WO2016031476A1 - トレッド用ゴム組成物及び空気入りタイヤ - Google Patents

トレッド用ゴム組成物及び空気入りタイヤ Download PDF

Info

Publication number
WO2016031476A1
WO2016031476A1 PCT/JP2015/071430 JP2015071430W WO2016031476A1 WO 2016031476 A1 WO2016031476 A1 WO 2016031476A1 JP 2015071430 W JP2015071430 W JP 2015071430W WO 2016031476 A1 WO2016031476 A1 WO 2016031476A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
rubber
parts
rubber composition
inorganic filler
Prior art date
Application number
PCT/JP2015/071430
Other languages
English (en)
French (fr)
Inventor
達也 宮崎
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to CN201580043637.1A priority Critical patent/CN106574078B/zh
Priority to US15/503,967 priority patent/US10035900B2/en
Priority to EP15835289.8A priority patent/EP3178877B1/en
Priority to JP2015560438A priority patent/JP6189976B2/ja
Publication of WO2016031476A1 publication Critical patent/WO2016031476A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0008Compositions of the inner liner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/22Incorporating nitrogen atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/25Incorporating silicon atoms into the molecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/42Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups
    • C08C19/44Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with metals or metal-containing groups of polymers containing metal atoms exclusively at one or both ends of the skeleton
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/06Sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/5398Phosphorus bound to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/02Homopolymers or copolymers of hydrocarbons
    • C08L25/04Homopolymers or copolymers of styrene
    • C08L25/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L91/00Compositions of oils, fats or waxes; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L93/00Compositions of natural resins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2206Oxides; Hydroxides of metals of calcium, strontium or barium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/2224Magnesium hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • C08K2003/3063Magnesium sulfate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/019Specific properties of additives the composition being defined by the absence of a certain additive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2666/00Composition of polymers characterized by a further compound in the blend, being organic macromolecular compounds, natural resins, waxes or and bituminous materials, non-macromolecular organic substances, inorganic substances or characterized by their function in the composition
    • C08L2666/54Inorganic substances

Definitions

  • the present invention relates to a rubber composition for a tread, and a pneumatic tire having a tread produced using the rubber composition for a tread.
  • the pneumatic tire is composed of various members such as a tread and a sidewall, and various performances are imparted to each member.
  • the tread that contacts the road surface is required to have performance such as grip performance, wear resistance, and tensile performance.
  • fillers such as silica and carbon black, low temperature plasticizers, process oils, liquid resins, and softening points of 160 ° C. or lower are usually used for rubber components including diene rubbers.
  • a softener such as a resin is blended.
  • Patent Document 1 discloses a technique for improving the wear resistance and tensile performance by accelerating the coupling reaction by blending polysulfurized alkoxysilane, zinc dithiophosphate and guanidine derivative with diene elastomer. Has been.
  • the present invention is a tread rubber composition that solves the above-mentioned problems and contains a diene rubber as a rubber component, and can achieve both WET grip performance, wear resistance, and blow performance during dry running. And a pneumatic tire having a tread produced using the rubber composition for a tread.
  • the present invention comprises at least one selected from the group consisting of a diene rubber containing styrene butadiene rubber, zinc dithiophosphate, a compound represented by the following formula, magnesium sulfate, and silicon carbide, and has a BET value of 5 an inorganic filler ⁇ 120 m 2 / g, linseed oil absorption amount is 30 - 80 ml / 100 g, and a sulfur, to the diene rubber 100 parts by weight, the content of the zinc dithiophosphate 0.2
  • the present invention relates to a rubber composition for a tread having a content of 15 parts by mass, an inorganic filler content of 1 to 70 parts by mass, and a zinc oxide content of less than 2.5 parts by mass.
  • M is at least one metal selected from the group consisting of Al, Mg, Ti, Ca and Zr, an oxide or hydroxide of the metal, m is an integer of 1 to 5, and x is (An integer from 0 to 10, y is an integer from 2 to 5, and z is an integer from 0 to 10.)
  • the rubber composition for a tread of the present invention preferably has a BET value of 10 to 120 m 2 / g and an linseed oil absorption of 30 to 80 ml / 100 g of the inorganic filler.
  • the inorganic filler is preferably aluminum hydroxide.
  • the diene rubber preferably contains 60% by mass or more of styrene butadiene rubber having a styrene content of 19 to 60%.
  • the rubber composition for a tread of the present invention preferably contains 5 to 130 parts by mass of carbon black having a BET value of 151 m 2 / g or more with respect to 100 parts by mass of the diene rubber.
  • the rubber composition for a tread of the present invention preferably does not contain zinc oxide.
  • the pneumatic tire which has the tread produced using the rubber composition for treads of this invention is also one of this invention.
  • the present invention includes an inorganic filler containing a diene rubber as a rubber component, containing zinc dithiophosphate and sulfur, making the zinc oxide content less than a certain amount, and having a BET value and linseed oil absorption amount in a specific range. Since it is a rubber composition for a tread, a pneumatic tire having a tread produced using the rubber composition can achieve both high WET grip performance and wear resistance and excellent blow performance during dry running.
  • the rubber composition for treads of the present invention (hereinafter also simply referred to as “rubber composition”) contains zinc dithiophosphate and a zinc oxide content in a diene rubber containing styrene butadiene rubber (SBR).
  • SBR styrene butadiene rubber
  • the present inventor has examined the cause of the occurrence of blow during dry running when a pneumatic tire is manufactured using a diene rubber containing SBR. As a result, the present inventors have found that the cause is due to the crosslinking characteristics of the diene rubber containing SBR having a high styrene amount, that is, the delay of the vulcanization reaction, the unevenness of crosslinking, and the high self-heating value.
  • SBR has difficulty in securing a random location of a styrene group as the amount of styrene increases due to restrictions on the molecular growth process during production.
  • the vulcanization reaction becomes slow. That is, in the diene rubber containing SBR, in addition to the crosslinking characteristics of SBR itself, the vulcanization reaction is slowed by blending carbon black or a softening agent, so that only extremely uneven and low density crosslinking can be obtained.
  • carbon black or softening agent is included in such a non-uniform and low-density crosslinked rubber to improve grip and wear resistance, high temperature during running and stress due to mechanical strain act.
  • the volatile component contained in the rubber and the expansion pressure of the air pocket could not resist and the honeycomb-like hole was formed at the part where the cross-linking network was loose, which caused the blow.
  • Zinc dithiophosphate contains zinc and exhibits a higher vulcanization acceleration effect than zinc oxide. In particular, when used in combination with a vulcanization accelerator, it exhibits a very high vulcanization acceleration effect.
  • zinc dithiophosphate it is considered that even a composition in which a certain amount or more of carbon black or a softening agent is blended with a diene rubber containing SBR can be crosslinked with uniform and appropriate density.
  • the rubber composition of the present invention has high WET grip performance and wear resistance by blending an inorganic filler having a specific range of BET value and linseed oil absorption with diene rubber including styrene butadiene rubber (SBR). It can be demonstrated.
  • SBR styrene butadiene rubber
  • the reason why the WET grip performance can be improved by adding an inorganic filler such as aluminum hydroxide having a specific BET value and linseed oil absorption is that the following effects (1) to (4) are exhibited. Inferred to be effective.
  • Inorganic fillers such as blended aluminum hydroxide (Al (OH) 3 ) are partly converted into alumina (Al 2 O 3 ) having a Mohs hardness equal to or higher than that of silica during kneading, aluminum hydroxide, etc.
  • Al (OH) 3 blended aluminum hydroxide
  • Al 2 O 3 alumina
  • Mohs hardness equal to or higher than that of silica during kneading, aluminum hydroxide, etc.
  • the metal oxide lump and the inorganic filler are micro unevenness on the road surface aggregate ( It is considered that the anchor effect is exhibited at a pitch of several tens of ⁇ m, thereby improving the WET grip performance.
  • FIG. 3 is a schematic diagram for explaining the state of the inorganic filler particles in the rubber near the road surface contact (near the tread surface) during traveling.
  • the phenomena (1) and (2) occur, the inorganic filler particles 1 vibrate at high frequency during traveling, and the high frequency vibration causes adhesion of a grip resin or a liquid component in the adjacent rubber composition.
  • the bloom of component 2 is promoted.
  • the amount of the pressure-sensitive adhesive component 2 around the inorganic filler particles 1 is increased as compared with other parts not containing the inorganic filler, and the WET grip performance is improved.
  • the rubber composition of the present invention further improves Dry grip properties by adding an inorganic filler such as aluminum hydroxide having a specific BET value and linseed oil absorption.
  • an inorganic filler such as aluminum hydroxide having a specific BET value and linseed oil absorption.
  • the grip resin or liquid component blooms at the interface between the inorganic filler and the rubber component, and the road surface grip is promoted.
  • the inorganic filler is the surrounding silica and It is physically or chemically bonded to carbon black, and no large voids are generated around the inorganic filler during running.
  • the hysteresis of the rubber composition is increased by the fine inorganic filler having a specific BET value. It is thought that it contributes to the improvement of the Dry grip property.
  • the WET grip performance is improved by the effects of the conventional addition of an inorganic filler such as aluminum hydroxide, the wear resistance and the ablation appearance after wear are usually deteriorated. Is difficult.
  • an inorganic filler such as aluminum hydroxide having a predetermined BET value and linseed oil absorption is added, the wear resistance and the ablation appearance after wear are prevented from being deteriorated, and good performance is maintained.
  • the WET grip performance is improved, and these performances can be improved in a well-balanced manner.
  • the rubber composition of the present invention contains a diene rubber containing SBR as a rubber component.
  • a diene rubber as the rubber component, good durability can be obtained while ensuring good handling stability, low fuel consumption, and elongation at break.
  • the SBR is not particularly limited, and examples thereof include emulsion polymerization SBR (E-SBR), solution polymerization SBR (S-SBR) and the like, and may or may not be oil-extended. Of these, oil-extended and high-molecular weight SBR is preferred from the viewpoint of wear resistance. In addition, terminal-modified S-SBR and main chain-modified S-SBR with enhanced interaction force with the filler can also be used.
  • E-SBR emulsion polymerization SBR
  • S-SBR solution polymerization SBR
  • S-SBR solution polymerization SBR
  • terminal-modified S-SBR and main chain-modified S-SBR with enhanced interaction force with the filler can also be used.
  • SBR has a styrene amount of preferably 19% by mass or more, more preferably 21% by mass or more, and further preferably 25% by mass or more.
  • the amount of styrene is preferably 60% by mass or less, more preferably 55% by mass or less, and still more preferably 50% by mass or less. If the amount of styrene is less than 19% by mass, grip performance may be insufficient. If the amount exceeds 60% by mass, styrene groups are adjacent to each other, the polymer becomes too hard, and crosslinking is likely to be non-uniform. Blowability at the time worsens. In the present specification, the amount of styrene is calculated by 1 H-NMR measurement.
  • SBR has a weight average molecular weight (Mw) of preferably 700,000 or more, more preferably 900,000 or more, and still more preferably 1,000,000 or more.
  • Mw is preferably 2 million or less, more preferably 1.8 million or less.
  • the weight average molecular weight is determined by gel permeation chromatography (GPC) (GPC-8000 series, manufactured by Tosoh Corporation), detector: differential refractometer, column: TSKGEL SUPERMALTPORE HZ- manufactured by Tosoh Corporation. It can be determined by standard polystyrene conversion based on the measured value according to M).
  • the content of SBR in 100% by mass of the diene rubber is preferably 60% by mass or more, more preferably 80% by mass or more. Moreover, the upper limit of content of SBR is not specifically limited, 100 mass% may be sufficient. Within the above range, the effects of the present invention can be obtained better.
  • the diene rubber preferably contains 60% by mass or more of SBR having an amount of styrene of 19 to 60% by mass, and more preferably 65% by mass or more of SBR having an amount of styrene of 25 to 55% by mass. Thereby, higher grip property and abrasion resistance can be exhibited.
  • the diene rubber other than SBR is not particularly limited, and isoprene rubber such as natural rubber (NR), high purity NR (UPNR), epoxidized NR (ENR) and isoprene rubber (IR), and butadiene rubber (BR).
  • isoprene rubber such as natural rubber (NR), high purity NR (UPNR), epoxidized NR (ENR) and isoprene rubber (IR), and butadiene rubber (BR).
  • NR natural rubber
  • UPNR high purity NR
  • ENR epoxidized NR
  • IR isoprene rubber
  • BR butadiene rubber
  • SIBR Styrene isoprene butadiene rubber
  • CR chloroprene rubber
  • NBR acrylonitrile butadiene rubber
  • the rubber composition of the present invention contains zinc dithiophosphate.
  • Zinc dithiophosphate is a compound represented by the following general formula (1).
  • Zinc dithiophosphate retains a zinc atom at the center of its structure, and exhibits an excellent crosslinking promoting action compared to zinc oxide.
  • a dithiophosphate it is possible to suppress the occurrence of blow during high-temperature running even with a composition in which a certain amount or more of carbon black or a softening agent is blended with a rubber component containing a diene rubber.
  • zinc dithiophosphate sufficient crosslinking can be carried out without using zinc oxide or diphenylguanidine (DPG).
  • the temperature dependence of the hardness between 23 ° C. and 100 ° C. is greatly improved.
  • the temperature dependence of the hardness is very important in order to ensure stable micro-deformation followability to the unevenness of the road surface from the beginning to the end of the race, that is, road surface grip performance and high-speed stability.
  • R 1 to R 4 each independently represents a linear or branched alkyl group having 1 to 18 carbon atoms or a cycloalkyl group having 5 to 12 carbon atoms
  • Examples of zinc dithiophosphate include TP-50, ZBOP-S, ZBOP-50 manufactured by Rhein Chemie, and compounds similar thereto (for example, in the above general formula (1), R 1 to R 4 are n-propyl groups). , Iso-propyl group or n-octyl group) and the like.
  • the zinc dithiophosphate content (active ingredient content) is 0.2 parts by mass or more, more preferably 0.5 parts by mass or more, with respect to 100 parts by mass of the diene rubber. More preferably, it is 1.0 mass part or more.
  • this content is 15 mass parts or less, Preferably it is 6 mass parts or less, More preferably, it is 4 mass parts or less. When it exceeds 15 parts by mass, the blow improvement effect is saturated, but the scorch time is shortened and the workability tends to deteriorate.
  • the content of zinc oxide with respect to 100 parts by mass of the diene rubber is less than 2.5 parts by mass.
  • zinc dithiophosphate as described above, a uniform cross-linked state is achieved and the occurrence of blow during high-temperature running is suppressed.
  • bubbles tend to accumulate around the zinc oxide particles, and voids are easily generated.
  • Such a property is remarkable in two types of zinc varieties and one type of zinc hydra, which are representative varieties, and is recognized even in the case of fine particle grade fine particle zinc white F2. Therefore, when zinc oxide is contained, the voids around the zinc oxide may become the starting point nucleus, which may cause the blow to occur.
  • the content of zinc oxide is preferably 2.0 parts by mass or less, and more preferably does not contain zinc oxide.
  • zinc oxide is blended, it is excellent in dispersibility in the rubber component, and since voids and starting nuclei that cause blow are less likely to occur, fine-grained zinc oxide having a BET value of 15 m 2 / g or more is used. It is preferable to use it.
  • the rubber composition of the present invention comprises at least one selected from the group consisting of a compound represented by the following formula, magnesium sulfate, and silicon carbide, has a BET value of 5 to 120 m 2 / g, and a linseed oil absorption amount. Contains an inorganic filler that is 30-80 ml / 100 g. Thereby, high WET grip performance and abrasion resistance can be exhibited.
  • M is at least one metal selected from the group consisting of Al, Mg, Ti, Ca and Zr, an oxide or hydroxide of the metal, m is an integer of 1 to 5, and x is (An integer from 0 to 10, y is an integer from 2 to 5, and z is an integer from 0 to 10.)
  • the inorganic filler examples include alumina, alumina hydrate, aluminum hydroxide, magnesium hydroxide, magnesium oxide, talc, titanium white, titanium black, calcium oxide, calcium hydroxide, magnesium aluminum oxide, clay, pyrophyllite, bentonite. , Aluminum silicate, magnesium silicate, calcium silicate, aluminum calcium silicate, magnesium silicate, zirconium, zirconium oxide, magnesium sulfate, silicon carbide (SiC) and the like. These inorganic compounds may be used alone or in combination of two or more. Above all, it has a Mohs hardness of 3 or more, water resistance, and oil resistance.
  • the inorganic filler has a BET value (nitrogen adsorption specific surface area) of 5 to 120 m 2 / g. Outside the above range, the effect of improving the WET grip performance and wear resistance may be insufficient.
  • the lower limit of the BET value is preferably 10 m 2 / g.
  • the upper limit of the BET value is preferably 120 m 2 / g, more preferably 115 m 2 / g, and still more preferably 110 m 2 / g.
  • the BET value of the inorganic filler is a value measured by the BET method according to ASTM D3037-81.
  • the lower limit of the linseed oil absorption of the inorganic filler is 30 ml / 100 g, the upper limit is 80 ml / 100 g, and the preferred upper limit is 75 ml / 100 g.
  • the resulting pneumatic tire can exhibit high WET performance and Dry performance.
  • the lower the amount of linseed oil absorbed, the less the connection ( structure) between the particles of the inorganic filler, and it tends to exist alone in the rubber. Therefore, the linseed oil absorption is effective for determining whether the inorganic filler single particles are reasonably fine and form agglomerates with an appropriate secondary particle size in the non-polar tire rubber composition.
  • the linseed oil absorption is less than 30 ml / 100 g, the affinity with the rubber component, softener and resin is lowered, and the position of the inorganic filler in the rubber composition is considered not to be thermally stable.
  • the inorganic filler particles form an agglomerate with a large secondary particle size, and an occluded part that takes in the oil is produced inside the kneaded step. If it is not sufficiently mixed with the rubber component, it may cause a decrease in wear resistance and elongation performance.
  • DBP oil absorption is generally used, but since linseed oil is a kind of natural oil, there is also an advantage that the burden on the environment is smaller than DBP.
  • the oil absorption of linseed oil of ULTRASIL VN3 (BET value: 175 m 2 / g) manufactured by Evonik, which is a typical wet silica that easily develops the particle structure is 128 ml / 100 g.
  • the linseed oil absorption is a value determined according to JIS-K5101-13.
  • the average particle diameter of the inorganic filler is preferably 1.5 ⁇ m or less, more preferably 0.69 ⁇ m or less, and still more preferably 0.6 ⁇ m or less.
  • the average particle diameter is preferably 0.2 ⁇ m or more, more preferably 0.25 ⁇ m or more, and further preferably 0.4 ⁇ m or more. If it exceeds 1.5 ⁇ m, the wear resistance and WET grip performance may be lowered, and if it is less than 0.2 ⁇ m, the wear resistance and workability may be lowered.
  • the average particle diameter of an inorganic filler is a number average particle diameter, and is measured with a transmission electron microscope.
  • the Mohs hardness of the inorganic filler is preferably 7 or less, comparable to that of silica, from the viewpoint of ensuring the wear resistance and WET grip performance of the tire and suppressing metal wear of the Banbury mixer and extruder. It is more preferable that Mohs hardness is one of the mechanical properties of materials and is a measurement method that has been widely used in minerals for a long time. Scrub a substance you want to measure hardness (such as aluminum hydroxide) with a standard substance and check for scratches. Measure Mohs hardness.
  • an inorganic filler having a Mohs hardness of less than 7 and a Mohs hardness of the inorganic filler dehydration reaction product of 8 or more.
  • aluminum hydroxide has a Mohs hardness of about 3 to prevent wear and tear of the Banbury and rolls, and the surface layer undergoes a dehydration reaction (transition) due to vibration, heat generation and partial kneading during running, resulting in a Mohs hardness. Since it is converted to alumina of about 9 and has a hardness equal to or higher than that of road surface stones, excellent wear resistance and WET grip performance can be obtained.
  • Aluminum hydroxide and alumina are stable against water, base and acid, and do not inhibit vulcanization or promote oxidative degradation.
  • the Mohs hardness after the transfer of the inorganic filler is more preferably 7 or more, and the upper limit is not particularly limited.
  • Diamonds have a maximum value of 10.
  • the inorganic filler preferably has a thermal decomposition starting temperature (DSC endothermic starting temperature) of 160 to 500 ° C., more preferably 170 to 400 ° C. If the temperature is lower than 160 ° C., thermal decomposition or reaggregation proceeds excessively during kneading, and metal wear such as the rotor blades of the kneader or the wall of the container may be excessive.
  • the thermal decomposition start temperature of an inorganic filler is calculated
  • the thermal decomposition also includes a dehydration reaction.
  • the inorganic filler a commercial product having the BET value and the linseed oil absorption amount can be used, and a processed product adjusted to particles having the above characteristics by subjecting the inorganic filler to a treatment such as pulverization can also be used.
  • a treatment such as pulverization
  • conventionally known methods such as wet pulverization and dry pulverization (jet mill, current jet mill, counter jet mill, contraplex, etc.) can be applied. Further, if necessary, it is fractionated by a membrane filter method frequently used in medicine and biotechnology, and a product having a predetermined BET value can be produced and used as a rubber compounding agent.
  • Content of the said inorganic filler is 1 mass part or more with respect to 100 mass parts of diene rubbers, Preferably it is 3 mass parts or more, More preferably, it is 5 mass parts or more. If it is less than 1 part by mass, sufficient WET grip performance may not be obtained. Moreover, this content is 70 mass parts or less, Preferably it is 65 mass parts or less, More preferably, it is 60 mass parts or less. If it exceeds 70 parts by mass, the abrasion resistance and the ablation appearance after wear cannot be compensated by adjustment of other compounding agents, and the tensile strength and the like may be deteriorated.
  • the rubber composition of the present invention contains sulfur.
  • sulfur examples include powdered sulfur, precipitated sulfur, colloidal sulfur, insoluble sulfur, highly dispersible sulfur, and soluble sulfur that are generally used in the rubber industry.
  • the sulfur content is preferably 0.2 parts by mass or more, more preferably 0.5 parts by mass or more, and still more preferably 0.6 parts by mass with respect to 100 parts by mass of the diene rubber. More than a part.
  • the sulfur content is preferably 2.0 parts by mass or less, more preferably 1.8 parts by mass or less, and still more preferably 1.6 parts by mass or less. If it is less than 0.2 parts by mass, there is a risk that sufficient hardness (Hs) after vulcanization or co-crosslinking with the adjacent rubber compound may not be obtained, and if it exceeds 2.0 parts by mass, the wear resistance deteriorates. There is a risk.
  • the sulfur content is the amount of pure sulfur component to be added by finishing kneading. For example, when insoluble sulfur (containing oil) is used, it means the amount of pure sulfur excluding oil.
  • the rubber composition of the present invention preferably contains carbon black.
  • the carbon black preferably has a BET value (nitrogen adsorption specific surface area) of 110 m 2 / g or more, more preferably 140 m 2 / g or more, and still more preferably 151 m 2 / g or more.
  • the BET value is preferably 300 m 2 / g or less, more preferably 250 m 2 / g or less, and further preferably 200 m 2 / g or less.
  • carbon black having a BET value of 151 m 2 / g or more particularly high wear resistance and grip performance can be obtained.
  • the BET value of carbon black is obtained according to JIS K 6217-2: 2001.
  • the content of the carbon black is preferably 5 parts by mass or more, more preferably 20 parts by mass or more with respect to 100 parts by mass of the diene rubber. If the amount is less than 5 parts by mass, sufficient effects of improving wear resistance and grip performance may not be obtained. Moreover, this content becomes like this. Preferably it is 130 mass parts or less, More preferably, it is 120 mass parts or less. When it exceeds 130 mass parts, there exists a possibility that a tensile characteristic may fall.
  • the rubber composition of the present invention may contain silica.
  • silica By containing silica, it is possible to improve rolling resistance characteristics while improving WET grip properties and reinforcing properties.
  • examples of the silica include silica manufactured by a wet method, silica manufactured by a dry method, and the like.
  • the silica preferably has a BET value (nitrogen adsorption specific surface area) of 80 m 2 / g or more, more preferably 120 m 2 / g or more, and still more preferably 150 m 2 / g or more.
  • the BET value is preferably 280 m 2 / g or less, more preferably 260 m 2 / g or less, and further preferably 250 m 2 / g or less.
  • the BET value of silica is a value measured by the BET method according to ASTM D3037-93.
  • the content of the silica is preferably 30 parts by mass or more, more preferably 40 parts by mass or more, and still more preferably 50 parts by mass with respect to 100 parts by mass of the diene rubber. That's it. If the amount is less than 30 parts by mass, sufficient reinforcing properties may not be obtained. Moreover, this content becomes like this. Preferably it is 150 mass parts or less, More preferably, it is 130 mass parts or less, More preferably, it is 120 mass parts or less. When it exceeds 150 parts by mass, silica is difficult to disperse and wear resistance and tensile performance tend to deteriorate.
  • the rubber composition of this invention contains the said silica, it is preferable to contain a silane coupling agent further.
  • a silane coupling agent any silane coupling agent conventionally used in combination with silica in the rubber industry can be used.
  • polysulfated alkoxysilane is used as the silane coupling agent, the content of polysulfated alkoxysilane with respect to 100 parts by mass of the diene rubber is preferably 1.0 parts by mass or less.
  • Polysulfated alkoxysilane has a weak bonding force between sulfur and sulfur of S X in the structure, and the bond is broken during kneading and is likely to cause rubber burn.
  • the bond of silane bonded to silica is weak, and the bond breaks during kneading and storage after kneading, causing elongation at break and reduced fuel efficiency. Even when polysulfurized alkoxysilane is used as the silane coupling agent, the influence can be minimized by setting the content to 1.0 part by mass or less.
  • the rubber composition of the present invention preferably contains at least one softening agent selected from the group consisting of a low temperature plasticizer, a process oil, and a resin having a softening point of 160 ° C. or lower.
  • a softening agent selected from the group consisting of a low temperature plasticizer, a process oil, and a resin having a softening point of 160 ° C. or lower.
  • the low-temperature plasticizer preferably has a solidification temperature of ⁇ 15 ° C. or lower.
  • the low-temperature plasticizer having such a low coagulation temperature plays a role of lowering the compounding Tg of the rubber composition and the embrittlement temperature in combination with its chemical composition.
  • the solidification temperature is a temperature that becomes a solid when the liquid is cooled, and means a temperature defined by JIS-K2269.
  • the glass transition temperature (Tg) means a temperature measured with a suggested thermal scanning calorimeter (DSC) in accordance with ASTM D3418-03.
  • the low temperature plasticizer preferably has an SP value of 8 to 9 in order to ensure compatibility with the diene rubber.
  • the SP value means a solubility parameter calculated using Hansen's formula.
  • the low-temperature plasticizer does not include process oil and a resin described later.
  • the low-temperature plasticizer preferably has a flash point of 200 ° C. or higher because it may ignite upon introduction of Banbury.
  • the maximum temperature of the local rubber composition is 195 ° C.
  • the flash point of the low-temperature plasticizer is a value measured by the Cleveland open method based on JIS K 2265-4: 2007.
  • the low-temperature plasticizer is originally widely used for vinyl chloride, cellulose, resin plastic, various rubbers and the like.
  • the weight average molecular weight (Mw) of 400 or more is preferable in order to prevent the transition to an adjacent member and to raise a flash point.
  • low-temperature plasticizer examples include tris (2-ethylhexyl) phosphate (TOP, coagulation temperature ⁇ 70 ° C. or less, flash point 204 ° C., SP value 8.1, Mw 435), bis (2-ethylhexyl) sebacate (DOS, coagulation) Temperature -62 ° C, flash point 222 ° C, SP value 8.4, Mw 427), bis (2-ethylhexyl) phthalate (DOP, solidification temperature -51 ° C, flash point 218 ° C, SP value 8.9, Mw 391), screw [2- (2-butoxyethoxyethyl) ethyl] adipate (BXA-N, solidification temperature -19 ° C., flash point 207 ° C., SP value 8.7, Mw 435) and the like.
  • TOP and BXA-N are preferable because they are excellent in compatibility with the rubber component, have a flash point of
  • Examples of the process oil include paraffinic process oil, naphthenic process oil, and aromatic process oil. Moreover, the process oil with a low content of polycyclic aromatic (polycyclic compound: PCA) compound as an environmental measure is also mentioned. Examples of the low PCA content process oil include Treated Distilate Aromatic Extract (TDAE) obtained by re-extraction of an aromatic aromatic process oil, Aroma substitute oil that is a mixed oil of asphalt and naphthenic oil, and mild extraction solvates. (MES), heavy naphthenic oil and the like.
  • TDAE Treated Distilate Aromatic Extract
  • MES mild extraction solvates
  • the content of the process oil is preferably 2 parts by mass or more, more preferably 5 parts by mass or more with respect to 100 parts by mass of the diene rubber. Moreover, this content becomes like this. Preferably it is 100 mass parts or less, More preferably, it is 70 mass parts or less, More preferably, it is 60 mass parts or less. Within the above range, the effects of the present invention can be obtained better.
  • the total content of the softening agent includes the content of process oil contained in the oil-extended diene rubber.
  • Examples of the resin having a softening point of 160 ° C. or lower include coumarone indene resin, ⁇ -methylstyrene resin, terpene resin, alkylphenol resin, and the like.
  • the softening point of the resin is preferably ⁇ 20 ° C. or higher, more preferably 0 ° C. or higher, still more preferably 40 ° C. or higher, and particularly preferably 70 ° C. or higher.
  • the softening point is preferably 160 ° C. or lower, and more preferably 150 ° C. or lower.
  • the softening point is a temperature at which a sphere descends when the softening point specified in JIS K 6220-1: 2001 is measured with a ring and ball softening point measuring apparatus.
  • Coumarone indene resin is a resin containing coumarone and indene as monomer components constituting the skeleton (main chain) of the resin.
  • monomer components contained in the skeleton include styrene, ⁇ -methylstyrene, Examples thereof include methylindene and vinyltoluene.
  • the softening point of the coumarone indene resin is preferably ⁇ 20 to 160 ° C.
  • the upper limit is more preferably 145 ° C. or less, still more preferably 130 ° C. or less.
  • the lower limit is more preferably ⁇ 10 ° C. or higher, still more preferably ⁇ 5 ° C. or higher.
  • the softening point when the softening point is 90 to 140 ° C., the Dry grip performance is improved.
  • those having a softening point of 100 to 120 ° C. can generally increase tan ⁇ at 0 to 80 ° C. and have good elongation at break.
  • Coumarone indene resin having a softening point of 10 to 30 ° C. has good grip at a relatively low temperature of 10 to 40 ° C., and generally lowers tan ⁇ .
  • Such a coumarone indene resin having a softening point of 10 to 30 ° C. can be used mainly for the purpose of improving elongation at break. The reason why the elongation at break is improved by using the coumarone indene resin is considered to be to give an appropriate slip to the crosslinked polymer chain and cause uniform elongation.
  • ⁇ -methyl styrene resin examples include ⁇ -methyl styrene homopolymers and copolymers of ⁇ -methyl styrene and styrene.
  • the softening point of the ⁇ -methylstyrene resin is preferably ⁇ 20 to 160 ° C.
  • the upper limit is more preferably 145 ° C. or less, still more preferably 130 ° C. or less.
  • the lower limit is more preferably ⁇ 10 ° C. or higher, still more preferably ⁇ 5 ° C. or higher.
  • terpene resins examples include polyterpenes, terpene phenols, aromatic modified terpene resins, and resins obtained by hydrogenating these.
  • a polyterpene is a resin obtained by polymerizing a terpene compound.
  • the terpene compound is a hydrocarbon represented by a composition of (C 5 H 8 ) n and an oxygen-containing derivative thereof.
  • Monoterpene C 10 H 16
  • sesquiterpene C 15 H 24
  • diterpene C 20 H 32
  • ⁇ -pinene ⁇ -pinene, dipentene, limonene, myrcene, allocymene, ocimene, ⁇ -ferrandrene, ⁇ -terpinene, ⁇ -terpinene, terpinolene 1,8-cineole, 1,4-cineole, ⁇ -terpineol, ⁇ -terpineol, ⁇ -terpineol and the like.
  • polyterpenes examples include terpene resins such as ⁇ -pinene resins, ⁇ -pinene resins, limonene resins, dipentene resins, and ⁇ -pinene / limonene resins made from the above-mentioned terpene compounds.
  • terpene resins such as ⁇ -pinene resins, ⁇ -pinene resins, limonene resins, dipentene resins, and ⁇ -pinene / limonene resins made from the above-mentioned terpene compounds.
  • the terpene phenol include a resin obtained by copolymerizing the terpene compound and the phenol compound, and specifically, a resin obtained by condensing the terpene compound, the phenol compound, and formalin.
  • phenolic compounds include phenol, bisphenol A, cresol, and xylenol.
  • the aromatic modified terpene resin examples include a resin obtained by polymerizing the terpene compound and an aromatic compound (excluding the phenol compound).
  • the aromatic compound includes, for example, an aromatic compound derived from petroleum and provided with a modifying group. Specifically, styrene, ⁇ -methylstyrene, vinyl toluene, isopropenyl toluene, divinyl toluene, 2-vinyl And phenyl-2-butene.
  • the softening point of the terpene resin is preferably 70 to 150 ° C.
  • the lower limit is more preferably 80 ° C. or higher. If it is less than 70 ° C., sufficient high-temperature grip performance and rigidity may not be obtained.
  • the upper limit of the softening point is more preferably 145 ° C. or lower. If it exceeds 150 ° C., the initial grip performance tends to deteriorate.
  • the alkylphenol-based resin is not particularly limited, and an alkylphenol aldehyde condensation resin obtained by reacting an alkylphenol with an aldehyde such as formaldehyde, acetaldehyde or furfural with an acid or alkali catalyst; an alkylphenol and an alkyne such as acetylene.
  • an alkylphenol alkyne condensation resin is preferable, and an alkylphenol acetylene condensation resin is particularly preferable.
  • alkylphenol constituting the alkylphenol resin examples include cresol, xylenol, t-butylphenol, octylphenol, and nonylphenol. Of these, a phenol having a branched alkyl group such as t-butylphenol is preferable, and t-butylphenol is particularly preferable.
  • the softening point of the alkylphenol-based resin is preferably 100 to 160 ° C.
  • the upper limit is more preferably 150 ° C. or lower, and the lower limit is more preferably 120 ° C. or higher.
  • Alkylphenol resins having a softening point of 120 to 160 ° C. (for example, cholecin having a softening point of 145 ° C.) have improved grip properties particularly at high temperatures (around 80 to 120 ° C.).
  • the resin is preferably at least one selected from the group consisting of a coumarone indene resin, an ⁇ -methylstyrene resin, a terpene resin, and an alkylphenol resin from the viewpoint that the effects of the present invention can be obtained better.
  • the content of the resin is preferably 1 part by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the diene rubber. Moreover, this content becomes like this. Preferably it is 100 mass parts or less, More preferably, it is 70 mass parts or less. Within the above range, the effects of the present invention can be obtained better.
  • the rubber composition of the present invention preferably contains a process oil and / or a resin having a softening point of 160 ° C. or less from the viewpoint that the effects of the present invention can be obtained better, and the process oil and a resin having a softening point of 160 ° C. or less. It is more preferable to contain.
  • the total content of at least one softener selected from the group consisting of the low-temperature plasticizer, process oil, and resin having a softening point of 160 ° C. or lower is 40 parts by mass or more with respect to 100 parts by mass of the diene rubber. Preferably it is 45 mass parts or more, More preferably, it is 50 mass parts or more.
  • the total content is preferably 150 parts by mass or less, more preferably 145 parts by mass or less, and still more preferably 140 parts by mass or less.
  • the total content of the softening agent includes the content of process oil contained in the oil-extended diene rubber.
  • the rubber composition of the present invention preferably contains a vulcanization accelerator and stearic acid.
  • a vulcanization accelerator By using a combination of zinc dithiophosphate, stearic acid, and a vulcanization accelerator, the vulcanization reaction is further promoted, and a more uniform and appropriate cross-linked state can be obtained.
  • Stearic acid is known to have an effect of dispersing in zinc oxide rubber, but it has been found that the same effect can be obtained with zinc dithiophosphate.
  • vulcanization accelerator examples include thiazole, thiuram, guanidine, and dithiocarbamate vulcanization accelerators.
  • thiazole thiuram
  • guanidine a thiazole vulcanization accelerator
  • dithiocarbamate vulcanization accelerators a combination of stearic acid and a thiazole vulcanization accelerator (particularly TBBS) in combination with zinc dithiophosphate provides a high vulcanization reaction promoting effect.
  • stearic acid and a thiazole vulcanization accelerator in addition to zinc dithiophosphate (in particular, by using a combination of TBBS) and a thiuram vulcanization accelerator (particularly TBZTD) and / or a dithiocarbamate vulcanization accelerator (particularly ZTC, PX), a particularly high vulcanization reaction promoting effect can be obtained.
  • thiazole vulcanization accelerators examples include N-tert-butyl-2-benzothiazolylsulfenamide (TBBS), N-cyclohexyl-2-benzothiazolylsulfur.
  • Sulfenamide vulcanization accelerators such as phenamide (CBS) and N, N-dicyclohexyl-2-benzothiazolylsulfenamide (DCBS); 2-mercaptobenzothiazole, cyclohexylamine salt of 2-mercaptobenzothiazole, Examples thereof include benzothiazole vulcanization accelerators such as di-2-benzothiazolyl disulfide, among which sulfenamide vulcanization accelerators are preferable, and TBBS is more preferable.
  • thiuram vulcanization accelerator examples include tetramethylthiuram disulfide (TMTD), tetrabenzylthiuram disulfide (TBzTD), tetrakis (2-ethylhexyl) thiuram disulfide (TOT-N), and among these, TBzTD is preferable.
  • TMTD tetramethylthiuram disulfide
  • TBzTD tetrabenzylthiuram disulfide
  • TOT-N tetrakis (2-ethylhexyl) thiuram disulfide
  • guanidine vulcanization accelerator examples include diphenyl guanidine (DPG), diortolyl guanidine, orthotolyl biguanidine and the like.
  • dithiocarbamate vulcanization accelerator examples include zinc dibenzyldithiocarbamate (ZTC), zinc ethylphenyldithiocarbamate (PX), and among them, ZTC and PX are preferable.
  • the content of DPG is preferably 0.5 parts by mass or less, more preferably 0.2 parts by mass or less, still more preferably 0.1 parts by mass or less, and particularly preferably 0. Parts by mass (not contained).
  • the content of the vulcanization accelerator (excluding DPG) is preferably 2 parts by mass or more, more preferably 3 parts by mass or more, and still more preferably 4 parts per 100 parts by mass of the diene rubber. More than part by mass. Further, the content of the vulcanization accelerator is preferably 15 parts by mass or less, more preferably 12 parts by mass or less, and still more preferably 10 parts by mass or less.
  • the vulcanization accelerator By containing 2 parts by mass or more of the vulcanization accelerator, it is possible to perform crosslinking with a more uniform and appropriate density by the synergistic effect with zinc dithiophosphate and stearic acid, and to suppress the occurrence of blow during high-speed running. .
  • content of a vulcanization accelerator exceeds 15 mass parts, the dispersion
  • the content of stearic acid is preferably 1.0 part by mass or more, more preferably 1.5 parts by mass or more with respect to 100 parts by mass of the diene rubber. Further, the stearic acid content is preferably 5.0 parts by mass or less, more preferably 4.0 parts by mass or less. Within this range, a crosslinked state having a uniform and appropriate density can be obtained. However, the preferable range of the stearic acid content varies depending on the amount of fatty acid contained in the diene rubber, processing aid, mold release agent and the like.
  • the rubber composition of the present invention may be appropriately mixed with a compounding agent generally used in the tire industry, for example, a material such as a wax, an anti-aging agent, or a release agent.
  • a compounding agent generally used in the tire industry, for example, a material such as a wax, an anti-aging agent, or a release agent.
  • the rubber composition of the present invention can be prepared by a known method that undergoes kneading steps such as a base kneading step and a finish kneading step.
  • the kneading step can be performed, for example, by kneading these components using a kneader.
  • a conventionally known kneader can be used, and examples thereof include a Banbury mixer, a kneader, and an open roll.
  • Step of kneading at least the rubber component, carbon black, silica, silane coupling agent, and inorganic filler such as the above base kneading step (for example, when the base kneading step is performed in one step, the step and the base kneading step will be described later)
  • the discharge temperature in the step of adding the inorganic filler and kneading with the rubber component is 150 ° C. or higher, preferably 155 ° C. or higher, more preferably 160 ° C. or higher, more preferably 165 ° C.
  • the temperature is particularly preferably 170 ° C. or higher.
  • the upper limit of the discharge temperature is not particularly limited, but may be appropriately adjusted within a range where rubber scoring does not occur so that desired performance can be obtained, but is preferably 190 ° C. or less, more preferably 185 ° C. or less. .
  • the base kneading step may be plural in a high filler blending system with a relatively small softener content.
  • the base kneading process may be used. In this case, it is preferable that the inorganic filler is put into an X-kneading period for generating a higher knead
  • the vulcanizing agent is added by finishing kneading, but zinc dithiophosphate is preferably added to the base for the purpose of enhancing dispersibility in the rubber component and performing more uniform crosslinking.
  • zinc dithiophosphate such as TP-50 manufactured by Rhein Chemie
  • a dispersion aid is used in combination, even if zinc dithiophosphate is added by final kneading, it is almost the same as when kneading the base. Equivalent physical properties can be obtained.
  • a final kneading step discharge temperature in which the obtained kneaded product 1 is kneaded with components such as a vulcanizing agent such as sulfur and a vulcanization accelerator using a kneader similar to the above. 80 to 110 ° C, etc.
  • a vulcanization step in which the obtained kneaded product 2 (unvulcanized rubber composition) is press-heated at 150 to 170 ° C for 10 to 30 minutes is performed.
  • a rubber composition can be produced.
  • the rubber composition of the present invention is used for tread applications of pneumatic tires.
  • it can be suitably used for a cap tread which is a surface layer of a tread having a multilayer structure.
  • a surface layer of a tread having a two-layer structure [a surface layer (cap tread) and an inner surface layer (base tread)].
  • the pneumatic tire of the present invention can be produced by a usual method using the rubber composition. That is, a rubber composition containing various additives as necessary is extruded in accordance with the shape of the tread of the tire at an unvulcanized stage, molded on a tire molding machine, and further with other tire members After producing an unvulcanized tire by bonding, a pneumatic tire can be manufactured by heating and pressurizing the unvulcanized tire in a vulcanizer.
  • the pneumatic tire of the present invention is suitable for tires for passenger cars, large passenger cars, tires for large SUVs, heavy duty tires such as trucks and buses, and light truck tires, and can be used as respective summer tires and studless tires. is there. Since the occurrence of blow is suppressed even during high-temperature running, it is also suitable as a racing tire.
  • SBR Rubber component
  • Modified SBR1 prepared by the method described below (oil extension 37.5 parts, styrene content 41%, vinyl content 40%, Tg-29 ° C., weight average molecular weight 11.90 million)
  • Silica-modified SBR2 prepared by the method described below (styrene content: 27 mass%, vinyl content: 58 mass%, Tg: ⁇ 27 ° C., weight average molecular weight 720,000)
  • NS612 manufactured by Zeon Corporation, non-oil-extended, styrene content 15%, vinyl content 30%, Tg-65 ° C., weight average molecular weight 780,000
  • ⁇ Method for adjusting silica-modified SBR2> In a 30 L pressure vessel sufficiently purged with nitrogen, 18 L of n-hexane, 740 g of styrene (manufactured by Kanto Chemical Co., Inc.), 1260 g of butadiene and 10 mmol of tetramethylethylenediamine were added, and the temperature was raised to 40 ° C. Next, after adding 10 mL of butyl lithium, it heated up at 50 degreeC and stirred for 3 hours. Next, 11 mL of the terminal modifier was added and stirred for 30 minutes.
  • reaction solution After adding 15 mL of methanol and 0.1 g of 2,6-tert-butyl-p-cresol to the reaction solution, the reaction solution was put into a stainless steel container containing 18 L of methanol to collect aggregates. The obtained aggregate was dried under reduced pressure for 24 hours to obtain silica-modified SBR2.
  • ⁇ Rubber component (BR)> CB24 High- cis BR synthesized by LANXESS and synthesized using Nd-based catalyst
  • Wet synthesis (1) Wet synthesis product manufactured by Toda Kogyo Co., Ltd. (BET value: 82 m 2 / g, linseed oil absorption: 82 ml / 100 g)
  • Wet synthesis (2) Wet synthesis product manufactured by Toda Kogyo Co., Ltd. (BET value: 102 m 2 / g, linseed oil absorption: 88 ml / 100 g)
  • Wet synthesis (3) Wet synthesis product manufactured by Toda Kogyo Co., Ltd.
  • TDAE oil Vivatec 500 manufactured by H & R
  • ⁇ Resin> C120 Liquid coumarone indene resin manufactured by Rutgers Chemicals (softening point: 120 ° C., Tg: 65 ° C.) SA85 : ⁇ -methylstyrene Sylvares SA85 manufactured by Arizona Chemical Co. (softening point: 85 ° C., Tg: 43 ° C.) Koresin : Collesin manufactured by BASF (pt-butylphenol acetylene resin, softening point: 145 ° C., Tg: 98 ° C.) TO125 : YS resin TO125 aromatic modified terpene (softening point: 125 ° C.) manufactured by Yasuhara Chemical Co., Ltd.
  • ⁇ Zinc oxide (zinc flower)> F2 : Zincock Super F2 manufactured by Hakusuitec Co., Ltd. (BET value: 20 m 2 / g, primary particle diameter calculated from BET value is 65 ⁇ m)
  • Ginseng R Ginseng R made by Toho Zinc Co., Ltd. (BET value: 5 m 2 / g)
  • Si75 Silane coupling agent, manufactured by Evonik NXT : Silane coupling agent, manufactured by Momentive Performance Materials ((C 2 H 5 O) 3 Si—C 3 H 6 —S—CO—C 7 H 15 )
  • ⁇ Anti-aging agent> 6PPD Antigen 6C (N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine) manufactured by Sumitomo Chemical Co., Ltd.
  • TMQ NOCRACK 224 (2,2,4-trimethyl-1,2-dihydroquinoline polymer) manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • TP-50 zinc dithiophosphate
  • TP-50 manufactured by Rhein Chemie R 1 to R 4 are n-butyl groups in formula (1), 50% by mass of active ingredient
  • ZBOP-50 Zinc dithiophosphate
  • ZBOP-50 manufactured by Rhein Chemie R 1 to R 4 in the formula (1) are alkyl groups, active mass 50% by mass
  • Stearic acid NOF Co., Ltd.
  • stearic acid Powder sulfur containing 5% oil HK-200-5 manufactured by Hosoi Chemical Co., Ltd.
  • TBBS Noxeller NS-G (N-tert-butyl-2-benzothiazolylsulfenamide) manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • DPG Noxeller D (N, N-diphenylguanidine) manufactured by Ouchi Shinsei Chemical Co., Ltd.
  • TBZTD Perkacit TBZTD (tetrabenzylthiuram disulfide) manufactured by Flexis
  • kneading was performed using a 4 L Banbury mixer. In the compositions shown in Tables 1 and 2, the kneading was performed three times: X kneading, Y kneading, and final kneading.
  • X-kneading the rubber component, the total amount of carbon black, the total amount of inorganic filler (aluminum hydroxide), 2/3 of silica, and 2/3 of the coupling agent were added and kneaded at a discharge temperature of 155 ° C. for 5 minutes. .
  • the obtained unvulcanized rubber composition was press-heated at 170 ° C. for 12 minutes to obtain a vulcanized rubber composition. Further, the obtained unvulcanized rubber composition was formed into a tread shape, bonded together with other tire members on a tire molding machine, press vulcanized at 170 ° C. for 12 minutes, and a test tire (tire Size: 245 / 40R18) was obtained.
  • the test tire was mounted on a domestic FR vehicle with a displacement of 2000 cc, and Okayama International Circuit was running on a long run of 500 km. Traveling was performed under conditions of a dry road surface and a road surface temperature of 20 to 30 ° C. After running, the appearance of the cut cross-section section was observed, and the blown performance was evaluated by observing a honeycomb-like porous generation state at a position about 1 mm above the JLB cord inside the tread. The index was displayed with the honeycomb state of Comparative Example 1 as 100. The larger the index, the better the blow performance. The target of blow performance is 120 or more.
  • WET grip performance The test tire was mounted on a 2000 cc domestic FR vehicle, and the vehicle was run for 10 laps on a wet asphalt road test course. At that time, the test driver evaluated the stability of the control at the time of steering. A larger index indicates better wet grip performance. The target of WET grip performance is 105 or more.
  • the test tire was mounted on a domestic FR vehicle with a displacement of 2000 cc, and the vehicle was run on a dry asphalt road test course.
  • the residual groove amount of the tire tread rubber at that time was measured (8.0 mm when new), and evaluated as wear resistance.
  • the amount of remaining grooves in Comparative Example 1 was taken as 100 and displayed as an index. It shows that it is excellent in abrasion resistance, so that an index
  • the target for wear resistance is 105 or more.
  • the rubber component containing the diene rubber contains zinc dithiophosphate and sulfur, the zinc oxide content is less than a certain amount, and the BET value and the linseed oil absorption amount are It has been found that examples containing a specific range of inorganic fillers can achieve a target value for blow performance of 120, a target value of WET grip performance of 105, and a target value of wear resistance of 105.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、ジエン系ゴムをゴム成分として含有するトレッド用ゴム組成物において、WETグリップ性能、耐摩耗性と、Dry走行時のブロー性能とを両立できるトレッド用ゴム組成物、及び該トレッド用ゴム組成物を用いて作製したトレッドを有する空気入りタイヤを提供する。 本発明は、スチレンブタジエンゴムを含むジエン系ゴムと、ジチオリン酸亜鉛と、下記式で表される化合物、硫酸マグネシウム、及び炭化ケイ素からなる群より選択される少なくとも1種からなり、BET値が5~120m/g、亜麻仁油吸油量が30~80ml/100gである無機フィラーと、硫黄とを含み、前記ジエン系ゴム100質量部に対して、前記ジチオリン酸亜鉛の含有量が0.2~15質量部、前記無機フィラーの含有量が1~70質量部、かつ、酸化亜鉛の含有量が2.5質量部未満であるトレッド用ゴム組成物である。 mM・xSiO・zHO (式中、MはAl、Mg、Ti、Ca及びZrからなる群より選ばれた少なくとも1種の金属、該金属の酸化物又は水酸化物であり、mは1~5の整数、xは0~10の整数、yは2~5の整数、zは0~10の整数である。)

Description

トレッド用ゴム組成物及び空気入りタイヤ
本発明は、トレッド用ゴム組成物、及び該トレッド用ゴム組成物を用いて作製したトレッドを有する空気入りタイヤに関する。
空気入りタイヤは、トレッド、サイドウォール等、様々な部材により構成され、各部材に応じて諸性能が付与されている。とりわけ、路面と接触するトレッドには、グリップ性能、耐摩耗性、引張性能などの性能が要求される。
空気入りタイヤのトレッド用ゴム組成物には、通常、ジエン系ゴムを含むゴム成分に対してシリカ、カーボンブラック等の充填剤や、低温可塑剤、プロセスオイル、液状樹脂、軟化点160℃以下の樹脂等の軟化剤が配合される。更に、硫黄、亜鉛華(酸化亜鉛)を配合するとともに、チアゾール系加硫促進剤(TBBS、CBS等)、チウラム系加硫促進剤(TBZTD、ZTC等)、グアニジン系加硫促進剤(DPG等)等の加硫促進剤を適宜配合して混練し、成形した後、加硫機中で加熱加圧して架橋することにより、空気入りタイヤを製造する。例えば特許文献1には、ジエンエラストマーに対して、ポリ硫化アルコキシシラン、ジチオリン酸亜鉛及びグアニジン誘導体を配合することにより、カップリング反応を促進して、耐摩耗性、引張性能を向上させる技術が開示されている。
ゴム成分としてジエン系ゴムを用いることにより、良好な操縦安定性、低燃費性、破断時伸びを確保しつつ、良好な耐久性を得ることができることが知られているが、高温走行時にブロー(ポロシティー)が発生してしまうという問題があった。とりわけ、高いグリップ性や耐摩耗性を得るためにジエン系ゴムに対して一定量以上のカーボンブラックや軟化剤を配合した組成では、発熱量が高く、架橋が切断しやすく、ゴム中の揮発成分の膨張圧力に抗しきれずに、ブローが発生しやすい。競技用タイヤでは、夏季には、タイヤトレッド温度が100℃、トレッド内部では120℃にも上昇することから、このような高温でサーキットを40周程度走行してもブローの発生がないことが期待される。競技中にトレッド内部にブローが発生すると、ゴムの剛性が低下して走行ラップタイムが低下するばかりでなく、トレッド部の破損やチッピング欠け、セパレーションに至る場合もある。しかしながら、ジエン系ゴムを含むゴム成分を用いて、Dry走行時にブローの発生を抑制することができる技術は確立していない。
一方、トレッドにWETグリップ性能を付与する方法として、水酸化アルミニウムを添加する方法が提案されているが、耐摩耗性や摩耗後のアブレーション外観(即ち、波状のささくれ立ち状態)が悪化するという欠点があるため、一般公道用のタイヤに用いられることは少ない。
なお、摩耗後のアブレーション外観が悪化する、即ち波状のささくれ立ち(波紋)の高さが高くなることは、走行中にゴムの過度な引き裂き、引っ張りが発生していたことを示唆し、摩耗指数の低下が見られるのが一般的である。
特許第4596646号公報
本発明は、前記課題を解決し、ジエン系ゴムをゴム成分として含有するトレッド用ゴム組成物において、WETグリップ性能、耐摩耗性と、Dry走行時のブロー性能とを両立できるトレッド用ゴム組成物、及び該トレッド用ゴム組成物を用いて作製したトレッドを有する空気入りタイヤを提供することを目的とする。
本発明は、スチレンブタジエンゴムを含むジエン系ゴムと、ジチオリン酸亜鉛と、下記式で表される化合物、硫酸マグネシウム、及び炭化ケイ素からなる群より選択される少なくとも1種からなり、BET値が5~120m/g、亜麻仁油吸油量が30~80ml/100gである無機フィラーと、硫黄とを含み、前記ジエン系ゴム100質量部に対して、前記ジチオリン酸亜鉛の含有量が0.2~15質量部、前記無機フィラーの含有量が1~70質量部、かつ、酸化亜鉛の含有量が2.5質量部未満であるトレッド用ゴム組成物に関する。
mM・xSiO・zH
(式中、MはAl、Mg、Ti、Ca及びZrからなる群より選ばれた少なくとも1種の金属、該金属の酸化物又は水酸化物であり、mは1~5の整数、xは0~10の整数、yは2~5の整数、zは0~10の整数である。)
本発明のトレッド用ゴム組成物は、上記無機フィラーのBET値が10~120m/g、亜麻仁油吸油量が30~80ml/100gであることが好ましい。
本発明のトレッド用ゴム組成物は、上記無機フィラーが水酸化アルミニウムであることが好ましい。
本発明のトレッド用ゴム組成物は、ジエン系ゴムがスチレン量19~60%のスチレンブタジエンゴムを60質量%以上含むことが好ましい。
本発明のトレッド用ゴム組成物は、BET値が151m/g以上のカーボンブラックを、ジエン系ゴム100質量部に対して5~130質量部含有することが好ましい。
本発明のトレッド用ゴム組成物は、酸化亜鉛を含有しないことが好ましい。
本発明のトレッド用ゴム組成物を用いて作製したトレッドを有する空気入りタイヤもまた、本発明の1つである。
本発明は、ジエン系ゴムをゴム成分として含有し、ジチオリン酸亜鉛と硫黄とを含み、酸化亜鉛の含有量を一定量未満とし、かつ、BET値及び亜麻仁油吸油量が特定範囲の無機フィラーを含むトレッド用ゴム組成物であるので、これを用いて作製したトレッドを有する空気入りタイヤは、高いWETグリップ性能、耐摩耗性と、Dry走行時の優れたブロー性能とを両立できる。
ゴム配合の練り中や加硫中に生じるアルミとシリカの反応、又はタイヤ表面の水酸化アルミニウムと路面上のシリカとの間に生じる瞬間的な反応を示す図。 水酸化アルミニウムの示差走査熱分析曲線のイメージ図。 走行時の路面接触付近(トレッド表面付近)のゴム中の無機フィラー粒子の状態を説明する模式図。
本発明のトレッド用ゴム組成物(以下、単に「ゴム組成物」ともいう。)は、スチレンブタジエンゴム(SBR)を含むジエン系ゴムに対して、ジチオリン酸亜鉛を配合するとともに、酸化亜鉛の含有量を一定量未満とすることによりDry走行時のブロー発生を防止することができ、BET値及び亜麻仁油吸油量が特定範囲の無機フィラーを配合することにより高いWETグリップ性能、耐摩耗性を発揮することができる。
本発明者は、SBRを含むジエン系ゴムを用いて空気入りタイヤを製造したときに、Dry走行時にブローが発生しやすくなる原因を検討した。その結果、高スチレン量のSBRを含むジエン系ゴムの架橋特性、すなわち、加硫反応の遅延及び架橋の不均一化や自己発熱量が高いこと等に原因があることを見出した。
SBRは、製造時における分子成長工程の制約から、スチレン量が多いほど、スチレン基のランダムなロケーションが確保し難くなる。即ち、スチレン量が15%を超えると、ポリマー鎖中でスチレン基同士が隣接する箇所が多くなる。スチレン基2~5程度が隣接集中すると、その部位は硬くなり、ポリマーの自由な動きが少なくなり、硫黄や加硫促進剤の複合体との接触頻度が減り、架橋反応が起こりにくくなる。即ち、スチレン量が一定以上のSBRでは、ポリマー鎖のスチレン基の少ないブタジエン部位に硫黄架橋が集中し、均一な架橋が困難となる。とりわけSBRの分子量が100万以上になると、スチレン基が隣接集中した箇所は鞠の様に固まり易くなり、鞠内部はほとんど架橋されることがない。このようなSBRを含むジエン系ゴムに対して、高いグリップ性や耐摩耗性を得る目的でカーボンブラックや軟化剤を配合した場合には、硫黄や加硫促進剤が軟化剤に吸着されたりするため、加硫反応が遅くなる。また、カーボンブラックや軟化剤を大量に配合した組成においては、必然的にフィラー総量も多く、総phrが多くなりがちとなり、加硫剤とゴム成分とが接触する機会が少なくなることから、更に加硫反応が遅くなる。即ち、SBRを含むジエン系ゴムでは、SBR自体の架橋特性に加え、カーボンブラックや軟化剤を配合することにより加硫反応が遅くなることにより、極めて不均一かつ低密度の架橋しか得られない。
このような不均一かつ低密度の架橋状態のゴム中にグリップ性や耐摩耗性向上のために大量のカーボンブラックや軟化剤を含んだ場合、走行時の高温と機械歪による応力とが作用して、ゴム中に含まれる揮発成分や空気溜りの膨張圧力に抗しきれず、架橋網目が緩い個所で蜂の巣状の穴が生じ、ブロー発生の原因となっていたものと考えられる。
本発明者は、鋭意検討の結果、SBRを含むジエン系ゴムを用いた場合であっても、ジチオリン酸亜鉛を配合するとともに、酸化亜鉛の含有量を一定量未満とすることによりDry走行時のブロー発生を防止することができることを見出した。
ジチオリン酸亜鉛は、亜鉛を含有し、酸化亜鉛に比べて高い加硫促進効果を発揮する。とりわけ、加硫促進剤と併用した場合には、極めて高い加硫促進効果を発揮する。ジチオリン酸亜鉛を用いることにより、SBRを含むジエン系ゴムに対して一定量以上のカーボンブラックや軟化剤を配合した組成においても、均一かつ適切な密度の架橋を行うことができるものと考えられる。このような均一かつ適切な密度の架橋を行うことにより、高いグリップ性能、耐摩耗性、引張性能を維持しつつ、Dry走行時のブロー発生を効果的に防止することができる。また、走行中にタイヤ温度(ゴム温度)が80~120℃に上昇したときには、硫黄及び加硫促進剤のみの使用時よりも多くのポリマー間の再架橋が生じているものと考えられる。
本発明のゴム組成物は、スチレンブタジエンゴム(SBR)を含むジエン系ゴムに対して、BET値及び亜麻仁油吸油量が特定範囲の無機フィラーを配合することにより高いWETグリップ性能、耐摩耗性を発揮することができる。
特定のBET値及び亜麻仁油吸油量を持つ水酸化アルミニウムなどの無機フィラーを添加することでWETグリップ性能を改善できる理由としては、以下の(1)~(4)の作用が発揮されることによる効果であると推察される。
(1)配合した水酸化アルミニウム(Al(OH))などの無機フィラーが混練り中に一部がシリカ以上のモース硬度を持つアルミナ(Al)に転化したり、水酸化アルミニウムなどの無機フィラーがシリカと(共有又は脱水)結合し、微分散したシリカ鎖を介しゴム配合中に固定化されたりすることにより、金属酸化物塊や無機フィラーが路面の骨材上のミクロ凹凸(数十μmピッチ)にアンカー効果を発現し、それにより、WETグリップ性能が高まると考えられる。
(2)路面上の二酸化ケイ素とタイヤ表面上の水酸化アルミニウムなどの無機フィラーが走行中に接触する(擦れる)ことに伴って、図1で示されるような瞬間的な共有結合が形成され、WETグリップ性能が向上すると考えられる。
(3)WET路面では、タイヤ表面が水膜を介して路面に接触する部位が存在し、通常、この水膜はタイヤと路面が直接接触する部位で発生する摩擦熱により蒸発すると考えられるが、例えば、水酸化アルミニウムが添加されていると、当該摩擦熱は、タイヤ表面の水酸化アルミニウムにおいて「Al(OH)→1/2Al+3/2HO」で示される吸熱反応が進行することにより、水膜(水分)の蒸発が抑制されると考えられる。仮に水膜が蒸発した場合はタイヤ表面と路面間に空間が形成されるため、路面とタイヤ接触面積が減少し、WETグリップ性能が低下する。
(4)図3に、走行時の路面接触付近(トレッド表面付近)のゴム中の無機フィラー粒子の状態を説明する模式図を示した。図3のように、(1)、(2)の現象を生じた場合、走行時に無機フィラー粒子1が高周波振動し、該高周波振動により隣接するゴム組成物中のグリップレジンや液状成分等の粘着成分2のブルームが促進される。その結果、無機フィラーを含まない他の部位に比べて、無機フィラー粒子1の周囲の粘着成分2の量が多くなり、WETグリップ性能が向上する。
本発明のゴム組成物は、特定のBET値及び亜麻仁油吸油量を持つ水酸化アルミニウムなどの無機フィラーを添加することにより、更に、Dryグリップ性も向上する。特に走行テストでは、無機フィラーを配合した場合には、トレッド表面と路面とが密着して、あたかもグリップレジンが表面にブルームしているような挙動が認められるとのプロドライバーのコメントが多い。この理由は以下のようであると推察される。
ゴム組成物に無機フィラーを配合することにより、特に小円旋回時、横滑り走行時にトレッドゴム表面に大きな張力が発生し、トレッドゴムの高周波振動が起こる。この高周波振動が1000Hz以上となると、(1)無機フィラーとゴム成分との界面にグリップレジンや液状成分がブルームし、路面グリップを促進される、(2)好ましくは、無機フィラーが周辺のシリカ及びカーボンブラックと物理的又は化学的に結合し、走行中も無機フィラー周辺に大きなボイドが生じないこと、(3)特定のBET値の微粒子状の無機フィラーによりゴム組成物のヒステリシスが上昇することが、Dryグリップ性の向上に寄与するものと考えられる。
このような従来の水酸化アルミニウムなどの無機フィラーの添加による作用効果でWETグリップ性能が改善されるものの、通常は耐摩耗性や摩耗後のアブレーション外観が悪化するため、これらをバランス良く改善することは難しい。本発明は、所定のBET値及び亜麻仁油吸油量を持つ水酸化アルミニウムなどの無機フィラーを添加しているため、耐摩耗性や摩耗後のアブレーション外観の低下を抑制し、良好な性能を維持しながら、WETグリップ性能を改善され、これらの性能をバランス良く改善できる。
本発明のゴム組成物は、ゴム成分として、SBRを含むジエン系ゴムを含有する。ゴム成分としてジエン系ゴムを用いることにより、良好な操縦安定性、低燃費性、破断時伸びを確保しつつ、良好な耐久性を得ることができる。
SBRとしては、特に限定されず、乳化重合SBR(E-SBR)、溶液重合SBR(S-SBR)などが挙げられ、油展されていても、油展されていなくてもよい。なかでも、耐摩耗性の観点から、油展かつ高分子量のSBRが好ましい。また、フィラーとの相互作用力を高めた末端変性S-SBRや、主鎖変性S-SBRも使用可能である。
SBRは、スチレン量が好ましくは19質量%以上、より好ましくは21質量%以上、更に好ましくは25質量%以上である。また、該スチレン量は、好ましくは60質量%以下、より好ましくは55質量%以下、更に好ましくは50質量%以下である。スチレン量が19質量%未満であると、グリップ性能が不十分となるおそれがあり、60質量%を超えると、スチレン基が隣接し、ポリマーが硬くなりすぎ、架橋が不均一となりやすく、高温走行時のブロー性が悪化する。
なお、本明細書において、スチレン量は、H-NMR測定により算出される。
SBRは、重量平均分子量(Mw)が好ましくは70万以上、より好ましくは90万以上、更に好ましくは100万以上である。また、該Mwは、好ましくは200万以下、より好ましくは180万以下である。Mwが70万以上のSBRを用いることにより、より高いグリップ性、耐摩耗性を発揮することができる。Mwが200万を超えると、無機フィラーの分散が困難となり、また、架橋成分がポリマー中に分散しにくくなることから、高温走行時のブロー発生を防止できない傾向がある。
なお、本明細書において、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)(東ソー(株)製GPC-8000シリーズ、検出器:示差屈折計、カラム:東ソー(株)製のTSKGEL SUPERMALTPORE HZ-M)による測定値を基に標準ポリスチレン換算により求めることができる。
ジエン系ゴム100質量%中のSBRの含有量は、好ましくは60質量%以上、より好ましくは80質量%以上である。また、SBRの含有量の上限は特に限定されず、100質量%であってもよい。上記範囲内であると、本発明の効果がより良好に得られる。
上記ジエン系ゴムは、なかでも、スチレン量が19~60質量%のSBRを60質量%以上含むことが好ましく、スチレン量が25~55質量%のSBRを65質量%以上含むことがより好ましい。これにより、より高いグリップ性、耐摩耗性を発揮することができる。
SBR以外のジエン系ゴムとしては特に限定されず、天然ゴム(NR)、高純度NR(UPNR)、エポキシ化NR(ENR)やイソプレンゴム(IR)などのイソプレン系ゴムや、ブタジエンゴム(BR)、スチレンイソプレンブタジエンゴム(SIBR)、クロロプレンゴム(CR)、アクリロニトリルブタジエンゴム(NBR)等が挙げられる。
本発明のゴム組成物は、ジチオリン酸亜鉛を含有する。ジチオリン酸亜鉛は、下記一般式(1)で表される化合物である。ジチオリン酸亜鉛は、その構造の中心に亜鉛原子を保持しており、酸化亜鉛に比べて優れた架橋促進作用を発揮する。ジチオリン酸塩を用いることにより、ジエン系ゴムを含むゴム成分に対して一定量以上のカーボンブラックや軟化剤を配合した組成であっても、高温走行時におけるブローの発生を抑制することができる。また、ジチオリン酸亜鉛を用いることにより、酸化亜鉛やジフェニルグアニジン(DPG)を用いることなく、十分な架橋を行うことができる。更に、ジチオリン酸亜鉛を用いることにより、23℃と100℃間のハードネスの温度依存性が大幅に向上する。ハードネスの温度依存性は、レース初期から後期を通じて、安定した路面の凹凸へのミクロ変形追従性、すなわち路面グリップ性や、高速安定性を確保するために、非常に重要である。
Figure JPOXMLDOC01-appb-C000001
(式中、R~Rはそれぞれ独立に炭素数1~18の直鎖若しくは分岐鎖アルキル基、又は炭素数5~12のシクロアルキル基を表す。)
ジチオリン酸亜鉛としては、例えば、ラインケミー社製のTP-50、ZBOP-S、ZBOP-50や、これらに類似する化合物(例えば、上記一般式(1)においてR~Rがn-プロピル基、iso-プロピル基又はn-オクチル基のもの)等を使用することができる。
本発明のゴム組成物において、ジチオリン酸亜鉛の含有量(有効成分の含有量)は、ジエン系ゴム100質量部に対して、0.2質量部以上、より好ましくは0.5質量部以上、更に好ましくは1.0質量部以上である。0.2質量部未満の場合、高温走行時のブロー発生を防止する効果が得られない。また、該含有量は、15質量部以下、好ましくは6質量部以下、より好ましくは4質量部以下である。15質量部を超えると、ブロー向上効果が飽和するのに、スコーチタイムが短くなり、加工性が悪化する傾向がある。
本発明のゴム組成物は、ジエン系ゴム100質量部に対する酸化亜鉛の含有量が2.5質量部未満である。本発明においては上述のようにジチオリン酸亜鉛を用いることにより、均一な架橋状態を達成して、高温走行時におけるブローの発生を抑制する。一方、酸化亜鉛をゴム中に配合した場合、酸化亜鉛の粒子の周囲に気泡が溜りやすく、空隙が生じやすい性質がある。このような性質は、代表品種である亜鉛華2種、亜鉛華1種において顕著であり、微粒子グレードの微粒子亜鉛華F2であっても認められる。従って、酸化亜鉛を含有した場合には、該酸化亜鉛の周囲の空隙が起点核となって、かえってブロー発生の原因となることがあり、その配合量が多いほどブローが発生しやすくなる。酸化亜鉛の含有量は2.0質量部以下であることが好ましく、酸化亜鉛を含有しないことがより好ましい。
酸化亜鉛を配合する場合には、ゴム成分中への分散性に優れ、ブロー発生の原因となる空隙、起点核が生じにくいことから、BET値が15m/g以上の微粒子状の酸化亜鉛を用いることが好ましい。
本発明のゴム組成物は、下記式で表される化合物、硫酸マグネシウム、及び炭化ケイ素からなる群より選択される少なくとも1種からなり、BET値が5~120m/g、亜麻仁油吸油量が30~80ml/100gである無機フィラーを含有する。これにより、高いWETグリップ性能と耐摩耗性を発揮することができる。
mM・xSiO・zH
(式中、MはAl、Mg、Ti、Ca及びZrからなる群より選ばれた少なくとも1種の金属、該金属の酸化物又は水酸化物であり、mは1~5の整数、xは0~10の整数、yは2~5の整数、zは0~10の整数である。)
上記無機フィラーとしては、アルミナ、アルミナ水和物、水酸化アルミニウム、水酸化マグネシウム、酸化マグネシウム、タルク、チタン白、チタン黒、酸化カルシウム、水酸化カルシウム、酸化アルミニウムマグネシウム、クレー、パイロフィライト、ベントナイト、ケイ酸アルミニウム、ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸アルミニウムカルシウム、ケイ酸マグネシウム、ジルコニウム、酸化ジルコニウム、硫酸マグネシウム、炭化ケイ素(SiC)などが挙げられる。これらの無機化合物は単独で使用してもよいし、2種以上を組み合わせて使用してもよい。なかでも、モース硬度が3以上、かつ耐水性、耐油性があり、ミクロン単位の粒径に加工することで引っ掻き効果が生じてWETグリップ性能が改善されるとともに、良好な耐摩耗性も得られるという点から、MがAl又はZrの無機フィラーが好ましく、資源量が豊富で安価である点から、水酸化アルミニウム、酸化ジルコニウムがより好ましい。更に良好な練り生産性、押出し加工性も得られるという観点では、水酸化アルミニウムが特に好ましい。
上記無機フィラーのBET値(窒素吸着比表面積)は、5~120m/gである。上記範囲外では、WETグリップ性能及び耐摩耗性の向上効果が不十分となることがある。該BET値の下限は、好ましくは10m/gである。また、BET値の上限は、好ましくは120m/g、より好ましくは115m/g、更に好ましくは110m/gである。
なお、上記無機フィラーのBET値は、ASTM D3037-81に準じてBET法で測定される値である。
上記無機フィラーの亜麻仁油吸油量の下限は30ml/100gであり、上限は80ml/100g、好ましい上限は75ml/100gである。亜麻仁油吸油量がこの範囲内であると、得られる空気入りタイヤは、高いWET性能とDry性能を発揮することができる。亜麻仁油吸油量が低いほど、無機フィラーの粒子間の繋がり(=ストラクチャー)が少なく、ゴム中に単独で存在し易い。従って、亜麻仁油吸油量は、非極性のタイヤ用ゴム組成物に、無機フィラーの単粒子が適度に細かく、かつ適度な二次粒子径の凝集塊を形成するかどうかを判断するための有効な指標となるものと考えられる。即ち、亜麻仁油吸油量が30ml/100g未満であると、ゴム成分、軟化剤、レジンとの親和性が低くなり、ゴム組成物中での無機フィラーの位置が熱的に安定しないと考えられる。一方、亜麻仁油吸油量が80ml/100gを超えると、無機フィラーの粒子が大きな二次粒子径の凝集塊を形成して、その内部にオイルを取り込むオクルード部分が生成したり、練り工程を経てもゴム成分と十分に混ざらずに耐摩耗性や伸び性能等の低下の原因となったりする。更に、本技術分野においては、DBP吸油量が一般的に用いられるが、亜麻仁油は天然オイルの一種であることから、DBPに比べて環境負荷の負荷が小さいという利点もある。
参考に、粒子ストラクチャーが発達しやすい代表的湿式シリカであるEvonik社製のULTRASIL VN3(BET値:175m/g)の亜麻仁油吸油量は128ml/100gである。
なお、上記亜麻仁油吸油量は、JIS-K5101-13に従って求められる値である。
上記無機フィラーの平均粒子径は、好ましくは1.5μm以下、より好ましくは0.69μm以下、更に好ましくは0.6μm以下である。また、該平均粒子径は、好ましくは0.2μm以上、より好ましくは0.25μm以上、更に好ましくは0.4μm以上である。1.5μmを超えると、耐摩耗性及びWETグリップ性能が低下するおそれがあり、0.2μm未満であると、耐摩耗性、加工性が低下するおそれがある。なお、無機フィラーの平均粒子径は、数平均粒子径であり、透過型電子顕微鏡により測定される。
上記無機フィラーのモース硬度は、タイヤの耐摩耗性やWETグリップ性能の確保や、バンバリーミキサーや押出機の金属摩耗を抑える観点から、シリカ並の7又はそれ未満であることが好ましく、2~5であることがより好ましい。モース硬度は、材料の機械的性質の一つで古くから鉱物関係で汎用されている測定法であり、硬さを計りたい物質(水酸化アルミニウム等)を標準物質でこすり、ひっかき傷の有無でモース硬度を測定する。
特に、モース硬度が7未満で、かつ該無機フィラーの脱水反応物のモース硬度が8以上の無機フィラーを使用することが好ましい。例えば、水酸化アルミニウムは、モース硬度約3で、バンバリーやロールの摩滅(摩耗)を防止するとともに、走行中の振動・発熱や一部混練りにより表層が脱水反応(転移)して、モース硬度約9のアルミナへ転化し、路面石以上の硬度となるので、優れた耐摩耗性やWETグリップ性能が得られる。ここで、水酸化アルミニウムの内部全てが転化する必要はなく、一部の転化で路面の引っ掻き機能を発現できる。また、水酸化アルミニウムとアルミナは、水、塩基、酸に対して安定であり、加硫の阻害や酸化劣化の促進もない。なお、該無機フィラーの転移後のモース硬度は、より好ましくは7以上であり、上限は特に制限されない。ダイヤモンドは最高値10である。
上記無機フィラーは、熱分解開始温度(DSC吸熱開始温度)が160~500℃のものが好ましく、170~400℃のものがより好ましい。160℃未満では、混練中に熱分解又は再凝集が進みすぎ、練り機のローター羽又は容器の壁等の金属摩耗が行き過ぎたりするおそれがある。なお、無機フィラーの熱分解開始温度は、示差走査熱量測定(DSC)を実施して求められる。また、熱分解には、脱水反応も含まれる。
上記無機フィラーとしては、上記BET値及び亜麻仁油吸油量を有する市販品を使用でき、また、無機フィラーに粉砕などの処理を施して上記特性を有する粒子に調整した処理品なども使用可能である。粉砕処理を施す場合、湿式粉砕、乾式粉砕(ジェットミル、カレントジェットミル、カウンタージェットミル、コントラプレックスなど)等、従来公知の方法を適用できる。
また、必要に応じて、医薬、バイオ関係で頻用されるメンブランフィルター法にて分取し、所定のBET値を有するものを作製し、ゴム配合剤として使用することもできる。
上記無機フィラーの含有量は、ジエン系ゴム100質量部に対して、1質量部以上、好ましくは3質量部以上、より好ましくは5質量部以上である。1質量部未満であると、十分なWETグリップ性能が得られないおそれがある。また、該含有量は、70質量部以下、好ましくは65質量部以下、より好ましくは60質量部以下である。70質量部を超えると、耐摩耗性や摩耗後のアブレーション外観が他の配合剤の調整で補えないほど悪化し、また、引張り強度等も悪化するおそれがある。
本発明のゴム組成物は、硫黄を含有する。硫黄としては、ゴム工業において一般的に用いられる粉末硫黄、沈降硫黄、コロイド硫黄、不溶性硫黄、高分散性硫黄、可溶性硫黄などが挙げられる。
本発明のゴム組成物において、硫黄の含有量は、ジエン系ゴム100質量部に対して、好ましくは0.2質量部以上、より好ましくは0.5質量部以上、更に好ましくは0.6質量部以上である。また、該硫黄の含有量は、好ましくは2.0質量部以下、より好ましくは1.8質量部以下、更に好ましくは1.6質量部以下である。0.2質量部未満であると、加硫後の硬度(Hs)や隣接ゴム配合との共架橋が充分に得られないおそれがあり、2.0質量部を超えると、耐摩耗性が悪化するおそれがある。なお、硫黄の含有量とは、仕上げ練りで投入する純硫黄成分量であり、例えば、不溶性硫黄(オイル含有)を用いる場合はオイル分を除いた純硫黄量を意味する。
本発明のゴム組成物は、カーボンブラックを含有することが好ましい。カーボンブラックを含有することにより、耐摩耗性、グリップ性が向上する。
上記カーボンブラックは、BET値(窒素吸着比表面積)が110m/g以上であることが好ましく、140m/g以上であることがより好ましく、151m/g以上であることが更に好ましい。また、該BET値は、300m/g以下であることが好ましく、250m/g以下であることがより好ましく、200m/g以下であることが更に好ましい。とりわけBET値が151m/g以上のカーボンブラックを配合することにより、特に高い耐摩耗性とグリップ性能とを得ることができる。
なお、カーボンブラックのBET値は、JIS K 6217-2:2001によって求められる。
上記カーボンブラックの含有量は、ジエン系ゴム100質量部に対して好ましくは5質量部以上、より好ましくは20質量部以上である。5質量部未満であると、充分な耐摩耗性及びグリップ性能の向上効果が得られないおそれがある。また、該含有量は、好ましくは130質量部以下、より好ましくは120質量部以下である。130質量部を超えると、引張特性が低下するおそれがある。
本発明のゴム組成物は、シリカを含有してもよい。シリカを含有することにより、WETグリップ性、補強性を高めながら、転がり抵抗特性を改善することができる。
シリカとしては、例えば、湿式法で製造されたシリカ、乾式法で製造されたシリカなどが挙げられる。
上記シリカは、BET値(窒素吸着比表面積)が80m/g以上であることが好ましく、120m/g以上であることがより好ましく、150m/g以上であることが更に好ましい。また、該BET値は、280m/g以下であることが好ましく、260m/g以下であることがより好ましく、250m/g以下であることが更に好ましい。
なお、シリカのBET値は、ASTM D3037-93に準じてBET法で測定される値である。
上記シリカの含有量は、DRYグリップ性よりもWETグリップ性を重視する場合、ジエン系ゴム100質量部に対して好ましくは30質量部以上、より好ましくは40質量部以上、更に好ましくは50質量部以上である。30質量部未満の場合、十分な補強性が得られないおそれがある。また、該含有量は、好ましくは150質量部以下、より好ましくは130質量部以下、更に好ましくは120質量部以下である。150質量部を超えると、シリカが分散しにくくなり、耐摩耗性、引張性能が悪化する傾向がある。
本発明のゴム組成物が上記シリカを含有する場合には、更にシランカップリング剤を含有することが好ましい。シランカップリング剤としては、ゴム工業において、従来からシリカと併用される任意のシランカップリング剤を使用することができる。
ただし、シランカップリング剤としてポリ硫化アルコキシシランを用いる場合には、ジエン系ゴム100質量部に対するポリ硫化アルコキシシランの含有量を1.0質量部以下とすることが好ましい。
ポリ硫化アルコキシシランは、構造中のSの硫黄-硫黄間の結合力が弱く、練り中に結合が切れてゴム焼けの原因となりやすい。また、シリカと結合したシランの結合も弱く、練り中や練り後の保管中に結合が切れて、破断伸びや燃費性の低下の原因となります。シランカップリング剤としてポリ硫化アルコキシシランを用いる場合にでも、含有量を1.0質量部以下とすることにより、その影響を最小限に抑えることができる。
本発明のゴム組成物は、低温可塑剤、プロセスオイル、及び軟化点160℃以下の樹脂からなる群より選択される少なくとも1種の軟化剤を含有することが好ましい。これらの軟化剤を含有することにより、得られる空気入りタイヤのグリップ性がより向上する。本発明においては、ジチオリン酸亜鉛を配合するとともに、酸化亜鉛の含有量を一定量未満とすることにより、軟化剤を一定以上配合した高軟化剤組成であっても、Dry走行時のブロー発生を効果的に防止することができる。
上記低温可塑剤は、凝固温度が-15℃以下であることが好ましい。このような低凝固温度の低温可塑剤は、その化学組成も相まって、ゴム組成物の配合Tgや脆化温度を低下させる役割を果たす。なお、上記凝固温度とは、液体を冷却したときに固体となる温度であって、JIS-K2269で規定される温度を意味する。また、ガラス転移温度(Tg)は、ASTM D3418-03に従い、示唆熱走査熱量計(DSC)で測定した温度を意味する。
上記低温可塑剤は、上記ジエン系ゴムとの相溶性を確保するために、SP値が8~9であることが好ましい。ここでSP値とは、ハンセン(Hansen)の数式を用いて算出される溶解度パラメータを意味する。また、特にSBR、NRとの構造的類似上、相溶性を高める点で、エチルヘキシル基やフェニル基を含有することが好ましい。
なお、上記低温可塑剤には、プロセスオイル及び後述の樹脂は含まれない。
上記低温可塑剤は、バンバリー投入時に発火する可能性があることから、引火点が200℃以上であるものが好ましい。例えば、混練時の排出温度を180℃に設定した場合、局部的なゴム組成物の最高温度は195℃にもなる。引火点が200℃以上である低温可塑剤を採用することにより、発火の可能性を低減することができる。
なお、本発明において、上記低温可塑剤の引火点は、JIS K 2265-4:2007に準拠したクリーブランド開放法によって測定した値である。
上記低温可塑剤は、元来、塩化ビニル、セルロース、樹脂プラスチック、各種ゴム等に広く用いられる。本発明のゴム組成物においては、隣接部材への移行を防ぎ、引火点を高くする意味で、重量平均分子量(Mw)400以上が好ましい。
上記低温可塑剤は、例えば、トリス(2-エチルヘキシル)ホスフェート(TOP、凝固温度-70℃以下、引火点204℃、SP値8.1、Mw435)、ビス(2-エチルヘキシル)セバケート(DOS、凝固温度-62℃、引火点222℃、SP値8.4、Mw427)、ビス(2-エチルヘキシル)フタレート(DOP、凝固温度-51℃、引火点218℃、SP値8.9、Mw391)、ビス[2-(2-ブトキシエトキシエチル)エチル]アジペート(BXA-N、凝固温度-19℃、引火点207℃、SP値8.7、Mw435)等が挙げられる。なかでも、ゴム成分との相溶性に優れ、引火点が200℃以上であり、重量平均分子量が400以上と高いことからTOP、BXA-Nが好適である。
上記プロセスオイルとしては、パラフィン系プロセスオイル、ナフテン系プロセスオイル、芳香族系プロセスオイルなどが挙げられる。また、環境対策で多環式芳香族(polycyclic aromatic compound: PCA)化合物の含量の低いプロセスオイルも挙げられる。前記低PCA含量プロセスオイルとしては、オイル芳香族系プロセスオイルを再抽出したTreated Distillate Aromatic Extract(TDAE)、アスファルトとナフテン油の混合油であるアロマ代替オイル、軽度抽出溶媒和物(mild extraction solvates)(MES)、重ナフテン系オイル等が挙げられる。
本発明のゴム組成物がプロセスオイルを含有する場合、プロセスオイルの含有量は、ジエン系ゴム100質量部に対して、好ましくは2質量部以上、より好ましくは5質量部以上である。また、該含有量は、好ましくは100質量部以下、より好ましくは70質量部以下、更に好ましくは60質量部以下である。上記範囲内であると、本発明の効果がより良好に得られる。
なお、ジエン系ゴムとして油展ジエン系ゴムを用いたりする場合には、上記軟化剤の合計含有量には、該油展ジエン系ゴムに含まれるプロセスオイルの含有量も含まれる。
上記軟化点160℃以下の樹脂としては、例えば、クマロンインデン樹脂、αメチルスチレン系樹脂、テルペン系樹脂、アルキルフェノール系樹脂等が挙げられる。
上記樹脂の軟化点は、-20℃以上が好ましく、0℃以上がより好ましく、40℃以上が更に好ましく、70℃以上が特に好ましい。また、該軟化点は、160℃以下が好ましく、150℃以下がより好ましい。
なお、本明細書において、軟化点は、JIS K 6220-1:2001に規定される軟化点を環球式軟化点測定装置で測定し、球が降下した温度である。
クマロンインデン樹脂は、樹脂の骨格(主鎖)を構成するモノマー成分として、クマロン及びインデンを含む樹脂であり、クマロン、インデン以外に骨格に含まれるモノマー成分としては、スチレン、α-メチルスチレン、メチルインデン、ビニルトルエンなどが挙げられる。
上記クマロンインデン樹脂の軟化点は-20~160℃が好ましい。上限は、より好ましくは145℃以下、更に好ましくは130℃以下である。下限は、より好ましくは-10℃以上、更に好ましくは-5℃以上である。軟化点が160℃を超えると、練り中の分散性が悪化し、低燃費性が悪化する傾向がある。軟化点が-20℃未満であると、製造が困難な上に、他の部材への移行性、揮発性が高く、使用中に性能が変化するおそれがある。
上記クマロンインデン樹脂のなかでも、軟化点が90~140℃のものを用いた場合には、Dryグリップ性能が向上する。なかでも軟化点が100~120℃のものは、0~80℃におけるtanδを全般に高めることができ、破断伸びも良い。
軟化点が10~30℃のクマロンインデン樹脂は、10~40℃の比較的低温におけるグリップ性は良く、tanδを全般に下げる。このような軟化点が10~30℃のクマロンインデン樹脂は、主に破断伸びの向上を目的に用いることができる。
なお、クマロンインデン樹脂を用いることにより破断伸びが改善する理由は、架橋ポリマー鎖に適度な滑りを付与し、均一な伸びを生じさせるためと考えられる。
αメチルスチレン系樹脂としては、例えば、α-メチルスチレン単独重合体や、α-メチルスチレンとスチレンとの共重合体等が挙げられる。
αメチルスチレン系樹脂の軟化点は-20~160℃が好ましい。上限は、より好ましくは145℃以下、更に好ましくは130℃以下である。下限は、より好ましくは-10℃以上、更に好ましくは-5℃以上である。軟化点が160℃を超えると、練り中の分散性が悪化し、低燃費性が悪化する傾向がある。軟化点が-20℃未満であると、製造が困難な上に、他の部材への移行性、揮発性が高く、製造中或いは使用中に性能が変化するおそれがある。
上記テルペン系樹脂としては、ポリテルペン、テルペンフェノール、芳香族変性テルペン樹脂、及びこれらに水素添加処理をした樹脂などが挙げられる。
ポリテルペンは、テルペン化合物を重合して得られる樹脂である。テルペン化合物は、(Cの組成で表される炭化水素及びその含酸素誘導体で、モノテルペン(C1016)、セスキテルペン(C1524)、ジテルペン(C2032)などに分類されるテルペンを基本骨格とする化合物であり、例えば、α-ピネン、β-ピネン、ジペンテン、リモネン、ミルセン、アロオシメン、オシメン、α-フェランドレン、α-テルピネン、γ-テルピネン、テルピノレン、1,8-シネオール、1,4-シネオール、α-テルピネオール、β-テルピネオール、γ-テルピネオールなどが挙げられる。
ポリテルペンとしては、上述したテルペン化合物を原料とするα-ピネン樹脂、β-ピネン樹脂、リモネン樹脂、ジペンテン樹脂、β-ピネン/リモネン樹脂などのテルペン樹脂が挙げられる。
テルペンフェノールとしては、上記テルペン化合物とフェノール系化合物とを共重合した樹脂が挙げられ、具体的には、上記テルペン化合物、フェノール系化合物及びホルマリンを縮合させた樹脂が挙げられる。なお、フェノール系化合物としては、例えば、フェノール、ビスフェノールA、クレゾール、キシレノールなどが挙げられる。
芳香族変性テルペン樹脂としては、上記テルペン化合物と、芳香族化合物(上記フェノール系化合物を除く)とを重合して得られる樹脂が挙げられる。なお、上記芳香族化合物としては、例えば、石油由来で変性基を付与した芳香族化合物が挙げられ、具体的には、スチレン、α-メチルスチレン、ビニルトルエン、イソプロペニルトルエン、ジビニルトルエン、2-フェニル-2-ブテンなどが挙げられる。
テルペン系樹脂の軟化点は70~150℃が好ましい。下限はより好ましくは80℃以上である。70℃未満であると、充分な高温グリップ性能、剛性感が得られないおそれがある。また、該軟化点の上限は、より好ましくは145℃以下である。150℃を超えると、初期グリップ性能が悪化する傾向がある。
アルキルフェノール系樹脂としては、特に限定されず、アルキルフェノールと、ホルムアルデヒド、アセトアルデヒド、フルフラールなどのアルデヒド類とを酸又はアルカリ触媒で反応させることにより得られるアルキルフェノールアルデヒド縮合樹脂;アルキルフェノールと、アセチレンなどのアルキンとを反応させて得られるアルキルフェノールアルキン縮合樹脂;これらの樹脂を、カシューオイル、トールオイル、アマニ油、各種動植物油、不飽和脂肪酸、ロジン、アルキルベンゼン樹脂、アニリン、メラミンなどの化合物を用いて変性した変性アルキルフェノール樹脂;等が挙げられる。なかでも、本発明の効果の観点から、アルキルフェノールアルキン縮合樹脂が好ましく、アルキルフェノールアセチレン縮合樹脂が特に好ましい。
アルキルフェノール系樹脂を構成するアルキルフェノールとしては、クレゾール、キシレノール、t-ブチルフェノール、オクチルフェノール、ノニルフェノール等が挙げられる。なかでも、t-ブチルフェノール等の分枝状アルキル基を有するフェノールが好ましく、t-ブチルフェノールが特に好ましい。
アルキルフェノール系樹脂の軟化点は100~160℃が好ましい。上限は150℃以下、下限は120℃以上がより好ましい。
軟化点120~160℃のアルキルフェノール系樹脂(例えば、軟化点が145℃のコレシン)は、特に高温(80~120℃付近)でのグリップ性が向上する。該アルキルフェノール系樹脂を、軟化点が85℃付近のαメチルスチレン系樹脂(低温(10~40℃)でのグリップ性に優れる)と併用することにより、20~120℃のタイヤの走行温度におけるグリップ性能を向上させることができる。
上記樹脂としては、本発明の効果がより良好に得られる点から、クマロンインデン樹脂、αメチルスチレン系樹脂、テルペン系樹脂、アルキルフェノール系樹脂からなる群より選択される少なくとも1種が好ましい。
本発明のゴム組成物が上記樹脂を含有する場合、上記樹脂の含有量は、上記ジエン系ゴム100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。また、該含有量は、好ましくは100質量部以下、より好ましくは70質量部以下である。上記範囲内であると、本発明の効果がより良好に得られる。
本発明のゴム組成物は、本発明の効果がより良好に得られる点から、プロセスオイル及び/又は軟化点160℃以下の樹脂を含有することが好ましく、プロセスオイル及び軟化点160℃以下の樹脂を含有することがより好ましい。
上記低温可塑剤、プロセスオイル、及び軟化点160℃以下の樹脂からなる群より選択される少なくとも1種の軟化剤の合計含有量は、上記ジエン系ゴム100質量部に対して40質量部以上、好ましくは45質量部以上、より好ましくは50質量部以上である。また、該合計含有量は、好ましくは150質量部以下、より好ましくは145質量部以下、更に好ましくは140質量部以下である。軟化剤の含有量を40質量部以上とすることにより、極めてグリップ性に優れる空気入りタイヤを得ることができる。軟化剤の含有量が150質量部を超えると、モジュラスM300が低くなり、高温走行時にブローが発生しやすい傾向がある。
なお、ジエン系ゴムとして油展ジエン系ゴムを用いたりする場合には、上記軟化剤の合計含有量には、該油展ジエン系ゴムに含まれるプロセスオイルの含有量も含まれる。
本発明のゴム組成物は、加硫促進剤及びステアリン酸を含有することが好ましい。ジチオリン酸亜鉛、ステアリン酸及び加硫促進剤を併用することより、より加硫反応が促進されて、より均一かつ適切な密度の架橋状態を得ることができる。ステアリン酸は、酸化亜鉛のゴム中に分散させる効果が知られているが、ジチオリン酸亜鉛においても同様な効果が得られることが判った。
加硫促進剤としては、チアゾール系、チウラム系、グアニジン系、ジチオカルバミン酸塩系加硫促進剤などが挙げられる。
なかでも、ジチオリン酸亜鉛にステアリン酸とチアゾール系加硫促進剤(特にTBBS)を併用することにより高い加硫反応促進効果が得られ、更にジチオリン酸亜鉛にステアリン酸とチアゾール系加硫促進剤(特にTBBS)とチウラム系加硫促進剤(特にTBZTD)及び/又はジチオカルバミン酸塩系加硫促進剤(特にZTC、PX)とを併用することにより、特に高い加硫反応促進効果が得られる。
チアゾール系加硫促進剤(ベンゾチアゾール基を有する加硫促進剤)としては、例えば、N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド(TBBS)、N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS)、N,N-ジシクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(DCBS)等のスルフェンアミド系加硫促進剤;2-メルカプトベンゾチアゾール、2-メルカプトベンゾチアゾールのシクロヘキシルアミン塩、ジ-2-ベンゾチアゾリルジスルフィド等のベンゾチアゾール系加硫促進剤等が挙げられ、なかでも、スルフェンアミド系加硫促進剤が好ましく、TBBSがより好ましい。チウラム系加硫促進剤としては、テトラメチルチウラムジスルフィド(TMTD)、テトラベンジルチウラムジスルフィド(TBzTD)、テトラキス(2-エチルヘキシル)チウラムジスルフィド(TOT-N)などが挙げられ、なかでも、TBzTDが好ましい。グアニジン系加硫促進剤としては、例えば、ジフェニルグアニジン(DPG)、ジオルトトリルグアニジン、オルトトリルビグアニジン等が挙げられる。ジチオカルバミン酸塩系加硫促進剤としては、例えば、ジベンジルジチオカルバミン酸亜鉛(ZTC)、エチルフェニルジチオカルバミン酸亜鉛(PX)などが挙げられ、なかでも、ZTC、PXが好ましい。
ただし、加硫促進剤のなかでもDPGは、動物実験での発癌性が研究機関により指摘されており、使用量の削減が求められている。また、DPGは、シリカやシランを吸着しやすく、シリカとシランの結合を阻害するため、ゴムの物性を低下させるという問題もある。本発明においては、ジチオリン酸亜鉛を用いることにより、DPGを用いることなく良好な加硫速度を確保することができる。従って、本発明のゴム組成物においては、DPGの含有量は、好ましくは0.5質量部以下、より好ましくは0.2質量部以下、更に好ましくは0.1質量部以下、特に好ましくは0質量部(含有しない)である。
本発明ゴム組成物において、加硫促進剤(DPGを除く)の含有量は、ジエン系ゴム100質量部に対して、好ましくは2質量部以上、より好ましくは3質量部以上、更に好ましくは4質量部以上である。また、該加硫促進剤の含有量は、好ましくは15質量部以下、より好ましくは12質量部以下、更に好ましくは10質量部以下である。加硫促進剤を2質量部以上含有することにより、ジチオリン酸亜鉛及びステアリン酸との相乗効果により、より均一かつ適切な密度の架橋を行うことができ、高速走行時のブローの発生を抑制できる。加硫促進剤の含有量が15質量部を超えると、加硫促進剤の分散不良が生じて、ブロー性や破断伸びが低下することがある。
本発明ゴム組成物において、ステアリン酸の含有量は、ジエン系ゴム100質量部に対して、好ましくは1.0質量部以上、より好ましくは1.5質量部以上である。また、ステアリン酸の含有量は、好ましくは5.0質量部以下、より好ましくは4.0質量部以下である。この範囲内であれば、均一かつ適切な密度の架橋状態を得ることができる。ただし、ステアリン酸の含有量の好ましい範囲は、ジエン系ゴム、加工助剤、離型剤等に含まれる脂肪酸量によっても変動する。
本発明のゴム組成物には、上記成分以外にも、タイヤ工業において一般的に用いられている配合剤、例えば、ワックス、老化防止剤、離型剤等の材料を適宜配合してもよい。
本発明のゴム組成物は、ベース練り工程、仕上げ練り工程等の混練工程を経る公知の方法で調製できる。混練工程は、例えば、混練機を用いて、これらの成分を混練することにより実施できる。混練機としては従来公知のものを使用でき、例えば、バンバリーミキサーやニーダー、オープンロールなどが挙げられる。
上記ベース練り工程等、少なくともゴム成分、カーボンブラック、シリカ、シランカップリング剤及び無機フィラーを混練する工程(例えば、ベース練り工程を1工程で実施する場合は当該工程、ベース練り工程を後述する分割したベース練り工程として実施する場合は上記無機フィラーを投入してゴム成分と混練する工程)における排出温度は、150℃以上、好ましくは155℃以上、より好ましくは160℃以上、更に好ましくは165℃以上、特に好ましくは170℃以上である。一方、排出温度の上限は特に限定されないが、所望の性能が得られるように、ゴム焼けが発生しない範囲で、適宜調整すればよいが、好ましくは190℃以下、より好ましくは185℃以下である。
上記ベース練り工程は、軟化剤の含有量の比較的少ない高フィラー配合系では、複数としてよい。例えば、上記ゴム成分、無機フィラー等を1工程でベース練り工程を行う方法の他、ゴム成分、カーボンブラック、シリカ2/3量、シランカップリング剤2/3量を混練するX練り、X練りで混練した混練物、残りのシリカ、残りのシランカップリング剤、硫黄及び加硫促進剤を除くその他の成分を混練するY練り、Y練りで混練した混練物を再混練するZ練り等に分割したベース練り工程でもよい。なお、この場合、上記無機フィラーの投入時期は、より高い練りトルクを発生させられるX練りがよい。
なお、通常の製造方法では加硫剤は仕上げ練りで投入するが、ジチオリン酸亜鉛は、ゴム成分中での分散性を高め、より均一な架橋を行う目的で、ベース練り投入することが好ましい。
ただし、ラインケミー社製のTP-50のようなマスターバッチ化したジチオリン酸亜鉛を用い、分散助剤を併用する場合には、ジチオリン酸亜鉛をファイナル練りで投入しても、ベース練り投入時と略同等の物性を得ることができる。
上記ベース練り工程の後、例えば、得られた混練物1に、上記と同様の混練機を用いて、硫黄などの加硫剤、加硫促進剤等の成分を混練する仕上げ練り工程(排出温度は80~110℃等)を行い、更に得られた混練物2(未加硫ゴム組成物)を150~170℃で、10~30分間プレス加熱させる加硫工程を行うことにより、本発明のゴム組成物を製造できる。
本発明のゴム組成物は、空気入りタイヤのトレッド用途に用いられるものである。特に、多層構造を有するトレッドの表面層であるキャップトレッドに好適に使用できる。例えば、2層構造〔表面層(キャップトレッド)及び内面層(ベーストレッド)〕からなるトレッドの表面層に好適である。
本発明の空気入りタイヤは、上記ゴム組成物を用いて通常の方法によって製造できる。すなわち、必要に応じて各種添加剤を配合したゴム組成物を、未加硫の段階でタイヤのトレッドの形状に合わせて押し出し加工し、タイヤ成型機上にて成形し、更に他のタイヤ部材とともに貼り合わせて未加硫タイヤを作製した後、その未加硫タイヤを加硫機中で加熱加圧することで、空気入りタイヤを製造できる。
本発明の空気入りタイヤは、乗用車用タイヤ、大型乗用車用、大型SUV用タイヤ、トラック、バスなどの重荷重用タイヤ、ライトトラック用タイヤに好適であり、それぞれのサマータイヤ、スタッドレスタイヤとして使用可能である。
高温走行時にもブローの発生が抑制されることから、競技用タイヤとしても好適である。
実施例に基づいて、本発明を具体的に説明するが、本発明はこれらのみに限定されるものではない。
以下に、実施例及び比較例で使用した各種薬品について、まとめて説明する。
<ゴム成分(SBR)>
変性SBR1:以下で説明する方法により調製したもの(油展37.5部、スチレン量41%、ビニル量40%、Tg-29℃、重量平均分子量119万)
シリカ変性SBR2:以下で説明する方法により調製したもの(スチレン量:27質量%、ビニル量:58質量%、Tg:-27℃、重量平均分子量72万) 
NS612:日本ゼオン社製、非油展、スチレン量15%、ビニル量30%、Tg-65℃、重量平均分子量78万
<変性SBR1の調整方法>
(1)末端変性剤の作製
窒素雰囲気下、250mlメスフラスコに3-(N,N-ジメチルアミノ)プロピルトリメトキシシラン(アヅマックス(株)製)を20.8g入れ、さらに無水ヘキサン(関東化学(株)製)を加え、全量を250mlにして作製した。
(2)変性SBR1の調製
十分に窒素置換した30L耐圧容器にn-ヘキサンを18L、スチレン(関東化学(株)製)を800g、ブタジエンを1200g、テトラメチルエチレンジアミンを1.1mmol加え、40℃に昇温した。次に、1.6Mブチルリチウム(関東化学(株)製)を1.8mL加えた後、50℃に昇温させ3時間撹拌した。次に上記末端変性剤を4.1mL追加し30分間撹拌を行った。反応溶液にメタノール15mL及び2,6-tert-ブチル-p-クレゾール(大内新興化学工業(株)製)0.1gを添加後、TDAE1200g添加し10分間撹拌を行った。その後、スチームストリッピング処理によって重合体溶液から凝集体を回収した。得られた凝集体を24時間減圧乾燥させ、変性SBR1を得た。
<シリカ変性SBR2の調整方法>
充分に窒素置換した30L耐圧容器にn-ヘキサンを18L、スチレン(関東化学(株)製)を740g、ブタジエンを1260g、テトラメチルエチレンジアミンを10mmol加え、40℃に昇温した。次に、ブチルリチウムを10mL加えた後、50℃に昇温させ3時間撹拌した。次に、上記末端変性剤を11mL追加し30分間撹拌を行った。反応溶液にメタノール15mL及び2,6-tert-ブチル-p-クレゾール0.1gを添加後、反応溶液を18Lのメタノールが入ったステンレス容器に入れて凝集体を回収した。得られた凝集体を24時間減圧乾燥させ、シリカ変性SBR2を得た。
<ゴム成分(BR)>
CB24:ランクセス社製、Nd系触媒を用いて合成したハイシスBR
<カーボンブラック>
EB201:オリオンエンジニアリング(旧Evonik)製のパイロット品(BET値:推定240m/g)
HP180:オリオンエンジニアドカーボンズ製(BET値:175m/g)
HP160:オリオンエンジニアドカーボンズ製(BET値:153m/g)
N110:キャボットジャパン製ショウブラックN110(BET値:142m/g)
<シリカ>
VN3:Evonik社製のULTRASIL VN3(BET値:175m/g、亜麻仁油吸油量:128ml/100g)
<水酸化アルミニウム(無機フィラー)>
湿式合成(1):戸田工業社製の湿式合成品(BET値:82m/g、亜麻仁油吸油量:82ml/100g)
湿式合成(2):戸田工業社製の湿式合成品(BET値:102m/g、亜麻仁油吸油量:88ml/100g)
湿式合成(3):戸田工業社製の湿式合成品(BET値:274m/g、亜麻仁油吸油量:104ml/100g)
粉砕(1):住友化学社製のATH#Bの乾式粉砕品(BET値:35m/g、亜麻仁油吸油量:37ml/100g)
粉砕(2):住友化学社製のATH#Bの乾式粉砕品(BET値:75m/g、亜麻仁油吸油量:42ml/100g)
粉砕(3):住友化学社製のATH#Bの乾式粉砕品(BET値:95m/g、亜麻仁油吸油量:38ml/100g)
粉砕(4):住友化学社製のATH#Bの乾式粉砕品(BET値:125m/g、亜麻仁油吸油量:55ml/100g)
ATH#B:住友化学社製(BET値:14m/g、亜麻仁油吸油量:40ml/100g)
ハイジH43:昭和電工社製(BET値:7m/g、亜麻仁油吸油量:33ml/100g)
C-301N:住友化学社製(BET値:4m/g、亜麻仁油吸油量:27ml/100g)
<プロセスオイル>
TDAEオイル:H&R社製のVivatec500
<レジン>
C120:Rutgers Chemicals社製の液状クマロンインデン樹脂(軟化点:120℃、Tg:65℃)
SA85:アリゾナケミカル社製のαメチルスチレン Sylvares SA85(軟化点:85℃、Tg:43℃)
Koresin:BASF社製コレシン(p-t-ブチルフェノールアセチレン樹脂、軟化点:145℃、Tg:98℃)
TO125:ヤスハラケミカル社製のYSレジンTO125 芳香族変性テルペン(軟化点:125℃、)
<酸化亜鉛(亜鉛華)>
F2:ハクスイテック社製のジンコックスーパーF2(BET値:20m/g、BET値から算出した1次粒子径が65μm)
銀嶺R:東邦亜鉛社製の銀嶺R(BET値:5m/g)
<カップリング剤>
Si75:シランカップリング剤、Evonik社製
NXT:シランカップリング剤、モメンティブ・パフォーマンス・マテリアルズ社製((CO)Si-C-S-CO-C15
<老化防止剤>
6PPD:住友化学社製のアンチゲン6C(N-(1,3-ジメチルブチル)-N’-フェニル-p-フェニレンジアミン)
TMQ:大内新興化学社製のノクラック224(2,2,4-トリメチル-1,2-ジヒドロキノリン重合体)
<加硫剤>
TP-50:ジチオリン酸亜鉛、ラインケミー社製のTP-50(式(1)においてR~Rがn-ブチル基、有効成分50質量%)
ZBOP-50:ジチオリン酸亜鉛、ラインケミー社製のZBOP-50(式(1)においてR~Rがアルキル基、有効成分50質量%)
ステアリン酸:日油社製のステアリン酸「椿」
5%オイル含有粉末硫黄:細井化学工業社製のHK-200-5
<加硫促進剤>
TBBS:大内新興化学工業社製のノクセラーNS-G(N-tert-ブチル-2-ベンゾチアゾリルスルフェンアミド)
DPG:大内新興化学工業社製のノクセラーD(N,N-ジフェニルグアニジン)
TBZTD:フレキシス社製、Perkacit TBZTD(テトラベンジルチウラムジスルフィド) 
(実施例及び比較例)
表1~3に示す配合内容及び混練条件に従い、4Lバンバリーミキサーを用いて練りを行った。
表1、2に示した組成では、X練り、Y練り及びファイナル練りの3回練りを行った。X練りでは、ゴム成分、カーボンブラック全量、無機フィラー(水酸化アルミニウム)全量、シリカの2/3、カップリング剤の2/3を投入して、5分間、排出温度155℃にて混練りした。Y練りでは、硫黄及び加硫促進剤以外の残りの薬品を投入して、4分間、排出温度155℃にて混練りした。ファイナル練りでは、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、3分間練り込み、未加硫ゴム組成物を得た。この際のゴム最高温度は100℃とした。
表3に示した組成では、X練り及びファイナル練りの2回練りを行った。X練りでは、硫黄及び加硫促進剤以外の薬品を投入して、5分間、排出温度155℃にて混練りした。ファイナル練りでは、得られた混練り物に硫黄及び加硫促進剤を添加し、オープンロールを用いて、3分間練り込み、未加硫ゴム組成物を得た。この際のゴム最高温度は100℃とした。
なお、ジチオリン酸亜鉛はベース練りで投入した。
得られた未加硫ゴム組成物を170℃の条件下で12分間プレス加熱し、加硫ゴム組成物を得た。
また、得られた未加硫ゴム組成物をトレッドの形状に成形し、タイヤ成型機上で他のタイヤ部材とともに貼り合わせ、170℃の条件下で12分間プレス加硫し、試験用タイヤ(タイヤサイズ:245/40R18)を得た。
得られた未加硫ゴム組成物及び試験用タイヤを使用して、下記の評価を行った。評価結果を表1~3に示す。
(ブロー性能)
上記試験用タイヤを排気量2000ccの国産FR車に装着し、岡山国際サーキット、ロングラン500km走行を行った。走行は、乾燥路面、路面温度20~30℃の条件で行った。
走行後にカット断面セクションの外観を観察し、トレッド内部のJLBコードの約1mm上の位置で蜂の巣状のポーラス発生状態を観察してブロー性能を評価した。
比較例1の蜂の巣状のポーラス発生状態を100として指数表示した。指数が大きいほど、ブロー性能に優れることを示す。ブロー性能の目標は120以上である。
(WETグリップ性能)
上記試験用タイヤを排気量2000ccの国産FR車に装着し、ウェットアスファルト路面のテストコースにて10周の実車走行を行った。その際における、操舵時のコントロールの安定性をテストドライバーが評価し、比較例1を100として指数表示をした。指数が大きいほどウェットグリップ性能に優れることを示す。WETグリップ性能の目標は105以上である。
(耐摩耗性)
上記試験用タイヤを排気量2000ccの国産FR車に装着し、ドライアスファルト路面のテストコースにて実車走行を行った。その際におけるタイヤトレッドゴムの残溝量を計測し(新品時8.0mm)、耐摩耗性として評価した。主溝の平均残溝量が多いほど、耐摩耗性に優れる。比較例1の残溝量を100として指数表示した。指数が大きいほど、耐摩耗性に優れることを示す。耐摩耗性の目標は105以上である。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
表1~3の評価結果から、ジエン系ゴムを含むゴム成分に対して、ジチオリン酸亜鉛と硫黄とを含み、酸化亜鉛の含有量を一定量未満とし、かつ、BET値及び亜麻仁油吸油量が特定範囲の無機フィラーを含む実施例は、ブロー性能の目標値の120、WETグリップ性能の目標値の105、及び耐摩耗性の目標値の105を達成できることが明らかとなった。

Claims (7)

  1. スチレンブタジエンゴムを含むジエン系ゴムと、ジチオリン酸亜鉛と、下記式で表される化合物、硫酸マグネシウム、及び炭化ケイ素からなる群より選択される少なくとも1種からなり、BET値が5~120m/g、亜麻仁油吸油量が30~80ml/100gである無機フィラーと、硫黄とを含み、
    前記ジエン系ゴム100質量部に対して、前記ジチオリン酸亜鉛の含有量が0.2~15質量部、前記無機フィラーの含有量が1~70質量部、かつ、酸化亜鉛の含有量が2.5質量部未満であるトレッド用ゴム組成物。
    mM・xSiO・zH
    (式中、MはAl、Mg、Ti、Ca及びZrからなる群より選ばれた少なくとも1種の金属、該金属の酸化物又は水酸化物であり、mは1~5の整数、xは0~10の整数、yは2~5の整数、zは0~10の整数である。)
  2. 無機フィラーのBET値が10~120m/g、亜麻仁油吸油量が30~80ml/100gである無機フィラーである請求項1記載のトレッド用ゴム組成物。
  3. 無機フィラーは、水酸化アルミニウムである請求項1又は2記載のトレッド用ゴム組成物。
  4. ジエン系ゴムは、スチレン量19~60%のスチレンブタジエンゴムを60質量%以上含む請求項1~3のいずれかに記載のトレッド用ゴム組成物。
  5. BET値が151m/g以上のカーボンブラックを、ジエン系ゴム100質量部に対して5~130質量部含有する請求項1~4のいずれかに記載のトレッド用ゴム組成物。
  6. 酸化亜鉛を含有しない請求項1~5のいずれかに記載のトレッド用ゴム組成物。
  7. 請求項1~6のいずれかに記載のトレッド用ゴム組成物を用いて作製したトレッドを有する空気入りタイヤ。
PCT/JP2015/071430 2014-08-28 2015-07-29 トレッド用ゴム組成物及び空気入りタイヤ WO2016031476A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580043637.1A CN106574078B (zh) 2014-08-28 2015-07-29 胎面用橡胶组合物和充气轮胎
US15/503,967 US10035900B2 (en) 2014-08-28 2015-07-29 Rubber composition for treads and pneumatic tire
EP15835289.8A EP3178877B1 (en) 2014-08-28 2015-07-29 Rubber composition for treads and pneumatic tire
JP2015560438A JP6189976B2 (ja) 2014-08-28 2015-07-29 トレッド用ゴム組成物及び空気入りタイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-174233 2014-08-28
JP2014174233 2014-08-28

Publications (1)

Publication Number Publication Date
WO2016031476A1 true WO2016031476A1 (ja) 2016-03-03

Family

ID=55399377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/071430 WO2016031476A1 (ja) 2014-08-28 2015-07-29 トレッド用ゴム組成物及び空気入りタイヤ

Country Status (5)

Country Link
US (1) US10035900B2 (ja)
EP (1) EP3178877B1 (ja)
JP (1) JP6189976B2 (ja)
CN (1) CN106574078B (ja)
WO (1) WO2016031476A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300921A1 (en) * 2016-09-30 2018-04-04 Sumitomo Rubber Industries, Ltd. Preparation method of rubber composition for tire and production method of tire
FR3060453A1 (fr) * 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule portant des lourdes charges comprenant une nouvelle bande de roulement
EP3392280A3 (en) * 2017-04-19 2018-10-31 Sumitomo Rubber Industries, Ltd. Rubber composition for tyre tread
JP2018177905A (ja) * 2017-04-07 2018-11-15 住友ゴム工業株式会社 ゴム組成物およびタイヤ
JP2019073580A (ja) * 2017-10-12 2019-05-16 住友ゴム工業株式会社 タイヤ用ゴム組成物
JP2019183009A (ja) * 2018-04-11 2019-10-24 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2019203073A (ja) * 2018-05-23 2019-11-28 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP2020023640A (ja) * 2018-08-08 2020-02-13 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
WO2024038812A1 (ja) * 2022-08-15 2024-02-22 横浜ゴム株式会社 タイヤ用ゴム組成物

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106488950B (zh) * 2014-05-15 2018-11-16 住友橡胶工业株式会社 橡胶组合物和充气轮胎
CN107254077B (zh) 2017-05-17 2019-07-26 浙江吉利控股集团有限公司 橡胶混合物及轮胎
JP6958056B2 (ja) * 2017-07-20 2021-11-02 住友ゴム工業株式会社 タイヤ用ゴム組成物の製造方法およびタイヤの製造方法
JP7119329B2 (ja) * 2017-10-12 2022-08-17 住友ゴム工業株式会社 タイヤ用ゴム組成物
KR102301667B1 (ko) * 2018-02-07 2021-09-14 주식회사 엘지화학 고무 조성물
JP7434703B2 (ja) * 2018-08-06 2024-02-21 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP6863527B2 (ja) * 2019-03-18 2021-04-21 横浜ゴム株式会社 スタッドレスタイヤ用ゴム組成物およびそれを用いたスタッドレスタイヤ
CN113736154A (zh) * 2021-07-27 2021-12-03 中策橡胶集团有限公司 改性米糠油用于制备轮胎胶料中的应用及橡胶组合物和轮胎

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268505A (ja) * 1997-04-04 1999-10-05 Bridgestone Corp 空気入りラジアルタイヤ
JPH11334310A (ja) * 1998-03-24 1999-12-07 Bridgestone Corp 空気入りタイヤ
WO2002020655A1 (fr) * 2000-09-06 2002-03-14 Jsr Corporation Composite a base de caoutchouc dienique et de matiere minerale, procede de production de ce composite et composition de caoutchouc
JP2002332381A (ja) * 2001-05-10 2002-11-22 Sumitomo Chem Co Ltd ゴム組成物およびそれを用いるタイヤ
JP2013166826A (ja) * 2012-02-14 2013-08-29 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及びウインタータイヤ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2205518A1 (en) * 1996-05-16 1997-11-16 Toshiyuki Mizoe Aluminum hydroxide, method for producing the same, and method of use of the same
EP0864604A3 (en) * 1997-03-11 1999-01-13 Bridgestone Corporation Rubber composition
US6336486B1 (en) * 1997-04-04 2002-01-08 Bridgestone Corporation Pneumatic radical tire having cap base tread
US6242522B1 (en) 1998-03-24 2001-06-05 Bridgestone Corporation Rubber composition for tire tread and pneumatic tire using same
JP4596646B2 (ja) 1998-07-22 2010-12-08 ソシエテ ド テクノロジー ミシュラン ポリ硫化アルコキシシラン、ジチオリン酸亜鉛及びグアニジン誘導体に基づくカップリング系(白色充填剤/ジエンエラストマー)
US20120083559A1 (en) * 2010-09-30 2012-04-05 Nicola Costantini Pneumatic tire with thread
WO2016002506A1 (ja) * 2014-07-02 2016-01-07 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
WO2016104142A1 (ja) * 2014-12-24 2016-06-30 住友ゴム工業株式会社 空気入りタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11268505A (ja) * 1997-04-04 1999-10-05 Bridgestone Corp 空気入りラジアルタイヤ
JPH11334310A (ja) * 1998-03-24 1999-12-07 Bridgestone Corp 空気入りタイヤ
WO2002020655A1 (fr) * 2000-09-06 2002-03-14 Jsr Corporation Composite a base de caoutchouc dienique et de matiere minerale, procede de production de ce composite et composition de caoutchouc
JP2002332381A (ja) * 2001-05-10 2002-11-22 Sumitomo Chem Co Ltd ゴム組成物およびそれを用いるタイヤ
JP2013166826A (ja) * 2012-02-14 2013-08-29 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物及びウインタータイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3178877A4 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3300921A1 (en) * 2016-09-30 2018-04-04 Sumitomo Rubber Industries, Ltd. Preparation method of rubber composition for tire and production method of tire
FR3060453A1 (fr) * 2016-12-20 2018-06-22 Compagnie Generale Des Etablissements Michelin Pneumatique pour vehicule portant des lourdes charges comprenant une nouvelle bande de roulement
WO2018115748A1 (fr) * 2016-12-20 2018-06-28 Compagnie Generale Des Etablissements Michelin Pneumatique pour véhicule portant des lourdes charges comprenant une nouvelle bande de roulement
JP2018177905A (ja) * 2017-04-07 2018-11-15 住友ゴム工業株式会社 ゴム組成物およびタイヤ
JP7009768B2 (ja) 2017-04-07 2022-01-26 住友ゴム工業株式会社 ゴム組成物およびタイヤ
EP3392280A3 (en) * 2017-04-19 2018-10-31 Sumitomo Rubber Industries, Ltd. Rubber composition for tyre tread
JP2019073580A (ja) * 2017-10-12 2019-05-16 住友ゴム工業株式会社 タイヤ用ゴム組成物
JP7119330B2 (ja) 2017-10-12 2022-08-17 住友ゴム工業株式会社 タイヤ用ゴム組成物
JP7119518B2 (ja) 2018-04-11 2022-08-17 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP2019183009A (ja) * 2018-04-11 2019-10-24 住友ゴム工業株式会社 タイヤ用ゴム組成物及び空気入りタイヤ
JP7151167B2 (ja) 2018-05-23 2022-10-12 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP2019203073A (ja) * 2018-05-23 2019-11-28 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP2020023640A (ja) * 2018-08-08 2020-02-13 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
JP7251071B2 (ja) 2018-08-08 2023-04-04 住友ゴム工業株式会社 トレッド用ゴム組成物及び空気入りタイヤ
WO2024038812A1 (ja) * 2022-08-15 2024-02-22 横浜ゴム株式会社 タイヤ用ゴム組成物
JP7473829B2 (ja) 2022-08-15 2024-04-24 横浜ゴム株式会社 タイヤ用ゴム組成物

Also Published As

Publication number Publication date
CN106574078B (zh) 2019-08-20
EP3178877B1 (en) 2020-04-01
EP3178877A4 (en) 2018-04-11
JPWO2016031476A1 (ja) 2017-04-27
JP6189976B2 (ja) 2017-08-30
EP3178877A1 (en) 2017-06-14
US20170253728A1 (en) 2017-09-07
US10035900B2 (en) 2018-07-31
CN106574078A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6189976B2 (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP6059367B2 (ja) トレッド用ゴム組成物及び空気入りタイヤ
JP6014276B2 (ja) ゴム組成物及び空気入りタイヤ
JP6072979B2 (ja) 空気入りタイヤ
JP6074113B2 (ja) 空気入りタイヤ
JP6228157B2 (ja) ゴム組成物及び空気入りタイヤ
JP5767753B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6055118B2 (ja) 空気入りタイヤ
JP6346014B2 (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP2009001720A (ja) タイヤ用ゴム組成物およびそれを用いたスタッドレスタイヤ
JP6423208B2 (ja) 空気入りタイヤ
JP2016037532A (ja) 空気入りタイヤ
US20150329696A1 (en) Rubber composition and pneumatic tire
JP2007302713A (ja) タイヤ用ゴム組成物およびそれを用いたタイヤ
JP6657759B2 (ja) タイヤ用ゴム組成物
JP6728622B2 (ja) タイヤ用ゴム組成物
JP2016069483A (ja) 高性能タイヤ
JP2013221032A (ja) 高性能タイヤのトレッド用ゴム組成物およびそれを用いた空気入りタイヤ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015560438

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835289

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15503967

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015835289

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015835289

Country of ref document: EP