WO2016035199A1 - 自動走行管理システム、サーバおよび自動走行管理方法 - Google Patents
自動走行管理システム、サーバおよび自動走行管理方法 Download PDFInfo
- Publication number
- WO2016035199A1 WO2016035199A1 PCT/JP2014/073493 JP2014073493W WO2016035199A1 WO 2016035199 A1 WO2016035199 A1 WO 2016035199A1 JP 2014073493 W JP2014073493 W JP 2014073493W WO 2016035199 A1 WO2016035199 A1 WO 2016035199A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- control
- intelligibility
- travel
- equipment
- Prior art date
Links
- 238000007726 management method Methods 0.000 title claims description 132
- 238000001514 detection method Methods 0.000 claims abstract description 120
- 238000012545 processing Methods 0.000 claims abstract description 16
- 238000000034 method Methods 0.000 claims description 54
- 230000008569 process Effects 0.000 claims description 48
- 238000004891 communication Methods 0.000 claims description 38
- 230000010365 information processing Effects 0.000 claims description 35
- 230000008859 change Effects 0.000 claims description 28
- 238000010191 image analysis Methods 0.000 claims description 5
- 230000007423 decrease Effects 0.000 claims description 2
- 230000005389 magnetism Effects 0.000 claims description 2
- 238000010586 diagram Methods 0.000 description 35
- 238000003384 imaging method Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 238000005259 measurement Methods 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 102220499951 Deoxyribonuclease-1-like 2_S10D_mutation Human genes 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 102200082907 rs33918131 Human genes 0.000 description 3
- 102220342298 rs777367316 Human genes 0.000 description 3
- 238000003703 image analysis method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000005562 fading Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0285—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using signals transmitted via a public communication network, e.g. GSM network
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/56—Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
- G06V20/588—Recognition of the road, e.g. of lane markings; Recognition of the vehicle driving pattern in relation to the road
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/10—Path keeping
- B60W30/12—Lane keeping
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/14—Adaptive cruise control
- B60W30/16—Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/18—Propelling the vehicle
- B60W30/18009—Propelling the vehicle related to particular drive situations
- B60W30/18163—Lane change; Overtaking manoeuvres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/26—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
- G01C21/34—Route searching; Route guidance
- G01C21/3453—Special cost functions, i.e. other than distance or default speed limit of road segments
- G01C21/3461—Preferred or disfavoured areas, e.g. dangerous zones, toll or emission zones, intersections, manoeuvre types, segments such as motorways, toll roads, ferries
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0234—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/028—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
Definitions
- the present invention relates to automatic traveling control of a vehicle.
- a lane keeping control for controlling a vehicle so as not to deviate from the lane is known as one of automatic vehicle driving control. Lane keeping control needs to detect lanes.
- a white line that is a road marking line is used for lane detection. Specifically, image processing for detecting a marking line is performed on an image obtained by imaging a road surface from a vehicle.
- the present invention aims to provide a technique for reducing the driving load related to automatic travel control.
- the automatic travel management system includes a planned route identifying unit that identifies a planned travel route for a target vehicle for travel control, and a road facility used as a detection target by a lane detection system provided in the target vehicle. Based on the equipment intelligibility information, an information storage unit storing equipment intelligibility information in which a certain equipment intelligibility is recorded for each road section, and the equipment intelligibility of the planned section that is a road section included in the planned travel route. The equipment intelligibility identification unit that performs the equipment intelligibility identification process to be identified, and the automatic travel setting process that sets the control details of the automatic travel on the planned travel route based on the equipment intelligibility of the scheduled section. And a travel control management unit that performs an automatic travel setting process in accordance with an automation level condition of selecting a higher level of control content from among a plurality of automation levels.
- FIG. 1 is a block diagram of an automatic travel control system according to a first embodiment.
- 1 is a block diagram of an automatic travel management system according to a first embodiment.
- 6 is a diagram for explaining white line intelligibility information (equipment intelligibility information) in the first embodiment.
- FIG. FIG. 3 is a diagram for explaining a scheduled travel route according to the first embodiment.
- FIG. 10 is a diagram for explaining the white line intelligibility specifying process (equipment intelligibility specifying process) in the first embodiment.
- FIG. 6 is a diagram for explaining an automatic travel setting process in the first embodiment.
- FIG. 10 is a diagram for explaining the result of the automatic travel setting process for the first embodiment.
- 4 is a flowchart for explaining the operation of the automatic travel control system in the first embodiment.
- FIG. 10 is a diagram illustrating an automatic travel setting process according to the second embodiment. It is a figure explaining the result of automatic run setting processing about Embodiment 2.
- FIG. 10 is a diagram for explaining control content switching timing in the third embodiment.
- FIG. 10 is a diagram for explaining a frequently changing area in the fourth embodiment.
- FIG. 10 is a diagram illustrating an automatic travel setting process according to a fifth embodiment. It is a figure explaining automatic run setting processing about Embodiment 5 (when cancellation of automatic run mode is included).
- FIG. 10 is a block diagram illustrating a case where an automatic travel control system cooperates with a server according to a fifth embodiment.
- FIG. 1 shows a block diagram of an automatic travel control system 10 according to the first embodiment.
- the entire automatic travel control system 10 is mounted on a target vehicle 5 for travel control.
- the target vehicle 5 may be referred to as the own vehicle 5.
- the target vehicle 5 has a body system 22 which is a device group not directly related to traveling.
- the body system 22 includes a wiper, a light, a direction indicator, a door opening / closing device, a window opening / closing device, and the like.
- a direction indicator is used for overtaking control. It is assumed that the apparatus used in association with the execution of the basic function is controlled by the automatic travel control system 10.
- the automatic travel control system 10 includes an automatic travel management system 40, a vehicle control unit 46, a lane detection unit 48, a travel environment detection unit 50, a position detection unit 52, and a map database storage unit 54.
- the database may be called DB.
- the automatic travel management system 40 is connected to the vehicle control unit 46, the lane detection unit 48, the travel environment detection unit 50, the travel system 20, and the body system 22 via an in-vehicle LAN (Local Area Network) 58.
- LAN Local Area Network
- the vehicle control unit 46 is a system (vehicle control system) that controls the traveling system 20 based on the control content determined by the automatic traveling management system 40. Note that the vehicle control unit 46 may control the body system 22 like the control of the direction indicator during overtaking control.
- the lane detection unit 48 is a system (lane detection system) that detects a lane using a road facility as a clue.
- the road facility used as a clue is a white line drawn on the road surface in order to partition the lane.
- the shape of the white line (solid line, broken line, and double line) is not particularly limited.
- yellow marking lines (so-called yellow lines) are also included here. Shall.
- the traveling environment detection unit 50 is a system (traveling environment detection system) that detects information related to the traveling environment of the host vehicle 5.
- the traveling environment detection unit 50 obtains information such as the presence, size, relative position, and distance of an object by emitting laser light as a reference wave forward from the host vehicle 5 and observing the reflected light.
- the reference wave may be a laser, millimeter wave, microwave or ultrasonic wave. Instead of or in addition to the reflection of the reference wave, scattering of the reference wave may be observed.
- the reference wave may be emitted in a direction other than the front.
- the traveling environment detection unit 50 may be configured by a method of performing image analysis for object detection on an image captured from the own vehicle 5 with a camera. Or if the traveling environment detection part 50 is comprised by a vehicle-to-vehicle communication apparatus, information, such as a relative position with another vehicle, a distance, can be acquired based on the information received by vehicle-to-vehicle communication.
- the traveling environment detection unit 50 can be configured in various ways. If a plurality of types of traveling environment detection units 50 are mounted on the target vehicle 5, various objects can be detected simultaneously. Further, according to the image analysis method described above, it is possible to acquire the content of the indication (legal speed, prohibition of stopping, etc.) by recognizing the road indication in the captured image instead of or in addition to the object detection. If the traveling environment detection part 50 is comprised with a road-vehicle communication apparatus, road marking information can be acquired by road-vehicle communication.
- the position detection unit 52 is a system (position detection system) that detects the current position of the host vehicle 5.
- the position detection unit 52 receives GPS (Global Positioning System) radio waves and calculates position information from the received signal.
- GPS Global Positioning System
- a method for obtaining position information from information such as an acceleration sensor, a gyroscope, and a vehicle speed signal may be employed.
- the map DB storage unit 54 includes a storage device such as a semiconductor memory or a hard disk device, and stores a map DB 56 in which map information is systematically organized and managed.
- FIG. 2 shows a block diagram of the automatic travel management system 40.
- facility intelligibility information 70 is stored in the information storage unit 44.
- equipment intelligibility which is the articulation of road equipment used by the lane detector 48 as a detection target, is recorded.
- the lane detecting unit 48 detects a white line on the road surface for lane detection, and therefore, the equipment intelligibility is hereinafter referred to as white line intelligibility.
- FIG. 3 is an explanatory diagram of the white line intelligibility information 70.
- white line intelligibility information 70 records white line intelligibility for each road section.
- FIG. 3 illustrates information on two lanes on one side.
- the road section in the white line intelligibility information 70 is the same as the road section (so-called road link) adopted for managing the road network in the map DB 56. 3, L1, L2,... Are road section identifiers (so-called IDs).
- the white line intelligibility is represented by a white line distance (in other words, a road facility distance) that is a distance of a white line that extends from the travel point in the travel direction and can be detected by the lane detection unit 48.
- the white line that can be detected by the lane detection unit 48 is a white line having a clearness that can be detected by the lane detection unit 48. In other words, white lines whose clarity is reduced due to faintness, dirt, etc. and in which the lane detector 48 cannot be detected are excluded.
- the minimum white line intelligibility is 125 m in all sections of the road section L1.
- a white line clarity of 125 m or more is always provided in the road section L1.
- the lowest white line intelligibility in all sections of the road section L2 is 110 m, and the white section intelligibility of 110 m or more is always provided in the road section L2.
- the white line clarity is set as the white line is interrupted at that point.
- the white line clarity may be set as if the white line is not interrupted. Good.
- white lines can be estimated even if there are several meters of defects, blurring, etc., and the white line clarity need not be set short. Since this also depends on the white line detection method, a plurality of white line clarity corresponding to the type of the white line detection method may be recorded for each road section.
- the information processing unit 42 includes a planned route specifying unit 72, a white line intelligibility specifying unit (in other words, an equipment intelligibility specifying unit) 74, and a traveling control management unit 76.
- the planned route specifying unit 72 specifies the planned travel route for the target vehicle 5. Specifically, the planned route specifying unit 72 searches the map DB 56 for a route from the first point to the second point, and determines the obtained route as the planned travel route.
- the first point and the second point can be designated in advance by the user, and in this case, the position information of the first point and the second point can be obtained in advance based on the designation content of the user and the map DB 56.
- the first location is the current location
- the location information of the current location can be acquired by the location detection unit 52.
- the planned route specifying unit 72 may tentatively set one or a plurality of second points. For example, a point that is a point on the route extending forward from the current location and is separated from the current location by a preset distance may be set as the second point.
- the temporary second point may be reviewed as appropriate.
- a road section included in the planned travel route 73 may be referred to as a scheduled section.
- the white line intelligibility specifying unit 74 performs a white line intelligibility specifying process (in other words, an equipment intelligibility specifying process) that is a process of specifying the white line intelligibility of the scheduled section based on the white line intelligibility information 70.
- FIG. 5 shows the white line intelligibility specified for the scheduled travel route 73 in FIG. 4 based on the white line intelligibility information 70 in FIG. In FIG. 5, it is assumed that the target vehicle 5 is traveling in the left lane.
- the travel control management unit 76 performs an automatic travel setting process that is a process for setting the control content of the automatic travel on the planned travel route 73 based on the white line clarity of the planned section.
- an automatic travel setting process a plurality of automation levels are defined in advance, and the automation level in the scheduled section is selected according to the white line clarity of the scheduled section. That is, the control content of the automatic travel in each scheduled section is set according to the automation level condition that the higher the white line intelligibility is, the higher the control content is selected.
- the automatic travel setting process will be described with reference to FIG.
- levels 1 to 3 are defined for the automation level of the traveling control. The higher the level value, the higher the automation level.
- the control content of the lowest level 1 is assigned inter-vehicle distance control and constant speed traveling control.
- lane keeping control is assigned to the level 2 control content.
- the overtaking control is assigned to the highest level 3 control content. That is, the automation level becomes higher as the control content includes more control selected from inter-vehicle distance control, constant speed travel control, lane keeping control, and overtaking control.
- Level 3 there is almost no driving operation performed by the driver.
- level 2 the driver needs to perform a steering wheel operation and an accelerator operation when overtaking.
- the driver needs to operate the steering wheel.
- Each level 1-3 is associated with white line clarity. That is, white line intelligibility is used as a condition for adopting each level of control content. Specifically, in order to adopt the control content of the highest level 3, it is required that the white line intelligibility of the own lane is 100 m or more ahead and the white line intelligibility of other lanes is 100 m or more ahead. For level 2, the white line intelligibility of the own lane is required to be 100 m or more ahead, but there is no requirement for the white line intelligibility of other lanes. For Level 1, it is defined as an employment condition that the white line intelligibility of the own lane is less than 100 m ahead.
- the lower limit of the white line intelligibility is not defined for the lowest level 1.
- the automatic travel mode is automatically turned off in the scheduled section below the lower limit, and the manual travel mode is set. In other words, the automatic travel mode based on FIG. 6 is turned off when the user performs a predetermined operation.
- FIG. 6 includes an automatic steering condition in addition to the automation level condition of selecting a higher level of control content as the white line intelligibility is higher.
- the automatic steering condition is a condition that the control content including the automatic steering control using the lane detection unit 48 is selected for the scheduled section in which the white line intelligibility satisfies the automatic steering standard.
- the automatic steering reference stipulates that the white line intelligibility of the own lane is 100 m or more ahead.
- Control contents including automatic steering control are defined in levels 3 and 2.
- FIG. 6 includes an automatic steering level condition that the control content including the higher level automatic steering control is selected as the white line intelligibility becomes higher. Specifically, level 3 including lane keeping control and overtaking control is higher than level 2 including lane keeping control but not overtaking control, and level 3 requires higher white line intelligibility. Yes.
- FIG. 6 The contents of FIG. 6 shall be incorporated into the automatic travel setting processing program using a condition judgment formula. However, the content of FIG. 6 may be stored in the information storage unit 44, and the content of the automatic travel control may be set by the travel control management unit 76 referring to the content.
- Fig. 7 shows the control contents (levels) set based on Figs.
- FIG. 8 shows a flowchart for explaining the operation of the automatic travel control system 10.
- the planned route identifying unit 72 identifies the planned traveling route 73 in step S11.
- the white line intelligibility specifying unit 74 performs a white line intelligibility specifying process
- the travel control management unit 76 performs an automatic travel setting process.
- the travel control management unit 76 instructs the vehicle control unit 46 about the control content of each scheduled section, and thereby the vehicle control unit 46 controls the travel of the target vehicle 5 according to the control content.
- the control content is switched at the timing when the scheduled section is switched, that is, at the timing when the scheduled section is switched.
- the operation flow S10 is executed every time the planned travel route 73 changes. Moreover, you may perform operation
- the road equipment used for the lane detection by the lane detection unit 48 is a white line on the road surface, and the position of the lane is detected by performing image analysis for white line detection on the captured image.
- the road equipment detected by performing the image analysis for road equipment detection on the captured image in this way is referred to as an imaging-type equipment.
- the color of the imaging equipment may be a visible color other than white. Furthermore, if an infrared camera, an ultraviolet camera, or the like is used for the lane detection unit 48, the color of the imaging equipment may be a color outside the visible range.
- the shape of the imaging equipment may be any of solid line, broken line, double line, character, symbol, and the like. That is, various road markings drawn on the road surface can be used as imaging equipment.
- the drawing of the imaging type equipment is realized by applying a paint to the road surface.
- the imaging facility can be drawn by changing the color of the pavement material.
- any one of a magnetic type facility that emits magnetism (a so-called magnetic marker), a radio type facility that emits radio waves, a light emitting type facility that emits light, and an acoustic type facility that emits sound may be used.
- the lane detector 48 is configured using a magnetic sensor.
- the lane detector 48 is configured using a radio wave receiver.
- the lane detector 48 is configured using an optical sensor. Or you may utilize the system which detects the light emission location from the image imaged with the camera, In this case, light emission type equipment can also be classified into imaging type equipment.
- the lane detector 48 is configured using a sound collector.
- FIG. 9 shows an explanatory diagram of the automatic travel setting process corresponding to FIG. 6 in the case of using magnetic equipment.
- road equipment is installed on the road, but the road equipment may be installed on a wall along the road.
- level 1.5 the same control content as level 2 is assigned, but the constant speed (in other words, the upper limit speed) applied to constant speed traveling control is changed according to the white line clarity. That is, the lower the white line intelligibility of the scheduled section, the lower the constant speed applied to the scheduled section.
- the white line intelligibility of the own lane is required to be 50 m or more and less than 100 m ahead.
- FIG. 10 the adoption condition of level 1 is changed such that the white line intelligibility of the own lane is less than 50 m ahead.
- Levels 2 and 3 are the same as in FIG.
- FIG. 11 shows the control contents (levels) set based on FIGS. 3 to 5 and FIG.
- the constant speed in the scheduled section where the white line clarity is 70 m is set lower than the constant speed in the scheduled section where the white line clarity is 90 m.
- the constant speed in the scheduled section where the white line clarity is 50 m is set lower than the constant speed in the scheduled section where the white line clarity is 70 m.
- the constant speed applied at level 1.5 is set from the standpoint of stopping distance, for example.
- the stop distance is a distance from a point where the driver determines to apply the brake to a point where the vehicle actually stops.
- the stopping distance is given by the sum of the free running distance and the braking distance.
- the free running distance is the distance that the vehicle travels from the time when the driver determines to apply the brake to the time when the brake starts to work.
- the braking distance is a distance traveled by the vehicle from the time when the brake starts to work until the time when the vehicle stops. The stop distance depends on the vehicle speed. The higher the vehicle speed, the longer the stop distance.
- the traveling control management unit 76 selects one of Vset of the user set speed and Vld of the speed based on the white line intelligibility (Ld) and the stop distance as the constant speed in the scheduled section where the white line intelligibility is Ld. Select. The selection is made based on a comparison between Ld and Lstop. That is, Vset is selected when Ld ⁇ Lstop, and Vld is selected when Ld ⁇ Lstop.
- the user set speed Vset is set to 80 km / h for a road having a legal speed Vreg of 80 km / h.
- the stop distance Lstop corresponding to this Vset is 75 m.
- the constant speed in this scheduled section is set to Vld.
- the stop distance depends on the vehicle speed as described above. It is assumed that the relationship between the stop distance and the vehicle speed is prepared in advance in a format (formula, database, etc.) that can be used by the travel control management unit 76. Various data regarding the relationship between the stopping distance and the vehicle speed are published, and the published data may be used. In addition, an influence factor other than the vehicle speed, for example, a road surface and a tire state may be taken into consideration, and a traveling environment detection unit 50 for acquiring information on the influence factor is provided.
- a traveling environment detection unit 50 for acquiring information on the influence factor is provided.
- the legal speed is recorded in the map DB 56, and the traveling control management unit 76 acquires the legal speed information from the map DB 56.
- the traveling environment detection unit 50 of the image analysis method can recognize the legal speed from the road marking in the captured image.
- road marking information is acquirable by road-vehicle communication.
- the operation load can be further reduced.
- FIG. 12 shows the switching timing of the control content according to the third embodiment.
- FIG. 12 shows a situation where the target vehicle 5 enters the scheduled section L3 from the scheduled section L2.
- the white line clarity of the scheduled section L ⁇ b> 2 is 110 m
- the level of the scheduled section L ⁇ b> 2 is 2.
- the white line clarity of the scheduled section L3 is 80 m
- the level of the scheduled section L3 is 1.5.
- the detection range (in other words, the detection target distance) Srange of the lane detector 48 in the scheduled section L2 (that is, at level 2) straddles the switching point PA between the scheduled sections L2 and L3 as shown in FIG. If the length entering the planned section L3 in the detection range Srange (100 m) becomes longer than the white line clarity (80 m) of the planned section L3, the lane detector 48 is for the planned section L2 (ie, for level 2). The white line corresponding to the detection range Srange cannot be captured. Therefore, it is preferable to end the control content for the scheduled section L2 (that is, for level 2) and start the control content for the scheduled section L3 (that is, for level 1.5) before such a situation occurs. .
- the detection range of the lane detection unit 48 in the scheduled section L2 is Srange [m].
- the white line clarity of the scheduled section L3 is Ldd [m].
- the distance from the current position of the target vehicle 5 in the scheduled section L2 to the starting point of the scheduled section L3 is D [m].
- the traveling control management unit 76 starts the control content of the scheduled section L3 until D ⁇ Srange-Ldd is satisfied (that is, before reaching the point PB).
- the adjustment of the control content switching timing is not limited to the case of entering the planned section L3 from the planned section L2. That is, when the white line intelligibility decreases by entering the second scheduled section from the first scheduled section, starting the control content of the second scheduled section before entering the second scheduled section, Useful.
- the adjustment of the control content switching timing contributes to more appropriate execution of the control content. Thereby, the operation load can be further reduced.
- ⁇ Embodiment 4> the contents of control when the white line clarity changes frequently will be described. It is assumed that there is a frequent change area LF (see FIG. 13) in the planned travel route 73, which is an area where the clarity of the white line changes at a frequency equal to or higher than the specified frequency.
- the specified frequency is, for example, that the white line intelligibility changes over an hour at a time interval of 10 minutes when traveling at the current vehicle speed is continued.
- the frequency equal to or higher than the specified frequency means that an event in which the change interval of the white line intelligibility is 10 minutes or less occurs once or more per hour.
- the traveling control management unit 76 applies the control content based on the lowest white line intelligibility in the frequently changing area LF to the entire area of the frequently changing area LF.
- the lowest white line intelligibility in the frequently changing area LF belongs to level 1, so that the control content of level 1 is applied throughout the frequently changing area LF.
- the fourth embodiment it is possible to suppress frequent switching of control contents with frequent changes in white line clarity. Thereby, the operation load can be further reduced.
- the travel control management unit 76 sets the control content based on not only the white line intelligibility of the planned section but also the fault condition of the planned section when acquiring the information on the fault condition.
- a lane detection failure situation which is a situation that hinders lane detection by the lane detection unit 48. More specifically, poor visibility due to rain, snow, fog, suspended particles, etc. is assumed.
- An explanatory view of the automatic travel setting process in that case is shown in FIG.
- a requirement that the field of view is 100 m or more is added. The same applies to level 2.
- a requirement that the field of view is 50 m or more and less than 100 m is added.
- the field of view is defined as an adoption condition of less than 50 m.
- the traveling control management unit 76 may cancel the automatic traveling mode.
- An explanatory diagram of the automatic travel setting process in that case is shown in FIG. As can be seen by comparing FIG. 15 with FIG. 14, it is defined that the automatic driving mode is canceled when the field of view is less than 20 m at the lowest level 1. Note that the cancellation condition of the automatic travel mode is not limited to this example.
- the visual field can be measured by the traveling environment detection unit 50 equipped with a fog sensor or the like.
- the measurement result that is, the visual field information is supplied from the travel environment detection unit 50 to the travel control management unit 76.
- the traveling environment detection part 50 comprised by the road-vehicle communication apparatus may acquire the information of a visual field by road-vehicle communication.
- the travel control management unit 76 may access the server 102 via the external communication unit 100 (see FIG. 16) and acquire the visibility information held by the server 102.
- the automatic travel management system 40B has a configuration in which the external communication unit 100 is added to the automatic travel management system 40 described above.
- the external communication part 100 shall be installed in the target vehicle 5, you may utilize information terminals, such as a mobile telephone, a smart phone, and a tablet terminal, as the external communication part 100.
- the snow cover information can be acquired from the server 102 or can be acquired by road-to-vehicle communication.
- the control content is set based on the lane detection failure status, or the automatic travel mode is canceled.
- disturbance causes a lane detection failure situation.
- disturbances to magnetic equipment are magnetic disturbances such as magnetic storms.
- equipment failures such as power outages cause lane detection fault conditions.
- ⁇ Failure status when executing the travel control content is not limited to lane detection failure status. For example, if the measurement of the inter-vehicle distance by the traveling environment detection unit 50 is obstructed by weather conditions or disturbance, the measurement accuracy is degraded and measurement is impossible. In that case, the execution of the inter-vehicle distance control is obstructed.
- traffic fault conditions such as accidents and traffic jams are also included in the fault conditions when executing the travel control contents.
- Information on traffic obstacles can be obtained from a server that holds such information, or can be obtained by road-to-vehicle communication.
- FIG. 17 shows a block diagram of an automatic travel management system 40C according to the sixth embodiment.
- the automatic traveling management system 40C can be applied to the above-described automatic traveling control systems 10 and 10B instead of the automatic traveling management system 40.
- the automatic travel management system 40C includes an information processing unit 42C according to the sixth embodiment and the information storage unit 44 described above.
- the information processing unit 42C has a configuration in which a notification control unit 78 is added to the information processing unit 42 described above.
- the notification control unit 78 acquires the timing at which the automation level changes from the travel control management unit 76, and causes the information output device 32 to output a level change notification that is a notification that the automation level changes.
- the level change notification includes visual forms such as characters and graphics
- the notification control unit 78 causes the display device of the information output device 32 to output the level change notification.
- the level change notification includes an auditory form such as sound or voice
- the notification control unit 78 causes the acoustic device of the information output device 32 to output the level change notification.
- the notification control unit 78 outputs a level change notification at a timing before the timing at which the automation level changes. Note that switching between the automatic travel mode and the manual travel mode is included in the change in the automation level.
- the driver can know the change in the automation level in advance. Thereby, the operation load can be further reduced.
- FIG. 18 shows a block diagram of an automatic travel management system 40D according to the seventh embodiment.
- the automatic traveling management system 40D can be applied to the above-described automatic traveling control systems 10 and 10B instead of the automatic traveling management system 40.
- the automatic travel management system 40D includes an information processing unit 42D according to the seventh embodiment and the information storage unit 44 described above.
- the information processing unit 42D has a configuration in which a map display control unit 80 is added to the information processing unit 42 described above.
- the map display control unit 80 generates map image data for display using the map DB 56, supplies the generated map image data to the display device of the information output device 32, and thereby displays the map image on the display device. .
- the map display control unit 80 sets the display form of the planned section included in the generation target area according to the automation level of the planned section.
- the map display control unit 80 determines whether or not the planned travel route 73 is included in the generation target area by acquiring the road segment identifier (so-called ID) of the planned segment from the travel control management unit 76. Further, the map display control unit 80 acquires information on the automation level of the scheduled section from the travel control management unit 76.
- Fig. 19 shows a display example of the map image.
- the planned section L2 at level 2 is displayed in the standard display form, and the planned section L1 at level 3 is displayed thick.
- the road itself is displayed in a standard display form, and a broken line is displayed along the road.
- the planned section L5 of level 1 is displayed with a broken line.
- the display color of the road may be controlled according to the automation level. At this time, the color of the broken line added at level 1.5 may be different from the color of the road.
- the change point of the automation level is displayed depending on the display form of the scheduled section. That is, since the end point of the scheduled section L1 is a level change point, the scheduled section L1 is displayed in a shape in which a black circle is added to the end point.
- the scheduled section L2 is displayed in a shape with a white circle mark added to the end point, and the planned section L4 is displayed in a shape with a white circle mark and a star mark added to the end point.
- a black circle or the like may be added to the start point of the scheduled section.
- the shape and color of the mark to be added are not limited to the example of FIG.
- the driver can know the automation level and its change on the map image. Thereby, the operation load can be further reduced.
- FIG. 20 is a flowchart for explaining the operation according to the eighth embodiment. According to the operation flow S ⁇ b> 10 ⁇ / b> B of FIG. 20, in step S ⁇ b> 21, the planned route specifying unit 72 searches for a route to specify the planned travel route 73.
- step S23 the white line clarity specifying unit 74 specifies the white line clarity for each of the found multiple travel planned routes 73.
- the travel control management unit 76 performs automatic travel setting processing for each of the plurality of planned travel routes 73 found in step S24, and in step S25, based on the result of the automatic travel setting processing, the level of automation One scheduled travel route 73 with the least change is selected. The change in the automation level is determined based on at least one of the number of changes and the change width.
- step S26 the travel control management unit 76 instructs the vehicle control unit 46 to control the selected scheduled travel route 73, and the vehicle control unit 46 controls the travel of the target vehicle 5 according to the control content. .
- step S22 when only one scheduled travel route 73 is found as a result of the route search (see step S22), based on the found planned travel route 73, the same as the above-described steps S12 and S13 (see FIG. 8). Steps S33 and S34 are performed. And step S26 is performed based on the result of the automatic travel setting process of step S34.
- FIG. 21 shows another operation flow S10C.
- step S25 is changed to step S25C in the operation flow S10B of FIG.
- the travel control management unit 76 calculates the cost required to travel on each planned travel route 73 based on the result of the automatic travel setting process for each planned travel route 73 obtained in step S24. Then, the traveling control management unit 76 selects one scheduled traveling route 73 with the lowest cost.
- Step S26 is performed after step S25C.
- a cost defined based on a change in automation level may be newly introduced as a cost based on the result of the automatic travel setting process.
- Such a cost is referred to as an automation level change cost.
- the automation level change cost is increased as the number of changes in the automation level in the planned travel route 73 is increased.
- the equipment attribute information of the magnetic type equipment is information such as the latitude and longitude of the installation point of the magnetic type equipment, the arrangement shape of the magnetic marker, and the like. The same applies to radio wave type equipment, light emitting type equipment, and acoustic type equipment. Further, the equipment attribute information of the radio wave type equipment is information on the used frequency. The same applies to light-emitting equipment and acoustic equipment.
- the information storage unit 44F stores clarity related information 86, which is information related to the white line clarity information, in addition to the white line clarity information 70 described above.
- the stored information management unit 84 acquires the clarity related information 86 from the outside of the automatic travel management system 40F and stores it in the information storage unit 44F.
- the intelligibility related information 86 includes at least one of lane detection result information 88 and intelligibility influence information 90 (see FIG. 25).
- the lane detection result information 88 is used for white line clarity specifying processing. That is, the white line intelligibility specifying unit 74 corrects the white line intelligibility read from the white line intelligibility information 70 using the lane detection result information 88 in the same scheduled section.
- the intelligibility effect information 90 is information that affects the intelligibility of the white line, and is, for example, information on the failure status described in the fifth embodiment.
- the failure status information can be acquired from the traveling environment detection unit 50 and the external server 102 (see FIG. 16). Information acquired from the external server 102 is stored in the information storage unit 44F on condition that the management standard (for example, a reliable server) is satisfied. Similar to the lane detection result information 88, the intelligibility influence information 90 is also stored in the information storage unit 44F so that related road sections can be discriminated.
- the intelligibility effect information 90 is used by the travel control management unit 76 for the automatic travel setting process.
- FIG. 26 shows a block diagram of an automatic travel management system 40G according to the eleventh embodiment.
- the automatic traveling management system 40G can be applied to the above-described automatic traveling control systems 10 and 10B instead of the automatic traveling management system 40.
- the automatic travel management system 40G includes the information processing unit 42G according to the eleventh embodiment and the information storage unit 44 described above.
- the information processing unit 42G has a configuration in which a storage information management unit 84G is added to the information processing unit 42 described above.
- the storage information management unit 84G is basically the same as the storage information management unit 84 (see FIG. 24) according to the tenth embodiment. However, the storage information management unit 84G updates the white line intelligibility information 70 in the information storage unit 44 using the intelligibility related information 86 acquired from the outside of the automatic travel management system 40G.
- the automatic traveling control system 10H in FIG. 27 includes an automatic traveling management system 40H.
- the information processing unit 42 is mounted on the target vehicle 5, while the information storage unit 44 is provided in the server 110H.
- the server 110 ⁇ / b> H includes an external communication unit 112 and an information providing unit 114 in addition to the information storage unit 44.
- the information providing unit 114 acquires a request from the information processing unit 42 provided in the target vehicle 5 via the external communication unit 100 on the target vehicle 5 side and the external communication unit 112 on the server 110H side.
- the information provision part 114 reads at least one part of the white line clarity information 70 in the information storage part 44 according to the request
- the information transmitted from the external communication unit 112 is acquired by the information processing unit 42 via the external communication unit 100 on the target vehicle 5 side.
- the external communication units 100 and 112 communicate via the Internet, but the external communication units 100 and 112 may communicate directly by wireless communication.
- the same operation as in the first to fifth embodiments can be realized, and the effect of the operation can be obtained.
- the automatic travel control system 10I in FIG. 28 includes an automatic travel management system 40I.
- the information processing unit 42 is mounted on the target vehicle 5, while the information storage unit 44F according to the tenth embodiment is provided in the server 110I.
- the server 110I includes a storage information management unit 84 according to the tenth embodiment in addition to the information storage unit 44F, the external communication unit 112, and the information providing unit 114. Therefore, the information processing unit 42 provided in the target vehicle 5 and the stored information management unit 84 provided in the server 110I constitute an information processing unit 42F according to the tenth embodiment (see FIG. 24). For this reason, according to the automatic traveling management system 40I, the same operation as that of the tenth embodiment can be realized, and the effect by the operation can be obtained.
- the automatic travel control system 10J in FIG. 29 includes an automatic travel management system 40J.
- the information processing unit 42 is mounted on the target vehicle 5, while the information storage unit 44 is provided in the server 110J.
- the server 110J includes a storage information management unit 84G according to the eleventh embodiment. Therefore, the information processing unit 42G (see FIG. 26) according to the eleventh embodiment is configured by the information processing unit 42 provided in the target vehicle 5 and the stored information management unit 84G provided in the server 110J. For this reason, according to the automatic traveling management system 40J, the same operation as that of the eleventh embodiment can be realized, and the effect by the operation can be obtained.
- the entire automatic travel management system 40 is provided in the server 110K.
- an information processing unit 92 that controls communication functions and the like on the target vehicle 5 side is provided on the target vehicle 5 side.
- the information terminal can be used as the external communication unit 100 as described above.
- the entire automatic traveling management system 40 may be mounted on the information terminal 120L as in the automatic traveling control system 10L of FIG.
- An external communication unit 100L for communicating with the external communication unit 122 of the information terminal 120L is provided on the target vehicle 5 side. Communication between the external communication units 100L and 122 may be either wireless or wired.
- the components of the automatic traveling management system 40 may be provided in a distributed manner in the target vehicle 5, the server, and the information terminal.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- General Physics & Mathematics (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Electromagnetism (AREA)
- Mathematical Physics (AREA)
- Traffic Control Systems (AREA)
- Navigation (AREA)
- Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
Abstract
Description
<自動走行制御システム10>
図1に、実施の形態1に係る自動走行制御システム10のブロック図を示す。図1では、自動走行制御システム10の全体が走行制御の対象車両5に搭載されている。以下では、対象車両5を自車両5と呼ぶ場合もある。
図2に、自動走行管理システム40のブロック図を示す。図2に示すように、情報記憶部44には設備明瞭度情報70が格納されている。設備明瞭度情報70には、車線検出部48が検出対象物として利用する道路設備の明瞭度である設備明瞭度が記録されている。上記のように車線検出部48は車線検出のために路面の白線を検出するので、以下では設備明瞭度を白線明瞭度と呼ぶことにする。
図8に、自動走行制御システム10の動作を説明するフローチャートを示す。図8の動作フローS10によれば、ステップS11において、予定経路特定部72が走行予定経路73を特定する。次に、ステップS12において白線明瞭度特定部74が白線明瞭度特定処理を行い、ステップS13において走行制御管理部76が自動走行設定処理を行う。そして、ステップS14において走行制御管理部76が各予定区間の制御内容を車両制御部46に対して指示し、それにより車両制御部46が制御内容に従って対象車両5の走行を制御する。制御内容の切り替えは、予定区間が切り替わるタイミング、すなわち予定区間の切り替わり地点に到達するタイミングで行うものとする。動作フローS10は、走行予定経路73が変化する度に実行される。また、一定時間ごとに動作フローS10を実行してもよい。
実施の形態1によれば、複数の自動化レベルによって自動走行が制御される。このため、走行制御の内容が急激に変化するのを抑制できる。したがって、自動走行制御に関連して運転者が感じる運転負荷を軽減できる。なお、自動化レベルの数は2以上であればよく、例えば図6のレベル1~3のうちから1つを省略しても上記効果は得られる。
ここで上記では、車線検出部48が車線検出のために利用する道路設備が、路面の白線であり、撮像画像に対して白線検出用の画像解析を実行することによって車線の位置を検出する場合を説明した。このように撮像画像に対して道路設備検出用の画像解析を実行することによって検出される道路設備を、撮像型設備と呼ぶことにする。
実施の形態2では、実施の形態1に係る自動走行制御システム10が図6とは別の自動走行設定処理を実行する場合を、図10を参照して説明する。図10では、レベル1に比べて高くレベル2に比べて低いレベル1.5が追加されている。図10を図6と比較しやすくするためにレベル1.5という表記を用いるが、図10の4つのレベル1,1.5,2,3をレベル1,2,3,4と呼んでもよい。
実施の形態1,2では、制御内容の切り替えは、予定区間の切り替わり地点に到達するタイミングで行うものとした。図12に実施の形態3に係る、制御内容の切り替えタイミングを示す。図12には対象車両5が、予定区間L2から予定区間L3に進入する状況を示している。図5、図10および図11を参照すると、予定区間L2の白線明瞭度は110mであり、予定区間L2のレベルは2である。また、予定区間L3の白線明瞭度は80mであり、予定区間L3のレベルは1.5である。
実施の形態4では、白線明瞭度が頻繁に変化する場合における制御内容を説明する。走行予定経路73中に、白線明瞭度が規定頻度以上の頻度で変化する区域である頻繁変化区域LF(図13参照)が在るとする。規定頻度は例えば、現在の車速で走行を続けた場合に白線明瞭度が10分の時間間隔で1時間に渡って変化することを内容とする。この場合、規定頻度以上の頻度とは、白線明瞭度の変化間隔が10分以下になる事象が1時間当たり1回以上生じることを意味する。
実施の形態5では、走行制御内容の実行に障害となる状況である障害状況が生じた場合を説明する。走行制御管理部76は、障害状況の情報を取得した場合、予定区間の白線明瞭度だけでなく、その予定区間の障害状況にも基づいて、制御内容を設定する。
図17に、実施の形態6に係る自動走行管理システム40Cのブロック図を示す。自動走行管理システム40Cは、自動走行管理システム40に代えて既述の自動走行制御システム10,10Bに適用可能である。自動走行管理システム40Cは、実施の形態6に係る情報処理部42Cと、既述の情報記憶部44とを含んでいる。情報処理部42Cは、既述の情報処理部42に通知制御部78が追加された構成を有している。
図18に、実施の形態7に係る自動走行管理システム40Dのブロック図を示す。自動走行管理システム40Dは、自動走行管理システム40に代えて既述の自動走行制御システム10,10Bに適用可能である。自動走行管理システム40Dは、実施の形態7に係る情報処理部42Dと、既述の情報記憶部44とを含んでいる。情報処理部42Dは、既述の情報処理部42に地図表示制御部80が追加された構成を有している。
実施の形態8では、予定経路特定部72が経路探索によって、走行予定経路73として複数の経路を見付けた場合を説明する。図20に、実施の形態8に係る動作を説明するフローチャートを示す。図20の動作フローS10Bによれば、ステップS21において、予定経路特定部72が走行予定経路73を特定するために経路を探索する。
図23に、実施の形態9に係る自動走行管理システム40Eのブロック図を示す。自動走行管理システム40Eは、自動走行管理システム40に代えて既述の自動走行制御システム10,10Bに適用可能である。自動走行管理システム40Eは、既述の情報処理部42と、実施の形態9に係る情報記憶部44Eとを含んでいる。情報記憶部44Eは、既述の白線明瞭度情報70の他に、白線属性情報(換言すれば設備属性情報)82を格納している。白線属性情報82は車線検出部48に提供され、車線検出部48は白線属性情報82を利用して白線の検出処理を行う。
図24に、実施の形態10に係る自動走行管理システム40Fのブロック図を示す。自動走行管理システム40Fは、自動走行管理システム40に代えて既述の自動走行制御システム10,10Bに適用可能である。自動走行管理システム40Fは情報処理部42Fと情報記憶部44Fとを含んでいる。情報処理部42Fは、既述の情報処理部42に記憶情報管理部84が追加された構成を有している。
図26に、実施の形態11に係る自動走行管理システム40Gのブロック図を示す。自動走行管理システム40Gは、自動走行管理システム40に代えて既述の自動走行制御システム10,10Bに適用可能である。自動走行管理システム40Gは、実施の形態11に係る情報処理部42Gと、既述の情報記憶部44とを含んでいる。情報処理部42Gは、既述の情報処理部42に記憶情報管理部84Gが追加された構成を有している。
上記では、自動走行管理システム40の全体が対象車両5に搭載されている場合を説明した。しかし、自動走行管理システム40の一部または全体が対象車両5の外部に設けられてもよい。他の自動走行管理システム40B,40C,40D,40E,40F,40Gについても同様である。図27~図31に、実施の形態12に係る自動走行制御システム10H,10I,10J,10K,10Lのブロック図を示す。
本発明は、その発明の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略することが可能である。
Claims (20)
- 走行制御の対象車両について走行予定経路を特定する予定経路特定部と、
前記対象車両に設けられた車線検出システムが検出対象物として利用する道路設備の明瞭度である設備明瞭度が道路区間ごとに記録された設備明瞭度情報を格納している情報記憶部と、
前記走行予定経路に含まれる前記道路区間である予定区間の前記設備明瞭度を前記設備明瞭度情報に基づいて特定する設備明瞭度特定処理を行う設備明瞭度特定部と、
前記走行予定経路における自動走行の制御内容を前記予定区間の前記設備明瞭度に基づいて設定する自動走行設定処理を行い、前記設備明瞭度が高いほど複数の自動化レベルのうちで、より高レベルの制御内容を選択するという自動化レベル条件に従って、前記自動走行設定処理を行う走行制御管理部と
を備える自動走行管理システム。 - 前記走行制御管理部は、前記設備明瞭度が自動操舵基準を満足する前記予定区間に対して、前記車線検出システムを利用した自動操舵制御を含む制御内容を選択するという自動操舵条件に従って、前記自動走行設定処理を行う、請求項1に記載の自動走行管理システム。
- 前記走行制御管理部は、前記設備明瞭度が高いほど、より高レベルの自動操舵制御を含む制御内容を選択するという自動操舵レベル条件に従って、前記自動走行設定処理を行う、請求項2に記載の自動走行管理システム。
- 前記自動化レベル条件は、前記制御内容が車間距離制御と定速走行制御とレーンキーピング制御と追い越し制御との中から選ばれる、より多くの制御を含むほど、前記自動化レベルが、より高いという条件を含む、請求項1に記載の自動走行管理システム。
- 前記複数の自動化レベルは、
前記車間距離制御と前記定速走行制御とが割り当てられた第1のレベルと、
前記車間距離制御と前記定速走行制御と前記レーンキーピング制御とが割り当てられ前記第1のレベルに比べて高いレベルを有する第2のレベルと、
前記車間距離制御と前記定速走行制御と前記レーンキーピング制御と前記追い越し制御とが割り当てられ前記第1および第2のレベルに比べて高いレベルを有する第3のレベルと
のうちの少なくとも2つを含む、請求項4に記載の自動走行管理システム。 - 前記走行制御管理部は、選択した制御内容が定速走行制御を含む場合、前記設備明瞭度が低いほど前記定速走行制御に適用する定速度を、より低く設定する、請求項1に記載の自動走行管理システム。
- 第1の予定区間から第2の予定区間に進入することによって前記設備明瞭度が低下する場合、前記走行制御管理部は前記第2の予定区間の前記制御内容を前記第2の予定区間に進入する前に開始させる、請求項1に記載の自動走行管理システム。
- 前記設備明瞭度が規定頻度以上の頻度で変化する頻繁変化区域が在る場合、前記走行制御管理部は、前記頻繁変化区域における最低の設備明瞭度に基づいた前記制御内容を、前記頻繁変化区域の全域に適用する、請求項1に記載の自動走行管理システム。
- 前記走行制御管理部は、前記制御内容の実行に障害となる状況である障害状況の情報にも基づいて前記制御内容を設定する、請求項1に記載の自動走行管理システム。
- 地図画像における前記予定区間の表示形態を前記予定区間の前記自動化レベルに応じて設定し、前記地図画像を表示装置に表示させる地図表示制御部をさらに備える、請求項1に記載の自動走行管理システム。
- 前記設備明瞭度特定部は、前記予定経路特定部が複数の走行予定経路を見付けた場合、各走行予定経路に対して前記設備明瞭度特定処理を行い、
前記走行制御管理部は、前記各走行予定経路に対して前記自動走行設定処理を行い、前記各走行予定経路を走行するのにかかるコストを前記自動走行設定処理の結果に基づいて算出し、前記コストが最も少ない1つの走行予定経路を選択する、または、前記設備明瞭度の変化が最も少ない1つの走行予定経路に対して前記自動走行設定処理を行う、
請求項1に記載の自動走行管理システム。 - 前記設備明瞭度情報に関連する明瞭度関連情報を取得し、前記明瞭度関連情報を前記情報記憶部内に格納する記憶情報管理部をさらに備える、請求項1に記載の自動走行管理システム。
- 前記設備明瞭度情報に関連する明瞭度関連情報を取得し、前記明瞭度関連情報を用いて前記情報記憶部内の前記設備明瞭度情報を更新する記憶情報管理部をさらに備える、請求項1に記載の自動走行管理システム。
- 前記情報記憶部はサーバに設けられ、前記設備明瞭度特定部は前記対象車両に設けられている、請求項1に記載の自動走行管理システム。
- 前記道路設備は、
撮像画像に対して道路設備検出用の画像解析を実行することによって検出される撮像型設備と、
磁気を発する磁気型設備と、
電波を発する電波型設備と、
光を発する発光型設備と、
音を発する音響型設備と
のうちのいずれか1つである、請求項1に記載の自動走行管理システム。 - サーバ外部と通信を行う外部通信部と、
走行制御の対象車両に設けられた車線検出システムが検出対象物として利用する道路設備の明瞭度である設備明瞭度が道路区間ごとに記録された設備明瞭度情報を格納している情報記憶部と、
前記対象車両に設けられた情報処理部の要求を前記外部通信部を介して取得し、前記要求に応じて前記設備明瞭度情報の少なくとも一部を前記外部通信部を介して前記情報処理部に提供する情報提供部と
を備えるサーバ。 - 前記情報記憶部は前記道路設備の属性に関する設備属性情報をさらに格納しており、前記情報提供部は前記情報処理部の前記要求に応じて前記設備属性情報の少なくとも一部を前記外部通信部を介して前記情報処理部に提供する、請求項16に記載のサーバ。
- 前記設備明瞭度情報に関連する明瞭度関連情報を前記外部通信部を介して受信し、受信した前記明瞭度関連情報を前記情報記憶部内に格納する記憶情報管理部をさらに備える、請求項16に記載のサーバ。
- 前記設備明瞭度情報に関連する明瞭度関連情報を前記外部通信部を介して受信し、受信した前記明瞭度関連情報を用いて前記情報記憶部内の前記設備明瞭度情報を更新する記憶情報管理部をさらに備える、請求項16に記載のサーバ。
- 走行制御の対象車両について走行予定経路を特定することと、
前記走行予定経路に含まれる道路区間である予定区間の設備明瞭度を設備明瞭度情報に基づいて特定する設備明瞭度特定処理を行うことと
を備え、
前記設備明瞭度は、前記対象車両に設けられた車線検出システムが検出対象物として利用する道路設備の明瞭度であり、前記設備明瞭度情報は、前記設備明瞭度が道路区間ごとに記録された情報であり、
前記走行予定経路における自動走行の制御内容を前記予定区間の前記設備明瞭度に基づいて設定する自動走行設定処理を行い、前記設備明瞭度が高いほど複数の自動化レベルのうちでより高レベルの制御内容を選択するという自動化レベル条件に従って、前記自動走行設定処理を行うこと
を備える自動走行管理方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/329,208 US20170227971A1 (en) | 2014-09-05 | 2014-09-05 | Autonomous travel management apparatus, server, and autonomous travel management method |
CN201480081686.XA CN106660553B (zh) | 2014-09-05 | 2014-09-05 | 自动行驶管理系统、服务器及自动行驶管理方法 |
PCT/JP2014/073493 WO2016035199A1 (ja) | 2014-09-05 | 2014-09-05 | 自動走行管理システム、サーバおよび自動走行管理方法 |
DE112014006929.9T DE112014006929B4 (de) | 2014-09-05 | 2014-09-05 | Autonomes Fahrmanagementsystem, Server und autonomes Fahrmanagementverfahren |
JP2016546271A JP6328254B2 (ja) | 2014-09-05 | 2014-09-05 | 自動走行管理システム、サーバおよび自動走行管理方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/073493 WO2016035199A1 (ja) | 2014-09-05 | 2014-09-05 | 自動走行管理システム、サーバおよび自動走行管理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016035199A1 true WO2016035199A1 (ja) | 2016-03-10 |
Family
ID=55439298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/073493 WO2016035199A1 (ja) | 2014-09-05 | 2014-09-05 | 自動走行管理システム、サーバおよび自動走行管理方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20170227971A1 (ja) |
JP (1) | JP6328254B2 (ja) |
CN (1) | CN106660553B (ja) |
DE (1) | DE112014006929B4 (ja) |
WO (1) | WO2016035199A1 (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016057655A (ja) * | 2014-09-05 | 2016-04-21 | 三菱電機株式会社 | 自動走行管理システム、サーバおよび自動走行管理方法 |
CN107346137A (zh) * | 2016-05-06 | 2017-11-14 | 福特全球技术公司 | 车辆的基于网络的存储器和用于优化车辆路线规划的基础设施数据 |
JP2018096404A (ja) * | 2016-12-09 | 2018-06-21 | トヨタ自動車株式会社 | 車両の制御装置 |
WO2018180247A1 (ja) * | 2017-03-28 | 2018-10-04 | パイオニア株式会社 | 出力装置、制御方法、プログラム及び記憶媒体 |
CN110546461A (zh) * | 2017-04-12 | 2019-12-06 | 日产自动车株式会社 | 驾驶控制方法以及驾驶控制装置 |
JP2020008441A (ja) * | 2018-07-09 | 2020-01-16 | 株式会社日立製作所 | 自動運転支援装置及びその方法 |
JP2020066430A (ja) * | 2018-10-26 | 2020-04-30 | バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド | 車両の自動運転を制御する方法、装置、機器および媒体 |
US10895470B2 (en) | 2017-09-15 | 2021-01-19 | Toyota Jidosha Kabushiki Kaisha | Travel control apparatus, travel control system, and travel control method |
EP3578921A4 (en) * | 2017-01-31 | 2021-03-17 | Pioneer Corporation | INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD AND PROGRAM |
JP2021535043A (ja) * | 2018-09-04 | 2021-12-16 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh | 自転車に接近する車両の追越し操作を確実にするための方法および装置 |
JP2021193605A (ja) * | 2017-01-19 | 2021-12-23 | ソニーセミコンダクタソリューションズ株式会社 | 車両制御装置及び車両制御方法 |
US11680808B2 (en) | 2020-05-19 | 2023-06-20 | Toyota Jidosha Kabushiki Kaisha | Map selection device, storage medium storing computer program for map selection and map selection method |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016151749A1 (ja) * | 2015-03-24 | 2016-09-29 | パイオニア株式会社 | 自動運転支援装置、制御方法、プログラム及び記憶媒体 |
WO2016199419A1 (ja) * | 2015-06-10 | 2016-12-15 | Jfeスチール株式会社 | 多電極サブマージアーク溶接方法、ならびに溶接継手およびその製造方法 |
JP6610665B2 (ja) * | 2015-06-23 | 2019-11-27 | 日本電気株式会社 | 検出システム、検出方法、及び、プログラム |
US10002471B2 (en) * | 2015-09-30 | 2018-06-19 | Ants Technology (Hk) Limited | Systems and methods for autonomous vehicle navigation |
DE102015225157A1 (de) * | 2015-12-14 | 2017-06-14 | Robert Bosch Gmbh | Verfahren zum Übertragen, Empfangen und Verarbeiten von Datenwerten, sowie eine Übertragungs- und Empfangsvorrichtung |
JP6558239B2 (ja) * | 2015-12-22 | 2019-08-14 | アイシン・エィ・ダブリュ株式会社 | 自動運転支援システム、自動運転支援方法及びコンピュータプログラム |
CN109476308B (zh) * | 2016-07-12 | 2019-12-31 | 日产自动车株式会社 | 行驶控制方法及行驶控制装置 |
US10803683B2 (en) * | 2017-02-14 | 2020-10-13 | Kabushiki Kaisha Toshiba | Information processing device, information processing method, computer program product, and moving object |
CN110741422A (zh) * | 2017-06-16 | 2020-01-31 | 本田技研工业株式会社 | 车辆及服务管理装置 |
CN110770809B (zh) * | 2017-06-20 | 2022-08-09 | 三菱电机株式会社 | 路径预测装置以及路径预测方法 |
DE112018004163T5 (de) * | 2017-09-29 | 2020-04-30 | Hitachi Automotive Systems, Ltd. | Steuereinrichtung und Steuerverfahren für autonomes Fahren |
SE541529C2 (en) * | 2017-11-03 | 2019-10-29 | Scania Cv Ab | Method and system for shifting between manual and autonomous drive operation modes in vehicles |
EP3492338A1 (en) * | 2017-11-30 | 2019-06-05 | Mitsubishi Electric R & D Centre Europe B.V. | Method for automatic remote control of a moving conveyance |
JP7048398B2 (ja) * | 2018-04-13 | 2022-04-05 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
EP3816962B1 (en) * | 2018-06-28 | 2023-05-10 | Nissan Motor Co., Ltd. | Driving assistance method and driving assistance device |
KR102163895B1 (ko) * | 2018-07-16 | 2020-10-12 | 엘지전자 주식회사 | 차량 제어 장치 및 그것을 포함하는 차량 |
CN108791290B (zh) * | 2018-08-20 | 2020-10-20 | 中国人民解放军国防科技大学 | 基于在线增量式dhp的双车协同自适应巡航控制方法 |
JP7229710B2 (ja) * | 2018-09-26 | 2023-02-28 | 本田技研工業株式会社 | 車両制御装置、車両制御方法、およびプログラム |
JP7103201B2 (ja) * | 2018-12-20 | 2022-07-20 | トヨタ自動車株式会社 | 情報処理システム、プログラム、及び情報処理方法 |
KR102269625B1 (ko) * | 2019-01-30 | 2021-06-28 | 한국자동차연구원 | 다차량 주행 정보 기반 차선 관리 방법 및 시스템 |
JP7124784B2 (ja) * | 2019-04-04 | 2022-08-24 | トヨタ自動車株式会社 | 車両制御装置 |
US12078993B2 (en) * | 2019-05-09 | 2024-09-03 | ANI Technologies Private Limited | Generation of autonomy map for autonomous vehicle |
DE102019206847A1 (de) * | 2019-05-10 | 2020-11-12 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Betreiben eines automatisierten Fahrzeugs |
CN110487562B (zh) * | 2019-08-21 | 2020-04-14 | 北京航空航天大学 | 一种用于无人驾驶的车道保持能力检测系统及方法 |
JP2021162953A (ja) * | 2020-03-30 | 2021-10-11 | 本田技研工業株式会社 | 収容領域管理装置 |
JP7481903B2 (ja) * | 2020-05-22 | 2024-05-13 | 株式会社東芝 | 情報処理装置、情報処理方法、情報処理システム及びコンピュータプログラム |
US11687094B2 (en) | 2020-08-27 | 2023-06-27 | Here Global B.V. | Method, apparatus, and computer program product for organizing autonomous vehicles in an autonomous transition region |
US11713979B2 (en) | 2020-08-27 | 2023-08-01 | Here Global B.V. | Method, apparatus, and computer program product for generating a transition variability index related to autonomous driving |
US11691643B2 (en) * | 2020-08-27 | 2023-07-04 | Here Global B.V. | Method and apparatus to improve interaction models and user experience for autonomous driving in transition regions |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001344687A (ja) * | 2000-06-02 | 2001-12-14 | Mitsubishi Electric Corp | 車両の操舵運転支援装置 |
JP2004126888A (ja) * | 2002-10-01 | 2004-04-22 | Nissan Motor Co Ltd | 車両用情報提示装置 |
JP2008077349A (ja) * | 2006-09-20 | 2008-04-03 | Toyota Motor Corp | 車両状態量推定装置及びその装置を用いた車両操舵制御装置 |
JP2008250687A (ja) * | 2007-03-30 | 2008-10-16 | Aisin Aw Co Ltd | 地物情報収集装置及び地物情報収集方法 |
JP2010000951A (ja) * | 2008-06-20 | 2010-01-07 | Toyota Motor Corp | 運転支援装置 |
JP2012027760A (ja) * | 2010-07-26 | 2012-02-09 | Suzuki Motor Corp | 車線逸脱防止システム |
WO2013069130A1 (ja) * | 2011-11-10 | 2013-05-16 | 三菱電機株式会社 | 車両側システム |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997002167A1 (fr) * | 1995-07-04 | 1997-01-23 | Hiroyuki Minakami | Systeme de trafic/transport |
US5995898A (en) * | 1996-12-06 | 1999-11-30 | Micron Communication, Inc. | RFID system in communication with vehicle on-board computer |
JP3468001B2 (ja) * | 1996-12-16 | 2003-11-17 | 日産自動車株式会社 | 車両用走行制御装置 |
US7268700B1 (en) * | 1998-01-27 | 2007-09-11 | Hoffberg Steven M | Mobile communication device |
US6252544B1 (en) * | 1998-01-27 | 2001-06-26 | Steven M. Hoffberg | Mobile communication device |
US7366595B1 (en) * | 1999-06-25 | 2008-04-29 | Seiko Epson Corporation | Vehicle drive assist system |
JP2001167388A (ja) * | 1999-12-10 | 2001-06-22 | Hino Motors Ltd | 車両の位置検出装置 |
JP2001209431A (ja) * | 2000-01-27 | 2001-08-03 | Toyota Motor Corp | 非常時制動装置 |
EP1504276B1 (en) * | 2002-05-03 | 2012-08-08 | Donnelly Corporation | Object detection system for vehicle |
US20040126888A1 (en) * | 2002-12-16 | 2004-07-01 | Puri Pushpinder Singh | Double walled vessels for odorant containments |
US9818136B1 (en) * | 2003-02-05 | 2017-11-14 | Steven M. Hoffberg | System and method for determining contingent relevance |
DE102004032495A1 (de) | 2004-07-05 | 2006-01-26 | Siemens Ag | Verfahren und Routenplanungssystem zur dynamischen Routenplanung |
JP4696539B2 (ja) * | 2004-11-26 | 2011-06-08 | アイシン精機株式会社 | 車両の走行支援装置 |
JP4321821B2 (ja) * | 2005-01-28 | 2009-08-26 | アイシン・エィ・ダブリュ株式会社 | 画像認識装置及び画像認識方法 |
EP1968014B1 (en) * | 2005-12-28 | 2012-12-19 | Honda Motor Co., Ltd. | Vehicle and lane mark detection device |
US20100066587A1 (en) * | 2006-07-14 | 2010-03-18 | Brian Masao Yamauchi | Method and System for Controlling a Remote Vehicle |
US8843244B2 (en) * | 2006-10-06 | 2014-09-23 | Irobot Corporation | Autonomous behaviors for a remove vehicle |
JP4663620B2 (ja) * | 2006-12-07 | 2011-04-06 | 日立オートモティブシステムズ株式会社 | 車載情報端末、地図サーバ、および車載システム |
JP4996979B2 (ja) * | 2007-05-29 | 2012-08-08 | 日立オートモティブシステムズ株式会社 | ナビ協調走行制御システム、および、ナビ協調走行制御方法 |
FR2923016B1 (fr) * | 2007-10-31 | 2009-11-20 | Valeo Vision | Procede de detection d'un phenomene perturbateur de visibilite pour un vehicule. |
JP5056613B2 (ja) * | 2008-06-20 | 2012-10-24 | トヨタ自動車株式会社 | 運転支援システム |
WO2009153661A1 (en) * | 2008-06-20 | 2009-12-23 | Toyota Jidosha Kabushiki Kaisha | Driving assistance apparatus and driving assistance method |
US8121749B1 (en) * | 2008-09-25 | 2012-02-21 | Honeywell International Inc. | System for integrating dynamically observed and static information for route planning in a graph based planner |
JP4739400B2 (ja) * | 2008-12-22 | 2011-08-03 | 日立オートモティブシステムズ株式会社 | 車両運転支援システム |
JP5066123B2 (ja) * | 2009-03-24 | 2012-11-07 | 日立オートモティブシステムズ株式会社 | 車両運転支援装置 |
SE535204C2 (sv) * | 2009-12-17 | 2012-05-22 | Scania Cv Ab | Metod för bestämning av drivkraftkapacitet hos ett motorfordon |
JP2012079118A (ja) | 2010-10-01 | 2012-04-19 | Toyota Motor Corp | 走行支援装置及び方法 |
US8855847B2 (en) * | 2012-01-20 | 2014-10-07 | Toyota Motor Engineering & Manufacturing North America, Inc. | Intelligent navigation system |
US9374661B2 (en) * | 2012-04-02 | 2016-06-21 | University Of Washington Through Its Center For Commercialization | Travel pattern discovery using mobile device sensors |
DE102012016802A1 (de) | 2012-08-23 | 2014-02-27 | Audi Ag | Verfahren zur Steuerung eines autonomen Fahrzeugsystems und Kraftfahrzeug |
DE102012112442A1 (de) | 2012-12-17 | 2014-06-18 | Continental Teves Ag & Co. Ohg | Verfahren zur Steuerung eines Fahrzeugs mit einem ein automatisiertes, teilautomatisiertes und ein manuelles Fahren ermöglichenden Fahrerassistenzsystem |
DE102013216994A1 (de) * | 2013-08-27 | 2015-03-05 | Robert Bosch Gmbh | Geschwindigkeitsassistent für ein Kraftfahrzeug |
EP2848487B1 (en) * | 2013-09-12 | 2020-03-18 | Volvo Car Corporation | Manoeuvre generation for automated drive |
DE102013225459B4 (de) | 2013-12-10 | 2023-11-30 | Continental Autonomous Mobility Germany GmbH | Verfahren zum automatisierten Führen eines Kraftfahrzeugs und Kraftfahrzeug zum Ausführen des Verfahrens |
US9436180B1 (en) * | 2014-04-11 | 2016-09-06 | Google Inc. | Location-based privacy |
US9834207B2 (en) * | 2014-04-15 | 2017-12-05 | GM Global Technology Operations LLC | Method and system for detecting, tracking and estimating stationary roadside objects |
-
2014
- 2014-09-05 DE DE112014006929.9T patent/DE112014006929B4/de active Active
- 2014-09-05 JP JP2016546271A patent/JP6328254B2/ja active Active
- 2014-09-05 WO PCT/JP2014/073493 patent/WO2016035199A1/ja active Application Filing
- 2014-09-05 CN CN201480081686.XA patent/CN106660553B/zh active Active
- 2014-09-05 US US15/329,208 patent/US20170227971A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001344687A (ja) * | 2000-06-02 | 2001-12-14 | Mitsubishi Electric Corp | 車両の操舵運転支援装置 |
JP2004126888A (ja) * | 2002-10-01 | 2004-04-22 | Nissan Motor Co Ltd | 車両用情報提示装置 |
JP2008077349A (ja) * | 2006-09-20 | 2008-04-03 | Toyota Motor Corp | 車両状態量推定装置及びその装置を用いた車両操舵制御装置 |
JP2008250687A (ja) * | 2007-03-30 | 2008-10-16 | Aisin Aw Co Ltd | 地物情報収集装置及び地物情報収集方法 |
JP2010000951A (ja) * | 2008-06-20 | 2010-01-07 | Toyota Motor Corp | 運転支援装置 |
JP2012027760A (ja) * | 2010-07-26 | 2012-02-09 | Suzuki Motor Corp | 車線逸脱防止システム |
WO2013069130A1 (ja) * | 2011-11-10 | 2013-05-16 | 三菱電機株式会社 | 車両側システム |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016057655A (ja) * | 2014-09-05 | 2016-04-21 | 三菱電機株式会社 | 自動走行管理システム、サーバおよび自動走行管理方法 |
CN107346137A (zh) * | 2016-05-06 | 2017-11-14 | 福特全球技术公司 | 车辆的基于网络的存储器和用于优化车辆路线规划的基础设施数据 |
JP2018096404A (ja) * | 2016-12-09 | 2018-06-21 | トヨタ自動車株式会社 | 車両の制御装置 |
US12065157B2 (en) | 2017-01-19 | 2024-08-20 | Sony Semiconductor Solutions Corporation | Vehicle control apparatus and vehicle control method |
JP2021193605A (ja) * | 2017-01-19 | 2021-12-23 | ソニーセミコンダクタソリューションズ株式会社 | 車両制御装置及び車両制御方法 |
US11709492B2 (en) | 2017-01-31 | 2023-07-25 | Pioneer Corporation | Information processing device, information processing method, and non-transitory computer readable medium |
US11243534B2 (en) | 2017-01-31 | 2022-02-08 | Pioneer Corporation | Information processing device, information processing method, and non-transitory computer readable medium |
EP3578921A4 (en) * | 2017-01-31 | 2021-03-17 | Pioneer Corporation | INFORMATION PROCESSING DEVICE, INFORMATION PROCESSING METHOD AND PROGRAM |
WO2018180247A1 (ja) * | 2017-03-28 | 2018-10-04 | パイオニア株式会社 | 出力装置、制御方法、プログラム及び記憶媒体 |
US12099361B2 (en) | 2017-03-28 | 2024-09-24 | Pioneer Corporation | Output device, control method, program and storage medium for control of a moving body based on road marking detection accuracy |
CN110546461A (zh) * | 2017-04-12 | 2019-12-06 | 日产自动车株式会社 | 驾驶控制方法以及驾驶控制装置 |
EP3611469A4 (en) * | 2017-04-12 | 2020-05-27 | Nissan Motor Co., Ltd. | DRIVE CONTROL METHOD AND DRIVE CONTROL DEVICE |
CN110546461B (zh) * | 2017-04-12 | 2022-05-03 | 日产自动车株式会社 | 驾驶控制方法以及驾驶控制装置 |
US11731665B2 (en) | 2017-04-12 | 2023-08-22 | Nissan Motor Co., Ltd. | Driving control method and driving control device |
US10895470B2 (en) | 2017-09-15 | 2021-01-19 | Toyota Jidosha Kabushiki Kaisha | Travel control apparatus, travel control system, and travel control method |
JP2020008441A (ja) * | 2018-07-09 | 2020-01-16 | 株式会社日立製作所 | 自動運転支援装置及びその方法 |
JP2021535043A (ja) * | 2018-09-04 | 2021-12-16 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh | 自転車に接近する車両の追越し操作を確実にするための方法および装置 |
JP2023071812A (ja) * | 2018-09-04 | 2023-05-23 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 自転車に接近する車両の追越し操作を確実にするための方法および装置 |
JP7467717B2 (ja) | 2018-09-04 | 2024-04-15 | ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング | 自転車に接近する車両の追越し操作を確実にするための方法および装置 |
JP7050736B2 (ja) | 2018-10-26 | 2022-04-08 | アポロ インテリジェント ドライビング テクノロジー(ペキン)カンパニー リミテッド | 車両の自動運転を制御する方法、装置、機器および媒体 |
JP2020066430A (ja) * | 2018-10-26 | 2020-04-30 | バイドゥ オンライン ネットワーク テクノロジー (ベイジン) カンパニー リミテッド | 車両の自動運転を制御する方法、装置、機器および媒体 |
US11680808B2 (en) | 2020-05-19 | 2023-06-20 | Toyota Jidosha Kabushiki Kaisha | Map selection device, storage medium storing computer program for map selection and map selection method |
Also Published As
Publication number | Publication date |
---|---|
CN106660553A (zh) | 2017-05-10 |
DE112014006929T5 (de) | 2017-05-11 |
JPWO2016035199A1 (ja) | 2017-04-27 |
US20170227971A1 (en) | 2017-08-10 |
DE112014006929B4 (de) | 2023-03-02 |
CN106660553B (zh) | 2018-12-04 |
JP6328254B2 (ja) | 2018-05-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6328254B2 (ja) | 自動走行管理システム、サーバおよび自動走行管理方法 | |
US11548526B2 (en) | Systems and methods for implementing an autonomous vehicle response to sensor failure | |
JP6392037B2 (ja) | 自動走行管理システムおよび自動走行管理方法 | |
EP3475657B1 (en) | Dynamic lane definition | |
US10176715B2 (en) | Navigation system with dynamic mapping mechanism and method of operation thereof | |
US10422649B2 (en) | Autonomous driving sensing system and method | |
US11776399B2 (en) | Driver feedback for efficiently traversing intersections | |
US11335188B2 (en) | Method for automatically producing and updating a data set for an autonomous vehicle | |
US10657822B2 (en) | Vehicle control device | |
US10369995B2 (en) | Information processing device, information processing method, control device for vehicle, and control method for vehicle | |
KR20210013594A (ko) | 이동식 센서를 사용하여 차량 동작을 개선시키기 위한 시스템 및 방법 | |
KR102387774B1 (ko) | 자동화된 차량을 위한 가변 범위 및 프레임-레이트 레이더 작동 | |
US10783384B2 (en) | Object detection using shadows | |
JP2020140535A (ja) | サーバ、車両支援システム | |
US11852742B2 (en) | Method for generating a map of the surroundings of a vehicle | |
CN113313933B (zh) | 用于自动驾驶车辆的基于车道的路线选择系统 | |
JP7452650B2 (ja) | 駐停車地点管理装置、駐停車地点管理方法、車両用装置 | |
WO2021070768A1 (ja) | 情報処理装置、および情報処理システム、並びに情報処理方法 | |
WO2023239806A1 (en) | Systems and methods for heads-up display | |
WO2023276276A1 (ja) | 車載情報処理装置、自動運転システムおよび車載システム | |
US20240127633A1 (en) | Dynamic autonomous vehicle modem orchestration | |
US11920949B2 (en) | Map generation apparatus | |
US11906323B2 (en) | Map generation apparatus | |
US11735044B2 (en) | Information transmission system | |
DK179976B1 (en) | OBJECTIVE DETECTOR CONFIGURATION BASED ON HUMAN OVERVIEW OF AUTOMATED VEHICLE CONTROL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14901163 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016546271 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112014006929 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14901163 Country of ref document: EP Kind code of ref document: A1 |