WO2016049947A1 - Procédé de croissance de monocristal de silicium de grand diamètre de zone flottante - Google Patents

Procédé de croissance de monocristal de silicium de grand diamètre de zone flottante Download PDF

Info

Publication number
WO2016049947A1
WO2016049947A1 PCT/CN2014/088600 CN2014088600W WO2016049947A1 WO 2016049947 A1 WO2016049947 A1 WO 2016049947A1 CN 2014088600 W CN2014088600 W CN 2014088600W WO 2016049947 A1 WO2016049947 A1 WO 2016049947A1
Authority
WO
WIPO (PCT)
Prior art keywords
diameter
single crystal
furnace
polycrystalline
crystal
Prior art date
Application number
PCT/CN2014/088600
Other languages
English (en)
Chinese (zh)
Inventor
沈浩平
王彦君
张雪囡
靳立辉
高树良
刘嘉
王遵义
刘铮
赵宏波
刘琨
郝大维
吴峰
楚占宾
Original Assignee
天津市环欧半导体材料技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津市环欧半导体材料技术有限公司 filed Critical 天津市环欧半导体材料技术有限公司
Publication of WO2016049947A1 publication Critical patent/WO2016049947A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/08Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone
    • C30B13/10Single-crystal growth by zone-melting; Refining by zone-melting adding crystallising materials or reactants forming it in situ to the molten zone with addition of doping materials
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • C30B13/28Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the invention relates to a method for growing a large diameter region molten silicon single crystal.
  • the suspension zone melting method includes several steps of removing the furnace, preheating, chemical material, seeding, pulling the neck, expanding the shoulder, turning the shoulder, holding, closing, and stopping the furnace.
  • the existing method is mainly controlled by the operator.
  • the output power of the high-frequency generator and the descending speed of the polycrystalline material control the growth of the silicon single crystal. After the furnace is removed, the preheating, the material, the seeding, and the neck are pulled, the operator constantly adjusts the height.
  • the output power of the frequency generator and the downstream speed of the polycrystalline material play the role of controlling the process of expanding the shoulder, and artificially changing the output power and the descending speed of the polycrystalline material to complete the steps of turning shoulder, holding and closing.
  • the existing method the human operation factor is too much, the process repeatability is poor, the operator is labor intensive, and the crystal pulling failure is easily caused by personal operation errors.
  • the invention overcomes the deficiencies of the prior art and provides a method for growing a large-diameter molten silicon single crystal, which can effectively improve the problem that the process repeatability is poor and the dislocation is easy to occur during the shoulder expansion process.
  • the technical solution adopted by the present invention is: a method for growing a large-diameter region molten silicon single crystal, which is characterized in that the following operations are performed by using a zone melting single crystal furnace:
  • Loading furnace loading the cleaned polycrystalline bar material into the crystal holder in the zone melting furnace, and loading the seed crystal into the seed crystal fixing chuck;
  • Expanding the shoulder the process of expanding the shoulder, adjusting the output power of the high-frequency generator and the descending speed of the polycrystalline material through the actually measured single crystal diameter;
  • Cooling and dismantling the furnace Slowly cool the crystal until the red tail turns black in the tail of the crystal, and then remove the furnace.
  • the polycrystalline bar in the step (1) has a diameter of 145-175 mm.
  • the output frequency of the high frequency generator in the furnace in the step (2) is 2-4 MHz.
  • the cooling time in the step (8) is 50-90 min.
  • the invention has the advantages and positive effects: by controlling the output power of the generator and the descending speed of the polycrystalline material, the method of the original process and the method is overcome, and the large-diameter polycrystalline material is difficult to be melted, which is easy to cause the stacking. Problems, poor process repeatability, low crystal formation rate caused by problems such as dislocations in the process of expanding the shoulder, improving the crystallization rate and yield of the large-diameter molten silicon single crystal, reducing the labor intensity and repeatability of the personnel. Reproducible.
  • Figure 1 is a graph showing the relationship between the output power of a high frequency generator and the diameter of a single crystal.
  • Fig. 2 is a graph showing the relationship between the diameter of the single crystal and the descending speed of the polycrystalline material and the descending speed of the single crystal.
  • Cooling and demolition furnace The crystal is slowly cooled down, and the temperature is reduced from 50 to 90 minutes. After the red tail turns black, the furnace is removed.
  • the original method and process conditions are effectively solved, the large-diameter polycrystalline material is difficult to melt, and it is easy to cause the problem of stockpiling.
  • the process repeatability is poor, the dislocation is easy to generate dislocation during the process of extending the shoulder, and the process is maintained. Easy to crack and other issues.
  • the polycrystalline material with a diameter exceeding 135mm cannot be smoothly melted and flows down from the zone melting coil, and the single crystal cannot be drawn.
  • the proportion of the single crystal in the process of expanding the shoulder causes the crystal pulling failure to account for 92% of the total number of failures, after using the growth method of the present invention, the ratio was reduced to 57%, which greatly reduced the proportion of dislocation failure caused by the occurrence of dislocations during the extension process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

La présente invention concerne un procédé de croissance d'un monocristal de silicium de grand diamètre de zone flottante. Le procédé consiste à : charger un four, faire le vide, introduire un gaz, préchauffer, fondre le matériau, ensemencer, faire croître un col étroit, permettre l'expansion de l'épaulement, entretenir, faire croître un diamètre égal, terminer, refroidir, et sortir du four et nettoyer. Au moyen d'un procédé de commande de la puissance en sortie du générateur, de la vitesse de descente du matériau polycristallin et d'autres paramètres, le problème de l'empilage facile provoqué par des difficultés liées à la fusion du matériau polycristallin de grand diamètre, et le problème d'une faible vitesse de formation du cristal provoqué par une faible reproductibilité du processus, la dislocation lors du processus d'expansion de l'épaulement et analogues dans les conditions du processus et du procédé existants, sont résolus, la vitesse de formation du cristal et le taux de qualification du monocristal de silicium de grand diamètre de zone flottante sont accrus, l'intensité du travail est réduite, et la répétabilité et la reproductibilité sont bonnes.
PCT/CN2014/088600 2014-09-30 2014-10-15 Procédé de croissance de monocristal de silicium de grand diamètre de zone flottante WO2016049947A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410523050.8 2014-09-30
CN201410523050.8A CN104328482A (zh) 2014-09-30 2014-09-30 一种大直径区熔硅单晶的生长方法

Publications (1)

Publication Number Publication Date
WO2016049947A1 true WO2016049947A1 (fr) 2016-04-07

Family

ID=52403286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/088600 WO2016049947A1 (fr) 2014-09-30 2014-10-15 Procédé de croissance de monocristal de silicium de grand diamètre de zone flottante

Country Status (2)

Country Link
CN (1) CN104328482A (fr)
WO (1) WO2016049947A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564691A (zh) * 2021-07-14 2021-10-29 宁夏中欣晶圆半导体科技有限公司 重掺砷硅单晶收尾方法及装置
CN113668045A (zh) * 2021-08-24 2021-11-19 包头美科硅能源有限公司 一种颗粒硅直接用于区熔法制备单晶硅的装置及方法
CN114540942A (zh) * 2022-03-07 2022-05-27 陕西有色天宏瑞科硅材料有限责任公司 一种区熔单晶硅的制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017070827A1 (fr) * 2015-10-26 2017-05-04 北京京运通科技股份有限公司 Procédé et système automatiques de croissance de cristal de fusion par zone
CN107366017A (zh) * 2017-09-04 2017-11-21 青海鑫诺光电科技有限公司 一种单晶硅收尾设备及其使用方法
CN109252209A (zh) * 2018-07-26 2019-01-22 天津中环领先材料技术有限公司 一种提高区熔硅单晶用多晶棒料利用率的方法
CN109440183B (zh) * 2018-12-20 2020-11-13 天津中环领先材料技术有限公司 一种优化型大直径区熔硅单晶收尾方法
CN110318096A (zh) * 2019-06-28 2019-10-11 北京天能运通晶体技术有限公司 区熔硅单晶收尾方法和拉制方法
CN112195507B (zh) * 2020-09-28 2022-04-26 湖南稀土金属材料研究院 稀土金属单晶的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059875A (en) * 1999-01-11 2000-05-09 Seh America, Inc. Method of effecting nitrogen doping in Czochralski grown silicon crystal
CN1865528A (zh) * 2006-04-21 2006-11-22 天津市环欧半导体材料技术有限公司 大直径区熔硅单晶生产方法
CN1865529A (zh) * 2006-04-26 2006-11-22 天津市环欧半导体材料技术有限公司 气相预掺杂和中子辐照掺杂组合的区熔硅单晶的生产方法
CN101845667A (zh) * 2010-06-30 2010-09-29 峨嵋半导体材料研究所 一种高阻硅单晶的制备方法
JP2011157239A (ja) * 2010-02-03 2011-08-18 Toyota Motor Corp シリコン単結晶の製造方法およびシリコン単結晶のインゴット

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6059875A (en) * 1999-01-11 2000-05-09 Seh America, Inc. Method of effecting nitrogen doping in Czochralski grown silicon crystal
CN1865528A (zh) * 2006-04-21 2006-11-22 天津市环欧半导体材料技术有限公司 大直径区熔硅单晶生产方法
CN1865529A (zh) * 2006-04-26 2006-11-22 天津市环欧半导体材料技术有限公司 气相预掺杂和中子辐照掺杂组合的区熔硅单晶的生产方法
JP2011157239A (ja) * 2010-02-03 2011-08-18 Toyota Motor Corp シリコン単結晶の製造方法およびシリコン単結晶のインゴット
CN101845667A (zh) * 2010-06-30 2010-09-29 峨嵋半导体材料研究所 一种高阻硅单晶的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZENG SHIMING ET AL.: "Preliminary Study of the Growth Process of Large Diameter Float Zone Silicon Crystal", RARE METALS, no. 1, 31 January 1980 (1980-01-31) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113564691A (zh) * 2021-07-14 2021-10-29 宁夏中欣晶圆半导体科技有限公司 重掺砷硅单晶收尾方法及装置
CN113668045A (zh) * 2021-08-24 2021-11-19 包头美科硅能源有限公司 一种颗粒硅直接用于区熔法制备单晶硅的装置及方法
CN114540942A (zh) * 2022-03-07 2022-05-27 陕西有色天宏瑞科硅材料有限责任公司 一种区熔单晶硅的制备方法

Also Published As

Publication number Publication date
CN104328482A (zh) 2015-02-04

Similar Documents

Publication Publication Date Title
WO2016049947A1 (fr) Procédé de croissance de monocristal de silicium de grand diamètre de zone flottante
CN102242397B (zh) 一种直拉硅单晶的生产工艺
CN102220633B (zh) 一种半导体级单晶硅生产工艺
CN102220634B (zh) 一种提高直拉硅单晶生产效率的方法
CN107208306B (zh) 单晶提拉装置的清洗方法及其清洗用具和单晶的制造方法
KR20010101045A (ko) 실리콘 단결정의 제조 방법, 단결정 잉곳 제조 장치 및실리콘 단결정 웨이퍼의 열처리 방법
US10494734B2 (en) Method for producing silicon single crystals
TW202113168A (zh) 一種矽單晶的生長方法
JP6471683B2 (ja) シリコン単結晶の製造方法
CN103451718B (zh) 可连续生产的区熔炉装置及其工艺控制方法
WO2008128378A1 (fr) Procédé à traction verticale et à fusion de zones pour produire du silicium monocristallin
CN105648530A (zh) 一种可在线更换籽晶的泡生法蓝宝石晶体生长炉
CN103436951A (zh) 一种区熔硅单晶的拉制方法
CN102719883B (zh) 一种半导体级单晶硅生产工艺
JP2016183071A (ja) シリコン単結晶の製造方法
CN107268080A (zh) 一种大直径无双棱线单晶硅的提拉生长方法
JP5375636B2 (ja) シリコン単結晶の製造方法
US6461426B2 (en) Method of supplying silicon raw material, method of producing silicon single crystal, and poly-silicon
TWI613333B (zh) 單晶矽錠及晶圓的形成方法
JP6485286B2 (ja) シリコン単結晶の製造方法
JP2009292662A (ja) シリコン単結晶育成における肩形成方法
JP4293188B2 (ja) 単結晶の製造方法及びシリコン単結晶ウエーハ
JP2007031235A (ja) 単結晶製造装置
CN110318096A (zh) 区熔硅单晶收尾方法和拉制方法
JP7184029B2 (ja) 単結晶シリコンインゴットの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902989

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14902989

Country of ref document: EP

Kind code of ref document: A1