JP2009167995A - 内燃機関の廃熱利用装置 - Google Patents

内燃機関の廃熱利用装置 Download PDF

Info

Publication number
JP2009167995A
JP2009167995A JP2008010364A JP2008010364A JP2009167995A JP 2009167995 A JP2009167995 A JP 2009167995A JP 2008010364 A JP2008010364 A JP 2008010364A JP 2008010364 A JP2008010364 A JP 2008010364A JP 2009167995 A JP2009167995 A JP 2009167995A
Authority
JP
Japan
Prior art keywords
condenser
flapper
internal combustion
combustion engine
waste heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008010364A
Other languages
English (en)
Inventor
Junichiro Kasuya
潤一郎 粕谷
Tomonori Imai
智規 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2008010364A priority Critical patent/JP2009167995A/ja
Publication of JP2009167995A publication Critical patent/JP2009167995A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

【課題】廃熱利用装置のエネルギー回収効率を大幅に向上することができる内燃機関の廃熱利用装置を提供する。
【解決手段】内燃機関(2)の廃熱によって加熱された冷却水を外気により冷却させるラジエータ(12)を有する冷却水回路(4)と、冷媒を外気の通風により凝縮させる第1凝縮器(24)を有するランキンサイクル(6)と、冷媒を外気の通風により凝縮させる第2凝縮器(36)を有する冷凍サイクル(8)とを備えた内燃機関の廃熱利用装置であって、外気の通風方向から順に、第2凝縮器、第1凝縮器、ラジエータを互いに所定の隙間(D1,D2)を存して重ねられた熱交換ユニット(48)が構成され、熱交換ユニットは、第1凝縮器とラジエータとの間の第1の隙間(D1)を外気の通風方向に沿って閉塞する閉塞板(52)を有する。
【選択図】図5

Description

本発明は、内燃機関の廃熱利用装置に係り、例えば、車両に好適な内燃機関の廃熱利用装置に関する。
この種の内燃機関の廃熱利用装置は、例えば車両に搭載され、車両のエンジンを冷却する冷却水を介して廃熱を回収しており、この廃熱によって加熱された蒸発冷媒を膨張させて駆動力を発生する膨張機、この膨張機を流通した冷媒を外気により凝縮させるランキンサイクルコンデンサ(RCコンデンサ)を有するランキンサイクル(RC)と、車室内の空気によって加熱された蒸発冷媒を外部動力によって圧縮する圧縮機、この圧縮機を流通した冷媒を外気により凝縮させるエアコンサイクルコンデンサ(ACコンデンサ)を有する冷凍サイクルとしてのエアコンサイクル(AC)とを備えている。
そして、例えば特許文献1には、上記各サイクルの共用コンデンサを設け、このコンデンサをRCコンデンサまたはACコンデンサとして使用する技術が開示されている。
特開昭63−96449号公報
ところで、このようなコンデンサは、概して車両のエンジンを冷却するべく車両の前面からの走行風を受けるラジエータの前側に重ねて設置されるため、ラジエータ手前における通風抵抗が増大、すなわち通風量が低下し、ラジエータの熱交換性能を悪化させる。
また、上記従来技術では、共用コンデンサとすることによりラジエータ手前における通風抵抗を低減することができるものの、共用コンデンサをAC及びRC回路にて同時に使用することができないため、エアコン運転時には廃熱利用装置を運転できず、廃熱利用装置のエネルギー回収効率の向上には依然として課題が残されている。
本発明は、このような課題に鑑みてなされたもので、廃熱利用装置のエネルギー回収効率を大幅に向上することができる内燃機関の廃熱利用装置を提供することを目的とする。
上記の目的を達成するべく、請求項1記載の内燃機関の廃熱利用装置は、内燃機関の廃熱によって加熱された冷却水を外気により冷却させるラジエータを有する冷却水回路と、冷却水によって加熱された冷媒を膨張させて駆動力を発生する膨張機、該膨張機を流通した冷媒を外気の通風により凝縮させる第1凝縮器を有するランキンサイクルと、熱源によって加熱された冷媒を圧縮する圧縮機、該圧縮機を流通した冷媒を外気の通風により凝縮させる第2凝縮器を有する冷凍サイクルとを備えた内燃機関の廃熱利用装置であって、外気の通風方向から順に、第2凝縮器、第1凝縮器、ラジエータを互いに所定の隙間を存して重ねた熱交換ユニットを備え、熱交換ユニットは、所定の隙間のうちの第1凝縮器とラジエータとの間の第1の隙間を外気の通風方向に沿って閉塞する閉塞板を有することを特徴としている。
また、請求項2記載の発明では、請求項1において、熱交換ユニットは、冷凍サイクルの稼動時に所定の隙間のうちの第1凝縮器と第2凝縮器との間の第2の隙間を外気の通風方向に沿って閉塞するべく閉作動される一方、冷凍サイクルの非稼動時に第2の隙間を開放するべく開作動されるフラッパーを有することを特徴としている。
更に、請求項3記載の発明では、請求項2において、フラッパーは、第2の隙間の閉塞から開放方向に回動可能に第1凝縮器に支持される固定端と、フラッパーの開作動時に第2凝縮器の側面よりも外方側に位置づけられる可動端とを有することを特徴としている。
更にまた、請求項4記載の発明では、請求項1乃至3の何れかにおいて、熱交換ユニットは、第2凝縮器に支持される固定端を有する第2フラッパーを備え、該第2フラッパーは冷凍サイクルの稼動時に第2凝縮器の側面よりも外方側に位置づけられる可動端を有することを特徴としている。
また、請求項5記載の発明では、請求項1乃至4の何れかにおいて、少なくとも閉塞板、フラッパー、及び第2フラッパーのいずれかは、熱交換ユニットの左右上下の側面に設けられることを特徴としている。
請求項1記載の本発明の内燃機関の廃熱利用装置によれば、閉塞板が第1凝縮器とラジエータとの間の第1の隙間を外気の通風方向に沿って閉塞することにより、第1凝縮器を迂回した外気の第1の隙間からの流入が抑制されるため、第1凝縮器の通風量低下を防止することができる。従って、廃熱利用装置のエネルギー回収効率を向上することができる。
また、請求項2記載の発明によれば、フラッパーが冷凍サイクルの稼動時に第1凝縮器と第2凝縮器との間の第2の隙間を閉塞することにより、この隙間からの第2凝縮器を迂回した外気の流入が抑制されるため、第2凝縮器の通風量低下を防止することができる。
一方、フラッパーが冷凍サイクルの非稼動時に第2の隙間を開放することにより、この隙間を介して外気を直接に第1凝縮器に導くことができる。従って、冷凍サイクルの稼動、非稼動に応じて、第1凝縮器または第2凝縮器における冷媒の凝縮性能を向上することができ、ひいては廃熱利用装置のエネルギー回収効率を向上することができる。
更に、請求項3記載の発明によれば、フラッパーの可動端がフラッパーの開作動時に第2凝縮器の側面よりも外方側に位置づけられることにより、第1凝縮器における外気の受面積を実質的に大きくすることができるため、冷凍サイクルの非稼動時において外気を第1凝縮器に更に効果的に導くことができる。従って、第1凝縮器における冷媒の凝縮性能、ひいては廃熱利用装置のエネルギー回収効率を更に向上することができる。
更にまた、請求項4記載の発明によれば、第2フラッパーの可動端が冷凍サイクルの稼動時に第2凝縮器の側面よりも外方側に位置づけられることにより、第2凝縮器における外気の受面積を実質的に大きくすることができるため、冷凍サイクルの稼動時において外気を第1及び第2凝縮器に更に効果的に導くことができる。従って、第1及び第2凝縮器における冷媒の凝縮性能、ひいては廃熱利用装置のエネルギー回収効率を更に向上することができる。
また、請求項5記載の発明によれば、少なくとも閉塞板、フラッパー、及び第2フラッパーのいずれかが熱交換ユニットの左右上下の側面に設けられることにより、第1及び第2の隙間の密閉性を高めることができるため、各フラッパーを閉作動したときの各隙間における外気の漏洩を確実に抑制することができるとともに、第1及び第2凝縮器における外気の受面積を更に大きくすることができるため、第1及び第2凝縮器における冷媒の凝縮性能、ひいては廃熱利用装置のエネルギー回収効率をより一層向上することができる。
本実施形態の内燃機関の廃熱利用装置は、例えば車両に搭載され、図1の模式図に示されるように、車両のエンジン2を冷却する冷却水回路4と、エンジン2の廃熱を回収するランキンサイクル回路(ランキンサイクル)6(以下、RC回路という)とを備え、更に、図2の模式図に示されるように、車両の図示しない車室内の空調を行うエアコンサイクル回路(冷凍サイクル)8(以下、AC回路という)とを備えている。
冷却水回路4は、エンジン2から延設される冷却水の循環路5に、冷却水の流れ方向から順に蒸発器10、ラジエータ12、サーモスタット14、水ポンプ16が介挿されて閉回路を構成している。
蒸発器10は、冷却水回路4の冷却水とRC回路6の冷媒とを熱交換することにより、エンジン2で加熱された冷却水、すなわち温水を熱媒体としてエンジン2の廃熱をRC回路6側に吸熱させて回収している。一方、蒸発器10を通過して冷媒に吸熱された冷却水は、エンジン2を冷却することにより再び加熱された温水となる。
ラジエータ12は、蒸発器10と直列に配列され、蒸発器10を通過して冷媒に吸熱された冷却水を外気との熱交換により更に冷却している。
サーモスタット14は、冷却水温度に応じてラジエータ12へ通水される冷却水量を制御する機械式の3方弁であって、2つ入口ポートと1つの出口ポートとを有している。2つの入口ポートには、ラジエータ12から延設される流路5aと、蒸発器10とラジエータ12との間の流路5bからラジエータ12を迂回して接続されるバイパス路5cとがそれぞれ接続され、これにより、冷却水温度に応じてラジエータ12へ通水される冷却水量が増減されてエンジン2の過熱や過冷却が防止される。
水ポンプ16は、エンジン2に装着され、エンジン2の回転数に応じて駆動されて冷却水回路4に冷却水を好適に循環させる。
一方、RC回路6は、冷媒の循環路7に、冷媒の流れ方向から順に蒸発器10、加熱器18、膨張機20、再生器22、ランキンサイクルコンデンサ(第1凝縮器)24(以下、RCコンデンサという)、気液分離器26、冷媒ポンプ28が順に介挿されて閉回路を構成している。
加熱器18は、エンジン4の排ガス管19を流れる排ガスで冷媒を加熱する排ガス熱交換器であって、蒸発器10で加熱された冷媒を更に加熱している。
膨張機20は、蒸発器10で加熱されて過熱蒸気の状態となった冷媒を膨張させ、回転駆動力を発生する流体機器であって、膨張機20には、発生した回転駆動力を電力変換して廃熱利用装置の外部で利用可能とする発電機30が機械的に連結されている。
再生器22は、膨張機20出口の冷媒で蒸発器10入口の冷媒を加熱するRC回路6の内部熱交換器であって、膨張機20出口側の熱量を膨張機20入口側に積極的に供給することにより、RC回路6における回収エネルギーを増大させている。
RCコンデンサ24は、再生器22を経由した冷媒を凝縮液化させる熱交換器である。
気液分離器26は、RCコンデンサ24にて凝縮された冷媒を気液二層に分離するレシーバであり、ここで分離された液冷媒のみが冷媒ポンプ28側に流出される。
冷媒ポンプ28は、その駆動部に入力される信号に応じて駆動される電動ポンプであり、気液分離器26から流出された液冷媒は冷媒ポンプ28によって蒸発器10側に圧送され、RC回路6を好適に循環させる。
一方、AC回路8は、冷媒の循環路9に、冷媒の流れ方向から順にエアコンサイクル蒸発器32、圧縮機34、エアコンサイクルコンデンサ(第2凝縮器)36(以下、ACコンデンサという)、気液分離器38、膨張弁40が介挿されて閉回路を構成している。
エアコンサイクル蒸発器32は、車両の車室内の空気とAC回路8の冷媒とを熱交換させる熱交換器であって、車室内の空気を熱源として冷媒を蒸発させることにより、AC回路8側に車室内の空気の熱を回収し、車室内を所望の空調温度に調整している。
圧縮機34は、機械的に連結された動力源42により駆動され、蒸発器32で蒸発した冷媒を圧縮して過熱蒸気の状態としている。
ACコンデンサ36は、圧縮機34から吐出される冷媒を凝縮液化する熱交換器であり、ACコンデンサ36で凝縮された液冷媒は気液分離器38を経て膨張弁40に送出され、膨張弁40を経由して膨張された後にエアコンサイクル蒸発器32に向けて送出される。
図3には、廃熱利用装置が搭載された車両44の前面44a側のみの縦断面図が概略的に示されている。車両44のボンネット44bの下部にエンジン2が搭載され、エンジン2より前面44a側には、前面44a側から順に車両44の前後方向にACコンデンサ36、RCコンデンサ24、ラジエータ12が重ねて配置されている。これら各コンデンサ36,24及びラジエータ12からなる熱交換ユニット48には車両44の走行に伴い走行風46が通風され、各回路6,8における冷媒、冷却水回路4における冷却水と外気との熱交換が行われる。
また、図4の車両44の前面44a側を上方からみた透視図にも示されるように、熱交換ユニット48は、その背面側に熱交換器36,24,12に共用のファン50を備え、ファン50は熱交換ユニット48に通風される走行風46の通風量を制御している。
図5の熱交換ユニット48を上方からみた拡大図に示されるように、熱交換ユニット48には、RCコンデンサ24とラジエータ12との間に所定幅を有する隙間(第1の隙間)Dが形成され、RCコンデンサ24とACコンデンサ36との間には所定幅を有する隙間(第2の隙間)Dが形成されており、特に、隙間Dは、RCコンデンサ24とラジエータ12との左右の側面側が走行風46の通風方向に沿って閉塞板52で閉塞されている。
このように、本実施形態では、閉塞板52がRCコンデンサ24とラジエータ12との間の隙間Dを走行風46の通風方向に沿って閉塞することにより、ACコンデンサ36を迂回した走行風46の隙間Dからの流入が抑制されるため、走行風46をRCコンデンサ24に効果的に導くことができる。従って、RCコンデンサ24の性能、ひいては廃熱利用装置のエネルギー回収効率を向上することができる。
次に、第2実施形態について説明する。
当該第2実施形態は、上記第1実施形態の熱交換ユニット48に各コンデンサ24,36の左右の側面側にて隙間Dを開放または閉塞可能なフラッパー56を更に設けたものであり、他は上記第1実施形態と同一の構成をなしている。
図6には本実施形態の熱交換ユニット54を上方からみた拡大図が示されている。図6の状態では、隙間Dはその左右の側面側が各フラッパー56でそれぞれ閉塞されており、各フラッパー56は、その固定端が隙間Dの閉塞から開放方向に回動可能にRCコンデンサ24の左右の側面に支持されるとともに、その可動端がACコンデンサ36の左右の側面よりも前面44a側に向けて突出して延設されている。
そして、フラッパー56の固定端には図示しないモータが内蔵され、このモータは車両44の図示しない電子コントロールユニット(ECU)に電気的に接続されている。そして、ECUは、AC回路8の稼動時には隙間Dの左右の側面側を閉塞させるべくフラッパー56を閉作動させる。
一方、AC回路8の非稼動時には、図7に示すように、隙間Dの左右の側面側を開放させるべくフラッパー56を開作動させるフラッパー開閉制御を行っており、このときのフラッパー56の可動端は、ACコンデンサ36の側面よりも外方側に位置づけられている。
このように、上記第1実施形態と同様、第2実施形態においても、ラジエータ12における冷却水の冷却性能を向上し、及び廃熱利用装置のエネルギー回収効率を向上することができる。
特に当該第2実施形態の場合には、フラッパー56がAC回路8の稼動時に隙間Dを閉塞することにより、隙間DからACコンデンサ36を迂回した走行風46の流入が抑制されるため、走行風46をACコンデンサ36に効果的に導くことができる。
一方、フラッパー56がAC回路8の非稼動時に隙間Dを開放することにより、隙間Dを介して走行風46をRCコンデンサ24に直接に導くことができる。従って、AC回路8の稼動、非稼動に応じて、ACコンデンサ36またはRCコンデンサ24における冷媒の凝縮性能を向上することができ、ひいては廃熱利用装置のエネルギー回収効率を向上することができる。
しかも、フラッパー56の可動端がフラッパー56の閉作動時にACコンデンサ36の前面から突出されることにより、ACコンデンサ36の前面で受けた走行風46がACコンデンサ36の側面側に流れることが抑制されるため、AC回路8の稼動時において走行風46をACコンデンサ36に更に効果的に導くことができる。
一方、フラッパー56の可動端がフラッパー56の開作動時にACコンデンサ36の側面よりも外方側に位置づけられることにより、RCコンデンサ24における走行風46の受面積を実質的に大きくすることができるため、AC回路8の非稼動時において走行風46をRCコンデンサ24に更に効果的に導くことができる。従って、各コンデンサ24,36における冷媒の凝縮性能、ひいては廃熱利用装置のエネルギー回収効率を更に向上することができる。
なお、隙間Dの幅やフラッパー56を極力大きくすることにより、RCコンデンサ24における走行風46の受面積を更に大きくすることができるため、RCコンデンサ24の凝縮性能がより一層向上して好ましい。
以上で本発明の第1、第2実施形態についての説明を終えるが、本発明は上記各実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、図8に示される熱交換ユニット58の場合、第2実施形態のRCコンデンサ24に設けられた各フラッパー56に加え、ACコンデンサ36にも各第2フラッパー60が設けられている。
第2フラッパー60は、その固定端がACコンデンサ36の左右の側面に支持されるとともに、その可動端がACコンデンサ36より前面44a側に向けて突出して延設されている。
そして、フラッパー56と同様に、第2フラッパー60の固定端にもECUに電気的に接続される図示しないモータが内蔵され、ECUは、各フラッパー56,60によるフラッパー開閉制御を行っている。
本変形例のフラッパー開閉制御では、AC回路8の稼動時には隙間Dを閉塞させるべくフラッパー56が閉作動されるとともに第2フラッパー60が開作動される一方、AC回路8の非稼動時には、図9に示すように、隙間Dを開放させるべくフラッパー56が開作動され、第2フラッパー60の可動端が第2フラッパー60の開作動時にACコンデンサ36の側面よりも外方側に位置づけられることにより、ACコンデンサ36における走行風46の受面積を実質的に大きくすることができるため、AC回路8の稼動時において走行風46をACコンデンサ36に更に効果的に導くことができる。従って、各コンデンサ24,36における冷媒の凝縮性能、ひいては廃熱利用装置のエネルギー回収効率を更に向上することができる。
なお、第2フラッパー60を極力大きくすることにより、AC回路8の稼動時にACコンデンサ36における走行風46の受面積を更に大きくすることができるため、ACコンデンサ36の凝縮性能がより一層向上して好ましい。
また、上記各実施形態及び変形例では、閉塞板52や各フラッパー56,60はそれぞれラジエータ12や各コンデンサ24,36の左右側面のみに設けているが、ラジエータ12や各コンデンサ24,36の上下側面にもこれら閉塞板52やフラッパー56,60を設けて4枚の閉塞・フラッパー構造としても良い。
この場合には、隙間D,Dにおける密閉性を高めることができるとともに、各コンデンサ24,36における走行風46の受面積を更に大きくすることができるため、各コンデンサ24,36における冷媒の凝縮性能をより一層向上することができて好適である。
本発明の第1実施形態に係る内燃機関の廃熱利用装置のランキンサイクル回路を概略的に示した模式図である。 図1のランキンサイクル回路と併せて稼働されるエアコンサイクル回路を概略的に示した模式図である。 図1,2の廃熱利用装置が搭載された車両の前面側のみを概略的に示した縦断面図である。 図3の車両の前面側のみを上方から概略的に示した透視図である。 図4の熱交換ユニットを示した拡大図である。 本発明の第2実施形態に係る熱交換ユニットを示した拡大図である。 図6の熱交換ユニットに設けられたフラッパーが開作動されたときの状態を示した図である。 本発明の変形例に係る熱交換ユニットを示した拡大図である。 図8の熱交換ユニットに設けられたフラッパーが開作動されるとともに、第2フラッパーが閉作動されたときの状態を示した図である。
符号の説明
2 エンジン(内燃機関)
4 冷却水回路
6 ランキンサイクル回路(ランキンサイクル)
8 エアコンサイクル回路(冷凍サイクル)
12 ラジエータ
20 膨張機
24 ランキンサイクルコンデンサ(第1凝縮器)
34 圧縮機
36 エアコンサイクルコンデンサ(第2凝縮器)
48,54,58 熱交換ユニット
52 閉塞板
56 フラッパー
60 第2フラッパー

Claims (5)

  1. 内燃機関の廃熱によって加熱された冷却水を外気により冷却させるラジエータを有する冷却水回路と、
    前記冷却水によって加熱された冷媒を膨張させて駆動力を発生する膨張機、該膨張機を流通した冷媒を外気の通風により凝縮させる第1凝縮器を有するランキンサイクルと、
    熱源によって加熱された冷媒を圧縮する圧縮機、該圧縮機を流通した冷媒を外気の通風により凝縮させる第2凝縮器を有する冷凍サイクルとを備えた内燃機関の廃熱利用装置であって、
    外気の通風方向から順に、前記第2凝縮器、前記第1凝縮器、前記ラジエータを互いに所定の隙間を存して重ねた熱交換ユニットを備え、
    前記熱交換ユニットは、前記所定の隙間のうちの前記第1凝縮器と前記ラジエータとの間の第1の隙間を外気の通風方向に沿って閉塞する閉塞板を有することを特徴とする内燃機関の廃熱利用装置。
  2. 前記熱交換ユニットは、前記冷凍サイクルの稼動時に前記所定の隙間のうちの前記第1凝縮器と前記第2凝縮器との間の第2の隙間を外気の通風方向に沿って閉塞するべく閉作動される一方、前記冷凍サイクルの非稼動時に前記第2の隙間を開放するべく開作動されるフラッパーを有することを特徴とする請求項1に記載の内燃機関の廃熱利用装置。
  3. 前記フラッパーは、前記第2の隙間の閉塞から開放方向に回動可能に前記第1凝縮器に支持される固定端と、該フラッパーの開作動時に前記第2凝縮器の側面よりも外方側に位置づけられる可動端とを有することを特徴とする請求項2に記載の内燃機関の廃熱利用装置。
  4. 前記熱交換ユニットは、前記第2凝縮器に支持される固定端を有する第2フラッパーを備え、該第2フラッパーは前記冷凍サイクルの稼動時に前記第2凝縮器の側面よりも外方側に位置づけられる可動端を有することを特徴とする請求項1乃至3の何れかに記載の内燃機関の廃熱利用装置。
  5. 少なくとも前記閉塞板、前記フラッパー、及び前記第2フラッパーのいずれかは、前記熱交換ユニットの左右上下の側面に設けられることを特徴とする請求項1乃至4の何れかに記載の内燃機関の廃熱利用装置。
JP2008010364A 2008-01-21 2008-01-21 内燃機関の廃熱利用装置 Pending JP2009167995A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008010364A JP2009167995A (ja) 2008-01-21 2008-01-21 内燃機関の廃熱利用装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008010364A JP2009167995A (ja) 2008-01-21 2008-01-21 内燃機関の廃熱利用装置

Publications (1)

Publication Number Publication Date
JP2009167995A true JP2009167995A (ja) 2009-07-30

Family

ID=40969444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008010364A Pending JP2009167995A (ja) 2008-01-21 2008-01-21 内燃機関の廃熱利用装置

Country Status (1)

Country Link
JP (1) JP2009167995A (ja)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012021757A2 (en) * 2010-08-11 2012-02-16 Cummins Intellectual Property, Inc. Split radiator design for heat rejection optimization for a waste heat recovery system
US8407998B2 (en) 2008-05-12 2013-04-02 Cummins Inc. Waste heat recovery system with constant power output
JP2013531177A (ja) * 2010-07-14 2013-08-01 マック トラックス インコーポレイテッド 部分的な復熱を伴う廃熱回収システム
US8544274B2 (en) 2009-07-23 2013-10-01 Cummins Intellectual Properties, Inc. Energy recovery system using an organic rankine cycle
US8627663B2 (en) 2009-09-02 2014-01-14 Cummins Intellectual Properties, Inc. Energy recovery system and method using an organic rankine cycle with condenser pressure regulation
US8683801B2 (en) 2010-08-13 2014-04-01 Cummins Intellectual Properties, Inc. Rankine cycle condenser pressure control using an energy conversion device bypass valve
US8707914B2 (en) 2011-02-28 2014-04-29 Cummins Intellectual Property, Inc. Engine having integrated waste heat recovery
US8752378B2 (en) 2010-08-09 2014-06-17 Cummins Intellectual Properties, Inc. Waste heat recovery system for recapturing energy after engine aftertreatment systems
US8776517B2 (en) 2008-03-31 2014-07-15 Cummins Intellectual Properties, Inc. Emissions-critical charge cooling using an organic rankine cycle
US8800285B2 (en) 2011-01-06 2014-08-12 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US8826662B2 (en) 2010-12-23 2014-09-09 Cummins Intellectual Property, Inc. Rankine cycle system and method
US8893495B2 (en) 2012-07-16 2014-11-25 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method
US8919328B2 (en) 2011-01-20 2014-12-30 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system and method with improved EGR temperature control
US9021808B2 (en) 2011-01-10 2015-05-05 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US9140209B2 (en) 2012-11-16 2015-09-22 Cummins Inc. Rankine cycle waste heat recovery system
JP2015200194A (ja) * 2014-04-04 2015-11-12 日産自動車株式会社 車両
US9217338B2 (en) 2010-12-23 2015-12-22 Cummins Intellectual Property, Inc. System and method for regulating EGR cooling using a rankine cycle
US9845711B2 (en) 2013-05-24 2017-12-19 Cummins Inc. Waste heat recovery system
CN111315965A (zh) * 2017-08-25 2020-06-19 奥尔灿能源股份公司 用于冷却过程流体的orc设备

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8776517B2 (en) 2008-03-31 2014-07-15 Cummins Intellectual Properties, Inc. Emissions-critical charge cooling using an organic rankine cycle
US8407998B2 (en) 2008-05-12 2013-04-02 Cummins Inc. Waste heat recovery system with constant power output
US8635871B2 (en) 2008-05-12 2014-01-28 Cummins Inc. Waste heat recovery system with constant power output
US8544274B2 (en) 2009-07-23 2013-10-01 Cummins Intellectual Properties, Inc. Energy recovery system using an organic rankine cycle
US8627663B2 (en) 2009-09-02 2014-01-14 Cummins Intellectual Properties, Inc. Energy recovery system and method using an organic rankine cycle with condenser pressure regulation
JP2013531177A (ja) * 2010-07-14 2013-08-01 マック トラックス インコーポレイテッド 部分的な復熱を伴う廃熱回収システム
US8752378B2 (en) 2010-08-09 2014-06-17 Cummins Intellectual Properties, Inc. Waste heat recovery system for recapturing energy after engine aftertreatment systems
WO2012021757A2 (en) * 2010-08-11 2012-02-16 Cummins Intellectual Property, Inc. Split radiator design for heat rejection optimization for a waste heat recovery system
WO2012021757A3 (en) * 2010-08-11 2012-05-10 Cummins Intellectual Property, Inc. Split radiator design for heat rejection optimization for a waste heat recovery system
US9470115B2 (en) 2010-08-11 2016-10-18 Cummins Intellectual Property, Inc. Split radiator design for heat rejection optimization for a waste heat recovery system
US8683801B2 (en) 2010-08-13 2014-04-01 Cummins Intellectual Properties, Inc. Rankine cycle condenser pressure control using an energy conversion device bypass valve
US9745869B2 (en) 2010-12-23 2017-08-29 Cummins Intellectual Property, Inc. System and method for regulating EGR cooling using a Rankine cycle
US8826662B2 (en) 2010-12-23 2014-09-09 Cummins Intellectual Property, Inc. Rankine cycle system and method
US9702272B2 (en) 2010-12-23 2017-07-11 Cummins Intellectual Property, Inc. Rankine cycle system and method
US9217338B2 (en) 2010-12-23 2015-12-22 Cummins Intellectual Property, Inc. System and method for regulating EGR cooling using a rankine cycle
US8800285B2 (en) 2011-01-06 2014-08-12 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US9334760B2 (en) 2011-01-06 2016-05-10 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US9638067B2 (en) 2011-01-10 2017-05-02 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US9021808B2 (en) 2011-01-10 2015-05-05 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system
US8919328B2 (en) 2011-01-20 2014-12-30 Cummins Intellectual Property, Inc. Rankine cycle waste heat recovery system and method with improved EGR temperature control
US11092069B2 (en) 2011-01-20 2021-08-17 Cummins Inc. Rankine cycle waste heat recovery system and method with improved EGR temperature control
US8707914B2 (en) 2011-02-28 2014-04-29 Cummins Intellectual Property, Inc. Engine having integrated waste heat recovery
US8893495B2 (en) 2012-07-16 2014-11-25 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method
US9702289B2 (en) 2012-07-16 2017-07-11 Cummins Intellectual Property, Inc. Reversible waste heat recovery system and method
US9140209B2 (en) 2012-11-16 2015-09-22 Cummins Inc. Rankine cycle waste heat recovery system
US9845711B2 (en) 2013-05-24 2017-12-19 Cummins Inc. Waste heat recovery system
JP2015200194A (ja) * 2014-04-04 2015-11-12 日産自動車株式会社 車両
CN111315965A (zh) * 2017-08-25 2020-06-19 奥尔灿能源股份公司 用于冷却过程流体的orc设备
US11286816B2 (en) 2017-08-25 2022-03-29 Orcan Energy Ag ORC device for cooling a process fluid
EP3447256B1 (de) * 2017-08-25 2023-11-01 Orcan Energy AG System zum kühlen eines prozessfluids einer wärmeerzeugenden einrichtung

Similar Documents

Publication Publication Date Title
JP2009167995A (ja) 内燃機関の廃熱利用装置
WO2009093549A1 (ja) 内燃機関の廃熱利用装置
CN109501552B (zh) 用于车辆的热泵系统
JP6052222B2 (ja) 車両用熱管理システム
JP4654655B2 (ja) 蒸気圧縮式冷凍機
JP6304578B2 (ja) 車両用空調装置
US7155927B2 (en) Exhaust heat utilizing refrigeration system
JP2007278624A (ja) ヒートポンプサイクル
JP3591304B2 (ja) 発熱体冷却装置
JP2008297962A (ja) 廃熱利用装置を備える冷凍装置
JP2005090862A (ja) 冷却システム
JP2009190579A (ja) 空気調和システム
JP2008297961A (ja) 廃熱利用装置を備える冷凍装置
JP2010115993A (ja) 車両用空調装置
JP2009097481A (ja) 内燃機関の廃熱利用装置
JP2020111084A (ja) 電池冷却システム
JP6760226B2 (ja) 複合型熱交換器
JP2009133266A (ja) 内燃機関の廃熱利用装置
JP5096956B2 (ja) 車両用空気調和システム
JP5130083B2 (ja) 内燃機関の廃熱利用装置
JP6315222B2 (ja) 車両用空調装置の構成ユニット
JP5681572B2 (ja) 車両用空調装置
JP2009121390A (ja) ランキンサイクルシステム
JP2011189824A (ja) 車両用空調システム
CN107709898B (zh) 热交换器以及热泵系统