WO2016039438A1 - 車両用廃熱回収装置 - Google Patents

車両用廃熱回収装置 Download PDF

Info

Publication number
WO2016039438A1
WO2016039438A1 PCT/JP2015/075820 JP2015075820W WO2016039438A1 WO 2016039438 A1 WO2016039438 A1 WO 2016039438A1 JP 2015075820 W JP2015075820 W JP 2015075820W WO 2016039438 A1 WO2016039438 A1 WO 2016039438A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
rankine
working fluid
waste heat
condenser
Prior art date
Application number
PCT/JP2015/075820
Other languages
English (en)
French (fr)
Inventor
靖明 狩野
中村 慎二
Original Assignee
サンデンホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデンホールディングス株式会社 filed Critical サンデンホールディングス株式会社
Publication of WO2016039438A1 publication Critical patent/WO2016039438A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K8/00Arrangement or mounting of propulsion units not provided for in one of the preceding main groups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a vehicle waste heat recovery device using a Rankine cycle.
  • this waste heat device for vehicles has a Rankine condenser that condenses the working fluid in the Rankine cycle and is placed in the roof top room on the roof of the truck. Inside, the running wind flows into the rooftop room through a gap and hits the Rankine condenser, so that the heat dissipation of the Rankine condenser is improved.
  • a cooling fan is not provided in the Rankine condenser arranged in the roof top room on the roof of the truck. Therefore, when the vehicle is traveling, the Rankine condenser is dissipated by the traveling wind from the traveling of the vehicle, but when the vehicle is stopped, the Rankine condenser receives the traveling wind from the traveling of the vehicle. However, since the heat cannot be dissipated, the Rankine cycle cannot be operated even if the waste heat from the engine can be recovered.
  • the present invention solves such problems, and is a vehicle waste heat device that improves the thermal efficiency of the Rankine cycle, and enables operation of the Rankine cycle even when the vehicle is stopped.
  • a vehicle waste heat apparatus is provided.
  • the invention of claim 1 includes a refrigerant pump for circulating a working fluid, a heater for heating the working fluid sent by the refrigerant pump by waste heat of a vehicle engine, A Rankine cycle having an expander that expands the working fluid heated and vaporized by the heater to generate an output, and a Rankine condenser that condenses the working fluid expanded by the expander;
  • the condenser In the waste heat recovery apparatus for vehicles disposed on the roof of the vehicle, the condenser is provided with a cooling fan in a part of the Rankine condenser, and the Rankine condenser receives air from the cooling fan.
  • a waste heat recovery device for a vehicle characterized in that the vehicle is configured with a portion and another portion that receives only traveling wind generated by the traveling of the vehicle.
  • the invention according to claim 2 is the invention according to claim 1, wherein a part of the Rankine condenser that receives air from the cooling fan and another part that receives only traveling air from the traveling of the vehicle are the working fluid of the Rankine cycle. It is a waste heat recovery device for vehicles connected in parallel in a circulation way.
  • the invention according to claim 3 is the invention according to claim 2, wherein the Rankine condenser on the upstream side or the downstream side in the working fluid circulation path of the Rankine cycle that receives only the traveling wind generated by the traveling of the vehicle.
  • This is a waste heat recovery device for a vehicle in which an opening / closing valve is provided.
  • the blower fan operates when the vehicle is stopped or when the speed of the vehicle is equal to or lower than a predetermined speed
  • the on-off valve is a vehicle waste heat recovery device that is closed.
  • the invention according to claim 5 is the invention according to claim 3, wherein the vehicle waste heat recovery device is provided with a wind speed detecting means for detecting a wind speed of a traveling wind due to traveling of the vehicle,
  • the waste heat recovery apparatus for a vehicle is characterized in that when the wind speed detected by the wind speed detection means is equal to or lower than a predetermined speed, the blower fan operates and the on-off valve is closed.
  • a part of the Rankine condenser is provided with a cooling fan, and the Rankine condenser receives only a part of the cooling fan that receives air from the cooling fan and a traveling wind of the vehicle. Therefore, there is an advantage that the Rankine cycle can be operated even when the vehicle is stopped.
  • a part of the Rankine condenser that receives air from the cooling fan and another part that receives only the traveling wind generated by the traveling of the vehicle are arranged in parallel in the working fluid circulation path of the Rankine cycle. Since they are connected, there is an advantage that the pressure loss of the working fluid flowing in the Rankine condenser is reduced.
  • the on-off valve is provided on either the upstream side or the downstream side of the working fluid circulation path of the other part of the Rankine cycle that receives only the traveling wind of the Rankine condenser due to the traveling of the vehicle. Therefore, when the vehicle is stopped, or when the speed of the vehicle is equal to or lower than a predetermined speed and the blower fan is operating, the fan that receives the cooling fan of the Rankine condenser is received. Since the working fluid can be flowed only to the part, there is an advantage that the thermal efficiency of the Rankine cycle is improved.
  • FIG. 1 is a configuration diagram of a vehicle waste heat recovery apparatus according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing the configuration of the vehicle waste heat recovery apparatus according to the present embodiment on the vehicle.
  • FIG. 3 is a perspective view showing a unit on which a part of the vehicle waste heat recovery apparatus according to this embodiment is mounted.
  • FIG. 4 is a configuration diagram showing the arrangement of Rankine condensers in the vehicle waste heat recovery apparatus according to this embodiment.
  • FIG. 5 shows a flow chart of the on-off valve operation provided in the Rankine condenser of the waste heat recovery apparatus for a vehicle according to this embodiment.
  • FIG. 1 shows a configuration of a vehicle waste heat recovery apparatus 1 according to an embodiment of the present invention.
  • An engine 2 mounted on a vehicle 30 and a Rankine cycle 3 for converting waste heat of the engine 2 into electric power and recovering it.
  • a refrigeration cycle 20 used for air conditioning of a vehicle is provided.
  • the engine 2 is a water-cooled engine and is cooled by cooling water circulating in the cooling water circulation path by a circulation pump (not shown).
  • a heater 5 of the Rankine cycle 3 to be described later is connected to the cooling water circulation path, and the cooling water which has become high temperature by cooling the engine 2 exchanges heat with the working fluid circulating in the Rankine cycle. As a result, engine waste heat is recovered.
  • Rankine cycle 3 is a so-called power regeneration Rankine cycle that recovers waste heat of engine 2 by converting it into electric power, and is sent by refrigerant pump 4 that circulates the working fluid that circulates in the circulation path, and refrigerant pump 4.
  • a heater 5 that heats the working fluid that has been heated by the waste heat of the engine 2 of the vehicle 30, an expander 6 that generates an output by expanding the working fluid that has been heated by the heater 5 to high temperature and pressure, and an expander Rankine condensers 7A and 7B for condensing the working fluid expanded by 6, receiver 8 for storing the working fluid condensed by Rankine condensers 7A and 7B, and condensed working fluid from receiver 8 It is composed of a working fluid circuit having a subcooler 9 for providing supercooling.
  • the refrigerant pump 4 is driven by the electric motor 11 and pumps the supercooled working fluid sent from the subcooler 9 to the heater 5.
  • the cooling water circulation path and the working fluid circulation path are connected, and the cooling water in the cooling water circulation path that has become high temperature by cooling the engine 2 and the working fluid in the working fluid circulation path sent from the refrigerant pump 4.
  • the expander 6 expands the superheated working fluid sent from the heater 5 and converts it into mechanical energy.
  • a power generator 12 is connected to the expander 6, and mechanical energy obtained by the expander 6 is converted into electric power and stored in a battery (not shown).
  • the Rankine condensers 7A and 7B are heat exchangers that condense (liquefy) the working fluid by exchanging heat between the working fluid expanded by the expander 6 and the outside air.
  • the refrigeration cycle 20 is composed of a compressor 21, a condenser 22 for a refrigeration circuit, an expansion valve 23, an evaporator 24, and a refrigerant circulation path connecting them.
  • the refrigerant condensed and condensed by the circuit condenser 22 is decompressed and expanded by the expansion valve 23, the decompressed and expanded refrigerant is evaporated by the evaporator 24, the evaporated refrigerant is sent to the compressor 21, and again the compressor It is compressed by 21 and circulates in the refrigerant circuit.
  • the compressor 21 is driven by the power of the engine 2 via the transmission belt 25.
  • the evaporator 24 cools the air sent into the vehicle 30 by absorbing heat from the air sent into the vehicle 30.
  • the refrigeration circuit condenser 22 is provided with a fan (not shown) and is disposed in the engine room 31 of the vehicle 30. In the process of circulating the refrigerant that has become high temperature and high pressure by the compressor 21 through the refrigeration circuit condenser 22. Condensate by running wind or fan blow.
  • the refrigerant pump 4, the expander 6, the Rankine condensers 7 ⁇ / b> A and 7 ⁇ / b> B, the receiver 8, and the subcooler 9 of the Rankine cycle 3 are arranged on the roof 32 of the vehicle 30.
  • the heater 5 of the Rankine cycle 3 exchanges heat between the coolant that has become high temperature by cooling the engine 2 and the working fluid that circulates in the Rankine cycle 3. Is placed inside.
  • FIG. 1 A frame structure in which the refrigerant pump 4, the expander 6, the Rankine condensers 7 ⁇ / b> A and 7 ⁇ / b> B, the receiver 8, and the subcooler 9 of the Rankine cycle 3 are substantially L-shaped in a side view and include a vertical surface portion 34 and a bottom surface portion 35.
  • the base member 33 is disposed on the roof 32 of the vehicle 30 so that the vertical surface portion 34 is on the front side in the front-rear direction of the vehicle 30.
  • two Rankine condensers 7A and 7B are arranged side by side in the width direction of the vehicle 30, and the Rankine condenser 7A ( Hereinafter, the subcooler 9 is disposed integrally with the right Rankine condenser 7A below the right Rankine condenser.
  • Two cooling fans 10A and 10B are arranged in a horizontal arrangement on the back side of the right Rankine condenser 7A and the subcooler 9.
  • the Rankine condenser 7B (hereinafter referred to as the left Rankine condenser) disposed on the left side when viewed from the front side is not provided with a cooling fan. As shown in FIG.
  • the cooling fans 10A and 10B are driven when the speed of the vehicle is equal to or lower than a predetermined speed (including when the vehicle is stopped; the same applies hereinafter), and stopped when the speed is higher than the predetermined speed. Take control. Therefore, when the vehicle 30 is traveling, the two Rankine condensers 7A and 7B receive the traveling wind, and when the traveling speed of the vehicle 30 is lower than the predetermined speed and sufficient traveling wind is not generated, the left Rankine condensation is performed. The vessel 7B is not blown by the traveling wind, but the right Rankine condenser 7A and the subcooler 9 can be blown by the cooling fans 10A and 10B. Therefore, even if the vehicle 30 is below the predetermined speed and sufficient traveling wind is not generated, the working fluid flowing in the right Rankine condenser 7A dissipates heat by the cooling fans 10A and 10B. Cycle 3 can be operated.
  • Each Rankine condenser 7A, 7B is a multi-flow type condenser in which tubes are arranged in a horizontal direction between headers on the left and right ends (not shown).
  • the Rankine condensers 7A, 7B In the header upper part, inflow ports 41A and 41B into which the working fluid sent from the expander flows are provided.
  • Outlet 42A, 42B from which the working fluid which flowed in each Rankine condenser flows out is provided in the lower part of the header.
  • the expander 6 and Rankine condensers 7A and 7B are connected by piping constituting the working fluid circulation path, and the piping branches immediately before the Rankine condensers 7A and 7B.
  • the branched piping is the right Rankine.
  • the inlet 41A of the condenser 7A and the inlet 41B of the left Rankine condenser 7B are respectively connected.
  • an open / close valve 45 is provided in the pipe connected to the inlet 41B of the left Rankine condenser 7B.
  • the pipes connected to the outlets 42A and 42B of the Rankine condensers 7A and 7B merge just before the receiver 8 and connect to an inlet provided on the bottom surface of the receiver 8, and are provided on the bottom surface of the receiver 8.
  • the pipe connected to the outlet is connected to one end side of the subcooler 9, and the pipe connected to the other end side of the subcooler 9 is connected to the refrigerant pump 4. Accordingly, the working fluid that has flowed into the Rankine condensers 7A and 7B dissipates heat while flowing from the upper side to the lower side of the Rankine condensers 7A and 7B by running wind or by the cooling fans 10A and 10B. In the course of flowing through the subcooler 9 via the receiver 8, the refrigerant is supercooled and sent to the refrigerant pump 4. Therefore, the working fluid flowing through the Rankine condensers 7A and 7B and the subcooler 9 is cooled on the lower side rather than on the upper side.
  • the on-off valve 45 is provided in the pipe connected to the inlet 41B of the left Rankine condenser 7B.
  • the pipe is connected to the outlet 42B of the Rankine condenser 7B.
  • the on-off valve 45 may be provided up to the junction with the pipe connected to the outlet 42A of the condenser 7A.
  • the receiver 8 has a vertically long structure, and the receiver 8, the refrigerant pump 4, and the electric motor 11 are fixed to the bottom surface portion 34 of the base member 32 via a bracket on the back side of the right Rankine condenser 7A. That is, since the receiver 8, the refrigerant pump 4, and the electric motor 11 are disposed on the leeward side of the right Rankine condenser 7A and the subcooler 9, the front side of the right Rankine condenser 7A blocks the traveling wind. Therefore, effective heat dissipation in the right Rankine condenser 7A becomes possible.
  • the traveling wind that has passed through the lower side of the right Rankine condenser 7A and the subcooler 9 is provided.
  • the traveling wind passing through the upper side of the right Rankine condenser 7A or the air blown by the cooling fans 10A and 10B The air blows at a lower temperature.
  • the receiver 8 and the refrigerant pump 4 are disposed on the back side of the right Rankine condenser 7A, that is, on the leeward side of the right Rankine condenser 7A provided with the cooling fans 10A and 10B. Since the receiver 8 and the refrigerant pump 4 can be cooled by the air blown by the cooling fans 10A and 10B even if the speed of the air is below the predetermined speed and sufficient traveling wind is not generated, the operation is overcooled by the subcooler 9.
  • the piping branches immediately before the left and right Rankine condensers 7A and 7B, and the piping merges immediately after the left and right Rankine condensers 7A and 7B, respectively. Since the devices 7A and 7B are arranged in parallel, there is an effect that the pressure loss of the working fluid is reduced as compared with the case where the Rankine condensers are arranged in series.
  • the opening / closing valve 45 is provided in the pipe connected to the left Rankine condenser 7B not provided with the blower fan, but the opening / closing valve 45 is not necessarily provided. Even if the on-off valve 45 is not provided, if the vehicle 30 is stopped or the vehicle 30 is at a speed lower than the predetermined speed and sufficient traveling wind is not generated and the blower fans 10A and 10B are operating, In the right Rankine condenser 7A in which the fans 10A and 10B are provided, the working fluid is condensed by the air blown by the blower fans 10A and 10B. Therefore, the pressure of the working fluid in the right Rankine condenser 7A is the left Rankine condenser.
  • an on-off valve 45 is provided in the working fluid upstream side pipe of the left Rankine condenser 7B in which no blower fan is provided, and the vehicle 30 of the vehicle 30 is provided as in the control flow shown in FIG.
  • the blower fans 10A and 10B are driven and the on-off valve 45 is closed.
  • the driving control of the blower fans 10A and 10B and the opening / closing control of the on-off valve 45 are performed based on the speed of the vehicle, but a wind speed sensor for detecting the traveling wind passing through the Rankine condenser is provided.
  • the blower fans 10A and 10B may be driven to perform control to close the on-off valve 45.
  • the refrigerant pump 4, the electric motor 11, the expander 6, the generator 12, the Rankine condensers 7A and 7B, the receiver 8, and the subcooler 9 in the Rankine cycle 3 in this embodiment are substantially L-shaped in side view. Since the unit structure is arranged on the base member 33 having a frame structure composed of the vertical surface portion 34 and the bottom surface portion 35, the refrigerant pump 4, the electric motor 11, the expander 6, the generator 12, and the Rankine condensation The installation of the devices 7A, 7B, the receiver 8, and the subcooler 9 on the roof 31 of the vehicle 30 has an advantage that the operation is simpler than the case where each of them is individually installed on the roof 31 of the vehicle 30. .
  • the receiver 8 and the subcooler 9 are provided.
  • the receiver 8 can be omitted, and the subcooler 9 is omitted by providing the Rankine condenser with a subcooler. It is also possible to do.
  • the right Rankine condenser 7A is provided with the two blower fans 10A and 10B, but may be one or three or more.
  • Vehicle waste heat recovery device 2 engine, 3 Rankine cycle, 4 refrigerant pump, 5 heater, 6 expander, 7A, 7B Rankine condenser, 10A, 10B cooling fan, 30 vehicle, 32 vehicle roof, 33 Base member, 45 open / close valve

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

ランキンサイクルの熱効率を向上させた車両用廃熱装置を提供する。作動流体を循環させる冷媒ポンプ(4)と、作動流体を車両のエンジンの廃熱によって加熱する加熱器(5)と、作動流体を膨張させて出力を発生する膨張機(6)と、作動流体を凝縮させるランキン用凝縮器(7A,7B)とを有するランキンサイクル(3)とを備え、ランキン用凝縮器(7A,7B)は車両の屋根上に配置されている車両用廃熱回収装置(1)において、ランキン凝縮器の一部(7A)には冷却ファン(10A,10B)が設けられており、ランキン凝縮器(7A,7B)は冷却ファン(10A,10B)の送風を受ける一部(7A)と前記車両の走行による走行風だけを受ける他部(7B)とで構成されている。

Description

車両用廃熱回収装置
本発明は、ランキンサイクルを利用した車両用廃熱回収装置に関する発明である。
従来技術として、特開2012-184697号公報に開示された車両用廃熱回収装置が知られている。この車両用廃熱装置はランキンサイクルの熱効率を向上することを目的として、ランキンサイクルにおける、作動流体を凝縮させるランキン用凝縮器はトラックの屋根上の屋根上室内に配置されており、トラックが走行中は走行風が隙間を介して屋根上室内に流れ込み、ランキン用凝縮器に当たることによりランキン用凝縮器の放熱性が向上する構造となっている。
特開2012-184697号
 しかし、従来技術は、トラックの屋根上の屋根上室内に配置されているランキン用凝縮器には冷却ファンは設けられていない。そのため、車両が走行している場合はランキン用凝縮器は車両の走行による走行風によって放熱されるが、車両が停止している場合は、ランキン用凝縮器は車両の走行による走行風を受けることができないため放熱することができず、エンジンからの廃熱を回収できる場合であってもランキンサイクルを運転するこができないといった問題点があった。
 本発明はこのような問題点を解決するものであり、ランキンサイクルの熱効率を向上させる車両用廃熱装置であって、車両が停止している場合であってもランキンサイクルの運転を可能とする車両用廃熱装置を提供するものである。
上記の目的を達成するために、請求項1の発明は、作動流体を循環させる冷媒ポンプと、前記冷媒ポンプによって送られてきた作動流体を車両のエンジンの廃熱によって加熱する加熱器と、前記加熱器によって加熱されて気化した作動流体を膨張させて出力を発生する膨張機と、前記膨張機によって膨張された作動流体を凝縮させるランキン用凝縮器とを有するランキンサイクルとを備え、前記ランキン用凝縮器は車両の屋根上に配置されている車両用廃熱回収装置において、前記ランキン凝縮器の一部には冷却ファンが設けられており、前記ランキン凝縮器は前記冷却ファンの送風を受ける一部と前記車両の走行による走行風だけを受ける他部とで構成されていることを特徴とする車両用廃熱回収装置である。
また、請求項2の発明は、請求項1の発明において、ランキン凝縮器の前記冷却ファンの送風を受ける一部と前記車両の走行による走行風だけを受ける他部は、前記ランキンサイクルの作動流体循環路において並列に接続されている車両用廃熱回収装置である。
また、請求項3の発明は、請求項2に記載の発明において、ランキン凝縮器の前記車両の走行による走行風だけを受ける他部の前記ランキンサイクルの作動流体循環路における上流側または下流側のいずれかに開閉弁が設けてられている車両用廃熱回収装置である。
また、請求項4の発明は、請求項3に記載の発明において、前記車両が停止している場合、もしくは、前記車両の速度が所定速度以下の場合に、前記送風ファンが動作し、および、前記開閉弁は閉じることを特徴とする車両用廃熱回収装置である。
また、請求項5の発明は、請求項3に記載の発明において、前記車両用廃熱回収装置には、前記車両の走行による走行風の風速を検知する風速検知手段が設けられており、前記風速検知手段による風速が所定速度以下の場合に、前記送風ファンが動作し、および、前記開閉弁は閉じることを特徴とする車両用廃熱回収装置である。
請求項1の発明によれば、ランキン凝縮器の一部には冷却ファンが設けられており、前記ランキン凝縮器は前記冷却ファンの送風を受ける一部と車両の走行による走行風だけを受ける他部とで構成されている車両用廃熱回収装置であるため、車両が停止している場合であってもランキンサイクルの運転を可能とすることができる利点がある。
また、請求項2の発明によれば、ランキン凝縮器の前記冷却ファンの送風を受ける一部と前記車両の走行による走行風だけを受ける他部は、前記ランキンサイクルの作動流体循環路において並列に接続されているので、ランキン用凝縮器内を流れる作動流体の圧力損失が小さくなるという利点がある。
また、請求項3の発明によれば、ランキン凝縮器の前記車両の走行による走行風だけを受ける他部の前記ランキンサイクルの作動流体循環路における上流側または下流側のいずれかに開閉弁が設けてられているので、車両が停止している場合、もしくは、車両の速度が所定速度以下の場合であって前記送風ファンが動作している場合に、ランキン凝縮器の冷却ファンの送風を受ける一部だけに作動流体を流すことができるため、ランキンサイクルの熱効率を向上させるという利点がある。
また、請求項4、または、請求項5の発明によれば、車両の速度が所定速度以下で十分な走行風が発生しない場合には、送風ファンが動作し、および、前記開閉弁は閉じるため、同様に、ランキン凝縮器の冷却ファンの送風を受ける一部だけに作動流体を流すことができるので、車両が停止している場合、もしくは、車両の速度が所定速度以下の場合であって、ランキンサイクルの熱効率を向上させるという利点がある。
本実施例である車両用廃熱回収装置の構成図 本実施例である車両用廃熱回収装置を屋根に搭載した車両の側面図 本実施例である車両用廃熱回収装置のユニット構造を示す斜視図 本実施例である車両用廃熱回収装置のランキン用凝縮器の配置を示す構成図 本実施例である車両用廃熱回収装置の開閉弁動作フロー図
次に、図面において本発明の実施例を説明する。図1は本実施例である車両用廃熱回収装置の構成図である。図2は車両上における本実施例である車両用廃熱回収装置の構成を示した断面図である。図3は本実施例である車両用廃熱回収装置の一部を搭載したユニットを示す斜視図である。図4は本実施例である車両用廃熱回収装置のランキン用凝縮器の配置を示す構成図である。図5は本実施例である車両用廃熱回収装置のランキン用凝縮器に設けた開閉弁動作のフロー図を示す。
図1は、本発明の実施例である車両用廃熱回収装置1の構成を示しており、車両30に搭載されたエンジン2、エンジン2の廃熱を電力に変換して回収するランキンサイクル3、車両の空調に用いられる冷凍サイクル20を備えている。
エンジン2は水冷式のエンジンであり、図示しない循環ポンプによって冷却水循環路内を循環する冷却水によって冷却される。この冷却水循環路には後述するランキンサイクル3の加熱器5が接続されており、エンジン2を冷却することにより高温になった冷却水が加熱器5においてランキンサイクルを循環する作動流体と熱交換することによって、エンジン廃熱が回収される。
ランキンサイクル3は、エンジン2の廃熱を電力に変換して回収する、いわゆる電力回生のランキンサイクルであり、循環路内を流通する作動流体を循環させる冷媒ポンプ4と、冷媒ポンプ4によって送られてきた作動流体を車両30のエンジン2の廃熱によって加熱する加熱器5と、加熱器5によって加熱されて高温高圧となった作動流体を膨張させて出力を発生する膨張機6と、膨張機6によって膨張された作動流体を凝縮させるランキン用凝縮器7A、7Bと、ランキン用凝縮器7A、7Bで凝縮された作動流体を貯めておくレシーバ8と、レシーバ8からの凝縮された作動流体に過冷却を与えるサブクーラ9を有する作動流体循環路で構成されている。
 冷媒ポンプ4は電動モータ11によって駆動され、サブクーラ9から送られてきた過冷却状態の作動流体を加熱器5へと圧送する。加熱器5は冷却水循環路と作動流体循環路が接続され、エンジン2を冷却することにより高温になった冷却水循環路の冷却水と、冷媒ポンプ4から送られてきた作動流体循環路の作動流体が加熱器5において熱交換して、作動流体を高温高圧の過熱状態にする熱交換器である。
膨張機6は加熱器5から送られてきた過熱状態の作動流体を膨張させて機械エネルギーに変換する。膨張機6には発電機12が接続されており、膨張機6で得た機械エネルギーを電力に変換し、図示しないバッテリーに蓄えられる。ランキン用凝縮器7A、7Bは、膨張機6によって膨張した作動流体と外気との間で熱交換を行わせることによって作動流体を凝縮(液化)させる熱交換器である。
冷凍サイクル20は、圧縮機21、冷凍回路用凝縮器22、膨張弁23、蒸発器24と、これらを接続する冷媒循環路で構成されており、圧縮機21によって高温高圧となった冷媒が冷凍回路用凝縮器22によって凝縮され、凝縮された冷媒は膨張弁23によって減圧膨張し、減圧膨張した冷媒は蒸発器24によって蒸発され、蒸発された冷媒は圧縮機21へ送られて、再び圧縮機21で圧縮されて冷媒循環路内を循環する。圧縮機21は伝達ベルト25を介してエンジン2の動力により駆動する。蒸発器24は、冷媒が車両30の室内へ送られる空気から熱を吸収することにより車両30の室内へ送られる空気を冷却する。冷凍回路用凝縮器22には図示しないファンが設けられて車両30のエンジンルーム31内に配置されており、圧縮機21によって高温高圧となった冷媒を冷凍回路用凝縮器22を流通する過程で、走行風、もしくは、ファンの送風により凝縮させる。
図2に示すように、ランキンサイクル3の冷媒ポンプ4、膨張機6、ランキン用凝縮器7A、7B、レシーバ8、サブクーラ9は、車両30の屋根上32に配置されている。
一方、ランキンサイクル3の加熱器5は、図1に示すように、エンジン2を冷却することにより高温になった冷却水とランキンサイクル3を循環する作動流体とを熱交換させるため、エンジンルーム31内に配置されている。
ランキンサイクル3の冷媒ポンプ4、膨張機6、ランキン用凝縮器7A、7B、レシーバ8、サブクーラ9の配置の詳細については、図3に示す。ランキンサイクル3の冷媒ポンプ4、膨張機6、ランキン用凝縮器7A、7B、レシーバ8、サブクーラ9が、側面視が略L字であって垂直面部34と底面部35とで構成されたフレーム構造からなるベース部材33上に配置してあり、ベース部材33は垂直面部34が車両30の前後方向において前側になるように車両30の屋根上32に配置してある。
ベース部材33の垂直面部34には、2個のランキン用凝縮器7A、7Bが車両30の幅方向に並べられて配置されており、前側から見て右側に配置されるランキン用凝縮器7A(以下、右側ランキン用凝縮器という。)の下方にはサブクーラ9が右側ランキン用凝縮器7Aと一体になって配置している。また、右側ランキン用凝縮器7Aとサブクーラ9の背面側には2個の冷却ファン10A、10Bが横配列で配置している。前側から見て左側に配置されるランキン用凝縮器7B(以下、左側ランキン用凝縮器という。)には冷却用のファンは設けられていない。図5に示すように、冷却ファン10A、10Bは車両の速度が所定速度以下の場合(車両が停止している場合も含む。以下、同じ)に駆動させ、所定速度より速い場合は停止させる駆動制御を行う。従って、車両30が走行している場合は2個のランキン用凝縮器7A、7Bは走行風を受け、車両30の速度が所定速度以下で十分な走行風が発生しない場合は、左側ランキン用凝縮器7Bは走行風による送風を受けないが、右側ランキン用凝縮器7Aとサブクーラ9は冷却ファン10A、10Bによる送風を受けることができる。そのため、車両30の速度が所定速度以下で十分な走行風が発生しない場合であっても、右側ランキン用凝縮器7A内を流通する作動流体は冷却ファン10A、10Bの送風により放熱するので、ランキンサイクル3は運転することができる。
それぞれのランキン用凝縮器7A、7Bは、図示しない左右両端のヘッダ間にチューブが水平方向に配列されたマルチフロータイプの凝縮器であり、それぞれのランキン用凝縮器7A、7Bの正面視左側のヘッダ上部には膨張機から送られてきた作動流体が流入する流入口41A、41Bが設けられており、右側ランキン凝縮器7Aの正面視左側のヘッダ下部、左側ランキン凝縮器7Bの正面視右側のヘッダ下部には、それぞれのランキン用凝縮器内を流れた作動流体が流出する流出口42A、42Bが設けられている。
膨張機6とランキン用凝縮器7A、7Bは作動流体循環路を構成する配管で接続されており、その配管はそれぞれのランキン用凝縮器7A、7Bの直前で分岐し、分岐した配管は右側ランキン用凝縮器7Aの流入口41Aと左側ランキン用凝縮器7Bの流入口41Bにそれぞれ接続する。さらに、左側ランキン用凝縮器7Bの流入口41Bと接続する配管には開閉弁45が設けられている。また、それぞれのランキン用凝縮器7A、7Bの流出口42A、42Bと接続する配管はレシーバ8の直前で合流してレシーバ8の底面に設けられた入口に接続し、レシーバ8の底面に設けられた出口と接続する配管はサブクーラ9の一端側に接続し、サブクーラ9の他端側に接続する配管は冷媒ポンプ4に接続している。
従って、それぞれのランキン用凝縮器7A、7Bに流入した作動流体は、走行風、もしくは、冷却ファン10A、10Bの送風によって、ランキン用凝縮機7A、7Bの上部側から下部側に流れる過程で放熱され、また、レシーバ8を介してサブクーラ9を流れる過程で過冷却されて冷媒ポンプ4に送られる。そのため、ランキン用凝縮器7A、7B、および、サブクーラ9内を流れる作動流体は上部側よりも下部側の方が冷却されている。尚、本実施例では、左側ランキン用凝縮器7Bの流入口41Bと接続する配管に開閉弁45を設けているが、ランキン用凝縮器7Bの流出口42Bと接続する配管であって、ランキン用凝縮器7Aの流出口42Aと接続する配管との合流点までの間に開閉弁45を設けても構わない。
 レシーバ8は縦長構造であり、レシーバ8、冷媒ポンプ4、電動モータ11は右側ランキン用凝縮器7Aの背面側であってベース部材32の底面部34にブラケットを介して固定されている。すなわち、レシーバ8、冷媒ポンプ4、電動モータ11は右側ランキン用凝縮器7A、および、サブクーラ9の風下側に配置されているので、右側ランキン用凝縮器7Aの前面側には走行風を遮るものがないため、右側ランキン用凝縮器7Aでの効果的な放熱が可能となる。また、レシーバ8の作動流体が溜まる下部と冷媒ポンプ4は右側ランキン用凝縮器7Aの下部側に配置されることから、右側ランキン用凝縮器7Aの下部側、および、サブクーラ9を通過した走行風、もしくは、冷却ファン10A、10Bによる送風がレシーバ8の作動流体が溜まる下部と冷媒ポンプ4に当たるため、右側ランキン用凝縮器7Aの上部側を通過した走行風、もしくは、冷却ファン10A、10Bによる送風よりも低い温度の送風が当たることになる。そのため、サブクーラ9で過冷却された作動流体が冷媒ポンプ4に送られる過程で過冷却が失われる可能性が、エンジンルームに冷媒ポンプ4が配置される場合、または、右側ランキン用凝縮器7Aの上部側に冷媒ポンプ4とレシーバ8が配置される場合に比して、ランキンサイクル3の熱効率を向上させることができるという利点がある。
 また、レシーバ8と冷媒ポンプ4は、右側ランキン用凝縮器7Aの背面側、すなわち、冷却ファン10A、10Bが設けられている右側ランキン用凝縮器7Aの風下側に配置されているので、車両30の速度が所定速度以下で十分な走行風が発生しない場合であっても、冷却ファン10A、10Bによる送風でレシーバ8と冷媒ポンプ4を冷却することができるため、サブクーラ9で過冷却された作動流体が冷媒ポンプ4に送られる過程で過冷却が失われる可能性が、冷却ファンのない左側ランキン用凝縮器7Bの背面側にレシーバ8と冷媒ポンプ4が配置される場合に比して少なくなるため、ランキンサイクル3の熱効率を向上させることができるという利点がある。
また、本実施例では左右それぞれのランキン用凝縮器7A、7Bの入口直前で配管が分岐し、左右それぞれのランキン用凝縮器7A、7Bの出口直後で配管が合流して、左右のランキン用凝縮器7A、7Bが並列に配列されているので、ランキン凝縮器が直列に配列される場合に比して作動流体の圧力損失が小さくなる効果がある。
本実施例では送風ファンが設けられていない左側ランキン用凝縮器7Bと接続する配管に開閉弁45を設けているが、必ずしも開閉弁45を設けなくてもよい。開閉弁45を設けなくても、車両30が停止、もしくは、車両30の速度が所定速度以下で十分な走行風が発生しない場合であって送風ファン10A、10Bが作動している場合は、送風ファン10A、10Bが設けられている右側ランキン用凝縮器7Aにおいては送風ファン10A、10Bの送風により作動流体は凝縮されるため、右側ランキン用凝縮器7A内の作動流体の圧力が左側ランキン用凝縮器7B内の作動流体の圧力より低くなるので、作動流体は送風ファン10A、10Bが設けられている右側ランキン用凝縮器7A側に流れ込むからである。
また、本実施例のように、送風ファンが設けられていない左側ランキン用凝縮器7Bの作動流体上流側の配管に開閉弁45を設け、図5に示した制御フローのように、車両30の速度が所定速度以下で十分な走行風が発生しない場合(車両30が停止している場合も含む。)に、送風ファン10A、10Bを駆動させるとともに、前記開閉弁45を閉じる制御を行えば、送風ファン10A、10Bが設けられている右側ランキン用凝縮器7Aだけに作動流体を流すことができるため、ランキンサイクル3の運転を安定させることが可能である。尚、本実施例では車両の速度に基づき送風ファン10A、10Bの駆動制御と開閉弁45の開閉制御を行っているが、ランキン用凝縮器を通過する走行風を検知する風速センサーを設けて、風速が所定速度以下の場合に送風ファン10A、10Bを駆動させ、開閉弁45を閉じる制御を行っても構わない。
また、本実施例におけるランキンサイクル3の冷媒ポンプ4、電動モータ11、膨張機6、発電機12、ランキン用凝縮器7A、7B、レシーバ8、サブクーラ9は、側面視が略L字であって垂直面部34と底面部35とで構成されたフレーム構造からなるベース部材33上に配置してあるユニット構造であるため、冷媒ポンプ4、電動モータ11、膨張機6、発電機12、ランキン用凝縮器7A、7B、レシーバ8、サブクーラ9の車両30の屋根上31への設置が、それぞれを個別に車両30の屋根上31に設置する場合に比して、作業が簡易であるというメリットがある。
尚、本実施例のランキンサイクル3では、レシーバ8、サブクーラ9を設けているが、レシーバ8は省略することが可能であり、また、ランキン用凝縮器をサブクーラ付とすることによりサブクーラ9を省略することも可能である。
また、本実施例のランキンサイクル3では、右側ランキン用凝縮器7Aに送風ファン10A、10Bを2個設けているが、1個、または、3個以上であっても構わない。
1 車両用廃熱回収装置、2 エンジン、3ランキンサイクル、4 冷媒ポンプ、5 加熱器、6 膨張機、7A,7B ランキン用凝縮器、10A,10B 冷却ファン、30 車両、32 車両の屋根、33 ベース部材、45 開閉弁

Claims (5)

  1. 作動流体を循環させる冷媒ポンプと、前記冷媒ポンプによって送られてきた作動流体を車両のエンジンの廃熱によって加熱する加熱器と、前記加熱器によって加熱されて気化した作動流体を膨張させて出力を発生する膨張機と、前記膨張機によって膨張された作動流体を凝縮させるランキン用凝縮器とを有するランキンサイクルとを備え、
    前記ランキン用凝縮器は車両の屋根上に配置されている車両用廃熱回収装置において、
    前記ランキン凝縮器の一部には冷却ファンが設けられており、
    前記ランキン凝縮器は前記冷却ファンの送風を受ける一部と前記車両の走行による走行風だけを受ける他部とで構成されていることを特徴とする車両用廃熱回収装置。
  2. 前記ランキン凝縮器の前記冷却ファンの送風を受ける一部と前記車両の走行による走行風だけを受ける他部は、前記ランキンサイクルの作動流体循環路において並列に接続されていることを特徴とする請求項1に記載の車両用廃熱回収装置。
  3. 前記ランキン凝縮器の前記車両の走行による走行風だけを受ける他部の前記ランキンサイクルの作動流体循環路における上流側または下流側のいずれかに開閉弁が設けてられていることを特徴とする請求項2に記載の車両用廃熱回収装置。
  4. 前記車両が停止している場合、もしくは、前記車両の速度が所定速度以下の場合に、前記送風ファンが動作し、および、前記開閉弁は閉じることを特徴とする請求項3に記載の車両用廃熱回収装置。
  5. 前記車両用廃熱回収装置には、前記車両の走行による走行風の風速を検知する風速検知手段が設けられており、前記風速検知手段による風速が所定速度以下の場合に、前記送風ファンが動作し、および、前記開閉弁は閉じることを特徴とする請求項3に記載の車両用廃熱回収装置。
PCT/JP2015/075820 2014-09-12 2015-09-11 車両用廃熱回収装置 WO2016039438A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-186185 2014-09-12
JP2014186185A JP6615443B2 (ja) 2014-09-12 2014-09-12 車両用廃熱回収装置

Publications (1)

Publication Number Publication Date
WO2016039438A1 true WO2016039438A1 (ja) 2016-03-17

Family

ID=55459181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075820 WO2016039438A1 (ja) 2014-09-12 2015-09-11 車両用廃熱回収装置

Country Status (2)

Country Link
JP (1) JP6615443B2 (ja)
WO (1) WO2016039438A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136822A (ja) * 1997-07-17 1999-02-09 Toshiba Corp 混合媒体用凝縮器
JP2005120992A (ja) * 2003-10-20 2005-05-12 Honda Motor Co Ltd 凝縮器の不凝縮性ガス排出装置
JP2007205283A (ja) * 2006-02-02 2007-08-16 Denso Corp 廃熱利用装置およびその制御方法
JP2010014037A (ja) * 2008-07-04 2010-01-21 Denso Corp 燃焼機関の廃熱利用システム
JP2010203284A (ja) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd 排熱回生システム
JP2010229999A (ja) * 2009-03-02 2010-10-14 Nissan Motor Co Ltd 排熱回生システム
JP2012184697A (ja) * 2011-03-04 2012-09-27 Toyota Industries Corp 車両用排熱回収装置
WO2013008613A1 (ja) * 2011-07-11 2013-01-17 株式会社 豊田自動織機 廃熱回収装置
US20130174551A1 (en) * 2012-01-06 2013-07-11 Ahmad M. Mahmoud High gliding fluid power generation system with fluid component separation and multiple condensers

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6113706Y2 (ja) * 1981-04-02 1986-04-28
JP2002115504A (ja) * 2000-10-06 2002-04-19 Honda Motor Co Ltd ランキンサイクル装置
US8061139B2 (en) * 2002-05-22 2011-11-22 Ormat Technologies, Inc. Integrated engine generator rankine cycle power system
JP5338730B2 (ja) * 2010-03-29 2013-11-13 株式会社豊田自動織機 廃熱回生システム
JP5543292B2 (ja) * 2010-08-02 2014-07-09 本田技研工業株式会社 車載用燃料電池システム

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1136822A (ja) * 1997-07-17 1999-02-09 Toshiba Corp 混合媒体用凝縮器
JP2005120992A (ja) * 2003-10-20 2005-05-12 Honda Motor Co Ltd 凝縮器の不凝縮性ガス排出装置
JP2007205283A (ja) * 2006-02-02 2007-08-16 Denso Corp 廃熱利用装置およびその制御方法
JP2010014037A (ja) * 2008-07-04 2010-01-21 Denso Corp 燃焼機関の廃熱利用システム
JP2010203284A (ja) * 2009-03-02 2010-09-16 Nissan Motor Co Ltd 排熱回生システム
JP2010229999A (ja) * 2009-03-02 2010-10-14 Nissan Motor Co Ltd 排熱回生システム
JP2012184697A (ja) * 2011-03-04 2012-09-27 Toyota Industries Corp 車両用排熱回収装置
WO2013008613A1 (ja) * 2011-07-11 2013-01-17 株式会社 豊田自動織機 廃熱回収装置
US20130174551A1 (en) * 2012-01-06 2013-07-11 Ahmad M. Mahmoud High gliding fluid power generation system with fluid component separation and multiple condensers

Also Published As

Publication number Publication date
JP2016056786A (ja) 2016-04-21
JP6615443B2 (ja) 2019-12-04

Similar Documents

Publication Publication Date Title
JP5281587B2 (ja) 内燃機関の廃熱利用装置
WO2009093549A1 (ja) 内燃機関の廃熱利用装置
JP2009167995A (ja) 内燃機関の廃熱利用装置
JP4089428B2 (ja) 空冷式熱交換装置
JP2008297962A (ja) 廃熱利用装置を備える冷凍装置
KR102255799B1 (ko) 차량용 에어컨의 냉동 사이클
JP2008297961A (ja) 廃熱利用装置を備える冷凍装置
JP2012184697A (ja) 車両用排熱回収装置
JP2008049796A (ja) 車載電子機器の冷却装置
JP2010188949A (ja) 廃熱回収システム搭載車両
JP2009097481A (ja) 内燃機関の廃熱利用装置
WO2016039439A1 (ja) 車両用廃熱回収装置
JP2009204204A (ja) 排熱回生システム
KR101371455B1 (ko) 차량용 에어컨 시스템
WO2017086343A1 (ja) 車両用空調装置の冷凍サイクル及びこれを搭載した車両
KR20140083320A (ko) 차량용 히트펌프 시스템의 실외 열교환기
JP2009133266A (ja) 内燃機関の廃熱利用装置
JP2007211681A (ja) 動力回収システム
JP6495608B2 (ja) 廃熱回収装置
JP6615443B2 (ja) 車両用廃熱回収装置
JP2005273543A (ja) 廃熱利用装置
KR20080060521A (ko) 보조 냉각장치가 구비된 차량의 에어컨 시스템
JP2009209768A (ja) 内燃機関の廃熱利用装置
JP5153664B2 (ja) 排熱回生システム
JP2013044239A (ja) 車両用排熱回収装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15840798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15840798

Country of ref document: EP

Kind code of ref document: A1