WO2016047386A1 - 窒化物半導体発光素子 - Google Patents

窒化物半導体発光素子 Download PDF

Info

Publication number
WO2016047386A1
WO2016047386A1 PCT/JP2015/074698 JP2015074698W WO2016047386A1 WO 2016047386 A1 WO2016047386 A1 WO 2016047386A1 JP 2015074698 W JP2015074698 W JP 2015074698W WO 2016047386 A1 WO2016047386 A1 WO 2016047386A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
nitride semiconductor
light emitting
type
semiconductor layer
Prior art date
Application number
PCT/JP2015/074698
Other languages
English (en)
French (fr)
Inventor
谷 善彦
哲也 花本
渡辺 昌規
彰宏 栗栖
勝次 井口
博之 柏原
知也 井上
浅井 俊晶
浩崇 渡邉
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN201580046876.2A priority Critical patent/CN107924966B/zh
Priority to US15/511,750 priority patent/US10084111B2/en
Priority to JP2016550077A priority patent/JP6306200B2/ja
Publication of WO2016047386A1 publication Critical patent/WO2016047386A1/ja
Priority to US16/101,559 priority patent/US10790409B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen

Definitions

  • the present invention relates to a nitride semiconductor light emitting device.
  • a group III-V compound semiconductor (group III nitride semiconductor) containing nitrogen has a band gap energy corresponding to the energy of light having a wavelength in the infrared region to the ultraviolet region. Therefore, Group III nitride semiconductors are useful as materials for light-emitting elements that emit light having wavelengths from the infrared region to the ultraviolet region, or as materials for light-receiving elements that receive light having wavelengths from the infrared region to the ultraviolet region. It is.
  • the bonding force between atoms constituting the group III nitride semiconductor is strong, the dielectric breakdown voltage is high, and the saturation electron velocity is high.
  • the group III nitride semiconductor is also useful as a material for an electronic device such as a high-temperature transistor with high temperature resistance and high output.
  • group III nitride semiconductors are attracting attention as easy-to-handle materials because they hardly harm the environment.
  • a quantum well structure as a light emitting layer.
  • the light emitting layer may have a single quantum well (SQW) structure or a multiple quantum well (MQW) structure in which well layers and barrier layers are alternately stacked. May be.
  • an InGaN layer is generally used as a well layer and a GaN layer is used as a barrier layer.
  • a blue LED Light Emitting Device
  • a white LED can also be produced by combining this blue LED with a phosphor.
  • an AlGaN layer is used as the barrier layer, it is thought that the light emission efficiency increases because the band gap energy difference between the barrier layer and the well layer increases.
  • a better quality crystal is obtained with AlGaN than with GaN. There is a problem that it is difficult.
  • n-type nitride semiconductor layer included in the nitride semiconductor light emitting device a GaN layer or an InGaN layer is generally used.
  • n-type impurities are 1 ⁇ 10 17 cm ⁇ 3 in order from the substrate side between the substrate and the light emitting layer.
  • the n-type electrode is formed on the second nitride semiconductor layer.
  • Patent Document 1 since the first layer and the third layer have a low n-type impurity concentration, they become base layers having good crystallinity, and the second layer having a high n-type impurity concentration is formed on the first layer having good crystallinity. It is described that the layer can be grown with good crystallinity.
  • Patent Document 2 JP-A-11-330554 (Patent Document 2) describes a nitride semiconductor light emitting device having a light emitting layer between an n-type nitride semiconductor layer and a p-type nitride semiconductor layer.
  • the n-type nitride semiconductor layer includes a first nitride semiconductor layer containing In and a second nitride semiconductor layer having a composition different from that of the first nitride semiconductor layer.
  • Stacked n-type multilayer layers are provided, and the thickness of at least one of the first nitride semiconductor layer and the second nitride semiconductor layer is 100 angstroms or less.
  • Patent Document 2 describes that the efficiency of the nitride semiconductor light-emitting device is improved because the crystallinity of the light-emitting layer is improved particularly by making the n-type multilayer film layer have a superlattice structure.
  • Patent Document 3 the first nitride having a band gap energy larger than the band gap energy of the light emitting layer on at least one surface of the light emitting layer.
  • Patent Document 3 describes that a nitride semiconductor device having high luminous efficiency can be provided.
  • a V pit is formed on the n-type nitride semiconductor layer, and the V pit is also taken over in the active layer and embedded in the p-type nitride semiconductor layer. Is disclosed, and an n-type nitride semiconductor layer structure and a formation method for forming desirable V pits are important.
  • Patent Document 4 states that “n-type In 0.1 Ga 0.9 N / In 0.02 Ga 0.98 N multiple quantum well adjacent layer (Si-doped, 5 ⁇ 10 17 cm ⁇ 3 , well width 2 nm, barrier width 4 nm, 20 layers) "In 0.2 Ga 0.8 N / In 0.05 Ga 0.95 N multiple quantum well active layer (non-doped, well width 2 nm, A structure in which a “barrier width of 4 nm, 10 layers” is formed, and a “p-type GaN adjacent layer (Mg-doped, 5 ⁇ 10 17 cm ⁇ 3 , 0.1 ⁇ m)” is further formed thereon is disclosed.
  • the multiple quantum well adjacent layer is a structure generally called a superlattice structure at present.
  • Patent Document 5 a 0.5 ⁇ m thick silicon-doped GaN layer (electron concentration 1 ⁇ 10 18 / cm 3 ) called “strain relaxation layer” is disposed below the active layer. It is disclosed that, by forming at a relatively low temperature, a large number of V pits can be formed, and V pits can also be formed in the active layer itself. Patent Document 5 describes that this significantly improves the photoluminescence characteristics of the active layer.
  • Patent Document 6 Japanese Patent No. 5415756 (Patent Document 6) and Japanese Patent No. 5603366 (Patent Document 7), a superlattice layer called a pit opening layer is disposed under the active region (active layer), and the threading dislocation is detected.
  • a structure is disclosed in which pits are generated, a quantum well layer and a hole injection layer are stretched in the pits, and the pits are embedded with a p-type contact layer. Patent Documents 6 and 7 describe that this improves light emission efficiency and power efficiency.
  • a (strained) superlattice structure ((strained) superlattice is generally formed by periodically laminating layers having a thickness of 10 nm (100 mm) or less (for example, about 1 to 6 nm).
  • the structure is made of a nitride semiconductor), but is provided below the light emitting layer. Thereby, it is said that the distortion imparted to the light emitting layer can be effectively relieved, and thus good light emission characteristics can be obtained.
  • the temperature characteristic of the light emitting element means the ratio of the luminous efficiency at a high temperature (for example, 80 ° C.) to the luminous efficiency at room temperature.
  • the temperature characteristics of a light emitting element decrease as the operating temperature of the light emitting element increases. From a practical viewpoint, the light emitting element is required to have high temperature characteristics.
  • V pits are formed in the active layer.
  • luminous efficiency is increased by directly injecting holes from the V pits into the quantum wells constituting the light emitting layer, and the layer embedded in the V pits is quantum.
  • a model is proposed in which the luminous efficiency increases by acting as a barrier layer against carriers in the well layer and preventing the disappearance of carriers.
  • a superlattice structure is generally used as the underlying structure.
  • the present invention has been made in view of such a point, and an object thereof is to further improve the light emission characteristics of the nitride semiconductor light emitting device.
  • the present inventors have found that it is more effective to provide a multilayer structure of an n-type nitride semiconductor layer below the light emitting layer in order to reduce the threading dislocation density in the light emitting layer.
  • the multi-layer structure of the n-type nitride semiconductor layer has a band gap energy different from each other and a layer having a relatively large thickness (for example, a layer having a thickness of more than 10 nm and not more than 30 nm) periodically. It means a structure constructed by stacking.
  • the present inventors have made the thickness of each layer constituting the multilayer structure of the n-type nitride semiconductor layer greater than 10 nm and 30 nm or less, so that the threading dislocation is bent at the interface between the layers having different band gap energies. As a result, it has been found that the threading dislocation density is reduced in the light emitting layer.
  • the present inventors can form a base structure with high flatness of the crystal growth surface by using the multilayer structure, not the base structure, in an LED for use in which light emission efficiency at room temperature is important. It has been found that the luminous efficiency can be further improved by combining with a light emitting layer having a V-shaped recess (V pit).
  • V pit V-shaped recess
  • the nitride semiconductor light emitting device of the present invention includes at least an n-type nitride semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer. Between the n-type nitride semiconductor layer and the light emitting layer, there is provided a multilayer structure having at least one stacked structure of the first semiconductor layer and the second semiconductor layer. The band gap energy of the second semiconductor layer is larger than the band gap energy of the first semiconductor layer. The thickness of each of the first semiconductor layer and the second semiconductor layer is greater than 10 nm and 30 nm or less.
  • the nitride semiconductor light emitting device of the present invention is an LED for use in which light emission efficiency at room temperature is important, and includes at least an n-type nitride semiconductor layer, a light emitting layer, and a p-type nitride semiconductor layer. Between the n-type nitride semiconductor layer and the light emitting layer, there is provided a multilayer structure having at least one stacked structure of the first semiconductor layer and the second semiconductor layer.
  • the band gap energy of the second semiconductor layer is larger than the band gap energy of the first semiconductor layer.
  • the thickness of the first semiconductor layer is greater than 10 nm and 30 nm or less.
  • the thickness of the second semiconductor layer is greater than 10 nm and not greater than 40 nm.
  • a plurality of V-shaped concave portions (V pits) are formed in the light emitting layer in a sectional view.
  • the first semiconductor layer is made of Al x1 In y1 Ga 1-x1-y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1)
  • the second semiconductor layer is Al x2 In y2 Ga 1-x2-y2 N (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1).
  • the n-type impurity concentration of each of the first semiconductor layer and the second semiconductor layer is 3 ⁇ 10 18 cm ⁇ 3 or more and less than 1.1 ⁇ 10 19 cm ⁇ 3 . More preferably, the first semiconductor layer and the second semiconductor layer have the same n-type impurity concentration.
  • the first semiconductor layer and the second semiconductor layer have the same thickness.
  • the multilayer structure has 3 to 7 pairs of stacked structures of the first semiconductor layer and the second semiconductor layer. More preferably, the light emitting layer is in contact with the multilayer structure. In this case, the second semiconductor layer located closest to the light emitting layer in the second semiconductor layer is in contact with the light emitting layer.
  • an n-type buffer layer (a second n-type buffer layer described later) is provided between the multilayer structure and the light emitting layer.
  • the n-type buffer layer contains an n-type impurity, is made of Al x3 In y3 Ga 1-x3-y3 N (0 ⁇ x3 ⁇ 1, 0 ⁇ y3 ⁇ 1), and is in contact with the light emitting layer.
  • the band gap energy of the n-type buffer layer may be equal to or higher than the band gap energy of the second semiconductor layer, may be equal to or lower than the band gap energy of the first semiconductor layer, or the band gap energy of the second semiconductor layer. It may be smaller and larger than the band gap energy of the first semiconductor layer.
  • the thickness of the n-type buffer layer is 30 nm or less.
  • an n-type buffer layer (a first n-type buffer layer described later) is provided between the n-type nitride semiconductor layer and the multilayer structure.
  • the n-type buffer layer provided between the n-type nitride semiconductor layer and the multilayer structure contains an n-type impurity, and Al s4 In t4 Ga 1-s4-t4 N (0 ⁇ s4 ⁇ 1, 0 ⁇ t4 ⁇ 1) and is in contact with the multilayer structure.
  • the band gap energy of the n-type buffer layer provided between the n-type nitride semiconductor layer and the multilayer structure is the same as the band gap energy of the second semiconductor layer.
  • the n-type impurity concentration of the n-type buffer layer provided between the n-type nitride semiconductor layer and the multilayer structure is equal to the n-type impurity concentration of the first semiconductor layer and the n-type impurity concentration of the second semiconductor layer. Same as at least one of them.
  • the thickness of the n-type buffer layer provided between the n-type nitride semiconductor layer and the multilayer structure is 50 nm or less.
  • the light emitting layer is preferably an undoped layer, and more preferably a single quantum well structure, or a well layer and Al f In g Ga 1-f N (0 ⁇ f ⁇ 0.01, 0 ⁇ g ⁇ 0.01) and a multiple quantum well structure in which barrier layers are alternately stacked.
  • the light emitting layer is formed with a V-shaped recess (V pit) in a cross-sectional view, and the lowest part of the V-shape is positioned in a multilayer structure.
  • V pit V-shaped recess
  • the V-shaped concave portions (V pits) are scattered as a large number of holes in a plan view of the uppermost portion of the light emitting layer, and the planar density of the V-shaped concave portions (V pits) is 1 ⁇ 10 8. / Cm 2 or more.
  • the light emission characteristics of the nitride semiconductor light emitting device can be further improved.
  • FIG. 1A is a cross-sectional view of a nitride semiconductor light emitting device according to an embodiment of the present invention
  • FIG. 1B is an enlarged view of a main part of the nitride semiconductor light emitting device according to an embodiment of the present invention
  • FIG. 1 is a plan view of a nitride semiconductor light emitting device according to an embodiment of the present invention.
  • FIG. 3A shows a PL (Photo Luminescence) excitation intensity ratio when the Si concentration in the first semiconductor layer and the second semiconductor layer is changed in the nitride semiconductor light emitting device according to the embodiment of the present invention.
  • FIG. PL Photo Luminescence
  • 3B is a graph showing the temperature characteristics of the emission intensity when the Si concentrations in the first semiconductor layer and the second semiconductor layer are changed in the nitride semiconductor light emitting device according to the embodiment of the present invention. It is a graph to show. It is an image which shows the result of having observed by AFM (Atomic Force Microscopy) just before light emitting layer formation of the nitride semiconductor light-emitting device concerning one embodiment of the present invention.
  • 4 is an energy band diagram schematically showing a band structure of the nitride semiconductor light emitting device of Example 1.
  • FIG. 4 is an energy band diagram schematically showing a band structure of a nitride semiconductor light emitting device of Example 2.
  • FIG. 6 is an energy band diagram schematically showing a band structure of the nitride semiconductor light emitting device of Example 3.
  • FIG. 6 is an energy band diagram schematically showing a band structure of the nitride semiconductor light emitting device of Example 4.
  • 6 is an energy band diagram schematically showing a band structure of a nitride semiconductor light emitting device of Example 5.
  • FIG. It is an image which shows the result of having observed by AFM (Atomic Force Microscopy) just before formation of the light emitting layer of the nitride semiconductor light emitting element which attaches importance to the room temperature characteristic concerning other embodiments of the present invention.
  • FIG. 5 is a cross-sectional view of a nitride semiconductor light-emitting element that emphasizes room temperature characteristics according to another embodiment of the present invention. It is a top view of the nitride semiconductor light-emitting device concerning other embodiments of the present invention. It is an energy band figure which shows typically the band structure of the nitride semiconductor light-emitting device of Example 10.
  • FIG. 14 is an energy band diagram schematically showing a band structure of the nitride semiconductor light emitting device of Example 11.
  • FIG. 14 is an energy band diagram schematically showing a band structure of the nitride semiconductor light emitting device of Example 12.
  • Well layer 14W represents a layer sandwiched between barrier layers (see, for example, FIG. 5).
  • a well layer not sandwiched between barrier layers is referred to as “first well layer 14WI” or “last well layer 14WF” (see, for example, FIG. 5), and is not sandwiched between a well layer and a barrier layer sandwiched between barrier layers. The notation is changed with the well layer.
  • the “first well layer 14WI” is located on the n-type nitride semiconductor layer side
  • the “last well layer 14WF” is located on the p-type nitride semiconductor layer side.
  • impurity concentration and “carrier concentration” which is the concentration of electrons generated with doping of n-type impurities or the concentration of holes generated with doping of p-type impurities are used.
  • carrier concentration The relationship between “impurity concentration” and “carrier concentration” will be described later.
  • the “carrier gas” is a gas other than the group III source gas, the group V source gas, and the impurity source gas.
  • the atoms constituting the carrier gas are not taken into the film.
  • the “n-type nitride semiconductor layer” may include a low carrier concentration n-type layer or an undoped layer having a thickness that does not impede the flow of electrons practically.
  • the “p-type nitride semiconductor layer” may include a p-type layer or an undoped layer having a low carrier concentration with a thickness that does not impede the flow of holes in practice. “Not practically hindered” means that the operating voltage of the nitride semiconductor light emitting device is at a practical level.
  • FIG. 1A is a cross-sectional view of a nitride semiconductor light emitting device according to an embodiment of the present invention
  • FIG. 1B is an enlarged view of a main part of the nitride semiconductor light emitting device 1 shown in FIG.
  • FIG. 2 is a plan view of the nitride semiconductor light emitting device 1.
  • a region IA shows a cross-sectional structure taken along line IA-IA shown in FIG. 2
  • a region IB shows a cross-sectional structure taken along line IB-IB shown in FIG.
  • N-type buffer layer provided between the physical semiconductor layer and the multilayer structure, a multilayer structure 120, and a second n-type buffer layer (an n-type buffer provided between the multilayer structure and the light emitting layer) Layer) 13, a light emitting layer 14, and p-type nitride semiconductor layers 16, 17, and 18.
  • the second n-type buffer layer 13 may not be provided.
  • a part of the n-type contact layer 8, the first n-type buffer layer 10, the multilayer structure 120, the second n-type buffer layer 13, the light emitting layer 14, and the p-type nitride semiconductor layers 16, 17, and 18 are etched to form a mesa.
  • Part 30 is configured.
  • a p-side electrode 25 is provided on the upper surface of the p-type nitride semiconductor layer 18 via the transparent electrode 23.
  • An n-side electrode 21 is provided on the exposed surface of the n-type contact layer 8 outside the mesa portion 30 (on the right side in FIG. 1A).
  • the transparent protective film 27 covers the transparent electrode 23 and the side surface of each layer exposed by etching, and the n-side electrode 21 and the p-side electrode 25 are exposed from the transparent protective film 27.
  • the substrate 3, the buffer layer 5, the base layer 7, and the n-type contact layer 8 are preferably configured by a known technique. These configurations are not particularly limited in the present invention. Therefore, below, the detailed description of these structures is omitted. With regard to the materials, compositions, forming methods, forming conditions, thicknesses, impurity concentrations, and the like of these structures, various combinations with known techniques are possible.
  • planar structure of the nitride semiconductor light emitting device 1 shown in FIG. 2 various known planar structures can be employed. Unlike FIG. 2, a structure capable of realizing flip-chip connection in which a nitride semiconductor light emitting element is connected upside down to a substrate may be employed. Thus, the planar structure of the nitride semiconductor light emitting device 1 is not particularly limited in the present invention. Therefore, in the following, detailed description of the planar structure of the nitride semiconductor light emitting device 1 is also omitted.
  • the first n-type buffer layer 10 is provided between the n-type contact layer 8 and the multilayer structure 120.
  • the n-type contact layer 8 is grown at a high temperature and at a high speed.
  • the light emitting layer 14 is grown at a lower temperature and at a lower speed than the n-type contact layer 8. Therefore, in the manufacturing process of the nitride semiconductor light emitting device 1, it is necessary to switch the growth temperature of the nitride semiconductor layer from high temperature to low temperature, and it is necessary to switch the growth rate from high speed to low speed.
  • the first n-type buffer layer 10 plays a role as a buffer layer at this time.
  • the first n-type buffer layer 10 Since the first n-type buffer layer 10 is grown at a lower temperature and at a lower speed than the n-type contact layer 8, the growth surface (upper surface) is smoother than the growth surface of the n-type contact layer 8. However, it is considered that the first n-type buffer layer 10 has little effect of reducing crystal defects such as dislocations.
  • the first n-type buffer layer 10 is grown at a lower temperature than the n-type contact layer 8. For this reason, in the first n-type buffer layer 10, it has been observed that some dislocations begin to form so-called V pits.
  • the first n-type buffer layer 10 is in contact with the multilayer structure 120. This improves the controllability of the V pit structure (the V pit structure reduces the influence of threading dislocations).
  • the thickness of the first n-type buffer layer 10 is preferably 50 nm or less. Thereby, the undulation of the growth surface (upper surface) of the first n-type buffer layer 10 can be suppressed.
  • the thickness of the first n-type buffer layer 10 is more preferably 5 nm or more, and further preferably 10 nm or more. Thereby, the growth surface of the first n-type buffer layer 10 can be smoothed.
  • the n-type impurity concentration of the first n-type buffer layer 10 is preferably 3 ⁇ 10 18 cm ⁇ 3 or more and less than 1.1 ⁇ 10 19 cm ⁇ 3 . If the n-type impurity concentration of the first n-type buffer layer 10 becomes too high, the luminous efficiency of the light-emitting layer 14 formed on the first n-type buffer layer 10 may be reduced. In consideration of this, the n-type impurity concentration of the first n-type buffer layer 10 is the same as the n-type impurity concentration of at least one of the first semiconductor layer 121 and the second semiconductor layer 122 constituting the multilayer structure 120. Preferably there is.
  • the influence of the n-type impurities contained in the first n-type buffer layer 10 is the influence of the n-type impurities contained in the multilayer structure 120. It is not so noticeable.
  • the n-type impurity concentration of the first n-type buffer layer 10 is the same as the n-type impurity concentration of the first semiconductor layer 121 constituting the multilayer structure 120” indicates that the n-type impurity concentration of the first n-type buffer layer 10 is The case where the n-type impurity concentration of the first semiconductor layer 121 is 0.85 times or more and 1.15 times or less is included.
  • the n-type impurity concentration of the first n-type buffer layer 10 is the same as the n-type impurity concentration of the second semiconductor layer 122 included in the multilayer structure 120” indicates that the n-type impurity concentration of the first n-type buffer layer 10 is The case where the n-type impurity concentration of the second semiconductor layer 122 is 0.85 times or more and 1.15 times or less is included.
  • the first n-type buffer layer 10 preferably has a significantly lower n-type impurity concentration than the n-type contact layer 8. This facilitates smoothing of the growth surface of the first n-type buffer layer 10 and suppresses the occurrence of new dislocations.
  • the first n-type buffer layer 10 is composed of Al s4 In t4 Ga 1-s4-t4 N (0 ⁇ s4 ⁇ 1 (more preferably 0 ⁇ s4 ⁇ 1), 0 ⁇ t4 ⁇ 1 (more preferably 0 ⁇ t4 ⁇ 1). ))
  • the layer is preferably a layer doped with n-type impurities. More preferably, the first n-type buffer layer 10 includes n in the In u4 Ga 1-u4 N (0 ⁇ u4 ⁇ 1, preferably 0 ⁇ u4 ⁇ 0.5, more preferably 0 ⁇ u4 ⁇ 0.15) layer. It is a layer doped with type impurities.
  • the first n-type buffer layer 10 is provided between the n-type contact layer 8 and the multilayer structure 120, it is between the n-type contact layer 8 and the second semiconductor layer 122 constituting the multilayer structure 120. It is preferable to reduce the degree of lattice mismatch as much as possible. As the degree of lattice mismatch increases, the possibility of new crystal defects is increased. Therefore, the band gap energy of the first n-type buffer layer 10 is preferably the same as the band gap energy of the n-type contact layer 8 or the band gap energy of the second semiconductor layer 122 constituting the multilayer structure 120.
  • the first n-type buffer layer 10 is preferably an n-type GaN layer (having a thickness of 25 nm).
  • the band gap energy of the first n-type buffer layer 10 is the same as the band gap energy of the n-type contact layer 8” means that the band gap energy of the first n-type buffer layer 10 is equal to the band gap energy of the n-type contact layer 8. The case of 0.9 times or more and 1.1 times or less is included. “The band gap energy of the first n-type buffer layer 10 is the same as the band gap energy of the second semiconductor layer 122 included in the multilayer structure 120”. The case where the band gap energy of the layer 122 is 0.9 times or more and 1.1 times or less is included.
  • Multilayer structure As a result of intensive studies by the present inventors, by providing the multilayer structure 120 between the first n-type buffer layer 10 and the light emitting layer 14, a layer formed on the multilayer structure 120 (for example, the light emitting layer 14). It was found that the crystal quality of can be maintained high. Thereby, it is considered that the light emission efficiency at the time of high temperature driving or large current driving can be maintained high.
  • the configuration of the multilayer structure 120 will be described.
  • the multilayer structure 120 has one or more stacked structures of the first semiconductor layer 121 and the second semiconductor layer 122.
  • the “laminated structure of the first semiconductor layer 121 and the second semiconductor layer 122” includes not only the case where the number of layers of the first semiconductor layer 121 and the second semiconductor layer 122 constituting the stacked structure is 1, A case where the number of layers of the first semiconductor layer 121 and the second semiconductor layer 122 constituting the stacked structure is two or more is also included.
  • the first semiconductor layer 121 and the second semiconductor layer 122 constituting the stacked structure is two or more, the first semiconductor layer 121 and the second semiconductor layer 122 are alternately stacked to form the stacked structure. Is configured. Specifically, in the multilayer structure 120, the first semiconductor layers 121 and the second semiconductor layers 122 having a larger band gap energy than the first semiconductor layers 121 are alternately stacked in order from the first n-type buffer layer 10 side. ing.
  • the thickness t 2 of the thickness t 1 and the second semiconductor layer 122 of the first semiconductor layer 121, respectively, is larger 30nm or less than 10 nm.
  • the thickness t 1 of the first semiconductor layer 121 is greater than 10 nm and 30 nm or less
  • the thickness t 2 of the second semiconductor layer 122 is greater than 10 nm and 40 nm or less. It is. Thereby, threading dislocations generated below the multilayer structure 120 are bent at the interface between the first semiconductor layer 121 and the second semiconductor layer 122. Therefore, since the threading dislocation density in the light emitting layer 14 is reduced, the crystal quality of the light emitting layer 14 can be maintained high.
  • the light emission characteristics of the nitride semiconductor light emitting device 1 are further improved.
  • the light emission efficiency during high temperature driving or large current driving can be maintained high.
  • the thickness t 2 of the thickness t 1 and the second semiconductor layer 122 of the first semiconductor layer 121 respectively, or at 15nm or more 30nm or less, in applications that emphasize the luminous efficiency at room temperature, the first semiconductor
  • the thickness t 1 of the layer 121 is 15 nm or more and 30 nm or less
  • the thickness t 2 of the second semiconductor layer 122 is 15 nm or more and 40 nm or less.
  • the thickness t 2 of the thickness t 1 and the second semiconductor layer 122 of the first semiconductor layer 121 is larger than 30 nm, there is the flatness of the growth surface of the multilayer structure 120 (upper surface) decreases.
  • Cross-sectional TEM of the multilayer structure 120 By observing the (Transmission Electron Microscope TEM) images, it is possible to obtain the thickness t 2 of the thickness t 1 and the second semiconductor layer 122 of the first semiconductor layer 121 .
  • Each of the first semiconductor layer 121 and the second semiconductor layer 122 preferably contains an n-type impurity. Thereby, the threading dislocation density in the light emitting layer 14 is further reduced.
  • the following can be considered as the reason.
  • the lattice constant of the group III nitride semiconductor crystal constituting the first semiconductor layer 121 changes.
  • the second semiconductor layer 122 contains an n-type impurity
  • the lattice constant of the crystal of the group III nitride semiconductor constituting the second semiconductor layer 122 changes. Due to these changes, threading dislocations generated below the multilayer structure 120 are easily bent at the interface between the first semiconductor layer 121 and the second semiconductor layer 122.
  • the n-type impurity concentration of each of the first semiconductor layer 121 and the second semiconductor layer 122 is preferably 3 ⁇ 10 18 cm ⁇ 3 or more and less than 1.1 ⁇ 10 19 cm ⁇ 3 , more preferably 6 ⁇ 10 18. cm ⁇ 3 or more and less than 1 ⁇ 10 19 cm ⁇ 3 .
  • the first semiconductor layer 121 and the second semiconductor layer 122 may have different n-type impurity concentrations, but are preferably the same. As a result, the composition or thickness of the first semiconductor layer 121 and the second semiconductor layer 122 can be easily controlled. “The first semiconductor layer 121 and the second semiconductor layer 122 have the same n-type impurity concentration” means that the n-type impurity concentration of the first semiconductor layer 121 is 0 of the n-type impurity concentration of the second semiconductor layer 122. .85 times or more and 1.15 times or less.
  • the inventors changed the n-type impurity (Si) concentration in each of the first semiconductor layer 121 (thickness: 12 nm) and the second semiconductor layer 122 (thickness: 12 nm) to change the photoluminescence (PL) excitation intensity.
  • the ratio, the electroluminescence (EL) emission intensity and its temperature dependence were investigated.
  • the results are shown in FIGS. 3 (a) and 3 (b).
  • the graph shown in FIG. 3A represents the Si concentration dependence of the PL excitation intensity ratio at the center of the nitride semiconductor light emitting device 1 in a top view of the nitride semiconductor light emitting device 1.
  • the “PL excitation intensity ratio” is defined as follows.
  • the photoluminescence intensity when the excitation light intensity is the first intensity is Ia
  • the photoluminescence intensity when the excitation light intensity is the second intensity is Ib
  • FIG. 3B shows data when light is emitted by passing a current through the nitride semiconductor light emitting device 1.
  • L31 is the temperature characteristic of the emission intensity (ratio of emission intensity at 80 ° C. (emission intensity at a wavelength of 450 nm) to emission intensity at 25 ° C. (emission intensity at a wavelength of 450 nm)).
  • L32 represents the Si concentration dependency of the output of the nitride semiconductor light emitting device.
  • “ref.” Means that the multilayer structure 120 is not provided.
  • the n-type impurity concentration in each of the first semiconductor layer 121 and the second semiconductor layer 122 is 3.1 ⁇ 10 18 cm ⁇ 3 or more
  • PL The excitation intensity ratio can be increased, the temperature characteristic of the emission intensity is improved, and the output is increased.
  • the n-type impurity concentration in each of the first semiconductor layer 121 and the second semiconductor layer 122 is 5.6 ⁇ 10 18 cm ⁇ 3 or more
  • the PL excitation intensity ratio can be further increased, and the temperature characteristic of the emission intensity can be improved. Further improvements have been made and the output has increased.
  • the thickness of the first semiconductor layer 121 t 1 and the thickness t 2 of the second semiconductor layer 122 is the same. “The thickness of the first semiconductor layer 121 and the thickness of the second semiconductor layer 122 are the same” means that the thickness t 1 of the first semiconductor layer 121 is 0.9 of the thickness t 2 of the second semiconductor layer 122. It means that it is more than double and 1.1 times or more. Thereby, even if the thickness of the multilayer structure 120 is increased, the adverse effect caused by the large thickness of the multilayer structure 120 reaches the layer (for example, the light emitting layer 14) grown on the multilayer structure 120. Can be prevented. For example, it is possible to prevent the crystal quality of the light emitting layer 14 from being deteriorated due to the large thickness of the multilayer structure 120.
  • the specific composition of the nitride semiconductor layers constituting the first semiconductor layer 121 and the second semiconductor layer 122 is not particularly limited.
  • the first semiconductor layer 121 is preferably an Al x1 In y1 Ga 1-x1-y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1) layer, and more preferably a Ga z1 In 1-z1 N (0 ⁇ z1 ⁇ 1) layer.
  • the second semiconductor layer 122 is preferably an Al x2 In y2 Ga 1-x2-y2 N (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1) layer, and more preferably a GaN layer.
  • an Al x1 In y1 Ga 1-x1-y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1) layer and an Al x2 In y2 Ga 1-x2-y2 N (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1) layers are alternately stacked, and more preferably, Ga z1 In 1-z1 N (0 ⁇ z1 ⁇ 1) layers and GaN layers are alternately stacked.
  • the band gap energy of the first semiconductor layer 121 can be arbitrarily set in a range of 0.77 eV or more and less than 6.28 eV in theory. However, in actual use, it is preferably 2.952 eV or more and 3.425 eV or less, and more preferably 3.100 eV or more and 3.379 eV or less.
  • the band gap energy of the second semiconductor layer 122 can theoretically be set arbitrarily within a range greater than 0.77 eV and less than 6.28 eV. However, in actual use, it is preferably 3.024 eV or more and 3.616 eV or less, and more preferably 3.289 eV or more and 3.496 eV or less.
  • the first effect is that dislocations can be prevented from reaching the light emitting layer 14. Since the first semiconductor layer 121 contains a large amount of In having a large atomic radius, the first semiconductor layer 121 is heavily stressed. As a result, some dislocations are bent in the first semiconductor layer 121 and thus do not reach the light emitting layer 14.
  • the second effect is that the flatness of the growth surface of the multilayer structure 120 can be enhanced.
  • the reason is that, during the growth of the first semiconductor layer 121, In is a surfactant on the growth surface of the multilayer structure 120 (the surfactant changes the physical property or chemical property of the growth surface of the multilayer structure 120). I think that it is because it functions as a generic name). If the flatness of the growth surface of the multilayer structure 120 can be improved and the number of dislocations extending toward the light emitting layer 14 can be reduced, the crystal quality of the light emitting layer 14 can be further improved. The light emission characteristics of the light emitting element 1 are further improved.
  • the In composition ratio in the first semiconductor layer 121 is preferably lower than the In composition ratio in the light-emitting layer 14, more preferably 0.05 or less, and still more preferably 0.8. It is about 04.
  • the multilayer structure 120 preferably has two or more stacked structures of the first semiconductor layer 121 and the second semiconductor layer 122. Thereby, the light emission efficiency at the time of high temperature driving or large current driving can be maintained even higher. More preferably, the multilayer structure 120 has a stacked structure of the first semiconductor layer 121 and the second semiconductor layer 122 in a range of 3 to 7 sets. Thereby, the luminous efficiency and productivity of the nitride semiconductor light emitting device 1 can be increased.
  • the upper surface of the 1n-type buffer layer 10, n-type GaN layer is an n-type InGaN layer (first semiconductor layer) and the thickness t 2 is 12nm in thickness t 1 is 12nm
  • first semiconductor layer n-type InGaN layer
  • second semiconductor layer the thickness t 2 of the thickness t 1 and the second semiconductor layer 122 of the first semiconductor layer 121 is the same in five sets all.
  • the thickness t 2 of the thickness t 1 and the second semiconductor layer 122 of the first semiconductor layer 121 is in the range of 10 nm ⁇ 30 nm, or in applications that emphasize the luminous efficiency at room temperature, the first semiconductor layer 121 the thickness t 1 in the range of 10 nm ⁇ 30 nm, the thickness t 2 of the second semiconductor layer 122 is within a range of 10 nm ⁇ 40 nm, may be different in each set.
  • the multilayer structure 120 is mainly described as a structure configured by providing one or more stacked structures of the first semiconductor layer 121 and the second semiconductor layer 122.
  • the multilayer structure 120 may be configured by combining three layers including layers different from the first semiconductor layer 121 and the second semiconductor layer 122 into one set.
  • the In concentration of the n-type InGaN layer is In concentration.
  • N-type InGaN layer positioned between the n-type GaN layer and the In concentration of the n-type GaN layer is provided as a third semiconductor layer, and the multilayer structure 120 can be configured by providing one or more stacked structures including these three layers. it can.
  • the unit structures constituting the multilayer structure 120 only a specific unit structure may be a laminated structure including three layers.
  • the thickness of the third semiconductor layer may be smaller than the thickness of the first semiconductor layer and the thickness of the second semiconductor layer.
  • the composition and impurity concentration of the third semiconductor layer can be said to be the same as the respective compositions and impurity concentrations of the first semiconductor layer and the second semiconductor layer.
  • the light emitting layer 14 is provided on the multilayer structure 120.
  • the light emitting layer 14 is preferably provided so as to be in contact with the multilayer structure 120.
  • the second semiconductor layer 122 located closest to the light emitting layer 14 in the multilayer structure 120 is in contact with the light emitting layer 14. It becomes.
  • the growth process of the nitride semiconductor layer can be simplified, so that the growth process of the nitride semiconductor layer can be easily controlled, and thus the production yield of the nitride semiconductor light emitting device 1 is improved.
  • the second n-type buffer layer 13 is provided between the multilayer structure 120 and the light emitting layer 14, the following effects can be obtained. However, since the thickness of the second n-type buffer layer 13 is approximately the same as the thickness of the first semiconductor layer 121 or the second semiconductor layer 122 (preferably 30 nm or less), the second n-type buffer layer 13 is provided. The impact of this is considered to be not so great.
  • an image obtained by observing the wafer surface immediately before forming the light emitting layer 14 with an AFM was referred to.
  • the AFM image of the growth surface of the second n-type buffer layer 13 was referred to.
  • the AFM image of the growth surface of the multilayer structure 120 was referred to.
  • the black hexagonal pattern seen in FIG. 4 is a so-called V pit.
  • Dislocations extending from the layer located closer to the substrate 3 than the first n-type buffer layer 10 toward the first n-type buffer layer 10 are the first n-type buffer layer 10, the multilayer structure 120, and the second n-type buffer layer 13. After that, I think that it became apparent as a hexagonal pyramid hole.
  • the density of V pits is preferably as low as possible, but is preferably 3 ⁇ 10 8 cm ⁇ 2 or less, more preferably 0.8 ⁇ 10 8 cm ⁇ 2 or less.
  • the size of the V pit is important in terms of improving the light emission characteristics of the nitride semiconductor light emitting device 1 or its yield.
  • the optimum value of the size of the V pit differs depending on the formation conditions of the light emitting layer 14 or the formation conditions of the p-type nitride semiconductor layers 16, 17, and 18, and thus it is difficult to determine them in general.
  • the size of the V pit generally increases in proportion to the thickness of the first n-type buffer layer 10, the thickness of the multilayer structure 120, or the thickness of the second n-type buffer layer 13.
  • the size of the V pit can be adjusted by adjusting the number of the second semiconductor layers 122.
  • the size of the V pit mainly depends on the growth conditions of the multilayer structure 120. In the present invention, the size of the V pit immediately before the formation of the light emitting layer 14 is controlled to 70 nm to 100 nm.
  • the second n-type buffer layer 13 is preferably made of Al x3 In y3 Ga 1-x3-y3 N (0 ⁇ x3 ⁇ 1, 0 ⁇ y3 ⁇ 1), more preferably Al x3 In y3 Ga 1- x3-y3 N (0 ⁇ x3 ⁇ 0.1, 0 ⁇ y3 ⁇ 0.2).
  • the n-type impurity concentration of the second n-type buffer layer 13 is preferably 3 ⁇ 10 18 cm ⁇ 3 or more and less than 1.1 ⁇ 10 19 cm ⁇ 3 . If the n-type impurity concentration of the second n-type buffer layer 13 becomes too high, the luminous efficiency of the light-emitting layer 14 formed on the second n-type buffer layer 13 may be reduced. In consideration of this, the n-type impurity concentration of the second n-type buffer layer 13 is the same as the n-type impurity concentration of at least one of the first semiconductor layer 121 and the second semiconductor layer 122 constituting the multilayer structure 120. Preferably there is.
  • the n-type impurity concentration of the second n-type buffer layer 13 is the same as the n-type impurity concentration of the first semiconductor layer 121 included in the multilayer structure 120”. The case where the n-type impurity concentration of the first semiconductor layer 121 is 0.85 times or more and 1.15 times or less is included. “The n-type impurity concentration of the second n-type buffer layer 13 is the same as the n-type impurity concentration of the second semiconductor layer 122 included in the multilayer structure 120”. The case where the n-type impurity concentration of the second semiconductor layer 122 is 0.85 times or more and 1.15 times or less is included.
  • the first n-type buffer layer 10, the multilayer structure 120, and the second n-type buffer layer 13 are all 7 ⁇ 10 18 / cm 3 of Si is doped.
  • the diameter of the V pit in FIG. 10 is as large as about 200 nm compared to FIG.
  • the density is about 1.5 ⁇ 10 8 / cm 2, which is slightly smaller than that in FIG. 4, but is considered to be within the range of variation at the measurement point.
  • the flatness of the plane is such that gentle lines running meandering up and down in the figure are arranged at almost equal intervals, and a beautiful step growth surface is formed.
  • V pit is formed on the crystal surface before the active layer is formed, and the size is preferably about 100 to 300 nm. Further, 150 nm to 250 nm is preferable.
  • the V pit size is not well understood. If the V pit is small, it is presumed that the hole injection into the flat quantum well layer via the V pit side wall portion is difficult to occur sufficiently. On the other hand, when the V pit is large, the flatness of the crystal growth surface is deteriorated at the same time, so that it is presumed that the crystallinity of the well layer is deteriorated and the light emission characteristic is deteriorated.
  • the bottom of the V-shaped V pit (the bottom of the V pit existing on the surface before the growth of the light emitting layer, that is, after the growth of the second n-type buffer layer 13). In the cross-sectional view of the layer, it corresponds to the lower apex of the light emitting layer deformed into a V shape.) Is preferably located in the multilayer structure. Further, in the LED with an emphasis on temperature characteristics, the V pits are scattered as a large number of holes in a plan view of the uppermost part of the light emitting layer, and the plane density (V pit density) of the V pits is 1 ⁇ 10 8 / cm. It is preferable that it is 2 or more. In addition, in an LED that emphasizes room temperature characteristics, the V pit density is not necessarily low, and the V pit density may be higher. Even when the density is about five times higher than the V pit density in FIG. 10, a sufficiently efficient LED can be formed.
  • the light emitting layer 14 is in contact with the second n-type buffer layer 13, and specifically, the first well layer 14 WI is in contact with the second n-type buffer layer 13.
  • the light emitting layer 14 is in contact with the multilayer structure 120.
  • the first well layer 14WI is the second semiconductor layer 122 (uppermost layer) of the multilayer structure 120. Is in contact with
  • the light emitting layer 14 may have a single quantum well structure, but preferably has a multiple quantum well structure in which well layers 14W and barrier layers 14A (see, for example, FIG. 5) are alternately stacked.
  • the light emitting layer 14 may have a stacked structure in which one or more semiconductor layers different from the well layer 14W and the barrier layer 14A, the well layer 14W, and the barrier layer 14A are sequentially stacked.
  • the light emitting layer 14 is preferably an undoped layer. Thereby, it can prevent effectively that a new defect generate
  • FIG. Although it cannot be stated as the reason, it is considered that the strain applied to the light emitting layer 14 from the multilayer structure 120 can be reduced.
  • the light emitting layer 14 is an undoped layer means that the first well layer 14WI, the well layer 14W, the last well layer 14WF, and all the barrier layers 14A included in the light emitting layer 14 are both n-type and p-type impurities. Is intentionally not included. In these layers, the n-type impurity concentration is suppressed to 1 ⁇ 10 17 cm ⁇ 3 or less, and the p-type impurity concentration is suppressed to 1 ⁇ 10 17 cm ⁇ 3 or less.
  • the thermally diffused p-type impurity is a well layer located on the p-type nitride semiconductor layer 16 side from the p-type nitride semiconductor layers 16, 17 and 18.
  • the barrier layer 14A may be doped.
  • the thickness of the stacked structure of one well layer 14W and one barrier layer 14A (the sum of the thickness of the well layer 14W and the thickness of the barrier layer 14A) is 5 nm to 100 nm. preferable.
  • the composition of the group III nitride semiconductor composing the well layer 14W is preferably adjusted in accordance with the emission wavelength required for the nitride semiconductor light emitting device 1, and more preferably Al c Ga d In 1-cd N (0 ⁇ c ⁇ 1, 0 ⁇ d ⁇ 1), and In e Ga 1-e N (0 ⁇ e ⁇ 1) not containing Al may be used.
  • the well layer 14W preferably contains Al.
  • the well layer located on the p-type nitride semiconductor layer 16 side contains as little impurities as possible. In other words, it is preferable to grow a well layer located on the p-type nitride semiconductor layer 16 side without introducing an impurity material. As a result, non-radiative recombination hardly occurs in the well layer located on the p-type nitride semiconductor layer 16 side, so that the light emission efficiency of the nitride semiconductor light emitting element 1 is increased.
  • the well layer located on the multilayer structure 120 side preferably contains an n-type impurity. Thereby, the driving voltage of the nitride semiconductor light emitting device 1 is lowered.
  • compositions of the group III nitride semiconductors constituting the well layer 14W are preferably the same, and the thicknesses of the well layers 14W are preferably the same. Thereby, in the well layer 14W, since the quantum levels are the same, the wavelengths of light generated by recombination of electrons and holes become the same. Therefore, the emission spectrum width of the nitride semiconductor light emitting device 1 is narrowed.
  • the composition of the group III nitride semiconductor constituting the well layer 14W or the thickness of the well layer 14W is intentionally different, the emission spectrum width of the nitride semiconductor light emitting device 1 becomes broad.
  • the nitride semiconductor light emitting device 1 is used for illumination or the like, it is preferable that the emission spectrum width of the nitride semiconductor light emitting device 1 is broad, and thus the group III nitride semiconductor constituting the well layer 14W.
  • the composition or the thickness of the well layer 14W is intentionally different.
  • the thickness of the well layer 14W is preferably set as appropriate within a range of 1 nm to 7 nm. Thereby, the effect that the luminous efficiency of the nitride semiconductor light emitting element 1 can be maintained high is also acquired.
  • the thickness of the first well layer 14WI is preferably 1 nm or more and 10 nm or less.
  • the number of the well layers 14W is preferably 2 or more and 20 or less, more preferably 3 or more and 15 or less, and still more preferably 4 or more and 12 or less.
  • the band gap energy of the barrier layer 14A is larger than the band gap energy of the well layer 14W.
  • the barrier layer 14A may be made of Al f Ga g In 1-fg N (0 ⁇ f ⁇ 1, 0 ⁇ g ⁇ 1), or In h Ga 1 ⁇ containing no Al. h N (0 ⁇ h ⁇ 1 , e> h) may be made from.
  • the lattice constant of Al f Ga g In 1-fg N (0 ⁇ f ⁇ 1, 0 ⁇ g ⁇ 1) is almost the same as the lattice constant of the material constituting the well layer 14W. Therefore, the barrier layer 14A is preferably made of Al f Ga g In 1-fg N (0 ⁇ f ⁇ 1, 0 ⁇ g ⁇ 1).
  • the barrier layer 14A is made of Al f In g Ga 1- fg N (0 ⁇ f ⁇ 0.01, 0 ⁇ g ⁇ 0.01).
  • each barrier layer 14A is not particularly limited, but is preferably 1 nm to 10 nm, more preferably 3 nm to 7 nm.
  • the driving voltage of the nitride semiconductor light emitting device 1 decreases as the thickness of each barrier layer 14A decreases. However, when the thickness of each barrier layer 14A is less than 1 nm, the light emission efficiency of the nitride semiconductor light emitting device 1 tends to decrease. is there.
  • each barrier layer 14A is not particularly limited, and is preferably set as appropriate.
  • Each barrier layer 14A may be an undoped layer or may contain an n-type impurity.
  • the barrier layer 14A located on the multilayer structure 120 side preferably contains an n-type impurity.
  • the barrier layer 14A located on the p-type nitride semiconductor layer 16 side contains an n-type impurity at a lower concentration than the barrier layer 14A located on the multilayer structure 120 side, or intentionally contains an n-type impurity. Preferably not.
  • the barrier layer 14A tends to be thicker than a temperature characteristic-oriented LED, preferably 4 nm or more and 15 nm or less, more preferably 6 nm or more and 13 nm or less.
  • a temperature characteristic-oriented LED preferably 4 nm or more and 15 nm or less, more preferably 6 nm or more and 13 nm or less.
  • the last well layer 14WF is preferably provided with a p-type nitride semiconductor layer 16 with a p-side intermediate layer (for example, the layer 145 in FIG. 5) interposed therebetween.
  • a p-side intermediate layer for example, the layer 145 in FIG. 5
  • the thickness of the p-side intermediate layer is preferably such that the p-type impurity does not diffuse into the final well layer 14WF, preferably less than 10 nm, more preferably less than 5 nm. It may be approximately the same as the thickness of the layer 14A.
  • At least part of the p-side intermediate layer may be doped with n-type impurities. Thereby, the luminous efficiency of the nitride semiconductor light emitting device 1 is improved.
  • the p-side intermediate layer is preferably made of Al s5 Ga 1-s5 N (0 ⁇ s5 ⁇ 1), more preferably GaN or AlGaN having an Al composition comparable to or higher than that of the barrier layer 14A.
  • the p-type impurity diffuses from the p-type nitride semiconductor layer 16 to the p-side intermediate layer, but does not diffuse to the vicinity of the boundary between the p-side intermediate layer and the last well layer 14WF.
  • the p-side intermediate layer 145 tends to be thicker than the LED that emphasizes the temperature characteristic, and is preferably 4 nm or more and 15 nm or less, more preferably 6 nm or more and 13 nm or less. This is the same reason described for the barrier layer 14A.
  • ⁇ P-type nitride semiconductor layer> The p-type nitride semiconductor layers 16, 17, and 18 are sequentially provided on the light emitting layer 14.
  • the number of p-type nitride semiconductor layers is not limited to three, but may be two or less, or four or more.
  • the p-type nitride semiconductor layer 16 is a p-type AlGaN layer
  • the p-type nitride semiconductor layer 17 is a p-type GaN layer
  • the p-type nitride semiconductor layer 18 has a p-type impurity concentration of p-type nitride semiconductor.
  • the p-type GaN layer is higher than the layer 17.
  • a p-type impurity is not specifically limited, For example, it is preferable that it is Mg.
  • the carrier concentration of the p-type nitride semiconductor layers 16, 17, and 18 is preferably 1 ⁇ 10 17 cm ⁇ 3 or more.
  • the p-type impurity concentration (different from the carrier concentration) of the p-type nitride semiconductor layers 16, 17, and 18 is 1 ⁇ 10 19 cm ⁇ 3.
  • the p-type impurity concentration of the portion located on the light emitting layer 14 side of the p-type nitride semiconductor layer 16 may be less than 1 ⁇ 10 19 cm ⁇ 3 .
  • the total thickness of the p-type nitride semiconductor layers 16, 17, and 18 is not particularly limited, and is preferably 30 nm or more and 300 nm or less. If the thickness of the p-type nitride semiconductor layers 16, 17, 18 is small, the heating time at the time of growth is shortened, so that p-type impurities can be prevented from diffusing into the light emitting layer 14.
  • the n-side electrode 21 and the p-side electrode 25 are electrodes for supplying driving power to the nitride semiconductor light emitting element 1.
  • FIG. 2 shows that the n-side electrode 21 and the p-side electrode 25 are composed only of the pad electrode portion. However, elongated protrusions (branch electrodes) for current diffusion may be connected to the n-side electrode 21 and the p-side electrode 25 shown in FIG. Further, an insulating layer for preventing current from being injected into the p-side electrode 25 is preferably provided under the p-side electrode 25. Thereby, the light emitted from the light emitting layer 14 can be prevented from being shielded by the p-side electrode 25.
  • the n-side electrode 21 preferably has a laminated structure in which, for example, a titanium layer, an aluminum layer, and a gold layer are laminated in this order. Assuming the case where wire bonding is performed on the n-side electrode 21, the thickness of the n-side electrode 21 is preferably 1 ⁇ m or more.
  • the p-side electrode 25 preferably has a laminated structure in which, for example, a nickel layer, an aluminum layer, a titanium layer, and a gold layer are laminated in this order, but may be made of the same material as the n-side electrode 21. Assuming the case where wire bonding is performed on the p-side electrode 25, the thickness of the p-side electrode 25 is preferably 1 ⁇ m or more.
  • the transparent electrode 23 is preferably made of a transparent conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), and preferably has a thickness of 20 nm to 200 nm.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • growth temperature means the temperature of the substrate 3 when the layer is crystal-grown.
  • the base layer 7 is formed on the upper surface of the buffer layer 5 by, for example, MOCVD (Metal Organic Chemical Vapor Deposition) or the like.
  • the substrate 3 on which the buffer layer 5 is formed is put in an MOCVD apparatus, and the base layer 7 is grown preferably at 800 ° C. or higher and 1250 ° C. or lower, more preferably 900 ° C. or higher and 1150 ° C. or lower.
  • the underlayer 7 having few crystal defects and excellent crystal quality can be formed.
  • the underlayer 7 is preferably a non-doped layer, and is preferably grown to have a thickness of about 2 to 5 ⁇ m.
  • the n-type contact layer 8 is formed on the upper surface of the base layer 7 by, for example, MOCVD. Specifically, in the MOCVD apparatus, the n-type contact layer 8 is grown preferably at 800 ° C. or more and 1250 ° C. or less, more preferably 900 ° C. or more and 1150 ° C. or less. Thereby, the n-type contact layer 8 with few crystal defects and excellent crystal quality can be formed.
  • silane gas SiH 4
  • the n-type contact layer 8 is preferably grown so as to have a thickness of about 1 to 4 ⁇ m.
  • the first n-type buffer layer 10 is formed on the upper surface of the n-type contact layer 8 by, for example, MOCVD. Specifically, the temperature in the MOCVD apparatus is once lowered and the growth rate is controlled to a slower rate to grow the first n-type buffer layer 10.
  • the substrate 3 formed up to the n-type contact layer 8 may be once taken out from the first MOCVD apparatus and exposed to the atmosphere, and then placed in the second MOCVD apparatus to grow the first n-type buffer layer 10 and subsequent layers.
  • an apparatus for growing the thick underlayer 7 and the n-type contact layer 8 (requires high-speed growth) and an apparatus for growing the light-emitting layer 14 (low-speed growth and high uniformity in crystal quality) Growth is necessary). Therefore, since an optimum film forming apparatus can be selected for growing each layer, the manufacturing efficiency of the nitride semiconductor light emitting device 1 is improved.
  • the growth temperature of the first n-type buffer layer 10 is preferably 950 ° C. or lower, more preferably 700 ° C. or higher, and further preferably 750 ° C. or higher. If the growth temperature of the first n-type buffer layer 10 is 700 ° C. or higher, the light emission efficiency in the light emitting layer 14 can be maintained high.
  • the multilayer structure 120 is formed on the upper surface of the first n-type buffer layer 10 by, for example, MOCVD.
  • the growth temperature of the multilayer structure 120 is preferably equal to or lower than the growth temperature of the first n-type buffer layer 10.
  • the growth temperature of the multilayer structure 120 is more preferably 600 ° C. or higher, and further preferably 700 ° C. or higher.
  • the first n-type buffer layer 10 and the multilayer structure 120 may be grown at the same growth temperature.
  • the second n-type buffer layer 13 can be grown under the same conditions as the conditions for forming the multilayer structure 120.
  • the light emitting layer 14 and the p-type nitride semiconductor layers 16, 17, and 18 are sequentially formed on the upper surface of the multilayer structure 120 according to a conventionally known method.
  • the following source gases can be used.
  • TMG trimethyl gallium
  • TEG triethyl gallium
  • Al source gas TMA (trimethylaluminum) or TEA (triethylaluminum) can be used.
  • TMI trimethylindium
  • TEI triethylindium
  • N source gas NH 3 or DMH y (dimethylhydrazine) can be used.
  • Si that is an n-type impurity
  • SiH 4 , Si 2 H 6, or organic Si can be used.
  • Cp 2 Mg can be used as a source gas for Mg, which is a p-type impurity.
  • the p-type nitride semiconductor layers 16, 17, 18, the light emitting layer 14, the second n-type buffer layer 13, the multilayer structure 120, and the first n-type buffer layer 10 are exposed so that a part of the n-type contact layer 8 is exposed.
  • the n-type contact layer 8 is etched.
  • An n-side electrode 21 is formed on the upper surface of the n-type contact layer 8 exposed by this etching, and a transparent electrode 23 and a p-side electrode 25 are sequentially stacked on the upper surface of the p-type nitride semiconductor layer 18.
  • the transparent protective film 27 is formed so that the transparent electrode 23 and the side surface of each layer exposed by the said etching may be covered. In this way, the nitride semiconductor light emitting device 1 is obtained.
  • the substrate 3 may be removed.
  • the timing for removing the substrate 3 is not particularly limited. For example, when a nitride semiconductor layer is grown using two or more MOCVD apparatuses, the substrate 3 can be removed after the substrate 3 is taken out from the first MOCVD apparatus and before it is put into the second MOCVD apparatus.
  • the base layer 7, the n-type contact layer 8, and the first n-type buffer layer 10 may be grown in the first MOCVD apparatus, and the multilayer structure 120 and the subsequent layers may be grown in the second MOCVD apparatus.
  • the base layer 7 and the n-type contact layer 8 are grown in the first MOCVD apparatus, and the first n-type buffer layer 10 and the multilayer structure 120 and subsequent layers are grown in the second MOCVD apparatus, the throughput of the second MOCVD apparatus. Can be improved.
  • the nitride semiconductor light emitting device 1 shown in FIG. 1 includes at least an n-type nitride semiconductor layer 8, a light emitting layer 14, and p-type nitride semiconductor layers 16, 17, and 18. Between the n-type nitride semiconductor layer 8 and the light emitting layer 14, a multilayer structure 120 having one or more stacked structures of the first semiconductor layer 121 and the second semiconductor layer 122 is provided.
  • the band gap energy of the second semiconductor layer 122 is larger than the band gap energy of the first semiconductor layer 121.
  • the thickness of each of the first semiconductor layer 121 and the second semiconductor layer 122 is greater than 10 nm and 30 nm or less. Thereby, the light emission characteristics of the nitride semiconductor light emitting device 1 are further improved.
  • the nitride semiconductor light emitting device 1 ′ emphasizing room temperature characteristics shown in FIG. 11 is different from FIG. 1 in that large-sized V pits 15 exist at a higher density.
  • the thickness of the first semiconductor layer 121 is greater than 10 nm and 30 nm or less, and the thickness of the second semiconductor layer 122 is greater than 10 nm and 40 nm or less. This further improves the light emission characteristics of the nitride semiconductor light emitting device 1 ′, which emphasizes room temperature characteristics.
  • the first semiconductor layer 121 is preferably made of Al x1 In y1 Ga 1-x1-y1 N (0 ⁇ x1 ⁇ 1, 0 ⁇ y1 ⁇ 1)
  • the second semiconductor layer 122 is made of Al x2 In y2 Ga 1. It is preferably composed of -x2-y2N (0 ⁇ x2 ⁇ 1, 0 ⁇ y2 ⁇ 1).
  • the n-type impurity concentration of each of the first semiconductor layer 121 and the second semiconductor layer 122 is preferably 3 ⁇ 10 18 cm ⁇ 3 or more and less than 1.1 ⁇ 10 19 cm ⁇ 3 . Thereby, the threading dislocation density in the light emitting layer 14 is further reduced.
  • the first semiconductor layer 121 and the second semiconductor layer 122 have the same n-type impurity concentration. As a result, the composition or thickness of the first semiconductor layer 121 and the second semiconductor layer 122 can be easily controlled.
  • the first semiconductor layer 121 and the second semiconductor layer 122 have the same thickness. Thereby, the crystal quality of the light emitting layer 14 can be further improved.
  • the multilayer structure 120 preferably has a stacked structure of the first semiconductor layer 121 and the second semiconductor layer 122 in a range of 3 to 7 pairs. Thereby, the luminous efficiency and productivity of the nitride semiconductor light emitting device 1 can be increased.
  • the second semiconductor layer 122 located closest to the light emitting layer 14 in the multilayer structure 120 is in contact with the light emitting layer 14. Thereby, the production yield of the nitride semiconductor light emitting device 1 is improved, and the growth process of the nitride semiconductor layer can be simplified.
  • the second n-type buffer layer 13 is provided between the multilayer structure 120 and the light emitting layer 14.
  • the second n-type buffer layer 13 includes an n-type impurity, is made of Al x3 In y3 Ga 1-x3-y3 N (0 ⁇ x3 ⁇ 1, 0 ⁇ y3 ⁇ 1), and is in contact with the light emitting layer 14. Yes.
  • the structure of the nitride semiconductor light emitting device 1 can be optimized according to the specification of the emission wavelength or the operating voltage, so that the production yield of the nitride semiconductor light emitting device 1 is improved.
  • the band gap energy of the second n-type buffer layer 13 is preferably equal to or higher than the band gap energy of the second semiconductor layer 122. Thereby, the outflow of a hole can be prevented.
  • the band gap energy of the second n-type buffer layer 13 is preferably smaller than the band gap energy of the second semiconductor layer 122 and larger than the band gap energy of the first semiconductor layer 121. Thereby, the balance between the light emission characteristics of the nitride semiconductor light emitting device 1 and the manufacturing margin of the second n-type buffer layer 13 can be secured.
  • the band gap energy of the second n-type buffer layer 13 is preferably less than or equal to the band gap energy of the first semiconductor layer 121. Thereby, the injection efficiency of electrons into the light emitting layer 14 is increased.
  • the thickness of the second n-type buffer layer 13 is preferably 30 nm or less. Thereby, it is possible to prevent the occurrence of problems due to the provision of the second n-type buffer layer 13.
  • a first n-type buffer layer 10 is preferably provided between the n-type nitride semiconductor layer 8 and the multilayer structure 120.
  • the first n-type buffer layer 10 includes an n-type impurity, is made of Al s4 In t4 Ga 1-s4-t4 N (0 ⁇ s4 ⁇ 1, 0 ⁇ t4 ⁇ 1), and is in contact with the multilayer structure 120. ing. This improves the controllability of the V pit structure.
  • the band gap energy of the first n-type buffer layer 10 is preferably the same as the band gap energy of the second semiconductor layer 122. Thereby, generation
  • the n-type impurity concentration of the first n-type buffer layer 10 is preferably the same as at least one of the n-type impurity concentration of the first semiconductor layer 121 and the n-type impurity concentration of the second semiconductor layer 122. Thereby, the luminous efficiency in the light emitting layer 14 can be improved.
  • the thickness of the first n-type buffer layer 10 is preferably 50 nm or less. Thereby, since the undulation of the growth surface of the first n-type buffer layer 10 can be suppressed, it is possible to prevent the light emission efficiency of the nitride semiconductor light emitting device 1 from being lowered.
  • the light emitting layer 14 is preferably an undoped layer. Thereby, it is possible to prevent a new defect from occurring in the light emitting layer 14.
  • the light emitting layer 14 includes a single quantum well structure or a well layer and a barrier layer made of Al f In g Ga 1- fg N (0 ⁇ f ⁇ 0.01, 0 ⁇ g ⁇ 0.01). It is preferable to have a multiple quantum well structure that is alternately stacked. Thereby, it can prevent effectively that a new defect generate
  • Example 1 In Example 1, a nitride semiconductor light emitting device having the energy band diagram shown in FIG. 5 was manufactured.
  • a wafer made of a 100 mm diameter sapphire substrate was prepared.
  • a concavo-convex shape in which convex portions 3a and concave portions 3b were alternately formed was formed.
  • Such a concavo-convex shape was formed according to the following method.
  • the protrusions 3a are arranged in the ⁇ 11-20> direction on the upper surface of the wafer, and the direction forming an inclination of + 60 ° with respect to the ⁇ 11-20> direction on the upper surface of the wafer and ⁇ 11 on the upper surface of the wafer. They were arranged in a direction with an inclination of ⁇ 60 ° with respect to the ⁇ 20> direction.
  • the convex portions 3a are arranged at positions that become apexes of the triangle on the upper surface of the wafer, and are arranged periodically in the direction in which the three sides of the triangle extend.
  • the shape of the convex portion 3a on the upper surface of the wafer was circular, and the diameter of the circle was about 1.2 ⁇ m.
  • the interval between the apexes of adjacent convex portions 3a (one side of the triangle) was 2 ⁇ m, and the height of the convex portion 3a was about 0.6 ⁇ m.
  • the convex portion 3a has a side view shape shown in FIG. 1 (a), and its tip is rounded.
  • the recess 3b had a side view shape shown in FIG.
  • the upper surface of the wafer was RCA cleaned.
  • the wafer after RCA cleaning was placed in a chamber of a reactive sputtering apparatus, and a buffer layer 5 (thickness 25 nm) made of aluminum nitride was formed.
  • the formed buffer layer 5 was an aggregate of columnar crystals extending in the normal direction of the upper surface of the wafer, and an aggregate of columnar crystals with uniform crystal grains.
  • the wafer on which the buffer layer 5 was formed was put into an MOCVD apparatus, and the underlayer 7 made of undoped GaN was crystal-grown.
  • the thickness of the underlayer 7 was 4.5 ⁇ m.
  • n-type contact layer 8 Si-doped n-type GaN layer (n-type contact layer 8) was grown on the upper surface of the underlayer 7 by MOCVD.
  • the thickness of the n-type contact layer 8 was 4.5 ⁇ m, and the n-type impurity concentration of the n-type contact layer 8 was 1 ⁇ 10 19 cm ⁇ 3 .
  • first n-type buffer layer 10 (Growth of first n-type buffer layer) After the temperature of the wafer was lowered to 801 ° C., an Si-doped GaN layer (first n-type buffer layer 10) having a thickness of 25 nm was grown by MOCVD. The crystal-grown Si-doped GaN layer was in contact with the n-type contact layer 8, and the n-type impurity concentration was 7.4 ⁇ 10 18 cm ⁇ 3 .
  • the multilayer structure 120 was crystal-grown with the wafer temperature maintained at 801 ° C. Specifically, from the side in contact with the first n-type buffer layer 10, a laminated structure of a 12 nm thick Si-doped InGaN (In composition ratio: 0.04) layer and a 12 nm thick Si-doped GaN layer is taken as one set. Five sets were formed. In any of the layers constituting the multilayer structure 120, the n-type impurity concentration was 7.4 ⁇ 10 18 cm ⁇ 3 . In this structure, the second n-type buffer layer 13 is omitted.
  • the wafer temperature was lowered to 672 ° C. Thereafter, the well layers 14W and the barrier layers 14A were alternately grown on the upper surface of the multilayer structure 120 to form the light emitting layer 14.
  • the well layer 14W (eight layers) was crystal-grown using nitrogen gas as a carrier gas.
  • the wavelength of light emitted from the well layer 14W by photoluminescence became 448 nm.
  • the thickness of the well layer 14W and the thickness of the first well layer 14WI were each 3.38 nm, and the thickness of the last well layer 14WF was 5.0 nm.
  • the barrier layers 14A (seven layers) were alternately grown with the well layers 14W.
  • a p-side intermediate layer 145 (thickness: 3.0 nm) made of undoped AlGaN (Al composition ratio 0.001) was grown on the upper surface of the last well layer 14WF.
  • TMG trimethylgallium
  • TMA trimethylaluminum
  • TMI trimethylindium
  • NH 3 was used as the N source gas.
  • SiH 4 was used as a source gas for Si as an n-type impurity
  • Cp 2 Mg was used as a source gas for Mg as a p-type impurity.
  • the wafer was removed from the MOCVD apparatus. Thereafter, a p-type contact layer, a p-type GaN layer, a p-type Al 0.18 Ga 0.82 N layer, a p-side intermediate layer 145, a light-emitting layer 14, and a multilayer structure so that a part of the n-type contact layer 8 is exposed.
  • the body 120, the first n-type buffer layer 10, and the n-type contact layer 8 were etched.
  • An n-side electrode 21 made of Au was formed on the upper surface of the n-type contact layer 8 exposed by this etching.
  • a transparent electrode 23 made of ITO and a p-side electrode 25 made of Au were sequentially formed on the upper surface of the p-type contact layer 18.
  • a SiO 2 film (transparent protective film 27) was formed so as to mainly cover the transparent electrode 23 and the side surfaces of each layer exposed by the etching. Thereafter, the wafer was divided into 620 ⁇ 680 ⁇ m size chips. Thus, the nitride semiconductor light emitting device of this example was obtained.
  • the nitride semiconductor light emitting device thus obtained was operated at a current of 120 mA at room temperature, blue light emission having a dominant wavelength of 450 nm was exhibited.
  • the light output was 170 mW and the applied voltage was 3.05V.
  • the ratio of light output at 80 ° C. to light output at room temperature was 98%.
  • a nitride semiconductor light emitting device was manufactured according to the same method as in this example except that the multilayer structure was not provided.
  • the light output was 161 mW, which was 80 ° C. relative to the light output at room temperature.
  • the ratio of light output was 94%. Therefore, it was found that the light emission characteristics of the nitride semiconductor light emitting device were improved by providing the multilayer structure.
  • Example 2 a nitride semiconductor light emitting device having the energy band diagram shown in FIG. 6 was manufactured. After the base layer 7 and the n-type contact layer 8 were grown in an MOCVD apparatus according to the method described in Example 1, a nitride semiconductor light emitting device was obtained according to the following method.
  • the wafer temperature was lowered to 801 ° C. Thereafter, the Si-doped GaN layer (first n-type buffer layer 10) having a thickness of 25 nm was grown by MOCVD.
  • the crystal-grown Si-doped GaN layer was in contact with the n-type contact layer 8, and the n-type impurity concentration was 7.4 ⁇ 10 18 cm ⁇ 3 .
  • the multilayer structure 120 was crystal-grown with the wafer temperature maintained at 801 ° C. Specifically, from the side in contact with the first n-type buffer layer 10, a laminated structure of a 15 nm thick Si-doped InGaN (In composition ratio: 0.04) layer and an 11 nm thick Si-doped GaN layer is taken as one set. Four sets were formed. In any of the layers constituting the multilayer structure 120, the n-type impurity concentration was 7.4 ⁇ 10 18 cm ⁇ 3 .
  • the wafer temperature was lowered to 672 ° C. Thereafter, the well layers 14W and the barrier layers 14A were alternately grown on the upper surface of the second n-type buffer layer 13 to form the light emitting layer 14.
  • the well layer 14W (eight layers) was crystal-grown using nitrogen gas as a carrier gas.
  • the wavelength of light emitted from the well layer 14W by photoluminescence became 448 nm.
  • the thickness of the well layer 14W and the thickness of the first well layer 14WI were 3.58 nm, respectively, and the thickness of the last well layer 14WF was 5.0 nm.
  • the barrier layers 14A (seven layers) were crystal-grown alternately with the well layers 14W.
  • the crystal-grown barrier layer 14A was an undoped GaN layer, and its thickness was 4.0 nm.
  • a p-side intermediate layer 145 (thickness: 3.0 nm) made of undoped AlGaN (Al composition ratio 0.001) was grown on the upper surface of the last well layer 14WF.
  • the p-type nitride semiconductor layers 16, 17, and 18 are formed and etched to form the n-side electrode 21, the transparent electrode 23, the p-side electrode 25, and the transparent protective film 27. Then, the wafer was divided into 620 ⁇ 680 ⁇ m size chips. Thus, the nitride semiconductor light emitting device of this example was obtained.
  • Example 3 a nitride semiconductor light emitting device having the energy band diagram shown in FIG. 7 was manufactured. After the base layer 7, the n-type contact layer 8, and the first n-type buffer layer 10 are grown according to the method described in Example 1 and Example 2, a nitride semiconductor light emitting device is obtained according to the following method. It was.
  • the multilayer structure 120 was crystal-grown with the wafer temperature maintained at 801 ° C. Specifically, from the side in contact with the first n-type buffer layer 10, a laminated structure of a 12 nm thick Si-doped InGaN (In composition ratio: 0.04) layer and a 12 nm thick Si-doped GaN layer is taken as one set. Five sets were formed. In any of the layers constituting the multilayer structure 120, the n-type impurity concentration was 7.4 ⁇ 10 18 cm ⁇ 3 .
  • the wafer temperature was lowered to 672 ° C. Thereafter, the well layers 14W and the barrier layers 14A were alternately grown on the upper surface of the second n-type buffer layer 13 to form the light emitting layer 14.
  • the well layer 14W (eight layers) was crystal-grown using nitrogen gas as a carrier gas.
  • the wavelength of light emitted from the well layer 14W by photoluminescence became 448 nm.
  • the thickness of the well layer 14W and the thickness of the first well layer 14WI were each 3.38 nm, and the thickness of the last well layer 14WF was 5.0 nm.
  • the barrier layers 14A (seven layers) were alternately grown with the well layers 14W.
  • the p-type nitride semiconductor layers 16, 17, and 18 are formed and etched to form the n-side electrode 21, the transparent electrode 23, the p-side electrode 25, and the transparent protective film 27. Then, the wafer was divided into 620 ⁇ 680 ⁇ m size chips. Thus, the nitride semiconductor light emitting device of this example was obtained.
  • Example 4 a nitride semiconductor light emitting device having the energy band diagram shown in FIG. 8 was manufactured. After the base layer 7, the n-type contact layer 8, and the first n-type buffer layer 10 are grown according to the method described in Example 1 and Example 2, a nitride semiconductor light emitting device is obtained according to the following method. It was.
  • the multilayer structure 120 was crystal-grown with the wafer temperature maintained at 801 ° C. Specifically, from the side in contact with the first n-type buffer layer 10, a laminated structure of a 12 nm thick Si-doped InGaN (In composition ratio: 0.04) layer and a 12 nm thick Si-doped GaN layer is taken as one set. Four sets were formed. In any of the layers constituting the multilayer structure 120, the n-type impurity concentration was 7.4 ⁇ 10 18 cm ⁇ 3 .
  • Example 3 (Growth of light emitting layer, growth of p-type nitride semiconductor layer, etching, formation of electrode)
  • the light emitting layer 14 and the p-side intermediate layer 145 were crystal-grown.
  • p-type nitride semiconductor layers 16, 17, and 18 are formed and etched, and the n-side electrode 21, the transparent electrode 23, the p-side electrode 25, the transparent protective film 27, And the wafer was divided into 620 ⁇ 680 ⁇ m sized chips.
  • the nitride semiconductor light emitting device of this example was obtained.
  • Example 5 a nitride semiconductor light emitting device having the energy band diagram shown in FIG. 9 was manufactured.
  • the underlayer 7 and the n-type contact layer 8 were grown in the first MOCVD apparatus.
  • the substrate 3 was once taken out from the first MOCVD apparatus and then placed in the second MOCVD apparatus to grow the first n-type buffer layer 10 and the subsequent layers.
  • a nitride semiconductor light emitting device was obtained according to the following method.
  • the temperature of the wafer was raised to 801 ° C. Thereafter, the Si-doped GaN layer (first n-type buffer layer 10) having a thickness of 25 nm was grown by MOCVD. The crystal-grown Si-doped GaN layer was in contact with the n-type contact layer 8, and the n-type impurity concentration was 9 ⁇ 10 18 cm ⁇ 3 .
  • the multilayer structure 120 was crystal-grown with the wafer temperature maintained at 801 ° C. Specifically, from the side in contact with the first n-type buffer layer 10, a laminated structure of a 12 nm thick Si-doped InGaN (In composition ratio: 0.04) layer and a 12 nm thick Si-doped GaN layer is taken as one set. Four sets were formed. In any of the layers constituting the multilayer structure 120, the n-type impurity concentration was 7.4 ⁇ 10 18 cm ⁇ 3 .
  • Etching was performed according to the method described in Example 1 to form the n-side electrode 21, the transparent electrode 23, the p-side electrode 25, and the transparent protective film 27, and the wafer was divided into 620 ⁇ 680 ⁇ m size chips. Thus, the nitride semiconductor light emitting device of this example was obtained.
  • the nitride semiconductor light emitting device thus obtained was operated at a current of 120 mA at room temperature, blue light emission having a dominant wavelength of 450 nm was exhibited.
  • the light output was 170 mW and the applied voltage was 3.05V.
  • the ratio of light output at 80 ° C. to light output at room temperature was 98%.
  • a nitride semiconductor light emitting device was manufactured according to the same method as in this example except that the multilayer structure was not provided.
  • the light output was 161 mW, which was 80 ° C. relative to the light output at room temperature.
  • the ratio of light output was 94%. Therefore, it was found that the light emission characteristics of the nitride semiconductor light emitting device were improved by providing the multilayer structure.
  • Example 6 a nitride semiconductor light emitting device having an energy band diagram very similar to the energy band diagram shown in FIG. 7 but having an emission wavelength in the near ultraviolet region was manufactured.
  • the base layer 7 the n-type contact layer 8
  • the first n-type buffer layer 10 the multilayer structure 120, and the second n-type buffer layer 13 were grown according to the method described in Example 3
  • a nitride semiconductor light emitting device was manufactured according to the following method.
  • the wafer temperature was lowered to 698 ° C. Thereafter, the well layers 14W and the barrier layers 14A were alternately grown on the upper surface of the second n-type buffer layer 13 to form the light emitting layer 14.
  • the well layer 14W (eight layers) was crystal-grown using nitrogen gas as a carrier gas.
  • the wavelength of light emitted from the well layer 14W by photoluminescence became 403 nm.
  • the thickness of the well layer 14W and the thickness of the first well layer 14WI were each 3.38 nm, and the thickness of the last well layer 14WF was 5.0 nm.
  • the barrier layers 14A (seven layers) were alternately grown with the well layers 14W.
  • the p-type nitride semiconductor layers 16, 17, and 18 are formed and etched to form the n-side electrode 21, the transparent electrode 23, the p-side electrode 25, and the transparent protective film 27. Then, the wafer was divided into 440 ⁇ 530 ⁇ m size chips. Thus, the nitride semiconductor light emitting device of this example was obtained.
  • the nitride semiconductor light emitting device thus obtained When the nitride semiconductor light emitting device thus obtained was operated at a current of 50 mA at room temperature, it showed blue-violet light emission having a peak wavelength of 405 nm. The light output was 70 mW and the applied voltage was 3.15V.
  • a nitride semiconductor light emitting device was manufactured according to the same method as in this example except that the multilayer structure was not provided, and its light output was 63 mW. Therefore, it was found that the light emission characteristics of the nitride semiconductor light emitting device were improved by providing the multilayer structure.
  • Example 7 a nitride semiconductor light emitting device was manufactured according to the method described in Example 2 except that the composition of the first n-type buffer layer 10 was different.
  • the base layer 7 and the n-type contact layer 8 were crystal-grown in an MOCVD apparatus. Thereafter, a nitride semiconductor light emitting device was manufactured according to the following method.
  • first n-type buffer layer 10 (Growth of first n-type buffer layer) With the wafer placed in the MOCVD apparatus, the wafer temperature was set to 796 ° C. Thereafter, an Si-doped InGaN layer (first n-type buffer layer 10) having a thickness of 35 nm was grown by MOCVD. The crystal-grown Si-doped InGaN layer was in contact with the n-type contact layer 8, and the n-type impurity concentration was 9.0 ⁇ 10 18 cm ⁇ 3 .
  • the multilayer structure 120, the second n-type buffer layer 13, the light emitting layer 14, the p-side intermediate layer 145, and the p-type nitride semiconductor layers 16, 17, 18 are grown, etched, and An electrode was formed.
  • Example 8 a nitride semiconductor light emitting device was manufactured according to the method described in Example 1 except that the n-type impurity concentration of the multilayer structure was different. Depending on the specifications of the nitride semiconductor light emitting device, the yield may decrease unless the operating voltage is finely adjusted. In order to slightly increase the operating voltage in accordance with the specifications of the nitride semiconductor light emitting device, it is effective to decrease the n-type impurity concentration of one layer constituting the multilayer structure.
  • the multilayer structure 120 was crystal-grown with the wafer temperature maintained at 801 ° C. Specifically, from the side in contact with the first n-type buffer layer 10, a laminated structure of a 12 nm thick Si-doped InGaN (In composition ratio: 0.04) layer and a 12 nm thick Si-doped GaN layer is taken as one set. Four sets were formed.
  • the n-type impurity concentration of the Si-doped GaN layer was 7.4 ⁇ 10 18 cm ⁇ 3 .
  • the n-type impurity concentration of the Si-doped InGaN layer was 4 ⁇ 10 18 cm ⁇ 3 .
  • the nitride semiconductor light emitting device (620 ⁇ 680 ⁇ m size) thus obtained was operated at a current of 120 mA at room temperature, blue light emission with a dominant wavelength of 450 nm was exhibited.
  • the light output was 171 mW and the applied voltage was 3.06V.
  • the ratio of light output at 80 ° C. to light output at room temperature was 98%.
  • Example 9 a nitride was formed according to the method described in Example 2 except that a p-side intermediate layer 145 (thickness: 4.0 nm) made of undoped GaN was grown on the upper surface of the last well layer 14WF. A semiconductor light emitting device was manufactured. Also in this embodiment, the p-type impurity diffuses from the p-type nitride semiconductor layer 16 to the p-side intermediate layer 145, but diffuses to the vicinity of the boundary between the p-side intermediate layer 145 and the last well layer 14WF. It wasn't.
  • the light output and applied voltage are similar to those in Example 2, and the ratio of the light output at 80 ° C. to the light output at room temperature is 98. %Met.
  • FIG. 11 is a cross-sectional view of a nitride semiconductor light emitting device that emphasizes room temperature characteristics according to another embodiment of the present invention.
  • FIG. 12 is a plan view of the nitride semiconductor light emitting device 1 ′.
  • an area IA ′ shows a cross-sectional structure taken along line IA′-IA ′ shown in FIG. 12
  • an area IB ′ shows a cross-sectional structure taken along line IB′-IB ′ shown in FIG.
  • the difference from FIG. 1 is that large-sized V pits 15 exist at a higher density.
  • Example 10 a nitride semiconductor light emitting device emphasizing room temperature characteristics having the energy band diagram shown in FIG. 13 was manufactured. Differences from Example 1 are as follows.
  • the substrate preparation and the configuration from the buffer layer to the n-type contact layer are the same as those in the first embodiment.
  • a total of 13 well layers were formed with a thickness of 3.0 nm.
  • the growth temperature was also increased by 140 ° C. relative to the growth temperature of the well layer.
  • the photoluminescence wavelength from the light emitting layer was 440 nm.
  • Example 1 is the same as Example 1 except that the thickness of the p-side intermediate layer 145 is increased to 10.0 nm.
  • the thickness of the p-type Al 0.18 Ga 0.82 N layer (p-type nitride semiconductor layer 16, p-type impurity concentration: 2 ⁇ 10 19 cm ⁇ 3 ) deposited on the upper surface of the p-side intermediate layer 145 is changed to 32 nm.
  • the same procedure as in Example 1 was performed except that the thickness of the p-type GaN layer (p-type nitride semiconductor layer 17) was changed to 50 nm and the p-type impurity concentration was 5 ⁇ 10 19 cm ⁇ 3 .
  • the nitride semiconductor light emitting device thus obtained exhibited blue light emission with a dominant wavelength of 450 nm under an operating condition of room temperature of 120 mA, an optical output of 178 mW, and an applied voltage of 3.09 V. Further, the temperature characteristic, which is the light output ratio between 80 ° C. and room temperature, decreased to 94%, but the room temperature characteristic was higher than that of Example 4. When a comparative structure without a multilayer structure was produced, the light output was as small as 155 mW, and the effect of the multilayer structure 120 was clear.
  • the applied voltage could be reduced to 3.07V.
  • the light output was 178.5 mV and there was no significant difference.
  • Example 11 a nitride semiconductor light emitting device emphasizing room temperature characteristics having the energy band diagram shown in FIG. 14 was manufactured. Differences from Example 4 are as follows.
  • the diameter of the convex portion 3a on the upper surface of the wafer is about 1.6 ⁇ m
  • the interval between the apexes of adjacent convex portions 3a (one side of the triangle) is 2.4 ⁇ m
  • the height of the convex portion 3a is 0.8 ⁇ m.
  • the other points are the same as in the fourth embodiment.
  • the configuration from the buffer layer to the n-type contact layer is the same as that of the fourth embodiment.
  • the growth temperature was also increased by 140 ° C. relative to the growth temperature of the well layer.
  • the photoluminescence wavelength from the light emitting layer was 440 nm.
  • Example 4 is the same as Example 4 except that the thickness of the p-side intermediate layer 145 is increased to 10.0 nm.
  • the thickness of the p-type Al 0.18 Ga 0.82 N layer (p-type nitride semiconductor layer 16, p-type impurity concentration: 2 ⁇ 10 19 cm ⁇ 3 ) deposited on the upper surface of the p-side intermediate layer 145 is changed to 32 nm.
  • the same procedure as in Example 4 was performed except that the thickness of the p-type GaN layer (p-type nitride semiconductor layer 17) was changed to 50 nm and the p-type impurity concentration was 5 ⁇ 10 19 cm ⁇ 3 .
  • the nitride semiconductor light emitting device thus obtained exhibited blue light emission with a dominant wavelength of 450 nm under an operating condition of room temperature of 120 mA, an optical output of 180 mW, and an applied voltage of 3.07 V. Further, the temperature characteristic, which is the light output ratio between 80 ° C. and room temperature, decreased to 94%, but the room temperature characteristic was higher than that of Example 4. When a comparative structure without a multilayer structure was produced, the light output was as small as 150 mW, and the effect of the multilayer structure 120 was clear.
  • Example 12 a nitride semiconductor light emitting device emphasizing room temperature characteristics having the energy band diagram shown in FIG. 15 was manufactured. Differences from Example 11 are as follows.
  • the multilayer structure (From growth of multilayer structure to growth of second n-type buffer layer) Regarding the multilayer structure, seven sets of stacked structures of a Si-doped InGaN (In composition ratio: 0.04) layer having a thickness of 12 nm and a Si-doped GaN layer having a thickness of 12 nm were formed as one set.
  • the other points of the multilayer structure and the second n-type buffer layer are the same as those in Example 11.
  • the purpose of increasing the number of stacks compared to Embodiment 11 is to keep the V pit size the same before the light emitting layer is deposited. This is because when the number of stacked layers is 4, the V pit diameter is as small as about 120 nm and the light output is reduced.
  • the nitride semiconductor light emitting device thus obtained exhibited blue light emission with a dominant wavelength of 450 nm under an operating condition of room temperature of 120 mA, an optical output of 180 mW, and an applied voltage of 3.07 V. Further, the temperature characteristic, which is the light output ratio between 80 ° C. and room temperature, decreased to 94%, but the room temperature characteristic was higher than that of Example 4. When a comparative structure without a multilayer structure was produced, the light output was as small as 150 mW, and the effect of the multilayer structure 120 was clear.
  • 1, 1 'nitride semiconductor light emitting device 3, substrate, 3a convex part, 3b concave part, 5, buffer layer, 7 underlayer, 8 n-type contact layer (n-type nitride semiconductor layer), 10 1st n-type buffer layer, 13 2nd n-type buffer layer, 14 light emitting layer, 14A barrier layer, 14W well layer, 14WF last well layer, 14WI first well layer, 15 V pit, 16, 17, 18 p-type nitride semiconductor layer, 21 n-side electrode , 23 transparent electrode, 25 p side electrode, 27 transparent protective film, 30 mesa part, 120 multilayer structure, 121 first semiconductor layer, 122 second semiconductor layer, 145 p side intermediate layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Devices (AREA)

Abstract

 窒化物半導体発光素子(1)は、n型窒化物半導体層(8)と、発光層(14)と、p型窒化物半導体層(16)とを少なくとも備える。n型窒化物半導体層(8)と発光層(14)との間には、少なくとも第1半導体層(121)と第2半導体層(122)との積層構造を1組以上有する多層構造体(120)が設けられている。第2半導体層(122)のバンドギャップエネルギーは、第1半導体層(121)のバンドギャップエネルギーよりも大きい。第1半導体層(121)及び第2半導体層(122)の各々の厚さが10nmよりも大きく30nm以下である。あるいは、室温での発光効率を重視する用途では、第1半導体層(121)の厚さが10nmよりも大きく30nm以下であり、第2半導体層(122)の厚さが10nmよりも大きく40nm以下であり、発光層には、その断面視において、V字型の凹部が形成されている。

Description

窒化物半導体発光素子
 本発明は、窒化物半導体発光素子に関する。
 窒素を含むIII-V族化合物半導体(III族窒化物半導体)は、赤外領域から紫外領域の波長を有する光のエネルギーに相当するバンドギャップエネルギーを有する。そのため、III族窒化物半導体は、赤外領域から紫外領域の波長を有する光を発する発光素子の材料として、又は、赤外領域から紫外領域の波長を有する光を受ける受光素子の材料として、有用である。
 また、III族窒化物半導体では、III族窒化物半導体を構成する原子間の結合力が強く、絶縁破壊電圧が高く、飽和電子速度が大きい。これらのことから、III族窒化物半導体は、耐高温且つ高出力な高周波トランジスタ等の電子デバイスの材料としても有用である。さらに、III族窒化物半導体は、環境を害することがほとんどないので、取り扱い易い材料としても注目されている。
 このようなIII族窒化物半導体を用いた窒化物半導体発光素子では、発光層として量子井戸構造を採用することが一般的である。電圧が窒化物半導体発光素子に印加されると、発光層を構成する井戸層において電子とホールとが再結合されて光が発生する。発光層は、単一量子井戸(Single Quantum Well(SQW))構造からなっても良いし、井戸層とバリア層とが交互に積層された多重量子井戸(Multiple Quantum Well(MQW))構造からなっても良い。
 発光層では、井戸層としてInGaN層を用い、バリア層としてGaN層を用いるのが一般的である。これにより、例えば、発光ピーク波長が約450nmの青色LED(Light Emitting Device)を作製でき、この青色LEDを蛍光体と組み合わせて白色LEDを作製することもできる。バリア層としてAlGaN層を用いた場合には、バリア層と井戸層とのバンドギャップエネルギー差が増大するため発光効率が増すと考えられるが、GaNに比べてAlGaNの方が良質な結晶が得られにくいという問題が存在する。
 窒化物半導体発光素子に含まれるn型窒化物半導体層としては、GaN層又はInGaN層を用いるのが一般的である。
 例えば、特開平11-214746号公報(特許文献1)に記載された窒化物半導体発光素子では、基板と発光層との間に、基板側から順に、n型不純物が1×1017cm-3以下の第1の窒化物半導体層と、n型不純物が3×1018cm-3以上の第2の窒化物半導体層と、n型不純物が1×1017cm-3以下の第3の窒化物半導体層とが設けられており、第2の窒化物半導体層にn電極が形成されている。特許文献1には、第1の層及び第3の層はn型不純物濃度が低いので結晶性の良い下地層となり、結晶性の良い第1の層上にn型不純物濃度が高い第2の層を結晶性良く成長できると記載されている。
 また、特開平11-330554号公報(特許文献2)には、n型窒化物半導体層とp型窒化物半導体層との間に発光層を有する窒化物半導体発光素子が記載されている。この窒化物半導体発光素子では、n型窒化物半導体層としてはInを含む第1の窒化物半導体層と当該第1の窒化物半導体層とは異なる組成を有する第2の窒化物半導体層とが積層されたn型多層膜層が設けられており、第1の窒化物半導体層又は第2の窒化物半導体層のうちの少なくとも一方の厚さが100オングストローム以下である。特許文献2には、特にn型多層膜層を超格子構造とすることにより発光層の結晶性が良くなるので窒化物半導体発光素子の効率が向上すると記載されている。
 また、特開平10-126006号公報(特許文献3)に記載された窒化物半導体デバイスでは、発光層の少なくとも片面に、発光層のバンドギャップエネルギーよりも大きなバンドギャップエネルギーを有する第1の窒化物半導体層が接しており、第1の窒化物半導体層の上に、第1の窒化物半導体層のバンドギャップエネルギーよりも小さなバンドギャップエネルギーを有する第2の窒化物半導体層と、第2の窒化物半導体層のバンドギャップエネルギーよりも大きなバンドギャップエネルギーを有する第3の窒化物半導体層とが設けられている。特許文献3には、発光効率が高い窒化物半導体デバイスを提供できると記載されている。
 一方で、光出力の向上やリーク電流の低減のために、n型窒化物半導体層の上部にVピットを形成し、活性層にもVピットを引き継がせ、p型窒化物半導体層で埋め込む構造が開示されており、望ましいVピットを形成するためのn型窒化物半導体層構造や形成方法が重要となっている。
 特許第3904709号公報(特許文献4)には、「n型In0.1Ga0.9N/In0.02Ga0.98N多重量子井戸隣接層(Siドープ、5×1017cm-3、井戸幅2nm、障壁幅4nm、20層)」の上に、「In0.2Ga0.8N/In0.05Ga0.95N多重量子井戸活性層(ノンドープ、井戸幅2nm、障壁幅4nm、10層)」が形成され、更にその上に「p型GaN隣接層(Mgドープ、5×1017cm-3、0.1μm)」が形成された構造が開示されている。多重量子井戸隣接層にはピットが形成され、その上の多重量子井戸活性層にも受け継がれ、p型GaN隣接層によってピットは埋め込まれている。多重量子井戸隣接層はその構成から、現在では一般に超格子構造と呼ばれている構造である。
 また、特許第3612985号公報(特許文献5)には、活性層の下層に「歪み緩和層」と呼ばれる0.5μm厚のシリコンドープGaN層(電子濃度1×1018/cm)が配置され、比較的低温で形成することで、多数のVピットを形成し、活性層自身にもVピットが形成できることを開示している。特許文献5には、これによって、活性層のフォトルミネッセンス特性が大幅に改善すると記載されている。
 また、特許第5415756号公報(特許文献6)および特許第5603366号公報(特許文献7)には、能動領域(活性層)の下にピット開き層と呼ばれる超格子層を配置し、貫通転位からピットを発生させ、ピットの中に量子井戸層と正孔注入層を延伸させ、p型コンタクト層でピットを埋め込む構造を開示している。特許文献6、7には、これによって、発光効率や電力効率が向上すると記載されている。
特開平11-214746号公報 特開平11-330554号公報 特開平10-126006号公報 特許第3904709号公報 特許第3612985号公報 特許第5415756号公報 特許第5603366号公報
 窒化物半導体発光素子では、一般的に、厚さが10nm(100Å)以下(例えば1~6nm程度)の層が周期的に積層されて構成された(歪み)超格子構造((歪み)超格子構造は窒化物半導体からなる)が、発光層の下側に設けられている。これにより、発光層に付与される歪みを効果的に緩和でき、よって、良好な発光特性を得ることができるといわれている。
 しかしながら、発光特性の更なる改善のためには、歪みの緩和だけでなく、発光層における貫通転位密度の低減も重要である。特に、発光素子の温度特性を向上させるためには、貫通転位密度の低減が必須である。ここで、発光素子の温度特性とは、室温での発光効率に対する高温(例えば80℃)での発光効率の割合を意味する。一般に、発光素子の動作温度が上昇するほど、発光素子の温度特性は低下する。実用的な観点から、発光素子には高い温度特性が求められている。
 今般、本発明者らの研究によって、上述の(歪み)超格子構造を発光層の下側に設けるという構成では貫通転位密度を低減させるという効果に限界があることが明らかとなった。
 一方、モバイル液晶表示装置のバックライトに使用されるLEDのように室温での発光効率を重視する用途では、良好な結晶性を有する活性層を形成すると共に、活性層にVピットを形成する事が重要であることが判明してきている。Vピットの役割は完全には理解されていないが、Vピットから発光層を構成する量子井戸へ直接正孔を注入することで発光効率が上がるというモデルと、Vピットに埋め込まれた層が量子井戸層内のキャリアに対して、障壁層として働き、キャリアの消失を防ぐことで発光効率が上がるというモデルが唱えられている。Vピットを発光層に有するLEDにおいても、その下地構造として、超格子構造が一般に用いられている。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、窒化物半導体発光素子の発光特性の更なる改善である。
 本発明者らは、発光層において貫通転位密度を低減させるためには、n型窒化物半導体層の多層構造を発光層の下側に設けることがより有効であることを見出した。ここで、n型窒化物半導体層の多層構造とは、バンドギャップエネルギーが互いに異なり、且つ、厚さが比較的大きな層(例えば厚さが10nmよりも大きく30nm以下の層)が、周期的に積層されて構成された構造を意味する。つまり、本発明者らは、n型窒化物半導体層の多層構造を構成する各層の厚さを10nmよりも大きく30nm以下とすることにより、バンドギャップエネルギーが互いに異なる層の界面において貫通転位が曲げられ、その結果、発光層において貫通転位密度が低減する、ということを見出した。
 また、本発明者らは、室温での発光効率を重視する用途のLEDにおいて、その下地構造ではなく、前記多層構造により、結晶成長面の平坦性が高い下地構造を形成でき、この多層構造とV字形状の凹部(Vピット)を有する発光層と組み合わせることで、発光効率を更に向上できることを見出した。
 本発明の窒化物半導体発光素子は、n型窒化物半導体層と発光層とp型窒化物半導体層とを少なくとも備える。n型窒化物半導体層と発光層との間には、少なくとも第1半導体層と第2半導体層との積層構造を1組以上有する多層構造体が設けられている。第2半導体層のバンドギャップエネルギーは、第1半導体層のバンドギャップエネルギーよりも大きい。第1半導体層及び第2半導体層の各々の厚さが10nmよりも大きく30nm以下である。
 本発明の窒化物半導体発光素子は、室温での発光効率を重視する用途のLEDにおいて、n型窒化物半導体層と発光層とp型窒化物半導体層とを少なくとも備える。n型窒化物半導体層と発光層との間には、少なくとも第1半導体層と第2半導体層との積層構造を1組以上有する多層構造体が設けられている。第2半導体層のバンドギャップエネルギーは、第1半導体層のバンドギャップエネルギーよりも大きい。第1半導体層の厚さは10nmよりも大きく30nm以下である。第2半導体層の厚さは10nmよりも大きく40nm以下である。発光層には断面視においてV字形状の凹部(Vピット)が複数形成されている。
 好ましくは、第1半導体層はAlx1Iny1Ga1-x1-y1N(0≦x1<1、0<y1≦1)からなり、第2半導体層はAlx2Iny2Ga1-x2-y2N(0≦x2<1、0≦y2<1)からなる。
 好ましくは、第1半導体層及び第2半導体層の各々のn型不純物濃度が3×1018cm-3以上1.1×1019cm-3未満である。より好ましくは、第1半導体層と第2半導体層とではn型不純物濃度が互いに同じである。
 好ましくは、第1半導体層と第2半導体層とでは厚さが互いに同じである。好ましくは、多層構造体は、第1半導体層と第2半導体層との積層構造を3組以上7組以下有する。より好ましくは、発光層が多層構造体に接していることである。この場合、第2半導体層のうち発光層の最も近くに位置する第2半導体層が発光層に接することとなる。
 好ましくは、多層構造体と発光層との間にはn型バッファ層(後述の第2n型バッファ層)が設けられている。好ましくは、n型バッファ層は、n型不純物を含み、Alx3Iny3Ga1-x3-y3N(0≦x3<1、0≦y3<1)からなり、発光層に接している。
 n型バッファ層のバンドギャップエネルギーは、第2半導体層のバンドギャップエネルギー以上であってもよいし、第1半導体層のバンドギャップエネルギー以下であってもよいし、第2半導体層のバンドギャップエネルギーより小さく第1半導体層のバンドギャップエネルギーより大きくてもよい。
 好ましくは、n型バッファ層の厚さは30nm以下である。
 好ましくは、n型窒化物半導体層と多層構造体との間にはn型バッファ層(後述の第1n型バッファ層)が設けられている。好ましくは、n型窒化物半導体層と多層構造体との間に設けられたn型バッファ層は、n型不純物を含み、Als4Int4Ga1-s4-t4N(0≦s4<1、0≦t4<1)からなり、多層構造体に接している。
 好ましくは、n型窒化物半導体層と多層構造体との間に設けられたn型バッファ層のバンドギャップエネルギーが第2半導体層のバンドギャップエネルギーと同じである。好ましくは、n型窒化物半導体層と多層構造体との間に設けられたn型バッファ層のn型不純物濃度が第1半導体層のn型不純物濃度及び第2半導体層のn型不純物濃度のうちの少なくとも1つと同じである。好ましくは、n型窒化物半導体層と多層構造体との間に設けられたn型バッファ層の厚さが、50nm以下である。
 発光層は、好ましくは、アンドープ層であり、より好ましくは、単一量子井戸構造、又は、井戸層とAlInGa1-f-gN(0≦f≦0.01、0≦g≦0.01)からなるバリア層とが交互に積層された多重量子井戸構造からなる。
 好ましくは発光層には、その断面視においてV字型の凹部(Vピット)が形成されており、そのV字の最下部は多層構造に位置している。
 好ましくは、V字型の凹部(Vピット)は発光層最上部部分の平面視においては、多数の穴として散在しており、V字型の凹部(Vピット)の平面密度が1×10/cm以上である。
 本発明では、窒化物半導体発光素子の発光特性を更に改善できる。
図1(a)は、本発明の一実施形態に係る窒化物半導体発光素子の断面図であり、図1(b)は、本発明の一実施形態に係る窒化物半導体発光素子の要部拡大図である。 本発明の一実施形態に係る窒化物半導体発光素子の平面図である。 図3(a)は、本発明の一実施形態に係る窒化物半導体発光素子において、第1半導体層及び第2半導体層におけるSi濃度を変化させたときのPL(Photo Luminescence)励起強度比を示すグラフであり、図3(b)は、本発明の一実施形態に係る窒化物半導体発光素子において、第1半導体層及び第2半導体層におけるSi濃度を変化させたときの発光強度の温度特性を示すグラフである。 本発明の一実施形態に係る窒化物半導体発光素子の発光層形成直前にAFM(Atomic Force Microscopy)による観察を行った結果を示す画像である。 実施例1の窒化物半導体発光素子のバンド構造を模式的に示すエネルギーバンド図である。 実施例2の窒化物半導体発光素子のバンド構造を模式的に示すエネルギーバンド図である。 実施例3の窒化物半導体発光素子のバンド構造を模式的に示すエネルギーバンド図である。 実施例4の窒化物半導体発光素子のバンド構造を模式的に示すエネルギーバンド図である。 実施例5の窒化物半導体発光素子のバンド構造を模式的に示すエネルギーバンド図である。 本発明の他の実施形態に係る、室温特性重視の窒化物半導体発光素子の発光層形成直前にAFM(Atomic Force Microscopy)による観察を行った結果を示す画像である。 本発明の他の実施形態に係る、室温特性重視の窒化物半導体発光素子の断面図である。 本発明の他の実施形態に係る窒化物半導体発光素子の平面図である。 実施例10の窒化物半導体発光素子のバンド構造を模式的に示すエネルギーバンド図である。 実施例11の窒化物半導体発光素子のバンド構造を模式的に示すエネルギーバンド図である。 実施例12の窒化物半導体発光素子のバンド構造を模式的に示すエネルギーバンド図である。
 以下、本発明の窒化物半導体発光素子について図面を用いて説明する。なお、本発明の図面において、同一の参照符号は、同一部分又は相当部分を表すものである。また、長さ、幅、厚さ、深さ等の寸法関係は図面の明瞭化と簡略化のために適宜変更されており、実際の寸法関係を表すものではない。
 以下では、位置関係を表すために、図1(a)の下側に記載した部分を「下」と表現し、図1(a)の上側に記載した部分を「上」と表現することがある。これは、便宜上の表現であり、重力方向に対して定められる「上」及び「下」とは異なる。
 「井戸層14W」は、バリア層に挟まれた層を表わす(例えば図5参照)。バリア層に挟まれていない井戸層は「最初の井戸層14WI」又は「最後の井戸層14WF」と表わし(例えば図5参照)、バリア層に挟まれた井戸層とバリア層に挟まれていない井戸層とで表記を変えている。「最初の井戸層14WI」はn型窒化物半導体層側に位置し、「最後の井戸層14WF」はp型窒化物半導体層側に位置する。
 以下では、「不純物濃度」と、n型不純物のドープに伴い発生する電子の濃度又はp型不純物のドープに伴い発生するホールの濃度である「キャリア濃度」とを用いている。「不純物濃度」と「キャリア濃度」との関係については後述する。
 「キャリアガス」とは、III族原料ガス、V族原料ガス及び不純物原料ガス以外のガスである。キャリアガスを構成する原子は膜中等に取り込まれない。
 「n型窒化物半導体層」は、電子の流れを実用上妨げない程度の厚さの低キャリア濃度のn型層又はアンドープ層を含んでいても良い。「p型窒化物半導体層」は、ホールの流れを実用上妨げない程度の厚さの低キャリア濃度のp型層又はアンドープ層を含んでいてもよい。「実用上妨げない」とは、窒化物半導体発光素子の動作電圧が実用的なレベルであることをいう。
 <窒化物半導体発光素子の構造>
 図1(a)は、本発明の一実施形態に係る窒化物半導体発光素子の断面図であり、図1(b)は、図1(a)に示す窒化物半導体発光素子1の要部拡大図である。図2は、窒化物半導体発光素子1の平面図である。図1(a)において、領域IAには、図2に示すIA-IA線における断面構造を示し、領域IBには、図2に示すIB-IB線における断面構造を示す。
 図1に示す窒化物半導体発光素子1は、基板3と、バッファ層5と、下地層7と、n型コンタクト層(n型窒化物半導体層)8と、第1n型バッファ層(n型窒化物半導体層と多層構造体との間に設けられたn型バッファ層)10と、多層構造体120と、第2n型バッファ層(多層構造体と発光層との間に設けられたn型バッファ層)13と、発光層14と、p型窒化物半導体層16,17,18とを備える。第2n型バッファ層13は設けられないこともある。
 n型コンタクト層8の一部と第1n型バッファ層10と多層構造体120と第2n型バッファ層13と発光層14とp型窒化物半導体層16,17,18とは、エッチングされてメサ部30を構成している。p型窒化物半導体層18の上面には、透明電極23を介してp側電極25が設けられている。メサ部30の外側(図1(a)における右側)では、n型コンタクト層8の露出面にn側電極21が設けられている。透明保護膜27は透明電極23とエッチングにより露出した各層の側面とを覆っており、n側電極21とp側電極25とは透明保護膜27から露出している。
 基板3、バッファ層5、下地層7及びn型コンタクト層8は、公知の技術によって構成されていることが好ましい。これらの構成は、本発明では特に限定されない。そのため、以下では、これらの構成の詳細な説明を割愛する。これらの構成の材質、組成、形成方法、形成条件、厚さ、及び、不純物濃度等については、公知の技術と種々の組み合わせが可能である。
 図2に示す窒化物半導体発光素子1の平面構造については、公知の種々の平面構造を採用できる。図2とは異なり、窒化物半導体発光素子を上下逆さにして基板に接続するというフリップチップ接続を実現可能な構造を採用することもできる。このように、窒化物半導体発光素子1の平面構造も本発明では特に限定されない。そのため、以下では、窒化物半導体発光素子1の平面構造についても詳細な説明を割愛する。
 <第1n型バッファ層>
 第1n型バッファ層10は、n型コンタクト層8と多層構造体120との間に設けられている。n型コンタクト層8を高温且つ高速で成長させる。一方、発光層14をn型コンタクト層8よりも低温且つ低速で成長させる。そのため、窒化物半導体発光素子1の製造過程では、窒化物半導体層の成長温度を高温から低温へ切り替える必要があり、その成長速度を高速から低速へ切り替える必要がある。このときのバッファ層としての役割を第1n型バッファ層10が担っている。
 第1n型バッファ層10をn型コンタクト層8よりも低温且つ低速で成長させるので、その成長面(上面)はn型コンタクト層8の成長面よりも平滑化されている。しかし、第1n型バッファ層10には、転位等の結晶欠陥を減らす効果は殆どないと考えられる。
 また、第1n型バッファ層10は、n型コンタクト層8よりも低温で成長させる。そのため、第1n型バッファ層10では、転位の一部が所謂Vピットを構成し始めることが観察されている。好ましくは、第1n型バッファ層10は多層構造体120に接している。これにより、Vピット構造(Vピット構造は貫通転位の影響を低減する)の制御性が向上する。
 第1n型バッファ層10の厚さは、50nm以下であることが好ましい。これにより、第1n型バッファ層10の成長面(上面)のうねりを抑制できる。第1n型バッファ層10の厚さは、より好ましくは5nm以上であり、さらに好ましくは10nm以上である。これにより、第1n型バッファ層10の成長面を平滑化できる。
 第1n型バッファ層10のn型不純物濃度は3×1018cm-3以上1.1×1019cm-3未満であることが好ましい。第1n型バッファ層10のn型不純物濃度が高くなり過ぎると、第1n型バッファ層10の上に形成される発光層14での発光効率の低下を招くことがある。このことを考慮すれば、第1n型バッファ層10のn型不純物濃度は多層構造体120を構成する第1半導体層121及び第2半導体層122のうちの少なくとも1つのn型不純物濃度と同じであることが好ましい。なお、第1n型バッファ層10の厚さは多層構造体120の厚さよりも小さいので、第1n型バッファ層10に含まれるn型不純物による影響は多層構造体120に含まれるn型不純物による影響ほど顕著ではないと考えられる。
 「第1n型バッファ層10のn型不純物濃度が多層構造体120を構成する第1半導体層121のn型不純物濃度と同じである」には、第1n型バッファ層10のn型不純物濃度が第1半導体層121のn型不純物濃度の0.85倍以上1.15倍以下である場合が含まれる。「第1n型バッファ層10のn型不純物濃度が多層構造体120を構成する第2半導体層122のn型不純物濃度と同じである」には、第1n型バッファ層10のn型不純物濃度が第2半導体層122のn型不純物濃度の0.85倍以上1.15倍以下である場合が含まれる。
 第1n型バッファ層10では、n型コンタクト層8よりも、n型不純物濃度が有意的に低いことが好ましい。これにより、第1n型バッファ層10の成長面の平滑化が進みやすくなると共に、新たな転位の発生を抑制できる。
 第1n型バッファ層10は、Als4Int4Ga1-s4-t4N(0≦s4≦1(より好ましくは0≦s4<1)、0≦t4≦1(より好ましくは0≦t4<1))層にn型不純物がドープされた層であることが好ましい。より好ましくは、第1n型バッファ層10は、Inu4Ga1-u4N(0≦u4≦1、好ましくは0≦u4≦0.5、より好ましくは0≦u4≦0.15)層にn型不純物がドープされた層である。
 第1n型バッファ層10は、n型コンタクト層8と多層構造体120との間に設けられているので、n型コンタクト層8と多層構造体120を構成する第2半導体層122との間の格子不整合の度合いを出来る限り小さくすることが好ましい。この格子不整合の度合いが大きくなれば、新たな結晶欠陥が発生する可能性が高くなる。よって、第1n型バッファ層10のバンドギャップエネルギーはn型コンタクト層8のバンドギャップエネルギー又は多層構造体120を構成する第2半導体層122のバンドギャップエネルギーと同じであることが好ましい。例えば、第1n型バッファ層10は、n型GaN層(厚さが25nm)であることが好ましい。
 「第1n型バッファ層10のバンドギャップエネルギーがn型コンタクト層8のバンドギャップエネルギーと同じである」には、第1n型バッファ層10のバンドギャップエネルギーがn型コンタクト層8のバンドギャップエネルギーの0.9倍以上1.1倍以下である場合が含まれる。「第1n型バッファ層10のバンドギャップエネルギーが多層構造体120を構成する第2半導体層122のバンドギャップエネルギーと同じである」には、第1n型バッファ層10のバンドギャップエネルギーが第2半導体層122のバンドギャップエネルギーの0.9倍以上1.1倍以下である場合が含まれる。
 <多層構造体>
 本発明者らが鋭意検討した結果、第1n型バッファ層10と発光層14との間に多層構造体120を設けることにより、多層構造体120の上に形成される層(例えば発光層14)の結晶品質を高く維持できることが分かった。これにより、高温駆動時又は大電流駆動時の発光効率を高く維持できると考えられる。以下、多層構造体120の構成を説明する。
 多層構造体120は、第1半導体層121と第2半導体層122との積層構造を1組以上有する。「第1半導体層121と第2半導体層122との積層構造」には、この積層構造を構成する第1半導体層121及び第2半導体層122の各層数が1である場合だけでなく、この積層構造を構成する第1半導体層121及び第2半導体層122の各層数が2以上である場合も含まれる。この積層構造を構成する第1半導体層121及び第2半導体層122の各層数が2以上である場合には、第1半導体層121と第2半導体層122とが交互に積層されて当該積層構造が構成されている。具体的には、多層構造体120では、第1n型バッファ層10側から順に、第1半導体層121と第1半導体層121よりもバンドギャップエネルギーの大きな第2半導体層122とが交互に積層されている。
 第1半導体層121の厚さt及び第2半導体層122の厚さtは、それぞれ、10nmよりも大きく30nm以下である。あるいは、室温での発光効率を重視する用途では、第1半導体層121の厚さtが10nmよりも大きく30nm以下であり、第2半導体層122の厚さtが10nmよりも大きく40nm以下である。これにより、第1半導体層121と第2半導体層122との界面では、多層構造体120よりも下側で発生した貫通転位が曲げられる。よって、発光層14における貫通転位密度が低減するので、発光層14の結晶品質を高く維持できる。したがって、窒化物半導体発光素子1の発光特性が更に改善される。例えば、高温駆動時又は大電流駆動時の発光効率を高く維持できる。好ましくは、第1半導体層121の厚さt及び第2半導体層122の厚さtは、それぞれ、15nm以上30nm以下であるか、室温での発光効率を重視する用途では、第1半導体層121の厚さtは15nm以上30nm以下であり、第2半導体層122の厚さtは15nm以上40nm以下である。第1半導体層121の厚さt及び第2半導体層122の厚さtが30nmよりも大きくなると、多層構造体120の成長面(上面)の平坦性が低下することがある。多層構造体120の断面TEM(Transmission Electron Microscope:透過型電子顕微鏡)画像を観察することにより、第1半導体層121の厚さt及び第2半導体層122の厚さtを求めることができる。
 第1半導体層121及び第2半導体層122は、それぞれ、n型不純物を含んでいることが好ましい。これにより、発光層14における貫通転位密度が更に低減する。その理由として次に示すことが考えられる。第1半導体層121がn型不純物を含むことにより、第1半導体層121を構成するIII族窒化物半導体の結晶の格子定数が変化する。同様に、第2半導体層122がn型不純物を含むことにより、第2半導体層122を構成するIII族窒化物半導体の結晶の格子定数が変化する。これらの変化によって、第1半導体層121と第2半導体層122との界面では、多層構造体120よりも下側で発生した貫通転位が曲がり易くなる。その結果、発光層14における貫通転位密度が更に低減する。第1半導体層121及び第2半導体層122の各々のn型不純物濃度は、好ましくは3×1018cm-3以上1.1×1019cm-3未満であり、より好ましくは6×1018cm-3以上1×1019cm-3未満である。
 第1半導体層121と第2半導体層122とでは、n型不純物濃度は、異なっても良いが、互いに同じであることが好ましい。これにより、第1半導体層121と第2半導体層122とで組成又は厚さの制御が容易となる。「第1半導体層121と第2半導体層122とではn型不純物濃度が互いに同じである」とは、第1半導体層121のn型不純物濃度が第2半導体層122のn型不純物濃度の0.85倍以上1.15倍以下であることを意味する。
 本発明者らは、第1半導体層121(厚さが12nm)及び第2半導体層122(厚さが12nm)のそれぞれにおけるn型不純物(Si)濃度を変えて、フォトルミネッセンス(PL)励起強度比とエレクトロルミネッセンス(EL)発光強度及びその温度依存性とを調べた。その結果を図3(a)及び図3(b)に示す。図3(a)に示すグラフは、窒化物半導体発光素子1の上面視において当該窒化物半導体発光素子1の中心におけるPL励起強度比のSi濃度依存性を表す。「PL励起強度比」とは、次に示すように定義される。励起光強度が第1強度である場合のフォトルミネセンス強度をIaとし、励起光強度が第2強度(第2強度は第1強度の10倍である)である場合のフォトルミネセンス強度をIbとしたとき、PL励起強度比R(%)はR=(Ia/Ib×10)×100で算出される。一般に、発光層14の結晶品質が高いほど、PL励起強度比Rは100%に近い数字を示す。
 図3(b)には、窒化物半導体発光素子1に電流を流すことによって発光させた場合のデータを示す。図3(b)において、L31は、発光強度の温度特性(25℃での発光強度(波長が450nmでの発光強度)に対する80℃での発光強度(波長が450nmでの発光強度)の割合)のSi濃度依存性を表し、L32は、窒化物半導体発光素子の出力のSi濃度依存性を表す。図3(a)及び図3(b)において、「ref.」とは、多層構造体120が設けられていないことを意味する。
 図3(a)及び図3(b)に示すように、第1半導体層121及び第2半導体層122のそれぞれにおけるn型不純物濃度が3.1×1018cm-3以上であれば、PL励起強度比を高めることができ、発光強度の温度特性が改善され、出力が大きくなった。第1半導体層121及び第2半導体層122のそれぞれにおけるn型不純物濃度が5.6×1018cm-3以上であれば、PL励起強度比を更に高めることができ、発光強度の温度特性が更に改善され、出力が更に大きくなった。
 第1半導体層121の厚さtと第2半導体層122の厚さtとは同じであることが好ましい。「第1半導体層121の厚さと第2半導体層122の厚さとは同じである」とは、第1半導体層121の厚さtが第2半導体層122の厚さtの0.9倍以上1.1倍以上であることを意味する。これにより、多層構造体120の厚さが大きくなっても、多層構造体120の厚さが大きいことに起因する悪影響が多層構造体120の上に成長される層(例えば発光層14)に及ぶことを防止できる。例えば、多層構造体120の厚さが大きいことに起因して発光層14の結晶品質が低下することを防止できる。
 第1半導体層121及び第2半導体層122を構成する窒化物半導体層の具体的な組成は、特に限定されない。第1半導体層121は、好ましくはAlx1Iny1Ga1-x1-y1N(0≦x1<1、0<y1≦1)層であり、より好ましくはGaz1In1-z1N(0<z1<1)層である。また、第2半導体層122は、好ましくはAlx2Iny2Ga1-x2-y2N(0≦x2<1、0≦y2<1)層であり、より好ましくはGaN層である。多層構造体120では、好ましくはAlx1Iny1Ga1-x1-y1N(0≦x1<1、0<y1≦1)層とAlx2Iny2Ga1-x2-y2N(0≦x2<1、0≦y2<1)層とが交互に積層され、より好ましくはGaz1In1-z1N(0<z1<1)層とGaN層とが交互に積層されている。
 第1半導体層121のバンドギャップエネルギーは、理論上では、0.77eV以上6.28eV未満の範囲で任意に設定可能である。しかし、実使用上では、好ましくは2.952eV以上3.425eV以下であり、より好ましくは3.100eV以上3.379eV以下である。
 第2半導体層122のバンドギャップエネルギーは、理論上では、0.77eVより大きく6.28eV未満の範囲で任意に設定可能である。しかし、実使用上では、好ましくは3.024eV以上3.616eV以下であり、より好ましくは3.289eV以上3.496eV以下である。
 第1半導体層121がInを含むことにより、次に示す2つの効果が得られる。第1の効果は、発光層14への転位の到達を防止できるというものである。第1半導体層121が原子半径の大きなInを多量に含むので、第1半導体層121には大きなストレスがかかる。その結果、一部の転位が、第1半導体層121で曲げられ、よって、発光層14に到達しなくなる。
 第2の効果は、多層構造体120の成長面の平坦性を高めることができるというものである。その理由としては、Inが、第1半導体層121の成長中に、多層構造体120の成長面のサーファクタント(サーファクタントとは、多層構造体120の成長面の物理的性質又は化学的性質を変更するものの総称)として機能するからである、と考えている。多層構造体120の成長面の平坦性を高め、且つ、発光層14へ向かって伸びる転位の個数を減らすことができれば、発光層14の結晶品質をより一層、高めることができるので、窒化物半導体発光素子1の発光特性がより一層、改善される。
 第1半導体層121がInを含む場合、第1半導体層121におけるIn組成比は、好ましくは発光層14におけるIn組成比よりも低く、より好ましくは0.05以下であり、更に好ましくは0.04程度である。
 多層構造体120は、第1半導体層121と第2半導体層122との積層構造を2組以上有することが好ましい。これにより、高温駆動時又は大電流駆動時の発光効率をより一層高く維持できる。より好ましくは、多層構造体120は第1半導体層121と第2半導体層122との積層構造を3組以上7組以下有する。これにより、窒化物半導体発光素子1の発光効率とその生産性とを高めることができる。
 多層構造体120の一例としては、第1n型バッファ層10の上面に、厚さtが12nmであるn型InGaN層(第1半導体層)と厚さtが12nmであるn型GaN層(第2半導体層)との積層構造を5組有するという構成が挙げられる。この例では、第1半導体層121の厚さt及び第2半導体層122の厚さtは5組全てにおいて同じである。しかし、第1半導体層121の厚さt及び第2半導体層122の厚さtは、10nm~30nmの範囲内、あるいは、室温での発光効率を重視する用途では、第1半導体層121の厚さtが10nm~30nmの範囲、第2半導体層122の厚さtが10nm~40nmの範囲内であれば、組ごとにおいて異なっても良い。
 以上では、多層構造体120として、第1半導体層121と第2半導体層122との積層構造が1組以上設けられて構成された構造体を主に記載している。しかし、第1半導体層121及び第2半導体層122とは異なる層を加えた3層を1組として多層構造体120を構成しても良い。例えば、厚さが12nmであるn型InGaN層(第1半導体層)と厚さが12nmであるn型GaN層(第2半導体層)とに加えてIn濃度が上記n型InGaN層のIn濃度と上記n型GaN層のIn濃度との間に位置するn型InGaN層を第3半導体層として設け、これら3層からなる積層構造を1組以上設けることにより多層構造体120を構成することができる。また、多層構造体120を構成する単位構造のうち、特定の単位構造のみを3層からなる積層構造とすることもできる。なお、第3半導体層の厚さは、第1半導体層の厚さ及び第2半導体層の厚さよりも薄くても良い。また、第3半導体層の組成及び不純物濃度については、第1半導体層及び第2半導体層のそれぞれの組成及び不純物濃度と同様のことが言える。
 多層構造体120の上には発光層14が設けられる。発光層14は多層構造体120に接するように設けられることが好ましく、その場合には、多層構造体120のうち発光層14の最も近くに位置する第2半導体層122が発光層14に接することとなる。これにより、窒化物半導体層の成長工程を簡略化できるので、窒化物半導体層の成長工程を制御し易くなり、よって、窒化物半導体発光素子1の生産歩留りが向上する。
 <第2n型バッファ層>
 多層構造体120と発光層14との間に第2n型バッファ層13が設けられていれば、次に示す効果を得ることができる。しかし、第2n型バッファ層13の厚さは第1半導体層121の厚さ又は第2半導体層122の厚さと同程度であるので(好ましくは30nm以下)、第2n型バッファ層13を設けたことによる影響はそれほど大きくないと考えられる。
 (ケース1)第2n型バッファ層13のバンドギャップエネルギーが第2半導体層122のバンドギャップエネルギー以上である場合
この場合には、発光層14直下のバンドギャップエネルギーが大きくなるので、ホールの流出を防止できる。そのため、ホールの流出が起き易い発光素子(例えば、近紫外発光素子又は紫外発光素子のような発光波長が短い発光素子)にとっては、有利となる。しかし、障壁の高さが高くなるので、駆動電圧Vfが若干高くなる傾向がある。
 (ケース2)第2n型バッファ層13のバンドギャップエネルギーが第1半導体層121のバンドギャップエネルギー以下である場合
この場合には、発光層14直下のバンドギャップエネルギーが小さくなるので、発光層14への電子の注入効率が高くなり、よって、駆動電圧Vfを低下させることができる。また、第2n型バッファ層13におけるIn含有率を高めることによって第2n型バッファ層13のバンドギャップエネルギーを小さくすることができるので、第2n型バッファ層13の結晶面をより一層、平滑にでき、よって、発光層14の発光効率を若干高めることが出来る。ただし、第2n型バッファ層13では、ストレスの増加によって新たな欠陥が生じる場合があるので、第2n型バッファ層13の製造マージンが小さくなる傾向がある。
 (ケース3)第2n型バッファ層13のバンドギャップエネルギーが第2半導体層122のバンドギャップエネルギーよりも小さく第1半導体層121のバンドギャップエネルギーよりも大きい場合
ケース3での構造はケース1での構造とケース2での構造との中間的な構造であり、窒化物半導体発光素子1の特性と第2n型バッファ層13の製造マージンとのバランスを確保し易い。
 多層構造体120の構造を最適化するに当たっては、発光層14を形成する直前の状態のウエハ表面をAFMで観察した画像(図4参照)を参照した。第2n型バッファ層13が設けられている場合には、第2n型バッファ層13の成長面のAFM像を参照した。第2n型バッファ層13が設けられていない場合には、多層構造体120の成長面のAFM像を参照した。図4に見られる黒い六角形状のパターンは、所謂Vピットである。第1n型バッファ層10よりも基板3側に位置する層から第1n型バッファ層10へ向かった伸びた転位が、第1n型バッファ層10、多層構造体120、及び、第2n型バッファ層13を経て、六角錐状の穴として顕在化した、と考えている。Vピットの密度は低いほど好ましいが、好ましくは3×10cm-2以下であり、より好ましくは0.8×10cm-2以下である。
 窒化物半導体発光素子1の発光特性又はその歩留りを向上させるという点において、Vピットの大きさは重要である。Vピットの大きさの最適値は、発光層14の形成条件又はp型窒化物半導体層16,17,18の形成条件によって異なるので、一概に決定することは難しい。Vピットの大きさは、一般に、第1n型バッファ層10の厚さ、多層構造体120の厚さ、又は、第2n型バッファ層13の厚さに比例して大きくなる。発光層14の形成条件及びp型窒化物半導体層16,17,18の形成条件が同一であれば多層構造体120を構成する窒化物半導体層の層数(例えば第1半導体層121の層数又は第2半導体層122の層数)を調整することによってVピットの大きさを調整できる。Vピットの大きさは、主に、多層構造体120の成長条件によっても変わる。本発明では、発光層14の形成直前状態でのVピットの大きさを70nm~100nmに制御している。
 このような第2n型バッファ層13は、好ましくはAlx3Iny3Ga1-x3-y3N(0≦x3<1、0≦y3<1)からなり、より好ましくはAlx3Iny3Ga1-x3-y3N(0≦x3≦0.1、0≦y3≦0.2)からなる。
 第2n型バッファ層13のn型不純物濃度は3×1018cm-3以上1.1×1019cm-3未満であることが好ましい。第2n型バッファ層13のn型不純物濃度が高くなり過ぎると、第2n型バッファ層13の上に形成される発光層14での発光効率の低下を招くことがある。このことを考慮すれば、第2n型バッファ層13のn型不純物濃度は多層構造体120を構成する第1半導体層121及び第2半導体層122のうちの少なくとも1つのn型不純物濃度と同じであることが好ましい。
 「第2n型バッファ層13のn型不純物濃度が多層構造体120を構成する第1半導体層121のn型不純物濃度と同じである」には、第2n型バッファ層13のn型不純物濃度が第1半導体層121のn型不純物濃度の0.85倍以上1.15倍以下である場合が含まれる。「第2n型バッファ層13のn型不純物濃度が多層構造体120を構成する第2半導体層122のn型不純物濃度と同じである」には、第2n型バッファ層13のn型不純物濃度が第2半導体層122のn型不純物濃度の0.85倍以上1.15倍以下である場合が含まれる。
 図4に示したAFM像では、t=12nmのIn0.04Ga0.96N層と、t=12nmのGaN層の組合せであった。この構造は良好な温度特性を狙ったLEDに適しているが、室温の性能重視のLEDには最適とはいえないことが分かった。図10に示すAFM像はt=12nmのIn0.04Ga0.96N層、t=30nmのGaN層の4ペアの構造について、発光層14形成直前の状態のウエハ表面をAFMで観察した像である。ただし、第1n型バッファ層10として60nmのGaN層、第2n型バッファ層13として12nmのInGaN層を備え、第1n型バッファ層10、多層構造体120、第2n型バッファ層13はいずれも7×1018/cmのSiがドーピングされている。図10のVピットは図4に比べ、径が200nm程度と大きい。密度は1.5×10/cm程度と図4より若干少ないが、測定点でのバラツキの範囲内だと考える。平面の平坦度は、図4と同様に、図上上下に蛇行して走る緩やかな線がほぼ等間隔で並んでおり、綺麗なステップ成長面が形成されている。
 後述するように、室温特性重視のLEDでは、活性層形成前の結晶表面には、このように比較的大き目のVピットが形成されていることが好ましく、そのサイズは100nmから300nm程度が適しており、更に150nmから250nmが好ましい。後に形成される活性層の構造にも関係するが、光出力を向上するためにはVピットサイズには最適値がある。その原因は十分解明されているとはいえない。Vピットが小さい場合、Vピット側壁部を介した平坦部量子井戸層への正孔注入が十分起き難いためではないかと推測している。逆にVピットが大きい場合は、同時に結晶成長面の平面性が悪化してしまうために、井戸層の結晶性が劣化し、発光特性が低下するのではないかと推測している。
 室温特性重視のLEDでは、VピットのV字の最下部(発光層成長前、すなわち、第2n型バッファ層13成長後の表面に存在するVピットの最下部を意味している。完成したエピ層の断面視においては、V字型に変形した発光層の下側頂点に対応する。)は、前記多層構造体に位置していることが好ましい。また、温特性重視のLEDでは、Vピットは、前記発光層最上部部分の平面視において、多数の穴として散在しており、Vピットの平面密度(Vピット密度)が1×10/cm以上であることが好ましい。なお、室温特性重視のLEDでは、Vピット密度は必ずしも低い必要性は無く、Vピット密度が更に高くても良い。図10のVピット密度より5倍程度高い場合でも、十分効率の良いLEDを形成できる。
 <発光層>
 第2n型バッファ層13が設けられている場合、発光層14は第2n型バッファ層13に接しており、具体的には最初の井戸層14WIが第2n型バッファ層13に接している。第2n型バッファ層13が設けられていない場合、発光層14は多層構造体120に接しており、具体的には最初の井戸層14WIが多層構造体120の第2半導体層122(最上層)に接している。
 発光層14は、単一量子井戸構造からなっても良いが、井戸層14Wとバリア層14A(例えば図5参照)とが交互に積層されて構成された多重量子井戸構造からなることが好ましい。なお、発光層14は、井戸層14W及びバリア層14Aとは異なる1層以上の半導体層と、井戸層14Wと、バリア層14Aとが順に積層されてなる積層構造を有していても良い。
 発光層14は、アンドープ層であることが好ましい。これにより、発光層14において新たな欠陥が発生することを効果的に防止できる。その理由としては断言できないが、多層構造体120から発光層14へ付与される歪みを低減できるからであると考えている。「発光層14はアンドープ層である」とは、最初の井戸層14WI、井戸層14W、最後の井戸層14WF及び発光層14に含まれる全てのバリア層14Aがn型不純物及びp型不純物の両方を意図的に含んでいないことを意味する。これらの層では、n型不純物濃度が1×1017cm-3以下に抑えられ、p型不純物濃度が1×1017cm-3以下に抑えられている。
 なお、p型窒化物半導体層16,17,18の成長時には、熱拡散したp型不純物が、p型窒化物半導体層16,17,18からp型窒化物半導体層16側に位置する井戸層又はバリア層14Aへドープされることがある。
 発光層14では、1層の井戸層14Wと1層のバリア層14Aとの積層構造の厚さ(井戸層14Wの厚さとバリア層14Aの厚さとの和)が5nm以上100nm以下であることが好ましい。
 (井戸層)
 井戸層14Wを構成するIII族窒化物半導体の組成は、窒化物半導体発光素子1に求められる発光波長に合わせて調整されることが好ましく、より好ましくはAlGaIn1-c-dN(0≦c<1、0<d≦1)であり、Alを含まないInGa1-eN(0<e≦1)であってもよい。しかし、例えば波長が375nm以下の紫外光を発光させる場合には、井戸層14Wのバンドギャップエネルギーを大きくする必要があるので、井戸層14WはAlを含むことが好ましい。
 p型窒化物半導体層16側に位置する井戸層は不純物を極力含まないことが好ましい。別の言い方をすると、不純物原料を導入することなく、p型窒化物半導体層16側に位置する井戸層を成長させることが好ましい。これにより、p型窒化物半導体層16側に位置する井戸層において非発光再結合が起こり難くなるので、窒化物半導体発光素子1の発光効率が高くなる。一方、多層構造体120側に位置する井戸層はn型不純物を含むことが好ましい。これにより、窒化物半導体発光素子1の駆動電圧が低下する。
 井戸層14Wを構成するIII族窒化物半導体の組成は互いに同じであることが好ましく、井戸層14Wの厚さは互いに同じであることが好ましい。これにより、井戸層14Wでは、量子準位が互いに同じとなるので、電子とホールとの再結合によって発生する光の波長が互いに同じとなる。よって、窒化物半導体発光素子1の発光スペクトル幅が狭くなる。
 一方、井戸層14Wを構成するIII族窒化物半導体の組成又は井戸層14Wの厚さが意図的に異なる場合には、窒化物半導体発光素子1の発光スペクトル幅がブロードとなる。窒化物半導体発光素子1を照明用などの用途に使用する場合には、窒化物半導体発光素子1の発光スペクトル幅がブロードであることが好ましく、よって、井戸層14Wを構成するIII族窒化物半導体の組成又は井戸層14Wの厚さは意図的に異なることが好ましい。例えば、井戸層14Wの厚さを1nm以上7nm以下の範囲内で適宜設定することが好ましい。これにより、窒化物半導体発光素子1の発光効率を高く維持できるという効果も得られる。なお、最初の井戸層14WIの厚さは1nm以上10nm以下であることが好ましい。
 多層構造体120において、井戸層14Wの層数は、好ましくは2層以上20層以下であり、より好ましくは3層以上15層以下であり、更に好ましくは4層以上12層以下である。
 (バリア層)
 バリア層14Aのバンドギャップエネルギーは、井戸層14Wのバンドギャップエネルギーよりも大きい。具体的には、バリア層14Aは、AlGaIn1-f-gN(0≦f<1、0<g≦1)からなっても良いし、Alを含まないInGa1-hN(0<h≦1、e>h)からなっても良い。しかし、AlGaIn1-f-gN(0≦f<1、0<g≦1)の格子定数は井戸層14Wを構成する材料の格子定数とほぼ同じである。そのため、バリア層14AはAlGaIn1-f-gN(0≦f<1、0<g≦1)からなることが好ましい。
 より好ましくは、バリア層14AはAlInGa1-f-gN(0≦f≦0.01、0≦g≦0.01)からなる。これにより、多層構造体120から発光層14へ付与される歪みを低減できるので、発光層14において新たな欠陥が発生することを効果的に防止できる。よって、発光層14の発光特性が改善する。
 各バリア層14Aの厚さは、特に限定されないが、好ましくは1nm以上10nm以下であり、より好ましくは3nm以上7nm以下である。各バリア層14Aの厚さが薄いほど窒化物半導体発光素子1の駆動電圧は低下するが、各バリア層14Aの厚さが1nm未満となると窒化物半導体発光素子1の発光効率が低下する傾向にある。
 各バリア層14Aにおけるn型不純物濃度は、特に限定されず、必要に応じて適宜設定されることが好ましい。各バリア層14Aは、アンドープ層であっても良いし、n型不純物を含んでも良い。多層構造体120側に位置するバリア層14Aはn型不純物を含むことが好ましい。一方、p型窒化物半導体層16側に位置するバリア層14Aは、多層構造体120側に位置するバリア層14Aよりも低濃度のn型不純物を含む、又は、n型不純物を意図的に含まないことが好ましい。
 室温特性重視のLEDでは、温度特性重視のLEDに比べ、バリア層14Aの厚さが厚い傾向があり、好ましくは4nm以上15nm以下であり、より好ましくは6nm以上13nm以下である。室温特性重視の場合、Vピット側壁から井戸層への正孔注入が起きると推測されている。したがって、バリア層が厚くなっても、Vピット側壁に対する層厚は平面部に比べ薄いため、正孔注入の障害とは成り難いためと推測される。バリア層が厚い方が、井戸層の結晶性が改善されるために有利と考えられる。
 <p側中間層>
 最後の井戸層14WFには、p側中間層(例えば図5の層145)を挟んでp型窒化物半導体層16が設けられていることが好ましい。これにより、p型窒化物半導体層16,17,18の成長時には、熱拡散したp型不純物がp型窒化物半導体層16,17,18から発光層14へドープされることを防止できる。そのため、p側中間層の厚さは、p型不純物が最後の井戸層14WFにまで拡散しない程度の厚さであることが好ましく、好ましくは10nm未満であり、より好ましくは5nm未満であり、バリア層14Aの厚さと同程度であっても良い。
 p側中間層の少なくとも一部には、n型不純物がドープされていても良い。これにより、窒化物半導体発光素子1の発光効率が向上する。
 p側中間層は、好ましくはAls5Ga1-s5N(0≦s5<1)からなり、より好ましくはGaN又はバリア層14Aと同程度以上のAl組成を有するAlGaNからなる。なお、実際、p型不純物は、p型窒化物半導体層16からp側中間層へ拡散しているが、p側中間層と最後の井戸層14WFとの境界近傍までは拡散していない。
 室温特性重視のLEDでは、温度特性重視のLEDに比べ、p側中間層145が厚い傾向があり、好ましくは4nm以上15nm以下であり、より好ましくは6nm以上13nm以下である。これはバリア層14Aに関して記載した同じ理由である。
 <p型窒化物半導体層>
 p型窒化物半導体層16,17,18は、発光層14の上に順に設けられている。p型窒化物半導体層の層数は、3層に限定されず、2層以下であっても良いし、4層以上であっても良い。p型窒化物半導体層16,17,18は、好ましくはAls6Gat6Inu6N(0≦s6≦1、0≦t6≦1、0≦u6≦1、s6+t6+u6≠0)層にp型不純物がドープされた層であり、Als6Ga1-s6N(0<s6≦0.4、好ましくは0.1≦s6≦0.3)層にp型不純物がドープされた層である。例えば、p型窒化物半導体層16はp型AlGaN層であり、p型窒化物半導体層17はp型GaN層であり、p型窒化物半導体層18はp型不純物濃度がp型窒化物半導体層17よりも高いp型GaN層である。
 p型不純物は特に限定されず、例えばMgであることが好ましい。p型窒化物半導体層16,17,18のキャリア濃度は1×1017cm-3以上であることが好ましい。ここで、p型不純物の活性率は0.01程度であることから、p型窒化物半導体層16,17,18のp型不純物濃度(キャリア濃度とは異なる)は1×1019cm-3以上であることが好ましい。ただし、p型窒化物半導体層16のうち発光層14側に位置する部分のp型不純物濃度は1×1019cm-3未満であっても良い。
 p型窒化物半導体層16,17,18の合計の厚さは特に限定されず、30nm以上300nm以下であることが好ましい。p型窒化物半導体層16,17,18の厚さが薄ければ、その成長時における加熱時間が短くなるので、p型不純物が発光層14へ拡散することを防止できる。
 <n側電極、透明電極、p側電極>
 n側電極21及びp側電極25は、窒化物半導体発光素子1に駆動電力を供給するための電極である。図2には、n側電極21及びp側電極25がパッド電極部のみで構成されていることを図示している。しかし、電流拡散を目的とする細長い突出部(枝電極)が、図2に示すn側電極21及びp側電極25に接続されていても良い。また、p側電極25の下には、電流がp側電極25へ注入されることを防止するための絶縁層が設けられていることが好ましい。これにより、発光層14が発した光がp側電極25に遮蔽されることを防止できる。
 n側電極21は、例えば、チタン層、アルミニウム層及び金層がこの順序で積層されてなる積層構造を有することが好ましい。n側電極21にワイヤボンディングを行う場合を想定して、n側電極21の厚さは1μm以上であることが好ましい。
 p側電極25は、例えば、ニッケル層、アルミニウム層、チタン層及び金層がこの順序で積層されてなる積層構造を有することが好ましいが、n側電極21と同一の材料からなっても良い。p側電極25にワイヤボンディングを行う場合を想定して、p側電極25の厚さは1μm以上であることが好ましい。
 透明電極23は、例えばITO(Indium Tin Oxide)又はIZO(Indium Zinc Oxide)等の透明導電材料からなることが好ましく、20nm以上200nm以下の厚さを有することが好ましい。
 <窒化物半導体発光素子の製造>
 窒化物半導体発光素子1の製造方法の一例を以下に示す。以下において、「成長温度」とは、その層を結晶成長させるときの基板3の温度を意味する。
 (下地層の成長)
 例えばスパッタ法等により基板3の上面にバッファ層5を形成した後、例えばMOCVD(Metal Organic Chemical Vapor Deposition)法等によりバッファ層5の上面に下地層7を形成する。
 具体的には、バッファ層5が形成された基板3をMOCVD装置に入れ、好ましくは800℃以上1250℃以下で、より好ましくは900℃以上1150℃以下で、下地層7を成長させる。これにより、結晶欠陥が少なく且つ結晶品質に優れた下地層7を形成できる。下地層7は、ノンドープ層であることが好ましく、厚さが約2~5μmとなるように成長されることが好ましい。
 (n型コンタクト層の成長)
 次に、例えばMOCVD法等により下地層7の上面にn型コンタクト層8を形成する。具体的には、MOCVD装置において、好ましくは800℃以上1250℃以下で、より好ましくは900℃以上1150℃以下で、n型コンタクト層8を成長させる。これにより、結晶欠陥が少なく且つ結晶品質に優れたn型コンタクト層8を形成できる。反応ガスには例えばシランガス(SiH)が添加され、Si濃度が1×1019/cm程度となるようにシランガスの添加量が調整されることが好ましい。厚さが約1~4μmとなるようにn型コンタクト層8が成長されることが好ましい。
 (第1n型バッファ層の成長)
 続いて、例えばMOCVD法等によりn型コンタクト層8の上面に第1n型バッファ層10を形成する。具体的には、MOCVD装置内の温度を一旦下げ、成長速度をより遅い速度に制御して第1n型バッファ層10を成長させる。
 n型コンタクト層8まで形成した基板3を、第1MOCVD装置から一旦取り出して大気に曝した後、第2MOCVD装置に入れて第1n型バッファ層10以降を成長させても良い。これにより、厚さの大きな下地層7及びn型コンタクト層8を成長する装置(高速での成長が必要)と、発光層14を成長する装置(低速での成長と結晶品質の均一性が高い成長とが必要)とを変えることが出来る。よって、それぞれの層を成長させる上で最適な成膜装置を選択できるので、窒化物半導体発光素子1の製造効率が向上する。
 具体的には、第1n型バッファ層10の成長温度は、950℃以下であることが好ましく、より好ましくは700℃以上であり、更に好ましくは750℃以上である。第1n型バッファ層10の成長温度が700℃以上であれば、発光層14での発光効率を高く維持できる。
 (多層構造体の成長)
 続いて、例えばMOCVD法等により第1n型バッファ層10の上面に多層構造体120を形成する。多層構造体120の成長温度は、第1n型バッファ層10の成長温度以下であることが好ましい。
 また、多層構造体120の膜質を高く維持するという観点では、多層構造体120の成長温度は、より好ましくは600℃以上であり、更に好ましくは700℃以上である。第1n型バッファ層10と多層構造体120とを同一の成長温度で成長させても良い。
 (第2n型バッファ層の成長)
 MOCVD装置に供給されるガスの組成が異なることを除けば、多層構造体120の形成条件と同一の条件で第2n型バッファ層13を成長させることができる。
 (発光層、p型窒化物半導体層の成長)
 続いて、従来公知の方法にしたがって、多層構造体120の上面に、発光層14、p型窒化物半導体層16,17,18を順に形成する。
 なお、MOCVD法による各層の結晶成長では、次に示す原料ガスを用いることができる。Gaの原料ガスとしては、TMG(トリメチルガリウム)又はTEG(トリエチルガリウム)を用いることができる。Alの原料ガスとしては、TMA(トリメチルアルミニウム)又はTEA(トリエチルアルミニウム)を用いることができる。Inの原料ガスとしては、TMI(トリメチルインジウム)又はTEI(トリエチルインジウム)を用いることができる。Nの原料ガスとしては、NH又はDMH(ジメチルヒドラジン)を用いることができる。n型不純物であるSiの原料ガスとしては、SiH、Si又は有機Siを用いることができる。p型不純物であるMgの原料ガスとしては、CpMgを用いることができる。
 (エッチング、電極の形成)
 続いて、n型コンタクト層8の一部分が露出するように、p型窒化物半導体層16,17,18、発光層14、第2n型バッファ層13、多層構造体120、第1n型バッファ層10及びn型コンタクト層8をエッチングする。このエッチングにより露出したn型コンタクト層8の上面にn側電極21を形成し、p型窒化物半導体層18の上面に透明電極23とp側電極25とを順に積層する。その後、透明電極23と上記エッチングによって露出した各層の側面とを覆うように、透明保護膜27を形成する。このようにして窒化物半導体発光素子1が得られる。
 なお、基板3を除去しても良い。基板3を除去するタイミングは特に限定されない。例えばMOCVD装置を2台以上使用して窒化物半導体層を成長する場合には、基板3を第1MOCVD装置から取り出した後であって第2MOCVD装置へ入れるまでの間に、基板3を除去できる。
 また、下地層7とn型コンタクト層8と第1n型バッファ層10とを第1MOCVD装置内で成長させ、多層構造体120以降を第2MOCVD装置内で成長させても良い。しかし、下地層7とn型コンタクト層8とを第1MOCVD装置内で成長させ、第1n型バッファ層10と多層構造体120以降とを第2MOCVD装置内で成長させれば、第2MOCVD装置のスループットを向上できる。
 <実施形態の総括>
 図1に示す窒化物半導体発光素子1は、n型窒化物半導体層8と、発光層14と、p型窒化物半導体層16,17,18とを少なくとも備える。n型窒化物半導体層8と発光層14との間には、第1半導体層121と第2半導体層122との積層構造を1組以上有する多層構造体120が設けられている。第2半導体層122のバンドギャップエネルギーは、第1半導体層121のバンドギャップエネルギーよりも大きい。第1半導体層121及び第2半導体層122の各々の厚さは、10nmよりも大きく30nm以下である。これにより、窒化物半導体発光素子1の発光特性が更に改善される。
 図11に示す室温特性重視の窒化物半導体発光素子1'では、図1に対して、サイズの大きなVピット15が、より高い密度で存在する点が大きな相違点である。第1半導体層121の厚さは、10nmよりも大きく30nm以下であり、第2半導体層122の厚さは、10nmよりも大きく40nm以下である。これにより、室温特性重視の窒化物半導体発光素子1’の発光特性が更に改善される。
 第1半導体層121は、Alx1Iny1Ga1-x1-y1N(0≦x1<1、0<y1≦1)からなることが好ましく、第2半導体層122は、Alx2Iny2Ga1-x2-y2N(0≦x2<1、0≦y2<1)からなることが好ましい。
 第1半導体層121及び第2半導体層122の各々のn型不純物濃度が3×1018cm-3以上1.1×1019cm-3未満であることが好ましい。これにより、発光層14における貫通転位密度が更に低減する。
 第1半導体層121と第2半導体層122とではn型不純物濃度が互いに同じであることが好ましい。これにより、第1半導体層121と第2半導体層122とで組成又は厚さの制御が容易となる。
 第1半導体層121と第2半導体層122とでは厚さが互いに同じであることが好ましい。これにより、発光層14の結晶品質をより一層高めることができる。
 多層構造体120は、第1半導体層121と第2半導体層122との積層構造を3組以上7組以下有することが好ましい。これにより、窒化物半導体発光素子1の発光効率とその生産性とを高めることができる。
 多層構造体120のうち発光層14の最も近くに位置する第2半導体層122が発光層14に接していることが好ましい。これにより、窒化物半導体発光素子1の生産歩留りが向上するとともに、窒化物半導体層の成長工程を簡略化できる。
 多層構造体120と発光層14との間には、第2n型バッファ層13が設けられていることが好ましい。好ましくは、第2n型バッファ層13は、n型不純物を含み、Alx3Iny3Ga1-x3-y3N(0≦x3<1、0≦y3<1)からなり、発光層14に接している。これにより、発光波長又は動作電圧の仕様にしたがって窒化物半導体発光素子1の構造を最適化できるので、窒化物半導体発光素子1の生産歩留りが向上する。
 第2n型バッファ層13のバンドギャップエネルギーは第2半導体層122のバンドギャップエネルギー以上であることが好ましい。これにより、ホールの流出を防止できる。
 第2n型バッファ層13のバンドギャップエネルギーは第2半導体層122のバンドギャップエネルギーより小さく第1半導体層121のバンドギャップエネルギーより大きいことが好ましい。これにより、窒化物半導体発光素子1の発光特性と第2n型バッファ層13の製造マージンとのバランスを確保できる。
 第2n型バッファ層13のバンドギャップエネルギーは第1半導体層121のバンドギャップエネルギー以下であることが好ましい。これにより、発光層14への電子の注入効率が高くなる。
 第2n型バッファ層13の厚さは、30nm以下であることが好ましい。これにより、第2n型バッファ層13を設けたことによる不具合の発生を防止できる。
 n型窒化物半導体層8と多層構造体120との間には、第1n型バッファ層10が設けられていることが好ましい。好ましくは、第1n型バッファ層10は、n型不純物を含み、Als4Int4Ga1-s4-t4N(0≦s4<1、0≦t4<1)からなり、多層構造体120に接している。これにより、Vピット構造の制御性が向上する。
 第1n型バッファ層10のバンドギャップエネルギーは、第2半導体層122のバンドギャップエネルギーと同じであることが好ましい。これにより、新たな結晶欠陥の発生を防止できる。
 第1n型バッファ層10のn型不純物濃度は、第1半導体層121のn型不純物濃度及び第2半導体層122のn型不純物濃度のうちの少なくとも1つと同じであることが好ましい。これにより、発光層14での発光効率を高めることができる。
 第1n型バッファ層10の厚さは、50nm以下であることが好ましい。これにより、第1n型バッファ層10の成長面のうねりを抑制できるので、窒化物半導体発光素子1の発光効率の低下を防止できる。
 発光層14は、アンドープ層であることが好ましい。これにより、発光層14において新たな欠陥が発生することを防止できる。
 発光層14は、単一量子井戸構造、又は、井戸層とAlInGa1-f-gN(0≦f≦0.01、0≦g≦0.01)からなるバリア層とが交互に積層された多重量子井戸構造からなることが好ましい。これにより、発光層14において新たな欠陥が発生することを効果的に防止できる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明は以下に限定されない。
 <実施例1>
 実施例1では、図5に示すエネルギーバンド図を有する窒化物半導体発光素子を製造した。
 (基板(ウエハ)の準備)
 100mm径のサファイア基板からなるウエハを準備した。ウエハの上面には、凸部3aと凹部3bとが交互に形成されてなる凹凸形状が形成されていた。このような凹凸形状は次に示す方法にしたがって形成されたものであった。
 まず、図1(a)に示す凸部3aの平面配置が規定されたマスクを、ウエハの上面に設けた。次に、このマスクを用いてウエハの上面をドライエッチングした。ドライエッチングされた部分が凹部3bとなり、ドライエッチングされずに残った部分が凸部3aとなった。つまり、凸部3aは、ウエハの上面の<11-20>方向に配列されるとともに、ウエハの上面の<11-20>方向に対して+60°の傾きをなす方向とウエハの上面の<11-20>方向に対して-60°の傾きをなす方向とにそれぞれ配列された。凸部3aは、ウエハの上面において、三角形の頂点となる位置に配置され、三角形の3辺が延びる方向に周期的に配置されていた。
 ウエハの上面における凸部3aの形状は円形であり、その円の直径は1.2μm程度であった。隣り合う凸部3aの頂点の間隔(上記三角形の1辺)は2μmであり、凸部3aの高さは0.6μm程度であった。凸部3aは図1(a)に示す側面視形状を有し、その先端は丸みを帯びていた。凹部3bは図1(a)に示す側面視形状を有していた。
 (バッファ層の形成)
 凸部3a及び凹部3bの形成後、ウエハの上面をRCA洗浄した。RCA洗浄後のウエハを反応性スパッタ装置のチャンバー内に入れ、窒化アルミニウムからなるバッファ層5(厚さ25nm)を形成した。形成されたバッファ層5は、ウエハの上面の法線方向に伸長する柱状結晶の集合体であって結晶粒の揃った柱状結晶の集合体からなっていた。
 (下地層、n型コンタクト層の成長)
 バッファ層5が形成されたウエハをMOCVD装置に入れ、アンドープGaNからなる下地層7を結晶成長させた。下地層7の厚さは4.5μmであった。
 その後、MOCVD法により、下地層7の上面にSiドープn型GaN層(n型コンタクト層8)を結晶成長させた。n型コンタクト層8の厚さは4.5μmであり、n型コンタクト層8のn型不純物濃度は1×1019cm-3であった。
 (第1n型バッファ層の成長)
 ウエハの温度を801℃まで下げた後、MOCVD法により、厚さ25nmのSiドープGaN層(第1n型バッファ層10)を結晶成長させた。結晶成長されたSiドープGaN層はn型コンタクト層8に接しており、そのn型不純物濃度は7.4×1018cm-3であった。
 (多層構造体の成長)
 ウエハの温度を801℃に保持した状態で、多層構造体120を結晶成長させた。具体的には、第1n型バッファ層10に接する側から、厚さ12nmのSiドープInGaN(In組成比が0.04)層と厚さ12nmのSiドープGaN層との積層構造を1組として5組形成した。多層構造体120を構成する層のいずれにおいても、n型不純物濃度は7.4×1018cm-3であった。本構造では第2n型バッファ層13は省略されている。
 (発光層の成長)
 ウエハの温度を672℃に下げた。その後、多層構造体120の上面に、井戸層14Wとバリア層14Aとを交互に結晶成長させて発光層14を形成した。
 キャリアガスとして窒素ガスを用いて井戸層14W(8層)を結晶成長させた。結晶成長された井戸層14W、最初の井戸層14WI及び最後の井戸層14WFは、アンドープInGa1-xN(x=0.20)層であった。これにより、井戸層14Wがフォトルミネッセンスにより発する光の波長が、448nmとなった。井戸層14Wの厚さ及び最初の井戸層14WIの厚さをそれぞれ3.38nmとし、最後の井戸層14WFの厚さを5.0nmとした。
 井戸層14Wと交互にバリア層14A(7層)を結晶成長させた。結晶成長されたバリア層14AはアンドープAlGa1-yN(y=0.001)層であり、その厚さは4.0nmであった。
 (p側中間層の成長)
 最後の井戸層14WFの上面に、アンドープAlGaN(Al組成比0.001)からなるp側中間層145(厚さ3.0nm)を結晶成長させた。
 (p型窒化物半導体層の成長)
 ウエハの温度を1000℃に上げた。その後、p側中間層145の上面に、p型Al0.18Ga0.82N層(p型窒化物半導体層16、厚み:9nm、p型不純物濃度:2×1019cm-3)、p型GaN層(p型窒化物半導体層17、厚み:20nm、p型不純物濃度:3×1019cm-3)及びp型コンタクト層(p型窒化物半導体層18、厚み:7nm、p型不純物濃度:1×1020cm-3)を順に結晶成長させた。
 上述の各層の結晶成長では、Gaの原料ガスとしてはTMG(トリメチルガリウム)を用い、Alの原料ガスとしてはTMA(トリメチルアルミニウム)を用い、Inの原料ガスとしてはTMI(トリメチルインジウム)を用い、Nの原料ガスとしてはNHを用いた。また、n型不純物であるSiの原料ガスとしてはSiHを用い、p型不純物であるMgの原料ガスとしてはCpMgを用いた。
 (エッチング、電極の形成)
 ウエハをMOCVD装置から取り出した。その後、n型コンタクト層8の一部分が露出するように、p型コンタクト層、p型GaN層、p型Al0.18Ga0.82N層、p側中間層145、発光層14、多層構造体120、第1n型バッファ層10、及び、n型コンタクト層8をエッチングした。このエッチングにより露出したn型コンタクト層8の上面に、Auからなるn側電極21を形成した。p型コンタクト層18の上面に、ITOからなる透明電極23とAuからなるp側電極25とを順に形成した。透明電極23及び上記エッチングによって露出した各層の側面を主に覆うように、SiO膜(透明保護膜27)を形成した。その後、ウエハを620×680μmサイズのチップに分割した。このようにして本実施例の窒化物半導体発光素子を得た。
 このようにして得られた窒化物半導体発光素子を室温で120mAの電流で動作させると、ドミナント波長が450nmである青色発光を示した。光出力は170mWであり、印加電圧は3.05Vであった。室温での光出力に対する80℃での光出力の割合は98%であった。多層構造体が設けられていないことを除いては本実施例と同様の方法にしたがって窒化物半導体発光素子を製造したところ、その光出力は161mWであり、室温での光出力に対する80℃での光出力の割合は94%であった。よって、多層構造体を設けたことにより窒化物半導体発光素子の発光特性が改善されたことが分かった。
 <実施例2>
 実施例2では、図6に示すエネルギーバンド図を有する窒化物半導体発光素子を製造した。実施例1に記載の方法にしたがってMOCVD装置内で下地層7とn型コンタクト層8とを結晶成長させた後、次に示す方法にしたがって窒化物半導体発光素子を得た。
 (第1n型バッファ層の成長)
 ウエハをMOCVD装置に入れた状態で、ウエハの温度を801℃まで下げた。その後、MOCVD法により、厚さ25nmのSiドープGaN層(第1n型バッファ層10)を結晶成長させた。結晶成長されたSiドープGaN層はn型コンタクト層8に接しており、そのn型不純物濃度は7.4×1018cm-3であった。
 (多層構造体の成長)
 ウエハの温度を801℃に保持した状態で、多層構造体120を結晶成長させた。具体的には、第1n型バッファ層10に接する側から、厚さ15nmのSiドープInGaN(In組成比が0.04)層と厚さ11nmのSiドープGaN層との積層構造を1組として4組形成した。多層構造体120を構成する層のいずれにおいても、n型不純物濃度は7.4×1018cm-3であった。
 (第2n型バッファ層の成長)
 MOCVD法により、多層構造体120の上面に、厚さ12nmのAlInGaN(Al組成比が0.01、In組成比が0.04)層(第2n型バッファ層13)を結晶成長させた。結晶成長されたAlInGaN層では、n型不純物濃度が7.4×1018cm-3であった。
 (発光層の成長)
 ウエハの温度を672℃に下げた。その後、第2n型バッファ層13の上面に、井戸層14Wとバリア層14Aとを交互に結晶成長させて発光層14を形成した。
 キャリアガスとして窒素ガスを用いて井戸層14W(8層)を結晶成長させた。結晶成長された井戸層14W、最初の井戸層14WI及び最後の井戸層14WFは、アンドープInGa1-xN(x=0.20)層であった。これにより、井戸層14Wがフォトルミネッセンスにより発する光の波長が、448nmとなった。井戸層14Wの厚さ及び最初の井戸層14WIの厚さをそれぞれ3.58nmとし、最後の井戸層14WFの厚さを5.0nmとした。
 井戸層14Wと交互にバリア層14A(7層)を結晶成長させた。結晶成長されたバリア層14AはアンドープGaN層であり、その厚さは4.0nmであった。
 (p側中間層の成長)
 最後の井戸層14WFの上面に、アンドープAlGaN(Al組成比0.001)からなるp側中間層145(厚さ3.0nm)を結晶成長させた。
 (p型窒化物半導体層の成長、エッチング、電極の形成)
 実施例1に記載した方法にしたがって、p型窒化物半導体層16,17,18を形成し、エッチングを行い、n側電極21と透明電極23とp側電極25と透明保護膜27とを形成し、ウエハを620×680μmサイズのチップに分割した。このようにして本実施例の窒化物半導体発光素子を得た。
 このようにして得られた窒化物半導体発光素子を室温で120mAの電流で動作させると、ドミナント波長が450nmである青色発光を示した。光出力は171mWであり、印加電圧は3.04Vであった。室温での光出力に対する80℃での光出力の割合は98%であった。
 <実施例3>
 実施例3では、図7に示すエネルギーバンド図を有する窒化物半導体発光素子を製造した。実施例1及び実施例2に記載の方法にしたがって下地層7とn型コンタクト層8と第1n型バッファ層10とを結晶成長させた後、次に示す方法にしたがって窒化物半導体発光素子を得た。
 (多層構造体の成長)
 ウエハの温度を801℃に保持した状態で、多層構造体120を結晶成長させた。具体的には、第1n型バッファ層10に接する側から、厚さ12nmのSiドープInGaN(In組成比が0.04)層と厚さ12nmのSiドープGaN層との積層構造を1組として5組形成した。多層構造体120を構成する層の何れにおいても、n型不純物濃度は7.4×1018cm-3であった。
 (第2n型バッファ層の成長)
 MOCVD法により、多層構造体120の上面に、厚さ3nmのAlInGaN(Al組成比が0.02、In組成比が0.005)層(第2n型バッファ層13)を結晶成長させた。結晶成長されたAlInGaN層では、n型不純物濃度が7.4×1018cm-3であった。
 (発光層の成長)
 ウエハの温度を672℃に下げた。その後、第2n型バッファ層13の上面に、井戸層14Wとバリア層14Aとを交互に結晶成長させて発光層14を形成した。
 キャリアガスとして窒素ガスを用いて井戸層14W(8層)を結晶成長させた。結晶成長された井戸層14W、最初の井戸層14WI及び最後の井戸層14WFは、アンドープInGa1-xN(x=0.20)層であった。これにより、井戸層14Wがフォトルミネッセンスにより発する光の波長が、448nmとなった。井戸層14Wの厚さ及び最初の井戸層14WIの厚さをそれぞれ3.38nmとし、最後の井戸層14WFの厚さを5.0nmとした。
 井戸層14Wと交互にバリア層14A(7層)を結晶成長させた。結晶成長されたバリア層14AはアンドープAlGa1-yN(y=0.001)層であり、その厚さは4.0nmであった。
 (p側中間層の成長)
 最後の井戸層14WFの上面に、アンドープAlGa1-yN(y=0.001)からなるp側中間層145(厚さ3.0nm)を結晶成長させた。
 (p型窒化物半導体層の成長、エッチング、電極の形成)
 実施例1に記載した方法にしたがって、p型窒化物半導体層16,17,18を形成し、エッチングを行い、n側電極21と透明電極23とp側電極25と透明保護膜27とを形成し、ウエハを620×680μmサイズのチップに分割した。このようにして本実施例の窒化物半導体発光素子を得た。
 このようにして得られた窒化物半導体発光素子を室温で120mAの電流で動作させると、ドミナント波長が450nmである青色発光を示した。光出力は169mWであり、印加電圧は3.07Vであった。室温での光出力に対する80℃での光出力の割合は98.5%であった。
 <実施例4>
 実施例4では、図8に示すエネルギーバンド図を有する窒化物半導体発光素子を製造した。実施例1及び実施例2に記載の方法にしたがって下地層7とn型コンタクト層8と第1n型バッファ層10とを結晶成長させた後、次に示す方法にしたがって窒化物半導体発光素子を得た。
 (多層構造体の成長)
 ウエハの温度を801℃に保持した状態で、多層構造体120を結晶成長させた。具体的には、第1n型バッファ層10に接する側から、厚さ12nmのSiドープInGaN(In組成比が0.04)層と厚さ12nmのSiドープGaN層との積層構造を1組として4組形成した。多層構造体120を構成する層のいずれにおいても、n型不純物濃度は7.4×1018cm-3であった。
 (第2n型バッファ層の成長)
 MOCVD法により、多層構造体120の上面に、厚さ12nmのAlInGaN(Al組成比が0.0025、In組成比が0.042)層(第2n型バッファ層13)を結晶成長させた。結晶成長されたAlInGaN層では、n型不純物濃度が7.4×1018cm-3であった。
 (発光層の成長、p型窒化物半導体層の成長、エッチング、電極の形成)
 実施例3に記載の方法にしたがって、発光層14とp側中間層145とを結晶成長させた。その後、実施例1に記載した方法にしたがって、p型窒化物半導体層16,17,18を形成し、エッチングを行い、n側電極21と透明電極23とp側電極25と透明保護膜27とを形成し、ウエハを620×680μmサイズのチップに分割した。このようにして本実施例の窒化物半導体発光素子を得た。
 このようにして得られた窒化物半導体発光素子を室温で120mAの電流で動作させると、ドミナント波長が450nmである青色発光を示した。光出力は170mWであり、印加電圧は3.02Vであった。室温での光出力に対する80℃での光出力の割合は97.5%であった。
 <実施例5>
 実施例5では、図9に示すエネルギーバンド図を有する窒化物半導体発光素子を製造した。下地層7とn型コンタクト層8とを第1MOCVD装置内で成長させた。その後、基板3を、第1MOCVD装置から一旦取り出した後、第2MOCVD装置に入れ、第1n型バッファ層10以降を成長させた。具体的には、次に示す方法にしたがって窒化物半導体発光素子を得た。
 (第1n型バッファ層の成長)
 ウエハを第2MOCVD装置に入れた後、ウエハの温度を801℃まで上げた。その後、MOCVD法により、厚さ25nmのSiドープGaN層(第1n型バッファ層10)を結晶成長させた。結晶成長されたSiドープGaN層はn型コンタクト層8に接しており、そのn型不純物濃度は9×1018cm-3であった。
 (多層構造体の成長)
 ウエハの温度を801℃に保持した状態で、多層構造体120を結晶成長させた。具体的には、第1n型バッファ層10に接する側から、厚さ12nmのSiドープInGaN(In組成比が0.04)層と厚さ12nmのSiドープGaN層との積層構造を1組として4組形成した。多層構造体120を構成する層のいずれにおいても、n型不純物濃度は7.4×1018cm-3であった。
 (第2n型バッファ層の成長)
 MOCVD法により、多層構造体120の上面に、厚さ12nmのAlInGaN(Al組成比が0.0025、In組成比が0.042)層(第2n型バッファ層13)を結晶成長させた。結晶成長されたAlInGaN層では、n型不純物濃度が7.4×1018cm-3であった。
 (発光層の成長、p側中間層の成長)
 実施例1に記載の方法にしたがって発光層14を結晶成長させた後、実施例2に記載の方法にしたがってp側中間層145を結晶成長させた。
 (p型窒化物半導体層の成長)
 ウエハの温度を1100℃に上げた。その後、p側中間層145の上面に、p型Al0.18Ga0.82N層(p型窒化物半導体層16、厚み:12nm、p型不純物濃度:2×1019cm-3)、p型GaN層(p型窒化物半導体層17、厚み:20nm、p型不純物濃度:3×1019cm-3)及びp型コンタクト層(p型窒化物半導体層18、厚み:7nm、p型不純物濃度1×1020cm-3)を順に結晶成長させた。
 (エッチング、電極の形成)
 実施例1に記載した方法にしたがって、エッチングを行い、n側電極21と透明電極23とp側電極25と透明保護膜27とを形成し、ウエハを620×680μmサイズのチップに分割した。このようにして本実施例の窒化物半導体発光素子を得た。
 このようにして得られた窒化物半導体発光素子を室温で120mAの電流で動作させると、ドミナント波長が450nmである青色発光を示した。光出力は170mWであり、印加電圧は3.05Vであった。室温での光出力に対する80℃での光出力の割合は98%であった。多層構造体が設けられていないことを除いては本実施例と同様の方法にしたがって窒化物半導体発光素子を製造したところ、その光出力は161mWであり、室温での光出力に対する80℃での光出力の割合は94%であった。よって、多層構造体を設けたことにより窒化物半導体発光素子の発光特性が改善されたことが分かった。
 <実施例6>
 実施例6では、図7に示すエネルギーバンド図と酷似のエネルギーバンド図を有するが、発光波長が近紫外領域に存在する窒化物半導体発光素子を製造した。本実施例では、実施例3に記載の方法にしたがって下地層7とn型コンタクト層8と第1n型バッファ層10と多層構造体120と第2n型バッファ層13とを結晶成長させた後、次に示す方法にしたがって窒化物半導体発光素子を製造した。
 (発光層の成長)
 ウエハの温度を698℃に下げた。その後、第2n型バッファ層13の上面に、井戸層14Wとバリア層14Aとを交互に結晶成長させて発光層14を形成した。
 キャリアガスとして窒素ガスを用いて井戸層14W(8層)を結晶成長させた。結晶成長された井戸層14W、最初の井戸層14WI及び最後の井戸層14WFは、アンドープInxGa1-xN(x=0.10)層であった。これにより、井戸層14Wがフォトルミネッセンスにより発する光の波長が、403nmとなった。井戸層14Wの厚さ及び最初の井戸層14WIの厚さをそれぞれ3.38nmとし、最後の井戸層14WFの厚さを5.0nmとした。
 井戸層14Wと交互にバリア層14A(7層)を結晶成長させた。結晶成長されたバリア層14AはアンドープAlGa1-yN(y=0.05)層であり、その厚さは4.0nmであった。
 (p側中間層の成長)
 最後の井戸層14WFの上面に、アンドープAlGa1-yN(y=0.05)からなるp側中間層145(厚さ3.0nm)を結晶成長させた。
 (p型窒化物半導体層の成長、エッチング、電極の形成)
 実施例1に記載した方法にしたがって、p型窒化物半導体層16,17,18を形成し、エッチングを行い、n側電極21と透明電極23とp側電極25と透明保護膜27とを形成し、ウエハを440×530μmサイズのチップに分割した。このようにして本実施例の窒化物半導体発光素子を得た。
 このようにして得られた窒化物半導体発光素子を室温で50mAの電流で動作させると、ピーク波長が405nmである青紫色発光を示した。光出力は70mWであり、印加電圧は3.15Vであった。多層構造体が設けられていないことを除いては本実施例と同様の方法にしたがって窒化物半導体発光素子を製造したところ、その光出力は63mWであった。よって、多層構造体を設けたことにより窒化物半導体発光素子の発光特性が改善されたことが分かった。
 <実施例7>
 実施例7では、第1n型バッファ層10の組成が異なることを除いては実施例2に記載の方法にしたがって窒化物半導体発光素子を製造した。
 まず、実施例1に記載の方法にしたがって、下地層7とn型コンタクト層8とをMOCVD装置内で結晶成長させた。その後、次に示す方法にしたがって、窒化物半導体発光素子を製造した。
 (第1n型バッファ層の成長)
 ウエハをMOCVD装置に入れた状態で、ウエハの温度を796℃に設定した。その後、MOCVD法により、厚さ35nmのSiドープInGaN層(第1n型バッファ層10)を結晶成長させた。結晶成長されたSiドープInGaN層はn型コンタクト層8に接しており、そのn型不純物濃度は9.0×1018cm-3であった。
 実施例2に記載の方法にしたがって、多層構造体120、第2n型バッファ層13、発光層14、p側中間層145及びp型窒化物半導体層16,17,18の成長、エッチング、並びに、電極の形成を行った。
 このようにして得られた窒化物半導体発光素子を室温で120mAの電流で動作させると、ドミナント波長が450nmである青色発光を示した。光出力は171mWであり、印加電圧は3.04Vであった。室温での光出力に対する80℃での光出力の割合は98%であった。
 <実施例8>
 実施例8では、多層構造体のn型不純物濃度が異なることを除いては実施例1に記載の方法にしたがって窒化物半導体発光素子を製造した。窒化物半導体発光素子の仕様によっては、動作電圧を微調整しなければ、歩留りが低下する場合がある。窒化物半導体発光素子の仕様に合わせて動作電圧を若干上げるためには、多層構造体を構成する一方の層のn型不純物濃度を下げることが有効である。
 (多層構造体の成長)
 ウエハの温度を801℃に保持した状態で、多層構造体120を結晶成長させた。具体的には、第1n型バッファ層10に接する側から、厚さ12nmのSiドープInGaN(In組成比が0.04)層と厚さ12nmのSiドープGaN層との積層構造を1組として4組形成した。SiドープGaN層のn型不純物濃度を7.4×1018cm-3とした。SiドープInGaN層のn型不純物濃度を4×1018cm-3とした。
 このようにして得られた窒化物半導体発光素子(620×680μmサイズ)を室温で120mAの電流で動作させると、ドミナント波長が450nmである青色発光を示した。光出力は171mWであり、印加電圧は3.06Vであった。室温での光出力に対する80℃での光出力の割合は98%であった。多層構造体のn型不純物濃度を調整することにより、光出力を変えずに動作電圧を微調整できた。
 <実施例9>
 実施例9では、最後の井戸層14WFの上面にアンドープGaNからなるp側中間層145(厚さ4.0nm)を結晶成長させたことを除いては実施例2に記載の方法にしたがって窒化物半導体発光素子を製造した。本実施例においても、p型不純物は、p型窒化物半導体層16からp側中間層145へ拡散しているが、p側中間層145と最後の井戸層14WFとの境界近傍までは拡散していなかった。
 得られた窒化物半導体発光素子を室温で120mAの電流で動作させると、光出力及び印加電圧は実施例2と同程度であり、室温での光出力に対する80℃での光出力の割合は98%であった。
 <実施例10>
 図11は、本発明の他の実施形態に係る、室温特性重視の窒化物半導体発光素子の断面図である。図12は、窒化物半導体発光素子1’の平面図である。図11において、領域IA’には、図12に示すIA’-IA’線における断面構造を示し、領域IB’には、図12に示すIB’-IB’線における断面構造を示す。図1との相違点はサイズの大きなVピット15が、より高い密度で存在する点である。
 実施例10では、図13に示すエネルギーバンド図を有する室温特性重視の窒化物半導体発光素子を製造した。実施例1からの相違点は下記の通りである。
 (基板(ウエハ)の準備からn型コンタクト層まで)
 基板準備、バッファ層からn型コンタクト層までの構成は実施例1と同じである。
 (第1n型バッファ層の成長)
 厚さを60nmと厚くした以外は実施例1と同じである。
 (多層構造体の成長から第2n型バッファ層の成長)
 多層構造体に関しては、厚さ12nmのSiドープInGaN(In組成比が0.04)層と厚さ30nmのSiドープGaN層との積層構造を1組として5組形成した。多層構造体のそれ以外の点に関しては、実施例1と同じである。本構造では第2n型バッファ層13は省略されている。
 (発光層の成長)
 多層構造体の上面に、井戸層14Wとバリア層14Aとを交互に結晶成長させて発光層14を形成する際、井戸層14WとしてアンドープInGa1-xN(x=0.20)層を3.0nmの厚さで全13層の井戸層を形成した。井戸層と交互に堆積するバリア層14AはアンドープAlGa1-yN(y=0.001)層として、厚さ12nmと厚く全12層を形成した。又、成長温度も井戸層の成長温度に対して、140℃高めて成長した。発光層からのフォトルミネッセンス波長は440nmであった。
 (p側中間層の成長)
 p側中間層145の厚さ10.0nmと厚くした以外は実施例1と同じである。
 (p側窒化物半導体層の成長)
 p側中間層145の上面に堆積するp型Al0.18Ga0.82N層(p型窒化物半導体層16、p型不純物濃度:2×1019cm-3)の厚みを32nmに変更し、p型GaN層(p型窒化物半導体層17)の厚さを50nm、p型不純物濃度:5×1019cm-3に変更した以外は実施例1と同じである。
 (エッチング、電極の形成)
 実施例1から変更なし。
 このようにして得られた窒化物半導体発光素子は、室温120mAの動作条件で、ドミナント波長450nmの青色発光を示し、光出力178mW、印加電圧3.09Vで有った。また、80℃と室温の光出力比である温度特性は94%と低下したが、室温特性では実施例4を上回る特性であった。多層構造体無しの比較構造を作製したところ、光出力は155mWと小さく、多層構造体120の効果は明らかであった。
 なお、上記構造に於いて、発光層を構成する障壁層の下半分6層に7×1017/cmのシリコンドープを行うことで、印加電圧を3.07Vに低減できた。光出力は178.5mVであり、有意な差は無かった。
 <実施例11>
 実施例11では、図14に示すエネルギーバンド図を有する室温特性重視の窒化物半導体発光素子を製造した。実施例4からの相違点は下記の通りである。
 (基板(ウエハ)の準備からn型コンタクト層まで)
 ウエハの上面における凸部3aの直径は1.6μm程度であり、隣り合う凸部3aの頂点の間隔(上記三角形の1辺)は2.4μmであり、凸部3aの高さは0.8μm程度である。それ以外の点は実施例4と同じである。バッファ層からn型コンタクト層までの構成も実施例4と同じである。
 (第1n型バッファ層の成長)
 厚さを60nmと厚くした以外は実施例4と同じである。
 (多層構造体の成長から第2n型バッファ層の成長)
 多層構造体に関しては、厚さ12nmのSiドープInGaN(In組成比が0.04)層と厚さ30nmのSiドープGaN層との積層構造を1組として4組形成した。多層構造体のそれ以外の点及び第2n型バッファ層に関しては、実施例4と同じである。
 (発光層の成長)
 第2n型バッファ層の上面に、井戸層14Wとバリア層14Aとを交互に結晶成長させて発光層14を形成する際、井戸層14WとしてアンドープInGa1-xN(x=0.20)層を3.0nmの厚さで全8層の井戸層を形成した。井戸層と交互に堆積するバリア層14AはアンドープAlGa1-yN(y=0.001)層として、厚さ12nmと厚く全7層を形成した。また、成長温度も井戸層の成長温度に対して、140℃高めて成長した。発光層からのフォトルミネッセンス波長は440nmであった。
 (p側中間層の成長)
 p側中間層145の厚さ10.0nmと厚くした以外は実施例4と同じである。
 (p側窒化物半導体層の成長)
 p側中間層145の上面に堆積するp型Al0.18Ga0.82N層(p型窒化物半導体層16、p型不純物濃度:2×1019cm-3)の厚みを32nmに変更し、p型GaN層(p型窒化物半導体層17)の厚さを50nm、p型不純物濃度:5×1019cm-3に変更した以外は実施例4と同じである。
 (エッチング、電極の形成)
 実施例4から変更なし。
 このようにして得られた窒化物半導体発光素子は、室温120mAの動作条件で、ドミナント波長450nmの青色発光を示し、光出力180mW、印加電圧3.07Vであった。また、80℃と室温の光出力比である温度特性は94%と低下したが、室温特性では実施例4を上回る特性であった。多層構造体無しの比較構造を作製したところ、光出力は150mWと小さく、多層構造体120の効果は明らかであった。
 <実施例12>
 実施例12では、図15に示すエネルギーバンド図を有する室温特性重視の窒化物半導体発光素子を製造した。実施例11からの相違点は下記の通りである。
 (基板(ウエハ)の準備から第1n型バッファ層の成長まで)
 実施例11と同じである。
 (多層構造体の成長から第2n型バッファ層の成長)
 多層構造体に関しては、厚さ12nmのSiドープInGaN(In組成比が0.04)層と厚さ12nmのSiドープGaN層との積層構造を1組として7組形成した。多層構造体のそれ以外の点及び第2n型バッファ層に関しては、実施例11と同じである。本実施例において、積層回数を実施例11に対して増やした目的は、発光層堆積前におけるVピットサイズを同一に保つためである。積層数が4回の場合、Vピット径が120nm程度と小さく、光出力が低下したためである。
 (発光層の成長からp側窒化物半導体層の成長)
 実施例11と同じである。
 (エッチング、電極の形成)
 実施例11から変更なし。
 このようにして得られた窒化物半導体発光素子は、室温120mAの動作条件で、ドミナント波長450nmの青色発光を示し、光出力180mW、印加電圧3.07Vであった。また、80℃と室温の光出力比である温度特性は94%と低下したが、室温特性では実施例4を上回る特性であった。多層構造体無しの比較構造を作製したところ、光出力は150mWと小さく、多層構造体120の効果は明らかであった。
 今回開示された実施の形態及び実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1,1’ 窒化物半導体発光素子、3 基板、3a 凸部、3b 凹部、5 バッファ層、7 下地層、8 n型コンタクト層(n型窒化物半導体層)、10 第1n型バッファ層、13 第2n型バッファ層、14 発光層、14A バリア層、14W 井戸層、14WF 最後の井戸層、14WI 最初の井戸層、15 Vピット、16,17,18 p型窒化物半導体層、21 n側電極、23 透明電極、25 p側電極、27 透明保護膜、30 メサ部、120 多層構造体、121 第1半導体層、122 第2半導体層、145 p側中間層。

Claims (8)

  1.  n型窒化物半導体層と、発光層と、p型窒化物半導体層とを備える窒化物半導体発光素子であって、
     前記n型窒化物半導体層と前記発光層との間に設けられ、第1半導体層と第2半導体層との積層構造を1組以上有する多層構造体を備え、
     前記第2半導体層のバンドギャップエネルギーは、前記第1半導体層のバンドギャップエネルギーよりも大きく、
     前記第1半導体層及び前記第2半導体層の各々の厚さが10nmよりも大きく30nm以下である窒化物半導体発光素子。
  2.  n型窒化物半導体層と、発光層と、p型窒化物半導体層とを備える窒化物半導体発光素子であって、
     前記n型窒化物半導体層と前記発光層との間に設けられ、第1半導体層と第2半導体層との積層構造を1組以上有する多層構造体を備え、
     前記第2半導体層のバンドギャップエネルギーは、前記第1半導体層のバンドギャップエネルギーよりも大きく、
     前記第1半導体層の厚さが10nmよりも大きく30nm以下であり、第2半導体層の厚さが10nmよりも大きく40nm以下であり、
     前記発光層には断面視においてV字型の凹部(Vピット)が複数形成されていることを特徴とする窒化物半導体発光素子。
  3.  前記V字型の凹部(Vピット)のV字の最下部は、前記多層構造体に位置していることを特徴とする請求項2に記載の窒化物半導体発光素子。
  4.  前記V字型の凹部(Vピット)は、前記発光層最上部部分の平面視において、多数の穴として散在しており、前記V字型の凹部(Vピット)の平面密度が1×10/cm以上であることを特徴とする請求項2に記載の窒化物半導体発光素子。
  5.  前記第1半導体層と前記第2半導体層とでは、n型不純物濃度が互いに同じである請求項1または2に記載の窒化物半導体発光素子。
  6.  前記多層構造体と前記発光層との間には、n型バッファ層が設けられ、
     前記多層構造体と前記発光層との間に設けられた前記n型バッファ層は、n型不純物を含み、Alx3Iny3Ga1-x3-y3N(0≦x3<1、0≦y3<1)からなり、前記発光層に接している請求項1または2に記載の窒化物半導体発光素子。
  7.  前記n型窒化物半導体層と前記多層構造体との間には、n型バッファ層が設けられ、
     前記n型窒化物半導体層と前記多層構造体との間に設けられた前記n型バッファ層は、n型不純物を含み、Als4Int4Ga1-s4-t4N(0≦s4<1、0≦t4<1)からなり、前記多層構造体に接している請求項1または2に記載の窒化物半導体発光素子。
  8.  前記n型窒化物半導体層と前記多層構造体との間に設けられた前記n型バッファ層のn型不純物濃度が、前記第1半導体層のn型不純物濃度及び前記第2半導体層のn型不純物濃度のうちの少なくとも1つと同じである請求項7に記載の窒化物半導体発光素子。
PCT/JP2015/074698 2014-09-22 2015-08-31 窒化物半導体発光素子 WO2016047386A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580046876.2A CN107924966B (zh) 2014-09-22 2015-08-31 氮化物半导体发光元件
US15/511,750 US10084111B2 (en) 2014-09-22 2015-08-31 Nitride semiconductor light-emitting element
JP2016550077A JP6306200B2 (ja) 2014-09-22 2015-08-31 窒化物半導体発光素子
US16/101,559 US10790409B2 (en) 2014-09-22 2018-08-13 Nitride semiconductor light-emitting element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014192670 2014-09-22
JP2014-192670 2014-09-22

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/511,750 A-371-Of-International US10084111B2 (en) 2014-09-22 2015-08-31 Nitride semiconductor light-emitting element
US16/101,559 Continuation US10790409B2 (en) 2014-09-22 2018-08-13 Nitride semiconductor light-emitting element

Publications (1)

Publication Number Publication Date
WO2016047386A1 true WO2016047386A1 (ja) 2016-03-31

Family

ID=55580914

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/074698 WO2016047386A1 (ja) 2014-09-22 2015-08-31 窒化物半導体発光素子

Country Status (5)

Country Link
US (2) US10084111B2 (ja)
JP (1) JP6306200B2 (ja)
CN (1) CN107924966B (ja)
TW (1) TWI603500B (ja)
WO (1) WO2016047386A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018125428A (ja) * 2017-02-01 2018-08-09 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
JP6405430B1 (ja) * 2017-09-15 2018-10-17 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
CN109075223A (zh) * 2016-04-27 2018-12-21 原子能和替代能源委员会 包括位于发光区的至少一个势垒层内的至少一个较宽带隙中间层的发光二极管
JP2019054247A (ja) * 2017-09-15 2019-04-04 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
JP2021002595A (ja) * 2019-06-21 2021-01-07 ローム株式会社 半導体発光装置
CN113451459A (zh) * 2020-11-02 2021-09-28 重庆康佳光电技术研究院有限公司 发光二极管、外延结构及其制作方法
JP7432844B2 (ja) 2021-12-17 2024-02-19 日亜化学工業株式会社 窒化物半導体発光素子

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016111929A1 (de) * 2016-06-29 2018-01-04 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterkörper und Leuchtdiode
KR102377550B1 (ko) * 2017-05-19 2022-03-23 쑤저우 레킨 세미컨덕터 컴퍼니 리미티드 반도체 소자 및 이를 포함하는 반도체 소자 패키지
DE102017124596A1 (de) * 2017-10-20 2019-04-25 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement und Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements
WO2020096859A1 (en) * 2018-11-06 2020-05-14 The Regents Of The University Of California Micro-leds with ultra-low leakage current
CN109768141A (zh) * 2018-12-24 2019-05-17 华灿光电(浙江)有限公司 一种发光二极管倒装芯片、其外延片及制备方法
US20210350896A1 (en) 2020-05-06 2021-11-11 Janssen Pharmaceuticals, Inc. Patient monitoring using drug administration devices
US20210350897A1 (en) 2020-05-06 2021-11-11 Janssen Pharmaceuticals, Inc. Aggregating and analyzing drug administration data
US20210350895A1 (en) 2020-05-06 2021-11-11 Janssen Pharmaceuticals, Inc. Drug administration devices that communicate with surgical hubs
US20210345952A1 (en) 2020-05-06 2021-11-11 Janssen Pharmaceuticals, Inc. Controlling operation of drug administration devices using surgical hubs
US20210345953A1 (en) 2020-05-06 2021-11-11 Janssen Pharmaceuticals, Inc. Monitoring and communicating information using drug administration devices
DE112021006426T5 (de) * 2021-02-17 2023-10-05 Ams-Osram International Gmbh V-pit-verstärktes bauelement mit verbesserter ladungsträgerverteilung
CN115020559A (zh) * 2022-06-27 2022-09-06 淮安澳洋顺昌光电技术有限公司 一种发光二极管及其外延结构

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065632A (ja) * 2011-09-15 2013-04-11 Toshiba Corp 半導体素子、ウェーハ、半導体素子の製造方法及びウェーハの製造方法
WO2013084926A1 (ja) * 2011-12-06 2013-06-13 国立大学法人山口大学 窒化物半導体発光素子およびその製造方法
JP2013187484A (ja) * 2012-03-09 2013-09-19 Sharp Corp 窒化物半導体発光素子およびその製造方法

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69636088T2 (de) 1995-11-06 2006-11-23 Nichia Corp., Anan Halbleitervorrichtung aus einer Nitridverbindung
JP3658112B2 (ja) 1995-11-06 2005-06-08 日亜化学工業株式会社 窒化物半導体レーザダイオード
US6121634A (en) 1997-02-21 2000-09-19 Kabushiki Kaisha Toshiba Nitride semiconductor light emitting device and its manufacturing method
JP3904709B2 (ja) 1997-02-21 2007-04-11 株式会社東芝 窒化物系半導体発光素子およびその製造方法
JP3275810B2 (ja) 1997-11-18 2002-04-22 日亜化学工業株式会社 窒化物半導体発光素子
CN1142598C (zh) 1997-07-25 2004-03-17 日亚化学工业株式会社 氮化物半导体发光器件
JP3612985B2 (ja) 1998-02-02 2005-01-26 豊田合成株式会社 窒化ガリウム系化合物半導体素子及びその製造方法
JP3622562B2 (ja) 1998-03-12 2005-02-23 日亜化学工業株式会社 窒化物半導体発光ダイオード
KR100683234B1 (ko) 1998-03-12 2007-02-15 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자
JP3909811B2 (ja) * 2001-06-12 2007-04-25 パイオニア株式会社 窒化物半導体素子及びその製造方法
JP2005268581A (ja) 2004-03-19 2005-09-29 Matsushita Electric Ind Co Ltd 窒化ガリウム系化合物半導体発光素子
US7799699B2 (en) * 2004-06-04 2010-09-21 The Board Of Trustees Of The University Of Illinois Printable semiconductor structures and related methods of making and assembling
CN100418237C (zh) * 2004-09-23 2008-09-10 璨圆光电股份有限公司 氮化镓多重量子阱发光二极管的n型接触层结构
US7446345B2 (en) 2005-04-29 2008-11-04 Cree, Inc. Light emitting devices with active layers that extend into opened pits
JP2007110090A (ja) * 2005-09-13 2007-04-26 Sony Corp GaN系半導体発光素子、発光装置、画像表示装置、面状光源装置、及び、液晶表示装置組立体
US8791359B2 (en) * 2006-01-28 2014-07-29 Banpil Photonics, Inc. High efficiency photovoltaic cells
KR101164026B1 (ko) * 2007-07-12 2012-07-18 삼성전자주식회사 질화물계 반도체 발광소자 및 그 제조방법
JP2010087217A (ja) * 2008-09-30 2010-04-15 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子およびその製造方法
JP5758293B2 (ja) 2009-06-24 2015-08-05 日亜化学工業株式会社 窒化物半導体発光ダイオード
KR101683898B1 (ko) * 2010-06-21 2016-12-20 엘지이노텍 주식회사 발광 소자
CN102185056B (zh) * 2011-05-05 2012-10-03 中国科学院半导体研究所 提高电子注入效率的氮化镓基发光二极管
JP6005346B2 (ja) * 2011-08-12 2016-10-12 シャープ株式会社 窒化物半導体発光素子およびその製造方法
JP5228122B1 (ja) * 2012-03-08 2013-07-03 株式会社東芝 窒化物半導体素子及び窒化物半導体ウェーハ
JP5319810B2 (ja) * 2012-03-08 2013-10-16 株式会社東芝 窒化物半導体層の製造方法
JP5908979B2 (ja) * 2012-06-13 2016-04-26 シャープ株式会社 窒化物半導体発光素子及びその製造方法
JP5880383B2 (ja) * 2012-10-11 2016-03-09 豊田合成株式会社 半導体発光素子、発光装置
CN104541381B (zh) * 2012-10-22 2017-12-01 夏普株式会社 氮化物半导体发光元件
CN103824908B (zh) * 2014-03-12 2016-09-14 合肥彩虹蓝光科技有限公司 一种提高GaN基LED静电耐受能力的外延生长方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013065632A (ja) * 2011-09-15 2013-04-11 Toshiba Corp 半導体素子、ウェーハ、半導体素子の製造方法及びウェーハの製造方法
WO2013084926A1 (ja) * 2011-12-06 2013-06-13 国立大学法人山口大学 窒化物半導体発光素子およびその製造方法
JP2013187484A (ja) * 2012-03-09 2013-09-19 Sharp Corp 窒化物半導体発光素子およびその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109075223A (zh) * 2016-04-27 2018-12-21 原子能和替代能源委员会 包括位于发光区的至少一个势垒层内的至少一个较宽带隙中间层的发光二极管
CN109075223B (zh) * 2016-04-27 2021-07-27 原子能和替代能源委员会 包括位于发光区的至少一个势垒层内的至少一个带隙宽于势垒层带隙的中间层的发光二极管
JP2018125428A (ja) * 2017-02-01 2018-08-09 日機装株式会社 半導体発光素子および半導体発光素子の製造方法
US10944026B2 (en) 2017-02-01 2021-03-09 Nikkiso Co., Ltd. Semiconductor light emitting device and method of manufacturing semiconductor light emitting device
US11616167B2 (en) 2017-09-15 2023-03-28 Nikkiso Co., Ltd. Nitride semiconductor light-emitting element and method for manufacturing nitride semiconductor light-emitting element
JP6405430B1 (ja) * 2017-09-15 2018-10-17 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
WO2019054053A1 (ja) * 2017-09-15 2019-03-21 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
JP2019054247A (ja) * 2017-09-15 2019-04-04 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
JP2019054122A (ja) * 2017-09-15 2019-04-04 日機装株式会社 窒化物半導体発光素子及び窒化物半導体発光素子の製造方法
JP2021002595A (ja) * 2019-06-21 2021-01-07 ローム株式会社 半導体発光装置
JP7281976B2 (ja) 2019-06-21 2023-05-26 ローム株式会社 半導体発光装置
CN113451459B (zh) * 2020-11-02 2022-05-13 重庆康佳光电技术研究院有限公司 发光二极管、外延结构及其制作方法
CN113451459A (zh) * 2020-11-02 2021-09-28 重庆康佳光电技术研究院有限公司 发光二极管、外延结构及其制作方法
JP7432844B2 (ja) 2021-12-17 2024-02-19 日亜化学工業株式会社 窒化物半導体発光素子

Also Published As

Publication number Publication date
US20190006555A1 (en) 2019-01-03
TWI603500B (zh) 2017-10-21
US10084111B2 (en) 2018-09-25
JPWO2016047386A1 (ja) 2017-07-06
US20170294554A1 (en) 2017-10-12
CN107924966B (zh) 2020-12-22
TW201618329A (zh) 2016-05-16
US10790409B2 (en) 2020-09-29
CN107924966A (zh) 2018-04-17
JP6306200B2 (ja) 2018-04-04

Similar Documents

Publication Publication Date Title
JP6306200B2 (ja) 窒化物半導体発光素子
TWI479683B (zh) 氮化物半導體發光元件及其製造方法
TWI529962B (zh) 氮化物半導體發光元件及其製造方法
JP5533744B2 (ja) Iii族窒化物半導体発光素子
WO2014178248A1 (ja) 窒化物半導体発光素子
TWI493753B (zh) Nitride semiconductor light emitting device and manufacturing method thereof
JP6026116B2 (ja) 窒化物半導体発光素子およびその製造方法
TW201724560A (zh) 氮化物半導體發光元件
JP6482573B2 (ja) 窒化物半導体発光素子
US9318645B2 (en) Nitride semiconductor light-emitting element
TWI491069B (zh) 光電組件
CN106415860B (zh) 氮化物半导体发光元件
JP6486401B2 (ja) 半導体発光素子および半導体発光素子の製造方法
TWI567877B (zh) Manufacturing method of nitride semiconductor device
TWI545798B (zh) Nitride semiconductor light emitting device and manufacturing method thereof
JP6482388B2 (ja) 窒化物半導体発光素子
US9508895B2 (en) Group III nitride semiconductor light-emitting device and production method therefor
JP2016171338A (ja) 窒化物半導体発光素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15844778

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016550077

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15511750

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15844778

Country of ref document: EP

Kind code of ref document: A1