WO2016051682A1 - 半導体単結晶引上げ装置及びこれを用いた半導体単結晶の再溶融方法 - Google Patents

半導体単結晶引上げ装置及びこれを用いた半導体単結晶の再溶融方法 Download PDF

Info

Publication number
WO2016051682A1
WO2016051682A1 PCT/JP2015/004578 JP2015004578W WO2016051682A1 WO 2016051682 A1 WO2016051682 A1 WO 2016051682A1 JP 2015004578 W JP2015004578 W JP 2015004578W WO 2016051682 A1 WO2016051682 A1 WO 2016051682A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
semiconductor single
remelting
melt
crystal
Prior art date
Application number
PCT/JP2015/004578
Other languages
English (en)
French (fr)
Inventor
直樹 増田
雅彦 浦野
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Priority to CN201580049307.3A priority Critical patent/CN107075718B/zh
Priority to DE112015003778.0T priority patent/DE112015003778B4/de
Priority to JP2016551497A priority patent/JP6341291B2/ja
Priority to KR1020177006591A priority patent/KR102241325B1/ko
Priority to US15/507,851 priority patent/US10113247B2/en
Publication of WO2016051682A1 publication Critical patent/WO2016051682A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/28Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using weight changes of the crystal or the melt, e.g. flotation methods
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/14Heating of the melt or the crystallised materials

Definitions

  • the present invention relates to a method for producing a single crystal by the Czochralski method (hereinafter also referred to as CZ method), and relates to a remelting method in the case where dislocations are formed during single crystal growth.
  • the Czochralski method is known as a method for producing a silicon single crystal.
  • a raw material lump is accommodated in a quartz crucible installed in a chamber, heated with a heater, and the raw material in the crucible is made into a melt. Then, a seed crystal is deposited on the surface of the raw material melt and pulled up while rotating to grow a silicon single crystal having a desired diameter and quality.
  • the diameter of the neck is narrowed once to 3-4 mm in the dash necking process to remove the dislocations contained in the seed crystal and the dislocations generated by heat shock at the time of landing.
  • a cone process for gradually increasing the diameter to a desired diameter is performed to form a straight body portion to be a product.
  • a tail portion that reduces the diameter is formed and separated from the silicon melt.
  • the remelting step first the temperature of the melt is raised to a temperature at which the crystals melt. Thereafter, the crystal is immersed in the melt and melted. At this time, since it is necessary to take care that the crystal does not contact the bottom of the crucible, it is preferable to immerse the crystal in a range of approximately 20 to 50 mm. After confirming that the immersed crystal is melted, the operation of immersing the crystal in the melt is repeated in the same manner, and all the crystals produced so far are melted.
  • An object of the present invention is to provide a semiconductor single crystal pulling apparatus and a remelting method capable of melting.
  • a single crystal pulling apparatus comprising: a heater that heats and holds a crucible containing a melt; and a wire that is grown while pulling a semiconductor single crystal from the melt. And When the single crystal pulling device is immersed in the melt and remelted the lower end portion of the semiconductor single crystal with the wire, the lower end portion of the semiconductor single crystal is obtained from the change in the weight of the semiconductor single crystal.
  • a remelt detection device for detecting the completion of remelting, By applying a voltage between the crucible and the wire, when the semiconductor single crystal is wound up with the wire while applying a voltage between the semiconductor single crystal and the melt, the semiconductor single crystal And a bottom end detection device for detecting a bottom end of the semiconductor single crystal from a position where no current flows between the melt and the melt. .
  • a method for immersing and remelting the lower end portion of the semiconductor single crystal in the melt using the semiconductor single crystal pulling apparatus as described above A crystal immersing step of lowering the wire of the single crystal pulling apparatus, immersing the lower end portion of the semiconductor single crystal in the melt, and remelting the lower end portion; Using the remelting detection device, from a change in the weight of the semiconductor single crystal, a remelting detection step of detecting that melting of the lower end portion of the semiconductor single crystal immersed in the melt is completed, Winding the semiconductor single crystal with the wire while applying a voltage between the semiconductor single crystal and the melt, and using the lowermost end detection device, a current flows between the semiconductor single crystal and the melt.
  • a method for remelting a semiconductor single crystal comprising: a determination step for determining whether to start a crystal dipping step again or end remelting after the bottom end detection step is completed.
  • the semiconductor single crystal pulling apparatus of the present invention since the semiconductor single crystal pulling apparatus of the present invention is used, it is not necessary to visually confirm the completion of remelting of the lower end portion of the immersed semiconductor single crystal, so that remelting can be performed efficiently.
  • the remelt detection step When the change in the weight of the semiconductor single crystal falls within a predetermined value set in advance, it can be detected that the remelting of the lower end portion of the immersed semiconductor single crystal has been completed. Thus, when the change in the weight of the semiconductor single crystal is within a predetermined value set in advance, if it is detected that the remelting of the lower end of the immersed semiconductor single crystal is completed, the lower end of the semiconductor single crystal It can be detected more accurately that the remelting is completed.
  • the determination step when the weight of the semiconductor single crystal becomes equal to or less than a predetermined weight set in advance, it can be determined that the remelting is finished. In this way, when the weight of the semiconductor single crystal is equal to or less than a predetermined weight set in advance, the end of remelting can be determined.
  • the length of the lower end portion of the semiconductor single crystal immersed in the melt is less than the depth of the melt in the crucible from the detected lower end of the semiconductor single crystal. It is preferable that By doing so, the length of the lower end portion of the semiconductor single crystal immersed in the melt is less than the depth of the melt in the crucible even when there is an undissolved portion at the lower end portion of the semiconductor single crystal. Therefore, it is possible to prevent the semiconductor single crystal from contacting the crucible bottom.
  • the semiconductor single crystal can be remelted automatically by automatically performing the crystal dipping step, the remelt detection step, the bottom end detection step, and the determination step.
  • the semiconductor single crystal can be remelted automatically, it can be efficiently remelted.
  • the semiconductor single crystal pulling apparatus of the present invention is a semiconductor single crystal remelting method, it is possible to detect whether remelting of the lower end portion of the semiconductor single crystal is completed from the change in the weight of the semiconductor single crystal. It is not necessary to visually confirm that the remelting of the lower end portion of the semiconductor single crystal has been completed. Moreover, since the lowest end of the semiconductor single crystal can be detected electrically, it can be detected accurately. Further, if the semiconductor single crystal remelting method using the semiconductor single crystal pulling apparatus of the present invention, since it is not necessary to visually confirm the completion of remelting of the lower end portion of the immersed semiconductor single crystal, Remelting can be performed efficiently.
  • Example 1 It is the schematic which showed an example of the semiconductor single crystal pulling apparatus of this invention.
  • Example 1 it is the figure which showed the relationship between the weight of a crystal
  • 10 is a process diagram of a semiconductor single crystal remelting method in Example 2.
  • FIG. It is the figure which showed the relationship between the length of the crystal
  • a semiconductor single crystal pulling apparatus 1 of the present invention includes a heater 4 that heats and holds a crucible 3 that contains a melt 2, and a wire 6 that is grown while pulling up a semiconductor single crystal 5 from the melt 2.
  • the remelting detection device 7 and the lowermost end detection device 8 are provided.
  • the remelting detection device 7 can measure the weight of the semiconductor single crystal 5 by the weight measuring device 10 connected to the wire winding unit 9. Then, when the remelting detection device 7 unwinds the wire 6 and immerses the lower end portion of the semiconductor single crystal 5 in the melt 2 and remelts it, the remelting detection device 7 detects the change in the weight of the semiconductor single crystal 5 from the change in weight of the semiconductor single crystal 5. It can be detected that the remelting of the lower end of the crystal 5 has been completed.
  • the weight measuring device 10 can be a load cell, for example.
  • the power source 11 and the ammeter 12 of the lowermost end detection device 8 are electrically connected to the crucible 3 and the wire 6.
  • the wire winding part 9 and the wire 6 are insulated with respect to the earth (ground). Therefore, when a power source 11 is connected between the crucible 3 and the wire 6 and a voltage is applied, when the semiconductor single crystal 5 is in contact with the melt 2, a closed circuit is formed and a minute current flows. On the other hand, since the closed circuit is not formed when the semiconductor single crystal 5 is separated from the melt 2, no current flows.
  • the lowest end detection device 8 applies a voltage between the crucible 3 and the wire 6, thereby applying a voltage between the semiconductor single crystal 5 and the melt 2.
  • the semiconductor single crystal 5 is wound up at 6, the lowermost end of the semiconductor single crystal 5 is detected from the position where no current flows between the semiconductor single crystal 5 and the melt 2.
  • the wire winding unit 9 can be controlled by the control device 13 connected to the remelting detection device 7 and the lowermost end detection device 8.
  • the change in the weight of the semiconductor single crystal 5 is within a predetermined value set in advance, it is preferable to detect that the remelting of the lower end portion of the immersed semiconductor single crystal 5 is completed.
  • the change in the weight of the semiconductor single crystal 5 is equal to or less than a predetermined weight set in advance, the end of remelting can be determined. That is, as the melting of the single crystal proceeds, the weight of the single crystal gradually decreases, but it can be determined that remelting has been completed when this change is almost eliminated.
  • the semiconductor single crystal 5 is wound up by the wire 6 while applying a voltage between the semiconductor single crystal 5 and the melt 2. Then, the position where the current no longer flows between the semiconductor single crystal 5 and the melt 2 using the lowermost end detection device 8, that is, the position where the lowermost end of the semiconductor single crystal 5 is separated from the melt is determined. The lowermost end of the single crystal 5 is detected.
  • the crystal Since the lowest end of the semiconductor single crystal 5 can be accurately detected in this way, the crystal can be immersed again from the lowest end of the detected semiconductor single crystal 5 when remelted. Thereby, for example, even when there is an undissolved portion at the lower end of the semiconductor single crystal 5, it is possible to always immerse the crystal in the melt by the same length without abutting the single crystal against the bottom of the crucible.
  • the weight of the semiconductor single crystal 5 is equal to or less than a predetermined weight set in advance, it can be determined that almost all the single crystals are melted and the remelting is finished.
  • the length of the lower end portion of the semiconductor single crystal 5 to be dipped in the melt 2 in the subsequent crystal dipping process is detected in the lowest end detecting process. It is preferable that the depth of the melt 2 in the crucible 3 is less than the depth of the melted semiconductor single crystal 5.
  • the length of the lower end portion of the semiconductor single crystal 5 immersed in the melt 2 is set to be less than the depth of the melt 2 in the crucible 3 from the lowest end of the detected semiconductor single crystal 5. It is possible to reliably prevent the crucible 3 from being damaged by the lower end portion of the single crystal 5 coming into contact with the bottom of the crucible 3.
  • the semiconductor single crystal can be remelted automatically by automatically performing the above-described crystal immersion step, remelting detection step, bottom end detection step, and discrimination step.
  • the semiconductor single crystal can be automatically remelted including the immersion of the crystal. Therefore, the semiconductor single crystal can be efficiently remelted.
  • Example 1 The semiconductor single crystal 5 was remelted using the semiconductor single crystal pulling apparatus 1 of the present invention as shown in FIG. At that time, the change in the weight of the semiconductor single crystal 5 was measured by the weight measuring device 10 (load cell), and the weight of the semiconductor single crystal 5 being remelted was observed. The measurement results at this time are shown in FIG.
  • the crystal was wound up with the wire 6 and the molten state of the semiconductor single crystal 5 was confirmed.
  • the lower end portion of the semiconductor single crystal 5 immersed in the melt 2 was in a state where it could be determined that the melting was almost completed.
  • Example 2 Using the semiconductor single crystal pulling apparatus 1 of the present invention as shown in FIG. 1, re-melting of the semiconductor single crystal 5 was started in the process as shown in FIG. 3 (SP1). In addition, the control apparatus 13 was programmed and the remelting was performed automatically so that the process shown below might be performed automatically.
  • the semiconductor single crystal 5 to be remelted was one having a straight body portion of about 20 cm.
  • the weight of the semiconductor single crystal 5 at this time is measured at any time by the weight measuring device 10 (load cell), and the result is transferred to the control device 13. At this time, when the change in the weight of the semiconductor single crystal 5 is within a predetermined range (for example, within 200 g per minute), the remelting detection device indicates that the melting of the lower end portion of the semiconductor single crystal 5 is completed. 7 is set in advance so as to be detected by SP (SP3).
  • SP SP
  • the length of the lower end portion of the semiconductor single crystal 5 immersed in the melt is 40 mm, which is less than the depth of the melt 2 in the crucible 3. .
  • the remelting of the semiconductor single crystal was performed using a remelting detection device such as the semiconductor single crystal pulling device of the present invention and a single crystal pulling device not equipped with the lowest end detection device. And the operator confirmed visually whether the lower end part of the semiconductor single crystal was remelted.
  • the semiconductor single crystal to be remelted was the same as in Example 2 and had a straight body portion of 20 cm. The relationship between the length of the semiconductor single crystal and the time at this time is shown by a broken line in FIG.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has any configuration that has substantially the same configuration as the technical idea described in the claims of the present invention and that exhibits the same effects. Are included in the technical scope.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

 本発明は、融液を収容するルツボを加熱保温するヒーターと、融液から半導体単結晶を引き上げながら育成するワイヤーとを具備する単結晶引上げ装置であって、単結晶引上げ装置は、ワイヤーで半導体単結晶の下端部を融液中に浸漬させて再溶融させた際に、半導体単結晶の重量の変化から、半導体単結晶の下端部の再溶融が完了したことを検出する再溶融検出装置と、ルツボとワイヤーとの間に電圧を印可することで、半導体単結晶と融液との間に電圧を印加しながらワイヤーで半導体単結晶を巻上げた際に、半導体単結晶と融液との間に電流が流れなくなった位置から、半導体単結晶の最下端を検出する最下端検出装置とを具備するものであることを特徴とする半導体単結晶引上げ装置である。これにより、半導体単結晶の再溶融において、浸漬させた結晶の溶融完了を判断するため、目視による確認が必要ない、効果的な再溶融が可能となる。

Description

半導体単結晶引上げ装置及びこれを用いた半導体単結晶の再溶融方法
 本発明はチョクラルスキー法(以下CZ法ともいう)による単結晶の製造方法に関し、単結晶育成中に有転位化した場合の再溶融方法に関する。
 シリコン単結晶の製造方法として、チョクラルスキー法が知られている。この方法はチャンバー内に設置された石英ルツボに原料塊を収容し、ヒーターで加熱し、ルツボ内の原料を融液にする。そして、原料融液面に種結晶を着液させ回転させながら引き上げ、所望の直径と品質を有するシリコン単結晶を育成させる。
 シリコン単結晶の製造工程では、種結晶に含まれている転位や、着液時の熱ショックなどにより発生する転位を除去する為、ダッシュネッキング工程で一旦直径を3~4mm程度まで細く絞りネック部を形成する。
 その後、徐々に所望の直径まで増径させるコーン工程を経て、製品となる直胴部を形成する。最後はシリコン融液から切り離す際に生じる熱ショックによる転位の影響を小さくする為、直径を減径するテール部を形成し、シリコン融液から切り離す。
 しかし、シリコン単結晶の製造過程では、様々な外乱により、コーン工程、直胴工程において転位が発生することがある。この場合、その後に形成される結晶の単結晶化が損なわれる為、製品として価値が無くなってしまう。そこでシリコン単結晶製造工程の早い段階で転位が発生した場合、これまでに製造した単結晶を溶融し直し(以下、再溶融と言う)、その後、再度単結晶の製造が行われる。
 再溶融の工程では、まず融液の温度を結晶が溶ける温度まで上昇させる。その後、結晶を融液に浸漬させ溶融する。この時、結晶がルツボ底部に接触しないよう注意する必要があるため、およそ20~50mmの範囲で結晶を浸漬させるのが好ましい。浸漬させた結晶が溶融したことを確認した後、同様に結晶を融液に浸漬させる作業を繰り返しこれまでに製造した結晶を全て溶融する。
 特許文献1に開示されているシリコン単結晶の製造方法では、有転位化した結晶を効率的に再溶融する手段として、結晶に上下動の振動を加えながら一定の平均速度で浸漬させる方法が記載されている。
特開2009―132552号公報
 しかしながら、融液の温度によっては結晶の中心部に円錐状の溶け残りができる場合がある。このような場合、特許文献1に記載の方法では、融液に浸漬させた結晶の溶融が完了しないまま降下を続けた場合、結晶がルツボ底面と接触し、ルツボを破損させる危険性がある。
 そのため、浸漬させた結晶の溶融が完了したことを判断するためには、作業者の目視による確認が必要となる。この場合、作業者は一定時間毎に結晶を融液から切り離して上昇させ、覗き窓から結晶の溶融状態を確認する作業を行う必要がある。
 そして、溶融する結晶が長いものであった場合、完全に溶融するまでにはかなりの時間がかかり、その間、監視を繰り返す必要がある為、作業者の大きな負担となっている。
 また監視のタイミングが合わず、溶融が完了したまま放置された場合、この間無駄な電力の消費が行われ、さらに融液温度が高温となり石英ルツボの劣化を引き起こすという問題がある。また再溶融は生産に寄与しない工程でありこの間の時間、電力、人件費は全てロスとなる為、効率的な再溶融が望まれていた。
 本発明は、上記のような問題を解決する為になされたもので、半導体単結晶の再溶融において、浸漬させた結晶の溶融完了を判断するため、目視による確認が必要ない、効果的な再溶融が可能な半導体単結晶引上げ装置および再溶融方法を提供することを目的とする。
 上記目的を達成するために、本発明によれば、融液を収容するルツボを加熱保温するヒーターと、前記融液から半導体単結晶を引き上げながら育成するワイヤーとを具備する単結晶引上げ装置であって、
 前記単結晶引上げ装置は、前記ワイヤーで前記半導体単結晶の下端部を前記融液中に浸漬させて再溶融させた際に、前記半導体単結晶の重量の変化から、前記半導体単結晶の下端部の再溶融が完了したことを検出する再溶融検出装置と、
 前記ルツボと前記ワイヤーとの間に電圧を印可することで、前記半導体単結晶と前記融液との間に電圧を印加しながら前記ワイヤーで前記半導体単結晶を巻上げた際に、前記半導体単結晶と前記融液との間に電流が流れなくなった位置から、前記半導体単結晶の最下端を検出する最下端検出装置とを具備するものであることを特徴とする半導体単結晶引上げ装置を提供する。
 このような半導体単結晶引上げ装置であれば、半導体単結晶の重量の変化から、半導体単結晶の下端部の再溶融が完了したかを検出することができるので、目視により半導体単結晶の下端部の再溶融が完了したことを確認する必要がない。また、半導体単結晶の最下端を電気的に検出することができる。従って、再溶融を自動化できる装置となる。
 また本発明によれば、上記のような半導体単結晶引上げ装置を用いて半導体単結晶の下端部を融液中に浸漬させて再溶融させる方法であって、
 前記単結晶引上げ装置の前記ワイヤーを巻き下げて、前記半導体単結晶の下端部を前記融液中に浸漬させ、該下端部を再溶融させる結晶浸漬工程と、
 前記再溶融検出装置を用いて、前記半導体単結晶の重量の変化から、前記融液中に浸漬させた前記半導体単結晶の下端部の溶融が完了したことを検出する再溶融検出工程と、
 前記半導体単結晶と前記融液との間に電圧を印加しながら前記ワイヤーで前記半導体単結晶を巻上げ、前記最下端検出装置を用いて、前記半導体単結晶と前記融液との間に電流が流れなくなった位置から、前記半導体単結晶の最下端を検出する最下端検出工程と、
 最下端検出工程の終了後に、再び結晶浸漬工程を開始するか、または、再溶融を終了するかを決定する判別工程とを有することを特徴とする半導体単結晶の再溶融方法を提供する。
 このように、本発明の半導体単結晶引上げ装置を用いるので、浸漬させた半導体単結晶の下端部の再溶融の完了を目視によって確認する必要がないため、再溶融を効率よく行うことができる。
 このとき、前記再溶融検出工程において、
 前記半導体単結晶の重量の変化が、予め設定した所定の値以内になったら、前記浸漬した半導体単結晶の下端部の再溶融が完了したと検出することができる。
 このように、半導体単結晶の重量の変化が、予め設定した所定の値以内になったら、浸漬した半導体単結晶の下端部の再溶融が完了したと検出すれば、半導体単結晶の下端部の再溶融が完了したことをより正確に検出することができる。
 このとき、前記判別工程において、前記半導体単結晶の重量が、予め設定した所定の重量以下となった場合に、再溶融を終了すると決定することができる。
 このように、半導体単結晶の重量が、予め設定した所定の重量以下となった場合に、再溶融の終了を決定することができる。
 このとき、前記判別工程において、再び結晶浸漬工程を開始すると決定した場合に、
 その後の、前記結晶浸漬工程において、前記融液中に浸漬させる前記半導体単結晶の下端部の長さを、前記検出した前記半導体単結晶の最下端から前記ルツボ内の前記融液の深さ未満とすることが好ましい。
 このようにすることで、半導体単結晶の下端部で溶け残りがある場合においても、融液に浸漬させる半導体単結晶の下端部の長さを、ルツボ内の前記融液の深さ未満とするので、半導体単結晶がルツボ底部に接触することを防止することができる。
 また、このとき、前記結晶浸漬工程と、前記再溶融検出工程と、前記最下端検出工程と、前記判別工程とを自動で行うことによって、前記半導体単結晶の再溶融を自動で行うことができる。
 このように、本発明では半導体単結晶の再溶融を自動で行うことができるので、効率的に再溶融を行うことができる。
 本発明の半導体単結晶引上げ装置、半導体単結晶の再溶融方法であれば、半導体単結晶の重量の変化から、半導体単結晶の下端部の再溶融が完了したかを検出することができるので、目視により半導体単結晶の下端部の再溶融が完了したことを確認する必要がない。また、半導体単結晶の最下端を電気的に検出することができるので、正確に検出することができる。
 またこのような本発明の半導体単結晶引上げ装置を用いた半導体単結晶の再溶融方法であれば、浸漬させた半導体単結晶の下端部の再溶融の完了を目視によって確認する必要がないため、再溶融を効率よく行うことができる。
本発明の半導体単結晶引上げ装置の一例を示した概略図である。 実施例1において、本発明の半導体単結晶引上げ装置を用いて結晶を再溶融させた際の、結晶の重量と時間との関係を示した図である。 実施例2における半導体単結晶の再溶融方法の工程図である。 実施例2及び比較例における、結晶の長さと時間の関係を示した図である。
 以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。
 まず、本発明の半導体単結晶引上げ装置について説明する。
 図1に示すように、本発明の半導体単結晶引上げ装置1は、融液2を収容するルツボ3を加熱保温するヒーター4と、融液2から半導体単結晶5を引き上げながら育成するワイヤー6と、再溶融検出装置7と、最下端検出装置8とを具備する。
 再溶融検出装置7は、ワイヤー巻き取り部9に接続された重量測定器10によって、半導体単結晶5の重量を測定することができる。そして、再溶融検出装置7は、ワイヤー6を巻き下げて半導体単結晶5の下端部を融液2中に浸漬させて再溶融させた際に、半導体単結晶5の重量の変化から、半導体単結晶5の下端部の再溶融が完了したことを検出することができる。重量測定器10は、例えばロードセルとすることができる。
 また、最下端検出装置8の電源11と電流計12は、ルツボ3とワイヤー6に電気的に接続されている。また、ワイヤー巻き取り部9およびワイヤー6はアース(大地)に対し絶縁されている。そのため、ルツボ3とワイヤー6との間に電源11を接続し電圧を印可すると半導体単結晶5が融液2に接触している場合、閉回路が形成されるので微少電流が流れる。一方で、半導体単結晶5が融液2から離れると閉回路が形成されない為、電流が流れない。
 このような性質を利用して、最下端検出装置8で、ルツボ3とワイヤー6との間に電圧を印可することで、半導体単結晶5と融液2との間に電圧を印加しながらワイヤー6で半導体単結晶5を巻上げた際に、半導体単結晶5と融液2との間に電流が流れなくなった位置から、半導体単結晶5の最下端を検出する。
 また、再溶融検出装置7、最下端検出装置8に接続された制御装置13によって、ワイヤー巻き取り部9を制御することができる。
 このような半導体単結晶引上げ装置1であれば、半導体単結晶の重量の変化から、半導体単結晶の下端部の再溶融が完了したかを検出することができるので、目視により半導体単結晶の下端部の再溶融が完了したことを確認する必要がない。また、半導体単結晶の最下端を電気的に正確に検出することができる。
 次に、上記のような本発明の単結晶引上げ装置を用いた本発明の半導体単結晶の再溶融方法について説明する。
 (結晶浸漬工程)
 まず、上記に示したような本発明の半導体単結晶引上げ装置1のワイヤー6を巻き下げて、半導体単結晶5の下端部を融液2中に浸漬させて再溶融させる。
 (再溶融検出工程)
 そして、再溶融検出装置7を用いて、半導体単結晶5の重量の変化から、融液2中に浸漬させた半導体単結晶5の下端部の溶融が完了したことを検出する。
 このとき、半導体単結晶5の重量の変化が、予め設定した所定の値以内になったら、浸漬した半導体単結晶5の下端部の再溶融が完了したと検出することが好ましい。
 このように、半導体単結晶5の重量の変化が、予め設定した所定の重量以下となった場合に、再溶融の終了を決定することができる。すなわち、単結晶の溶融が進むと、単結晶の重量が徐々に減少するが、この変化がほとんどなくなった時、再溶融が完了したと判断できる。
 (最下端検出工程)
 半導体単結晶5と融液2との間に電圧を印可しながら、ワイヤー6で半導体単結晶5を巻上げる。そして、最下端検出装置8を用いて半導体単結晶5と融液2との間に電流が流れなくなった位置、つまり半導体単結晶5の最下端が融液から離れた位置を割り出し、これによって半導体単結晶5の最下端を検出する。
 このようにして半導体単結晶5の最下端を正確に検出することができるので、再び再溶融させる際に、検出された半導体単結晶5の最下端から再度結晶を浸漬させることができる。これにより、例えば半導体単結晶5の下端部に溶け残りがある場合においても、単結晶をルツボ底部に突き当てることなく、常に同じ長さだけ結晶を融液に浸漬させることができる。
 (判別工程)
 最下端検出工程の終了後に、再び結晶浸漬工程を開始するか、または、再溶融を終了するかを決定する。
 このとき、例えば、半導体単結晶5の重量が、予め設定した所定の重量以下となった場合に、ほぼすべての単結晶が溶融されたとして、再溶融を終了すると決定することができる。
 また、このとき、再び結晶浸漬工程を開始すると決定した場合に、その後の、結晶浸漬工程において、融液2中に浸漬させる半導体単結晶5の下端部の長さを、最下端検出工程で検出した半導体単結晶5の最下端からルツボ3内の融液2の深さ未満とすることが好ましい。
 このように、融液2中に浸漬させる半導体単結晶5の下端部の長さを、検出した半導体単結晶5の最下端からルツボ3内の融液2の深さ未満とすることで、半導体単結晶5の下端部がルツボ3の底に接触して、ルツボ3を破損することを確実に防止することができる。
 このような本発明の半導体単結晶の再溶融方法であれば、再溶融させた際に、前記半導体単結晶の重量の変化から、前記半導体単結晶の下端部の再溶融が完了したことを検出することができるので、目視により再溶融が完了したことを確認する必要がない。また、半導体単結晶の最下端を検出することができるので、溶け残りによって、ルツボを破損させることなく、半導体単結晶の再溶融をすることができる。
 そして、上記の結晶浸漬工程と、再溶融検出工程と、最下端検出工程と、判別工程とを自動で行うことによって、半導体単結晶の再溶融を自動で行うことができる。
 このように、半導体単結晶の再溶融の完了を結晶の重量の変化から検出するため、結晶の浸漬を含め、半導体単結晶の再溶融を自動で行うことができる。そのため、半導体単結晶の再溶融を効率的に行うことができる。
 そのため、半導体単結晶製造における結晶の再溶融工程を自動化することが可能となり作業者の負担を軽減することができる。また、再溶融を無駄な時間無く実施することができ、電力ロス、石英ルツボの劣化を最小限に抑えることができる。さらに、自動化により、省力化又は操作ミスなどによる事故、生産性の低下を防止することができる。
 以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれらに限定されるものではない。
(実施例1)
 図1に示すような、本発明の半導体単結晶引上げ装置1を用いて、半導体単結晶5の再溶融を行った。その際に、半導体単結晶5の重量の変化を重量測定器10(ロードセル)により測定して、再溶融中の半導体単結晶5の重量を観察した。このときの測定結果を、図2に示した。
 図2に示すように、半導体単結晶5を融液2に浸漬させた場合、浮力の影響により急峻な重量変化が起こる(a)。そのまま放置すると、半導体単結晶5の溶融により緩やかな重量変化が続き(b)、最終的に重量がほぼ一定となることが分かった(c)。
 このとき、重量がほぼ一定となり、その変化が1分間当たり200g以内となったところで結晶をワイヤー6で巻き上げて、半導体単結晶5の溶融状態を確認した。その結果、融液2に浸漬させた半導体単結晶5の下端部は、ほぼ溶融が完了していると判断できる状態であった。
 この結果から、結晶をシリコン融液に浸漬させた後の結晶重量を制御装置に取り込み、その変化を監視することで溶融完了の判断を自動化することができることが分かった。
(実施例2)
 図1に示すような、本発明の半導体単結晶引上げ装置1を用いて、図3に示すような工程で、半導体単結晶5の再溶融を開始した(SP1)。なお、以下に示す工程を自動で行うように、制御装置13をプログラミングし、自動で再溶融を実施した。なお、再溶融する半導体単結晶5は直胴部が約20cmのものを用いて行った。
(結晶浸漬工程)
 まず、ワイヤー6を巻き下げて、半導体単結晶5の下端部を融液2に40mm浸漬させた(SP2)。
(再溶融検出工程)
 このときの半導体単結晶5の重量は、重量測定器10(ロードセル)により随時測定され、その結果は制御装置13へ転送される。この際に、半導体単結晶5の重量の変化が所定の範囲内(例えば、1分間当たり200g以内)であった場合に、半導体単結晶5の下端部の溶融が完了したと、再溶融検出装置7によって検出されるように、予め設定しておいた(SP3)。
(最下端検出工程)
 半導体単結晶5の下端部の溶融が完了したと検出されると、半導体単結晶5と融液2の間に電圧を印可しながら、ワイヤー6で半導体単結晶5を巻上げた(SP4)。そして、最下端検出装置8により、半導体単結晶5と融液2との間に電流が流れなくなった位置から、半導体単結晶5の最下端を検出した(SP5)。
(判別工程)
 そして、このときの半導体単結晶5の重量が所定の重量(例えば、1kg)より重い場合は、SP2に戻り、再び結晶浸漬工程を行った。一方、半導体単結晶5の重量が所定の重量(例えば、1kg)以内であった場合には再溶融を終了するように判別を行った(SP6)。
 そして、SP2に戻り、再び結晶浸漬工程を開始した際に、融液中に浸漬させる半導体単結晶5の下端部の長さは、ルツボ3内の融液2の深さ未満である40mmとした。
 上記のようにして、半導体単結晶5の再溶融を自動で行い、半導体単結晶5の重量が所定の重量(例えば、1kg)以内となったときに、再溶融を終了した(SP7)。
 このときの半導体単結晶の長さと時間の関係を図4に実線で示した。また、図4には、後述する比較例の結果を破線で記載した。
(比較例)
 本発明の半導体単結晶引上げ装置のような再溶融検出装置と最下端検出装置を具備していない単結晶引上げ装置を用いて半導体単結晶の再溶融を行った。そして、半導体単結晶の下端部の再溶融ができたかは、作業員が目視により確認を行った。また、再溶融させる半導体単結晶は、実施例2と同じく直胴部が20cmのものを用いた。このときの半導体単結晶の長さと時間の関係を図4に破線で示した。
 図4に示すように、比較例では、半導体単結晶の再溶融が完了したかを目視によって確認したため、作業者の監視タイミングにより浸漬している時間にバラツキがあった。
 一方、実施例2の結果では、自動で再溶融が行われているため、そのバラツキが小さく、ほぼ同じ時間で浸漬を繰り返しており、無駄な時間放置されること無く正確に再溶融を行うことができた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (6)

  1.  融液を収容するルツボを加熱保温するヒーターと、前記融液から半導体単結晶を引き上げながら育成するワイヤーとを具備する単結晶引上げ装置であって、
     前記単結晶引上げ装置は、前記ワイヤーで前記半導体単結晶の下端部を前記融液中に浸漬させて再溶融させた際に、前記半導体単結晶の重量の変化から、前記半導体単結晶の下端部の再溶融が完了したことを検出する再溶融検出装置と、
     前記ルツボと前記ワイヤーとの間に電圧を印可することで、前記半導体単結晶と前記融液との間に電圧を印加しながら前記ワイヤーで前記半導体単結晶を巻上げた際に、前記半導体単結晶と前記融液との間に電流が流れなくなった位置から、前記半導体単結晶の最下端を検出する最下端検出装置とを具備するものであることを特徴とする半導体単結晶引上げ装置。
  2.  請求項1に記載の単結晶引上げ装置を用いて、半導体単結晶の下端部を融液中に浸漬させて再溶融させる方法であって、
     前記単結晶引上げ装置の前記ワイヤーを巻き下げて、前記半導体単結晶の下端部を前記融液中に浸漬させ、該下端部を再溶融させる結晶浸漬工程と、
     前記再溶融検出装置を用いて、前記半導体単結晶の重量の変化から、前記融液中に浸漬させた前記半導体単結晶の下端部の溶融が完了したことを検出する再溶融検出工程と、
     前記半導体単結晶と前記融液との間に電圧を印加しながら前記ワイヤーで前記半導体単結晶を巻上げ、前記最下端検出装置を用いて、前記半導体単結晶と前記融液との間に電流が流れなくなった位置から、前記半導体単結晶の最下端を検出する最下端検出工程と、
     最下端検出工程の終了後に、再び結晶浸漬工程を開始するか、または、再溶融を終了するかを決定する判別工程とを有することを特徴とする半導体単結晶の再溶融方法。
  3.  前記再溶融検出工程において、
     前記半導体単結晶の重量の変化が、予め設定した所定の値以内になったら、前記浸漬した半導体単結晶の下端部の再溶融が完了したと検出することを特徴とする請求項2に記載の半導体単結晶の再溶融方法。
  4.  前記判別工程において、
     前記半導体単結晶の重量が、予め設定した所定の重量以下となった場合に、再溶融を終了すると決定することを特徴とする請求項2または請求項3に記載の半導体単結晶の再溶融方法。
  5.  前記判別工程において、再び結晶浸漬工程を開始すると決定した場合に、
     その後の、前記結晶浸漬工程において、前記融液中に浸漬させる前記半導体単結晶の下端部の長さを、前記検出した前記半導体単結晶の最下端から前記ルツボ内の前記融液の深さ未満とすることを特徴とする請求項2または請求項3に記載の半導体単結晶の再溶融方法。
  6.  前記結晶浸漬工程と、前記再溶融検出工程と、前記最下端検出工程と、前記判別工程とを自動で行うことによって、前記半導体単結晶の再溶融を自動で行うことを特徴とする請求項2から請求項5のいずれか一項に記載の半導体単結晶の再溶融方法。
PCT/JP2015/004578 2014-09-29 2015-09-09 半導体単結晶引上げ装置及びこれを用いた半導体単結晶の再溶融方法 WO2016051682A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201580049307.3A CN107075718B (zh) 2014-09-29 2015-09-09 半导体单晶的再熔融方法
DE112015003778.0T DE112015003778B4 (de) 2014-09-29 2015-09-09 Verfahren zum Nachschmelzen des Halbleiter-Einkristalls mit einer Einkristall-Ziehvorrichtung
JP2016551497A JP6341291B2 (ja) 2014-09-29 2015-09-09 半導体単結晶の再溶融方法
KR1020177006591A KR102241325B1 (ko) 2014-09-29 2015-09-09 반도체 단결정 인상장치 및 이것을 이용한 반도체 단결정의 재용융방법
US15/507,851 US10113247B2 (en) 2014-09-29 2015-09-09 Semiconductor single crystal pulling apparatus and method for remelting semiconductor single crystal using this

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014197843 2014-09-29
JP2014-197843 2014-09-29

Publications (1)

Publication Number Publication Date
WO2016051682A1 true WO2016051682A1 (ja) 2016-04-07

Family

ID=55629760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004578 WO2016051682A1 (ja) 2014-09-29 2015-09-09 半導体単結晶引上げ装置及びこれを用いた半導体単結晶の再溶融方法

Country Status (6)

Country Link
US (1) US10113247B2 (ja)
JP (1) JP6341291B2 (ja)
KR (1) KR102241325B1 (ja)
CN (1) CN107075718B (ja)
DE (1) DE112015003778B4 (ja)
WO (1) WO2016051682A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113373509A (zh) * 2020-02-25 2021-09-10 内蒙古中环光伏材料有限公司 一种单晶断苞后自动回熔工艺
CN113373510A (zh) * 2020-02-25 2021-09-10 内蒙古中环光伏材料有限公司 一种单晶断苞后自动回熔时回熔状态判定的工艺
CN114993151A (zh) * 2022-05-18 2022-09-02 西安奕斯伟材料科技有限公司 测量装置和测量方法
CN115044967B (zh) * 2022-06-28 2024-03-22 西安奕斯伟材料科技股份有限公司 单晶硅拉晶控制方法及装置、单晶硅拉晶炉

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02188487A (ja) * 1989-01-17 1990-07-24 Osaka Titanium Co Ltd 棒状多結晶シリコンの自動供給方法
JPH06234592A (ja) * 1985-01-14 1994-08-23 Komatsu Electron Metals Co Ltd 半導体シリコン単結晶の製造方法
JPH08301687A (ja) * 1995-05-02 1996-11-19 Komatsu Electron Metals Co Ltd 棒状多結晶シリコンの溶解方法及びその装置
JP2000264780A (ja) * 1999-03-19 2000-09-26 Toshiba Ceramics Co Ltd 半導体単結晶引き上げ装置における溶融検知方法および装置
JP2009132552A (ja) * 2007-11-29 2009-06-18 Covalent Materials Corp シリコン単結晶の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184795A (ja) 1983-04-04 1984-10-20 Agency Of Ind Science & Technol 3−5族化合物半導体単結晶の製造方法
JPH05124890A (ja) 1991-11-01 1993-05-21 Komatsu Electron Metals Co Ltd 半導体単結晶成長装置
JP3482979B2 (ja) * 1996-04-09 2004-01-06 三菱住友シリコン株式会社 単結晶引上装置におけるヒーター電極溶損防止装置
TW444071B (en) 1998-06-19 2001-07-01 Komatsu Denshi Kinzoku Kk Manufacture apparatus and method for silicon crystal
JP3512074B2 (ja) * 2000-03-06 2004-03-29 日本電気株式会社 半導体単結晶育成装置および半導体単結晶育成方法
CN1265031C (zh) * 2003-09-28 2006-07-19 北京有色金属研究总院 一种生长直拉硅单晶的重掺杂方法及掺杂装置
CN100436656C (zh) * 2006-12-28 2008-11-26 西安理工大学 单晶炉中籽晶与熔融硅液面接触的检测方法
TW201006429A (en) 2008-06-20 2010-02-16 Gojo Ind Inc Two-stroke foam pump
US8691008B2 (en) * 2009-03-31 2014-04-08 Memc Electronic Materials, Inc. Systems for weighing a pulled object
JP5047227B2 (ja) * 2009-05-27 2012-10-10 ジャパンスーパークォーツ株式会社 シリコン単結晶の製造方法及びシリコン単結晶引き上げ装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06234592A (ja) * 1985-01-14 1994-08-23 Komatsu Electron Metals Co Ltd 半導体シリコン単結晶の製造方法
JPH02188487A (ja) * 1989-01-17 1990-07-24 Osaka Titanium Co Ltd 棒状多結晶シリコンの自動供給方法
JPH08301687A (ja) * 1995-05-02 1996-11-19 Komatsu Electron Metals Co Ltd 棒状多結晶シリコンの溶解方法及びその装置
JP2000264780A (ja) * 1999-03-19 2000-09-26 Toshiba Ceramics Co Ltd 半導体単結晶引き上げ装置における溶融検知方法および装置
JP2009132552A (ja) * 2007-11-29 2009-06-18 Covalent Materials Corp シリコン単結晶の製造方法

Also Published As

Publication number Publication date
DE112015003778B4 (de) 2024-05-23
CN107075718A (zh) 2017-08-18
CN107075718B (zh) 2019-08-13
US20170292205A1 (en) 2017-10-12
JPWO2016051682A1 (ja) 2017-06-08
KR20170063560A (ko) 2017-06-08
KR102241325B1 (ko) 2021-04-16
JP6341291B2 (ja) 2018-06-13
DE112015003778T5 (de) 2017-05-11
US10113247B2 (en) 2018-10-30

Similar Documents

Publication Publication Date Title
JP6341291B2 (ja) 半導体単結晶の再溶融方法
JP5047227B2 (ja) シリコン単結晶の製造方法及びシリコン単結晶引き上げ装置
KR20180066095A (ko) 단결정의 제조방법
JP4858019B2 (ja) シリコン単結晶の製造方法
JP5007596B2 (ja) 単結晶の成長方法および単結晶の引き上げ装置
JP5176915B2 (ja) シリコン単結晶の育成方法
JP5169455B2 (ja) 単結晶の成長方法および単結晶の引き上げ装置
KR101571957B1 (ko) 잉곳성장장치 및 잉곳성장방법
JP4857920B2 (ja) シリコン単結晶の製造方法
KR101679071B1 (ko) 멜트갭 제어 시스템, 이를 포함하는 단결정 성장방법
JP2009292662A (ja) シリコン単結晶育成における肩形成方法
JP2010006645A (ja) 単結晶育成装置用坩堝、単結晶育成方法、および単結晶育成装置
JP2019094251A (ja) 単結晶製造方法
KR101571958B1 (ko) 잉곳성장장치 및 잉곳성장방법
KR20190058630A (ko) 도가니 내에 수용되는 용융물로부터 반도체 재료의 단결정을 인상하는 방법
JP5053426B2 (ja) シリコン単結晶製造方法
JP2023081004A (ja) 単結晶引上装置及び単結晶の製造方法
JP2019218255A (ja) ニオブ酸リチウム単結晶の製造方法
US20240019397A1 (en) Method of estimating oxygen concentration in silicon single crystal, method of manufacturing silicon single crystal, and silicon single crystal manufacturing apparataus
JP2014058414A (ja) 評価用シリコン単結晶の製造方法
JP5819185B2 (ja) シリコン単結晶の製造方法
JP5805527B2 (ja) シリコン単結晶の製造方法
JP5018670B2 (ja) 単結晶の育成方法
WO2024024155A1 (ja) シリコン単結晶
KR20100071507A (ko) 실리콘 단결정 제조 장치, 제조 방법 및 실리콘 단결정의 산소 농도 조절 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15847421

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016551497

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15507851

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177006591

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015003778

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15847421

Country of ref document: EP

Kind code of ref document: A1