WO2008128378A1 - Procédé à traction verticale et à fusion de zones pour produire du silicium monocristallin - Google Patents

Procédé à traction verticale et à fusion de zones pour produire du silicium monocristallin Download PDF

Info

Publication number
WO2008128378A1
WO2008128378A1 PCT/CN2007/001288 CN2007001288W WO2008128378A1 WO 2008128378 A1 WO2008128378 A1 WO 2008128378A1 CN 2007001288 W CN2007001288 W CN 2007001288W WO 2008128378 A1 WO2008128378 A1 WO 2008128378A1
Authority
WO
WIPO (PCT)
Prior art keywords
single crystal
crystal
furnace
silicon
diameter
Prior art date
Application number
PCT/CN2007/001288
Other languages
English (en)
Chinese (zh)
Inventor
Haoping Shen
Yutian Wang
Xiang Li
Xingli Zan
Shuliang Gao
Yuanqing Hu
Weigang Liu
Ju'an Wang
Fulin Gao
Huanxin Zhang
Original Assignee
Tianjin Huanou Semiconductor Material And Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Huanou Semiconductor Material And Technology Co., Ltd. filed Critical Tianjin Huanou Semiconductor Material And Technology Co., Ltd.
Priority to PCT/CN2007/001288 priority Critical patent/WO2008128378A1/fr
Publication of WO2008128378A1 publication Critical patent/WO2008128378A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B13/00Single-crystal growth by zone-melting; Refining by zone-melting
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the invention relates to a method for producing a silicon single crystal, in particular to a defect that overcomes the high oxygen content in the silicon single crystal produced by the Czochralski method, and overcomes the fact that the zone melting method cannot produce a silicon single that is exotic into a special solid element. Crystalline defects, and reduced production costs, increased production efficiency of the straight-pull zone melting method for producing silicon single crystals. Background technique
  • the oxygen content is as high as 10 18 atm / cm 3 , and the resistivity thermal instability and reversibility caused by oxygen formation cause the Czochralski silicon single crystal in the power helmet
  • the silicon single crystal produced by the zone melting method can reduce the oxygen content, the silicon single crystal production cost is high, it is difficult to have a low resistivity ratio, the radiation resistance is poor, and it cannot be incorporated into other places.
  • silicon single crystals used in devices such as silicon physical detectors and radiation-resistant reinforcements are required to have a low oxygen content (l X l0 16 atm / C m ) thermal stability, while incorporating a special solid state.
  • the silicon single crystal of the element however, the silicon single crystal produced by the zone melting method cannot be doped with other impurities due to the process limitation, and is generally sent to the neutron reactor after drawing the intrinsic single crystal, and the heat (slow) neutron flow is radiated.
  • the purpose of preparing the N-type silicon single crystal by the phosgene can be achieved. However, this method has a long production cycle and a low production cost, and only an N-type silicon single crystal can be prepared. Summary of the invention
  • the invention provides a solution to overcome the technical problems existing in the prior art, that is, to overcome the defects of high oxygen content in the silicon single crystal produced by the Czochralski method, and overcome the problem that the zone melting method cannot produce silicon single crystals which are plagued into special solid elements. Defects, and: a reduced production costs, increased production efficiency of the straight-pull zone melting method for producing silicon single crystals. '
  • the technical scheme adopted by the invention is: A straight pull zone ⁇ method for producing a silicon single crystal, which is completed by two processes of a straight pull process using a straight pull furnace and a zone melting process of a crucible zone furnace.
  • the straight pull process is performed, including the following steps:
  • the vacuum pumping and argon charging of the straight pull furnace is performed by charging argon gas to a vacuum pressure of 20 Torr after evacuating to a pressure of 100 mTorr to start heating.
  • the diameter of the neck of one of the polycrystalline silicon rod and the single crystal silicon rod pulled out by the straight pull furnace is 3 to 10 mm, the length is 10 to 200 mm, and the diameter after the shoulder is 50 to 300 mm.
  • the sinter gas is pressurized to a pressure of less than 0. 5mbr when the pressure is less than 0. 5mbr, argon gas, pressure to 1.
  • the material in the zone furnace is welded, the seed crystal and the molten silicon are welded and seeded, and is transferred to the voltage file during the chemical conversion, the generator set point is 40 to 60%, and, in the seed crystal and the molten silicon After the welding, the melting zone is shaped.
  • the thin neck is grown in the zone furnace, and after the end of the seeding, the neck is grown.
  • the diameter of the drawn single crystal of the silicon single crystal is 2 to 6 emp., and the length is about 30 to 60 mm.
  • Said shoulder comprises expansion, the speed is slowly reduced to 3 ⁇ 2mm / mi n, while expanding gradually reduced with the increase of the diameter of the shoulder go 8 ⁇ 6rpm, while also slowly reduced on Go 1 ⁇ 0 . 8rpm.
  • the rotating shoulder, the holding single crystal and the holder release the single crystal, and the shoulder is rotated when the diameter of the shoulder is different from the single crystal holding diameter by 3 to 20, until the set diameter is maintained, the single crystal is maintained, etc.
  • the closing and stopping of the furnace is when the single crystal is pulled to the tail and begins to finish.
  • the diameter of the single crystal is ⁇ 10 ⁇ 80 round, and the melting zone is pulled apart, so that the lower shaft continues to move downward, and the upper shaft is changed. Move up, while maintaining the power at 50% 20%, slowly cooling the crystal.
  • the Czochralski melting method for producing a silicon single crystal of the present invention has the following characteristics:
  • the oxygen content is as high as 10 t8 atm / cm 3 , and the thermal instability and reversibility caused by the oxygen donor formed by the high content of the Czochralski silicon cause the limitation of the Czochralski silicon single crystal in the manufacturing process of the power device. And difficult.
  • the oxygen atoms entering the melt are supplied by two parts, namely oxygen atoms in the raw silicon polycrystalline rod and trace oxygen molecules in the inert gas at high temperature (800 ° C - 1350 ° C).
  • the SiO film (2Si+0 2 2SiO) formed by the reaction with the raw material silicon polycrystalline rod, the high temperature silicon melt will almost completely deplete the SiO entering the silicon. Only a small part of the oxygen atoms finally enter the zone melting crystal.
  • the zone melting method cannot produce silicon single crystals doped with special solid elements.
  • the characteristics of easy-doping by the straight-drawing device can be utilized, and the impurities which are required to be intruded are mixed in the process of drawing the straight-drawing polycrystalline bar material, and then drawn by the zone melting furnace.
  • a silicon single crystal doped with an N-type or P-type impurity or other special-desired impurity and having a low oxygen content is obtained, thereby achieving the purpose of doping.
  • the furnace of the same diameter is more than eight times more expensive than the straight pull furnace. Due to the shortage of raw materials, the zone furnace purifies the silicon polycrystalline rod, and then uses the zone furnace to make a silicon single crystal, and then neutron irradiation.
  • the straight-pull zone melting method first uses a straight pull furnace to form a silicon polycrystalline rod, and then uses a zone melting furnace to form a silicon single crystal, and saves the time and cost of neutron irradiation, thereby reducing the production cost and improving the production cost.
  • the production utilization rate of the zone furnace shortens the production cycle.
  • the straight-pull zone melting method can remove the impurities such as scraps, blocks and the like by straight-drawing method, and shape the bar used for the zone melting method.
  • the straight-drawing zone melting method can make up for the shortcomings of high-strength zone melting single crystal in high-bar production. It can make the diameter of multi-(mono)crystalline bar to 300mm, which solves the production of large-diameter polycrystalline in polycrystalline production plant. Difficult question. detailed description
  • the CZ process for producing a silicon single crystal according to the present invention is carried out by two processes of a straight pull process using a straight pull furnace and a zone process using a zone furnace.
  • the first is to use a Czochralski casting method (single crystal or polycrystalline ingot), and then the crystal or polycrystalline ingot cast by the straight drawing process is shaped and processed into an ingot which meets the requirements of the molten silicon single crystal in the drawn region, and finally The single crystal is formed by zone melting.
  • the corrosion-cleaned bulk silicon raw material (polycrystalline silicon and single crystal silicon or polycrystalline silicon or single crystal silicon) is placed in a quartz crucible in a straight crucible, and then evacuated and filled with argon gas;
  • the vacuum pumping and argon charging of the straight pull furnace is performed by charging argon gas to a vacuum pressure of 20 Torr after evacuating to a pressure of 100 mTorr to start heating.
  • the diameter of the thin neck of one of the polycrystalline silicon rod and the single crystal silicon rod pulled out by the straight pull furnace is 3 to 10 ram, the length is 1Q to 200, and the diameter after the shoulder is 50 to 300 legs.
  • the sinter gas is pressurized to a pressure of less than 0. 5mbr when the pressure is less than 0. 5mbr, argon gas, pressure to 1. Preheat at 2-6 bar, 'Preheating set point 25 ⁇ 40%, preheating time is 10 ⁇ 20 minutes.
  • the material in the zone furnace is welded, the seed crystal and the molten silicon are welded and seeded, and is transferred to the voltage file during the chemical conversion, the generator set point is 40 to 60%, and, in the seed crystal and the molten silicon After the welding, the melting zone is shaped.
  • the thin neck is grown in the zone furnace, and the neck is grown after the seeding is finished.
  • the diameter of the drawn silicon single crystal neck is 2 to 6 legs and the length is about 30 to 60 mm.
  • the extension of the shoulder includes: slowly reducing the down speed to 3 ⁇ 2 mm / m in, while gradually decreasing to 8 ⁇ 6 rpm as the diameter of the shoulder increases, while slowly reducing the up to 1 ⁇ 0. 8rpm.
  • the rotating shoulder, the holding single crystal and the holder release the single crystal, and the shoulder is rotated when the diameter of the shoulder is different from the single crystal holding diameter by 3 to 20, until the set diameter is maintained, the single crystal is maintained, etc.
  • Diameter diameter is 50mm ⁇ 220mm
  • single The crystal growth rate is 1 mm/min to 5 mm/min.
  • the closing and stopping of the furnace is when the single crystal is pulled to the tail, and the finishing is finished.
  • the diameter of the single crystal is ⁇ 10 ⁇ 80, and the melting zone is pulled apart, so that the lower shaft continues to move downward, and the upper shaft is changed. Move upwards while maintaining a power of 50 ⁇ 20%, slowly cooling the crystal.
  • the cooling water is turned on, the rotating mechanism is activated, and the heating button is activated. It takes about 2.5 hours to heat to 1500 ° C to 160 (TC causes the bulk polycrystalline material to be completely melted into a molten state and then starts the seed crystal rotating mechanism. , drop the seed crystal, weld the seed crystal.
  • the diameter of the crystal pulling is expanded from about 8mm to 150mm in about 30 minutes.
  • the baked polycrystalline rod is subjected to ingot processing, and is cleaned and etched to prepare single crystal growth on the zone melting furnace. Then, carry out the zone melting process:
  • Cleaning furnace, loading furnace cleaning the inner wall of the furnace and the heating coil, reflector, crystal holder, upper shaft and lower shaft, adjusting the level of the heating coil and the reflector and the alignment with the upper and lower shafts Fixing the polycrystalline fixture to the groove at the end of the polycrystalline material, then mounting it to the end of the upper shaft for centering the polycrystalline material; loading the seed into the seed chuck and then mounting it to the seed holder Lower shaft top; close each furnace door and tighten the fastening bolts;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

L'invention porte sur un procédé à traction verticale et à fusion de zones pour produire un silicium monocristallin, qui comprend un procédé à traction verticale et un procédé à fusion de zones mis en œuvre de façon successive. Le procédé à traction verticale comprend les opérations consistant à introduire la matière dans un creuset en silice dans un four à traction verticale avant pompage sous vide et charge d'argon ; chauffer jusqu'à fusion de la matière et souder un cristal d'ensemencement en laissant tomber le cristal d'ensemencement après admission d'eau de refroidissement ; tirer un col mince ; rendre l'épaulement plus grand ; croissance équidimensionnelle ; abaisser la vitesse de traction et former une queue ; arrêter le chauffage et prélever la tige de cristal hors du four ; façonner, nettoyer et attaquer la tige de cristal. Le procédé de fusion de zones comprend les opérations consistant à adresser la tige et le cristal d'ensemencement dans un four à fusion de zones avant pompage sous vide et charge de gaz ; préchauffer la tige de cristal ; la souder avec le cristal d'ensemencement ; tirer un col mince ; rendre l'épaulement plus grand et assurer une croissance équidimensionnelle ; maintenir le cristal et bloquer pour pincer le cristal ; former une queue ; refroidir lentement et arrêter le four. Le procédé de la présente invention pour produire un silicium monocristallin permet de surmonter les défauts d'une concentration supérieure d'oxygène dus au procédé à traction verticale et à une difficulté à doper des éléments solides spéciaux dans le silicium monocristallin. Il diminue le coût et la durée de production du silicium monocristallin par le procédé à fusion de zones et résout également le problème du manque de matière polycristalline dans la production de silicium monocristallin par le procédé à fusion de zones.
PCT/CN2007/001288 2007-04-19 2007-04-19 Procédé à traction verticale et à fusion de zones pour produire du silicium monocristallin WO2008128378A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/001288 WO2008128378A1 (fr) 2007-04-19 2007-04-19 Procédé à traction verticale et à fusion de zones pour produire du silicium monocristallin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2007/001288 WO2008128378A1 (fr) 2007-04-19 2007-04-19 Procédé à traction verticale et à fusion de zones pour produire du silicium monocristallin

Publications (1)

Publication Number Publication Date
WO2008128378A1 true WO2008128378A1 (fr) 2008-10-30

Family

ID=39875041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2007/001288 WO2008128378A1 (fr) 2007-04-19 2007-04-19 Procédé à traction verticale et à fusion de zones pour produire du silicium monocristallin

Country Status (1)

Country Link
WO (1) WO2008128378A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105200512A (zh) * 2015-10-19 2015-12-30 天津市环欧半导体材料技术有限公司 一种用于拉制区熔8-12寸硅单晶的热场结构
CN113668045A (zh) * 2021-08-24 2021-11-19 包头美科硅能源有限公司 一种颗粒硅直接用于区熔法制备单晶硅的装置及方法
CN114672685A (zh) * 2022-03-04 2022-06-28 安徽省新方尊自动化科技有限公司 一种采用垂直提拉生产泡沫铝的方法
CN115287756A (zh) * 2022-06-23 2022-11-04 内蒙古通威高纯晶硅有限公司 一种利用粉碎料制备方硅芯的方法
CN115404541A (zh) * 2022-10-18 2022-11-29 四川晶科能源有限公司 一种拉晶方法
CN115537914A (zh) * 2022-10-10 2022-12-30 浙江求是半导体设备有限公司 单晶硅制备装置及方法
CN116934727A (zh) * 2023-07-28 2023-10-24 保定景欣电气有限公司 一种拉晶过程中籽晶熔接控制方法、装置及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095505C (zh) * 2000-03-30 2002-12-04 天津市环欧半导体材料技术有限公司 生产硅单晶的直拉区熔法
CN1865530A (zh) * 2006-04-26 2006-11-22 天津市环欧半导体材料技术有限公司 区熔气相掺杂太阳能电池硅单晶的生产方法
CN1865528A (zh) * 2006-04-21 2006-11-22 天津市环欧半导体材料技术有限公司 大直径区熔硅单晶生产方法
UA21853U (en) * 2006-09-11 2007-04-10 Vitalii Ihorovych Talanin Method for dislocationless silicon single crystals growing from the melt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1095505C (zh) * 2000-03-30 2002-12-04 天津市环欧半导体材料技术有限公司 生产硅单晶的直拉区熔法
CN1865528A (zh) * 2006-04-21 2006-11-22 天津市环欧半导体材料技术有限公司 大直径区熔硅单晶生产方法
CN1865530A (zh) * 2006-04-26 2006-11-22 天津市环欧半导体材料技术有限公司 区熔气相掺杂太阳能电池硅单晶的生产方法
UA21853U (en) * 2006-09-11 2007-04-10 Vitalii Ihorovych Talanin Method for dislocationless silicon single crystals growing from the melt

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105200512A (zh) * 2015-10-19 2015-12-30 天津市环欧半导体材料技术有限公司 一种用于拉制区熔8-12寸硅单晶的热场结构
CN113668045A (zh) * 2021-08-24 2021-11-19 包头美科硅能源有限公司 一种颗粒硅直接用于区熔法制备单晶硅的装置及方法
CN114672685A (zh) * 2022-03-04 2022-06-28 安徽省新方尊自动化科技有限公司 一种采用垂直提拉生产泡沫铝的方法
CN115287756A (zh) * 2022-06-23 2022-11-04 内蒙古通威高纯晶硅有限公司 一种利用粉碎料制备方硅芯的方法
CN115287756B (zh) * 2022-06-23 2023-09-08 内蒙古通威高纯晶硅有限公司 一种利用粉碎料制备方硅芯的方法
CN115537914A (zh) * 2022-10-10 2022-12-30 浙江求是半导体设备有限公司 单晶硅制备装置及方法
CN115537914B (zh) * 2022-10-10 2023-09-26 浙江求是半导体设备有限公司 单晶硅制备装置及方法
CN115404541A (zh) * 2022-10-18 2022-11-29 四川晶科能源有限公司 一种拉晶方法
CN115404541B (zh) * 2022-10-18 2023-08-25 四川晶科能源有限公司 一种拉晶方法
CN116934727A (zh) * 2023-07-28 2023-10-24 保定景欣电气有限公司 一种拉晶过程中籽晶熔接控制方法、装置及电子设备
CN116934727B (zh) * 2023-07-28 2024-03-08 保定景欣电气有限公司 一种拉晶过程中籽晶熔接控制方法、装置及电子设备

Similar Documents

Publication Publication Date Title
WO2008128378A1 (fr) Procédé à traction verticale et à fusion de zones pour produire du silicium monocristallin
JP5007126B2 (ja) 多結晶シリコンインゴットの製造方法
JP5909276B2 (ja) 最初のチャージだけをドーピングすることによる、均一にドーピングされたシリコンインゴットの成長
TWI324643B (fr)
CN102148155A (zh) 硅晶片及其制造方法
TW202113168A (zh) 一種矽單晶的生長方法
EP2045372A2 (fr) Procédé de croissance de lingot de silicium
CN113604870A (zh) 一种用于降低大尺寸直拉单晶硅片缺陷的拉制方法
CN114016122B (zh) 一种提高大尺寸n型硅片转换效率的方法
CN107268071A (zh) 一种太阳能电池板用单晶硅制备工艺
CN110205672A (zh) 一种类单晶硅晶体生长方法和热场结构
JP5861770B2 (ja) 多結晶シリコンおよびその鋳造方法
CN101671841B (zh) 一种用于直拉硅单晶制备中的含氮掺杂剂的制备方法
CN108560053A (zh) 一种镧、镝、铈共掺的硅酸钇镥闪烁材料及其晶体生长方法
CN103147118B (zh) 一种利用直拉区熔法制备太阳能级硅单晶的方法
CN107268080A (zh) 一种大直径无双棱线单晶硅的提拉生长方法
CN115652426A (zh) 一种降低大尺寸n型直拉单晶硅片碎片率的拉制方法
TWI338728B (fr)
CN114250503A (zh) 一种零位错p型锗单晶制备方法
CN109518269A (zh) 掺氮单晶硅棒及其生产方法
WO2011113338A1 (fr) Procédé de purification du silicium
JPH0748200A (ja) 単結晶の製造方法
JP2004284892A (ja) 多結晶シリコンの製造方法
CN102168312A (zh) 一种高掺氮的硅片及其快速掺氮的方法
CN114574950B (zh) 一种低位错超高纯锗单晶的提拉方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07720861

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07720861

Country of ref document: EP

Kind code of ref document: A1