WO2013008613A1 - 廃熱回収装置 - Google Patents

廃熱回収装置 Download PDF

Info

Publication number
WO2013008613A1
WO2013008613A1 PCT/JP2012/066225 JP2012066225W WO2013008613A1 WO 2013008613 A1 WO2013008613 A1 WO 2013008613A1 JP 2012066225 W JP2012066225 W JP 2012066225W WO 2013008613 A1 WO2013008613 A1 WO 2013008613A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
refrigerant
heat
condenser
outside air
Prior art date
Application number
PCT/JP2012/066225
Other languages
English (en)
French (fr)
Inventor
榎島 史修
井口 雅夫
英文 森
Original Assignee
株式会社 豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 豊田自動織機 filed Critical 株式会社 豊田自動織機
Publication of WO2013008613A1 publication Critical patent/WO2013008613A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/065Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion taking place in an internal combustion piston engine, e.g. a diesel engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/02Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a heat exchanger
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention includes a heat exchanger that transmits waste heat of a heat engine to a refrigerant, an expander that expands the refrigerant that has passed through the heat exchanger to generate a driving force, and heat of the refrigerant that has passed through the expander to the atmosphere.
  • the present invention relates to a waste heat recovery apparatus including an air-cooled condenser that radiates heat, and a pressure feeding device that transfers the refrigerant that has passed through the condenser to the heat exchanger.
  • the apparatus disclosed in Patent Document 1 includes a first cooling device that cools the vapor phase portion of the condenser and a second cooling device that cools the liquid phase portion of the condenser.
  • the cooling control device that controls the cooling operation of the first cooling device and the second cooling device includes a pressure control unit that controls the cooling operation of the first cooling device according to the pressure of the gas phase portion, and a temperature of the liquid phase portion. And a temperature control unit that controls the cooling operation of the second cooling device.
  • the water vapor pressure in the gas phase portion of the condenser is controlled to be equal to or higher than the limit pressure for generating cavitation at the position of the waste heat recovery device downstream of the expander.
  • the condensed water temperature in the liquid phase is controlled below the limit temperature for cavitation generation. The prevention of cavitation is important in increasing the waste heat recovery efficiency by avoiding a decrease in the pumping efficiency by the pump.
  • the pressure difference detecting means for detecting the pressure difference between the high pressure side and the low pressure side of the expander, and the predetermined pressure difference when the detected pressure difference falls below a predetermined pressure difference.
  • Pressure difference increasing means for increasing the pressure difference is provided. The pressure difference in the expander is maintained so as not to fall below a predetermined pressure difference. Such maintenance control is effective in bringing about stable expansion work in the expander and increasing waste heat recovery efficiency.
  • Patent Documents 1 and 2 disclose a control that takes into account fluctuations in the outside air temperature, and the target condensation pressure or target condensation temperature cannot be set appropriately. Therefore, it cannot be said that the efficiency of waste heat recovery is sufficiently good.
  • An object of the present invention is to provide a waste heat recovery apparatus that can further improve the efficiency of waste heat recovery.
  • a waste heat recovery apparatus includes a heat exchanger, an expander, an air-cooled condenser, a pumping device, an outside air temperature detection unit, and a pressure detection unit.
  • the heat radiation amount adjusting unit and the control unit are provided.
  • the heat exchanger transfers waste heat from the heat engine to the refrigerant.
  • the expander expands the refrigerant that has passed through the heat exchanger to generate a driving force.
  • the condenser radiates heat of the refrigerant that has passed through the expander to the atmosphere.
  • the pressure feeding device transfers the refrigerant that has passed through the condenser to the heat exchanger.
  • the outside air temperature detection unit detects the outside air temperature.
  • the pressure detection unit detects the pressure of the refrigerant downstream from the expander and upstream from the pressure feeding device.
  • the heat dissipation amount adjustment unit adjusts the heat dissipation amount of the condenser.
  • the control unit controls a heat radiation amount adjustment state of the heat radiation amount adjustment unit.
  • the control unit sets a target condensing pressure based on the outside air temperature detected by the outside air temperature detecting unit, and sets the heat radiation amount adjusting unit so that the pressure detected by the pressure detecting unit becomes the target condensing pressure. Control.
  • the heat release amount of the condenser is adjusted based on the outside air temperature so that the refrigerant pressure downstream of the expander and upstream of the pumping device becomes the target condensation pressure.
  • the target condensing pressure is set to a saturated vapor pressure of the refrigerant corresponding to the outside air temperature detected by the outside air temperature detecting unit.
  • the pressure difference before and after the expander can be kept high by setting the target condensing pressure to the saturation vapor pressure of the refrigerant, that is, the lowest pressure that can be achieved with respect to the outside air temperature. Therefore, waste heat recovery efficiency can be increased.
  • the target condensing pressure is set to a pressure higher than the saturated vapor pressure of the refrigerant corresponding to the outside air temperature detected by the outside air temperature detecting unit.
  • the target condensing pressure is too low, even if the heat dissipation amount is controlled to the maximum, a deviation between the target condensing pressure and the actual pressure due to insufficient maximum heat dissipating capacity frequently occurs.
  • the control of the heat radiation amount in the condenser is easily stabilized.
  • the target condensing pressure is set in a range between a saturated vapor pressure of the refrigerant corresponding to the outside air temperature detected by the outside air temperature detecting unit and an upper limit pressure higher than the saturated vapor pressure.
  • the target condensing pressure is set in a range between a lower limit pressure higher than a saturated vapor pressure of the refrigerant corresponding to the outside air temperature detected by the outside air temperature detecting unit and an upper limit pressure higher than the lower limit pressure.
  • the apparatus further includes a receiver and a subcooler provided downstream of the condenser and upstream of the pressure feeding device.
  • the target condensing pressure higher than the saturated vapor pressure corresponding to the outside air temperature, the supercooling degree of the refrigerant can be reliably ensured by the subcooler. Therefore, the occurrence of cavitation in the pressure feeding device can be prevented.
  • the pressure detection unit is a temperature detection unit that detects a refrigerant temperature between the condenser and the supercooler, and uses a refrigerant saturated vapor pressure corresponding to the refrigerant temperature as a detection pressure.
  • Detecting temperature is simpler than detecting pressure. Further, the coolant temperature can be used as the coolant temperature instead of directly detecting the coolant temperature. Detection of the casing temperature of the refrigerant pipe and the gas-liquid separator is simpler.
  • the heat radiation amount adjusting unit is a blower that cools the condenser, and the blower is driven by a motor having a variable blowing ability.
  • Such a blower is simple as a means for adjusting the refrigerant pressure downstream from the condenser.
  • the heat radiation amount adjusting unit includes a bypass flow path in parallel with the condenser and a flow rate adjusting valve on the bypass flow path.
  • the flowchart showing the rotation control program performed by the control part of FIG. The graph for demonstrating control pressure.
  • the flowchart showing the rotation control program which concerns on the 2nd Embodiment of this invention. A graph for explaining a control pressure range.
  • a graph for explaining a control pressure range. 7 is a flowchart showing a heat release amount control program executed by the control unit of FIG.
  • the waste heat recovery device 11 includes an engine 12 (heat engine) that is a waste heat source, and a Rankine cycle circuit 13.
  • the refrigerant heated by the waste heat from the engine 12 circulates.
  • the waste heat recovery equipment 14 constituting the waste heat recovery apparatus 11 constitutes a part of the Rankine cycle circuit 13.
  • the Rankine cycle circuit 13 includes an expander 15 that constitutes the waste heat recovery device 14, an air-cooled condenser 16 that radiates air, a pump 17 that is a pumping device that constitutes the waste heat recovery device 14, and a boiler 18. Yes.
  • the boiler 18 which is a heat exchanger includes a heat absorption part 181 and a heat radiation part 182.
  • a heat absorption part 181 of the boiler 18 is connected to the discharge side of the pump 17 via a first flow path 19.
  • the heat radiation part 182 is provided on the exhaust passage 20 connected to the engine 12.
  • the exhaust from the engine 12 is exhausted from the muffler 21 after being radiated by the heat radiating portion 182.
  • the refrigerant discharged from the pump 17 is heated by heat exchange between the heat radiating part 182 and the heat absorbing part 181 of the boiler 18.
  • the expander 15 is connected to the discharge side of the heat absorption part 181 of the boiler 18 via the supply flow path 22.
  • the high-temperature and high-pressure refrigerant heated by the boiler 18 is introduced into the expander 15 through the supply flow path 22.
  • the expander 15 expands the refrigerant that has passed through the boiler 18 that is a heat exchanger to generate a rotational driving force.
  • a condenser 16 is connected to the expander 15 via a discharge channel 23.
  • the low-pressure refrigerant expanded by the expander 15 is sent to the condenser 16.
  • a pump 17 is connected to the downstream side of the condenser 16 via a second flow path 24.
  • a second flow path 24 is connected to the suction side of the pump 17, and a first flow path 19 is connected to the discharge side of the pump 17.
  • the second flow path 24, the first flow path 19, the supply flow path 22, and the discharge flow path 23 constitute a refrigerant flow path of the Rankine cycle circuit.
  • the rotor shaft 26 of the alternator 25 constituting the waste heat recovery device 14 serves as both the pump shaft of the pump 17 and the output shaft of the expander 15.
  • a pulley 27 is fixed to the protruding end portion of the rotor shaft 26.
  • a belt 28 is wound around the pulley 27.
  • the belt 28 is wound around a pulley 29 fixed to a crankshaft 30 that is a rotation output shaft of the engine 12.
  • the crankshaft 30 of the engine 12 is connected to the rotor shaft 26 via a pulley 29, a belt 28 and a pulley 27.
  • the rotational driving force generated by the expander 15 assists the rotational output of the engine 12.
  • a battery 31 is electrically connected to the alternator 25.
  • the electric power generated by the alternator 25 is stored in the battery 31.
  • the condenser 16 is cooled by a blowing action caused by the rotation of the fan 321 of the blower 32.
  • a motor 322 that rotates the fan 321 receives rotation control of the control unit 33.
  • the controller 33 is connected to the outside air temperature detector 34 and the pressure detector 35 in signal connection.
  • the outside air temperature detector 34 is an outside air temperature detector that detects the outside air temperature.
  • the pressure detector 35 detects the refrigerant pressure in the second flow path 24 between the condenser 16 and the pump 17.
  • the control unit 33 controls the rotation of the motor 322 based on the detection information on the outside temperature detected by the outside temperature detector 34 and the detection information on the refrigerant pressure detected by the pressure detector 35.
  • FIG. 2 is a flowchart showing the rotation control program.
  • the rotation control of the motor 322 will be described based on the flowchart of FIG. 2 and the operation of the first embodiment will be described.
  • the control unit 33 takes in the outside air temperature Tx detected by the outside air temperature detector 34 and the refrigerant pressure Px detected by the pressure detector 35 in a predetermined control cycle (step S1). After the process of step S1, the control unit 33 specifies the control pressure ⁇ 1 at the outside air temperature Tx based on the detected outside air temperature Tx (step S2).
  • FIG. 3 is a graph showing the relationship between the outside air temperature and the refrigerant condensing pressure.
  • a curve E is a curve indicating the saturated vapor pressure of the refrigerant corresponding to the outside air temperature, and a pressure ⁇ 1 is a condensing pressure on the curve E.
  • control unit 33 determines the magnitude relationship between the detected refrigerant pressure Px and the pressure ⁇ 1 (step S3).
  • control unit 33 performs maximum air volume control (step S4).
  • the maximum air volume control is control for maximizing the rotation speed of the motor 322. By this maximum air volume control, the heat radiation amount in the condenser 16 becomes maximum, and the refrigerant pressure Px larger than the pressure ⁇ 1 approaches the control pressure ⁇ 1.
  • the control unit 33 When the detected refrigerant pressure Px is the pressure ⁇ 1 (NO in step S3), the control unit 33 performs air volume zero control (step S5).
  • the air volume zero control is a control for setting the rotational speed of the motor 322 to zero.
  • the control unit 33 controls the rotation of the motor 322 so that the refrigerant pressure Px approaches the saturated vapor pressure in consideration of the outside air temperature Tx.
  • the blower 32 is a heat dissipation amount adjusting unit that adjusts the heat dissipation amount of the condenser 16.
  • the pressure detector 35 is a pressure detection unit that detects the pressure Px of the refrigerant downstream from the expander 15 and upstream from the pump 17.
  • the controller 33 detects the outside air temperature detection information and the refrigerant pressure so that the refrigerant pressure Px detected by the pressure detector 35 becomes the pressure of the control pressure ⁇ 1, which is a target condensation pressure set in advance according to the outside air temperature Tx. Based on the detection information, the magnitude of the rotational speed of the blower 32 (pressure adjusting unit) (a state in which the heat radiation amount of the condenser 16 is adjusted) is controlled.
  • the refrigerant pressure Px downstream from the expander 15 and upstream from the pump 17 is controlled based on the outside air temperature detection information so as to converge to the control pressure ⁇ 1 set according to the detected outside air temperature Tx. . That is, the refrigerant pressure Px is controlled to be low when the outside air temperature Tx is low, and is controlled to be high when the outside air temperature Tx is high, and the refrigerant pressure Px is controlled following the fluctuation of the outside air temperature Tx. As a result, the pressure difference between the front and rear of the expander 15 can always maintain a substantially maximum pressure difference with respect to the outside air temperature Tx, and the efficiency of waste heat recovery is improved.
  • Control using the refrigerant pressure Px for rotation control of the motor 322 is effective in reliably converging the refrigerant pressure Px to the control pressure ⁇ 1.
  • the blower 32 that can change the cooling capacity by changing the rotational speed of the motor 322 is simple as a pressure adjusting unit that adjusts the pressure of the refrigerant.
  • control unit 33 controls the control pressure range [ ⁇ 1, ⁇ 2] that is the target condensing pressure at the outside air temperature Tx and the reference pressure ⁇ at the outside air temperature Tx based on the detected outside air temperature Tx. Is specified (step S6).
  • FIG. 5 is a graph showing the relationship between the outside air temperature and the refrigerant condensing pressure.
  • the pressure ⁇ 2 is on the curve F above the curve E.
  • the reference pressure ⁇ is larger than the pressure ⁇ 1 and smaller than the pressure ⁇ 2.
  • step S6 the controller 33 determines the magnitude relationship between the detected refrigerant pressure Px and the pressure ⁇ 2 (step S7).
  • control unit 33 performs maximum air volume control (step S4).
  • maximum air volume control the heat radiation amount in the condenser 16 becomes maximum, and the refrigerant pressure Px greater than the pressure ⁇ 2 approaches the control pressure range [ ⁇ 1, ⁇ 2].
  • control unit 33 determines the magnitude relationship between the preset pressure ⁇ ( ⁇ 1 ⁇ ⁇ 2) and the refrigerant pressure Px (step). S8).
  • control unit 33 performs air volume intermediate control (step S9).
  • the air volume intermediate control is a control for increasing the rotational speed of the motor 322 in a range larger than 0 and smaller than the maximum rotational speed as the detected refrigerant pressure Px is larger.
  • the refrigerant pressure Px larger than the pressure ⁇ approaches the pressure range [ ⁇ 1, ⁇ ] by the air volume intermediate control.
  • step S5 When the detected refrigerant pressure Px is equal to or lower than the pressure ⁇ (NO in step S8), the control unit 33 performs air volume zero control (step S5).
  • the control unit 33 controls the rotation of the motor 322 so that the refrigerant pressure Px approaches the lower limit ⁇ 1 of the control pressure range [ ⁇ 1, ⁇ 2] that is the target condensation pressure in consideration of the outside air temperature Tx.
  • FIGS. 6 to 8 the third embodiment shown in FIGS. 6 to 8 will be described.
  • the same reference numerals are used for the same components as those in the second embodiment, and detailed description thereof is omitted.
  • a receiver 36 and a supercooler 37 are provided in the second flow path 24 downstream from the condenser 16 and upstream from the pump 17.
  • a temperature detector 38 is signal-connected to the control unit 33. The temperature detector 38 detects the temperature of the receiver 36 (that is, the refrigerant temperature). The temperature Tr detected by the temperature detector 38 reflects the temperature of the refrigerant in the receiver 36.
  • a bypass passage 39 in parallel with the condenser 16 is provided between the expander 15 and the receiver 36.
  • the bypass channel 39 branches from the discharge channel 23 and joins the second channel 24.
  • a flow rate adjustment valve 40 is provided on the bypass channel 39.
  • the flow rate adjusting valve 40 can continuously change the ratio of the refrigerant flow rate in the bypass passage 39 to the refrigerant flow rate in the condenser 16 (diversion ratio).
  • the flow rate adjustment valve 40 is controlled by the control unit 33.
  • the bypass passage 39 and the flow rate adjustment valve 40 function as a heat radiation amount adjustment unit.
  • the control unit 33 executes a heat release amount control program shown in the flowchart of FIG. 8 based on the outside air temperature Tx detected by the outside air temperature detector 34 and the temperature Tr detected by the temperature detector 38.
  • the heat radiation amount control will be described based on the flowchart of FIG.
  • the control unit 33 takes in the outside air temperature Tx detected by the outside air temperature detector 34 and the temperature Tr detected by the temperature detector 38 in a predetermined control cycle (step S10). After the process of step S10, the control unit 33 performs the refrigerant corresponding to the control pressure range [ ⁇ 1, ⁇ 2] that is the target condensing pressure at the outside air temperature Tx and the refrigerant temperature Tr based on the detected outside air temperature Tx.
  • the pressure Pr is specified (step S11).
  • the control pressure ⁇ 1 is on the lower limit pressure curve G that is above the curve E that represents the saturated vapor pressure of the refrigerant.
  • the control pressure ⁇ 2 is on an upper limit pressure curve H that is above the lower limit pressure curve G.
  • the control unit 33 determines the magnitude relationship between the specified refrigerant pressure Pr and the control pressure ⁇ 2 (step S12).
  • the control unit 33 performs a heat release amount increase control (step S13).
  • the heat release increase control is control for increasing the number of revolutions of the motor 322 or control for reducing the refrigerant flow diversion ratio in the bypass passage 39.
  • the temperature Tr of the receiver 36 that is, the refrigerant pressure Pr converges toward the control pressure range [ ⁇ 1, ⁇ 2] by the heat release amount increase control.
  • the control unit 33 determines whether or not the pressure Pr is equal to or higher than the control pressure ⁇ 1 (step S14). When the pressure Pr is equal to or higher than the control pressure ⁇ 1 (YES in step S14), the control unit 33 performs heat dissipation amount maintenance control (step S15).
  • the heat release amount maintenance control is control for maintaining the rotation speed of the motor 322 or control for maintaining the flow rate ratio of the refrigerant flow rate in the bypass passage 39.
  • the control unit 33 When the pressure Pr is less than the control pressure ⁇ 1 (NO in step S14), the control unit 33 performs heat radiation amount reduction control (step S16).
  • the heat release amount reduction control is control for reducing the number of revolutions of the motor 322 or control for increasing the flow ratio of refrigerant flow in the bypass passage 39.
  • control for maintaining the motor 322 at a constant rotational speed may be performed instead of the air volume zero control in step S5 of the flowchart.
  • step S7 of the flowchart when the determination in step S7 of the flowchart is NO (when the detected pressure Px is in the control pressure range [ ⁇ 1, ⁇ 2]), control is performed to maintain the motor 322 at a constant rotational speed or zero. It may be.
  • the rotational speed of the motor 322 when the detected pressure Px exceeds the control pressure range, the rotational speed of the motor 322 is maintained at the maximum rotational speed, and when the detected pressure Px is within the control pressure range, the motor 322 is rotated at the maximum speed. Control may be performed to maintain a constant rotational speed lower than the number or zero.
  • the saturation vapor pressure of the refrigerant corresponding to the outside air temperature Tx may be set as the target condensation pressure.
  • a pump that pumps the refrigerant that has passed through the condenser 16 may be provided outside the waste heat recovery device 14.
  • the alternator 25 may be driven only by the rotational driving force of the expander 15.
  • the present invention may be applied to a waste heat recovery device other than for vehicles.

Abstract

 廃熱回収装置は、熱交換器と膨張機と空冷型の凝縮器と圧送装置と外気温度検出部と圧力検出部と放熱量調整部と制御部とを備える。熱交換器は熱機関の廃熱を冷媒に伝達する。膨張機は冷媒を膨張させて駆動力を発生させる。凝縮器は膨張機を通過した冷媒の熱を大気に放熱する。圧送装置は凝縮器を通過した冷媒を熱交換器へ移送する。圧力検出部は膨張機より下流且つ前記圧送装置より上流の冷媒の圧力を検出する。放熱量調整部は凝縮器の放熱量を調整する。制御部は放熱量調整部の放熱量調整状態を制御する。制御部は、外気温度検出部によって検出された外気温度に基づいて目標凝縮圧力を設定し、圧力検出部によって検出される圧力が目標凝縮圧力となるように放熱量調整部を制御する。

Description

廃熱回収装置
 本発明は、熱機関の廃熱を冷媒に伝達する熱交換器と、熱交換器を通過した冷媒を膨張させて駆動力を発生させる膨張機と、膨張機を通過した前記冷媒の熱を大気放熱する空冷型の凝縮器と、前記凝縮器を通過した前記冷媒を前記熱交換器へ移送する圧送装置とを備えた廃熱回収装置に関する。
 この種の廃熱回収装置が特許文献1,2に開示されている。
 特許文献1に開示の装置では、凝縮器の気相部を冷却する第1冷却装置と、凝縮器の液相部を冷却する第2冷却装置とが備えられている。第1冷却装置及び第2冷却装置の冷却動作を制御する冷却制御装置は、気相部の圧力に応じて第1冷却装置の冷却動作を制御する圧力制御部と、液相部の温度に応じて第2冷却装置の冷却動作を制御する温度制御部とを備える。凝縮器の気相部の水蒸気圧力は、膨張機より下流の廃熱回収装置の位置でキャビテーション発生の限界圧力以上に制御される。液相部の凝縮水温度は、キャビテーション発生の限界温度以下に制御される。キャビテーションの防止は、ポンプによる圧送効率の低下を回避して廃熱回収効率を高める上で重要である。
 特許文献2に開示の装置では、膨張機の高圧側及び低圧側間の圧力差を検出する圧力差検出手段と、検出された圧力差が予め定めた所定圧力差を下回った時に、所定圧力差となるように圧力差を増加させる圧力差増加手段とが備えられている。膨張機における圧力差は、所定圧力差を下回ることがないように維持される。このような維持制御は、膨張機における安定した膨張仕事をもたらして廃熱回収効率を高める上で有効である。
特開2005-121344号公報 特開2007-255327号公報
 外気温度が変動すると空冷型の凝縮器では凝縮器の放熱量が変動し、冷媒の凝縮圧力及び凝縮温度が変動する。そのため、外気温度を考慮することが廃熱回収の効率を高める上で望ましい。しかし、特許文献1,2のいずれにおいても、外気温度の変動を考慮した制御の開示はなく、目標凝縮圧力又は目標凝縮温度を適正に設定することができない。そのため、廃熱回収の効率が十分に良いとは言えない。
 本発明は、廃熱回収の効率をさらに向上できる廃熱回収装置を提供することを目的とする。
 上記目的を達成するため、本発明の一態様に係る廃熱回収装置は、熱交換器と、膨張機と、空冷型の凝縮器と、圧送装置と、外気温度検出部と、圧力検出部と、放熱量調整部と、制御部とを備える。前記熱交換器は熱機関の廃熱を冷媒に伝達する。前記膨張機は前記熱交換器を通過した前記冷媒を膨張させて駆動力を発生させる。前記凝縮器は前記膨張機を通過した前記冷媒の熱を大気に放熱する。前記圧送装置は前記凝縮器を通過した前記冷媒を前記熱交換器へ移送する。前記外気温度検出部は外気温度を検出する。前記圧力検出部は前記膨張機より下流且つ前記圧送装置より上流の前記冷媒の圧力を検出する。前記放熱量調整部は前記凝縮器の放熱量を調整する。前記制御部は前記放熱量調整部の放熱量調整状態を制御する。前記制御部は、前記外気温度検出部によって検出された外気温度に基づいて目標凝縮圧力を設定し、前記圧力検出部によって検出される圧力が前記目標凝縮圧力となるように前記放熱量調整部を制御する。
 上記構成によれば、外気温度に基づいて膨張機より下流且つ圧送装置より上流の冷媒圧力が目標凝縮圧力となるように凝縮器の放熱量を調整する。これにより、外気温度の変化に対して常に排熱回収効率を高くすることができる。
 好ましくは、前記目標凝縮圧力は、前記外気温度検出部により検出された外気温度に対応する冷媒の飽和蒸気圧に設定される。
 目標凝縮圧力を冷媒の飽和蒸気圧、すなわち外気温度に対して実現可能な最低圧力に設定することで膨張機前後の圧力差を高く維持することができる。そのため、廃熱回収効率を高くすることができる。
 好ましくは、前記目標凝縮圧力は、前記外気温度検出部により検出された外気温度に対応する冷媒の飽和蒸気圧より高い圧力に設定される。
 目標凝縮圧力が低すぎると放熱量を最大に制御しても最大放熱能力不足による目標凝縮圧力と実際の圧力との乖離が頻繁に発生する。目標凝縮圧力を外気温度に対する飽和蒸気圧より高い圧力に設定することで凝縮器における放熱量の制御が安定しやすくなる。
 好ましくは、前記目標凝縮圧力は、前記外気温度検出部により検出された外気温度に対応する冷媒の飽和蒸気圧と前記飽和蒸気圧よりも高い上限圧力との間の範囲に設定される。
 目標凝縮圧力に幅を設けることで放熱量制御がハンチングすることがなくなり、制御が安定しやすくなる。
 好ましくは、前記目標凝縮圧力は、前記外気温度検出部により検出された外気温度に対応する冷媒の飽和蒸気圧よりも高い下限圧力と前記下限圧力よりも高い上限圧力との間の範囲に設定される。
 目標凝縮圧力に上下限の幅を設けることで放熱量増加と減少の制御がハンチングすることがなくなり、制御が安定しやすくなる。
 好ましくは、前記凝縮器より下流且つ前記圧送装置の上流に設けられたレシーバと過冷却器とをさらに備える。
 目標凝縮圧力を外気温度に対応する飽和蒸気圧より高く設定することで、過冷却器により冷媒の過冷却度を確実に確保できるようになる。そのため、圧送装置でのキャビテーションの発生を防止することができる。
 好ましくは、前記圧力検出部は、前記凝縮器と前記過冷却器との間の冷媒温度を検出する温度検出部であり、前記冷媒温度に対応する冷媒飽和蒸気圧を検出圧力とする。
 温度の検出は、圧力の検出より簡便である。また冷媒温度を直接検出しなくても冷媒配管や気液分離器の筐体温度を冷媒温度として代用が可能である。冷媒配管や気液分離器の筐体温度の検出はより簡便である。
 好ましくは、前記放熱量調整部は、前記凝縮器を冷却する送風機であり、同送風機は送風能力可変なモータによって駆動される。
 このような送風機は、凝縮器より下流の冷媒圧力を調整する手段として簡便である。
 好ましくは、前記放熱量調整部は、前記凝縮器と並列なバイパス流路と、前記バイパス流路上の流量調整弁とを含む。
 凝縮器と並列なバイパス流路と前記バイパス流路上の流量調整弁とを放熱量調整部として設けることは簡便である。又、車両に凝縮器が搭載される場合は、凝縮器が車両の走行により発生する走行風を受けることによりさらに放熱する。そのため、送風機の制御のみでは放熱量調整量に限界がある。そのため、凝縮器に対して冷媒をバイパスすることは放熱量調整部としてより効果的である。
本発明の第1の実施形態に係る廃熱回収装置を示す模式図。 図1の制御部によって実行される回転制御プログラムを表すフローチャート。 制御圧力を説明するためのグラフ。 本発明の第2の実施形態に係る回転制御プログラムを表すフローチャート。 制御圧力範囲を説明するためのグラフ。 本発明の第3の実施形態に係る廃熱回収装置を示す模式図。 制御圧力範囲を説明するためのグラフ。 図6の制御部によって実行される放熱量制御プログラムを表すフローチャート。
 以下、本発明を車両搭載の廃熱回収装置に具体化した第1の実施形態を図1~図3に基づいて説明する。
 図1に示すように、廃熱回収装置11は、廃熱源であるエンジン12(熱機関)と、ランキンサイクル回路13とを備えている。
 ランキンサイクル回路13では、エンジン12からの廃熱によって加熱される冷媒が循環する。廃熱回収装置11を構成する廃熱回収機器14は、ランキンサイクル回路13の一部を構成している。
 ランキンサイクル回路13は、廃熱回収機器14を構成する膨張機15、大気放熱する空冷型の凝縮器16、廃熱回収機器14を構成する圧送装置であるポンプ17、及びボイラ18によって構成されている。
 熱交換器であるボイラ18は、吸熱部181と放熱部182とを備える。ポンプ17の吐出側にはボイラ18の吸熱部181が第1流路19を介して接続されている。
 放熱部182は、エンジン12に接続された排気通路20上に設けられている。エンジン12からの排気は、放熱部182で放熱された後にマフラ21から排気される。ポンプ17から吐出された冷媒は、ボイラ18の放熱部182と吸熱部181との間での熱交換により加熱される。
 ボイラ18の吸熱部181の吐出側には膨張機15が供給流路22を介して接続されている。ボイラ18で加熱された高温高圧の冷媒は、供給流路22を介して膨張機15に導入されるようになっている。膨張機15は、熱交換器であるボイラ18を通過した冷媒を膨張させて回転駆動力を発生させる。膨張機15には凝縮器16が排出流路23を介して接続されている。膨張機15で膨張した低圧の冷媒は、凝縮器16へ送られる。
 凝縮器16の下流側にはポンプ17が第2流路24を介して接続されている。ポンプ17の吸入側には第2流路24が接続されており、ポンプ17の吐出側には第1流路19が接続されている。
 第2流路24、第1流路19、供給流路22、及び排出流路23は、ランキンサイクル回路の冷媒流路を構成する。
 廃熱回収機器14を構成するオルタネータ25のロータ軸26は、ポンプ17のポンプ軸及び膨張機15の出力軸を兼用している。ロータ軸26の突出端部にはプーリ27が止着されている。プーリ27にはベルト28が巻き掛けられている。ベルト28は、エンジン12の回転出力軸であるクランク軸30に止着されたプーリ29に巻き掛けられている。エンジン12のクランク軸30は、プーリ29、ベルト28及びプーリ27を介してロータ軸26と連結している。膨張機15で生じた回転駆動力は、エンジン12の回転出力を補助する。
 オルタネータ25にはバッテリ31が電気的に接続されている。オルタネータ25で生じた電力は、バッテリ31に蓄電されるようになっている。
 凝縮器16は、送風機32のファン321の回転による送風作用によって冷却される。ファン321を回転するモータ322は、制御部33の回転制御を受ける。
 制御部33には外気温度検出器34及び圧力検出器35が信号接続されている。外気温度検出器34は、外気温度を検出する外気温度検出部である。圧力検出器35は、凝縮器16とポンプ17との間の第2流路24内の冷媒圧力を検出する。制御部33は、外気温度検出器34によって検出された外気温度の検出情報及び圧力検出器35によって検出された冷媒圧力の検出情報に基づいて、モータ322を回転制御する。
 図2は、回転制御プログラムを表すフローチャートである。以下において、図2のフローチャートに基づいてモータ322の回転制御を説明すると共に、第1の実施形態の作用を説明する。
 制御部33は、外気温度検出器34によって検出された外気温度Tx及び圧力検出器35によって検出された冷媒圧力Pxを所定の制御周期で取り込んでいる(ステップS1)。ステップS1の処理後、制御部33は、検出された外気温度Txに基づいて、外気温度Txのときの制御圧力α1を特定する(ステップS2)。
 図3は、外気温度と冷媒の凝縮圧力との関係を示すグラフである。曲線Eは、外気温度に対応する冷媒の飽和蒸気圧を示す曲線であり、圧力α1は、曲線E上にある凝縮圧力である。
 ステップS2の処理後、制御部33は、検出された冷媒圧力Pxと圧力α1との大小関係を判断する(ステップS3)。検出された冷媒圧力Pxが圧力α2よりも大きい場合(ステップS3においてYES)、制御部33は、風量最大制御を遂行する(ステップS4)。風量最大制御は、モータ322の回転数を最大にする制御である。この風量最大制御により凝縮器16における放熱量が最大になり、圧力α1より大きい冷媒圧力Pxが制御圧力α1に近づく。
 検出された冷媒圧力Pxが圧力α1の場合(ステップS3においてNO)、制御部33は、風量零制御を遂行する(ステップS5)。風量零制御は、モータ322の回転数を零にする制御である。
 図3に示すように、外気温度Txが変化すると冷媒の飽和蒸気圧が変化する。しかし、制御部33は、外気温度Txを考慮して冷媒圧力Pxを飽和蒸気圧に近づけるように、モータ322の回転を制御する。
 送風機32は、凝縮器16の放熱量を調整する放熱量調整部である。圧力検出器35は、膨張機15より下流且つポンプ17より上流の冷媒の圧力Pxを検出する圧力検出部である。制御部33は、圧力検出器35により検出された冷媒の圧力Pxが外気温度Txに応じて予め設定された目標凝縮圧力である制御圧力α1の圧力となるように、外気温度検出情報及び冷媒圧力検出情報に基づいて、送風機32(圧力調整部)の回転数の大きさ(凝縮器16の放熱量を調整する状態)を制御する。
 第1の実施形態では以下の利点が得られる。
 (1)膨張機15より下流且つポンプ17より上流の冷媒圧力Pxは、検出された外気温度Txに応じて設定された制御圧力α1に収束するように、外気温度検出情報に基づいて制御される。つまり、冷媒圧力Pxは、外気温度Txが低い時は低く、外気温度Txが高い時には高く制御され、冷媒圧力Pxの制御は、外気温度Txの変動に追随して行なわれる。その結果、膨張機15前後の圧力差は、外気温度Txに対して常に略最大の圧力差を維持することができ、廃熱回収の効率が向上する。
 (2)冷媒圧力Pxをモータ322の回転制御に用いる制御は、冷媒圧力Pxを制御圧力α1に確実に収束させる上で有効である。
 (3)モータ322の回転数を変更することによって冷却能力を変更できる送風機32は、冷媒の圧力を調整する圧力調整部として簡便である。
 (4)目標凝縮圧力を冷媒の飽和蒸気圧、すなわち外気温度に対して実現可能な最低圧力に設定することは、膨張機15前後の圧力差を高く維持することを可能にする。その結果、廃熱回収効率を高くすることができる。
 次に、図4及び図5の第2の実施形態を説明する。第1の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。
 ステップS1の処理後、制御部33は、検出された外気温度Txに基づいて、外気温度Txのときの目標凝縮圧力である制御圧力範囲〔α1,α2〕及び外気温度Txのときの基準圧力γを特定する(ステップS6)。
 図5は、外気温度と冷媒の凝縮圧力との関係を示すグラフである。圧力α2は、曲線Eよりも上側にある曲線F上にある。本実施形態では、目標上限圧力である圧力α2と目標下限圧力である圧力α1との差(α2―α1=Δ1)は、一定である。基準圧力γは、圧力α1より大きく、圧力α2より小さい。又、基準圧力γと圧力α1との差(γ―α1=Δ2)は、一定である。
 ステップS6の処理後、制御部33は、検出された冷媒圧力Pxと圧力α2との大小関係を判断する(ステップS7)。検出された冷媒圧力Pxが圧力α2よりも大きい場合(ステップS7においてYES)、制御部33は、風量最大制御を遂行する(ステップS4)。この風量最大制御により凝縮器16における放熱量が最大になり、圧力α2より大きい冷媒圧力Pxが制御圧力範囲〔α1,α2〕に近づく。
 検出された冷媒圧力Pxが圧力α2以下の場合(ステップS7においてNO)、制御部33は、予め設定された圧力γ(α1<γ<α2)と冷媒圧力Pxとの大小関係を判断する(ステップS8)。検出された冷媒圧力Pxが圧力γを超える場合(ステップS7においてYES)、制御部33は、風量中間制御を遂行する(ステップS9)。風量中間制御は、検出された冷媒圧力Pxが大きいほど、モータ322の回転数を0より大きく且つ最大回転数より小さい範囲で大きくする制御である。圧力γより大きい冷媒圧力Pxは、風量中間制御により圧力範囲〔α1,γ〕に近づく。
 検出された冷媒圧力Pxが圧力γ以下の場合(ステップS8においてNO)、制御部33は、風量零制御を遂行する(ステップS5)。
 制御部33は、外気温度Txを考慮して冷媒圧力Pxを目標凝縮圧力である制御圧力範囲〔α1,α2〕の下限α1に近づけるように、モータ322の回転を制御する。
 第2の実施形態では、第1の実施形態と同様の利点が得られるうえに、以下の利点が得られる。
 (4)範囲のある目標凝縮圧力である制御圧力範囲〔α1,α2〕に冷媒の圧力を収める制御では、放熱量制御がハンチングすることがなくなり、制御が安定しやすくなる。
 次に、図6~図8の第3の実施形態を説明する。第2の実施形態と同じ構成部には同じ符合を用い、その詳細説明は省略する。
 図6に示すように、凝縮器16より下流かつポンプ17より上流の第2流路24にはレシーバ36及び過冷却器37が設けられている。制御部33には温度検出器38が信号接続されている。温度検出器38は、レシーバ36の温度(つまり冷媒温度)を検出する。温度検出器38によって検出された温度Trは、レシーバ36内の冷媒の温度を反映する。
 凝縮器16と並列なバイパス流路39が膨張機15とレシーバ36との間で設けられている。バイパス流路39は、排出流路23から分岐して第2流路24に合流する。バイパス流路39上には流量調整弁40が設けられている。流量調整弁40は、凝縮器16における冷媒流量に対するバイパス流路39における冷媒流量の比(分流比)を連続的に変更可能である。流量調整弁40は、制御部33の制御を受ける。バイパス流路39及び流量調整弁40は放熱量調整部として機能する。
 制御部33は、外気温度検出器34によって検出された外気温度Tx及び温度検出器38によって検出された温度Trに基づいて、図8のフローチャートで表す放熱量制御プログラムを遂行する。以下において、図8のフローチャートに基づいて放熱量制御を説明する。
 制御部33は、外気温度検出器34によって検出された外気温度Tx及び温度検出器38によって検出された温度Trを所定の制御周期で取り込んでいる(ステップS10)。ステップS10の処理後、制御部33は、検出された外気温度Txに基づいて、外気温度Txのときの目標凝縮圧力である制御圧力範囲〔β1,β2〕、及び冷媒の温度Trに対応する冷媒圧力Prを特定する(ステップS11)。図7に示すように、制御圧力β1は、冷媒の飽和蒸気圧を表す曲線Eより上側にある下限圧力曲線G上にある。制御圧力β2は、下限圧力曲線Gより上側にある上限圧力曲線H上にある。本実施形態では、外気温度Txに対応する制御圧力β2と温度Txに対応する制御圧力β1との差(β2―β1=Δ3)は、一定である。
 ステップS11の処理後、制御部33は、特定された冷媒圧力Prと制御圧力β2との大小関係を判断する(ステップS12)。特定された冷媒圧力Prが制御圧力β2以上である場合(ステップS12においてYES)、制御部33は、放熱量増加制御を遂行する(ステップS13)。放熱量増加制御は、モータ322の回転数を増大する制御、又はバイパス流路39における冷媒流量の分流比を小さくする制御である。レシーバ36の温度Tr、つまり冷媒圧力Prは、放熱量増加制御により制御圧力範囲〔β1,β2〕に向けて収束する。
 特定された圧力Prが制御圧力β2に満たない場合(ステップS12においてNO)、制御部33は、圧力Prが制御圧力β1以上であるか否かを判断する(ステップS14)。圧力Prが制御圧力β1以上である場合(ステップS14においてYES)、制御部33は、放熱量維持制御を遂行する(ステップS15)。放熱量維持制御は、モータ322の回転数を維持する制御、又はバイパス流路39における冷媒流量の分流比を維持する制御である。
 圧力Prが制御圧力β1に満たない場合(ステップS14においてNO)、制御部33は、放熱量減少制御を遂行する(ステップS16)。放熱量減少制御は、モータ322の回転数を減少する制御、又はバイパス流路39における冷媒流量の分流比を大きくする制御である。
 第3の実施形態では、第1の実施形態と同様の利点が得られる上に、以下の利点が得られる。
 (5)凝縮器16より下流(第2流路)の冷媒の温度Tr(レシーバ36の温度)の検出が、圧力Pxの検出に比べて容易であるという利点が得られる。又、冷媒温度を直接検出しなくても冷媒配管や気液分離器の筐体温度を冷媒温度として代用が可能で、放熱量制御のための冷媒圧力情報の取得が簡便である。
 (6)過冷却器37の上流にある凝縮器16を出た冷媒の温度から換算される冷媒圧力を外気温度に対応した飽和蒸気圧よりも大きくする制御は、過冷却器37で確実に過冷却度が得られる。そのため、この制御はキャビテーション発生防止を確実にする上で有効である。
 (7)送風機32のみによって放熱量を調整する場合は放熱量調整量に限界がある。車両に凝縮器16を搭載した場合には、凝縮器16が車両の走行により発生する走行風を受けることによりさらに放熱する。そのため、凝縮器16に対して冷媒をバイパスさせる構成は、放熱量調整部としてより効果的である。
 本発明では以下のような実施形態も可能である。
 第1の実施形態において、フローチャートのステップS5における風量零制御の代わりに、モータ322を一定回転数に維持する制御を行なうようにしてもよい。
 第2の実施形態において、フローチャートのステップS7における判断がNOの場合(検出圧力Pxが制御圧力範囲〔α1,α2〕にある場合)、モータ322を一定回転数又は零に維持する制御を行なうようにしてもよい。
 第2の実施形態において、検出圧力Pxが制御圧力範囲を超える場合にはモータ322の回転数を最大回転数に維持し、検出圧力Pxが制御圧力範囲にある場合には、モータ322を最大回転数より低い一定回転数又は零に維持する制御を行なうようにしてもよい。
 外気温度Txに対応した冷媒の飽和蒸気圧を目標凝縮圧力としてもよい。
 車両搭載の凝縮器16へ車両走行によって外気を当てる割合を増減可能な走行風量可変機構を設け、該走行風量可変機構を放熱量調整部として機能させてもよい。
 凝縮器16を通過した冷媒を圧送するポンプを廃熱回収機器14外に設けてもよい。
 膨張機15の回転駆動力のみによってオルタネータ25を駆動するようにしてもよい。
 車両用以外の廃熱回収装置に本発明を適用してもよい。

Claims (9)

  1.  熱機関の廃熱を冷媒に伝達する熱交換器と、
     前記熱交換器を通過した前記冷媒を膨張させて駆動力を発生させる膨張機と、
     前記膨張機を通過した前記冷媒の熱を大気に放熱する空冷型の凝縮器と、
     前記凝縮器を通過した前記冷媒を前記熱交換器へ移送する圧送装置と、
     外気温度を検出する外気温度検出部と、
     前記膨張機より下流且つ前記圧送装置より上流の前記冷媒の圧力を検出する圧力検出部と、
     前記凝縮器の放熱量を調整する放熱量調整部と、
     前記放熱量調整部の放熱量調整状態を制御する制御部と、を備え、
     前記制御部は、前記外気温度検出部によって検出された外気温度に基づいて目標凝縮圧力を設定し、前記圧力検出部によって検出される圧力が前記目標凝縮圧力となるように前記放熱量調整部を制御する廃熱回収装置。
  2.  前記目標凝縮圧力は、前記外気温度検出部により検出された外気温度に対応する冷媒の飽和蒸気圧に設定される請求項1に記載の廃熱回収装置。
  3.  前記目標凝縮圧力は、前記外気温度検出部により検出された外気温度に対応する冷媒の飽和蒸気圧より高い圧力に設定される請求項1に記載の廃熱回収装置。
  4.  前記目標凝縮圧力は、前記外気温度検出部により検出された外気温度に対応する冷媒の飽和蒸気圧と前記飽和蒸気圧よりも高い上限圧力との間の範囲に設定される請求項1に記載の廃熱回収装置。
  5.  前記目標凝縮圧力は、前記外気温度検出部により検出された外気温度に対応する冷媒の飽和蒸気圧よりも高い下限圧力と前記下限圧力よりも高い上限圧力との間の範囲に設定される請求項1に記載の廃熱回収装置。
  6.  前記凝縮器より下流且つ前記圧送装置の上流に設けられたレシーバと過冷却器とをさらに備える請求項3乃至請求項5のいずれか1項に記載の廃熱回収装置。
  7.  前記圧力検出部は、前記凝縮器と前記過冷却器との間の冷媒温度を検出する温度検出部であり、前記冷媒温度に対応する冷媒飽和蒸気圧を検出圧力とする請求項6に記載の廃熱回収装置。
  8.  前記放熱量調整部は、前記凝縮器を冷却する送風機であり、同送風機は送風能力可変なモータによって駆動される請求項1乃至請求項7のいずれか1項に記載の廃熱回収装置。
  9.  前記放熱量調整部は、前記凝縮器と並列なバイパス流路と、前記バイパス流路上の流量調整弁とを含む請求項1乃至請求項7のいずれか1項に記載の廃熱回収装置。
PCT/JP2012/066225 2011-07-11 2012-06-26 廃熱回収装置 WO2013008613A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-153095 2011-07-11
JP2011153095A JP5589981B2 (ja) 2011-07-11 2011-07-11 廃熱回収装置

Publications (1)

Publication Number Publication Date
WO2013008613A1 true WO2013008613A1 (ja) 2013-01-17

Family

ID=47505910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/066225 WO2013008613A1 (ja) 2011-07-11 2012-06-26 廃熱回収装置

Country Status (2)

Country Link
JP (1) JP5589981B2 (ja)
WO (1) WO2013008613A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039438A1 (ja) * 2014-09-12 2016-03-17 サンデンホールディングス株式会社 車両用廃熱回収装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6640524B2 (ja) * 2015-10-16 2020-02-05 パナソニック株式会社 ランキンサイクル発電装置

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127062A (ja) * 1986-11-14 1988-05-30 石川島播磨重工業株式会社 液化天然ガスの冷熱利用装置
JPH0447104A (ja) * 1990-06-13 1992-02-17 Aisin Seiki Co Ltd 蒸気原動機
JP2000345835A (ja) * 1999-06-07 2000-12-12 Nissan Motor Co Ltd 内燃機関
JP2001317353A (ja) * 2000-05-11 2001-11-16 Nissan Motor Co Ltd 車両用モータファンの制御方法及び装置
JP2004197601A (ja) * 2002-12-17 2004-07-15 Nippon Steel Corp 廃棄物処理設備における排ガス処理系の蒸気タービンの運転方法
JP2005146990A (ja) * 2003-11-14 2005-06-09 Honda Motor Co Ltd ランキンサイクル装置
JP2005273655A (ja) * 2004-02-24 2005-10-06 Kubota Corp 発電制御方法とその装置
JP2007170236A (ja) * 2005-12-20 2007-07-05 Denso Corp エンジン冷却装置
JP2008069702A (ja) * 2006-09-13 2008-03-27 Kawasaki Heavy Ind Ltd 蒸気タービンの運転制御方法およびゴミ処理施設の発電装置
JP2008209085A (ja) * 2007-02-28 2008-09-11 Denso Corp 複合サイクル装置
WO2009133620A1 (ja) * 2008-05-01 2009-11-05 サンデン株式会社 内燃機関の廃熱利用装置
JP2010007939A (ja) * 2008-06-26 2010-01-14 Orion Mach Co Ltd 凝縮器およびこれを備える圧縮空気除湿装置
JP2010133299A (ja) * 2008-12-03 2010-06-17 Toyota Motor Corp 廃熱回収装置及び内燃機関
JP2010188949A (ja) * 2009-02-20 2010-09-02 Nissan Motor Co Ltd 廃熱回収システム搭載車両
JP2010229843A (ja) * 2009-03-26 2010-10-14 Sanden Corp 内燃機関の廃熱利用装置
JP2010255604A (ja) * 2009-04-28 2010-11-11 Toyota Motor Corp 廃熱回収装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63127062A (ja) * 1986-11-14 1988-05-30 石川島播磨重工業株式会社 液化天然ガスの冷熱利用装置
JPH0447104A (ja) * 1990-06-13 1992-02-17 Aisin Seiki Co Ltd 蒸気原動機
JP2000345835A (ja) * 1999-06-07 2000-12-12 Nissan Motor Co Ltd 内燃機関
JP2001317353A (ja) * 2000-05-11 2001-11-16 Nissan Motor Co Ltd 車両用モータファンの制御方法及び装置
JP2004197601A (ja) * 2002-12-17 2004-07-15 Nippon Steel Corp 廃棄物処理設備における排ガス処理系の蒸気タービンの運転方法
JP2005146990A (ja) * 2003-11-14 2005-06-09 Honda Motor Co Ltd ランキンサイクル装置
JP2005273655A (ja) * 2004-02-24 2005-10-06 Kubota Corp 発電制御方法とその装置
JP2007170236A (ja) * 2005-12-20 2007-07-05 Denso Corp エンジン冷却装置
JP2008069702A (ja) * 2006-09-13 2008-03-27 Kawasaki Heavy Ind Ltd 蒸気タービンの運転制御方法およびゴミ処理施設の発電装置
JP2008209085A (ja) * 2007-02-28 2008-09-11 Denso Corp 複合サイクル装置
WO2009133620A1 (ja) * 2008-05-01 2009-11-05 サンデン株式会社 内燃機関の廃熱利用装置
JP2010007939A (ja) * 2008-06-26 2010-01-14 Orion Mach Co Ltd 凝縮器およびこれを備える圧縮空気除湿装置
JP2010133299A (ja) * 2008-12-03 2010-06-17 Toyota Motor Corp 廃熱回収装置及び内燃機関
JP2010188949A (ja) * 2009-02-20 2010-09-02 Nissan Motor Co Ltd 廃熱回収システム搭載車両
JP2010229843A (ja) * 2009-03-26 2010-10-14 Sanden Corp 内燃機関の廃熱利用装置
JP2010255604A (ja) * 2009-04-28 2010-11-11 Toyota Motor Corp 廃熱回収装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016039438A1 (ja) * 2014-09-12 2016-03-17 サンデンホールディングス株式会社 車両用廃熱回収装置

Also Published As

Publication number Publication date
JP2013019316A (ja) 2013-01-31
JP5589981B2 (ja) 2014-09-17

Similar Documents

Publication Publication Date Title
US8959914B2 (en) Waste heat utilization device for internal combustion engine
JP4935935B2 (ja) 排熱回生システム
KR101708109B1 (ko) 폐열 회수 장치 및 폐열 회수 방법
JP5621721B2 (ja) ランキンサイクル
JP5999652B2 (ja) 排熱回収装置
US10550730B2 (en) Waste heat recovery system
KR101897871B1 (ko) 열 에너지 회수 시스템
KR20170083139A (ko) Whr-시스템용 냉각 장치
KR102114411B1 (ko) 차량 내 열교환기로 냉각제를 운송하는 냉각 시스템 제어 방법
JP2007205699A (ja) 廃熱利用装置を備える冷凍装置
JP5589981B2 (ja) 廃熱回収装置
WO2012039225A1 (ja) ランキンサイクル装置
JP2008057874A (ja) 冷凍サイクル装置
WO2013002018A1 (ja) ランキンサイクル
WO2017061421A1 (ja) 発電装置及び発電装置の制御方法
JP2017110551A (ja) 廃熱回収装置
JP5571978B2 (ja) ヒートポンプシステム
KR20180096790A (ko) Whr 시스템 및 연소 엔진용 냉각 시스템
JP2013044239A (ja) 車両用排熱回収装置
JP5653320B2 (ja) 排熱回生システム
JP5907812B2 (ja) ヒートポンプシステム及びその運転方法
WO2014010465A1 (ja) ランキンサイクル装置
JP6793096B2 (ja) 過給機付エンジン搭載内燃機関
RU2773760C2 (ru) Способ и система управления системой обеспечения температурного регулирования автотранспортного средства
JP2019157735A (ja) ランキンサイクルシステム、及び、ランキンサイクルシステムの制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12812087

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12812087

Country of ref document: EP

Kind code of ref document: A1