加が特に好ましい。
 塗膜(α)中の導電性顔料(B)の含有量が0.5体積%未満の場合、塗膜中に分散する非酸化物セラミクス粒子の量が少ないため良好な導電性を確保できず、塗膜(α)の厚みによっては、塗膜に十分な抵抗溶接性を付与できないおそれがある。
<防錆顔料(C)>
 本発明に用いる防錆顔料(C)の種類としては特に限定されないが、珪酸塩化合物、燐酸塩化合物、バナジン酸塩化合物、および金属酸化物微粒子から選ばれる1種または2種以上を含むのが好ましい。
 珪酸塩化合物、燐酸塩化合物、バナジン酸塩化合物は、塗装用組成物(β)や塗膜(α)中で、該組成物や塗膜中の水分、共存物質や基材面との接触、pHなどの環境変化に応じて、それぞれ、珪酸イオン、燐酸イオン、バナジン酸イオン、及びこれらのアニオンの対カチオン(例えば、アルカリ土類金属イオン、Znイオン、Alイオン等)を放出することができる。これらのイオンのうち、既に塗装用組成物(β)中に溶出していたイオンは、製膜時に塗膜(α)に取り込まれ、塗膜内での水分の増減、共存物質や基材面との接触、pH変化などに応じ、共存する他の原子や原子団と難溶性塩や酸化物の皮膜を形成し、腐食を抑制すると考えられる。また、塗膜(α)に取り込まれた珪酸塩化合物、燐酸塩化合物、バナジン酸塩化合物の場合も同様に、塗膜形成後の環境変化に応じ、上記のアニオン、カチオンを徐々に放出し、難溶性塩や酸化物の皮膜を形成し、腐食を抑制すると考えられる。上記の作用は、塗膜に傷がついて、金属板のめっき皮膜またはめっき下の下地金属が露出する場合にも、珪酸イオン、燐酸イオン、バナジン酸イオン、及びこれらのアニオンの対カチオンが放出されて露出しためっき皮膜または下地金属の表面に到達することで発揮される。同作用は、傷の程度が小さく抑制され、めっき皮膜または下地金属の露出面積が小さく限定される場合には、より効果的に発揮される。
 本発明で用いることができる珪酸塩化合物としては、例えば、珪酸マグネシウム、珪酸カルシウム等のアルカリ土類金属の珪酸塩、珪酸リチウム、珪酸ナトリウム、珪酸カリウム等のアルカリ金属の珪酸塩、珪酸アルミニウム等が挙げられる。これらのうち、珪酸リチウム、珪酸ナトリウム、珪酸カリウムとしては、酸化ケイ素(SiO2)と酸化リチウム(Li2O)の構成モル比率が0.5≦(SiO2/Li2O)≦8である珪酸リチウム、酸化ケイ素(SiO2)と酸化ナトリウム(Na2O)の構成モル比率が0.5≦(SiO2/Na2O)≦4である珪酸ナトリウム、酸化ケイ素(SiO2)と酸化カリウム(K2 O)の構成モル比率が0.5≦(SiO2/K2O)≦4である珪酸カリウム、及び、これらの珪酸塩の水和物を例示できる。これらの具体例としては、オルト珪酸リチウム(Li4SiO4;2Li2O・SiO2)、オルト二珪酸六リチウム(Li6Si27;3Li2O・2SiO2)、メタ珪酸リチウム(Li2SiO3;Li2O・SiO2)、二珪酸リチウム(Li2Si25;Li2O・2SiO2)、七珪酸四リチウム(2Li2O・7SiO2 )、四珪酸リチウム(Li2Si49;Li2O・4SiO2)、九珪酸四リチウム(2Li2O・9SiO2)、十五珪酸四リチウム(2Li2O・15SiO2)、及び、オルト珪酸ナトリウム(Na4SiO4;2Na2O・SiO2)、メタ珪酸ナトリウム(Na2SiO3;Na2O・SiO2)、二珪酸ナトリウム(Na2Si25;Na2O・2SiO2)、四珪酸ナトリウム(Na2Si49;Na2O・4SiO2)、オルト珪酸カリウム(K4SiO4;2K2O・SiO2)、メタ珪酸カリウム(K2SiO3;K2O・SiO2)、二珪酸カリウム(K2Si25;K2O・2SiO2)、四珪酸カリウム(K2Si49;K2O・4SiO2)、及び、これらの珪酸塩の水和物が挙げられる。なお、これらの珪酸塩の水和物の多くは、pHや温度等の環境変化により水和状態のまま容易にゲル化し、一部が高分子化してポリ珪酸塩になる場合がある。本発明に適用できる珪酸塩化合物には、そのようなポリ珪酸塩も含まれる。
 本発明で用いることができる燐酸塩化合物としては、例えば、オルト燐酸、ポリ燐酸(オルト燐酸の重合度6までの直鎖状重合体の単体、またはこれらの2種以上の混合物)、メタ燐酸(オルト燐酸の重合度3~6までの環状重合体の単体、またはこれらの2種以上の混合物)、テトラメタ燐酸、ヘキサメタ燐酸等の金属塩、五酸化燐、モネタイト、トルフィル石、ウィトロック石、ゼノタイム、スターコライト、ストルーブ石、ラン鉄鉱石等の燐酸塩鉱物、ポリ燐酸シリカやトリポリ燐酸塩等の市販の複合燐酸塩顔料、フィチン酸、ホスホン酸(亜燐酸)、ホスフィン酸(次亜燐酸)などの金属塩、又は、これらの2種以上の混合物などが挙げられる。ここで言うオルト燐酸塩には、その一水素塩(HPO4 2-)の塩、二水素塩(H2PO4 -)も含む。また、ポリ燐酸塩には水素塩を含む。燐酸塩を形成するカチオン種としては特に制限はなく、例えば、Co、Cu、Fe、Mn、Nb、Ni、Sn、Ti、V、Y、Zr、Al、Ba、Ca、Mg、SrおよびZn等の金属イオン、バナジル、チタニル、ジルコニル等のオキソカチオンが挙げられるが、Al、Ca、Mg、Mn、Niを用いるのが好ましい。前記燐酸塩化合物は、単独で用いてもよく、2種以上を併用してもよい。
 燐酸塩を形成するカチオン種として、アルカリ金属の多量の使用は好ましくない。アルカリ金属の燐酸塩を用いた場合、工業的な製造工程で焼成して得られる生成物が水に溶解し過ぎる傾向にある。しかし、アルカリ金属の燐酸塩を用いた場合において、水への溶解性の制御を、防錆顔料製造時、塗装用組成物の製造時、金属板への製膜時、あるいは塗装金属板の使用時等に実施できれば、やや多めに使用してもよい。そのような制御は、例えば、防錆顔料を、水への溶解性を抑止する他の添加剤と共存させたり、高度に架橋させた樹脂系や無機系の高分子と共存させて水への溶出速度を制御する、等の方法が挙げられる。
 本発明で用いることができるバナジン酸塩化合物は、バナジウムの原子価が0、2、3、4または5のいずれか1つの価数、または2種以上の価数を有する複合化合物であり、例えば、これらの酸化物、水酸化物、種々の金属の酸素酸塩、バナジル化合物、ハロゲン化物、硫酸塩、金属粉等が挙げられる。これらは、加熱時または水の存在下で分解し、共存する酸素と反応する。例えば、バナジウムの金属粉または2価の化合物は、最終的に3、4、5価のいずれかの化合物に変化する。0価のもの、例えば、バナジウム金属粉は、上記の理由で使用可能であるが、酸化反応が不十分等の問題があるので、実用上好ましくない。5価のバナジウム化合物はバナジン酸イオンを有し、燐酸イオンと加熱反応し、防錆に寄与するヘテロポリマーを作り易いため、5価のバナジウム化合物を1つの成分として含むのは好ましい。バナジウム化合物の具体例としては、酸化バナジウム(II)、水酸化バナジウム(II)等のバナジウム(II)化合物、酸化バナジウム(III)等のバナジウム(III)化合物、酸化バナジウム(IV)、ハロゲン化バナジル等のバナジウム(IV)化合物、酸化バナジウム(V)、バナジン酸塩(種々の金属のオルトバナジン酸塩、メタバナジン酸塩、ピロバナジン酸塩等)等のバナジウム(V)化合物、または、これらの混合物が挙げられる。バナジン酸塩を構成する好ましい金属種は、燐酸塩で示した金属と同じである。
 アルカリ金属のバナジン酸塩を用いた場合、工業的な製造工程で焼成して得られる生成物が水に溶解し過ぎる傾向にあるため、燐酸塩の場合と同様に、アルカリ金属のバナジン酸塩の多量使用は好ましくない。ただし、アルカリ金属の燐酸塩を用いた場合と同様に水への溶解性を制御できれば、これらの使用も差し支えない。バナジウムのハロゲン化物、硫酸塩の場合も同様である。
 本発明の塗装金属板では、前記珪酸塩化合物、燐酸塩化合物、バナジン酸塩化合物の総量は、塗膜(α)の1~40体積%であり、1~20体積%であるのが好ましく、2~15体積%がより好ましい。1体積%未満では珪酸塩化合物、燐酸塩化合物、バナジン酸塩化合物の作用が不十分なため、耐食性が低下することがある。20体積%を超えると塗膜が脆くなり、塗膜凝集破壊により成形時の塗膜密着性や塗膜追従性が低下したり、溶接性が低下することがある。
 防錆顔料(C)は、珪酸塩化合物、燐酸塩化合物、バナジン酸塩化合物のうち1種または2種以上を含むのが好ましいが、燐酸塩化合物(燐酸イオン源)と、珪酸塩化合物(珪酸イオン源)またはバナジン酸塩化合物(バナジン酸イオン源)の少なくとも1種が共存するのが、防錆効果を高める上でより好ましい。配合する燐酸イオン源と、珪酸イオン源、バナジン酸イオン源の総量との比は、[P25のモル数]:[SiO2とV25の総モル数]の比率を25:75~99:1とするのがより好ましい。燐酸イオン源、珪酸イオン源、バナジン酸イオン源の総量に対する珪酸イオン源とバナジン酸イオン源の総量のモル比が75%を超えると、燐酸イオンによる防錆効果が低下することがあり、珪酸イオン源とバナジン酸イオン源の総量のモル比が1%より少ない場合には、珪酸イオン(またはバナジン酸イオン)による周辺化学種の酸化や固定効果が不十分になることがある。
 上記に加え、本発明に用いる防錆顔料(C)として、Si、Ti、Al、Zrからなる群より選ばれる1種または2種以上の金属元素からなる金属酸化物微粒子を用いることができる。これらの金属酸化物微粒子を単独で用いるか、または珪酸塩化合物、燐酸塩化合物、バナジン酸塩化合物と一緒に配合することにより、耐食性をより高めることができる。珪酸塩化合物、燐酸塩化合物、バナジン酸塩化合物とシリカを共存させると、耐食性がより一層向上するので好ましい。シリカとしては、例えば、ヒュームドシリカ、コロイダルシリカ、凝集シリカ等が挙げられる。また、カルシウム沈着シリカを用いることもできる。
 本発明で用いることができる前記金属酸化物微粒子としては、例えば、体積平均径が0.2~10μm程度のシリカ微粒子、アルミナ微粒子、チタニア微粒子、ジルコニア微粒子等を挙げることができ、体積平均径が0.5~30nm程度の金属酸化物ナノ微粒子がさらに好適である。これらは単独で用いてもよく、2種以上を併用してもよい。これらのうち、シリカナノ微粒子は、塗膜の耐食性向上および強靭化の両方が必要な場合に添加することができる。
 粒径が0.5nm以上30nm未満の金属酸化物ナノ微粒子として、例えばコロイダルシリカ、コロイダルチタニア、コロイダルジルコニアを用いることができる。これらは、上記金属酸化物を粉砕により微粒子化したものとは製法が異なるため、微細な一次粒子粒径(0.5nm~30nm)のまま塗料中及び塗装後の塗装金属材の塗膜中に分散し易い。これらの金属酸化物ナノ微粒子は、粒子径がより大きい同組成の金属酸化物微粒子に比べて防錆効果が高い。しかし、このような金属酸化物ナノ微粒子は、例えばスポット溶接のような、電極で荷重を加えつつ通電しジュール熱により溶接する通電抵抗溶接にて溶接性を阻害することがある。
 金属酸化物ナノ微粒子の量は、塗膜中の、金属酸化物ナノ微粒子の総体積の、非酸化セラミクス粒子(B)の総体積に対する比(金属酸化物ナノ微粒子/B)が20以下となることが好ましい。溶接性を重視する場合には10以下がより好ましい。(金属酸化物ナノ微粒子/B)の下限としては0.1以上が好ましい。(金属酸化物ナノ微粒子/B)が0.1未満では、塗膜中の非酸化セラミクス粒子(B)が多すぎる、あるいは金属酸化物ナノ微粒子が少なすぎる状態である。前者では、塗膜中の非酸化セラミクス粒子(B)の量が多すぎるために塗膜が脆くなり、成形時の塗膜割れや塗膜脱落が発生することがある。塗膜割れや塗膜脱落は、塗膜による耐食性の低下や塗装金属板の外観不良につながる。後者では、塗膜中の金属酸化物ナノ微粒子の量が不十分であるため、耐食性を高める効果が十分得られないことがある。溶接性を確保するために金属酸化物ナノ微粒子の量を抑制することで低下する防錆性は、粒径100nm以上の防錆顔料(C)を添加することで補うことができる。粒径100nm以上の防錆顔料(C)は、塗膜が金属板上に塗布された状態、あるいは、溶接電極による荷重で塗膜が変形した状態で、電極と(B)、(B)同士、あるいは(B)と金属板との間に入り込みにくいので、金属酸化物ナノ微粒子に比べて通電抵抗溶接への悪影響が小さい。
 前記防錆顔料(C)の量は、塗膜(α)の1~40体積%であり、かつ導電性顔料(B)の量との合計が80体積%を超えないことが好ましい。塗装金属板の耐食性を重視する場合は防錆顔料(C)の量が3~40体積%であるのがより好ましく、7.5~40体積%がさらに好ましい。さらにより一層の塗装金属板の耐食性を重視する場合は、防錆顔料(C)の量が13~40体積%であるのがより好ましい。1体積%未満では防錆顔料(C)の量が不十分であるため、耐食性を高める効果が十分に得られないことがある。40体積%を超えると塗膜の脆化や金属板への塗膜密着性低下のために、成形時の塗膜破壊や塗膜剥離による金属板の露出が生じ、塗装金属板の外観劣化や塗膜による耐食性向上効果の低下が生じる場合がある。
 導電性顔料(B)の量、防錆顔料(C)の量は、塗膜断面を電子顕微鏡観察してそれぞれの粒子を識別した上で断面あたりの個数を数え、塗膜体積当たりの個数に換算した上で算出することができる。この場合、必要に応じてEDX分光装置などを用いて各粒子を識別することができる。塗装前の塗料に含まれる(B)、(C)の量と金属板への塗膜付着量から塗膜中の各粒子量を算出することも可能である。塗装前の塗料における(B)、(C)の仕込み量が判明していれば、仕込み量と金属板への塗料付着量から塗膜中の各粒子量を算出可能である。仕込み量が不明な場合は、例えばMalvern社製の粒子画像解析装置Morphologi G3等の装置を用いて、適切な濃度に希釈した塗料中の粒子を画像解析にて個々識別し数えることで、算出可能である。この手法は、金属板に付着した塗膜を溶解して粒子の個数を数える場合にも用いることができる。但し、塗膜(α)中の導電性顔料(B)の量、防錆顔料(C)の量は、有機樹脂(A)、導電性顔料(B)、防錆顔料(C)の配合比や乾燥後の各比重に基づいて算出しても、断面観察により測定した場合と同様の測定値となるはずであるので、簡便的に配合比から算出する方法によることもできる。
 前記の各種防錆顔料は、塗装用組成物(β)に適量を予め溶解、あるいは分散安定化させ、塗膜(α)中の有機樹脂(A)に導入するのが好ましい。
<粒子(D)>
 上記導電性顔料(B)、防錆顔料(C)に加え、本発明の塗膜中の粒子として、40℃でのマルテンス硬度が200mg/mm2~200000mg/mm2の粒状の、ワックスや樹脂ビーズ等の粒子(D)を含んでいてもよい。40℃でのマルテンス硬度が200mg/mm2~200000mg/mm2の粒状のワックスや樹脂ビーズは、塗料への添加の容易性などを考慮して任意に選択できる。例えば、ポリオレフィンワックス、ポリエチレンワックス、ポリプロピレンワックス、ポリブチレンワックス、変性ポリオレフィンワックス、アクリル樹脂粒子、シリコーン樹脂粒子、弗素樹脂粒子、ポリアクリロニトリル樹脂等を用いることができる。
 粒子(D)の40℃でのマルテンス硬度が200mg/mm2未満の場合は、本発明の塗装金属板の表面同士、あるいは他の素材や器具・工具に接触する場合に、樹脂(A)よりも優先して接触し、これらに対して塗膜(α)が粘着あるいは溶融することを防止する効果が小さい。40℃でのマルテンス硬度が200000mg/mm2超となるような粒子(D)は、工業的に容易に見出すことは困難であり、実質的にHMの上限となる。さらに、マルテンス硬さの硬度範囲が、300mg/m2以上2000mg/m2以下の範囲がより好ましい。
 上記の導電性顔料(B)、防錆顔料(C)および粒子(D)から選ばれる粒子であって、一次粒子の直径が1μm~10μmである粒子を粒子(P)とする。粒子(P)は、導電性顔料(B)、防錆顔料(C)の少なくとも1種類からなり、必要に応じて粒子(D)を含んでもよい。
 粒子(P)の露出状態、及びその粒子径は、塗装金属板の上方からあるいは断面を顕微鏡観察することで確認することができる。露出した粒子(P)の密度も、塗装金属板の上方からの観察により確認することができる。あるいは、粒子(P)の原材料の粒子径や粒子数が既知であれば、塗料中の配合量から算出してもよい。塗膜(α)の表面に露出した粒子(P)は、40℃における微小マルテンス硬度HMが200~200000(mg/mm2)であり、塗膜(α)表面の少なくとも一部を構成する。発明者の検討によれば、塗膜(α)の表面に露出した粒子(P)は、塗膜(α)を構成する樹脂(A)に比べて変形しにくいので、本発明の塗装金属板の表面同士、あるいは他の素材や器具・工具に接触する場合に、塗膜(α)のよりも優先して接触し、これらに対して塗膜(α)が粘着あるいは溶融することを防止することができる。
 図7に、粒子(P)が塗膜(α)から露出している状態を模式図として表した。他の素材との接触時に粒子(P)が塗膜(α)よりも優先して接触するには、乾燥後の塗膜の厚み(T)と粒子(P)の粒径(R)の関係が次式:
T/R=0.6~2.5
(式中、Rは前記粒子Pの体積平均粒径(μm)である)
を満たすことが好ましい。T/Rが、0.6未満であると、粒子(P)の個々の粒子の大部分が塗膜(α)から突出しているために粒子(P)が脱落しやすく、粒子(P)が十分に効果を発揮しない、あるいは脱落した粒子(P)が工程に混入して品質上の問題を生じやすくなるため好ましくない。また、2.5を超えると、粒子(P)の塗膜(α)からの露出が不十分で、粘着あるいは溶融することを防止する効果が低いため好ましくない。
 粒子(P)の一次粒子の直径が1μm~10μmであり、露出密度が100~2.0×106個/mm2の場合にその効果が顕著であった。露出密度が1.0×103個~2.0×105個/mm2の場合が好ましく、露出密度が5.0×103個~2.0×104個/mm2の場合がさらに好ましい。一次粒子の直径が1μm未満の場合は、粒子(P)が塗膜(α)の中に埋没するために、粒子(P)が優先して接触するという作用を発揮しにくい。一次粒子の直径が10μm超の場合は、粒子(P)が塗膜(α)を形成するための塗料中に安定して存在することが困難で、塗料保管や塗工の経済性に劣る。粒子(P)の露出密度が100個/mm2未満の場合は、その密度が低すぎるために粒子(P)が優先して接触するという作用を発揮しにくい。露出密度が2.0×106個/mm2を超えるほどに大量の場合、塗膜(α)中の粒子(P)の量が多すぎるために塗膜が剥離しやすい、塗工が困難などの問題が生じる。
<塗装用組成物(β)の調製>
 本発明の塗膜(α)を形成するのに用いる塗装用組成物(β)の製造方法は特に限定されない。例えば、水中または有機溶剤中に各々の塗膜(α)形成成分を添加し、ディスパー等の分散機で攪拌し、溶解、分散もしくは破砕分散する方法が挙げられる。水系塗装用組成物の場合、各々の塗膜(α)形成成分の溶解性、もしくは分散性を向上させるために、必要に応じて、公知の親水性溶剤等を添加してもよい。
 特に、水系塗装用組成物(β)の場合には、前記樹脂(A1)、前記導電性顔料(B)、防錆顔料(C)に、必要に応じて上記粒子(D)に加え塗料の水性や塗工性を損なわない範囲で種々の水溶性または水分散性の添加剤を添加してもよい。例えば、顔料の形態を取らない水溶性または水分散性の種々の防錆剤や、消泡剤、沈降防止剤、レベリング剤、湿潤分散剤等の界面活性剤、および、増粘剤、粘度調整剤等などを添加してもよい。更に、樹脂や他の有機化合物など塗装用組成物(β)の構成成分の安定化等のために、労働安全衛生法施行令(有機溶剤中毒予防規則第一章第一条)で定義される有機溶剤等(第1種有機溶剤、第2種有機溶剤、第3種有機溶剤、または、前記有機溶剤を、5質量%を超えて含有するもの)に該当しない範囲で、少量の有機溶剤を添加してもよい。
 本発明の塗膜(α)を、水系塗装用組成物(β)から形成する場合、水系であるため、有機溶剤系塗装用組成物に比較して表面張力が高く、基材である金属板(下地処理がある場合は下地処理層)や、導電性顔料(B)、防錆顔料(C)、粒子(D)等への濡れ性に劣り、基材に所定量の塗布を行う場合、均一な塗装性や粒子分散性が得られないことがある。そのような場合は、前記の湿潤分散剤や増粘剤を添加するのがよい。湿潤分散剤としては、表面張力を低下させる界面活性剤を用いることができるが、分子量が2000以上の高分子界面活性剤(高分子分散剤)を用いる方がよい。低分子界面活性剤は、湿気を含む樹脂塗膜中を比較的容易に移動できるため、界面活性剤の極性基に吸着した水や、その水を介して溶存酸素、溶存塩等の腐食因子を金属面に呼び込み易く、また、自らブリードアウトして、溶出し易いため、塗膜の防錆性を劣化させることが多い。これに対し、高分子界面活性剤は、金属、セラミクス粒子や顔料の表面に多点吸着できるため一旦吸着すると離れにくく、低濃度でも濡れ性改善に有効である。その上、分子が嵩高いため樹脂塗膜中を移動しにくく、腐食因子を金属面に呼び込みにくい。前記<有機樹脂(A)>の項にて、有機樹脂(A)への添加を推奨しているアクリル樹脂の一部には、このような高分子界面活性剤の機能があり、水系塗装用組成物中で、導電性顔料(B)や防錆顔料(C)、粒子(D)等の沈降を抑止し、かつ均一に分散させる効果がある。
 増粘剤は、基材表面のはじき箇所に対して湿潤分散剤だけでは十分な表面被覆性が得られない場合、または、水系塗装用組成物の粘度が低すぎて必要な塗膜厚が確保されない場合の対策として添加することができる。分子量が数千~数万のものが多く、顔料等の表面に多点吸着し、増粘剤自身は互いに会合して弱い網目構造を形成し、塗装用組成物の粘度を高めることができる。
 水系塗装用組成物(β)が高比重の導電性顔料(B)や防錆顔料(C)、粒子(D)を含む場合、必要に応じ、塗料にチクソトロピックな性質(揺変性)を付与できる粘度調整剤を添加するのがよい。粘度調整剤は、前記増粘剤の場合と同様に、水系塗装用組成物中で顔料等の表面に多点吸着し、網目構造を作る。このような粘度調整剤の分子量は数十万~数百万で非常に高いため、水系塗装用組成物(β)中で大きな降伏値を持つ強固な網目構造を作り、従って、塗装用組成物(β)は低剪断速度では変形しにくく、高粘度である。降伏値を上回る大きな剪断応力が塗装用組成物(β)に加われば、網目構造が崩壊して粘度が急激に下がる。従って、粘度調整剤を添加すれば、水系塗装用組成物(β)がほぼ静止状態を保つ保管時や運送時には、塗装用組成物(β)の粘度を高めて重質顔料類の沈降を抑止し、塗装工場で配管内を流動する時や、基材への塗装時等、高い剪断応力(高剪断速度)が加わる際には塗装用組成物(β)の粘度を下げて流動し易くする。
 有機溶剤系の塗装用組成物(β)の場合には、有機溶剤に樹脂を溶解させた塗装用組成物は比較的粘度が高く、かつ、粘度を調整しやすい。そのため、塗装用組成物粘度を、顔料沈降抑制に有利とされる100mPa・s以上に容易にかつ安定的に保持することができる。また、導電性材料として用いる非酸化物セラミクスは表面に疎水性部位も持つ物質であることから、一般的に、有機溶剤系の塗装用組成物(β)への分散も容易であり、塗工時に塗装用組成物(β)中の導電性顔料(B)が沈降することなく塗装できるため、好適である。
 塗膜を形成する有機溶剤系の塗装用組成物(β)の粘度が、100~2000mPa・sである塗装用組成物をロールコーターまたはカーテンコーターにて金属板上に塗布した後に乾燥焼付けすると、導電性顔料(B)が沈降しにくく、より好適である。塗装用組成物(β)の粘度が100mPa・s未満であると、導電性顔料(B)が沈降しやすく、2000mPa・sを超える場合では、粘度が高すぎて一般にリビング等と呼ばれる塗装時の外観不良を起こす恐れがある。より好ましくは、250~1000mPa・sである。有機溶剤系の塗装用組成物(β)の粘度は、ロールコーターまたはカーテンコーターで塗布する際の塗装用組成物の温度と同じ温度でB型粘度計を用いて測定することができる。
 粘度調整は、使用する有機溶剤の種類、溶媒量で調整することができる。有機溶剤は、一般に公知の溶剤を用いることができるが、沸点の高い有機溶剤が好ましい。本発明の金属板の製造ラインでは、焼付け時間が短いため、沸点の低い溶剤を用いると、一般にボイリングと呼ばれる塗装欠陥が発生する恐れがある。溶剤の沸点は、120℃以上のものを用いるのが好ましい。これらの沸点の高い有機溶剤としては、公知の溶剤、例えば、シクロヘキサン、芳香族炭化水素系有機溶剤であるソルベッソ(エクソンモービル(有)の製品名)等を用いることができる。
<塗膜(α)の形成>
 本発明の前記塗膜(α)は、<塗膜(α)>の項で述べたように、塗装用組成物(β)が水系や有機溶剤系組成物の場合は、ロールコート、グルーブロールコート、カーテンフローコート、ローラーカーテンコート、浸漬(ディップ)、エアナイフ絞り等の公知の塗装方法を用いて、金属板上に塗装用組成物(β)を塗布し、その後、ウェット塗膜の水分や溶剤分を乾燥する製膜方法が好ましい。これらのうち、水系や有機溶剤系の紫外線硬化型組成物や電子線硬化型組成物の場合は、前記の塗布方法で金属板に塗布後、水分または溶剤分を乾燥し、紫外線や電子線を照射して重合させるのが好ましい。
 塗装用組成物(β)が水系または有機溶剤系の焼付硬化型組成物の場合の焼付乾燥方法について、具体的に述べる。塗装用組成物(β)が水系または有機溶剤系の焼付硬化型組成物の場合、焼付乾燥方法は特に制限はなく、あらかじめ金属板を加熱しておくか、塗布後に金属板を加熱するか、或いはこれらを組み合わせて乾燥を行ってもよい。加熱方法は特に制限はなく、熱風、誘導加熱、近赤外線、直火等を単独もしくは組み合わせて使用することができる。
 焼付乾燥温度については、塗装用組成物(β)が水系の焼付硬化型組成物の場合、金属板表面到達温度で120℃~250℃であることが好ましい。到達温度が120℃未満では、塗膜硬化が不十分で、耐食性が低下する場合があり、250℃超であると、焼付硬化が過剰になり、耐食性や成形性が低下する場合がある。焼付乾燥時間は1~60秒であることが好ましく、3~20秒であることが更に好ましい。1秒未満であると、焼付硬化が不十分で、耐食性が低下する場合があり、60秒を超えると、生産性が低下する場合がある。
 塗装用組成物(β)が有機溶剤系の焼付硬化型組成物の場合、金属板表面到達温度が180℃~260℃であることが好ましい。到達温度が180℃未満では、塗膜硬化が不十分で、耐食性が低下する場合があり、260℃超であると、焼付硬化が過剰になり、耐食性や成形性が低下する場合がある。焼付乾燥時間は10~80秒であることが好ましく、40~60秒であることが更に好ましい。10秒未満であると、焼付硬化が不十分で、耐食性が低下する場合があり、80秒を超えると、生産性が低下する場合がある。
 塗装用組成物(β)が、水系または有機溶剤系の紫外線硬化型組成物や電子線硬化型組成物の場合の製膜方法について具体的に述べる。これらの組成物を、前記の水系や有機溶剤系組成物の場合と同様な方法で塗布後、ウェット塗膜の水分や溶剤分を乾燥し、その後、紫外線または電子線を照射する。塗膜は、主に紫外線または電子線照射で生成するラジカルを起点に硬化製膜するため、乾燥温度は、焼付硬化型組成物の場合より低い乾燥温度でよい。乾燥工程にて、80~120℃程度の比較的低い金属表面到達温度で水分や溶剤の多くを揮発させてから紫外線または電子線照射するのが好ましい。
 塗膜中の紫外線硬化型樹脂を紫外線でラジカル重合し硬化する紫外線照射は、通常、大気雰囲気中、不活性ガス雰囲気中、大気と不活性ガスの混合雰囲気中等で行われる。本発明の紫外線硬化では、酸素濃度を10体積%以下に調整した大気と不活性ガスの混合雰囲気や、不活性ガス雰囲気中で紫外線照射するのが好ましい。酸素はラジカル重合の禁止剤となるため、紫外線照射時の雰囲気酸素濃度が低い場合、生成ラジカルへの酸素付加による失活や架橋反応阻害が少なく、本発明に用いる紫外線硬化型組成物が、ラジカル重合や架橋を経て十分に高分子化する。そのため、導電性顔料(B)や金属板表面への密着性が高まり、結果として、大気雰囲気中での紫外線硬化の場合より、塗膜の耐食性が向上する。ここで用いる不活性ガスとしては、窒素ガス、炭酸ガス、アルゴンガス、およびこれらの混合ガス等を例示できる。
 紫外光源としては、例えば、金属蒸気放電方式の高圧水銀ランプ、メタルハライドランプ等、希ガス放電方式のキセノンランプ等、マイクロ波を用いた無電極ランプ等を用いることにより、紫外線を照射できる。本発明の塗装金属板において、紫外線硬化型の塗膜を十分に硬化でき、所望の抵抗溶接性、耐食性、成形性が得られるものであれば、どのようなランプを用いてもよい。また、一般に、塗膜が受光する紫外線のピーク照度や積算光量は塗膜の硬化性を左右するが、紫外線硬化型の塗膜を十分に硬化でき、所望の耐食性や成形性が得られるものであれば、紫外線の照射条件は特に限定されない。
 塗装用組成物(β)が、電子線硬化型組成物の場合、電子線硬化には、印刷、塗装、フィルムコーティング、包装、滅菌等の分野で用いられている通常の電子線照射装置を用いることができる。これらは、高真空中で熱フィラメントから発生した熱電子に高電圧をかけて加速し、得られた電子流を不活性ガス雰囲気中に取り出し、重合性物質に照射するものである。本発明の塗装金属板において、電子線硬化型の塗膜を十分に硬化でき、所望の抵抗溶接性、耐食性、成形性が得られるものであれば、どのような装置を用いてもよい。また、一般に、塗膜が吸収する電子線の加速電圧は、電子線が塗膜を浸透する深さを左右し、吸収線量は重合速度(塗膜の硬化性)を左右するが、電子線硬化型の塗膜を十分に硬化でき、所望の耐食性や成形性が得られるものであれば、電子線の照射条件を特に限定しない。ただし、電子線によるラジカル重合の場合、微量の酸素が存在しても、生成ラジカルへの酸素付加による失活や架橋反応阻害が生じ、硬化が不十分になるため、酸素濃度が500ppm以下の不活性ガス雰囲気中で電子線照射するのが好ましい。ここで用いる不活性ガスとしては、窒素ガス、炭酸ガス、アルゴンガス、およびこれらの混合ガス等を例示できる。
実施例I
 以下、水系塗装用組成物を用いた実施例Iにより本発明を具体的に説明する。
1.金属板の準備
 以下の5種の亜鉛系めっき鋼板を準備し、水系アルカリ脱脂剤(日本パーカライジング(株)製FC-301)の2.5質量%、40℃水溶液に2分間浸漬して表面を脱脂した後、水洗、乾燥して塗装用の金属板とした。
EG:電気亜鉛めっき鋼板(板厚0.8mm、めっき付着量30g/m2
ZL:電気Zn-10%Ni合金めっき鋼板(板厚0.8mm、めっき付着量30g/m2
GI:溶融亜鉛めっき鋼板(板厚0.8mm、めっき付着量40g/m2
SD:溶融Zn-11%Al-3%Mg-0.2%Si合金めっき鋼板(板厚0.8mm、めっき付着量40g/m2
GA:合金化溶融亜鉛めっき鋼板(板厚0.8mm、10%Fe、めっき付着量45g/m2
2.下地処理皮膜の製膜
 <塗膜(α)>の項で述べたように、本発明においては、塗膜(α)と金属板表面の間に必ずしも下地処理皮膜を設ける必要はないが、塗膜(α)の金属板への密着性や耐食性等を更に改善するために用いることがある。ここでは、一部の塗装用金属板に下地処理皮膜を設けて評価した。
 下地処理皮膜を製膜するための塗装用組成物として、ポリエステル樹脂、シリカ微粒子、シランカップリング剤からなる水系塗装用組成物を準備した。
 上記組成物を皮膜厚0.08μmになるように前記の塗装用金属板にバーコートし、これを熱風炉にて金属表面到達温度70℃で乾燥し、風乾した。
3.水系塗装用組成物の調製と製膜
 水系塗装用組成物の調製のため、まず、樹脂(A)、導電性顔料(B)、防錆顔料(C)を準備した。
(1)樹脂(A1)
 表1に示す樹脂A1~A8の市販の樹脂を、実施例用(発明例)、比較例用樹脂として準備した。
Figure JPOXMLDOC01-appb-T000001
(2)導電性顔料(B)
 表2に示す市販の微粒子(試薬)を用いた(実施例)。体積平均粒径は、ベックマン・コールター(株)製Multisizer3(コールター原理による精密粒度分布測定装置)を用いて測定した。電気抵抗率は、各微粒子から長さ80mm、幅50mm、厚さ2~4mmの焼結板を作成し、(株)三菱化学アナリテック製の抵抗率計ロレスタEP(MCP-T360型)とESPプローブ(端子の平頭部の直径2mm)を用いた4端子4探針法、定電流印加方式で、JIS K7194に準拠して25℃で測定した。
Figure JPOXMLDOC01-appb-T000002
TiB:TiB2微粒子((株)高純度化研究所製TII11PB、体積平均径2.9μm、電気抵抗率30×10-6Ωcm)
ZrB:ZrB2微粒子(和光純薬工業(株)製、体積平均径2.2μm、電気抵抗率70×10-6Ωcm)
MoB:Mo2B微粒子(三津和化学薬品(株)製ほう化二モリブデン、体積平均径5.2μm、電気抵抗率30×10-6Ωcm)
LaB:LaB6微粒子(添川理化学(株)製六硼化ランタン、体積平均径2.8μm、電気抵抗率20×10-6Ωcm)
VC:VC微粒子(和光純薬工業(株)製、体積平均径2.3μm、電気抵抗率140×10-6Ωcm)
TiC:TiC微粒子(和光純薬工業(株)製、体積平均径3.2μm、電気抵抗率180×10-6Ωcm)
TiN:TiN微粒子(和光純薬工業(株)製、体積平均径1.6μm、電気抵抗率20×10-6Ωcm)
NiSi:Ni2Si微粒子((株)高純度化学研究所製NII11PBを水に添加し攪拌、懸濁させ、5分経過後になお浮遊する微小粒子を濾別して使用。体積平均径4.8μm、電気抵抗率40×10-6Ωcm)
SUS:SUS304粒子(体積平均径3.3μm、電気抵抗率70×10-6Ωcm)
ZrB+VC:前記ZrBと前記VCの混合物(体積比1:1)
ZrB+TiC:前記ZrBと前記TiCの混合物(体積比1:1)
VC+TiN:前記VCと前記TiNの混合物(体積比1:1)
(3)防錆顔料(C)
 表3、表4に示す市販の試薬、工業製品、またはこれらをブレンドして用いた(実施例)。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
(4)粒子(D)
 表5に示す市販の工業製品を用いた(実施例)。
Figure JPOXMLDOC01-appb-T000005
 次に、前記の樹脂(A)、導電性顔料(B)、防錆顔料(C)、粒子(D)と蒸留水を用いて、種々の配合比率で水系塗装用組成物を調製した。
 導電性顔料(B)、防錆顔料(C)、粒子(D)については、水系塗装用組成物の不揮発分中に含まれる、樹脂(A)、導電性顔料(B)、防錆顔料(C)、粒子(D)の総量に対する所望の体積比率で配合した。水系塗装用組成物の不揮発分の濃度は、狙いの塗膜付着量や良好な塗装性を得るため、水の添加量を変えて適宜調整した。ここで、「不揮発分」とは、塗料や組成物に溶媒として配合されている水や有機溶剤類を揮発させた後に残る成分のことを意味する。
 表6に、上記の塗膜構成成分を用いて作製した塗膜(α)の、成分構成及び塗膜中の含有量(体積分率%)を示す。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 前記水系塗装用組成物を調製し各成分を均一に分散後、前記の塗装用金属板、または下地処理皮膜を設けた金属板にロールコーターを用いて塗布し、これを熱風炉にて金属表面到達温度200℃で乾燥し、水冷、風乾した。表7に、製膜後の塗膜厚(μm単位)を示した。なお、前記塗膜厚は、塗装後の塗膜の剥離前後の質量差を塗膜比重で除算して算出した。塗膜比重は、塗膜構成成分の配合量と各成分の既知比重から計算した。
 表6(表6-1、表6-2)に、塗装金属板表面の塗膜(α)表面の、-20℃でのHM分布と、40℃でのHM分布を示す。それぞれの分布状態は次のように示す。
(1)-20℃でのHM分布
状態1:-20℃における微小マルテンス硬度HMが10~200mg/mm2である測定部位が、無作為な測定点数100点のうち0~19点
状態2:HMが10~200mg/mm2である測定部位が、20点~39点
状態3:HMが10~200mg/mm2である測定部位が、40点~59点
状態4:HMが10~200mg/mm2である測定部位が、60点以上
(2)40℃でのHM分布
状態1:40℃における微小マルテンス硬度HMが200~200000mg/mm2である測定部位が、無作為な測定点数100点のうち0点~4点
状態2:HMが200~200000mg/mm2である測定部位が、5点~9点
状態3:HMが200~200000mg/mm2である測定部位が、10点~19点
状態4:HMが200~200000mg/mm2である測定部位が、20点以上
4.性能評価
 前記3.の方法で作成した塗装金属板を用い、溶接性、耐食性、耐チッピング性、チッピング後耐食性及び耐スタック性について評価を行った。以下に、各試験と評価の方法を示す。
(1)溶接性
 先端径5mm、R40のCF型Cr-Cu電極を用い、加圧力1.96kN、溶接電流8kA、通電時間12サイクル/50Hzにてスポット溶接の連続打点性試験を行い、ナゲット径が3√t(tは板厚)を切る直前の打点数を求めた。以下の評価点を用いてスポット溶接性の優劣を評価した。
4:打点数が1000点以上
3:200点以上、1000点未満
2:200点未満
1:ナゲットが生成せず1点も溶接できない
(2)耐食性
 前記3.の方法で作成した塗装金属板から150×70mmサイズの長方形の試験片を切り出し、端部を樹脂シールして平面部耐食性の試験片とした。
 これらの試験片に対し、塩水噴霧2時間、乾燥4時間、湿潤2時間の合計8時間を1サイクルとしたサイクル腐食試験を実施した。塩水噴霧の条件はJIS-Z2371に準拠した。乾燥条件は、温度60℃、湿度30%RH以下とし、湿潤条件は、温度50℃、湿度95%RH以上とした。赤錆発生状況を調べ、以下の評価点を用いて加工部耐食性の優劣を評価した。
4:450サイクルで赤錆発生なし
3:300サイクルで赤錆発生なし
2:150サイクルで赤錆発生なし
1:150サイクルで赤錆発生あり
(3)耐チッピング性
 前記3.の方法で作成した塗装金属板から150×70mmサイズの長方形の試験片を切り出し、耐チッピング性の試験片とした。試験片は電着塗装(膜厚15μm)、中塗塗装(膜厚30μm)・上塗塗装(膜厚30μm)を施した。上記塗済の鋼板に気温-15℃の室内で空気圧にて時速30~60km/hの速度に加速した砕石(玄武岩、粒径5~7.5mm)を100個射出し試験板の平面を、砕石の飛来方向に対して15度傾けて衝突させた。砕石の衝突の中心部20×20mmの範囲を観察し、以下の評価点を用いて加工部耐食性の優劣を評価した。
4:めっき鋼板の地鉄の露出なし
3:めっき鋼板の地鉄が長径と短径の平均で100μm以上のサイズで1箇所露出
2:めっき鋼板の地鉄が長径と短径の平均で100μm以上のサイズで2~4箇所露出
1:めっき鋼板の地鉄が長径と短径の平均で100μm以上のサイズで5箇所以上露出
(4)チッピング後耐食性
 前記(4)の方法で傷つけた塗装金属板を、チッピング後耐食性の試験片とした。
 これらの試験片に対し、塩水噴霧2時間、乾燥4時間、湿潤2時間の合計8時間を1サイクルとしたサイクル腐食試験を実施した。塩水噴霧の条件はJIS-Z2371に準拠した。乾燥条件は、温度60℃、湿度30%RH以下とし、湿潤条件は、温度50℃、湿度95%RH以上とした。赤錆発生状況を調べ、以下の評価点を用いて加工部耐食性の優劣を評価した。
4:60サイクルで錆汁が目視でわかる赤錆発生なし
3:30~59サイクルで錆汁が目視でわかる赤錆発生あり
2:13~29サイクルで錆汁が目視でわかる赤錆発生あり
1:12サイクルで錆汁が目視でわかる赤錆発生あり
(5)耐スタック性
 作製した塗装金属板のおもて面とその反対面であるうら面を加圧下に面接触させて、耐スタック性を評価した。
 試験方法については、50mm×50mmに切断した試験片を、おもて面とうら面同士が面接触するように重ねて、40℃で100kg/cm2×24時間の熱プレスを施し、熱プレス後、塗膜のスタック(くっ付き)程度を下記基準により評価した。
3:塗膜同士のスタックがほとんど無し、
2:塗膜同士がややスタックしているが、簡単に手でかるくはがせる程度、
1:塗膜同士がスタックしており、手で容易にはがせない程度。
 表7(表7-1、表7-2)に評価結果を示す。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009

Claims (10)

  1.  金属板、および前記金属板の少なくとも一方の表面上にある塗膜(α)を含む自動車用塗装金属板であって、
     前記塗膜(α)が、有機樹脂(A)と、導電性顔料(B)と、防錆顔料(C)とを含み、
     塗膜(α)表面の-20℃における微小マルテンス硬度が、100点測定した際に20点以上がHM10~200(mg/mm2)であり、塗膜(α)表面の40℃における微小マルテンス硬度が、100点測定した際に5点以上がHM200~200000(mg/mm2)である、自動車用塗装金属板。
  2.  前記有機樹脂(A)のガラス転移温度Tgが、-80℃~-20℃である、請求項1に記載の自動車用塗装金属板。
  3.  前記有機樹脂(A)が、ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂、またはそれらの変性体から成る群より選ばれる、請求項1に記載の自動車用塗装金属板。
  4.  前記導電性顔料(B)が、硼化物、炭化物、窒化物、珪化物の少なくとも1種から選ばれる、25℃の電気抵抗率が0.1×10-6~185×10-6Ωcmの非酸化物セラミックス粒子である、請求項1に記載の自動車用塗装金属板。
  5.  前記塗膜(α)が、0.5vol%~65vol%の量の導電性顔料(B)を含有する、請求項1に記載の自動車用塗装金属板。
  6.  前記防錆顔料(C)が、珪酸イオン、燐酸イオン、バナジン酸イオン、タングステン酸イオン、又はモリブデン酸イオンを放出できる化合物、およびまたはSi、Ti、Al、およびZrからなる群より選ばれる金属元素を含む粒子から選ばれる1種または2種以上を含む、請求項1に記載の自動車用塗装金属板。
  7.  前記塗膜(α)が、1vol%~40vol%の量の防錆顔料(C)を含有する、請求項1に記載の自動車用塗装金属板。
  8.  40℃でのマルテンス硬度が200mg/mm2~200000mg/mm2の粒状の粒子(D)を塗膜中に含む、請求項1に記載の自動車用塗装金属板。
  9.  請求項1に記載の自動車用塗装金属板を加工、成形して形成された自動車部品。
  10.  請求項9に記載の自動車部品に、さらに電着塗膜層、中塗り塗膜層、上塗り塗膜層のうちいずれか一層以上を塗布して形成された自動車部品。
PCT/JP2015/077845 2014-09-30 2015-09-30 低温走行環境での防錆性に優れる自動車用塗装金属板 WO2016052661A1 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2016552144A JP6466954B2 (ja) 2014-09-30 2015-09-30 低温走行環境での防錆性に優れる自動車用塗装金属板
US15/515,946 US10913860B2 (en) 2014-09-30 2015-09-30 Coated metal sheet for automobile excellent in rust resistance in low temperature running environments
PL15845812T PL3202569T3 (pl) 2014-09-30 2015-09-30 Powlekana płyta metalowa do samochodu o doskonałych właściwościach antykorozyjnych w niskich temperaturach środowiska pracy
CA2962729A CA2962729C (en) 2014-09-30 2015-09-30 Coated metal sheet for automobile excellent in rust resistance in low temperature running environments
KR1020177010872A KR101979520B1 (ko) 2014-09-30 2015-09-30 저온 주행 환경에서의 방청성이 우수한 자동차용 도장 금속판
RU2017114647A RU2656031C1 (ru) 2014-09-30 2015-09-30 Покрытый металлический лист для автомобиля, обладающий превосходной стойкостью против ржавления в низкотемпературной среде эксплуатации
ES15845812T ES2757305T3 (es) 2014-09-30 2015-09-30 Placa de metal recubierta para automóvil con excelentes propiedades de resistencia a la formación de óxido en entornos de desplazamiento a bajas temperaturas
EP15845812.5A EP3202569B1 (en) 2014-09-30 2015-09-30 Coated metal plate for automobile with excellent anti-rust properties in low temperature running environments
CN201580064540.9A CN107000379B (zh) 2014-09-30 2015-09-30 低温行驶环境中的防锈性优异的汽车用涂装金属板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014202174 2014-09-30
JP2014-202174 2014-09-30

Publications (1)

Publication Number Publication Date
WO2016052661A1 true WO2016052661A1 (ja) 2016-04-07

Family

ID=55630684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077845 WO2016052661A1 (ja) 2014-09-30 2015-09-30 低温走行環境での防錆性に優れる自動車用塗装金属板

Country Status (10)

Country Link
US (1) US10913860B2 (ja)
EP (1) EP3202569B1 (ja)
JP (1) JP6466954B2 (ja)
KR (1) KR101979520B1 (ja)
CN (1) CN107000379B (ja)
CA (1) CA2962729C (ja)
ES (1) ES2757305T3 (ja)
PL (1) PL3202569T3 (ja)
RU (1) RU2656031C1 (ja)
WO (1) WO2016052661A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020078604A1 (en) * 2018-08-24 2020-04-23 Covestro Deutschland Ag A polyurethane composition, preparation method and application thereof
CN109608218B (zh) * 2019-01-28 2021-09-24 中国人民解放军国防科技大学 一种自愈合陶瓷基复合材料及其低温快速制备方法
CN111058022B (zh) * 2019-11-28 2021-09-28 广州市敬业金属实业有限公司 一种铁艺栏杆的防腐抑菌处理方法
JP2022162812A (ja) * 2021-04-13 2022-10-25 本田技研工業株式会社 電気パルス分解方法、複合材、複合材分解方法
CN116355490A (zh) * 2021-12-28 2023-06-30 广东华润涂料有限公司 无铬防腐涂料组合物以及由其制成的制品
CN116355489A (zh) * 2021-12-28 2023-06-30 广东华润涂料有限公司 无铬防腐涂料组合物以及由其制成的制品
CN114689830B (zh) * 2022-05-06 2023-05-26 华电电力科学研究院有限公司 一种阴离子树脂的碳酸氢根交换容量检测方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241866A (ja) * 1996-03-06 1997-09-16 Sumitomo Metal Ind Ltd 燃料タンク用表面処理鋼板
JP2003245605A (ja) * 2002-02-26 2003-09-02 Nippon Paint Co Ltd 積層塗膜の形成方法およびそれにより得られた積層塗膜
JP2005015516A (ja) * 2003-06-23 2005-01-20 Kansai Paint Co Ltd 熱硬化型水性塗料組成物及び複層塗膜形成方法
JP2007169397A (ja) * 2005-12-20 2007-07-05 Nippon Bee Chemical Co Ltd 水性一液型塗料組成物及び塗装物品
JP2009197148A (ja) * 2008-02-22 2009-09-03 Cashew Co Ltd 水系1液塗料組成物
JP2010065254A (ja) * 2008-09-09 2010-03-25 Jfe Steel Corp 黒色塗装鋼板、加工品および薄型テレビ用パネル
JP2013527867A (ja) * 2010-04-21 2013-07-04 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング 改善された流れ傾向を有する被覆剤
JP5568191B1 (ja) * 2014-03-19 2014-08-06 日新製鋼株式会社 塗装鋼板および外装建材
JP2015202686A (ja) * 2014-04-16 2015-11-16 新日鐵住金株式会社 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013952B2 (ja) 1992-06-19 2000-02-28 日本カーバイド工業株式会社 被覆用水性樹脂組成物
TW272206B (ja) * 1993-12-24 1996-03-11 Nippon Paint Co Ltd
US6750274B2 (en) * 2001-02-08 2004-06-15 Ppg Industries Ohio. Inc. Weldable coating of phosphated epoxy polymer, curing agent and electroconductive pigment
DE10202545A1 (de) 2002-01-24 2003-08-07 Basf Coatings Ag Korrosionshemmende Mischung und Beschichtungsstoffe, enthaltend die korrosionshemmende Mischung
JP2003253211A (ja) 2002-02-28 2003-09-10 Nippon Paint Co Ltd 水性中塗り塗料組成物及び塗膜形成方法
JP2003251272A (ja) 2002-02-28 2003-09-09 Kansai Paint Co Ltd 自動車車体の塗装方法
JP4245853B2 (ja) * 2002-03-22 2009-04-02 日本カーバイド工業株式会社 水性被覆用組成物
DE10236349A1 (de) * 2002-08-08 2004-02-19 Basf Coatings Ag Beschichtungsstoffe und ihre Verwendung zur Herstellung schweissbarer Beschichtungen
US20040228975A1 (en) 2003-05-13 2004-11-18 Shoichi Takesako Method for forming plural-layered coated film
KR20060037339A (ko) * 2003-11-21 2006-05-03 제이에프이 스틸 가부시키가이샤 내식성, 도전성 및 피막 외관이 우수한 표면처리 강판
WO2005069877A2 (en) * 2004-01-16 2005-08-04 Ppg Industries Ohio, Inc. Process for applying a multi-layer coating to ferrous substrates
DE102005038608A1 (de) * 2005-08-16 2007-02-22 Basf Ag Polymerzusammensetzung für den Korrosionsschutz
US7476445B2 (en) * 2006-10-02 2009-01-13 Nippon Steel Corporation Surface-treated metal sheet
JP5046799B2 (ja) 2007-08-27 2012-10-10 株式会社神戸製鋼所 耐白錆性に優れたノンクロメート化成処理電気Znめっき鋼板
DE102008059014A1 (de) * 2008-05-28 2009-12-03 Basf Coatings Ag Verfahren zur Beschichtung von Metallbändern
DE102008043682B4 (de) * 2008-11-12 2014-01-23 Chemetall Gmbh Verfahren zum Beschichten von metallischen Oberflächen mit Partikeln, nach diesem Verfahren hergestellte Beschichtung und Verwendungder nach diesem Verfahren beschichteten Substrate
EP2527047B1 (en) * 2010-01-22 2018-05-16 Asahi Glass Company, Limited Method for producing resin substrate having hard coat layer, and resin substrate having hard coat layer
JP2012230881A (ja) * 2010-06-24 2012-11-22 Fujifilm Corp 導電膜、タッチパネル及び太陽電池
CN103079809B (zh) 2010-08-31 2014-12-17 新日铁住金株式会社 无铬涂装金属板
KR101334553B1 (ko) 2010-09-02 2013-11-28 신닛테츠스미킨 카부시키카이샤 도전성, 내식성이 우수한 도장 금속판
JP5425116B2 (ja) * 2011-01-20 2014-02-26 住友ゴム工業株式会社 Oaローラおよびoaローラ用コーティング剤
KR101413812B1 (ko) * 2011-03-29 2014-06-30 신닛테츠스미킨 카부시키카이샤 표면 처리 강판 및 그 제조 방법
RU2592895C2 (ru) 2012-03-06 2016-07-27 Ниппон Стил Энд Сумитомо Метал Корпорейшн Металлический лист с предварительным покрытием для применения в автомобилях, имеющий превосходную пригодность к контактной сварке, коррозионную стойкость и формуемость
JP5572270B1 (ja) * 2014-03-24 2014-08-13 日新製鋼株式会社 塗装金属板および外装建材
JP7034815B2 (ja) * 2017-04-27 2022-03-14 キヤノン株式会社 帯電部材、電子写真プロセスカートリッジ及び電子写真画像形成装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09241866A (ja) * 1996-03-06 1997-09-16 Sumitomo Metal Ind Ltd 燃料タンク用表面処理鋼板
JP2003245605A (ja) * 2002-02-26 2003-09-02 Nippon Paint Co Ltd 積層塗膜の形成方法およびそれにより得られた積層塗膜
JP2005015516A (ja) * 2003-06-23 2005-01-20 Kansai Paint Co Ltd 熱硬化型水性塗料組成物及び複層塗膜形成方法
JP2007169397A (ja) * 2005-12-20 2007-07-05 Nippon Bee Chemical Co Ltd 水性一液型塗料組成物及び塗装物品
JP2009197148A (ja) * 2008-02-22 2009-09-03 Cashew Co Ltd 水系1液塗料組成物
JP2010065254A (ja) * 2008-09-09 2010-03-25 Jfe Steel Corp 黒色塗装鋼板、加工品および薄型テレビ用パネル
JP2013527867A (ja) * 2010-04-21 2013-07-04 ビーエーエスエフ コーティングス ゲゼルシャフト ミット ベシュレンクテル ハフツング 改善された流れ傾向を有する被覆剤
JP5568191B1 (ja) * 2014-03-19 2014-08-06 日新製鋼株式会社 塗装鋼板および外装建材
JP2015202686A (ja) * 2014-04-16 2015-11-16 新日鐵住金株式会社 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202569A4 *

Also Published As

Publication number Publication date
PL3202569T3 (pl) 2020-06-15
CA2962729C (en) 2019-08-06
CN107000379A (zh) 2017-08-01
CN107000379B (zh) 2019-10-25
ES2757305T3 (es) 2020-04-28
KR20170060088A (ko) 2017-05-31
EP3202569A1 (en) 2017-08-09
JPWO2016052661A1 (ja) 2017-07-20
EP3202569B1 (en) 2019-09-11
JP6466954B2 (ja) 2019-02-06
KR101979520B1 (ko) 2019-05-17
CA2962729A1 (en) 2016-04-07
US10913860B2 (en) 2021-02-09
RU2656031C1 (ru) 2018-05-30
US20170298231A1 (en) 2017-10-19
EP3202569A4 (en) 2018-04-04

Similar Documents

Publication Publication Date Title
JP6466954B2 (ja) 低温走行環境での防錆性に優れる自動車用塗装金属板
JP5940097B2 (ja) 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板
JP6366333B2 (ja) 抵抗溶接性、耐食性、成形性に優れる自動車用塗装金属板
JP5021107B2 (ja) 導電性、耐食性に優れる塗装金属板
KR101413812B1 (ko) 표면 처리 강판 및 그 제조 방법
KR101807927B1 (ko) 표면 처리 용융 도금 강재
TWI599626B (zh) Surface-treated metal plate, coating member and method of manufacturing the coating member
KR102245651B1 (ko) 표면 처리 강판 및 도장 부재
TWI655086B (zh) Surface treated steel sheet and coated member

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845812

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2962729

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2016552144

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15515946

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177010872

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015845812

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017114647

Country of ref document: RU

Kind code of ref document: A