WO2016045195A1 - Procédé d'estimation de flux de passagers pour réseau ferroviaire urbain - Google Patents

Procédé d'estimation de flux de passagers pour réseau ferroviaire urbain Download PDF

Info

Publication number
WO2016045195A1
WO2016045195A1 PCT/CN2014/093084 CN2014093084W WO2016045195A1 WO 2016045195 A1 WO2016045195 A1 WO 2016045195A1 CN 2014093084 W CN2014093084 W CN 2014093084W WO 2016045195 A1 WO2016045195 A1 WO 2016045195A1
Authority
WO
WIPO (PCT)
Prior art keywords
path
time
station
passenger flow
transfer
Prior art date
Application number
PCT/CN2014/093084
Other languages
English (en)
Chinese (zh)
Inventor
贾利民
秦勇
于鸿飞
王子洋
赵忠信
曾璐
杜渺
梁平
孙方
Original Assignee
北京交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京交通大学 filed Critical 北京交通大学
Publication of WO2016045195A1 publication Critical patent/WO2016045195A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16ZINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS, NOT OTHERWISE PROVIDED FOR
    • G16Z99/00Subject matter not provided for in other main groups of this subclass

Definitions

  • the invention relates to a method for estimating passenger flow of a city rail network.
  • the invention realizes the derivation of the rail transit passenger flow for the whole road network.
  • the present invention specifically adopts the following technical solutions: the following steps are included:
  • Step 1 Obtain historical historical passenger flow OD data, and transfer and store the acquired data in a database
  • Step 2 Define the path impedance and the effective path in the road network in the path ratio allocation module, establish a path search algorithm to obtain an effective path between the ODs, and use the utility theory to calculate the multipath selection between the OD pairs by using the impedance theory.
  • the probability of inputting the historical synchronous passenger flow OD data obtained in step 1 to the path ratio distribution module loads the passenger flow in the daily situation and outputs the derivation result of the daily passenger flow.
  • the path impedance calculation method in the path ratio allocation module in step 2 is as follows:
  • running time refers to the time passengers spend on urban rail transit trains. It consists of two parts: interval running time and stop time:
  • T i,j is the running time of station i to station j on path k
  • T s is the stop time of the train passing through the intermediate station
  • the transfer time refers to the time spent by the passenger outside the train of the transfer station. It consists of two parts: transfer time and transfer time.
  • Car time
  • H n is the departure interval of the transfer line n
  • the entry and exit time is:
  • is the train full load rate
  • P is the section passenger flow per unit time
  • D is the section transport capacity per unit time
  • n is the number of trains per unit time
  • Y is the vehicle capacity
  • B is the number of trains
  • Y *B is the entire train capacity
  • the congestion degree impedance is:
  • the congestion coefficient on a section of the rail transit network 0, A, B correspond to three levels of congestion coefficient, A is the extra time overhead coefficient in general congestion; B is overcrowded Extra time overhead factor; ⁇ 0 is the full load rate when the number of passengers in the car is equal to the number of seats; when the number of passengers in the car is equal to the capacity, the full load rate is 1;
  • the additional congestion factor is expressed in exponential form:
  • the time of the I station is:
  • T i ⁇ is the occupancy time of the i station
  • ⁇ i is the additional congestion factor of the i station
  • the total time of all stations is:
  • the passenger integrated impedance function is expressed as:
  • the effective path screening method in the path ratio allocation module in step 2 is as follows:
  • nj For all subsequent nodes in p starting from ni, it may be denoted as nj, and the following operations are performed: adding the extended node n'j of nj to the node set N; except for the previous node nj-1 of nj in the path p, Connect an arc from the nj precursor node to its extension node n'j, the weights on the arc remain unchanged, and add these arcs to the arc set A; in addition, if the previous node nj-1 of n in p With the extended node n'j-1, it is also necessary to connect an arc from n'j-1 to n'j, and the weights and arcs (nj-1, nj) have equal weights; the calculation starts from node s to n The shortest path of 'j; update the current shortest path tree, and find that the shortest path between the current extended node t(k)' from the starting node s to the ending node is the
  • the unreasonable path in the K-small path obtained by the path search algorithm does not participate in the distribution of the passenger flow, and generates an effective path set according to the limitation of the operation time of different rail transit lines;
  • the running time of the path is represented by the effective running time of the starting station of the path.
  • the effective operation time of the starting station is the intersection of the first and last shift time of the starting station and the first and last shift time of each transfer station in the path, and the starting time of the starting station is reversed;
  • the unreasonable path in the K-straighed path obtained by the path search algorithm does not participate in the distribution of the passenger flow; the validity test of the path is judged by the travel impedance threshold; assuming that the K-selectable progressive path sets between the two stations are The impedance value of the shortest path If the impedance value of the secondary short path or other shorter short path exceeds a certain range of the travel impedance value of the shortest path, the short path or the second short path is considered unreasonable; it can be reasonably assumed that when When it is small, versus In proportion to When it is large enough, the upper bound of the allowable area of the travel impedance value is fixed; it can be expressed as:
  • the multipath allocation method in the path ratio allocation module in step 2 is as follows:
  • T i f is very close to T 1 f (ie the shortest path impedance value) ), I should be very close to the P i T 1 f, when the impedance in the vicinity of T 1 f, the rate of decrease of the P i is small;
  • the normal distribution is used to describe the passenger's travel path selection behavior.
  • the formula of the normal distribution function is as follows:
  • gives the x value of the maximum expected probability, here is 0; ⁇ is a constant whose value will determine the steepness of the normal curve;
  • the passenger flow distribution ratio of the path is calculated by the following formula:
  • the method for deriving the road network passenger flow in the path ratio allocation module in step 2 is as follows:
  • t i refers to the time point when the passenger departs from the O station to reach the i station
  • t O refers to the time when the passenger swipes the card from the O station
  • T ab is the running time of the train in the interval ab, and M is the interval set;
  • T s is the stop time of the train at station S, and N is the station set;
  • the present invention constructs a rapid quantitative estimation method for the number of stations and passengers in the entire network, and fills the gap in the industry.
  • Figure 1 is a flow chart of the method for estimating the passenger flow of the whole road network.
  • Figure 2 is a flow chart of the passenger flow impact analysis method based on the historical passenger flow law.
  • Figure 1 is a flow chart of the method for estimating the passenger flow of the whole road network.
  • Figure 2 is a flow chart of the passenger flow impact analysis method based on the historical passenger flow law. As shown in FIG. 2, the passenger flow state derived from FIG. 1 is combined with the information of the emergency event to filter out the affected passenger flow. After the affected passenger flow is processed according to the redistribution rule, the passenger flow index is counted to obtain the final calculation result.
  • the method includes the following steps:
  • Step 1 Obtain historical historical passenger flow OD data, and transfer and store the acquired data in a database.
  • Step 2 Define the path impedance and the effective path in the road network in the path ratio allocation module, establish a path search algorithm to obtain an effective path between the ODs, and use the utility theory to calculate the multipath selection between the OD pairs by using the impedance theory.
  • the probability of inputting the historical synchronous passenger flow OD data obtained in step 1 to the path ratio distribution module loads the passenger flow in the daily situation and outputs the derivation result of the daily passenger flow.
  • the path impedance calculation method of multi-factor influence in the path ratio allocation module is as follows:
  • the present invention Based on the existing passenger integrated travel impedance calculation method, combined with the psychological process and judgment basis of the actual passenger travel choice, the present invention innovatively conducts passenger classification discussion, and respectively gives the corresponding comprehensive travel impedance calculation method, the corresponding parameters. The acquisition was explained.
  • Running time refers to the time passengers spend on urban rail transit trains. It consists of two parts: interval running time and stop time.
  • T i,j is the running time of station i to station j on path k
  • T s is the stopping time of the train passing through the intermediate station.
  • the transfer time refers to the time spent by the passenger outside the transfer station train. It consists of two parts: transfer travel time and transfer waiting time.
  • T k tr is the total transfer time of the OD kth path from station a to b; The transfer time from the m line to the n line on the path k; The travel time for the transfer from the m line to the n line; The waiting time for the transfer from the m line to the n line; ⁇ 1 is the penalty factor of the transfer time.
  • H n is the departure interval of the transfer line n.
  • a large amount of statistical data shows that passengers arrive at a train interval independent of the train schedule, showing a random normal distribution. For the average waiting time of the overall passenger flow, the value will approach half of the driving interval. .
  • the entry and exit time is:
  • the degree of congestion is an important indicator of travel comfort, reflecting the sensitivity of passengers to congestion and the amplification of passengers' perception of travel time.
  • the congestion degree of the compartment is divided into three levels according to the full load rate.
  • Class 1 is the number of passengers in the train is less than the number of seats. There is no feeling of discomfort at this time; the second level is the number of people in the train between the number of seats and the passengers in the car. At this time, there will be a certain degree of congestion; the third level is the number of people in the train. More than the passenger compartment, the car is extremely crowded and the passengers feel very uncomfortable.
  • is the train full load rate
  • P is the passenger flow, usually refers to the section passenger flow per unit time
  • D is the transport capacity, generally refers to the section transport capacity per unit time
  • n is the number of trains per unit time
  • Y is Vehicle capacity
  • B is the number of trains, Y*B is the entire train.
  • the congestion coefficient on a section of the rail transit network
  • 0, A, B correspond to three levels of congestion coefficient
  • A is the extra time overhead coefficient in general congestion
  • B is overcrowded Additional time overhead factor.
  • ⁇ 0 is the full load rate when the number of passengers in the car is equal to the number of seats; when the number of passengers in the car is equal to the number of seats, the full load rate is 1.
  • the retention time is also related to the departure interval. It is a function of the additional congestion factor and the departure interval. The form is as follows:
  • the total time of all stations is:
  • the passenger integrated impedance function can be obtained, expressed as:
  • nh the first node in the current path p starting from the first node with an indegree greater than 1, denoted as nh. If the extended node n'h of nh is not in the node set N, then go to 4. Otherwise, find all the nodes behind nh in the path p, and the corresponding extended node is not the first node in N, denoted as ni, turn 5 .
  • nj For all subsequent nodes starting from ni in p, it may be denoted as nj, and the following operations are sequentially performed: adding the extended node n'j of nj to the node set N. Except for the previous node nj-1 of nj in path p, respectively, an arc from the nj precursor node to its extension node n'j is connected, the weights on the arc remain unchanged, and these arcs are added to arc set A. . In addition, if the previous node nj-1 of nj in p has an extended node n'j-1, it is also necessary to connect an arc from n'j-1 to n'j, the weight and the arc (nj-1, nj).
  • the weights are equal. Calculate the shortest path from the start node s to n'j.
  • the operation time of the route can be expressed by the effective operation time of the starting station of the route.
  • the effective operation time of the starting station is the first and last shift time of the starting station and the first and last shift times of the transfer stations in the path are reversed.
  • the impedance value of the shortest path If the impedance value of the secondary short path or other shorter short path exceeds the certain range of the shortest path, the value exceeds a certain range (ie, is greater than When it is considered that the short path or the second short path is unreasonable. Can reasonably assume that when When it is small, versus In proportion to When it is large enough, the upper boundary of the allowable area of the travel resistance value is fixed. It can be expressed as:
  • the multipath allocation method in the path ratio allocation module is as follows:
  • Multipath probability calculation is performed using a time impedance based multipath allocation method.
  • the passenger flow distribution ratio of the path is determined based on the deterministic impedance of each path, that is, the time impedance, according to a certain statistical law and probability distribution model.
  • the effective path assumes 100% of the passenger flow; when the elements of the effective path set are not unique, the problem of how the passenger flow is allocated in each path is generated.
  • T i f is very close to T 1 f (ie the shortest path impedance value) )
  • I should be very close to the P i T 1 f, when the impedance in the vicinity of T 1 f, the rate of decrease P i is small. In other words, passengers are less sensitive to changes in ride time around T 1 f .
  • the proportion of passenger flow assignments of each path can be determined by calculating a utility value (S) in which each path participates in passenger flow sharing.
  • S utility value
  • the path passenger flow allocation utility is related to the extent x of the integrated travel impedance that exceeds the shortest path integrated travel impedance. The integrated travel impedance of the path exceeds the shortest path. The more the integrated travel impedance, the smaller the utility value of the path passenger flow distribution, and the smaller the proportion of the shared OD passenger flow.
  • the path passenger distribution utility value (S) distribution pattern is similar to the normal distribution pattern. Considering that the normal distribution can well meet the above five requirements, and has been widely used in the statistical study of group behavior characteristics, a normal distribution is used to describe the passenger's travel path selection behavior.
  • the formula of the normal distribution function is as follows:
  • gives the x value of the maximum expected probability, here is 0; ⁇ is a constant whose value will determine the steepness of the normal curve. Since it is impossible, the weight value T i f is less than the minimum impedance value The path, therefore, only needs to take the positive half of the normal distribution curve x ⁇ ⁇ . It can be considered that the parameter ⁇ is a constant for all ODs. Its mathematical significance is very clear, and the fit can be analyzed by the results of the passenger travel survey. In general, the smaller the ⁇ , the stronger the sensitivity of the passenger to the impedance.
  • the passenger flow distribution ratio of the path is calculated by the following formula.
  • the road network passenger flow derivation method in the path ratio allocation module is as follows:
  • the travel process of passengers in the road network is a dynamic process that changes with time. It is only possible to completely grasp the full state of the passengers in the road network by relying on the static route selection method. Therefore, a road network passenger flow derivation model based on travel time is designed here.
  • the passenger's travel status in the road network includes the travel time from the gate to the platform, waiting time, multiplication Car travel time, transfer time, transfer time, transfer time, bus time and travel time from the station to the gate.
  • t i refers to the time point when the passenger departs from the O station to reach the i station
  • t O refers to the time when the passenger swipes the card from the O station
  • T ab is the running time of the train in the interval ab, and M is the interval set;
  • T s is the stop time of the train at station S, and N is the station set;
  • the passengers can be inferred in the road network.
  • Step 3 Input the deduction result of step 2 into the affected passenger flow screening and redistribution module, and introduce the path information in the road network in the case where the line section of the road network is interrupted, and perform screening and redistribution calculation on the affected passenger flow. .
  • the classification and screening method of the sudden passenger flow is:
  • the invention divides the passenger flow in the road network into an unreachable passenger flow when the emergency occurs, the passenger flow that needs to be bypassed, the passenger flow whose service level is reduced, and the passenger flow that is not affected by the interruption interval.
  • Interval interruption will make some passengers lose accessibility.
  • the passenger flow that cannot reach the destination only includes the passenger flow with the starting point or the defect inside the interruption interval; when the road network is interrupted into multiple sections
  • the passenger flow that cannot reach the destination includes the passenger flow of the different sub-networks in addition to the aforementioned passenger flow.
  • this part of the passenger flow can only choose the ground bus travel, so this part of the passenger flow belongs to the passenger flow with sudden loss of time and needs to be removed from the total passenger flow;
  • the trip is within the interruption interval, it needs to be discussed separately: if the accident is already on the initial path, the passengers will choose to continue to take the subway to the nearest station to the destination; if the accident occurs, the passenger will still If you have not set off, there are two options for this part of the passengers. One will directly abandon the rail transit mode, and the other will continue to take the subway to the nearest station to the destination. This situation should have been distributed in the stations within the interruption zone. Passengers at the station will choose to leave the station at the nearest station from the interruption zone, causing greater pressure on the station and requiring operational work.
  • the passenger flow that needs to be detoured it needs to be divided into the passenger flow that has not entered the road network at the time of the accident; the passenger flow has been located in the road network after the accident, but has not yet reached the passenger flow in the interruption zone; and has been located in the road network after the accident has passed The passenger flow in the interruption interval.
  • passengers will directly choose alternative routes to travel; in the second case, in the case of complex road networks, most passengers cannot remember the road network structure.
  • the passenger flow that needs to be interrupted by the path needs to find an alternative path to bypass and arrive.
  • the purpose of the station this will result in a substantial increase in the passenger flow of the alternative route, thus affecting the waiting time and ride comfort of passengers traveling normally.
  • passengers can only know the passenger flow of the platform and the comfort of the ride after buying the ticket. Studies have shown that few passengers change their initial travel routes because of changes in congestion, and passengers will pay more time and physical cost when they change their travel routes. Therefore, the tendency of this part of the passenger flow in the path selection will not be affected.
  • the intensity and duration of an emergency determine the extent of the impact of the accident on the road network. After the accident, the scope of the impact is gradually decreasing over time. The passenger flow outside the initial impact range and the station is not affected by the emergency, and the passenger flow characteristics of this part of the passenger flow do not change compared with the daily situation.
  • the passenger flow redistribution calculation method in the case of the emergency event is:
  • the affected passenger flow can be divided into two categories: OD passenger flow that cannot reach the destination, and OD passenger flow whose travel path changes. They have different treatment methods. .
  • Point O is in the passenger flow within the interruption interval, directly deletes the relevant data from the table, does not participate in the passenger flow allocation; passengers who have not boarded the vehicle after the accident and passengers who have already been on the initially selected route at the time of the accident, according to the originally selected path Go to the last stop of the reach and change this station to D station for passenger flow distribution.
  • Passengers who have not yet boarded the vehicle after the accident are assigned according to the new route selection ratio; passengers who have already been on the originally selected route at the time of the accident: if the passenger is at the station, change the station to O, follow the new route The ratio is assigned; if the passenger is in the interval, the next transfer station is changed to O to match the flow according to the new route selection ratio.
  • the interruption interval is set to the unavailable state in the basic road network: all the paths passing through the interruption interval are deleted in the full OD passenger flow distribution path of the normal network, and the interval operation interruption is regenerated according to the above principle.
  • the steps are as follows:
  • Step 4 Calculate the impact range of the emergency event by using the accident information and the road network structure, input the updated path allocation ratio, reload the affected passenger flow, and finally calculate the relevant passenger flow index.
  • the output result is:
  • the calculation method of the network passenger flow index in the case of the emergency event is:
  • the index system of passenger flow in rail transit network is established according to different time periods:
  • Passenger flow at the station 5 minutes of passenger flow, outbound passenger flow, passenger flow (transfer station), and the number of stranded persons;
  • Section passenger flow 5 min section passenger flow.
  • the affected section Sec located outside the interruption interval can also be directly obtained from the OD distribution intermediate table, where a is the length of the statistical period.
  • Retention(t) i refers to the number of stations in station i during t-hours
  • Section(t) ij refers to the section passenger flow of the interval ij of the t period
  • In(t) i is the number of inbound stations at station i during t-hours
  • Out(t) i is the number of outbound stations i at t time
  • TranIn(t) i is the number of people who have entered the station i during the t period;
  • TranOut(t) i is the number of people who exchanged station i during t time.
  • the following is an example of the Beijing-Guangzhou railway network, and an example is given to further illustrate the analysis method of passenger flow impact under the interruption of part of the road network.
  • the OD distribution algorithm of the middle view is used to calculate the specific OD to verify the method.
  • the data and parameters used are divided into three categories.
  • Road network basic data including: station table, line table, interval table.
  • Road network passenger flow data Select the passenger flow data of the Beijing subway on July 22, 2013 as the research object, the required data includes: OD schedule, entry and exit passenger flow statistics table, transfer amount statistics table, train operation schedule, change Take the travel schedule and the cross-section passenger flow table.
  • Computational parameters draw on the parameters of the “Beijing Municipal Rail Transit Automatic Ticketing System Clearing Management Center (ACC) Clearing Method Research” and the document “Beijing Rail Transit Networked Traffic Organization Research Work Report”, where ⁇ is The value is 0.25, the value of U is 10, the value of ⁇ is 60%, and the values of ⁇ 1 and ⁇ 2 are both 1.5.
  • ACC Automatic Ticketing System Clearing Management Center
  • the model is modified based on time impedance to obtain the multipath assignment probability.
  • the network basic data involved including interval running time, stop time, line departure interval, transfer travel time, etc.) are taken from the actual operation of Beijing rail transit.
  • the data and other related parameters are set and analyzed by passenger flow survey.
  • the road network transfer coefficient is the ratio of the transfer volume of the entire road network to the passenger traffic volume of the line. It is calculated that the transfer amount in the entire road network accounts for 45% of the total passenger traffic.
  • the historical OD data is distributed under the normal operating road network.
  • the maximum cross-section passenger flow of each line is calculated every 5 minutes, and the corresponding interval and time period are obtained. It can be seen that the maximum cross-section passenger flow of most lines appears during the morning peak period.
  • Impact analysis in the event of an interruption impact range calculation.
  • the interruption duration is 15 minutes and 30 minutes, and the affected station range pairs are shown in Table 3.
  • the interruption time of the interrupt interval is increased at any time, and the influence range of the emergency event is increased.
  • the affected lines include Line 1, Line 2, Line 4, Line 9 and Line 10.
  • the duration reaches 30 minutes, the line 6 is connected to the rest of the line.
  • the station was also affected. At this time, the corresponding affected stations should be prepared to cope with the large passenger flow in time, and timely release PIS information to passengers to effectively guide the passenger flow.
  • the interruption interval is the No. 1 line Gongzhufen-Xidan two-way interruption, the corresponding Apple Orchard-Princess Tomb, Xidan-Sihuidong is operated by small traffic.
  • Table 49 Statistics of affected stations and their inbound and outbound stations at 05-9:30
  • Detention in the interruption interval The number of stranded persons here is the worst estimate. It is based on the actual number of stranded persons in the station plus the demand for inbound passengers in each period. A maximum estimate of the demand for passenger flow that needs to be diverted by other vehicles during the time period. It can be seen from the above statistical results that the propagation of the affected stations in the road network is gradually spread around the interruption interval. The interval farther from the interruption interval is less affected than the relatively close interval, and the time of influence is delayed.
  • the interruption interval is located in Gongzhufen-Xidan on Line 1, so the passenger flow on Line 1 is the most affected; the station within the interruption interval, where the Military Museum is the transfer station of Line 1 and Line 9, rejuvenation
  • the gate is the transfer station of Line 1 and Line 2
  • the Xidan is the transfer station of Line 1 and Line 4, so the stations near the station in the interruption zone of Lines 2, 4 and 9 are also affected, and Gradually extend to the line; the remaining line sections are less affected.
  • the operation management department needs to timely determine the new traffic scheduling plan, as well as the guidance and current limiting measures according to the interruption interval, the interruption time, and the affected range.
  • the above interrupt time lasts for 15 minutes. It is also possible to change the interrupt start time, interrupt duration, interrupt interval, etc. in the system. If the interrupt start time is 11:35 and the interrupt time lasts for 40 minutes, it can be seen that the interrupt duration is longer. Long, the scope of influence is greater.
  • the analysis results of passenger flow impact under the partial interruption of the road network can reveal the capacity bottleneck of the road network under the condition of interruption, and provide the decision-making basis for the operational management department to adopt targeted driving organization and passenger transportation organization.

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

La présente invention concerne un procédé d'estimation de flux de passagers pour réseau ferroviaire urbain. Le procédé comprend les étapes consistant à : configurer un procédé de calcul d'une résistance influencée par de multiples facteurs et un procédé de calcul d'un trajet efficace de façon à obtenir un rapport de distribution de multiples trajets parmi des OD de réseau ferroviaire et charger un flux de passagers en fonction du rapport ; obtenir un état général d'un flux de passagers en estimant un flux de passagers dans le réseau ferroviaire en combinaison avec une régularité de la distribution de flux de passagers d'une période correspondante dans le passé. La présente invention assure la sécurité du transit ferroviaire urbain par l'intermédiaire de l'estimation précise du flux de passagers du réseau ferroviaire, ce qui améliore sensiblement le niveau de service et la qualité du transport public urbain dans tout le pays.
PCT/CN2014/093084 2014-09-22 2014-12-05 Procédé d'estimation de flux de passagers pour réseau ferroviaire urbain WO2016045195A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410485028.9 2014-09-22
CN201410485028.9A CN104217129B (zh) 2014-09-22 2014-09-22 一种城轨路网客流估算方法

Publications (1)

Publication Number Publication Date
WO2016045195A1 true WO2016045195A1 (fr) 2016-03-31

Family

ID=52098611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093084 WO2016045195A1 (fr) 2014-09-22 2014-12-05 Procédé d'estimation de flux de passagers pour réseau ferroviaire urbain

Country Status (2)

Country Link
CN (1) CN104217129B (fr)
WO (1) WO2016045195A1 (fr)

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107358309A (zh) * 2017-05-18 2017-11-17 北京交通大学 基于微信公众号的轨道交通乘客出行信息服务系统
CN108423036A (zh) * 2018-03-21 2018-08-21 山东理工大学 一种基于压力传感器阵列的地铁站台客流诱导系统
CN108537408A (zh) * 2018-03-14 2018-09-14 北京交通大学 一种融合进站和换乘控制的路网协同限流建模及评估方法
CN109523063A (zh) * 2018-10-24 2019-03-26 南宁学院 一种轨道交通动态客流导向系统
CN109583633A (zh) * 2018-11-16 2019-04-05 浩鲸云计算科技股份有限公司 一种公交与公交换乘出行的线路班次调整的方法
CN110020666A (zh) * 2019-02-21 2019-07-16 华南理工大学 一种基于乘客行为模式的公共交通广告投放方法及系统
CN110163501A (zh) * 2019-05-21 2019-08-23 成都轨道交通集团有限公司 一种自动编制城市轨道交通司机交路表的系统及方法
CN110220526A (zh) * 2019-05-15 2019-09-10 浙江工业大学之江学院 基于路径时间价值的anpr车辆导行方案生成方法
CN110263993A (zh) * 2019-06-14 2019-09-20 上海工程技术大学 一种用于城市轨交乘客走行时间的实时预测方法
CN110400045A (zh) * 2019-06-17 2019-11-01 宁波大学 基于微区的轨道站点辐射区步行可达性评价方法
CN110443455A (zh) * 2019-07-04 2019-11-12 安徽富煌科技股份有限公司 一种基于客流数据的峰段划分算法
CN110472999A (zh) * 2019-07-17 2019-11-19 深圳市综合交通运行指挥中心 基于地铁和共享单车数据的客流模式分析方法及装置
CN110857856A (zh) * 2018-08-22 2020-03-03 阿里巴巴集团控股有限公司 路线规划方法及系统
CN110941748A (zh) * 2019-11-26 2020-03-31 北京恒泰实达科技股份有限公司 一种基于地铁线网客流拥挤度的可视化分析方法及系统
CN111079986A (zh) * 2019-11-26 2020-04-28 广州地铁设计研究院股份有限公司 一种换乘车站运输能力的匹配方法及系统
CN111080016A (zh) * 2019-12-19 2020-04-28 广州新科佳都科技有限公司 一种基于节点控制的地铁车站客流管控方法及装置
CN111209650A (zh) * 2019-12-23 2020-05-29 北京航空航天大学合肥创新研究院 考虑路网服务水平的旅行时间节省价值评估方法及装置
CN111275482A (zh) * 2020-01-14 2020-06-12 浙江浙大中控信息技术有限公司 基于机器学习的轨道交通实时动态清分方法
CN111339159A (zh) * 2020-02-24 2020-06-26 交通运输部科学研究院 一种一票制公交数据的分析挖掘方法
CN111626469A (zh) * 2020-04-10 2020-09-04 广州地铁集团有限公司 一种面向运能提升的快慢车开行优化方法
CN111724076A (zh) * 2020-06-24 2020-09-29 西南交通大学 运营中断条件下区域多式轨道交通客流动态分配方法
CN111860182A (zh) * 2020-06-23 2020-10-30 北京航空航天大学 一种基于遥感影像的地铁客流来源智能分析方法
CN111882156A (zh) * 2020-06-24 2020-11-03 北京交通大学 面向随机动态客流和节能运行的列车时刻表鲁棒优化方法
CN111949944A (zh) * 2020-07-27 2020-11-17 武汉禾青优化科技有限公司 一种公交单程运营时间抽样方法及系统
CN111986368A (zh) * 2020-08-27 2020-11-24 景亮 城市轨道交通自动售检票系统及其控制方法
CN112182838A (zh) * 2020-08-28 2021-01-05 浙江众合科技股份有限公司 一种基于afc数据的短时客流预测动态模型
CN112215408A (zh) * 2020-09-24 2021-01-12 交控科技股份有限公司 轨道交通客流量预测方法及装置
CN112231796A (zh) * 2020-09-15 2021-01-15 北京交通大学 考虑旅客时空出行分布的周期列车停站方案优化建模方法
CN112286959A (zh) * 2019-10-21 2021-01-29 长安大学 一种单类客车发车间隔优化建模方法及装置
CN112347654A (zh) * 2020-11-11 2021-02-09 郑州捷安高科股份有限公司 一种基于地铁客流系统的仿真方法及装置
CN112365092A (zh) * 2020-12-01 2021-02-12 北京交通大学 城市轨道交通路网大客流风险自适应预警系统
CN112418733A (zh) * 2020-12-14 2021-02-26 西安市轨道交通集团有限公司 一种地铁乘务交路方案智能核验系统
CN112434844A (zh) * 2020-11-10 2021-03-02 郑州天迈科技股份有限公司 基于凸包计算和遗传算法排序线网的新开及延长方法
CN112465211A (zh) * 2020-11-24 2021-03-09 北京交通大学 一种轨道交通列车满载率控制方法及应用
CN112508247A (zh) * 2020-11-26 2021-03-16 交控科技股份有限公司 一种交通异常信息的处理方法、装置及电子设备
CN112598177A (zh) * 2020-12-22 2021-04-02 北京市地铁运营有限公司 一种城市轨道交通突发事件在线客流预测与仿真系统
CN112633716A (zh) * 2020-12-28 2021-04-09 成都交投铁路投资集团有限公司 一种基于可达性的市域轨道交通换乘节点选址方法
CN112734206A (zh) * 2020-12-31 2021-04-30 广州广电运通智能科技有限公司 基于用户画像的轨道交通清分方法、装置、设备及介质
CN112733891A (zh) * 2020-12-29 2021-04-30 华侨大学 对出行链断链时公交ic卡乘客进行下车站点识别的方法
CN112766950A (zh) * 2020-12-31 2021-05-07 广州广电运通智能科技有限公司 一种动态路径费用确定方法、装置、设备及介质
CN112784204A (zh) * 2020-12-28 2021-05-11 北京交通大学 面向不确定需求的列车时刻表与客流控制鲁棒优化方法
CN112819382A (zh) * 2021-03-01 2021-05-18 东南大学 基于设施利用率的地铁车厢内乘客密度的确定方法
CN112907088A (zh) * 2021-03-03 2021-06-04 杭州诚智天扬科技有限公司 一种清分模型的参数调整方法及系统
CN112918523A (zh) * 2021-02-25 2021-06-08 北京电子科技职业学院 拥挤地铁线路基于列车时刻表优化的客流协同精确控制方法
CN112949078A (zh) * 2021-03-17 2021-06-11 北京交通大学 一种城市轨道交通客流-车流的匹配度计算方法
CN112990566A (zh) * 2021-03-09 2021-06-18 东南大学 一种缓解轨道交通施工影响的常规公交主动改线方法
CN113010507A (zh) * 2021-03-23 2021-06-22 浩鲸云计算科技股份有限公司 基于时间校准和遗传算法的公交od计算方法及系统
CN113077079A (zh) * 2021-03-24 2021-07-06 东南大学 一种基于数据驱动的轨道交通新线接入客流预测方法
CN113112055A (zh) * 2021-03-22 2021-07-13 北京交通大学 地铁客货共享车厢动态分配与运行计划一体化优化方法
CN113158456A (zh) * 2021-04-15 2021-07-23 大连交通大学 一种城市轨道交通网络级联失效建模方法
CN113177586A (zh) * 2021-04-25 2021-07-27 中铁第四勘察设计院集团有限公司 一种高速铁路车站最高聚集人数估计方法
CN113298390A (zh) * 2021-05-28 2021-08-24 长安大学 一种突发异构客流的多式协同疏散方案集构建方法及装置
CN113408926A (zh) * 2021-06-30 2021-09-17 北方工业大学 短时中断情况下城市轨道交通客流分配方法
CN113469422A (zh) * 2021-06-15 2021-10-01 深圳市综合交通设计研究院有限公司 一种基于多智能体仿真的城市交通出行推演仿真方法
CN113496353A (zh) * 2021-06-23 2021-10-12 北京城建设计发展集团股份有限公司 城市轨道交通系统运力负荷评估方法
CN113536493A (zh) * 2021-06-23 2021-10-22 南京理工大学 基于聚类反推的有效路径生成方法及断面客流估算方法
CN113537596A (zh) * 2021-07-16 2021-10-22 南京理工大学 一种城市轨道交通新线站点短时客流预测方法
CN113570148A (zh) * 2021-08-02 2021-10-29 上海市城市建设设计研究总院(集团)有限公司 基于乘客仿真的城轨车站停站时间优化设置方法
CN113723667A (zh) * 2021-07-27 2021-11-30 深圳技术大学 轨道交通线网运营方案的优化方法、设备及可读存储介质
CN113743685A (zh) * 2021-11-08 2021-12-03 青岛海信网络科技股份有限公司 确定公交车时刻表的方法及电子设备
CN113779398A (zh) * 2021-09-14 2021-12-10 成都市规划设计研究院 一种共享单车接驳轨道交通骑行行为识别方法及系统
CN113793015A (zh) * 2021-09-09 2021-12-14 重庆城市综合交通枢纽(集团)有限公司 基于客流预测的枢纽站停车泊位规模设计方法及系统
CN113793241A (zh) * 2021-08-20 2021-12-14 北京交通大学 一种基于深度学习的铁路突发事件应急情景推演方法
CN113935595A (zh) * 2021-09-28 2022-01-14 北京交通大学 一种城市轨道交通路网高峰大客流疏导系统
CN113987944A (zh) * 2021-10-29 2022-01-28 成都智元汇信息技术股份有限公司 基于Prophet模型的地铁进站客流预测方法及装置
CN114037881A (zh) * 2020-07-20 2022-02-11 南京行者易智能交通科技有限公司 一种基于图像识别的跨线路公交客流od数据采集的方法及装置、移动端设备、服务器
CN114154792A (zh) * 2021-11-03 2022-03-08 中国铁路设计集团有限公司 基于动车组交路的节假日多日列车开行方案优化建模方法
CN114219130A (zh) * 2021-11-22 2022-03-22 广州地铁设计研究院股份有限公司 一种城市轨道交通换乘站换乘能力计算方法
CN114266310A (zh) * 2021-12-22 2022-04-01 北京市市政工程设计研究总院有限公司 基于时空双维度的客运交通枢纽换乘区域旅客滞留时间特征分析方法及装置
CN114358808A (zh) * 2021-11-15 2022-04-15 南京理工大学 基于多源数据融合的公交od估计及分配方法
CN114501518A (zh) * 2022-04-01 2022-05-13 香港中文大学(深圳) 流量预测方法、装置、设备、介质和程序产品
CN114548836A (zh) * 2022-04-25 2022-05-27 杭州玳数科技有限公司 一种基于疫情的多因素交通枢纽运营方法和系统
CN114581846A (zh) * 2022-03-03 2022-06-03 北京城建设计发展集团股份有限公司 地铁车站全息客流实时监测方法及装置及计算机设备
CN114626682A (zh) * 2022-02-17 2022-06-14 华录智达科技股份有限公司 一种考虑聚集区域的城市公交线网规划方法
CN114723163A (zh) * 2022-04-26 2022-07-08 深圳市城市交通规划设计研究中心股份有限公司 分时段客流时空分配方法、系统、电子设备及存储介质
CN114817666A (zh) * 2022-04-20 2022-07-29 东南大学 一种基于路网边绑定交通小区间od流可视化方法
CN114881423A (zh) * 2022-04-15 2022-08-09 东南大学 一种针对枢纽换乘场景的联程中转城市确定方法
CN114898542A (zh) * 2022-05-16 2022-08-12 江苏阳光智慧城市科技有限公司 一种基于互联网的城市智能监测汇聚系统
CN114896507A (zh) * 2022-05-27 2022-08-12 桂林电子科技大学 一种基于时空结构的地铁路径推荐方法
CN114912683A (zh) * 2022-05-13 2022-08-16 中铁第六勘察设计院集团有限公司 一种智慧城市轨道交通异常大客流预测系统及方法
CN114923497A (zh) * 2022-04-21 2022-08-19 西南交通大学 一种铁路出行的路径规划方法、装置、设备及存储介质
CN114943484A (zh) * 2022-07-20 2022-08-26 深圳市城市交通规划设计研究中心股份有限公司 一种轨道客流运能匹配方法及其电子设备及其存储介质
CN114971229A (zh) * 2022-05-10 2022-08-30 东南大学 基于刷卡与定位数据的轨道交通线路客流车次匹配方法
CN115130263A (zh) * 2022-07-13 2022-09-30 广州市交通规划研究院有限公司 一种面向国土空间规划的多交通设施等时圈计算方法
CN115455681A (zh) * 2022-09-02 2022-12-09 江苏城乡建设职业学院 一种面向多载运工具的通勤交通碳排放空间分布估算方法
CN115688971A (zh) * 2022-09-23 2023-02-03 北京交通大学 一种列车延误下的线网客流控制与列车调整协同优化方法
CN116307441A (zh) * 2022-11-28 2023-06-23 北京交通大学 考虑突发场景的城市轨道交通枢纽换乘设施优化配置方法
CN116822762A (zh) * 2023-03-29 2023-09-29 北京交通大学 地铁网络系统稳定性监测控制方法、系统和设备
CN116910588A (zh) * 2023-06-16 2023-10-20 上海工程技术大学 一种用于城市轨交列车乘降时间的估计方法
CN116933958A (zh) * 2023-07-18 2023-10-24 西南交通大学 一种基于刷卡数据的地铁换乘站换乘客流估计方法
CN117035204A (zh) * 2023-10-10 2023-11-10 中铁第四勘察设计院集团有限公司 一种高铁运行图区间运行缓冲时间获取方法及装置
CN117290618A (zh) * 2023-11-27 2023-12-26 江西鹭鹭行科技有限公司 城市、城际轨道交通的时空伴随人群搜寻方法及系统
CN117634189A (zh) * 2023-11-29 2024-03-01 北京城建设计发展集团股份有限公司 轨道交通线网客流并行仿真方法
CN117669851A (zh) * 2023-12-07 2024-03-08 重庆市凤筑科技有限公司 面向公交线网优化的在线决策支持系统
CN117808184A (zh) * 2024-02-29 2024-04-02 成都汇辙科技有限公司 一种全生产要素驱动的城市轨道交通服务管理系统

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105095994B (zh) * 2015-07-29 2018-12-07 西南交通大学 一种基于线性规划的城轨线路客流峰值预测方法
CN105513337B (zh) * 2015-11-12 2017-12-12 中国科学院深圳先进技术研究院 一种客流量的预测方法及装置
CN106379379B (zh) * 2016-10-09 2018-06-29 北京交通大学 一种城市轨道交通乘客上下车时间的预测方法
CN106503315B (zh) * 2016-10-10 2019-07-23 北京市交通信息中心 轨道交通突发事件下进站乘客出行特征比例的确定方法
CN106951549A (zh) * 2017-03-27 2017-07-14 重庆邮电大学 一种基于轨道ic卡和手机信令数据的乘客出行路线识别方法
CN109308539A (zh) * 2017-07-27 2019-02-05 上海宝信软件股份有限公司 实时估算轨道交通线网中换乘站的乘客滞留状态的方法
CN107766969B (zh) * 2017-09-28 2021-02-19 东南大学 一种基于地铁服务能力瓶颈区段识别的大站快线布设方法
CN108388542B (zh) * 2018-01-18 2021-04-13 中国科学院空天信息创新研究院 一种轨道交通拥挤度计算方法及系统
CN108269399B (zh) * 2018-01-24 2020-12-25 哈尔滨工业大学 一种基于公路网客流od反推技术的高铁客流需求预测方法
CN108665191B (zh) * 2018-06-05 2022-05-03 北方工业大学 基于聚集效应的地铁站外关联区域计算方法
CN109448026A (zh) * 2018-11-16 2019-03-08 南京甄视智能科技有限公司 基于头肩检测的客流统计方法和系统
CN109992925A (zh) * 2019-04-23 2019-07-09 北方工业大学 基于客流消散率的信息服务频率区间确定方法
CN110162931B (zh) * 2019-06-21 2021-06-22 北京交通大学 城市轨道交通大规模路网快速仿真系统
CN110348614B (zh) * 2019-06-24 2022-04-01 武汉烽火信息集成技术有限公司 一种获取乘客od的方法及公交客流的预测方法
CN110942198B (zh) * 2019-11-27 2024-02-27 重庆市交通规划研究院 一种用于轨道交通运营的乘客路径识别方法和系统
CN111098896B (zh) * 2019-12-19 2021-04-13 北京交通大学 考虑客流波动及方案衔接性的周末列车开行方案建模方法
CN111861841A (zh) * 2020-06-30 2020-10-30 南昌轨道交通集团有限公司 交通路网客流分布的确定方法、装置、设备和存储介质
CN112163981A (zh) * 2020-09-14 2021-01-01 交控科技股份有限公司 一种线路客流计算方法及系统
CN113807026A (zh) * 2021-10-08 2021-12-17 青岛理工大学 地铁站内客流流线优化及动态引导指示牌系统及设计方法
CN117585041B (zh) * 2023-11-14 2024-06-14 中交机电工程局有限公司 一种基于物联网的城市轨道交通综合监控系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169524A (zh) * 2010-02-26 2011-08-31 同济大学 城市轨道交通网络客流分布的分阶段多路径模型算法
CN103218670A (zh) * 2013-03-22 2013-07-24 北京交通大学 一种城市轨道交通随机客流加载方法
CN103530694A (zh) * 2013-04-22 2014-01-22 北京交通大学 基于时空网络构建的城市地铁动态客流分配方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317686B1 (en) * 2000-07-21 2001-11-13 Bin Ran Method of providing travel time
CN103544214A (zh) * 2013-09-18 2014-01-29 北京交通大学 基于末班车时刻的城市轨道交通客流诱导系统及其方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102169524A (zh) * 2010-02-26 2011-08-31 同济大学 城市轨道交通网络客流分布的分阶段多路径模型算法
CN103218670A (zh) * 2013-03-22 2013-07-24 北京交通大学 一种城市轨道交通随机客流加载方法
CN103530694A (zh) * 2013-04-22 2014-01-22 北京交通大学 基于时空网络构建的城市地铁动态客流分配方法

Cited By (146)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107358309A (zh) * 2017-05-18 2017-11-17 北京交通大学 基于微信公众号的轨道交通乘客出行信息服务系统
CN108537408A (zh) * 2018-03-14 2018-09-14 北京交通大学 一种融合进站和换乘控制的路网协同限流建模及评估方法
CN108537408B (zh) * 2018-03-14 2023-08-29 北京交通大学 一种融合进站和换乘控制的路网协同限流建模及评估方法
CN108423036A (zh) * 2018-03-21 2018-08-21 山东理工大学 一种基于压力传感器阵列的地铁站台客流诱导系统
CN110857856A (zh) * 2018-08-22 2020-03-03 阿里巴巴集团控股有限公司 路线规划方法及系统
CN109523063A (zh) * 2018-10-24 2019-03-26 南宁学院 一种轨道交通动态客流导向系统
CN109583633A (zh) * 2018-11-16 2019-04-05 浩鲸云计算科技股份有限公司 一种公交与公交换乘出行的线路班次调整的方法
CN109583633B (zh) * 2018-11-16 2023-12-19 浩鲸云计算科技股份有限公司 一种公交与公交换乘出行的线路班次调整的方法
CN110020666A (zh) * 2019-02-21 2019-07-16 华南理工大学 一种基于乘客行为模式的公共交通广告投放方法及系统
CN110220526A (zh) * 2019-05-15 2019-09-10 浙江工业大学之江学院 基于路径时间价值的anpr车辆导行方案生成方法
CN110220526B (zh) * 2019-05-15 2023-07-04 浙江工业大学之江学院 基于路径时间价值的anpr车辆导行方案生成方法
CN110163501A (zh) * 2019-05-21 2019-08-23 成都轨道交通集团有限公司 一种自动编制城市轨道交通司机交路表的系统及方法
CN110163501B (zh) * 2019-05-21 2022-11-29 成都轨道交通集团有限公司 一种自动编制城市轨道交通司机交路表的系统及方法
CN110263993A (zh) * 2019-06-14 2019-09-20 上海工程技术大学 一种用于城市轨交乘客走行时间的实时预测方法
CN110400045A (zh) * 2019-06-17 2019-11-01 宁波大学 基于微区的轨道站点辐射区步行可达性评价方法
CN110443455A (zh) * 2019-07-04 2019-11-12 安徽富煌科技股份有限公司 一种基于客流数据的峰段划分算法
CN110472999A (zh) * 2019-07-17 2019-11-19 深圳市综合交通运行指挥中心 基于地铁和共享单车数据的客流模式分析方法及装置
CN110472999B (zh) * 2019-07-17 2024-01-23 深圳市综合交通运行指挥中心 基于地铁和共享单车数据的客流模式分析方法及装置
CN112286959A (zh) * 2019-10-21 2021-01-29 长安大学 一种单类客车发车间隔优化建模方法及装置
CN111079986A (zh) * 2019-11-26 2020-04-28 广州地铁设计研究院股份有限公司 一种换乘车站运输能力的匹配方法及系统
CN110941748A (zh) * 2019-11-26 2020-03-31 北京恒泰实达科技股份有限公司 一种基于地铁线网客流拥挤度的可视化分析方法及系统
CN111079986B (zh) * 2019-11-26 2022-10-14 广州地铁设计研究院股份有限公司 一种换乘车站运输能力的匹配方法及系统
CN111080016B (zh) * 2019-12-19 2023-09-26 广州新科佳都科技有限公司 一种基于节点控制的地铁车站客流管控方法及装置
CN111080016A (zh) * 2019-12-19 2020-04-28 广州新科佳都科技有限公司 一种基于节点控制的地铁车站客流管控方法及装置
CN111209650B (zh) * 2019-12-23 2023-08-08 北京航空航天大学合肥创新研究院 考虑路网服务水平的旅行时间节省价值评估方法及装置
CN111209650A (zh) * 2019-12-23 2020-05-29 北京航空航天大学合肥创新研究院 考虑路网服务水平的旅行时间节省价值评估方法及装置
CN111275482B (zh) * 2020-01-14 2023-05-09 浙江中控信息产业股份有限公司 基于机器学习的轨道交通实时动态清分方法
CN111275482A (zh) * 2020-01-14 2020-06-12 浙江浙大中控信息技术有限公司 基于机器学习的轨道交通实时动态清分方法
CN111339159B (zh) * 2020-02-24 2023-08-18 交通运输部科学研究院 一种一票制公交数据的分析挖掘方法
CN111339159A (zh) * 2020-02-24 2020-06-26 交通运输部科学研究院 一种一票制公交数据的分析挖掘方法
CN111626469A (zh) * 2020-04-10 2020-09-04 广州地铁集团有限公司 一种面向运能提升的快慢车开行优化方法
CN111626469B (zh) * 2020-04-10 2023-11-14 广州地铁集团有限公司 一种面向运能提升的快慢车开行优化方法
CN111860182A (zh) * 2020-06-23 2020-10-30 北京航空航天大学 一种基于遥感影像的地铁客流来源智能分析方法
CN111860182B (zh) * 2020-06-23 2023-09-29 北京航空航天大学 一种基于遥感影像的地铁客流来源智能分析方法
CN111882156A (zh) * 2020-06-24 2020-11-03 北京交通大学 面向随机动态客流和节能运行的列车时刻表鲁棒优化方法
CN111882156B (zh) * 2020-06-24 2024-05-03 北京交通大学 面向随机动态客流和节能运行的列车时刻表鲁棒优化方法
CN111724076A (zh) * 2020-06-24 2020-09-29 西南交通大学 运营中断条件下区域多式轨道交通客流动态分配方法
CN114037881A (zh) * 2020-07-20 2022-02-11 南京行者易智能交通科技有限公司 一种基于图像识别的跨线路公交客流od数据采集的方法及装置、移动端设备、服务器
CN111949944A (zh) * 2020-07-27 2020-11-17 武汉禾青优化科技有限公司 一种公交单程运营时间抽样方法及系统
CN111986368B (zh) * 2020-08-27 2022-09-27 景亮 城市轨道交通自动售检票系统及其控制方法
CN111986368A (zh) * 2020-08-27 2020-11-24 景亮 城市轨道交通自动售检票系统及其控制方法
CN112182838A (zh) * 2020-08-28 2021-01-05 浙江众合科技股份有限公司 一种基于afc数据的短时客流预测动态模型
CN112231796B (zh) * 2020-09-15 2024-06-07 北京交通大学 考虑旅客时空出行分布的周期列车停站方案优化建模方法
CN112231796A (zh) * 2020-09-15 2021-01-15 北京交通大学 考虑旅客时空出行分布的周期列车停站方案优化建模方法
CN112215408A (zh) * 2020-09-24 2021-01-12 交控科技股份有限公司 轨道交通客流量预测方法及装置
CN112434844B (zh) * 2020-11-10 2024-01-26 郑州天迈科技股份有限公司 基于凸包计算和遗传算法排序线网的新开及延长方法
CN112434844A (zh) * 2020-11-10 2021-03-02 郑州天迈科技股份有限公司 基于凸包计算和遗传算法排序线网的新开及延长方法
CN112347654A (zh) * 2020-11-11 2021-02-09 郑州捷安高科股份有限公司 一种基于地铁客流系统的仿真方法及装置
CN112465211B (zh) * 2020-11-24 2023-11-24 北京交通大学 一种轨道交通列车满载率控制方法及应用
CN112465211A (zh) * 2020-11-24 2021-03-09 北京交通大学 一种轨道交通列车满载率控制方法及应用
CN112508247B (zh) * 2020-11-26 2024-05-21 交控科技股份有限公司 一种交通异常信息的处理方法、装置及电子设备
CN112508247A (zh) * 2020-11-26 2021-03-16 交控科技股份有限公司 一种交通异常信息的处理方法、装置及电子设备
CN112365092A (zh) * 2020-12-01 2021-02-12 北京交通大学 城市轨道交通路网大客流风险自适应预警系统
CN112418733A (zh) * 2020-12-14 2021-02-26 西安市轨道交通集团有限公司 一种地铁乘务交路方案智能核验系统
CN112598177B (zh) * 2020-12-22 2023-10-24 北京市地铁运营有限公司 一种城市轨道交通突发事件在线客流预测与仿真系统
CN112598177A (zh) * 2020-12-22 2021-04-02 北京市地铁运营有限公司 一种城市轨道交通突发事件在线客流预测与仿真系统
CN112633716A (zh) * 2020-12-28 2021-04-09 成都交投铁路投资集团有限公司 一种基于可达性的市域轨道交通换乘节点选址方法
CN112784204A (zh) * 2020-12-28 2021-05-11 北京交通大学 面向不确定需求的列车时刻表与客流控制鲁棒优化方法
CN112733891A (zh) * 2020-12-29 2021-04-30 华侨大学 对出行链断链时公交ic卡乘客进行下车站点识别的方法
CN112733891B (zh) * 2020-12-29 2023-08-01 华侨大学 对出行链断链时公交ic卡乘客进行下车站点识别的方法
CN112734206A (zh) * 2020-12-31 2021-04-30 广州广电运通智能科技有限公司 基于用户画像的轨道交通清分方法、装置、设备及介质
CN112766950A (zh) * 2020-12-31 2021-05-07 广州广电运通智能科技有限公司 一种动态路径费用确定方法、装置、设备及介质
CN112918523A (zh) * 2021-02-25 2021-06-08 北京电子科技职业学院 拥挤地铁线路基于列车时刻表优化的客流协同精确控制方法
CN112918523B (zh) * 2021-02-25 2023-05-02 北京电子科技职业学院 拥挤地铁线路基于列车时刻表优化的客流协同精确控制方法
CN112819382B (zh) * 2021-03-01 2024-01-02 东南大学 基于设施利用率的地铁车厢内乘客密度的确定方法
CN112819382A (zh) * 2021-03-01 2021-05-18 东南大学 基于设施利用率的地铁车厢内乘客密度的确定方法
CN112907088A (zh) * 2021-03-03 2021-06-04 杭州诚智天扬科技有限公司 一种清分模型的参数调整方法及系统
CN112907088B (zh) * 2021-03-03 2024-03-08 杭州诚智天扬科技有限公司 一种清分模型的参数调整方法及系统
CN112990566A (zh) * 2021-03-09 2021-06-18 东南大学 一种缓解轨道交通施工影响的常规公交主动改线方法
CN112990566B (zh) * 2021-03-09 2024-03-22 东南大学 一种缓解轨道交通施工影响的常规公交主动改线方法
CN112949078B (zh) * 2021-03-17 2023-12-05 北京交通大学 一种城市轨道交通客流-车流的匹配度计算方法
CN112949078A (zh) * 2021-03-17 2021-06-11 北京交通大学 一种城市轨道交通客流-车流的匹配度计算方法
CN113112055A (zh) * 2021-03-22 2021-07-13 北京交通大学 地铁客货共享车厢动态分配与运行计划一体化优化方法
CN113010507A (zh) * 2021-03-23 2021-06-22 浩鲸云计算科技股份有限公司 基于时间校准和遗传算法的公交od计算方法及系统
CN113077079A (zh) * 2021-03-24 2021-07-06 东南大学 一种基于数据驱动的轨道交通新线接入客流预测方法
CN113158456B (zh) * 2021-04-15 2024-02-02 大连交通大学 一种城市轨道交通网络级联失效建模方法
CN113158456A (zh) * 2021-04-15 2021-07-23 大连交通大学 一种城市轨道交通网络级联失效建模方法
CN113177586A (zh) * 2021-04-25 2021-07-27 中铁第四勘察设计院集团有限公司 一种高速铁路车站最高聚集人数估计方法
CN113298390B (zh) * 2021-05-28 2023-09-26 长安大学 一种突发异构客流的多式协同疏散方案集构建方法及装置
CN113298390A (zh) * 2021-05-28 2021-08-24 长安大学 一种突发异构客流的多式协同疏散方案集构建方法及装置
CN113469422A (zh) * 2021-06-15 2021-10-01 深圳市综合交通设计研究院有限公司 一种基于多智能体仿真的城市交通出行推演仿真方法
CN113496353A (zh) * 2021-06-23 2021-10-12 北京城建设计发展集团股份有限公司 城市轨道交通系统运力负荷评估方法
CN113496353B (zh) * 2021-06-23 2022-03-08 北京城建设计发展集团股份有限公司 城市轨道交通系统运力负荷评估方法
CN113536493A (zh) * 2021-06-23 2021-10-22 南京理工大学 基于聚类反推的有效路径生成方法及断面客流估算方法
CN113408926B (zh) * 2021-06-30 2023-05-26 北方工业大学 短时中断情况下城市轨道交通客流分配方法
CN113408926A (zh) * 2021-06-30 2021-09-17 北方工业大学 短时中断情况下城市轨道交通客流分配方法
CN113537596A (zh) * 2021-07-16 2021-10-22 南京理工大学 一种城市轨道交通新线站点短时客流预测方法
CN113723667B (zh) * 2021-07-27 2023-07-11 深圳技术大学 轨道交通线网运营方案的优化方法、设备及可读存储介质
CN113723667A (zh) * 2021-07-27 2021-11-30 深圳技术大学 轨道交通线网运营方案的优化方法、设备及可读存储介质
CN113570148A (zh) * 2021-08-02 2021-10-29 上海市城市建设设计研究总院(集团)有限公司 基于乘客仿真的城轨车站停站时间优化设置方法
CN113570148B (zh) * 2021-08-02 2024-04-09 上海市城市建设设计研究总院(集团)有限公司 基于乘客仿真的城轨车站停站时间优化设置方法
CN113793241B (zh) * 2021-08-20 2024-02-09 北京交通大学 一种基于深度学习的铁路突发事件应急情景推演方法
CN113793241A (zh) * 2021-08-20 2021-12-14 北京交通大学 一种基于深度学习的铁路突发事件应急情景推演方法
CN113793015A (zh) * 2021-09-09 2021-12-14 重庆城市综合交通枢纽(集团)有限公司 基于客流预测的枢纽站停车泊位规模设计方法及系统
CN113779398A (zh) * 2021-09-14 2021-12-10 成都市规划设计研究院 一种共享单车接驳轨道交通骑行行为识别方法及系统
CN113779398B (zh) * 2021-09-14 2024-02-02 成都市规划设计研究院 一种共享单车接驳轨道交通骑行行为识别方法及系统
CN113935595B (zh) * 2021-09-28 2023-07-28 北京交通大学 一种城市轨道交通路网高峰大客流疏导系统
CN113935595A (zh) * 2021-09-28 2022-01-14 北京交通大学 一种城市轨道交通路网高峰大客流疏导系统
CN113987944A (zh) * 2021-10-29 2022-01-28 成都智元汇信息技术股份有限公司 基于Prophet模型的地铁进站客流预测方法及装置
CN114154792A (zh) * 2021-11-03 2022-03-08 中国铁路设计集团有限公司 基于动车组交路的节假日多日列车开行方案优化建模方法
CN114154792B (zh) * 2021-11-03 2023-01-24 中国铁路设计集团有限公司 基于动车组交路的节假日多日列车开行方案优化建模方法
CN113743685B (zh) * 2021-11-08 2022-02-08 青岛海信网络科技股份有限公司 确定公交车时刻表的方法及电子设备
CN113743685A (zh) * 2021-11-08 2021-12-03 青岛海信网络科技股份有限公司 确定公交车时刻表的方法及电子设备
CN114358808A (zh) * 2021-11-15 2022-04-15 南京理工大学 基于多源数据融合的公交od估计及分配方法
CN114219130A (zh) * 2021-11-22 2022-03-22 广州地铁设计研究院股份有限公司 一种城市轨道交通换乘站换乘能力计算方法
CN114266310A (zh) * 2021-12-22 2022-04-01 北京市市政工程设计研究总院有限公司 基于时空双维度的客运交通枢纽换乘区域旅客滞留时间特征分析方法及装置
CN114266310B (zh) * 2021-12-22 2024-05-10 北京市市政工程设计研究总院有限公司 基于时空双维度的客运交通枢纽换乘区域旅客滞留时间特征分析方法及装置
CN114626682A (zh) * 2022-02-17 2022-06-14 华录智达科技股份有限公司 一种考虑聚集区域的城市公交线网规划方法
CN114581846A (zh) * 2022-03-03 2022-06-03 北京城建设计发展集团股份有限公司 地铁车站全息客流实时监测方法及装置及计算机设备
CN114581846B (zh) * 2022-03-03 2024-02-20 北京城建设计发展集团股份有限公司 地铁车站全息客流实时监测方法及装置及计算机设备
CN114501518A (zh) * 2022-04-01 2022-05-13 香港中文大学(深圳) 流量预测方法、装置、设备、介质和程序产品
CN114881423A (zh) * 2022-04-15 2022-08-09 东南大学 一种针对枢纽换乘场景的联程中转城市确定方法
CN114881423B (zh) * 2022-04-15 2024-05-07 东南大学 一种针对枢纽换乘场景的联程中转城市确定方法
CN114817666A (zh) * 2022-04-20 2022-07-29 东南大学 一种基于路网边绑定交通小区间od流可视化方法
CN114923497A (zh) * 2022-04-21 2022-08-19 西南交通大学 一种铁路出行的路径规划方法、装置、设备及存储介质
CN114548836A (zh) * 2022-04-25 2022-05-27 杭州玳数科技有限公司 一种基于疫情的多因素交通枢纽运营方法和系统
CN114723163A (zh) * 2022-04-26 2022-07-08 深圳市城市交通规划设计研究中心股份有限公司 分时段客流时空分配方法、系统、电子设备及存储介质
CN114971229A (zh) * 2022-05-10 2022-08-30 东南大学 基于刷卡与定位数据的轨道交通线路客流车次匹配方法
CN114912683A (zh) * 2022-05-13 2022-08-16 中铁第六勘察设计院集团有限公司 一种智慧城市轨道交通异常大客流预测系统及方法
CN114912683B (zh) * 2022-05-13 2024-05-10 中铁第六勘察设计院集团有限公司 一种智慧城市轨道交通异常大客流预测系统及方法
CN114898542B (zh) * 2022-05-16 2024-05-10 江苏阳光智慧城市科技有限公司 一种基于互联网的城市智能监测汇聚系统
CN114898542A (zh) * 2022-05-16 2022-08-12 江苏阳光智慧城市科技有限公司 一种基于互联网的城市智能监测汇聚系统
CN114896507B (zh) * 2022-05-27 2024-03-19 桂林电子科技大学 一种基于时空结构的地铁路径推荐方法
CN114896507A (zh) * 2022-05-27 2022-08-12 桂林电子科技大学 一种基于时空结构的地铁路径推荐方法
CN115130263A (zh) * 2022-07-13 2022-09-30 广州市交通规划研究院有限公司 一种面向国土空间规划的多交通设施等时圈计算方法
CN115130263B (zh) * 2022-07-13 2023-06-20 广州市交通规划研究院有限公司 一种面向国土空间规划的多交通设施等时圈计算方法
CN114943484A (zh) * 2022-07-20 2022-08-26 深圳市城市交通规划设计研究中心股份有限公司 一种轨道客流运能匹配方法及其电子设备及其存储介质
CN115455681A (zh) * 2022-09-02 2022-12-09 江苏城乡建设职业学院 一种面向多载运工具的通勤交通碳排放空间分布估算方法
CN115455681B (zh) * 2022-09-02 2023-08-25 江苏城乡建设职业学院 一种面向多载运工具的通勤交通碳排放空间分布估算方法
CN115688971A (zh) * 2022-09-23 2023-02-03 北京交通大学 一种列车延误下的线网客流控制与列车调整协同优化方法
CN115688971B (zh) * 2022-09-23 2023-08-01 北京交通大学 一种列车延误下的线网客流控制与列车调整协同优化方法
CN116307441B (zh) * 2022-11-28 2023-11-03 北京交通大学 考虑突发场景的城市轨道交通枢纽换乘设施优化配置方法
CN116307441A (zh) * 2022-11-28 2023-06-23 北京交通大学 考虑突发场景的城市轨道交通枢纽换乘设施优化配置方法
CN116822762A (zh) * 2023-03-29 2023-09-29 北京交通大学 地铁网络系统稳定性监测控制方法、系统和设备
CN116910588B (zh) * 2023-06-16 2024-04-05 上海工程技术大学 一种用于城市轨交列车乘降时间的估计方法
CN116910588A (zh) * 2023-06-16 2023-10-20 上海工程技术大学 一种用于城市轨交列车乘降时间的估计方法
CN116933958B (zh) * 2023-07-18 2024-03-29 西南交通大学 一种基于刷卡数据的地铁换乘站换乘客流估计方法
CN116933958A (zh) * 2023-07-18 2023-10-24 西南交通大学 一种基于刷卡数据的地铁换乘站换乘客流估计方法
CN117035204B (zh) * 2023-10-10 2024-01-12 中铁第四勘察设计院集团有限公司 一种高铁运行图区间运行缓冲时间获取方法及装置
CN117035204A (zh) * 2023-10-10 2023-11-10 中铁第四勘察设计院集团有限公司 一种高铁运行图区间运行缓冲时间获取方法及装置
CN117290618B (zh) * 2023-11-27 2024-03-01 江西鹭鹭行科技有限公司 城市、城际轨道交通的时空伴随人群搜寻方法及系统
CN117290618A (zh) * 2023-11-27 2023-12-26 江西鹭鹭行科技有限公司 城市、城际轨道交通的时空伴随人群搜寻方法及系统
CN117634189A (zh) * 2023-11-29 2024-03-01 北京城建设计发展集团股份有限公司 轨道交通线网客流并行仿真方法
CN117669851A (zh) * 2023-12-07 2024-03-08 重庆市凤筑科技有限公司 面向公交线网优化的在线决策支持系统
CN117808184A (zh) * 2024-02-29 2024-04-02 成都汇辙科技有限公司 一种全生产要素驱动的城市轨道交通服务管理系统
CN117808184B (zh) * 2024-02-29 2024-05-10 成都汇辙科技有限公司 一种全生产要素驱动的城市轨道交通服务管理系统

Also Published As

Publication number Publication date
CN104217129B (zh) 2018-02-02
CN104217129A (zh) 2014-12-17

Similar Documents

Publication Publication Date Title
WO2016045195A1 (fr) Procédé d'estimation de flux de passagers pour réseau ferroviaire urbain
CN104239726B (zh) 一种城轨路网突发事件条件下客流估算系统
CN107273999B (zh) 一种突发事件下城市轨道交通客流预测方法
CN107194497B (zh) 一种突发事件下城市轨道交通乘客出行路径规划方法
Freyss et al. Continuous approximation for skip-stop operation in rail transit
CN108846514B (zh) 一种突发事件下轨道交通客流疏散需求预测方法
Szeto et al. Reliability‐based transit assignment for congested stochastic transit networks
CN109543934B (zh) 城市公交线网的综合指标的评价方法
CN111260221A (zh) 一种面向城市全局基于动态模型的交通设施承载力评估方法
CN103761589B (zh) 一种城市轨道交通清分方法
Fonzone et al. Effects of transit real-time information usage strategies
Van Den Heuvel et al. Monitoring the performance of the pedestrian transfer function of train stations using automatic fare collection data
Yao et al. Simulation‐Based Dynamic Passenger Flow Assignment Modelling for a Schedule‐Based Transit Network
CN109872008A (zh) 基于客流分配的城市轨道交通路网安全性评估与增强方法
Huang et al. Modal split and commuting pattern on a bottleneck-constrained highway
CN109872047B (zh) 一种考虑出行者拥挤度感知的公交出行方案推荐方法
CN113408926B (zh) 短时中断情况下城市轨道交通客流分配方法
CN113723667B (zh) 轨道交通线网运营方案的优化方法、设备及可读存储介质
CN114118766A (zh) 一种基于公交乘客出行多重匹配的客流od算法
Yang et al. Probit-type reliability-based transit network assignment
Qu et al. Estimating Wait Time and Passenger Load in a Saturated Metro Network: A Data‐Driven Approach
CN109308539A (zh) 实时估算轨道交通线网中换乘站的乘客滞留状态的方法
CN109544927B (zh) 一种多层网络协同限行方法
Pasquale et al. A modeling framework for passengers and freight in large-scale multi-modal transport networks
CN108492571B (zh) 基于乘客主观感知的城市公共交通客流拥塞指数计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14902465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 01/08/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14902465

Country of ref document: EP

Kind code of ref document: A1