JP2004284892A - 多結晶シリコンの製造方法 - Google Patents

多結晶シリコンの製造方法 Download PDF

Info

Publication number
JP2004284892A
JP2004284892A JP2003079877A JP2003079877A JP2004284892A JP 2004284892 A JP2004284892 A JP 2004284892A JP 2003079877 A JP2003079877 A JP 2003079877A JP 2003079877 A JP2003079877 A JP 2003079877A JP 2004284892 A JP2004284892 A JP 2004284892A
Authority
JP
Japan
Prior art keywords
mold
silicon
dendrite
polycrystalline silicon
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003079877A
Other languages
English (en)
Inventor
Masakatsu Nara
正功 奈良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003079877A priority Critical patent/JP2004284892A/ja
Publication of JP2004284892A publication Critical patent/JP2004284892A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Silicon Compounds (AREA)

Abstract

【課 題】結晶粒の大きい多結晶シリコンを効率良く製造し、かつインゴット全体の結晶粒径が均一な多結晶シリコンを製造する方法を提供する。
【解決手段】溶融したシリコンを鋳型内でキャスト法によって凝固させてシリコンインゴットを得る多結晶シリコンの製造方法において、凝固初期にデンドライトを発生させて、デンドライトから溶融シリコンを凝固させて結晶を成長させる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、太陽電池等に用いられる多結晶シリコンの製造方法に関するものである。本発明の方法で製造した多結晶シリコンは、光発電を利用した太陽電池の分野のみならず、多結晶シリコンを用いる他の分野にも適用できる。
【0002】
【従来の技術】
主に太陽電池に用いられる多結晶シリコンは、シリコンを鋳型内で溶解した後、鋳型の底部から徐々に冷却して凝固させてシリコンインゴット(以下、インゴットという)として製造される。一般に、溶融したシリコンを鋳型内で底部から上方へ一方向凝固させていき、凝固終了の時点で上端部を凝固させてインゴットを得る方法(いわゆるキャスト法)が広く採用されている。
【0003】
光発電における変換効率を高めるためには、より単結晶に近づけるために多結晶シリコンの結晶粒径を増大することが有効である。そこで、鋳型の底部からの抜熱量を調整することによって凝固速度を適切に制御して、結晶粒の大きい多結晶シリコンのインゴットを得る技術が種々検討されている。
たとえば特開昭63−166711 号公報には、底部が開口した炉の下方に昇降可能な水冷チルプレートを設け、炉内に配置した鋳型内にシリコンを装入して溶解するとともに、水冷チルプレートを鋳型底面まで上昇させて、鋳型と水冷チルプレートの接触を保持したまま下降させて炉外へ移動し、シリコンの一方向凝固を行なうことが記載されている。
【0004】
しかしながら特開昭63−166711 号公報に開示された技術では、凝固速度が上昇するので、溶融したシリコンを凝固させる際の抜熱量を調整して、凝固速度を制御することは困難である。とりわけ鋳型を下降したときに発熱体のない炉内壁と鋳型側板が向き合うので、鋳型側板からも抜熱が生じて熱バランスが安定せず、凝固速度の制御は極めて難しくなる。その結果、鋳型の底部近傍(すなわちインゴットの底部)に微細な結晶粒が多量に生じるのは避けられないという問題があった。
【0005】
この問題点を解消するためには、鋳型からの抜熱量を調整するために、
(a) 水冷チルプレートの材質を適宜変更する、
あるいは
(b) 鋳型と水冷チルプレートとの間に断熱材等の介在物を配置して熱伝導を好適範囲に調整する
という方法が考えられる。
【0006】
しかし (a)の方法では、多結晶シリコンのインゴットに求められる結晶粒径に応じて水冷チルプレートの材質を変更しなければならないので、水冷チルプレートの在庫管理の負荷が増大して、経済的に不利であるとともに、水冷チルプレートの取替え作業の頻度が増加して、生産性が低下する。また (b)の方法では、繰り返し使用するうちに断熱材の特性が変化し、鋳型と水冷チルプレートとの間の熱伝導が容易に変動するので、凝固速度の制御は困難である。
【0007】
また特開平10−130088 号公報には、インゴットの周囲数ケ所に熱電対を設置して、凝固速度を制御する技術が開示されている。しかしながら、この技術では1ヒート毎に熱電対を取付けるという煩雑な作業が必要である。しかも熱電対は損耗が激しいものであることに加えて、チャンバー内は還元雰囲気となっており、熱電対が破断することがあり、熱電対による温度測定は困難を極めている。また、凝固時の抜熱量は微小であるから、熱電対の先端の接触状態や位置によって測定誤差を生じるという問題があり、やはり精緻な凝固速度の制御を実施することは困難であった。
【0008】
結果として、これらの従来の技術は、いずれも凝固速度を適切に制御することが困難であるから、凝固速度の制御を行なっても、インゴット内の結晶粒径が変動するのは避けられなかった。
【0009】
【特許文献1】
特開昭63−166711 号公報
【特許文献2】
特開平10−130088 号公報
【非特許文献1】
A.I.Bennet, R.L.Longini, Physical Review, Vol.116, Num.1 p53,(Oct. 1 1959)
【非特許文献2】
A.Lowerenz, M.Rino, S.Riedel, M.Ghosh, M.Werner, H.J.Moller:16th European Photovoltaic Solar Energy Conference and Exhibition 2000
【0010】
【発明が解決しようとする課題】
本発明は上記のような問題を解消し、結晶粒の大きい多結晶シリコンを効率良く製造し、かつインゴット全体の結晶粒径が均一な多結晶シリコンを製造する方法を提供することを目的とする。
【0011】
【課題を解決するための手段】
前記した課題を解決するために種々の方法が知られている。中でも、多結晶シリコンの結晶粒径を制御するために広く実施されている方法は、凝固速度を遅くして、結晶成長を抑制することによって、結晶粒の大きい多結晶シリコンのインゴットを得る方法である。
【0012】
また、欠陥を内包しない結晶粒を得るためにも、凝固速度を遅くして、結晶成長を遅らせる必要がある。しかしながら凝固速度を遅くすると、生産性の低下を招くことになる。そのため、全く新たな方法が必要であった。
そこで本発明者は、従来のキャスト法では実施されたことのない、凝固初期にデンドライトを形成して結晶粒を粗大化させる方法を新たに考え出した。
【0013】
現状では、キャスト法でデンドライトが確認されたという報告は明確になされておらず、まして結晶粒の粗大化にデンドライトを利用するということは報告されていない。ただし、ウェブ法と呼ばれる方法(すなわちシリコン融液から直接基板を引き上げる方法)でデンドライトが生じることは既に知られており、文献(たとえば A.I.Bennet, R.L.Longini, Physical Review, Vol.116, Num.1 p53,(Oct. 1 1959) )に記載されて公知となっている。
【0014】
しかしキャスト法で多結晶シリコンのインゴットを製造する際に、デンドライトが生じることは明確になっていない。むしろデンドライトは、幹部や枝部とその他の部分の組成が不均一となるばかりでなく、特性も劣ることが広く知られており、キャスト法では、純粋なシリコン融液からデンドライトが生じるという形態そのものが存在しないと考えられていた。
【0015】
本発明は、このような従来の技術的思想を逆転して、デンドライトを積極的に生成させるという発想に基づくものである。すなわち本発明は、溶融したシリコンを鋳型内でキャスト法によって凝固させてシリコンインゴットを得る多結晶シリコンの製造方法において、凝固初期にデンドライトを発生させて、デンドライトから溶融シリコンを凝固させて結晶を成長させる多結晶シリコンの製造方法である。
【0016】
前記した発明においては、好適態様として、多結晶シリコンのインゴット下部に発生したデンドライトの結晶粒径を5mm以上として、デンドライトから溶融シリコンの凝固成長を促すことが好ましい。
【0017】
【発明の実施の形態】
図1,2は、本発明を適用する多結晶シリコン製造装置の例を模式的に示す断面図であり、図1は原料シリコンを溶融する状態を示し、図2は溶融したシリコン(以下、シリコン融液という)を凝固させる状態を示す。この装置は、図1に示すように断熱材を有する隔壁3で密閉したチャンバー1内に設置した加熱ヒーター4で鋳型8内の原料シリコンを溶融し、次いで図2に示すようにシリコン融液9を鋳型8の底部から上方へ一方向凝固させる装置である。
【0018】
鋳型8が設置されている鋳型置台6は、鋳型8内のシリコン融液9を底部から上方へ一方向凝固させるために、昇降機7によって昇降可能となっている。本発明において昇降機7の駆動力源(図示せず)は、鋳型置台6を昇降させるものであるから特定の構成に限定せず、電動モーターや油圧シリンダー等の従来から知られている技術が使用できる。
【0019】
さらに鋳型置台6が下降する際に、鋳型8内のシリコン融液9が凝固しやすいように、鋳型置台6の周囲に冷却板11が設置される。本発明において冷却板11は、シリコン融液9の冷却効率を高めるものであるから、内部に冷却水配管(図示せず)を配設して、冷却水12を循環させるのが好ましい。
このような装置を用いて、結晶粒の大きい多結晶シリコンを効率良く製造し、かつインゴット全体の結晶粒径が均一な多結晶シリコンを製造する方法を以下に説明する。
【0020】
まず図1に示すように、昇降機7を用いて鋳型置台6を上昇させ、原料シリコンを収容した鋳型8を載置し、加熱ヒーター4を用いて加熱する。原料シリコンを溶融するためには融点(約1410℃)以上に加熱する必要があるが、その際、所定の温度範囲(たとえば1450〜1550℃)に安定して保持するのが好ましい。このようにして原料シリコンが鋳型8内で溶融され、シリコン融液9となる。
【0021】
次いで図2に示すように、シリコン融液9を所定の温度範囲に保持しながら鋳型置台6を下降させ、鋳型置台6から抜熱する。このとき鋳型置台6の側壁6aおよび底面から抜熱が生じて、鋳型8内の底部からシリコン融液9の凝固が開始され、鋳型置台6とともに鋳型8が下降するにつれて、一方向凝固が進行する。特に鋳型置台6の側壁6aは冷却板11の近傍を通過するので、鋳型置台6の下降速度や冷却水12の循環水量を調整することによって、抜熱される熱量は容易に制御できる。
【0022】
ここでシリコン融液9の一方向凝固を鋳型8の底部から上方へ安定して進行させ、かつ結晶粒の大きい多結晶シリコンを得るためには、鋳型8の底部にデンドライトを発生させ、それを成長させる必要がある。つまりシリコン融液9を一方向凝固させる際に、デンドライトを形成させることで、底部で得られた結晶粒が粗大になる。また、デンドライトは一種の単結晶であるため、結晶粒内のエッチピットの密度が大きくなることは少ない。なおエッチピットとは、結晶粒内の転位(いわゆるディスロケーション)が試料表面に現われている位置を示すものであり、試料表面を腐食することによって観察することができる。
【0023】
多結晶シリコンのエッチピットの密度と太陽電池の特性に多大な影響を及ぼす少数キャリア拡散長との測定結果が、すでに報告( A.Lowerenz, M.Rino, S.Riedel, M.Ghosh, M.Werner, H.J.Moller:16th European Photovoltaic Solar Energy Conference and Exhibition 2000 )されている。本発明者は、この A.Lowerenz らの報告に基づいて研究を行ない、エッチピットの密度を10個/cm以下とするためには、結晶粒径を5mm以上とすれば良いという知見を得た。つまり、5mm以上の結晶粒径を有する多結晶シリコンを製造する技術を開発することによって、優れた品質(すなわち拡散長の長い)の多結晶シリコンを得ることが可能となる。なおここで、結晶粒径は平均粒径を意味する。
【0024】
その意味で、 一種の単結晶であるデンドライトが底部に生成され、それから結晶が成長するため、結晶粒径5mm以上の多結晶シリコンを容易に得ることが可能となっている。
さらにデンドライトをシード(すなわち種)として結晶成長させるために、欠陥を内包しない結晶を得ることは容易であり、凝固成長についてもそれほど厳密な要求は必要ではない。
【0025】
それに対して、従来は凝固速度を遅くして、結晶成長を遅らせていたので、凝固速度を遅くすることによって生産性の低下を招くという困難な課題が存在していた。ところが生産性を向上させるためには凝固速度を増加せざるを得ず、従来の技術では多結晶シリコンの品質の劣化は避けられなかった。しかも従来の方法では、鋳型8の底部では結晶粒が小さく、その成長に伴って結晶粒が粗大化していた。
【0026】
これに対して本発明では、シリコン融液9の凝固初期において、以下のようにして、シリコン融液9からデンドライトを発生されることで、凝固初期に既に結晶粒を粗大化させる手法を採っており、その結果、凝固速度を遅くすることなく、結晶粒の大きい多結晶シリコンを製造することが可能となる。
つまり本発明では、鋳型8の底部においてデンドライトを発生させて、次にデンドライトの幹部,枝部から結晶を引き続き成長させる。一般にデンドライトは凝固速度が速いため、凝固初期において速く成長する。またデンドライトは一旦成長が始まると鋳型8の底面を覆うように成長し、さらにその幹部,枝部の太さが増大するので、大きな結晶粒を得ることが可能となる。したがって鋳型8の底部でも、大きい結晶を得ることが可能となる。
【0027】
つまり本発明を適用することによって、予め結晶粒を粗大化させることが可能となる。さらに凝固中期および凝固末期まで、初期のデンドライトの結晶粒から成長している結晶粒を維持することで、結晶粒の粗大化を図ることが可能となる。
なお、結晶成長で重要なことは、結晶粒の中に欠陥を内包しないようにし、かつ結晶粒が微細化しないようにすることである。仮に欠陥が存在した場合、その欠陥を途中で十分減少させるような成長制御を用いる必要がある。
【0028】
鋳型8の底部でデンドライトを形成させるには、鋳型8内のシリコン融液9の温度範囲,鋳型8底部の温度範囲,チャンバー1内部の温度範囲を以下のように規定するのが好ましい。
シリコン融液9の温度範囲 :融点〜1460℃
鋳型8底部の温度範囲 :1100℃〜1415℃
チャンバー1内部の温度範囲:1360℃〜1460℃
ただし、シリコン融液9の温度および鋳型8底部の温度を上記の温度範囲に調整すると、結果としてチャンバー1内部の温度は上記した1360℃〜1460℃の範囲内となる。
【0029】
ここで重要なことは、デンドライト形成時にシリコン融液9,鋳型8,チャンバー1を安定した状態に保ち、底部からのみ核生成とデンドライト形成を生じさせることである。底部からデンドライトが形成されると、その後の結晶成長は、デンドライトをシードとして成長する。
このようにして本発明では、結晶粒の大きい多結晶シリコンを効率良く製造し、しかもインゴット全体の結晶粒径が均一な多結晶シリコンを製造することができる。
【0030】
【実施例】
図1,2に示す装置を用いて、多結晶シリコンのインゴットの製造実験を行なった。不純物の影響を防止するために、原料シリコンとして半導体用高純度バージンポリシリコン(比抵抗1kΩcm以上)を使用した。さらに鋳型8内のシリコン融液9にBを添加して、多結晶シリコンのインゴットの比抵抗を調整し、多結晶シリコンのインゴットの平均比抵抗が 0.5〜5Ωcmとなるように(すなわち目的とするウェハーの特性に適合するように)調整した。
【0031】
鋳型8底部の温度を種々変化させて、鋳型8底部におけるデンドライトの発生と平均粒径との関係を調査した。その結果を図3に示す。なおチャンバー1内部の温度およびシリコン融液9の温度は、アルミナ磁性管内に絶縁管を使用した熱電対を用いて、チャンバー1内部とシリコン融液9の温度をそれぞれ測定した。
なお、その他の実験条件は表1に示す通りである。
【0032】
【表1】
Figure 2004284892
【0033】
図3から明らかなように、シリコン融液9の温度が1460℃以下の範囲でデンドライトが形成され、その時にインゴット底部の平均粒径が5mm以上となった。
【0034】
【発明の効果】
本発明は、従来の生産性向上を目的とした単なる多結晶シリコンや、品質向上を目的としながらも結晶粒径の細かい多結晶シリコンしか製造できなかった方法とは異なり、全く新規な方法である。つまり本発明は、キャスト法において鋳型底部でデンドライトを生成させてから、多結晶シリコンの結晶を成長させることを特徴とし、高品質の多結晶シリコンを製造するにあたって、生産性の向上を実現したものである。
【0035】
なお本発明は、太陽電池の分野に限定することなく、多結晶シリコンを使用した他の分野にも適用可能である。しかも特性が極めて良好であることから、従来の単結晶が使用されていた分野にも適用が可能である。
【図面の簡単な説明】
【図1】本発明を適用する多結晶シリコン製造装置の例を模式的に示す断面図であり、原料シリコンを溶融する状態を示す。
【図2】本発明を適用する多結晶シリコン製造装置の例を模式的に示す断面図であり、シリコン融液を凝固させる状態を示す。
【図3】鋳型底部におけるデンドライトの発生と平均粒径との関係を示すグラフである。
【符号の説明】
1 チャンバー
2 下部室
3 隔壁
4 加熱ヒーター
5 連通口
6 鋳型置台
6a 鋳型置台の側壁
7 昇降機
8 鋳型
9 シリコン融液
10 断熱材
11 冷却板
12 冷却水

Claims (2)

  1. 溶融したシリコンを鋳型内でキャスト法によって凝固させてシリコンインゴットを得る多結晶シリコンの製造方法において、凝固初期にデンドライトを発生させて、前記デンドライトから溶融シリコンを凝固させて結晶を成長させることを特徴とする多結晶シリコンの製造方法。
  2. 前記多結晶シリコンのインゴット下部に発生したデンドライトの結晶粒径が5mm以上であることを特徴とする請求項1に記載の多結晶シリコンの製造方法。
JP2003079877A 2003-03-24 2003-03-24 多結晶シリコンの製造方法 Pending JP2004284892A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003079877A JP2004284892A (ja) 2003-03-24 2003-03-24 多結晶シリコンの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003079877A JP2004284892A (ja) 2003-03-24 2003-03-24 多結晶シリコンの製造方法

Publications (1)

Publication Number Publication Date
JP2004284892A true JP2004284892A (ja) 2004-10-14

Family

ID=33293886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003079877A Pending JP2004284892A (ja) 2003-03-24 2003-03-24 多結晶シリコンの製造方法

Country Status (1)

Country Link
JP (1) JP2004284892A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100853019B1 (ko) 2007-01-19 2008-08-19 주식회사 글로실 태양전지용 다결정 실리콘 주괴 제조 방법
JP2009040641A (ja) * 2007-08-10 2009-02-26 Tohoku Univ Siバルク多結晶インゴット
JP2009084145A (ja) * 2007-09-10 2009-04-23 Tohoku Univ Si多結晶インゴット、Si多結晶インゴットの製造方法およびSi多結晶ウェハー
JP2009520664A (ja) * 2005-12-21 2009-05-28 ショイテン ソーラー ホールディング ベーフェー 太陽熱利用目的に適したシリコンの製造方法
JP2014205598A (ja) * 2013-04-15 2014-10-30 国立大学法人東北大学 Si多結晶インゴットの製造方法およびSi多結晶インゴット
CN110170637A (zh) * 2019-05-28 2019-08-27 深圳市万泽中南研究院有限公司 一种保持铸件定向凝固过程稳定性的设备与工艺

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009520664A (ja) * 2005-12-21 2009-05-28 ショイテン ソーラー ホールディング ベーフェー 太陽熱利用目的に適したシリコンの製造方法
KR100853019B1 (ko) 2007-01-19 2008-08-19 주식회사 글로실 태양전지용 다결정 실리콘 주괴 제조 방법
JP2009040641A (ja) * 2007-08-10 2009-02-26 Tohoku Univ Siバルク多結晶インゴット
JP2009084145A (ja) * 2007-09-10 2009-04-23 Tohoku Univ Si多結晶インゴット、Si多結晶インゴットの製造方法およびSi多結晶ウェハー
JP4674327B2 (ja) * 2007-09-10 2011-04-20 国立大学法人東北大学 Si多結晶インゴット、Si多結晶インゴットの製造方法およびSi多結晶ウェハー
JP2014205598A (ja) * 2013-04-15 2014-10-30 国立大学法人東北大学 Si多結晶インゴットの製造方法およびSi多結晶インゴット
CN110170637A (zh) * 2019-05-28 2019-08-27 深圳市万泽中南研究院有限公司 一种保持铸件定向凝固过程稳定性的设备与工艺

Similar Documents

Publication Publication Date Title
JP5141020B2 (ja) 多結晶シリコンの鋳造方法
JP4203603B2 (ja) 半導体バルク多結晶の作製方法
KR20110038040A (ko) 일방향성 응고에 의한 단결정 실리콘 잉곳 성장 시스템 및 방법
CA2681353A1 (en) Method and apparatus for manufacturing silicon ingot
JP2011144106A (ja) 単結晶シリコンリボンの連続鋳造装置および連続鋳造方法
JP2008100904A (ja) チョクラルスキー法を用いた半導体単結晶製造方法、この方法により製造された半導体単結晶インゴット及びウエハー
KR101281033B1 (ko) 온도 조절이 용이한 연속주조법을 이용한 태양전지용 실리콘 기판 제조 장치 및 이를 이용한 실리콘 기판 제조 방법
JP2007019209A (ja) 太陽電池用多結晶シリコンおよびその製造方法
JP2005132671A (ja) 高品質多結晶シリコンの製造方法
JP2004196577A (ja) 多結晶シリコンの製造方法
JP4060106B2 (ja) 一方向凝固シリコンインゴット及びこの製造方法並びにシリコン板及び太陽電池用基板及びスパッタリング用ターゲット素材
JPS63166711A (ja) 多結晶シリコン鋳塊の製造法
JP2004284892A (ja) 多結晶シリコンの製造方法
JP2006273628A (ja) 多結晶シリコンインゴットの製造方法
JP5861770B2 (ja) 多結晶シリコンおよびその鋳造方法
TWI451007B (zh) 用於生產矽錠的方法
JP6401051B2 (ja) 多結晶シリコンインゴットの製造方法
JP2018012632A (ja) 多結晶シリコンインゴットの製造方法
JP3935747B2 (ja) シリコンインゴットの製造方法
JP3005633B2 (ja) 太陽電池用多結晶シリコン鋳塊の製造方法
JP2019218245A (ja) Siインゴット結晶の製造方法及びその製造装置
JP4292300B2 (ja) 半導体バルク結晶の作製方法
JPH1192284A (ja) 一方向凝固多結晶組織を有するシリコンインゴットの製造方法
JPS5899115A (ja) 多結晶シリコンインゴツトの鋳造方法
JP2000001308A (ja) 多結晶シリコン鋳塊の製造方法及びその製造装置