WO2016052516A1 - 制振材用樹脂組成物 - Google Patents
制振材用樹脂組成物 Download PDFInfo
- Publication number
- WO2016052516A1 WO2016052516A1 PCT/JP2015/077535 JP2015077535W WO2016052516A1 WO 2016052516 A1 WO2016052516 A1 WO 2016052516A1 JP 2015077535 W JP2015077535 W JP 2015077535W WO 2016052516 A1 WO2016052516 A1 WO 2016052516A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- vibration damping
- damping material
- lignin
- mass
- resin composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/062—Copolymers with monomers not covered by C09D133/06
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
- C08L33/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L97/00—Compositions of lignin-containing materials
- C08L97/005—Lignin
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/02—Emulsion paints including aerosols
- C09D5/024—Emulsion paints including aerosols characterised by the additives
- C09D5/028—Pigments; Filters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/02—Springs made of steel or other material having low internal friction; Wound, torsion, leaf, cup, ring or the like springs, the material of the spring not being relevant
- F16F1/024—Covers or coatings therefor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F1/00—Springs
- F16F1/36—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
- F16F1/3605—Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by their material
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/265—Calcium, strontium or barium carbonate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/52—Aqueous emulsion or latex, e.g. containing polymers of a glass transition temperature (Tg) below 20°C
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/54—Aqueous solutions or dispersions
Definitions
- the present invention relates to a resin composition for a vibration damping material, and more specifically, a resin composition for a vibration damping material that can be suitably used for various structures requiring damping properties, and the resin composition for a vibration damping material And a vibration damping material obtained using the vibration damping composition.
- Damping materials are used to prevent vibrations and noise of various structures and keep quiet. They are used under the interior floors of automobiles, as well as railway vehicles, ships, aircraft, electrical equipment, and building structures. Widely used for construction and construction equipment. Conventionally, plate-shaped or sheet-shaped molded products made of materials that have vibration absorption performance and sound absorption performance have been used as vibration damping materials. As an alternative, vibration is generated by forming a coating film. Various coating-type damping material blends that can obtain an absorption effect and a sound absorption effect have been proposed (see, for example, Patent Documents 1 to 3).
- lignin is a natural aromatic polymer present in trees, and is contained in a large amount in waste liquid in kraft pulp production (craft pulp waste liquid), waste liquid in sulfite pulp production (sulfite pulp waste liquid), and the like.
- kraft lignin contained in kraft pulp waste liquor is sulfomethylated with sulfite and formaldehyde
- lignin sulfonic acid or its salt contained in sulfite pulp waste liquor is partially desulfonated, limited
- Those purified by external filtration are used as dispersants in the fields of dyes, cement, inorganic and organic pigments, gypsum, coal-water slurry, agricultural chemicals, and ceramics (see, for example, Patent Document 4).
- damping material blends As described above, various types of damping material blends have been proposed, but they can exhibit excellent damping properties in a wide temperature range, and can obtain a damping material having an excellent appearance at low cost. Damping material formulations have not yet been found.
- the present invention has been made in view of the above situation, and a damping material composition that can exhibit excellent damping properties in a wide temperature range and can obtain a damping material that is also excellent in appearance at low cost.
- the purpose is to provide.
- the inventor of the present invention focused on plant-derived components desirable from an environmental point of view as an inexpensive and easily obtainable material that has not been blended in the vibration damping resin composition in the past, and as a result of various studies, lignins and / or lignin A new resin composition for a vibration damping material containing a derivative was conceived.
- the inventor can use this resin composition for a vibration damping material to exhibit a significantly superior vibration damping property in a wide temperature range, and to suppress the occurrence of peeling and cracks and to have an outstanding appearance.
- the present inventors have found that a material can be obtained and have conceived that the above-mentioned problems can be solved brilliantly, and have reached the present invention.
- this invention is the resin composition for damping materials containing lignin and / or a lignin derivative.
- the present invention is also a vibration damping composition containing the vibration damping resin composition of the present invention and an inorganic pigment.
- the present invention is also a vibration damping material obtained using the vibration damping composition of the present invention.
- the present invention is described in detail below. A combination of two or more preferred embodiments of the present invention described below is also a preferred embodiment of the present invention.
- the resin composition for a vibration damping material of the present invention contains lignins and / or lignin derivatives, and preferably further contains a resin different from the lignins and / or lignin derivatives.
- Lignin is one of the three major components (cellulose, hemicellulose, lignin) of plant biomass such as wood, and is the most abundant on the earth as a natural aromatic polymer.
- the resin composition for a vibration damping material of the present invention is very desirable from an environmental viewpoint because it can use lignins and derivatives thereof which are plant-derived components and are produced in large quantities as by-products in the paper pulp manufacturing industry. is there.
- the above lignin refers to an unmodified lignin, and may be, for example, a natural lignin present in a plant body or a lignin that has been isolated from a plant body by digestion.
- the lignin as isolated from the plant body by cooking may have a thioether bond, or a substituent such as a sulfonic acid group, a sulfonic acid group, or an acetyl group.
- denaturation refers to the introduction of another structural site different from the structural site possessed by the lignin to the lignin that has been isolated from the plant body by cooking.
- the lignins and / or lignin derivatives refer to those having a phenylpropane skeleton which is the basic skeleton of lignin.
- lignins examples include kraft lignin having a thioether bond in the structure and lignin sulfonic acid (salt). Among them, lignin sulfone can be improved in a well-balanced manner over a wide temperature range. An acid (salt) is more preferable.
- lignin sulfonic acid (salt) means lignin sulfonic acid and / or lignin sulfonate.
- the lignin sulfonate include monovalent metal salts, divalent metal salts, ammonium salts, organic amine salts, and mixed salts thereof.
- the lignins may be those obtained by further decomposing or molecular weight fractionating the lignin sulfonic acid (salt).
- Examples of the decomposition include hydrolysis.
- Examples of the molecular weight fraction include a method by ultrafiltration. Of these, hydrolysis is preferred.
- lignins As the lignins, lignin sulfonic acid, lignin sulfonic acid sodium salt, lignin sulfonic acid magnesium salt, and lignin sulfonic acid calcium salt are more preferable, and lignin sulfonic acid, from the viewpoint that the function of the vibration damping material to be obtained can be more fully exhibited.
- Sodium salt, magnesium lignin sulfonate, and calcium lignin sulfonate are more preferable, magnesium lignin sulfonate and calcium lignin sulfonate are particularly preferable, and magnesium lignin sulfonate is most preferable.
- lignin that has been isolated from the plant body by digestion can be used. More specifically, for example, kraft pulp waste liquid or sulfite pulp waste liquid can be used as it is. it can. Kraft pulp waste liquor contains kraft lignin, and sulfite pulp waste liquor contains lignin sulfonic acid. Kraft lignin and lignin sulfonic acid usually have different physical properties but As shown in the examples, any lignin can exhibit the effect of the present invention by being blended in the resin composition for vibration damping material.
- lignins include waste liquid obtained by alkali cooking (alkali lignin), waste liquid obtained by acetic acid method (acetic acid lignin), waste liquid obtained by using a hydrous organic solvent as cooking liquid (organosolve lignin), water vapor It is also possible to use waste liquid (explosive lignin) obtained by the explosion method.
- alkali cooking the method of cooking a woody plant using alkali metal hydroxides, such as sodium hydroxide (caustic soda), is preferable.
- the solid content concentration of each waste liquid mentioned above can also be used as said lignin.
- the solid content concentration of the waste liquid is, for example, 10 to 70% by mass, and preferably 15 to 45% by mass.
- a commonly used cooking aid can be used for the preparation of the above lignins.
- the lignin can be used as it is in the cooking liquor when obtaining pulp from plants, or can be used by appropriately adjusting the solid content concentration of the cooking liquor, but purified from the cooking liquor You may use what was done (commercial item etc.).
- Purification from the cooking liquor can be carried out by a conventional method used for purification, such as a method of precipitating lignins by adding an acid to the cooking liquor to obtain a solution having a predetermined pH.
- Examples of commercially available products of lignin sulfonate purified from cooking liquor include Pearl Rex NP (manufactured by Nippon Paper Industries Co., Ltd., sodium lignin sulfonate), Sun Extract P321 (manufactured by Nippon Paper Industries Co., Ltd., magnesium lignin sulfonate), Pearl Rex CP (manufactured by Nippon Paper Industries Co., Ltd., calcium lignin sulfonate), or those obtained by adding an aqueous solvent to these to adjust the solid content concentration as appropriate.
- the preferable range of the solid content concentration is the same as the preferable solid content concentration of the waste liquid described above.
- the lignin derivative refers to a modified lignin, and is obtained by further derivatizing the lignin such as the lignin sulfonic acid (salt).
- the derivatization corresponds to “denaturation” in the present specification, and refers to introducing another structural site different from the structural site of the lignin into the lignin that has been isolated from the plant body by cooking, For example, alkylation, amination, alkoxylation, alkoxysulfonylation, sulfoalkylation, aminoalkylation, desulfonation, and adding a substituent such as a carboxyl group-containing group or (poly) alkylene glycol chain-containing group described later Etc.
- lignin derivative examples include the following general formula (1);
- R 1 to R 6 are the same or different and each contains a hydrogen atom, a hydroxyl group, an alkoxy group, an acyl group, an amino group, a sulfonic acid group, a sulfonate group, a carboxyl group-containing group, or a (poly) alkylene glycol chain-containing group.
- R 1 to R 6 is a direct bond with a structure derived from another phenylpropane skeleton Or a thioether bond, and at least one of R 1 to R 6 represents an alkoxy group, a carboxyl group-containing group, a (poly) alkylene glycol chain-containing group, or a hydrocarbon group). The thing which has.
- the (poly) alkylene glycol chain-containing group may be a group having only a (poly) alkylene glycol chain or a group having a (poly) alkylene glycol chain and other structural sites. Examples of other structural sites include hydrocarbon groups such as aliphatic hydrocarbon groups and aromatic hydrocarbon groups.
- the (poly) alkylene glycol chain-containing group is preferably a group having only a (poly) alkylene glycol chain or a group in which a (poly) alkylene glycol chain is added to an aromatic ring having an alkylene group having 1 to 30 carbon atoms. .
- the terminal structure of the (poly) alkylene glycol chain is not particularly limited, and may have a substituent. It is preferable that a hydrogen atom or a hydrocarbon group is bonded to the terminal oxygen atom.
- the hydrocarbon group is preferably an alkyl group having 1 to 2 carbon atoms.
- the (poly) alkylene glycol chain is preferably composed mainly of alkylene oxides having 2 to 4 carbon atoms such as ethylene oxide, propylene oxide, butylene oxide, and more preferably composed mainly of ethylene oxide. .
- the “main body” as used herein preferably accounts for 50 to 100 mol% with respect to the total number of alkylene oxides when the polyalkylene glycol moiety is composed of two or more types of alkylene oxides.
- the average added mole number of alkylene oxide constituting the (poly) alkylene glycol chain is preferably 3 to 200.
- the average number of moles of alkylene oxide added means the average value of the number of moles of alkylene oxide added in one polyalkylene glycol chain in the lignin.
- the alkoxy group is preferably an alkoxy group having 1 to 15 carbon atoms, more preferably an alkoxy group having 1 to 2 carbon atoms.
- the carboxyl group-containing group is not limited as long as it has a carboxyl group (—COOH) or a salt thereof, and is a group having a carboxyl group or a salt thereof and other structural sites, even if it is a group only of a carboxyl group or a salt thereof. It may be.
- Examples of other structural sites include hydrocarbon groups such as aliphatic hydrocarbon groups and aromatic hydrocarbon groups.
- the carboxyl group-containing group is preferably —COOH or a salt thereof, an aliphatic hydrocarbon group having 1 to 30 carbon atoms having a carboxyl group or salt thereof, or an alkylene group having 1 to 20 carbon atoms having an aromatic carboxyl group.
- the aromatic carboxyl group is an aromatic group having a carboxyl group or a salt thereof.
- the hydrocarbon group is preferably a hydrocarbon group having 1 to 30 carbon atoms, more preferably a hydrocarbon group having 1 to 5 carbon atoms.
- One of the hydrogen atoms of R 1 to R 6 and other substituents may be bonded to the benzene ring of the lignin skeleton, or may be bonded to two or more.
- the lignins and / or lignin derivatives preferably have a weight average molecular weight of 100 to 40,000.
- the weight average molecular weight is more preferably 500 to 30000, and still more preferably 2000 to 15000.
- the weight average molecular weight can be measured under the following conditions using GPC. ⁇ Measurement conditions> Column used: TOS guard column ⁇ , TSKgel ⁇ 5000, ⁇ -4000, and ⁇ -3000 manufactured by Tosoh Corporation are connected in this order.
- Eluent A solution prepared by dissolving 44.5 g of boric acid in a solution of 1,800 g of acetonitrile and 7141.1 g of water and adjusting the pH to 10.0 with a 30% aqueous NaOH solution was used.
- Sample injection amount 100 ⁇ L Flow rate: 1.0 mL / min
- Detector Japan Waters, 2414
- Differential refraction detector analysis software Japan Waters, Empower2 Software
- Standard substance for preparing calibration curve polyethylene glycol Sample dissolved in the above eluent so that the concentration of lignin / lignin derivative was 0.5% by mass was used.
- the raw materials for the lignins and / or lignin derivatives are not particularly limited, and any of natural products and synthetic products can be used.
- the type of wood used as a raw material is not particularly limited, and either wood-based materials obtained from woody plants or herbaceous materials obtained from herbaceous plants should be used. Can do. Examples of woody plants include conifers such as cedar, fir, hinoki and pine, and broad-leaved trees such as eucalyptus, acacia, birch, beech and oak.
- Herbaceous plants include rice straw, cereals, bagasse, bamboo, kenaf, straw and the like.
- the lignins and / or lignin derivatives are preferably woody products obtained from woody plants as raw materials, and more preferably those obtained from coniferous materials as raw materials.
- the lignins can be obtained using a conventionally known method.
- the method for modifying the lignin with a substituent or the like for obtaining the lignin derivative is not particularly limited. For example, it can be performed by reacting a reactive group such as a hydroxyl group of the lignin with a compound having a substituent.
- the substituent is a (poly) alkylene glycol chain-containing group
- the reaction (1) above produces a modified lignin in which the phenolic hydroxyl group of the lignin and the compound having a (poly) alkylene oxide or (poly) alkylene glycol chain are directly bonded
- a modified lignin is produced in which a benzene ring of a kind and a compound having a (poly) alkylene glycol chain are bonded via a divalent linking group.
- Examples of the compound having a (poly) alkylene glycol chain in the reaction (1) include polyalkylene glycol compounds such as polyethylene glycol and polypropylene glycol; polyethylene glycol-monoethyl-glycidyl ether, polyethylene glycol-monomethyl-glycidyl ether, lauryl alcohol
- a monofunctional glycidyl ether compound such as polyethylene oxide-glycidyl ether
- a bifunctional glycidyl ether compound such as poly (ethylene glycol) diglycidyl ether or poly (propylene glycol) diglycidyl ether; , Which is also referred to as an epoxy group) is reacted with an alkoxide compound such as methoxy or ethoxy to reduce the functionality of the glycidyl ether group.
- Glycidyl ether compound monofunctional epoxy polyalkylene glycol compound obtained by the reaction of alkoxy polyalkylene glycol and epichlorohydrin epihalohydrin phosphorus such as methoxy polyethylene glycol; methoxy polyethylene glycol acrylate.
- Examples of the compound having a (poly) alkylene glycol chain in the reaction (2) above include aromatic (poly) alkylene glycol compounds such as an ethylene oxide adduct of phenol.
- the substituent is a carboxyl group-containing group
- lignin can be added and reacted to cause modification.
- modified lignin in which the benzene ring of lignin and the compound having a carboxyl group are bonded via a divalent linking group is generated.
- the compound having a carboxyl group include aromatic carboxylic acid compounds such as 2-hydroxyphenylacetic acid.
- Another method for producing (synthesizing) a lignin derivative may be a method in which lignin sulfonic acid (salt) is reacted with a water-soluble unsaturated monomer such as acrylic acid or methoxypolyethylene glycol acrylate.
- a water-soluble unsaturated monomer such as acrylic acid or methoxypolyethylene glycol acrylate.
- the method include a method of chemically reacting a functional group (eg, phenolic hydroxyl group, alcoholic hydroxyl group, thiol group, etc.) possessed by lignin sulfonic acid (salt) with a water-soluble unsaturated monomer. Is mentioned.
- the reaction form include radical polymerization and ionic polymerization.
- a radical initiator is allowed to act on lignin sulfonic acid (salt) to generate a hydrogen radical, thereby generating a radical, and radically polymerizing at least one water-soluble unsaturated monomer therein.
- a lignin derivative can be obtained.
- the reaction product can be further crosslinked using formaldehyde or a polyfunctional crosslinking agent and used as a lignin derivative.
- the content of the lignin and / or lignin derivative is preferably 1% by mass or more, more preferably 3% by mass or more, in 100% by mass of the solid content of the resin composition for vibration damping material of the present invention. It is preferably 5% by mass or more, more preferably 7% by mass or more, and most preferably 9% by mass or more.
- the content is preferably 80% by mass or less, more preferably 70% by mass or less, still more preferably 60% by mass or less, and particularly preferably 50% by mass or less.
- solid content here means components other than solvents, such as an aqueous solvent.
- the resin various resins miscible with the lignins and / or lignin derivatives can be used.
- the resin is selected from the group consisting of (meth) acrylic polymers, diene polymers, and vinyl acetate polymers. Those containing at least one polymer are preferred.
- the said (meth) acrylic-type polymer should just be a polymer which has a structural unit derived from the (meth) acrylic-type monomer mentioned later, Preferably the structural unit derived from a (meth) acrylic-type monomer is preferable. It is a polymer having.
- the monomer component for obtaining a (meth) acrylic polymer comprises a (meth) acrylic acid monomer and other copolymerizable unsaturated monomers.
- the (meth) acrylic acid monomer in the vibration damping composition including the resin composition for vibration damping material of the present invention, the dispersibility of inorganic pigments and the like is improved, and the function of the resulting vibration damping material Will be better.
- the (meth) acrylic acid monomer has at least one group of acryloyl group or methacryloyl group, or a group in which a hydrogen atom in these groups is replaced with another atom or atomic group, and A monomer having a carboxyl group (—COOH group) having a carbonyl group or an acid anhydride group (—C ( ⁇ O) —O—C ( ⁇ O) — group) in the group.
- the (meth) acrylic acid monomer is preferably (meth) acrylic acid.
- the (meth) acrylic polymer includes, for example, 0.1 to 5% by mass of (meth) acrylic acid monomer and 95 to 99.9% by mass of other copolymerizable unsaturated monomers. It is preferable that the monomer component is obtained by copolymerization. In the monomer component, the (meth) acrylic acid monomer is preferably 0.3% by mass or more, and the other copolymerizable unsaturated monomer is more preferably 99.7% by mass or less, More preferably, the meth) acrylic acid monomer is 0.5% by mass or more, and the other copolymerizable unsaturated monomer is 99.5% by mass or less.
- the (meth) acrylic acid monomer Is preferably 0.7% by mass or more and other copolymerizable unsaturated monomer is 99.3% by mass or less.
- the (meth) acrylic acid monomer is preferably 5% by mass or less, and the other copolymerizable unsaturated monomer is preferably 95% by mass or more. More preferably, the acid monomer is 4% by mass or less, the other copolymerizable unsaturated monomer is 96% by mass or more, the (meth) acrylic acid monomer is 3% by mass or less, and the like.
- the copolymerizable unsaturated monomer is more preferably 97% by mass or more. By setting it within such a range, the monomer component is stably copolymerized.
- copolymerizable unsaturated monomers include (meth) acrylic monomers other than (meth) acrylic acid monomers, unsaturated monomers having an aromatic ring, and other copolymerizable monomers An unsaturated monomer etc. are mentioned.
- (Meth) acrylic monomers other than the above (meth) acrylic monomers have an acryloyl group or a methacryloyl group, or a group in which a hydrogen atom in these groups is replaced with another atom or atomic group.
- Examples of (meth) acrylic monomers other than the above (meth) acrylic monomers include, for example, methyl acrylate, methyl methacrylate, ethyl acrylate, ethyl methacrylate, propyl acrylate, propyl methacrylate, isopropyl acrylate, isopropyl methacrylate, butyl Acrylate, butyl methacrylate, isobutyl acrylate, isobutyl methacrylate, tert-butyl acrylate, tert-butyl methacrylate, pentyl acrylate, pentyl methacrylate, isoamyl acrylate, isoamyl methacrylate, hexyl acrylate, hexyl methacrylate, cyclohexyl acrylate, cyclohexyl methacrylate, octyl acrylate, octyl methacrylate , Iso Cutyl
- the salt of the (meth) acrylic acid monomer is preferably a metal salt, ammonium salt, organic amine salt or the like.
- the metal atom forming the metal salt include monovalent metal atoms such as alkali metal atoms such as lithium, sodium and potassium; divalent metal atoms such as calcium and magnesium; trivalent metals such as aluminum and iron. Atoms are preferred.
- an alkanolamine salt such as an ethanolamine salt, a diethanolamine salt, or a triethanolamine salt, or a triethylamine salt is preferable.
- (meth) acrylic monomers other than the (meth) acrylic monomer are added to 100% by mass of all monomer components.
- the content is preferably 20% by mass or more, more preferably 40% by mass or more, and still more preferably 60% by mass or more.
- the content is more preferably 5% by mass or less, still more preferably 99% by mass or less, still more preferably 90% by mass or less, and particularly preferably 85% by mass or less.
- the unsaturated monomer having an aromatic ring examples include divinylbenzene, styrene, ⁇ -methylstyrene, vinyltoluene, ethylvinylbenzene, and the like, and preferably styrene. That is, it is also one of the preferred embodiments of the present invention that the (meth) acrylic polymer is a styrene (meth) acrylic polymer obtained from a monomer component containing styrene. With such a configuration, the effects of the present invention can be sufficiently exhibited while reducing costs.
- the monomer component used as the raw material of the (meth) acrylic polymer includes the unsaturated monomer having an aromatic ring
- the monomer component includes 1% by mass or more with respect to 100% by mass of the total monomer component. It is preferable that 5% by mass or more is contained, more preferably 10% by mass or more, still more preferably 15% by mass or more.
- the monomer component preferably contains 80% by mass or less, more preferably 70% by mass or less of the unsaturated monomer having an aromatic ring with respect to 100% by mass of the total monomer components. Preferably, it is more preferably 60% by mass or less, and particularly preferably 40% by mass or less.
- Examples of the other copolymerizable unsaturated monomers include polyfunctional unsaturated monomers such as acrylonitrile and trimethylolpropane diallyl ether.
- the diene polymer in the resin composition for a vibration damping material of the present invention is obtained by polymerizing a monomer component containing a diene monomer.
- the diene monomer may be any monomer having two double bonds, but it is preferable that the double bond is separated by one single bond.
- the diene monomer preferably has 4 to 18 carbon atoms, more preferably 4 to 12 carbon atoms, still more preferably 4 to 8 carbon atoms, and particularly preferably butadiene.
- the diene polymer is obtained by copolymerizing a monomer component composed of, for example, 5 to 70% by mass of a diene monomer and 30 to 95% by mass of another copolymerizable unsaturated monomer. Is preferably obtained.
- (meth) acrylic monomer other than the (meth) acrylic acid monomer mentioned above Body an unsaturated monomer having an aromatic ring, and other copolymerizable unsaturated monomers.
- Preferred types are the same as those described above.
- methyl methacrylate is preferred as the (meth) acrylic monomer other than the (meth) acrylic acid monomer described above.
- styrene is preferable as the unsaturated monomer having an aromatic ring.
- acrylonitrile is preferable.
- the diene polymer examples include acrylonitrile butadiene rubber (NBR), methyl methacrylate butadiene rubber (MBR), styrene butadiene rubber (SBR), and the like, and one or more of these are used. Can do.
- the polymer in the resin composition for vibration damping material of the present invention may have at least one structure derived from a diene monomer in the structure. Those having at least one monomer-derived structure are (meth) acrylic polymers, and those having no structure derived from (meth) acrylic monomers are diene polymers.
- the diene polymer preferably has an SP value of 6 or more, more preferably 7 or more, and more preferably 8 or more from the viewpoints of affinity with a solvent and its influence on the formation of a coating film. More preferably.
- the SP value is preferably 12 or less, more preferably 11 or less, still more preferably 10 or less, and particularly preferably 9 or less.
- ⁇ is the SP value of the polymer.
- ⁇ e 1 is a calculated value (kcal / mol) of evaporation energy of each monomer component constituting the polymer, and ⁇ e 1 is a total value of the calculated values of all monomer components constituting the polymer.
- ⁇ V m is a calculated value (ml / mol) of the molecular volume of each monomer component constituting the polymer, and ⁇ V m is the sum of the calculated values of all the monomer components constituting the polymer.
- . x is a molar distribution of each component of the monomer constituting the polymer.
- the vinyl acetate polymer in the resin composition for vibration damping material of the present invention is obtained by polymerizing a monomer component containing vinyl acetate.
- the vinyl acetate polymer is preferably obtained by polymerizing a monomer component having a vinyl acetate content of 50% by mass or more.
- limit especially as components other than vinyl acetate in the monomer component used as the raw material of a vinyl acetate type polymer (meth) acrylic-type monomers other than the (meth) acrylic-type monomer mentioned above , Unsaturated monomers having an aromatic ring, other copolymerizable unsaturated monomers, and the like.
- the polymer in the resin composition for a vibration damping material of the present invention has a (meth) acrylic acid monomer even if the structure has at least one structure derived from vinyl acetate.
- a polymer having at least one structure derived from a (meth) acrylic polymer, having no structure derived from a (meth) acrylic acid monomer, and having at least one structure derived from a diene monomer Those having a diene polymer and those having neither a structure derived from a (meth) acrylic acid monomer nor a structure derived from a diene monomer are vinyl acetate polymers.
- the resin composition for vibration damping material in the resin composition for vibration damping material of the present invention contains an aqueous solvent, and the resin is preferably dispersed or dissolved in the aqueous solvent.
- being dispersed in an aqueous solvent means being dispersed without being dissolved in an aqueous solvent.
- the aqueous solvent may contain other organic solvents as long as it contains water, but is preferably water.
- the polymer according to the present invention is preferably an emulsion obtained by emulsion polymerization of monomer components. That is, it is preferable that the resin in the resin composition for a vibration damping material of the present invention includes an emulsion obtained by emulsion polymerization of a monomer component.
- the resin composition for a vibration damping material of the present invention comprises a polymer selected from the group consisting of the above (meth) acrylic polymer, diene polymer, and vinyl acetate polymer (hereinafter referred to as heavy polymer according to the present invention). 1 type) may be included, or two or more types may be included.
- the resin composition for vibration damping material of the present invention contains two or more polymers according to the present invention, it may be a mixture obtained by mixing (blending) two or more polymers according to the present invention.
- two or more polymers according to the present invention obtained by manufacturing (for example, multi-stage polymerization) containing two or more polymers according to the present invention are combined. There may be.
- production conditions such as monomer dropping conditions may be appropriately set.
- the composite of the two or more polymers according to the present invention include a form having a core part and a shell part, which will be described later.
- the polymer according to the present invention comprises two kinds of polymers according to the present invention, and One in which one of the coalescence forms a core portion and the other forms a shell portion.
- the (meth) acrylic polymer is a polymer obtained using a monomer component containing a (meth) acrylic acid monomer.
- a (meth) acrylic monomer is The monomer component forming the core part of the emulsion and the monomer component forming the shell part may be contained, or may be contained in both of them.
- grains in which at least 1 sort (s) among the polymers which concern on this invention which form an emulsion have a core part and a shell part may be sufficient.
- the interface between the polymers concerning this invention can be enlarged, and effects, such as a vibration damping improvement of the vibration damping material obtained, can be enlarged more.
- the core portion and the shell portion may be completely compatible with each other and may have a homogeneous structure in which they cannot be distinguished. It may be a core / shell composite structure or a microdomain structure formed inhomogeneously without being compatible, but among these structures, in order to draw out the characteristics of the emulsion sufficiently and produce a stable emulsion
- the core-shell composite structure is preferable.
- An emulsion having a core-shell composite structure is excellent in vibration damping properties in a wide range within a practical temperature range.
- the surface of the core part is preferably covered with the shell part.
- the surface of the core part is completely covered with the shell part, but it may not be completely covered.
- the core part may be covered in a mesh shape or in some places. The part may be exposed.
- the polymer according to the present invention preferably has a glass transition temperature of ⁇ 20 to 40 ° C.
- the glass transition temperature of the polymer according to the present invention is more preferably ⁇ 15 to 35 ° C., and further preferably ⁇ 10 to 30 ° C.
- the glass transition temperature (Tg) can be calculated by the method described in Examples described later.
- the glass transition temperature is It means Tg (total Tg) calculated from the monomer composition used in the stage.
- the glass transition temperature of the polymer in the core part is preferably 0 to 60 ° C. More preferably, it is 10 to 50 ° C.
- the glass transition temperature of the polymer in the shell part is preferably ⁇ 30 to 30 ° C. More preferably, it is ⁇ 20 to 20 ° C.
- the difference in glass transition temperature between the polymer in the core part and the polymer in the shell part is preferably 5 to 60 ° C.
- the difference in glass transition temperature is more preferably 10 to 50 ° C., still more preferably 20 to 40 ° C.
- the mass ratio of the monomer component forming the core part and the monomer component forming the shell part is preferably 30/70 to 70/30. With such a mass ratio, the effect of being a structure having a core portion and a shell portion can be more fully exhibited.
- the mass ratio of the monomer component forming the core part and the monomer component forming the shell part is more preferably 40/60 to 60/40.
- the polymer according to the present invention preferably has a weight average molecular weight of 20,000 to 800,000. In order to exhibit vibration damping properties, it is preferable to change the vibrational energy applied to the polymer to thermal energy due to friction, and a polymer that can move when vibration is applied to the polymer. It is necessary to be. When the polymer according to the present invention has such a weight average molecular weight, the polymer can sufficiently move when vibration is applied, and high vibration damping can be exhibited.
- the weight average molecular weight of the polymer according to the present invention is more preferably 30,000 to 400,000.
- a weight average molecular weight (Mw) can be measured on the conditions as described in the Example mentioned later using GPC.
- the average particle size of the emulsion particles in the polymer emulsion according to the present invention is preferably 80 to 450 nm. By using emulsion particles having the above average particle size in this range, the basic properties such as coating film appearance and coating properties required for the damping material are sufficient, and the damping property is more excellent. Can be.
- the average particle diameter of the emulsion particles is more preferably 400 nm or less, still more preferably 350 nm or less.
- the average particle size is preferably 100 nm or more.
- the average particle diameter of the emulsion particles can be measured by the method described in Examples described later.
- the emulsion particles having the average particle diameter preferably have a particle size distribution defined by a value obtained by dividing the standard deviation by the volume average particle diameter (standard deviation / volume average particle diameter ⁇ 100) of 40% or less, More preferably, it is 30% or less.
- the particle size distribution is 40% or less, coarse particles are not included, and as a result, the resin composition for a vibration damping material can exhibit sufficient heat drying properties.
- the emulsion preferably has a solid content of 40 to 80% by mass, more preferably 50 to 70% by mass, based on the whole emulsion.
- solid content here means components other than solvents, such as an aqueous solvent contained in an emulsion.
- the pH of the emulsion is not particularly limited, but is preferably 2 to 10, more preferably 3 to 9.5, and still more preferably 7 to 9.
- the pH of the emulsion can be adjusted by adding ammonia water, water-soluble amines, alkali hydroxide aqueous solution, or the like to the resin. In this specification, pH can be measured by the method as described in the Example mentioned later.
- the viscosity of the emulsion is not particularly limited, but is preferably 1 to 10,000 mPa ⁇ s, more preferably 5 to 9000 mPa ⁇ s, still more preferably 10 to 8000 mPa ⁇ s, and more preferably 100 to 7000 mPa ⁇ s. is more preferably 300 to 6000 mPa ⁇ s, still more preferably 500 to 5000 mPa ⁇ s, particularly preferably 800 to 4500 mPa ⁇ s, and more preferably 900 to 4000 mPa ⁇ s. More preferably, it is s, and most preferably 1000 to 3500 mPa ⁇ s. In the present specification, the viscosity can be measured according to the conditions described in Examples described later.
- the method for producing the emulsion is not particularly limited.
- the emulsion can be produced by a method similar to the method for producing the emulsion for vibration damping materials described in JP2011-231184A.
- the solid content of the polymer according to the present invention is preferably 20% by mass or more in 100% by mass of the solid content of the resin composition for vibration damping material of the present invention, and 30% by mass. % Or more, more preferably 40% by mass or more, and particularly preferably 50% by mass or more.
- the content is preferably 99% by mass or less, more preferably 97% by mass or less, still more preferably 95% by mass or less, and particularly preferably 93% by mass or less. Most preferably, it is 91 mass% or less.
- solid content means components other than solvents, such as an aqueous solvent.
- the resin composition for a vibration damping material of the present invention may contain other components as long as it contains the lignin and / or lignin derivative according to the present invention and a resin.
- the proportion of the other components is preferably 10% by mass or less, and more preferably 5% by mass or less, with respect to the entire resin composition for vibration damping material of the present invention.
- the other component here means a non-volatile content (solid content) remaining in the coating film even after the resin composition for vibration damping material of the present invention is applied and dried by heating, such as an aqueous solvent. Volatile components are not included.
- the resin composition for a vibration damping material of the present invention preferably contains a solvent such as an aqueous solvent.
- the content of the solvent is preferably 3% by mass or more, more preferably 10% by mass or more, and more preferably 20% by mass or more in 100% by mass of the resin composition for vibration damping material of the present invention. Is more preferable, and 30% by mass or more is particularly preferable.
- the content of the solvent is preferably 97% by mass or less, more preferably 90% by mass or less, still more preferably 70% by mass or less, and particularly preferably 50% by mass or less. preferable.
- the resin composition for vibration damping material of the present invention can be used to form a vibration damping film by coating itself, but is usually used to obtain the vibration damping material composition of the present invention described later. .
- the present invention is also a vibration damping composition containing the vibration damping resin composition of the present invention and an inorganic pigment.
- the preferable thing of the resin composition for damping materials which the damping material composition of this invention contains is the same as the preferable thing of the resin composition for damping materials of this invention mentioned above.
- the solid content of the resin composition for vibration damping material is preferably 1% by mass or more, more preferably 5% by mass or more. More preferably, it is at least mass%.
- the solid content of the resin composition for a vibration damping material is preferably 50% by mass or less, more preferably 40% by mass or less, and further preferably 30% by mass or less.
- the said inorganic pigment can use 1 type (s) or 2 or more types, such as an inorganic colorant, a rust preventive pigment, a filler, for example.
- an inorganic colorant include titanium oxide, carbon black, and a petiole.
- the rust preventive pigment include a metal phosphate, a metal molybdate, and a metal borate.
- the filler examples include calcium carbonate, kaolin, silica, talc, barium sulfate, alumina, iron oxide, glass talk, magnesium carbonate, aluminum hydroxide, diatomaceous earth, clay, and other inorganic fillers; glass flakes, mica and other scaly forms
- inorganic fillers include fibrous inorganic fillers such as metal oxide whiskers and glass fibers.
- the inorganic pigment preferably has an average particle size of 1 to 50 ⁇ m. The average particle diameter of the inorganic pigment can be measured with a laser diffraction particle size distribution measuring device, and is a value of 50% diameter by weight from the particle size distribution.
- the amount of the inorganic pigment is preferably 10 to 900 parts by weight, more preferably 300 to 800 parts by weight with respect to 100 parts by weight of the solid content of the resin in the vibration damping composition of the present invention. More preferably 350 to 550 parts by mass.
- the vibration damping composition of the present invention may further contain a dispersant.
- the dispersant include inorganic dispersants such as sodium hexametaphosphate and sodium tripolyphosphate, and organic dispersants such as polycarboxylic acid-based dispersants.
- the blending amount of the dispersing agent is preferably 0.1 to 8 parts by mass, and preferably 0.5 to 6 parts by mass with respect to 100 parts by mass of the resin solid content in the vibration damping composition of the present invention. More preferred is 1 to 3 parts by mass.
- the vibration damping composition of the present invention may further contain a thickener.
- the thickener include polyvinyl alcohol, cellulose derivatives, polycarboxylic acid resins, and the like.
- the blending amount of the thickener is preferably 0.01 to 5 parts by mass, and 0.1 to 4 parts by mass with respect to 100 parts by mass of the resin solid content in the vibration damping composition of the present invention. Is more preferable, and 0.3 to 2 parts by mass is still more preferable.
- the vibration damping composition of the present invention may further contain other components.
- Other components include, for example, a foaming agent; a solvent; an organic colorant; a gelling agent; an antifoaming agent; a plasticizer; a stabilizer; a wetting agent; an antiseptic; an anti-aging agent; Absorbers; antistatic agents and the like can be mentioned, and one or more of these can be used.
- the inorganic pigment, dispersant, thickener, and other components include, for example, a butterfly mixer, a planetary mixer, a spiral mixer, a kneader, a dissolver, etc., and a polymer emulsion or a crosslinking agent according to the present invention. Can be mixed with.
- the solvent examples include water; and organic solvents such as ethylene glycol, butyl cellosolve, butyl carbitol, and butyl carbitol acetate. What is necessary is just to set suitably as a compounding quantity of a solvent, in order to adjust solid content concentration of the damping material compound of this invention.
- the vibration damping composition of the present invention By using the vibration damping composition of the present invention to obtain a vibration damping material such as a coating film, in particular, by heating and drying the vibration damping composition of the present invention to obtain a vibration damping material, the appearance is very good. A damping material can be obtained. Thereby, the usage-amount of the expensive foaming agent (for example, heat expansion capsule type foaming agent) conventionally used in order to improve an external appearance can be reduced.
- the foaming agent content is preferably 2% by mass or less, based on 100% by mass of all monomer components used as the raw material of the emulsion, and 1% by mass or less. More preferably, it is most preferably 0% by mass.
- the present invention is also a vibration damping material obtained using the vibration damping composition of the present invention.
- the preferable thing of the damping material compound used in order to obtain the damping material of this invention is the same as the preferable thing of the damping material composition of this invention mentioned above.
- the vibration damping material of the present invention is preferably a coating film having a thickness of 2 to 8 mm (hereinafter also referred to as a vibration damping coating film).
- a thickness of 2 to 8 mm is preferable.
- the thickness of the coating film is more preferably 2 to 6 mm, and further preferably 2 to 5 mm.
- the base material for forming the coating film is not particularly limited as long as the coating film can be formed thereon, and may be any metal material such as a steel plate, plastic material, or the like. Especially, forming a coating film on the surface of a steel plate is one of the preferable usage forms of a vibration-damping coating film.
- the coating film can be obtained, for example, by applying the vibration damping composition of the present invention using a brush, a spatula, an air spray, an airless spray, a mortar gun, a ricin gun or the like.
- the vibration damping material of the present invention is preferably obtained by heating and drying the vibration damping composition of the present invention.
- the coating film formed by applying the above-mentioned vibration damping composition on a substrate is set to 40 to 200 ° C.
- the heating temperature is more preferably 90 to 180 ° C, still more preferably 100 to 160 ° C. You may pre-dry at low temperature before heat drying.
- the time for bringing the coating film to the above temperature is preferably 1 to 300 minutes. More preferably, it is 2 to 250 minutes, and particularly preferably 10 to 150 minutes.
- the damping performance of the damping material of the present invention can be evaluated by measuring the loss factor of the film.
- the loss factor is usually expressed by ⁇ and indicates how much the vibration applied to the damping material is attenuated.
- the loss factor indicates that the higher the numerical value, the better the damping performance.
- the loss factor can be measured by the method described in Examples described later.
- the vibration damping material of the present invention can remarkably exhibit excellent vibration damping properties in a wide temperature range, and also has an excellent appearance, so that it can be used for transportation vehicles such as automobiles, railway vehicles, ships and aircraft, electrical equipment, and building structures. It can be suitably used for construction equipment and the like.
- the present invention is also the use of a resin composition containing lignins and / or lignin derivatives as a vibration damping imparting agent for a paint for forming a vibration damping coating film.
- the present invention is also the use of a resin composition containing lignins and / or lignin derivatives as a film-formation improver for a paint for forming a coating film.
- film formability means the performance which can prevent the peeling and crack from a base material in a coating film.
- the present invention is also a use of a resin composition containing a lignin and / or a lignin derivative, and a formulation containing an inorganic pigment as a coating material for forming a vibration-damping coating film.
- the present invention is also used as a vibration damping material for a coating film obtained by using a resin composition containing lignins and / or lignin derivatives, and a formulation containing an inorganic pigment.
- the preferable composition of the said resin composition, a compound, and a coating film is the same as that of the preferable structure of the resin composition for damping materials mentioned above, a damping material compound, and a damping film, respectively.
- the resin composition for a vibration damping material of the present invention can exhibit outstanding vibration damping properties in a wide temperature range by using lignins and / or lignin derivatives that are inexpensive and easily available, and also has an excellent appearance.
- a vibration damping material can be obtained.
- Molecular weight column: TSK-GEL GMHXL-L and TSK-GELG5000HXL (both manufactured by Tosoh Corporation) are connected in series.
- Tg Glass Transition Temperature
- Tg ′ is Tg (absolute temperature) of the polymer.
- W 1 ′, W 2 ′,... Wn ′ are mass fractions of the respective monomers with respect to the total monomer components.
- T 1 , T 2 ,... Tn are glass transition temperatures (absolute temperatures) of homopolymers (homopolymers) composed of the respective monomer components.
- Tg glass transition temperature
- Example 1 80 parts of emulsion 1 obtained in Production Example 1 was mixed with 20 parts of lignin (KP solution) and 20 parts of deionized water to obtain an emulsion lignin blend product (resin composition) 1 having a solid content concentration of 45% by mass. .
- Examples 2 to 13, Comparative Examples 1 to 5 As shown in Table 1, emulsion lignin blend products 2 to 18 were obtained in the same manner as in Example 1 except that the types and blending amounts of the emulsion, lignin / lignin derivative, and deionized water were changed. In Comparative Examples 1 to 5, no lignin / lignin derivative was blended.
- ⁇ Vibration suppression test> The above damping material composition is applied to a cold-rolled steel plate (trade name SPCC, width 15 mm ⁇ length 250 mm ⁇ thickness 1.5 mm, manufactured by Nippon Test Panel Co., Ltd.) at a thickness of 3 mm and dried at 150 ° C. for 30 minutes. Then, a damping material film having a surface density of 4.0 kg / m 2 was formed on the cold-rolled steel sheet. Measurement of vibration damping is performed by evaluating the loss factor at each temperature (20 ° C, 30 ° C, 40 ° C, 50 ° C, 60 ° C) using the cantilever method (loss factor measurement system manufactured by Ono Sokki Co., Ltd.). did.
- the evaluation of the vibration damping performance is performed based on the total loss factor (the sum of the loss factors at 20 ° C., 30 ° C., 40 ° C., 50 ° C., and 60 ° C.). It was supposed to be.
- Example 1 contains the KP solution
- Example 2 contains the SP solution.
- Examples 3 to 9, 13 using the emulsion obtained in Production Example 2 are compared with Comparative Example 2
- Examples 3 and 4 contain KP solution
- Example 5 contains SP solution.
- Examples 6 to 9 contain various lignin sulfonates
- Example 13 contains a lignin derivative, so that vibration damping and appearance are superior.
- Example 10 using the emulsion obtained in Production Example 3 is compared with Comparative Example 3, it is proved that the damping property and the appearance are more excellent by containing the KP solution.
- Example 11 using styrene-butadiene resin is compared with Comparative Example 4, it is proved that the damping property and the appearance are more excellent by containing the KP liquid.
- Example 12 and the comparative example 5 which use the emulsion and vinyl acetate resin which were obtained in manufacture example 2 are used together, it has been proved that vibration suppression nature and appearance are more excellent by containing KP liquid. .
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Mechanical Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Dispersion Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Vibration Prevention Devices (AREA)
- Paints Or Removers (AREA)
Abstract
幅広い温度領域で優れた制振性を発揮でき、また、外観にも優れる制振材を安価に得ることができる制振材配合物を提供する。本発明は、リグニン類及び/又はリグニン誘導体を含む制振材用樹脂組成物である。本発明はまた、該制振材用樹脂組成物及び無機顔料を含む制振材配合物でもある。本発明は更に、該制振材配合物を用いて得られる制振材でもある。
Description
本発明は、制振材用樹脂組成物に関し、より詳しくは、制振性が要求される各種構造体に好適に用いることができる制振材用樹脂組成物、該制振材用樹脂組成物を含む制振材配合物、及び、該制振材配合物を用いて得られる制振材に関する。
制振材は、各種構造体の振動や騒音を防止して静寂性を保つためのものであり、自動車の室内床下等に用いられている他、鉄道車両、船舶、航空機や電気機器、建築構造物、建設機器等にも広く利用されている。制振材としては、従来、振動吸収性能及び吸音性能を有する材料を素材とする板状又はシート状の成形加工品が使用されているが、その代替品として、塗膜を形成することにより振動吸収効果及び吸音効果を得ることが可能な塗布型制振材配合物が種々提案されている(例えば、特許文献1~3参照。)。
ところで、リグニンは、樹木中に存在する天然の芳香族重合体であり、クラフトパルプ製造における廃液(クラフトパルプ廃液)、亜硫酸パルプ製造における廃液(亜硫酸パルプ廃液)等に多く含まれている。例えば、クラフトパルプ廃液中に含まれているクラフトリグニンを亜硫酸塩とホルムアルデヒドによりスルホメチル化したもの、亜硫酸パルプ廃液中に含まれているリグニンスルホン酸又はその塩を部分的に脱スルホン化したもの、限外濾過処理によって精製したもの等が、分散剤として、染料、セメント、無機及び有機顔料、石膏、石炭-水スラリー、農薬、窯業の分野で使用されている(例えば、特許文献4参照。)。
上記のように、制振材配合物として種々のものが提案されているが、幅広い温度領域で優れた制振性を発揮でき、また、外観にも優れる制振材を安価に得ることができる制振材配合物はいまだ見出されていない。
本発明は、上記現状に鑑みてなされたものであり、幅広い温度領域で優れた制振性を発揮でき、また、外観にも優れる制振材を安価に得ることができる制振材配合物を提供することを目的とする。
本発明者は、従来では制振材樹脂組成物に配合されていなかった安価で入手し易い材料として、環境面からも望ましい植物由来成分に着目し、種々検討したところ、リグニン類及び/又はリグニン誘導体を含む新規な制振材用樹脂組成物に想到した。本発明者は、この制振材用樹脂組成物を用いて、幅広い温度領域で顕著に優れた制振性を発揮でき、また、はがれ及びクラックの発生が抑制されて外観が際立って優れる制振材を得ることができることを見出し、上記課題を見事に解決することができることに想到し、本発明に到達したものである。
すなわち本発明は、リグニン類及び/又はリグニン誘導体を含む制振材用樹脂組成物である。
本発明はまた、本発明の制振材用樹脂組成物及び無機顔料を含む制振材配合物でもある。
本発明は更に、本発明の制振材配合物を用いて得られる制振材でもある。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
本発明はまた、本発明の制振材用樹脂組成物及び無機顔料を含む制振材配合物でもある。
本発明は更に、本発明の制振材配合物を用いて得られる制振材でもある。
以下に本発明を詳述する。
なお、以下において記載する本発明の個々の好ましい形態を2つ以上組み合わせたものもまた、本発明の好ましい形態である。
<本発明の制振材用樹脂組成物>
本発明の制振材用樹脂組成物は、リグニン類及び/又はリグニン誘導体を含むものであり、更に該リグニン類及び/又はリグニン誘導体とは異なる樹脂を含むことが好ましい。本発明の制振材用樹脂組成物を用いて、幅広い温度領域で顕著に優れた制振性を発揮でき、また、外観にも優れる制振材を得ることができる。
リグニンは、木材等の植物系バイオマスの3大主成分(セルロース、ヘミセルロース、リグニン)のうちの1つであり、天然の芳香族重合体として地球上に最も豊富に存在し、入手が容易で安価であるため、本発明の制振材用樹脂組成物を調製するのに有利となる。また、本発明の制振材用樹脂組成物は、植物由来成分であって紙パルプ製造産業において副産物として大量に産出するリグニン類及びその誘導体を使用できることから、環境面においても非常に望ましいものである。
本発明の制振材用樹脂組成物は、リグニン類及び/又はリグニン誘導体を含むものであり、更に該リグニン類及び/又はリグニン誘導体とは異なる樹脂を含むことが好ましい。本発明の制振材用樹脂組成物を用いて、幅広い温度領域で顕著に優れた制振性を発揮でき、また、外観にも優れる制振材を得ることができる。
リグニンは、木材等の植物系バイオマスの3大主成分(セルロース、ヘミセルロース、リグニン)のうちの1つであり、天然の芳香族重合体として地球上に最も豊富に存在し、入手が容易で安価であるため、本発明の制振材用樹脂組成物を調製するのに有利となる。また、本発明の制振材用樹脂組成物は、植物由来成分であって紙パルプ製造産業において副産物として大量に産出するリグニン類及びその誘導体を使用できることから、環境面においても非常に望ましいものである。
(リグニン類及び/又はリグニン誘導体)
上記リグニン類とは、未変性のリグニンを言い、例えば、植物体中に存在する天然のリグニン、又は、植物体から蒸解により単離したままのリグニンのいずれであってもよい。なお、植物体から蒸解により単離したままのリグニンは、チオエーテル結合や、スルホン酸基、スルホン酸塩基、アセチル基等の置換基を有していてもよい。本明細書中、変性とは、植物体から蒸解により単離したままのリグニンに対して、該リグニンが有する構造部位とは異なるその他の構造部位を導入することを言う。なお、リグニン類及び/又はリグニン誘導体とは、リグニンの基本骨格であるフェニルプロパン骨格を有するものを言う。
上記リグニン類とは、未変性のリグニンを言い、例えば、植物体中に存在する天然のリグニン、又は、植物体から蒸解により単離したままのリグニンのいずれであってもよい。なお、植物体から蒸解により単離したままのリグニンは、チオエーテル結合や、スルホン酸基、スルホン酸塩基、アセチル基等の置換基を有していてもよい。本明細書中、変性とは、植物体から蒸解により単離したままのリグニンに対して、該リグニンが有する構造部位とは異なるその他の構造部位を導入することを言う。なお、リグニン類及び/又はリグニン誘導体とは、リグニンの基本骨格であるフェニルプロパン骨格を有するものを言う。
上記リグニン類としては、構造中にチオエーテル結合を有するクラフトリグニンや、リグニンスルホン酸(塩)が好ましいものとして挙げられ、中でも、幅広い温度領域でバランス良く制振性を改善できる観点からは、リグニンスルホン酸(塩)がより好ましい。なお、本明細書中、リグニンスルホン酸(塩)とは、リグニンスルホン酸及び/又はリグニンスルホン酸塩を意味する。
上記リグニンスルホン酸塩としては、1価の金属塩、2価の金属塩、アンモニウム塩、有機アミン塩、これらの混合塩等が挙げられる。
上記リグニン類は、上記リグニンスルホン酸(塩)が、更に、分解、又は、分子量分画されたものであってもよい。該分解は、例えば加水分解が挙げられる。該分子量分画は、例えば限外濾過による方法が挙げられる。中でも、加水分解が好ましい。
上記リグニンスルホン酸塩としては、1価の金属塩、2価の金属塩、アンモニウム塩、有機アミン塩、これらの混合塩等が挙げられる。
上記リグニン類は、上記リグニンスルホン酸(塩)が、更に、分解、又は、分子量分画されたものであってもよい。該分解は、例えば加水分解が挙げられる。該分子量分画は、例えば限外濾過による方法が挙げられる。中でも、加水分解が好ましい。
上記リグニン類としては、得られる制振材の機能をより充分に発揮できる観点から、リグニンスルホン酸、リグニンスルホン酸ナトリウム塩、リグニンスルホン酸マグネシウム塩、リグニンスルホン酸カルシウム塩がより好ましく、リグニンスルホン酸ナトリウム塩、リグニンスルホン酸マグネシウム塩、リグニンスルホン酸カルシウム塩が更に好ましく、リグニンスルホン酸マグネシウム塩、リグニンスルホン酸カルシウム塩が特に好ましく、リグニンスルホン酸マグネシウム塩が最も好ましい。
上記リグニン類としては、上述したように植物体から蒸解により単離したままのリグニンを使用することができるが、より具体的には、例えばクラフトパルプ廃液や、亜硫酸パルプ廃液をそのまま使用することができる。なお、クラフトパルプ廃液中にはクラフトリグニンが含まれており、亜硫酸パルプ廃液中にはリグニンスルホン酸が含まれているところ、クラフトリグニンとリグニンスルホン酸とは通常異なった物性を有するが、本願実施例で示されるように、いずれのリグニン類であっても制振材用樹脂組成物中に配合されることにより本願発明の効果を発揮することができる。
この他、リグニン類としては、アルカリ蒸解により得られる廃液(アルカリリグニン)、酢酸法により得られる廃液(酢酸リグニン)、蒸解液として含水有機溶媒を用いて得られる廃液(オルガノソルブルリグニン)、水蒸気爆砕法により得られる廃液(爆砕リグニン)等を使用することも可能である。
なお、上記アルカリ蒸解としては、水酸化ナトリウム(苛性ソーダ)等のアルカリ金属水酸化物を使用して木本植物を蒸解させる方法が好ましい。
なお、上記アルカリ蒸解としては、水酸化ナトリウム(苛性ソーダ)等のアルカリ金属水酸化物を使用して木本植物を蒸解させる方法が好ましい。
また上記リグニン類として、上述した各廃液の固形分濃度を適宜調整したものを使用することもできる。該廃液の固形分濃度は、例えば10~70質量%であり、15~45質量%であることが好ましい。
上記リグニン類の調製には、通常用いられる蒸解助剤を使用することができる。
上記リグニン類の調製には、通常用いられる蒸解助剤を使用することができる。
上記リグニン類は、上述したように植物からパルプを得る際の蒸解液をそのまま使用したり、該蒸解液の固形分濃度を適宜調整したものを使用したりすることができるが、蒸解液から精製したもの(市販品等)を用いてもよい。蒸解液からの精製は、蒸解液に酸を添加する等して所定のpHの溶液とし、リグニン類を沈殿させる方法等の精製に用いられる通常の方法で行うことができる。蒸解液から精製したリグニンスルホン酸塩の市販品としては、例えば、パールレックスNP(日本製紙社製、リグニンスルホン酸ナトリウム塩)、サンエキスP321(日本製紙社製、リグニンスルホン酸マグネシウム塩)、パールレックスCP(日本製紙社製、リグニンスルホン酸カルシウム塩)、又は、これらに水系溶媒を添加して固形分濃度を適宜調整したもの等が挙げられる。固形分濃度の好ましい範囲は、上述した廃液の好ましい固形分濃度と同様である。
上記リグニン誘導体は、変性したリグニンを言い、上記リグニンスルホン酸(塩)等の上記リグニン類が更に誘導体化されたものである。該誘導体化は、本明細書における「変性」に該当し、植物体から蒸解により単離したままのリグニンに対して該リグニンが有する構造部位とは異なるその他の構造部位を導入することを言い、例えばアルキル化、アミノ化、アルコキシ化、アルコキシスルホニル化、スルホアルキル化、アミノアルキル化、脱スルホン化や、後述するカルボキシル基含有基、(ポリ)アルキレングリコール鎖含有基等の置換基を付加すること等が挙げられる。
(式中、R1~R6は、同一又は異なって、水素原子、水酸基、アルコキシ基、アシル基、アミノ基、スルホン酸基、スルホン酸塩基、カルボキシル基含有基、(ポリ)アルキレングリコール鎖含有基、炭化水素基、又は、他のフェニルプロパン骨格由来の構造との直接結合若しくはチオエーテル結合を表し、R1~R6のうち少なくとも1つは、他のフェニルプロパン骨格由来の構造との直接結合若しくはチオエーテル結合を表し、R1~R6のうち少なくとも1つは、アルコキシ基、カルボキシル基含有基、(ポリ)アルキレングリコール鎖含有基、又は、炭化水素基を表す。)で表される構造を有するものが挙げられる。
上記(ポリ)アルキレングリコール鎖含有基としては、(ポリ)アルキレングリコール鎖のみの基であっても、(ポリ)アルキレングリコール鎖とその他の構造部位とを有する基であってもよい。その他の構造部位としては、脂肪族炭化水素基や芳香族炭化水素基等の炭化水素基等が挙げられる。上記(ポリ)アルキレングリコール鎖含有基としては、(ポリ)アルキレングリコール鎖のみの基、又は、炭素数1~30のアルキレン基を有する芳香環に(ポリ)アルキレングリコール鎖が付加された基が好ましい。
上記(ポリ)アルキレングリコール鎖の末端の構造は特に制限されず、置換基を有していてもよい。上記末端の酸素原子には、水素原子又は炭化水素基が結合していることが好ましい。上記炭化水素基としては、炭素数1~2のアルキル基が好ましい。
上記(ポリ)アルキレングリコール鎖の末端の構造は特に制限されず、置換基を有していてもよい。上記末端の酸素原子には、水素原子又は炭化水素基が結合していることが好ましい。上記炭化水素基としては、炭素数1~2のアルキル基が好ましい。
上記(ポリ)アルキレングリコール鎖としては、好ましくはエチレンオキサイド、プロピレンオキサイド、ブチレンオキサイド等の炭素数2~4のアルキレンオキサイドが主体であることであり、より好ましくはエチレンオキサイドが主体であることである。
ここでいう「主体」とは、ポリアルキレングリコール部位が、2種以上のアルキレンオキサイドにより構成されるときに、全アルキレンオキサイドの存在数に対して、50~100モル%を占めることが好ましい。
上記(ポリ)アルキレングリコール鎖を構成するアルキレンオキサイドの平均付加モル数は、3~200であることが好ましい。上記アルキレンオキサイドの平均付加モル数とは、リグニン類における1つのポリアルキレングリコール鎖において付加しているアルキレンオキサイドのモル数の平均値を意味する。
上記アルコキシ基としては、炭素数1~15のアルコキシ基であることが好ましく、より好ましくは炭素数1~2のアルコキシ基である。
上記カルボキシル基含有基は、カルボキシル基(-COOH)又はその塩を有する限り制限されず、カルボキシル基又はその塩のみの基であっても、カルボキシル基又はその塩とその他の構造部位とを有する基であってもよい。その他の構造部位としては、脂肪族炭化水素基や芳香族炭化水素基等の炭化水素基等が挙げられる。カルボキシル基含有基としては、-COOH又はその塩、カルボキシル基又はその塩を有する炭素数1~30の脂肪族炭化水素基、又は、芳香族カルボキシル基を有する炭素数1~20のアルキレン基が好ましい。芳香族カルボキシル基は、カルボキシル基又はその塩をもつ芳香族基である。
上記炭化水素基としては、炭素数1~30の炭化水素基が好ましく、より好ましくは1~5の炭化水素基である。
上記R1~R6の水素原子やその他の置換基は、リグニン骨格のベンゼン環に1つ結合していてもよく、2つ以上結合していてもよい。
上記カルボキシル基含有基は、カルボキシル基(-COOH)又はその塩を有する限り制限されず、カルボキシル基又はその塩のみの基であっても、カルボキシル基又はその塩とその他の構造部位とを有する基であってもよい。その他の構造部位としては、脂肪族炭化水素基や芳香族炭化水素基等の炭化水素基等が挙げられる。カルボキシル基含有基としては、-COOH又はその塩、カルボキシル基又はその塩を有する炭素数1~30の脂肪族炭化水素基、又は、芳香族カルボキシル基を有する炭素数1~20のアルキレン基が好ましい。芳香族カルボキシル基は、カルボキシル基又はその塩をもつ芳香族基である。
上記炭化水素基としては、炭素数1~30の炭化水素基が好ましく、より好ましくは1~5の炭化水素基である。
上記R1~R6の水素原子やその他の置換基は、リグニン骨格のベンゼン環に1つ結合していてもよく、2つ以上結合していてもよい。
上記リグニン類及び/又はリグニン誘導体は、重量平均分子量が100~40000であることが好ましい。リグニン類及び/又はリグニン誘導体がこのような重量平均分子量を有すると、得られる制振材の機能をより充分に発揮できる。該重量平均分子量は、より好ましくは、500~30000であり、更に好ましくは、2000~15000である。上記重量平均分子量は、GPCを用い、下記条件により測定することができる。
<測定条件>
使用カラム:東ソー社製、TSK guard column αと、TSKgel α5000と、α-4000と、α-3000とを、この順で連結させたもの。
溶離液:アセトニトリル1,800g、水7141.1gの溶液に、ホウ酸44.5gを溶解し、さらに30%NaOH水溶液でpH10.0に調整した溶液を使用した。
サンプル打ち込み量:100μL
流速:1.0mL/min
カラム温度:40℃;
検出器:日本Waters社製、2414 示差屈折検出器
解析ソフト:日本Waters社製、Empower2 Software;
較正曲線作成用標準物質:ポリエチレングリコール
上記溶離液でリグニン類/リグニン誘導体濃度が0.5質量%となるように溶解させたものをサンプルとした。
<測定条件>
使用カラム:東ソー社製、TSK guard column αと、TSKgel α5000と、α-4000と、α-3000とを、この順で連結させたもの。
溶離液:アセトニトリル1,800g、水7141.1gの溶液に、ホウ酸44.5gを溶解し、さらに30%NaOH水溶液でpH10.0に調整した溶液を使用した。
サンプル打ち込み量:100μL
流速:1.0mL/min
カラム温度:40℃;
検出器:日本Waters社製、2414 示差屈折検出器
解析ソフト:日本Waters社製、Empower2 Software;
較正曲線作成用標準物質:ポリエチレングリコール
上記溶離液でリグニン類/リグニン誘導体濃度が0.5質量%となるように溶解させたものをサンプルとした。
上記リグニン類及び/又はリグニン誘導体の原料は特に限定されず、天然物や合成品などいずれをも用いることができる。天然物を用いる場合は、その原料となる木材の種類は特に制限されず、木本植物を原料にして得られる木質系のもの、草本植物を原料にして得られる草本系のもののいずれも用いることができる。木本植物としては、スギ、モミ、ヒノキ、マツ等の針葉樹、ユーカリ、アカシア、シラカバ、ブナ、ナラ等の広葉樹が挙げられる。草本植物としては、稲藁、穀物、バガス、竹、ケナフ、葦等が挙げられる。
上記リグニン類及び/又はリグニン誘導体は、木本植物を原料にして得られる木質系のものが好ましく、中でも、針葉樹を原料にして得られるものがより好ましい。
上記リグニン類及び/又はリグニン誘導体は、木本植物を原料にして得られる木質系のものが好ましく、中でも、針葉樹を原料にして得られるものがより好ましい。
<リグニン類及び/又はリグニン誘導体の製造方法>
上記リグニン類は、従来公知の方法を用いて得ることができる。
上記リグニン誘導体を得るための置換基等によるリグニン類の変性の方法は特に制限されないが、例えば、リグニン類の水酸基等の反応基と置換基を有する化合物とを反応させることにより行うことができる。
上記置換基が(ポリ)アルキレングリコール鎖含有基である場合には、(1)エチレンオキシド等のアルキレンオキシド又は(ポリ)アルキレングリコール鎖を有する化合物とリグニン類の水酸基とを反応させること、又は、(2)(ポリ)アルキレングリコール鎖を有する化合物とアルデヒド化合物とを反応させた後にリグニン類を添加し、反応させることにより変性させることができる。
上記(1)の反応により、リグニン類のフェノール性水酸基と(ポリ)アルキレンオキシド又は(ポリ)アルキレングリコール鎖を有する化合物とが直接結合した変性リグニンが生成し、上記(2)の反応により、リグニン類のベンゼン環と(ポリ)アルキレングリコール鎖を有する化合物とが2価の連結基を介して結合した変性リグニンが生成する。
上記リグニン類は、従来公知の方法を用いて得ることができる。
上記リグニン誘導体を得るための置換基等によるリグニン類の変性の方法は特に制限されないが、例えば、リグニン類の水酸基等の反応基と置換基を有する化合物とを反応させることにより行うことができる。
上記置換基が(ポリ)アルキレングリコール鎖含有基である場合には、(1)エチレンオキシド等のアルキレンオキシド又は(ポリ)アルキレングリコール鎖を有する化合物とリグニン類の水酸基とを反応させること、又は、(2)(ポリ)アルキレングリコール鎖を有する化合物とアルデヒド化合物とを反応させた後にリグニン類を添加し、反応させることにより変性させることができる。
上記(1)の反応により、リグニン類のフェノール性水酸基と(ポリ)アルキレンオキシド又は(ポリ)アルキレングリコール鎖を有する化合物とが直接結合した変性リグニンが生成し、上記(2)の反応により、リグニン類のベンゼン環と(ポリ)アルキレングリコール鎖を有する化合物とが2価の連結基を介して結合した変性リグニンが生成する。
上記(1)の反応における(ポリ)アルキレングリコール鎖を有する化合物としては、ポリエチレングリコール、ポリプロピレングリコール等のポリアルキレングリコール系化合物;ポリエチレングリコール-モノエチル-グリシジルエーテル、ポリエチレングリコール-モノメチル-グリシジルエーテル、ラウリルアルコール-ポリエチレンオキサイド-グリシジルエーテル等の単官能のグリシジルエーテル系化合物;ポリ(エチレングリコール)ジグリシジルエーテル、ポリ(プロピレングリコール)ジグリシジルエーテル等の二官能のグリシジルエーテル系化合物;及びこれらのグリシジル基(以下、エポキシ基ともいう。)をメトキシ、エトキシ等のアルコキシド化合物と反応させて、グリシジルエーテル基の官能度を低下させたグリシジルエーテル系化合物;メトキシポリエチレングリコール等のアルコキシポリアルキレングリコールとエピクロロヒドリン等のエピハロヒドリンとの反応により得られる単官能エポキシポリアルキレングリコール化合物;メトキシポリエチレングリコールアクリレート等が挙げられる。
上記(2)の反応における(ポリ)アルキレングリコール鎖を有する化合物としては、フェノールのエチレンオキシド付加物等の芳香族(ポリ)アルキレングリコール化合物等が挙げられる。
上記(2)の反応における(ポリ)アルキレングリコール鎖を有する化合物としては、フェノールのエチレンオキシド付加物等の芳香族(ポリ)アルキレングリコール化合物等が挙げられる。
上記置換基が、カルボキシル基含有基である場合、例えば、カルボキシル基を有する化合物とアルデヒド化合物とを反応させた後に、リグニン類を添加し、反応させることにより変性させることができる。
この反応により、リグニン類のベンゼン環とカルボキシル基を有する化合物とが2価の連結基を介して結合した変性リグニンが生成する。
上記カルボキシル基を有する化合物としては、2-ヒドロキシフェニル酢酸等の芳香族カルボン酸系化合物等が挙げられる。
この反応により、リグニン類のベンゼン環とカルボキシル基を有する化合物とが2価の連結基を介して結合した変性リグニンが生成する。
上記カルボキシル基を有する化合物としては、2-ヒドロキシフェニル酢酸等の芳香族カルボン酸系化合物等が挙げられる。
また、リグニン誘導体を製造(合成)する別の方法は、リグニンスルホン酸(塩)と、アクリル酸、メトキシポリエチレングリコールアクリレート等の水溶性の不飽和単量体とを反応させる方法でもよい。該方法としては、例えば、リグニンスルホン酸(塩)が有する官能基(例えば、フェノール性ヒドロキシル基やアルコール性ヒドロキシル基、チオール基など)と、水溶性の不飽和単量体とを化学反応させる方法が挙げられる。反応の形式としては、ラジカル重合、イオン重合などが例示される。具体的に例えば、リグニンスルホン酸(塩)にラジカル開始剤を作用させるなどして水素ラジカルを引き抜き、ラジカルを発生させ、そこに少なくとも1種類の水溶性の不飽和単量体をラジカル重合させることによってリグニン誘導体を得ることができる。また、反応生成物をさらに、ホルムアルデヒドや多官能性の架橋剤を用いて架橋してこれをリグニン誘導体として用いることも可能である。
上記リグニン類及び/又はリグニン誘導体の含有量は、本発明の制振材用樹脂組成物の固形分100質量%中、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、5質量%以上であることが更に好ましく、7質量%以上であることが特に好ましく、9質量%以上であることが最も好ましい。該含有量は、80質量%以下であることが好ましく、70質量%以下であることがより好ましく、60質量%以下であることが更に好ましく、50質量%以下であることが特に好ましい。
なお、ここでいう固形分とは、水系溶媒等の溶媒以外の成分を意味する。
なお、ここでいう固形分とは、水系溶媒等の溶媒以外の成分を意味する。
(樹脂)
上記樹脂は、上記リグニン類及び/又はリグニン誘導体と混和できる種々のものを使用できるが、例えば、(メタ)アクリル系重合体、ジエン系重合体、及び、酢酸ビニル系重合体からなる群より選択される少なくとも1種の重合体を含むものが好ましい。
上記(メタ)アクリル系重合体は、後述する(メタ)アクリル系単量体由来の構造単位を有する重合体であればよいが、好ましくは(メタ)アクリル酸系単量体由来の構造単位を有する重合体である。
例えば、(メタ)アクリル系重合体を得るための単量体成分が、(メタ)アクリル酸系単量体、及び、その他の共重合可能な不飽和単量体を含んでなるものであることが好ましい。(メタ)アクリル酸系単量体を含むことにより、本発明の制振材用樹脂組成物を含む制振剤配合物において、無機顔料等の分散性が向上し、得られる制振材の機能がより優れたものとなる。また、その他の共重合可能な不飽和単量体を含むことにより、重合体の酸価、Tgや物性等を調整しやすくなる。
上記樹脂は、上記リグニン類及び/又はリグニン誘導体と混和できる種々のものを使用できるが、例えば、(メタ)アクリル系重合体、ジエン系重合体、及び、酢酸ビニル系重合体からなる群より選択される少なくとも1種の重合体を含むものが好ましい。
上記(メタ)アクリル系重合体は、後述する(メタ)アクリル系単量体由来の構造単位を有する重合体であればよいが、好ましくは(メタ)アクリル酸系単量体由来の構造単位を有する重合体である。
例えば、(メタ)アクリル系重合体を得るための単量体成分が、(メタ)アクリル酸系単量体、及び、その他の共重合可能な不飽和単量体を含んでなるものであることが好ましい。(メタ)アクリル酸系単量体を含むことにより、本発明の制振材用樹脂組成物を含む制振剤配合物において、無機顔料等の分散性が向上し、得られる制振材の機能がより優れたものとなる。また、その他の共重合可能な不飽和単量体を含むことにより、重合体の酸価、Tgや物性等を調整しやすくなる。
上記(メタ)アクリル酸系単量体とは、アクリロイル基若しくはメタクリロイル基、又は、これらの基における水素原子が他の原子若しくは原子団に置き換わった基の少なくとも1つの基を有し、かつ、該基中のカルボニル基をもつカルボキシル基(-COOH基)又はその酸無水物基(-C(=O)-O-C(=O)-基)を有する単量体である。上記(メタ)アクリル酸系単量体は、(メタ)アクリル酸であることが好ましい。
上記(メタ)アクリル系重合体は、例えば、(メタ)アクリル酸系単量体0.1~5質量%、及び、その他の共重合可能な不飽和単量体95~99.9質量%から構成される単量体成分を共重合して得られるものであることが好ましい。上記単量体成分において、(メタ)アクリル酸系単量体が0.3質量%以上、その他の共重合可能な不飽和単量体が99.7質量%以下であることがより好ましく、(メタ)アクリル酸系単量体が0.5質量%以上、その他の共重合可能な不飽和単量体が99.5質量%以下であることが更に好ましく、(メタ)アクリル酸系単量体が0.7質量%以上、その他の共重合可能な不飽和単量体が99.3質量%以下であることが特に好ましい。また、上記単量体成分において、(メタ)アクリル酸系単量体が5質量%以下、その他の共重合可能な不飽和単量体が95質量%以上であることが好ましく、(メタ)アクリル酸系単量体が4質量%以下、その他の共重合可能な不飽和単量体が96質量%以上であることがより好ましく、(メタ)アクリル酸系単量体が3質量%以下、その他の共重合可能な不飽和単量体が97質量%以上であることが更に好ましい。このような範囲内とすることにより、単量体成分が安定に共重合する。
その他の共重合可能な不飽和単量体としては、(メタ)アクリル酸系単量体以外の(メタ)アクリル系単量体、芳香環を有する不飽和単量体、その他の共重合可能な不飽和単量体等が挙げられる。
上記(メタ)アクリル酸系単量体以外の(メタ)アクリル系単量体とは、アクリロイル基若しくはメタクリロイル基、又は、これらの基における水素原子が他の原子若しくは原子団に置き換わった基を有し、かつ、カルボキシル基がエステルとなった形態若しくは塩となった形態の単量体又はそのような単量体の誘導体を言う。
上記(メタ)アクリル酸系単量体以外の(メタ)アクリル系単量体とは、アクリロイル基若しくはメタクリロイル基、又は、これらの基における水素原子が他の原子若しくは原子団に置き換わった基を有し、かつ、カルボキシル基がエステルとなった形態若しくは塩となった形態の単量体又はそのような単量体の誘導体を言う。
上記(メタ)アクリル酸系単量体以外の(メタ)アクリル系単量体としては、例えば、メチルアクリレート、メチルメタクリレート、エチルアクリレート、エチルメタクリレート、プロピルアクリレート、プロピルメタクリレート、イソプロピルアクリレート、イソプロピルメタクリレート、ブチルアクリレート、ブチルメタクリレート、イソブチルアクリレート、イソブチルメタクリレート、tert-ブチルアクリレート、tert-ブチルメタクリレート、ペンチルアクリレート、ペンチルメタクリレート、イソアミルアクリレート、イソアミルメタクリレート、ヘキシルアクリレート、ヘキシルメタクリレート、シクロヘキシルアクリレート、シクロヘキシルメタクリレート、オクチルアクリレート、オクチルメタクリレート、イソオクチルアクリレート、イソオクチルメタクリレート、ノニルアクリレート、ノニルメタクリレート、イソノニルアクリレート、イソノニルメタクリレート、デシルアクリレート、デシルメタクリレート、ドデシルアクリレート、ドデシルメタクリレート、トリデシルアクリレート、トリデシルメタクリレート、ヘキサデシルアクリレート、ヘキサデシルメタクリレート、オクタデシルアクリレート、オクタデシルメタクリレート、2-エチルヘキシルアクリレート、2-エチルヘキシルメタクリレート、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシプロピルメタクリレート、ジアリルフタレート、トリアリルシアヌレート、エチレングリコールジアクリレート、エチレングリコールジメタクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,6-ヘキサンジオールジメタクリレート、ジエチレングリコールジアクリレート、ジエチレングリコールジメタクリレート、アリルアクリレート、アリルメタアクリレート等;これら以外の(メタ)アクリル酸系単量体の塩やエステル化物等が挙げられ、これらの1種又は2種以上を使用することが好適である。
上記(メタ)アクリル酸系単量体の塩としては、金属塩、アンモニウム塩、有機アミン塩等であることが好ましい。金属塩を形成する金属原子としては、例えば、リチウム、ナトリウム、カリウム等のアルカリ金属原子等の1価の金属原子;カルシウム、マグネシウム等の2価の金属原子;アルミニウム、鉄等の3価の金属原子が好適である。また、有機アミン塩としては、エタノールアミン塩、ジエタノールアミン塩、トリエタノールアミン塩等のアルカノールアミン塩や、トリエチルアミン塩が好適である。
上記(メタ)アクリル系重合体の原料となる単量体成分としては、上記(メタ)アクリル酸系単量体以外の(メタ)アクリル系単量体を、全単量体成分100質量%に対して、20質量%以上含有することが好ましく、40質量%以上含有することがより好ましく、60質量%以上含有することが更に好ましい。また、上記(メタ)アクリル酸系単量体以外の(メタ)アクリル系単量体を、全単量体成分100質量%に対して、99.9質量%以下含有することが好ましく、99.5質量%以下含有することがより好ましく、99質量%以下含有することが更に好ましく、90質量%以下含有することが一層好ましく、85質量%以下含有することが特に好ましい。
上記芳香環を有する不飽和単量体としては、例えば、ジビニルベンゼン、スチレン、α-メチルスチレン、ビニルトルエン、エチルビニルベンゼン等が挙げられ、好ましくはスチレンである。
すなわち、(メタ)アクリル系重合体が、スチレンを含む単量体成分から得られたスチレン(メタ)アクリル系重合体であることもまた、本発明の好適な実施形態の1つである。このような形態によって、コストを削減しつつ本発明の効果を充分に発揮することができる。
すなわち、(メタ)アクリル系重合体が、スチレンを含む単量体成分から得られたスチレン(メタ)アクリル系重合体であることもまた、本発明の好適な実施形態の1つである。このような形態によって、コストを削減しつつ本発明の効果を充分に発揮することができる。
上記(メタ)アクリル系重合体の原料となる単量体成分は、上記芳香環を有する不飽和単量体を含む場合は、全単量体成分100質量%に対して、1質量%以上含むことが好ましく、5質量%以上含むことがより好ましく、10質量%以上含むことが更に好ましく、15質量%以上含むことが特に好ましい。また、該単量体成分は、上記芳香環を有する不飽和単量体を、全単量体成分100質量%に対して、80質量%以下含むことが好ましく、70質量%以下含むことがより好ましく、60質量%以下含むことが更に好ましく、40質量%以下含むことが特に好ましい。なお、上記(メタ)アクリル系重合体の原料となる単量体成分として、芳香環を有する不飽和単量体を用いなくてもよい。
上記その他の共重合可能な不飽和単量体としては、例えばアクリロニトリルや、トリメチロールプロパンジアリルエーテル等の多官能性不飽和単量体が挙げられる。
本発明の制振材用樹脂組成物における上記ジエン系重合体は、ジエン系単量体を含む単量体成分を重合して得られるものである。ジエン系単量体は、二重結合を2つもつ単量体であればよいが、該二重結合が1つの単結合により隔てられたものであることが好ましい。
またジエン系単量体としては、炭素数4~18のものが好ましく、炭素数4~12のものがより好ましく、炭素数4~8のものが更に好ましく、ブタジエンが特に好ましい。
またジエン系単量体としては、炭素数4~18のものが好ましく、炭素数4~12のものがより好ましく、炭素数4~8のものが更に好ましく、ブタジエンが特に好ましい。
上記ジエン系重合体は、例えば、ジエン系単量体5~70質量%、及び、その他の共重合可能な不飽和単量体30~95質量%から構成される単量体成分を共重合して得られるものであることが好ましい。
なお、ジエン系重合体の原料となる上記その他の共重合可能な不飽和単量体としては、特に制限されないが、上述した(メタ)アクリル酸系単量体以外の(メタ)アクリル系単量体、芳香環を有する不飽和単量体、その他の共重合可能な不飽和単量体等が挙げられる。好ましい種類は、上述したものと同様である。例えば、上述した(メタ)アクリル酸系単量体以外の(メタ)アクリル系単量体としては、メチルメタクリレートが好ましい。また、芳香環を有する不飽和単量体としては、スチレンが好ましい。更に、その他の共重合可能な不飽和単量体としては、アクリロニトリルが好ましい。上記ジエン系重合体は、例えば、アクリロニトリルブタジエンゴム(NBR)、メチルメタクリレートブタジエンゴム(MBR)、スチレンブタジエンゴム(SBR)等が好適なものとして挙げられ、これらの1種又は2種以上を用いることができる。
なお、本明細書中では、本発明における制振材用樹脂組成物における重合体において、構造中にジエン系単量体由来の構造を少なくとも1つ有していても、(メタ)アクリル酸系単量体由来の構造を少なくとも1つ有するものについては(メタ)アクリル系重合体とし、(メタ)アクリル酸系単量体由来の構造を有さないものについてはジエン系重合体とする。
なお、本明細書中では、本発明における制振材用樹脂組成物における重合体において、構造中にジエン系単量体由来の構造を少なくとも1つ有していても、(メタ)アクリル酸系単量体由来の構造を少なくとも1つ有するものについては(メタ)アクリル系重合体とし、(メタ)アクリル酸系単量体由来の構造を有さないものについてはジエン系重合体とする。
上記ジエン系重合体は、溶媒との親和性、それによる塗膜形成への影響等の点から、SP値が6以上であることが好ましく、7以上であることがより好ましく、8以上であることが更に好ましい。また、該SP値が12以下であることが好ましく、11以下であることがより好ましく、10以下であることが更に好ましく、9以下であることが特に好ましい。
上記ジエン系重合体におけるSP値の算出方法は、Fedors(Polymer Eng.Sci.,14,No.2,147,1974)及びTortorello等(J.Coat.Technol.,55,696,99,1983)によってなされた方法とする。
式中、δは、重合体のSP値である。Δe1は、重合体を構成する単量体各成分の蒸発エネルギーの計算値(kcal/mol)であり、ΣΔe1は、重合体を構成する全単量体成分の当該計算値の合計値である。ΔVmは、重合体を構成する単量体各成分の分子容の計算値(ml/mol)であり、ΣΔVmは、重合体を構成する全単量体成分の当該計算値の合計である。xは、重合体を構成する単量体各成分のモル分布である。
なお、単量体成分の蒸発エネルギー、及び、単量体成分の分子容は、通常用いられる計算値を用いることができる。
このように、構成する単量体の種類及びその構成比を調整することによって、ジエン系重合体のSP値を調整することができる。
なお、単量体成分の蒸発エネルギー、及び、単量体成分の分子容は、通常用いられる計算値を用いることができる。
このように、構成する単量体の種類及びその構成比を調整することによって、ジエン系重合体のSP値を調整することができる。
本発明の制振材用樹脂組成物における上記酢酸ビニル系重合体は、酢酸ビニルを含む単量体成分を重合して得られるものである。上記酢酸ビニル系重合体は、酢酸ビニルの含有割合が50質量%以上である単量体成分を重合して得られるものであることが好ましい。なお、酢酸ビニル系重合体の原料となる単量体成分における酢酸ビニル以外の成分としては、特に制限されないが、上述した(メタ)アクリル酸系単量体以外の(メタ)アクリル系単量体、芳香環を有する不飽和単量体、その他の共重合可能な不飽和単量体等が挙げられる。
なお、本明細書中では、本発明における制振材用樹脂組成物における重合体において、構造中に酢酸ビニル由来の構造を少なくとも1つ有していても、(メタ)アクリル酸系単量体由来の構造を少なくとも1つ有するものについては(メタ)アクリル系重合体とし、(メタ)アクリル酸系単量体由来の構造を有さず、かつジエン系単量体由来の構造を少なくとも1つ有するものについてはジエン系重合体とし、(メタ)アクリル酸系単量体由来の構造又はジエン系単量体由来の構造のいずれも有さないものについては酢酸ビニル系重合体とする。
なお、本明細書中では、本発明における制振材用樹脂組成物における重合体において、構造中に酢酸ビニル由来の構造を少なくとも1つ有していても、(メタ)アクリル酸系単量体由来の構造を少なくとも1つ有するものについては(メタ)アクリル系重合体とし、(メタ)アクリル酸系単量体由来の構造を有さず、かつジエン系単量体由来の構造を少なくとも1つ有するものについてはジエン系重合体とし、(メタ)アクリル酸系単量体由来の構造又はジエン系単量体由来の構造のいずれも有さないものについては酢酸ビニル系重合体とする。
本発明の制振材用樹脂組成物における上記制振材用樹脂組成物は、水系溶媒を含み、上記樹脂は、水系溶媒中に分散しているか、又は、溶解していることが好ましい。本明細書中、水系溶媒中に分散しているとは、水系溶媒中に溶解することなく分散していることを意味する。本明細書中、水系溶媒は、水を含む限りその他の有機溶媒を含んでいてもよいが、水であることが好ましい。
本発明に係る重合体は、単量体成分を乳化重合してなるエマルションであることが好ましい。すなわち、本発明の制振材用樹脂組成物における上記樹脂は、単量体成分を乳化重合してなるエマルションを含むことが好ましい。
本発明の制振材用樹脂組成物は、上記(メタ)アクリル系重合体、ジエン系重合体、及び、酢酸ビニル系重合体からなる群より選択される重合体(以下、本発明に係る重合体とも言う。)を1種含んでいてもよく、2種以上含んでいてもよい。本発明の制振材用樹脂組成物が、本発明に係る重合体を2種以上含む場合、2種以上の本発明に係る重合体を混合(ブレンド)して得られる混合物であってもよく、一連の製造工程の中で2種以上の本発明に係る重合体を含むものを製造(例えば、多段重合等)して得られる2種以上の本発明に係る重合体が複合化したものであってもよい。一連の製造工程の中で2種以上の本発明に係る重合体を含むものを得るためには、単量体滴下条件等の製造条件を適宜設定すればよい。上記2種以上の本発明に係る重合体が複合化したものとは、例えば、後述するコア部とシェル部とを有する形態が挙げられる。本発明に係る重合体が、コア部とシェル部とを有する形態としては、例えば、本発明に係る重合体が2種類の本発明に係る重合体からなり、該2種類の本発明に係る重合体の一方がコア部、他方がシェル部を形成しているものが挙げられる。なお、上記(メタ)アクリル系重合体が(メタ)アクリル酸系単量体を含む単量体成分を用いて得られる重合体であるとは、例えば、(メタ)アクリル酸系単量体が、エマルションのコア部を形成する単量体成分、シェル部を形成する単量体成分のいずれかに含まれていてもよく、これらの両方に含まれていてもよい。
またエマルションを形成する本発明に係る重合体のうち少なくとも1種がコア部とシェル部とを有するエマルション粒子の形態であってもよい。これにより、本発明に係る重合体間の界面を大きくすることができ、得られる制振材の制振性向上等の効果をより大きくすることができる。
上記エマルションが、コア部とシェル部とを有するエマルション粒子を含む場合、コア部とシェル部とが完全に相溶し、これらを区別できない均質構造のものであってもよく、これらが完全には相溶せずに不均質に形成されるコア・シェル複合構造やミクロドメイン構造であってもよいが、これらの構造の中でも、エマルションの特性を充分に引き出し、安定なエマルションを作製するためには、コア・シェル複合構造であることが好ましい。
コア・シェル複合構造を有するエマルションは、実用温度範囲内の幅広い範囲における制振性に優れる。特に高温域においても、他の形態の制振材用樹脂組成物と比較して優れた制振性を発揮し、その結果、実用温度範囲内において、常温から高温域まで幅広い範囲に渡って制振性能を発揮することができる。
なお、上記コア・シェル複合構造においては、コア部の表面がシェル部によって被覆された形態であることが好ましい。この場合、コア部の表面は、シェル部によって完全に被覆されていることが好適であるが、完全に被覆されていなくてもよく、例えば、網目状に被覆されている形態や、所々においてコア部が露出している形態であってもよい。
コア・シェル複合構造を有するエマルションは、実用温度範囲内の幅広い範囲における制振性に優れる。特に高温域においても、他の形態の制振材用樹脂組成物と比較して優れた制振性を発揮し、その結果、実用温度範囲内において、常温から高温域まで幅広い範囲に渡って制振性能を発揮することができる。
なお、上記コア・シェル複合構造においては、コア部の表面がシェル部によって被覆された形態であることが好ましい。この場合、コア部の表面は、シェル部によって完全に被覆されていることが好適であるが、完全に被覆されていなくてもよく、例えば、網目状に被覆されている形態や、所々においてコア部が露出している形態であってもよい。
本発明に係る重合体は、ガラス転移温度が-20~40℃であることが好ましい。本発明に係る重合体として、このようなガラス転移温度を有するものを用いると、制振材の実用温度域での制振性能を効果的に発現することができることとなる。本発明に係る重合体のガラス転移温度は、より好ましくは-15~35℃であり、更に好ましくは-10~30℃である。
なお、ガラス転移温度(Tg)は、後述する実施例に記載の方法により算出することができる。また、本発明に係る重合体の少なくとも1種が多段重合して得られるものである場合(例えば、コア部とシェル部とを有するエマルション粒子である場合)は、上記ガラス転移温度は、全ての段で用いた単量体組成から算出したTg(トータルTg)を意味する。
なお、ガラス転移温度(Tg)は、後述する実施例に記載の方法により算出することができる。また、本発明に係る重合体の少なくとも1種が多段重合して得られるものである場合(例えば、コア部とシェル部とを有するエマルション粒子である場合)は、上記ガラス転移温度は、全ての段で用いた単量体組成から算出したTg(トータルTg)を意味する。
本発明に係る重合体の少なくとも1種がコア部とシェル部とを有するエマルション粒子の形態である場合、コア部の重合体のガラス転移温度は、0~60℃であることが好ましい。より好ましくは、10~50℃である。
シェル部の重合体のガラス転移温度は、-30~30℃であることが好ましい。より好ましくは、-20~20℃である。
またコア部の重合体とシェル部の重合体とのガラス転移温度の差は、5~60℃であることが好ましい。このようにガラス転移温度に差を設けることにより、例えば、制振材用途に適用したときに、幅広い温度領域下でより高い制振性を発現させることが可能となり、特に実用的範囲である20~60℃域での制振性がより向上されることとなる。ガラス転移温度の差は、より好ましくは10~50℃であり、更に好ましくは20~40℃である。
シェル部の重合体のガラス転移温度は、-30~30℃であることが好ましい。より好ましくは、-20~20℃である。
またコア部の重合体とシェル部の重合体とのガラス転移温度の差は、5~60℃であることが好ましい。このようにガラス転移温度に差を設けることにより、例えば、制振材用途に適用したときに、幅広い温度領域下でより高い制振性を発現させることが可能となり、特に実用的範囲である20~60℃域での制振性がより向上されることとなる。ガラス転移温度の差は、より好ましくは10~50℃であり、更に好ましくは20~40℃である。
本発明に係る重合体の少なくとも1種がコア部とシェル部とを有するエマルション粒子の形態である場合、コア部を形成する単量体成分とシェル部を形成する単量体成分との質量比(コア部を形成する単量体成分/シェル部を形成する単量体成分)は、30/70~70/30であることが好ましい。このような質量比であると、コア部とシェル部とを有する構造であることの効果をより充分に発揮することができる。コア部を形成する単量体成分とシェル部を形成する単量体成分との質量比は、より好ましくは、40/60~60/40である。
本発明に係る重合体は、重量平均分子量が2万~80万であることが好ましい。制振性を発揮するためには、重合体に加えられた振動のエネルギーを摩擦による熱エネルギーに変えることが好適であり、重合体に振動が加えられたときに運動することのできる重合体であることが必要となる。本発明に係る重合体がこのような重量平均分子量を有するものであると、振動が加えられたときに重合体が充分に運動することができ、高い制振性を発揮することができる。本発明に係る重合体の重量平均分子量は、より好ましくは3万~40万である。
なお、重量平均分子量(Mw)は、GPCを用い、後述する実施例に記載の条件により測定することができる。
なお、重量平均分子量(Mw)は、GPCを用い、後述する実施例に記載の条件により測定することができる。
本発明に係る重合体のエマルションにおける、エマルション粒子の平均粒子径は80~450nmであることが好ましい。
上記平均粒子径がこの範囲にあるエマルション粒子を用いることにより、制振材に要求される塗膜外観、塗工性等の基本性能を充分なものとした上で、制振性をより優れたものとすることができる。エマルション粒子の平均粒子径は、より好ましくは400nm以下であり、更に好ましくは350nm以下である。また、平均粒子径は、好ましくは100nm以上である。
エマルション粒子の平均粒子径は後述する実施例に記載の方法により測定することができる。
上記平均粒子径がこの範囲にあるエマルション粒子を用いることにより、制振材に要求される塗膜外観、塗工性等の基本性能を充分なものとした上で、制振性をより優れたものとすることができる。エマルション粒子の平均粒子径は、より好ましくは400nm以下であり、更に好ましくは350nm以下である。また、平均粒子径は、好ましくは100nm以上である。
エマルション粒子の平均粒子径は後述する実施例に記載の方法により測定することができる。
上記平均粒子径を有するエマルション粒子は、標準偏差をその体積平均粒子径で割った値(標準偏差/体積平均粒子径×100)で定義される粒度分布が、40%以下であることが好ましく、30%以下であることがより好ましい。粒度分布が40%以下であることにより、粗大粒子が含まれず、その結果、制振材用樹脂組成物が充分な加熱乾燥性を発揮することができる。
上記エマルションは、固形分の含有割合がエマルション全体に対して40~80質量%であることが好ましく、50~70質量%であることがより好ましい。
なお、ここでいう固形分とは、エマルションに含まれる水系溶媒等の溶媒以外の成分を意味する。
なお、ここでいう固形分とは、エマルションに含まれる水系溶媒等の溶媒以外の成分を意味する。
上記エマルションのpHとしては特に限定されないが、2~10であることが好ましく、3~9.5であることがより好ましく、7~9であることが更に好ましい。上記エマルションのpHは、当該樹脂に、アンモニア水、水溶性アミン類、水酸化アルカリ水溶液等を添加することによって調整することができる。
本明細書中、pHは、後述する実施例に記載の方法により測定することができる。
本明細書中、pHは、後述する実施例に記載の方法により測定することができる。
上記エマルションの粘度としては特に限定されないが、1~10000mPa・sであることが好ましく、5~9000mPa・sであることがより好ましく、10~8000mPa・sであることが更に好ましく、100~7000mPa・sであることが一層好ましく、300~6000mPa・sであることがより一層好ましく、500~5000mPa・sであることが更に一層好ましく、800~4500mPa・sであることが特に好ましく、900~4000mPa・sであることが更に特に好ましく、1000~3500mPa・sであることが最も好ましい。
本明細書中、粘度は、後述する実施例に記載の条件により測定することができる。
本明細書中、粘度は、後述する実施例に記載の条件により測定することができる。
上記エマルションの製造方法は特に制限されないが、例えば、特開2011-231184号公報に記載の制振材用エマルションの製造方法と同様の方法により製造することができる。
上記本発明に係る重合体(好ましくはエマルション)の固形分の含有量は、本発明の制振材用樹脂組成物の固形分100質量%中、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更に好ましく、50質量%以上であることが特に好ましい。また、該含有量は、99質量%以下であることが好ましく、97質量%以下であることがより好ましく、95質量%以下であることが更に好ましく、93質量%以下であることが特に好ましく、91質量%以下であることが最も好ましい。
なお、固形分とは、水系溶媒等の溶媒以外の成分を意味する。
なお、固形分とは、水系溶媒等の溶媒以外の成分を意味する。
本発明の制振材用樹脂組成物は、本発明に係るリグニン類及び/又はリグニン誘導体と樹脂とを含むものである限り、その他の成分を含んでもよい。
その他の成分を含む場合、本発明の制振材用樹脂組成物全体に対して、その他の成分の割合は、10質量%以下であることが好ましく、より好ましくは5質量%以下である。なお、ここでいうその他の成分とは、本発明の制振材用樹脂組成物を塗布し、加熱乾燥した後も塗膜中に残る不揮発分(固形分)のことを意味し、水系溶媒等の揮発成分は含まれない。
その他の成分を含む場合、本発明の制振材用樹脂組成物全体に対して、その他の成分の割合は、10質量%以下であることが好ましく、より好ましくは5質量%以下である。なお、ここでいうその他の成分とは、本発明の制振材用樹脂組成物を塗布し、加熱乾燥した後も塗膜中に残る不揮発分(固形分)のことを意味し、水系溶媒等の揮発成分は含まれない。
本発明の制振材用樹脂組成物は、上述したように、水系溶媒等の溶媒を含むことが好ましい。
上記溶媒の含有量は、本発明の制振材用樹脂組成物100質量%中、3質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、30質量%以上であることが特に好ましい。また、該溶媒の含有量は、97質量%以下であることが好ましく、90質量%以下であることがより好ましく、70質量%以下であることが更に好ましく、50質量%以下であることが特に好ましい。
上記溶媒の含有量は、本発明の制振材用樹脂組成物100質量%中、3質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが更に好ましく、30質量%以上であることが特に好ましい。また、該溶媒の含有量は、97質量%以下であることが好ましく、90質量%以下であることがより好ましく、70質量%以下であることが更に好ましく、50質量%以下であることが特に好ましい。
本発明の制振材用樹脂組成物は、これ自体を塗布して制振被膜を形成するのに用いることができるが、通常、後述する本発明の制振材配合物を得るために用いられる。
<本発明の制振材配合物>
本発明はまた、本発明の制振材用樹脂組成物及び無機顔料を含む制振材配合物でもある。
本発明の制振材配合物が含む制振材用樹脂組成物の好ましいものは、上述した本発明の制振材用樹脂組成物の好ましいものと同様である。
本発明の制振材配合物の固形分100質量%中、制振材用樹脂組成物の固形分は、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。また、制振材用樹脂組成物の固形分は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
本発明はまた、本発明の制振材用樹脂組成物及び無機顔料を含む制振材配合物でもある。
本発明の制振材配合物が含む制振材用樹脂組成物の好ましいものは、上述した本発明の制振材用樹脂組成物の好ましいものと同様である。
本発明の制振材配合物の固形分100質量%中、制振材用樹脂組成物の固形分は、1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。また、制振材用樹脂組成物の固形分は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることが更に好ましい。
上記無機顔料は、例えば、無機着色剤、防錆顔料、充填材等の1種又は2種以上を使用することができる。該無機着色剤としては、酸化チタン、カーボンブラック、弁柄等が挙げられる。該防錆顔料としては、リン酸金属塩、モリブデン酸金属塩、硼酸金属塩等が挙げられる。該充填材としては、炭酸カルシウム、カオリン、シリカ、タルク、硫酸バリウム、アルミナ、酸化鉄、ガラストーク、炭酸マグネシウム、水酸化アルミニウム、珪藻土、クレー等の無機質充填材;ガラスフレーク、マイカ等の鱗片状無機質充填材;金属酸化物ウィスカー、ガラス繊維等の繊維状無機質充填材等が挙げられる。
上記無機顔料は、平均粒子径が1~50μmのものが好ましい。無機顔料の平均粒子径は、レーザー回析式粒度分布測定装置により測定することができ、粒度分布からの重量50%径の値である。
上記無機顔料の配合量としては、本発明の制振材用配合物中の樹脂の固形分100質量部に対し、10~900質量部とすることが好ましく、より好ましくは300~800質量部であり、更に好ましくは350~550質量部である。
上記無機顔料は、平均粒子径が1~50μmのものが好ましい。無機顔料の平均粒子径は、レーザー回析式粒度分布測定装置により測定することができ、粒度分布からの重量50%径の値である。
上記無機顔料の配合量としては、本発明の制振材用配合物中の樹脂の固形分100質量部に対し、10~900質量部とすることが好ましく、より好ましくは300~800質量部であり、更に好ましくは350~550質量部である。
本発明の制振材配合物は、更に分散剤を含んでいてもよい。
上記分散剤としては、例えば、ヘキサメタリン酸ナトリウム、トリポリリン酸ナトリウム等の無機質分散剤、及び、ポリカルボン酸系分散剤等の有機質分散剤が挙げられる。
上記分散剤の配合量としては、本発明の制振材配合物中の樹脂の固形分100質量部に対し、固形分で0.1~8質量部が好ましく、0.5~6質量部がより好ましく、1~3質量部が更に好ましい。
上記分散剤としては、例えば、ヘキサメタリン酸ナトリウム、トリポリリン酸ナトリウム等の無機質分散剤、及び、ポリカルボン酸系分散剤等の有機質分散剤が挙げられる。
上記分散剤の配合量としては、本発明の制振材配合物中の樹脂の固形分100質量部に対し、固形分で0.1~8質量部が好ましく、0.5~6質量部がより好ましく、1~3質量部が更に好ましい。
本発明の制振材配合物は、更に増粘剤を含んでいてもよい。
上記増粘剤としては、例えば、ポリビニルアルコール、セルロース系誘導体、ポリカルボン酸系樹脂等が挙げられる。
上記増粘剤の配合量としては、本発明の制振材配合物中の樹脂の固形分100質量部に対し、固形分で0.01~5質量部が好ましく、0.1~4質量部がより好ましく、0.3~2質量部が更に好ましい。
上記増粘剤としては、例えば、ポリビニルアルコール、セルロース系誘導体、ポリカルボン酸系樹脂等が挙げられる。
上記増粘剤の配合量としては、本発明の制振材配合物中の樹脂の固形分100質量部に対し、固形分で0.01~5質量部が好ましく、0.1~4質量部がより好ましく、0.3~2質量部が更に好ましい。
本発明の制振材配合物は、更にその他の成分を含んでいてもよい。その他の成分としては、例えば、発泡剤;溶媒;有機着色剤;ゲル化剤;消泡剤;可塑剤;安定剤;湿潤剤;防腐剤;発泡防止剤;老化防止剤;防黴剤;紫外線吸収剤;帯電防止剤等が挙げられ、これらの1種又は2種以上を使用することができる。
なお、上記無機顔料、分散剤、増粘剤、及び、他の成分は、例えば、バタフライミキサー、プラネタリーミキサー、スパイラルミキサー、ニーダー、ディゾルバー等を用いて、本発明に係るポリマーエマルションや架橋剤等と混合され得る。
なお、上記無機顔料、分散剤、増粘剤、及び、他の成分は、例えば、バタフライミキサー、プラネタリーミキサー、スパイラルミキサー、ニーダー、ディゾルバー等を用いて、本発明に係るポリマーエマルションや架橋剤等と混合され得る。
上記溶媒としては、例えば、水;エチレングリコール、ブチルセロソルブ、ブチルカルビトール、ブチルカルビトールアセテート等の有機溶媒が挙げられる。溶媒の配合量としては、本発明の制振材配合物の固形分濃度を調整するために適宜設定すればよい。
本発明の制振材配合物を用いて塗膜等の制振材を得ること、特に本発明の制振材配合物を加熱乾燥して制振材を得ることにより、外観が非常に良好な制振材を得ることができる。これにより、従来外観を改善するために用いられていた高価な発泡剤(例えば、加熱膨張カプセル型発泡剤)の使用量を削減することができる。例えば、本発明の制振材配合物において、エマルションの原料として用いられた全単量体成分100質量%に対し、発泡剤の含有量が2質量%以下であることが好ましく、1質量%以下であることがより好ましく、0質量%であることが最も好ましい。
<本発明の制振材>
本発明は更に、本発明の制振材配合物を用いて得られる制振材でもある。
本発明の制振材を得るために用いられる制振材配合物の好ましいものは、上述した本発明の制振材配合物の好ましいものと同様である。
本発明は更に、本発明の制振材配合物を用いて得られる制振材でもある。
本発明の制振材を得るために用いられる制振材配合物の好ましいものは、上述した本発明の制振材配合物の好ましいものと同様である。
本発明の制振材は、厚みが2~8mmの塗膜(以下、制振性塗膜とも言う。)であることが好ましい。より充分な制振性を発揮することと、塗膜のはがれ、クラック等の発生を防ぎ、良好な塗膜を形成する点を考慮すると、このような厚みが好ましい。塗膜の厚みは、より好ましくは、2~6mmであり、更に好ましくは、2~5mmである。
上記塗膜を形成する基材は、その上に塗膜を形成することができる限り特に制限されず、鋼板等の金属材料、プラスチック材料等いずれのものであってもよい。中でも、鋼板の表面に塗膜を形成することは、制振性塗膜の好ましい使用形態の1つである。
上記塗膜は、例えば、刷毛、へら、エアスプレー、エアレススプレー、モルタルガン、リシンガン等を用いて本発明の制振材配合物を塗布することより得ることができる。
本発明の制振材は、本発明の制振材配合物を加熱乾燥して得られるものであることが好ましい。加熱乾燥においては、上記制振材配合物を基材上に塗布して形成した塗膜を40~200℃にすることが好ましい。加熱の温度は、より好ましくは、90~180℃であり、更に好ましくは、100~160℃である。加熱乾燥の前により低温で予備乾燥を行っても構わない。
また、塗膜を上記温度にする時間は、1~300分であることが好ましい。より好ましくは、2~250分であり、特に好ましくは、10~150分である。
また、塗膜を上記温度にする時間は、1~300分であることが好ましい。より好ましくは、2~250分であり、特に好ましくは、10~150分である。
本発明の制振材の制振性は、膜の損失係数を測定することにより評価することができる。
損失係数は、通常ηで表され、制振材に対して与えた振動がどの程度減衰したかを示すものである。上記損失係数は、数値が高いほど制振性能に優れていることを示す。
上記損失係数は、後述する実施例に記載の方法により測定することができる。
損失係数は、通常ηで表され、制振材に対して与えた振動がどの程度減衰したかを示すものである。上記損失係数は、数値が高いほど制振性能に優れていることを示す。
上記損失係数は、後述する実施例に記載の方法により測定することができる。
本発明の制振材は、幅広い温度領域で顕著に優れた制振性を発揮でき、また、外観にも優れるため、自動車、鉄道車両、船舶、航空機等の輸送機関や電気機器、建築構造物、建設機器等に好適に用いることができる。
本発明は、リグニン類及び/又はリグニン誘導体を含む樹脂組成物の、制振性塗膜を形成するための塗料の制振性付与剤としての使用でもある。
本発明はまた、リグニン類及び/又はリグニン誘導体を含む樹脂組成物の、塗膜を形成するための塗料の成膜性向上剤としての使用でもある。なお、成膜性とは、塗膜において基材からのはがれやクラックを防止することができる性能を言う。
本発明は更に、リグニン類及び/又はリグニン誘導体を含む樹脂組成物、並びに、無機顔料を含む配合物の、制振性塗膜を形成するための塗料としての使用でもある。
本発明はそして、リグニン類及び/又はリグニン誘導体を含む樹脂組成物、並びに、無機顔料を含む配合物を用いて得られる塗膜の制振材としての使用でもある。
上記樹脂組成物、配合物、塗膜の好ましい構成は、それぞれ、上述した制振材用樹脂組成物、制振材配合物、制振性塗膜の好ましい構成と同様である。
本発明はまた、リグニン類及び/又はリグニン誘導体を含む樹脂組成物の、塗膜を形成するための塗料の成膜性向上剤としての使用でもある。なお、成膜性とは、塗膜において基材からのはがれやクラックを防止することができる性能を言う。
本発明は更に、リグニン類及び/又はリグニン誘導体を含む樹脂組成物、並びに、無機顔料を含む配合物の、制振性塗膜を形成するための塗料としての使用でもある。
本発明はそして、リグニン類及び/又はリグニン誘導体を含む樹脂組成物、並びに、無機顔料を含む配合物を用いて得られる塗膜の制振材としての使用でもある。
上記樹脂組成物、配合物、塗膜の好ましい構成は、それぞれ、上述した制振材用樹脂組成物、制振材配合物、制振性塗膜の好ましい構成と同様である。
本発明の制振材用樹脂組成物は、安価で入手しやすいリグニン類及び/又はリグニン誘導体を用いることにより、幅広い温度領域で顕著に優れた制振性を発揮でき、また、外観にも優れた制振材を得ることができるものである。
以下に発明を実施するための形態を掲げて本発明を更に詳細に説明するが、本発明はこれらの発明を実施するための形態のみに限定されるものではない。なお、特に断りのない限り、「部」は「重量部」を、「%」は「質量%」を意味するものとする。
以下の製造例において、各種物性等は以下のように評価した。
<平均粒子径>
エマルション粒子の平均粒子径は動的光散乱法による粒度分布測定器(大塚電子株式会社FPAR-1000)を用い測定した。
<不揮発分(N.V.)>
得られたエマルション約1gを秤量、熱風乾燥機で150℃×1時間後、乾燥残量を不揮発分として、乾燥前質量に対する比率を質量%で表示した。
<pH>
pHメーター(堀場製作所社製「F-23」)により25℃での値を測定した。
<粘度>
B型回転粘度計(東機産業社製「VISCOMETER TUB-10」)を用いて、25℃、20rpmの条件下で測定した。
<平均粒子径>
エマルション粒子の平均粒子径は動的光散乱法による粒度分布測定器(大塚電子株式会社FPAR-1000)を用い測定した。
<不揮発分(N.V.)>
得られたエマルション約1gを秤量、熱風乾燥機で150℃×1時間後、乾燥残量を不揮発分として、乾燥前質量に対する比率を質量%で表示した。
<pH>
pHメーター(堀場製作所社製「F-23」)により25℃での値を測定した。
<粘度>
B型回転粘度計(東機産業社製「VISCOMETER TUB-10」)を用いて、25℃、20rpmの条件下で測定した。
<重量平均分子量>
以下の測定条件下で、GPC(ゲルパーミエーションクロマトグラフィー)により測定した。
測定機器:HLC-8120GPC(商品名、東ソー社製)
分子量カラム:TSK-GEL GMHXL-Lと、TSK-GELG5000HXL(いずれも東ソー社製)とを直列に接続して使用
溶離液:テトラヒドロフラン(THF)
検量線用標準物質:ポリスチレン(東ソー社製)
測定方法:測定対象物を固形分が約0.2質量%となるようにTHFに溶解し、フィルターにてろ過した物を測定サンプルとして分子量を測定する。
以下の測定条件下で、GPC(ゲルパーミエーションクロマトグラフィー)により測定した。
測定機器:HLC-8120GPC(商品名、東ソー社製)
分子量カラム:TSK-GEL GMHXL-Lと、TSK-GELG5000HXL(いずれも東ソー社製)とを直列に接続して使用
溶離液:テトラヒドロフラン(THF)
検量線用標準物質:ポリスチレン(東ソー社製)
測定方法:測定対象物を固形分が約0.2質量%となるようにTHFに溶解し、フィルターにてろ過した物を測定サンプルとして分子量を測定する。
<重合体のガラス転移温度(Tg)>
重合体のTgは、各段で用いた単量体組成から、下記計算式(1)を用いて算出した。
重合体のTgは、各段で用いた単量体組成から、下記計算式(1)を用いて算出した。
式中、Tg′は、重合体のTg(絶対温度)である。W1′、W2′、・・・Wn′は、全単量体成分に対する各単量体の質量分率である。T1、T2、・・・Tnは、各単量体成分からなるホモポリマー(単独重合体)のガラス転移温度(絶対温度)である。
なお、全ての段で用いた単量体組成から算出したTgを「トータルTg」として記載した。
上記計算式(1)により重合性単量体成分のガラス転移温度(Tg)を算出するのに使用したそれぞれのホモポリマーのTg値を下記に示した。
メチルメタクリレート(MMA):105℃
2-エチルヘキシルアクリレート(2EHA):-70℃
ブチルアクリレート(BA):-56℃
アクリル酸(AA):95℃
スチレン(St):100℃
上記計算式(1)により重合性単量体成分のガラス転移温度(Tg)を算出するのに使用したそれぞれのホモポリマーのTg値を下記に示した。
メチルメタクリレート(MMA):105℃
2-エチルヘキシルアクリレート(2EHA):-70℃
ブチルアクリレート(BA):-56℃
アクリル酸(AA):95℃
スチレン(St):100℃
<重合体のエマルションの製造例等>
(製造例1)
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に脱イオン水180.3部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を75℃まで昇温した。一方、上記滴下ロートにメチルメタクリレート505部、2-エチルヘキシルアクリレート135.0部、ブチルアクリレート350部、アクリル酸10.0部、重合連鎖移動剤であるt-ドデシルメルカプタン4.0部、予め20%水溶液に調整したニューコール707SF(商品名、ポリオキシエチレン多環フェニルエーテル硫酸アンモニウム塩:日本乳化剤社製)180.0部及び脱イオン水164.0部からなる単量体乳化物を仕込んだ。次に、重合器の内温を75℃に維持しながら、上記単量体乳化物のうちの27.0部、重合開始剤(酸化剤)である5%過硫酸カリウム水溶液5部及び2%亜硫酸水素ナトリウム水溶液10部を添加し、初期重合を開始した。40分後、反応系内を80℃に維持したまま、残りの単量体乳化物を210分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液95部及び2%亜硫酸水素ナトリウム水溶液90部を210分かけて均一に滴下し、滴下終了後60分同温度を維持し、重合を終了した。
得られた反応液を室温まで冷却後、2-ジメチルエタノールアミン16.7部を添加し、不揮発分60.1%、pH8.1、粘度2600mPa・s、平均粒子径260nm(粒度分布24%)、重量平均分子量49000のアクリル系エマルション粒子1を得た。
(製造例1)
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に脱イオン水180.3部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を75℃まで昇温した。一方、上記滴下ロートにメチルメタクリレート505部、2-エチルヘキシルアクリレート135.0部、ブチルアクリレート350部、アクリル酸10.0部、重合連鎖移動剤であるt-ドデシルメルカプタン4.0部、予め20%水溶液に調整したニューコール707SF(商品名、ポリオキシエチレン多環フェニルエーテル硫酸アンモニウム塩:日本乳化剤社製)180.0部及び脱イオン水164.0部からなる単量体乳化物を仕込んだ。次に、重合器の内温を75℃に維持しながら、上記単量体乳化物のうちの27.0部、重合開始剤(酸化剤)である5%過硫酸カリウム水溶液5部及び2%亜硫酸水素ナトリウム水溶液10部を添加し、初期重合を開始した。40分後、反応系内を80℃に維持したまま、残りの単量体乳化物を210分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液95部及び2%亜硫酸水素ナトリウム水溶液90部を210分かけて均一に滴下し、滴下終了後60分同温度を維持し、重合を終了した。
得られた反応液を室温まで冷却後、2-ジメチルエタノールアミン16.7部を添加し、不揮発分60.1%、pH8.1、粘度2600mPa・s、平均粒子径260nm(粒度分布24%)、重量平均分子量49000のアクリル系エマルション粒子1を得た。
(製造例2)
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に脱イオン水180.3部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を75℃まで昇温した。一方、上記滴下ロートにスチレン170部、メチルメタクリレート343部、2-エチルヘキシルアクリレート170部、ブチルアクリレート307部、アクリル酸10.0部、重合連鎖移動剤であるt-ドデシルメルカプタン4.0部、予め20%水溶液に調整したニューコール707SF(商品名、ポリオキシエチレン多環フェニルエーテル硫酸アンモニウム塩:日本乳化剤社製)180.0部及び脱イオン水164.0部からなる単量体乳化物を仕込んだ。次に、重合器の内温を75℃に維持しながら、上記単量体乳化物のうちの27.0部、重合開始剤(酸化剤)である5%過硫酸カリウム水溶液5部及び2%亜硫酸水素ナトリウム水溶液10部を添加し、初期重合を開始した。40分後、反応系内を80℃に維持したまま、残りの単量体乳化物を210分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液95部及び2%亜硫酸水素ナトリウム水溶液90部を210分かけて均一に滴下し、滴下終了後60分同温度を維持し、重合を終了した。
得られた反応液を室温まで冷却後、2-ジメチルエタノールアミン16.7部を添加し、不揮発分59.9%、pH8.0、粘度1800mPa・s、平均粒子径240nm(粒度分布27%)、重量平均分子量48000のアクリル系エマルション粒子2を得た。
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に脱イオン水180.3部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を75℃まで昇温した。一方、上記滴下ロートにスチレン170部、メチルメタクリレート343部、2-エチルヘキシルアクリレート170部、ブチルアクリレート307部、アクリル酸10.0部、重合連鎖移動剤であるt-ドデシルメルカプタン4.0部、予め20%水溶液に調整したニューコール707SF(商品名、ポリオキシエチレン多環フェニルエーテル硫酸アンモニウム塩:日本乳化剤社製)180.0部及び脱イオン水164.0部からなる単量体乳化物を仕込んだ。次に、重合器の内温を75℃に維持しながら、上記単量体乳化物のうちの27.0部、重合開始剤(酸化剤)である5%過硫酸カリウム水溶液5部及び2%亜硫酸水素ナトリウム水溶液10部を添加し、初期重合を開始した。40分後、反応系内を80℃に維持したまま、残りの単量体乳化物を210分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液95部及び2%亜硫酸水素ナトリウム水溶液90部を210分かけて均一に滴下し、滴下終了後60分同温度を維持し、重合を終了した。
得られた反応液を室温まで冷却後、2-ジメチルエタノールアミン16.7部を添加し、不揮発分59.9%、pH8.0、粘度1800mPa・s、平均粒子径240nm(粒度分布27%)、重量平均分子量48000のアクリル系エマルション粒子2を得た。
(製造例3)
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に脱イオン水174.1部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を75℃まで昇温した。一方、上記滴下ロートにスチレン165部、メチルメタクリレート160部、2-エチルヘキシルアクリレート165部、アクリル酸10部、重合連鎖移動剤であるt-ドデシルメルカプタン3部、予め20%水溶液に調整したレベノールWZ(商品名、花王社製)90.0部及び脱イオン水82部からなる第1段目の単量体乳化物を仕込んだ。次に、重合器の内温を80℃に維持しながら、上記単量体乳化物のうちの8部、重合開始剤(酸化剤)である5%過硫酸カリウム水溶液5部及び2%亜硫酸水素ナトリウム水溶液10部を添加し、初期重合を開始した。20分後、反応系内を80℃に維持したまま、残りの単量体乳化物を120分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液50部及び2%亜硫酸水素ナトリウム水溶液50部を120分かけて均一に滴下し、滴下終了後60分同温度を維持した。次に、滴下ロートにスチレン100部、メチルメタクリレート100部、ブチルアクリレート205部、2-エチルヘキシルアクリレート85部、アクリル酸10部、t-ドデシルメルカプタン3部、予め20%水溶液に調整したレベノールWZ(商品名、花王社製)90.0部及び脱イオン水82部からなる第2段目の単量体乳化物を仕込み、120分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液50部及び2%亜硫酸水素ナトリウム水溶液50部を120分かけて均一に滴下し、滴下終了後90分同温度を維持し、重合を終了した。得られた反応液を室温まで冷却後、25%アンモニア水10部を添加し、不揮発分59.8%、pH8.0、粘度3000mPa・s、平均粒子径260nm、重量平均分子量65000、1段目のTg20.1℃、2段目のTg-13℃、トータルTg1.6℃のアクリル系エマルション3を得た。
撹拌機、還流冷却管、温度計、窒素導入管及び滴下ロートを取り付けた重合器に脱イオン水174.1部を仕込んだ。その後、窒素ガス気流下で撹拌しながら内温を75℃まで昇温した。一方、上記滴下ロートにスチレン165部、メチルメタクリレート160部、2-エチルヘキシルアクリレート165部、アクリル酸10部、重合連鎖移動剤であるt-ドデシルメルカプタン3部、予め20%水溶液に調整したレベノールWZ(商品名、花王社製)90.0部及び脱イオン水82部からなる第1段目の単量体乳化物を仕込んだ。次に、重合器の内温を80℃に維持しながら、上記単量体乳化物のうちの8部、重合開始剤(酸化剤)である5%過硫酸カリウム水溶液5部及び2%亜硫酸水素ナトリウム水溶液10部を添加し、初期重合を開始した。20分後、反応系内を80℃に維持したまま、残りの単量体乳化物を120分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液50部及び2%亜硫酸水素ナトリウム水溶液50部を120分かけて均一に滴下し、滴下終了後60分同温度を維持した。次に、滴下ロートにスチレン100部、メチルメタクリレート100部、ブチルアクリレート205部、2-エチルヘキシルアクリレート85部、アクリル酸10部、t-ドデシルメルカプタン3部、予め20%水溶液に調整したレベノールWZ(商品名、花王社製)90.0部及び脱イオン水82部からなる第2段目の単量体乳化物を仕込み、120分にわたって均一に滴下した。同時に5%過硫酸カリウム水溶液50部及び2%亜硫酸水素ナトリウム水溶液50部を120分かけて均一に滴下し、滴下終了後90分同温度を維持し、重合を終了した。得られた反応液を室温まで冷却後、25%アンモニア水10部を添加し、不揮発分59.8%、pH8.0、粘度3000mPa・s、平均粒子径260nm、重量平均分子量65000、1段目のTg20.1℃、2段目のTg-13℃、トータルTg1.6℃のアクリル系エマルション3を得た。
また後述する実施例11、12、比較例4、5で用いた重合体のエマルションの商品名及び具体的内容は以下のとおりである。
〔SBR〕
SR-110(日本エイアンドエル社製、スチレン-ブタジエン樹脂、Tg-20℃、不揮発分50%、SP値8.7)
〔酢酸ビニル〕
ポリゾール接着用-1000J(昭和電工社製、酢酸ビニル樹脂、不揮発分51%)
〔SBR〕
SR-110(日本エイアンドエル社製、スチレン-ブタジエン樹脂、Tg-20℃、不揮発分50%、SP値8.7)
〔酢酸ビニル〕
ポリゾール接着用-1000J(昭和電工社製、酢酸ビニル樹脂、不揮発分51%)
<リグニン類の製造例>
(KP液)
クラフトパルプ廃液を濃縮することにより固形分濃度30質量%に調整した。
(SP液)
亜硫酸パルプ廃液を濃縮することにより固形分濃度30質量%に調整した。
(リグニンスルホン酸ナトリウム塩液)
パールレックスNP(日本製紙社製)を水に溶解し固形分濃度30質量%に調整した。
(リグニンスルホン酸マグネシウム塩液)
サンエキスP321(日本製紙社製)を水に溶解し固形分濃度30質量%に調整した。
(リグニンスルホン酸カルシウム塩液)
パールレックスCP(日本製紙社製)を水に溶解し固形分濃度30質量%に調整した。
(KP液)
クラフトパルプ廃液を濃縮することにより固形分濃度30質量%に調整した。
(SP液)
亜硫酸パルプ廃液を濃縮することにより固形分濃度30質量%に調整した。
(リグニンスルホン酸ナトリウム塩液)
パールレックスNP(日本製紙社製)を水に溶解し固形分濃度30質量%に調整した。
(リグニンスルホン酸マグネシウム塩液)
サンエキスP321(日本製紙社製)を水に溶解し固形分濃度30質量%に調整した。
(リグニンスルホン酸カルシウム塩液)
パールレックスCP(日本製紙社製)を水に溶解し固形分濃度30質量%に調整した。
<リグニン誘導体の製造例>
(製造例4)
温度計、撹拌装置、還流装置、窒素導入管及び滴下装置を備えたガラス反応容器に、水300g、メトキシポリエチレングリコールアクリレート(ライトアクリレート130A 共栄社化学社製)40g、アクリル酸15g及びパールレックスNP(リグニンスルホン酸ナトリウム、日本製紙ケミカル社製)144g、t-ドデシルメルカプタン0.5gを仕込み、窒素雰囲気下で100℃に昇温した。30分間撹拌後、20%過酸化水素水溶液2gを10分間かけて反応容器に連続滴下し、直ちに、L-アスコルビン酸0.2gを混合した水溶液20gとを滴下開始した。さらに、温度を100℃に保持した状態で1時間反応させた後、水147gを混合撹拌することにより固形分30%のリグニン誘導体水溶液を得た。
(製造例4)
温度計、撹拌装置、還流装置、窒素導入管及び滴下装置を備えたガラス反応容器に、水300g、メトキシポリエチレングリコールアクリレート(ライトアクリレート130A 共栄社化学社製)40g、アクリル酸15g及びパールレックスNP(リグニンスルホン酸ナトリウム、日本製紙ケミカル社製)144g、t-ドデシルメルカプタン0.5gを仕込み、窒素雰囲気下で100℃に昇温した。30分間撹拌後、20%過酸化水素水溶液2gを10分間かけて反応容器に連続滴下し、直ちに、L-アスコルビン酸0.2gを混合した水溶液20gとを滴下開始した。さらに、温度を100℃に保持した状態で1時間反応させた後、水147gを混合撹拌することにより固形分30%のリグニン誘導体水溶液を得た。
<実施例1~13、比較例1~5>
(実施例1)
製造例1において得られたエマルション1 80部に、リグニン類(KP液)20部、脱イオン水20部を混合し固形分濃度45質量%のエマルションリグニンブレンド品(樹脂組成物)1を得た。
(実施例1)
製造例1において得られたエマルション1 80部に、リグニン類(KP液)20部、脱イオン水20部を混合し固形分濃度45質量%のエマルションリグニンブレンド品(樹脂組成物)1を得た。
(実施例2~13、比較例1~5)
表1に示すようにエマルション、リグニン類/リグニン誘導体、脱イオン水それぞれの種類及び配合量を変更した以外は実施例1と同様にしてエマルションリグニンブレンド品2~18を得た。なお、比較例1~5ではリグニン類/リグニン誘導体を配合しなかった。
表1に示すようにエマルション、リグニン類/リグニン誘導体、脱イオン水それぞれの種類及び配合量を変更した以外は実施例1と同様にしてエマルションリグニンブレンド品2~18を得た。なお、比較例1~5ではリグニン類/リグニン誘導体を配合しなかった。
<制振材配合物の調製>
実施例1~13のエマルションリグニンブレンド品1~13、及び、比較例1~5のエマルションリグニンブレンド品14~18をそれぞれ下記の通り配合し、制振材配合物を作製し、以下のように各種特性を評価した。結果を表1に示す。
・エマルションリグニンブレンド品1~18 359部
・炭酸カルシウム NN#200*1 620部
・分散剤 アクアリックDL-40S*2 6部
・増粘剤 アクリセットWR-650*3 4部
*1:日東粉化工業株式会社製 充填剤
*2:株式会社日本触媒製 ポリカルボン酸型分散剤(有効成分44%)
*3:株式会社日本触媒製 アルカリ可溶性のアクリル系増粘剤(有効成分30%)
実施例1~13のエマルションリグニンブレンド品1~13、及び、比較例1~5のエマルションリグニンブレンド品14~18をそれぞれ下記の通り配合し、制振材配合物を作製し、以下のように各種特性を評価した。結果を表1に示す。
・エマルションリグニンブレンド品1~18 359部
・炭酸カルシウム NN#200*1 620部
・分散剤 アクアリックDL-40S*2 6部
・増粘剤 アクリセットWR-650*3 4部
*1:日東粉化工業株式会社製 充填剤
*2:株式会社日本触媒製 ポリカルボン酸型分散剤(有効成分44%)
*3:株式会社日本触媒製 アルカリ可溶性のアクリル系増粘剤(有効成分30%)
各種特性の評価方法を以下に示す。
上記実施例、比較例で得られた制振材配合物について、塗膜の外観評価と制振性試験を下記方法にて実施した。結果を表1に示す。
上記実施例、比較例で得られた制振材配合物について、塗膜の外観評価と制振性試験を下記方法にて実施した。結果を表1に示す。
<塗膜の外観評価>
鋼板(商品名SPCC-SD・幅75mm×長さ150mm×厚み0.8mm、日本テストパネル社製)の上に、作製した制振材配合物を配合物の塗布厚みが4mmとなるように塗布した。その後、熱風乾燥機を用いて、150℃で50分間乾燥し、得られた乾燥塗膜の表面状態を以下の基準で評価した。
○:異常なし。
△:基材からのはがれや被膜のクラックが所々に見られる。
×:被膜全体にわたってはがれ、クラックが見られる。
鋼板(商品名SPCC-SD・幅75mm×長さ150mm×厚み0.8mm、日本テストパネル社製)の上に、作製した制振材配合物を配合物の塗布厚みが4mmとなるように塗布した。その後、熱風乾燥機を用いて、150℃で50分間乾燥し、得られた乾燥塗膜の表面状態を以下の基準で評価した。
○:異常なし。
△:基材からのはがれや被膜のクラックが所々に見られる。
×:被膜全体にわたってはがれ、クラックが見られる。
<制振性試験>
上記制振材配合物を冷間圧延鋼板(商品名SPCC・幅15mm×長さ250mm×厚み1.5mm、日本テストパネル社製)の上に3mmの厚みで塗布して150℃で30分間乾燥し、冷間圧延鋼板上に面密度4.0Kg/m2の制振材被膜を形成した。
制振性の測定は、それぞれの温度(20℃、30℃、40℃、50℃、60℃)における損失係数を、片持ち梁法(株式会社小野測機製損失係数測定システム)を用いて評価した。また、制振性の評価は、総損失係数(20℃、30℃、40℃、50℃、60℃での損失係数の和)により行い、総損失係数の値が大きいほど制振性に優れるものとした。
上記制振材配合物を冷間圧延鋼板(商品名SPCC・幅15mm×長さ250mm×厚み1.5mm、日本テストパネル社製)の上に3mmの厚みで塗布して150℃で30分間乾燥し、冷間圧延鋼板上に面密度4.0Kg/m2の制振材被膜を形成した。
制振性の測定は、それぞれの温度(20℃、30℃、40℃、50℃、60℃)における損失係数を、片持ち梁法(株式会社小野測機製損失係数測定システム)を用いて評価した。また、制振性の評価は、総損失係数(20℃、30℃、40℃、50℃、60℃での損失係数の和)により行い、総損失係数の値が大きいほど制振性に優れるものとした。
製造例1において得られたエマルションを用いる実施例1、2と比較例1とを比較すると、実施例1ではKP液を含むことにより、実施例2ではSP液を含むことにより、それぞれ制振性及び外観がより優れることが実証されている。また、製造例2において得られたエマルションを用いる実施例3~9、13と比較例2とを比較すると、実施例3、4ではKP液を含むことにより、実施例5ではSP液を含むことにより、実施例6~9では各種リグニンスルホン酸塩を含むことにより、実施例13ではリグニン誘導体を含むことにより、それぞれ制振性及び外観がより優れることが実証されている。更に、製造例3において得られたエマルションを用いる実施例10と比較例3とを比較すると、KP液を含むことにより、制振性及び外観がより優れることが実証されている。そして、スチレン-ブタジエン樹脂を用いる実施例11と比較例4とを比較すると、KP液を含むことにより、制振性及び外観がより優れることが実証されている。また、製造例2において得られたエマルション及び酢酸ビニル樹脂を併用する実施例12と比較例5とを比較すると、KP液を含むことにより、制振性及び外観がより優れることが実証されている。
上述したように、実施例と、該実施例と対応する比較例(該実施例と同じ樹脂を用いた比較例)とを比較すると、いずれの実施例の制振材配合物においても、リグニン類及び/又はリグニン誘導体を含むことにより、制振性及び外観がより優れることが実証されている。中でも、実施例の制振材塗膜において、発泡剤を使用していないにも関わらずはがれ及びクラックの発生が抑制されて外観が充分に優れたものとなっているのは、本発明の顕著な外観改善効果を示すものである。したがって、上記実施例の結果から、本発明の技術的範囲全般において、また、本明細書において開示した種々の形態において本発明が適用でき、有利な作用効果を発揮することができるといえる。
Claims (7)
- リグニン類及び/又はリグニン誘導体を含むことを特徴とする制振材用樹脂組成物。
- 前記制振材用樹脂組成物は、更に樹脂を含む
ことを特徴とする請求項1に記載の制振材用樹脂組成物。 - 前記樹脂は、(メタ)アクリル系重合体、ジエン系重合体、及び、酢酸ビニル系重合体からなる群より選択される少なくとも1種の重合体を含む
ことを特徴とする請求項2に記載の制振材用樹脂組成物。 - 前記制振材用樹脂組成物は、水系溶媒を含み、
前記樹脂は、水系溶媒中に分散しているか、又は、溶解している
ことを特徴とする請求項2又は3のいずれかに記載の制振材用樹脂組成物。 - 前記樹脂は、単量体成分を乳化重合してなるエマルションを含む
ことを特徴とする請求項2~4のいずれかに記載の制振材用樹脂組成物。 - 請求項1~5のいずれかに記載の制振材用樹脂組成物及び無機顔料を含む
ことを特徴とする制振材配合物。 - 請求項6に記載の制振材配合物を用いて得られる
ことを特徴とする制振材。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/515,011 US11053408B2 (en) | 2014-09-30 | 2015-09-29 | Resin composition for damping material |
EP15847699.4A EP3202854A4 (en) | 2014-09-30 | 2015-09-29 | Resin composition for damping material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-202238 | 2014-09-30 | ||
JP2014202238A JP6510209B2 (ja) | 2014-09-30 | 2014-09-30 | 塗布型加熱乾燥用制振材配合物用樹脂組成物 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016052516A1 true WO2016052516A1 (ja) | 2016-04-07 |
Family
ID=55630543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/077535 WO2016052516A1 (ja) | 2014-09-30 | 2015-09-29 | 制振材用樹脂組成物 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11053408B2 (ja) |
EP (1) | EP3202854A4 (ja) |
JP (1) | JP6510209B2 (ja) |
WO (1) | WO2016052516A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113368831A (zh) * | 2021-06-24 | 2021-09-10 | 华南农业大学 | 一种高岭土-纳米Fe2O3-木质素水凝胶复合材料及其制备方法与应用 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3878907B1 (en) * | 2019-06-06 | 2022-10-19 | Saiden Chemical Industry Co., Ltd. | Composite resin composition and method for producing composite resin composition |
CN113402788B (zh) * | 2020-03-17 | 2022-09-20 | 中国石油化工股份有限公司 | 含有阻尼改性剂的硫化组合物、硫化橡胶及其制备方法和应用 |
CN111548451B (zh) * | 2020-06-18 | 2022-11-08 | 中国热带农业科学院农产品加工研究所 | 一种高性能橡胶阻尼材料及其制备方法 |
CN113308162A (zh) * | 2021-07-09 | 2021-08-27 | 安徽米兰士装饰材料有限公司 | 一种屋面防水用金属涂料及其制备方法 |
CN114412945A (zh) * | 2022-03-07 | 2022-04-29 | 平阳鼎诚机械有限公司 | 一种采油设备用刹车零件及其制备方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5716070A (en) * | 1980-07-04 | 1982-01-27 | Nippon Oil & Fats Co Ltd | Composition for water-proofing coat |
JPH07146686A (ja) * | 1993-05-13 | 1995-06-06 | Ryusuke Kono | 機能を性遮音樹脂の製造法 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2118487A1 (de) | 1971-04-16 | 1972-10-26 | Farbenfabriken Bayer Ag, 5090 Leverkusen | Verfahren zur Herstellung von porösen Kohlenstoff enthaltenden Formkörpern |
US3931448A (en) * | 1972-09-20 | 1976-01-06 | United States Steel Corporation | Coated articles |
JPH02150445A (ja) | 1988-12-01 | 1990-06-08 | Kobe Steel Ltd | 振動減衰性制振金属板用樹脂組成物 |
US5188665A (en) * | 1992-01-24 | 1993-02-23 | Westvaco Corporation | Lignin amine salt-based binders for water-based black ink formulations |
JP3367124B2 (ja) | 1992-11-06 | 2003-01-14 | 日本ゼオン株式会社 | アクリル酸エステル系共重合体プラスチゾル組成物 |
DE60235430D1 (de) | 2001-10-19 | 2010-04-08 | Nippon Catalytic Chem Ind | Emulsion für Vibrationsdämpfungsmaterial und steinschlagbeständiges Material |
JP3877066B2 (ja) | 2001-10-19 | 2007-02-07 | 株式会社日本触媒 | 制振材用エマルション及び多価金属酸化物 |
EP1987935A3 (en) * | 2004-12-01 | 2008-11-19 | Nitto Denko Corporation | Foam Filling Member |
JP5769930B2 (ja) | 2010-05-14 | 2015-08-26 | 日本製紙株式会社 | 分散剤 |
CN102533019A (zh) * | 2010-12-15 | 2012-07-04 | 戚冬梅 | 高光外墙涂料 |
CN102618020B (zh) * | 2011-01-28 | 2015-03-04 | 比亚迪精密制造有限公司 | 聚氨酯乳液及其制备方法、纳米色浆及其制备方法、紫外光固化的涂料组合物及其制备方法 |
CN102888159A (zh) * | 2011-07-21 | 2013-01-23 | 许鹤 | 具备抗裂能力的建筑外墙涂料 |
US9023919B2 (en) | 2012-02-14 | 2015-05-05 | Basf Se | Aqueous binder composition |
CN103421399A (zh) * | 2013-08-20 | 2013-12-04 | 广西梧州龙鱼漆业有限公司 | 外墙隔热质感涂料及其制备方法 |
CN103694784A (zh) * | 2013-12-26 | 2014-04-02 | 青岛友铭辰生物技术有限公司 | 一种水性紫外光固化油墨及其制备方法 |
CN103756453A (zh) * | 2013-12-27 | 2014-04-30 | 吴江市东泰电力特种开关有限公司 | 一种水性阻尼防锈涂料及其制备方法 |
CN103992062B (zh) * | 2014-05-28 | 2016-03-09 | 宁波华宝石节能科技股份有限公司 | 仿石涂料 |
-
2014
- 2014-09-30 JP JP2014202238A patent/JP6510209B2/ja active Active
-
2015
- 2015-09-29 US US15/515,011 patent/US11053408B2/en active Active
- 2015-09-29 EP EP15847699.4A patent/EP3202854A4/en active Pending
- 2015-09-29 WO PCT/JP2015/077535 patent/WO2016052516A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5716070A (en) * | 1980-07-04 | 1982-01-27 | Nippon Oil & Fats Co Ltd | Composition for water-proofing coat |
JPH07146686A (ja) * | 1993-05-13 | 1995-06-06 | Ryusuke Kono | 機能を性遮音樹脂の製造法 |
Non-Patent Citations (2)
Title |
---|
FENG CHEN ET AL.: "Physical Properties of Lignin-Based Polypropylene Blends", POLYMER COMPOSITES, vol. 32, no. 7, 2011, pages 1019 - 1025, XP055424773 * |
See also references of EP3202854A4 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113368831A (zh) * | 2021-06-24 | 2021-09-10 | 华南农业大学 | 一种高岭土-纳米Fe2O3-木质素水凝胶复合材料及其制备方法与应用 |
CN113368831B (zh) * | 2021-06-24 | 2022-11-29 | 华南农业大学 | 一种高岭土-纳米Fe2O3-木质素水凝胶复合材料及其制备方法与应用 |
Also Published As
Publication number | Publication date |
---|---|
JP2016069574A (ja) | 2016-05-09 |
US20170210935A1 (en) | 2017-07-27 |
JP6510209B2 (ja) | 2019-05-08 |
US11053408B2 (en) | 2021-07-06 |
EP3202854A1 (en) | 2017-08-09 |
EP3202854A4 (en) | 2018-06-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016052516A1 (ja) | 制振材用樹脂組成物 | |
KR20080040011A (ko) | 제진재용 에멀션 | |
KR20110013402A (ko) | 제진재용 에멀션 조성물 | |
US9023919B2 (en) | Aqueous binder composition | |
JP6637814B2 (ja) | 制振材用樹脂組成物 | |
JP5685001B2 (ja) | 制振材用エマルション及び制振材配合物 | |
JP6784768B2 (ja) | 制振塗料用樹脂組成物及びその製造方法 | |
JP5284914B2 (ja) | 制振材用樹脂組成物 | |
JP6714416B2 (ja) | 加熱乾燥用樹脂組成物 | |
JP6662540B2 (ja) | 制振材用樹脂組成物 | |
JP2014533307A (ja) | 水性被覆組成物 | |
JP6716321B2 (ja) | 樹脂組成物 | |
JP2012126775A (ja) | 制振材用エマルション樹脂組成物及び制振材 | |
JP5685002B2 (ja) | 制振材用エマルション及び制振材組成物 | |
CN112534021B (zh) | 减振材料用树脂组合物 | |
JP6313662B2 (ja) | 振動減衰材用樹脂組成物 | |
JP2014052024A (ja) | 制振材 | |
JP6243206B2 (ja) | 振動減衰材用樹脂組成物 | |
JP5937350B2 (ja) | 制振材用樹脂 | |
JP6164833B2 (ja) | 制振材用樹脂、制振材用組成物及び塗膜 | |
JP6640521B2 (ja) | 制振材用樹脂組成物 | |
JP2017048299A (ja) | 制振材用配合物 | |
JP2013199622A (ja) | 加熱乾燥用エマルション組成物 | |
KR101786087B1 (ko) | 제진재용 단량체 조성물, 에멀젼 제조용 조성물, 이로부터 제조된 에멀젼 및 그 제조방법 | |
JP2015196740A (ja) | 加熱乾燥用エマルション組成物、加熱乾燥用塗料及び塗膜 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15847699 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15515011 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015847699 Country of ref document: EP |