WO2016031091A1 - 回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法 - Google Patents
回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法 Download PDFInfo
- Publication number
- WO2016031091A1 WO2016031091A1 PCT/JP2014/080580 JP2014080580W WO2016031091A1 WO 2016031091 A1 WO2016031091 A1 WO 2016031091A1 JP 2014080580 W JP2014080580 W JP 2014080580W WO 2016031091 A1 WO2016031091 A1 WO 2016031091A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- regenerative
- circulator
- voltage
- transmission path
- frequency power
- Prior art date
Links
- 238000011069 regeneration method Methods 0.000 title claims description 40
- 230000008929 regeneration Effects 0.000 title claims description 28
- 230000001172 regenerating effect Effects 0.000 claims abstract description 204
- 230000005540 biological transmission Effects 0.000 claims abstract description 178
- 239000003990 capacitor Substances 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 238000010586 diagram Methods 0.000 description 8
- 230000002159 abnormal effect Effects 0.000 description 6
- 230000003321 amplification Effects 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 239000004065 semiconductor Substances 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
- H01P1/32—Non-reciprocal transmission devices
- H01P1/38—Circulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/12—Coupling devices having more than two ports
- H01P5/16—Conjugate devices, i.e. devices having at least one port decoupled from one other port
- H01P5/18—Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/20—Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/189—High-frequency amplifiers, e.g. radio frequency amplifiers
- H03F3/19—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
- H03F3/193—High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/21—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
- H03F3/217—Class D power amplifiers; Switching amplifiers
- H03F3/2171—Class D power amplifiers; Switching amplifiers with field-effect devices
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/60—Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
- H03F3/601—Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators using FET's, e.g. GaAs FET's
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
- H01J37/32174—Circuits specially adapted for controlling the RF discharge
- H01J37/32183—Matching circuits
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/01—Resonant DC/DC converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33573—Full-bridge at primary side of an isolation transformer
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/387—A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/451—Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F2200/00—Indexing scheme relating to amplifiers
- H03F2200/541—Transformer coupled at the output of an amplifier
Definitions
- the present invention relates to a power supply for supplying high frequency power to a load device in which a load such as a liquid crystal panel manufacturing device, a semiconductor manufacturing device, a laser oscillator or the like is a plasma load, and in particular, power from a transmission path for transmitting high frequency power.
- the present invention relates to a regenerative circulator that regenerates, a high-frequency power supply device that includes the regenerative circulator, and a regenerative method that regenerates high-frequency power.
- a class D RF generator As a high-frequency power source (RF generator) that supplies high-frequency power to a high-frequency load such as a plasma load (plasma source), for example, a class D RF generator is known. Since the class D RF generator operates in a switch mode by switching of the RF power amplifying element, its internal resistance R in is determined by the ON resistance value R on in the saturation region of the RF power amplifying element. The ON resistance value R on is generally lower than the characteristic impedance Z 0 for transmitting output power.
- the high frequency power supply outputs the high frequency generated by the internal high frequency amplifier circuit to the transmission path via an output circuit such as a power combining circuit or a matching circuit, and supplies it to the load.
- an output circuit such as a power combining circuit or a matching circuit
- the impedance Z amp viewed from the high-frequency amplifier circuit is expressed by impedance-converting the impedance Z g0 at the output end when the high-frequency power source is stationary by the output circuit in the high-frequency power source.
- FIG. 15 is a diagram showing a schematic circuit of a class D RF generator.
- a class D RF generator 101 converts the direct current of a direct current power source 111 into a high frequency by a high frequency amplifier circuit 112, passes the obtained high frequency through an output circuit 113, and then passes through the transmission path 104 from the output end of the generator. Supply to load 102.
- the high frequency amplifier circuit 112 includes, for example, a bridge circuit 112a of an RF power amplifier element and a transformer 112b.
- the output circuit 113 for example, matching circuit 113a for causing the impedance Z 0 and the impedance matching of the transmission path 104, and a filter circuit 113b for removing noise component.
- the impedance Z amp viewed from the high-frequency amplifier circuit 112 is obtained by impedance-converting the impedance Z g0 at the output end of the class D RF generator 101 with the impedance of the output circuit 113.
- FIG. 15 (b) is a diagram schematically showing the impedance Z # 038, in the circuit of the bridge circuit 112a and the transformer 112b alternating voltage source V in and the internal resistance R in the DC power supply 111 and the high-frequency amplifier circuit 112 This is shown in the replaced configuration.
- a 3 dB coupler is built in the class D RF generator and the reflected waves are reflected by an internal dummy load.
- the structure which reduces can be considered.
- a configuration is known in which a circulator is disposed on a transmission path to prevent a reflected wave from returning to a high-frequency source, and the reflected wave is converted to heat by a dummy load (see the background art section of Patent Document 1).
- the circulator is a passive element that has a function of outputting a high-frequency signal input to a certain port among a plurality of ports only to the next port, and prevents the reflected wave from returning to the high-frequency source, thereby improving the high-frequency signal. Source damage and unstable operation are prevented.
- the configuration using the 3 dB coupler the 3 dB coupler main body and the internal dummy load must be mounted inside the high frequency power supply, and there is a problem that the configuration of the high frequency power supply becomes large.
- the configuration using the 3 dB coupler has a problem that a high-frequency amplifier circuit that is a multiple of 2 of the number of 3 dB couplers is required, and when a reflected wave is generated, the reflected current flowing through the high-frequency amplifier circuit is about 200% or less. There is a problem of generating balance.
- Z amp is a value obtained by impedance-converting the impedance Z g0 of the output terminal of the high-frequency power supply device to the impedance viewed from the internal high-frequency amplifier circuit, and reflects fluctuations in the load impedance. .
- Load conditions vary due to impedance mismatch.
- the plasma load is a dynamic load that varies depending on various conditions such as pressure in the plasma chamber, gas flow rate, and arcing.
- the impedance Z amp varies corresponding to the variation of the load impedance.
- R in is a fixed constant determined by the characteristics of the power amplifying element during application of high frequency power
- V in is the voltage V DD of the DC power supply.
- FIG. 16 shows an example of the change in the output power with respect to the fluctuation of the impedance Z amp .
- V in 52 V
- R in 2 ⁇
- the steady state impedance Z amp is 50 ⁇
- the impedance Z amp is changed from 1 ⁇ to 100 ⁇ and supplied to the load.
- impedance Z amp changes from 50 ⁇ to 2 ⁇ , to the load
- the power supplied from 50W to 340W varies about 7 times.
- the V in can be constant voltage control
- the range rate of change of the impedance Z # 038 is the response speed of the constant voltage control of the V in
- the output power can be held at the set power.
- the impedance Z # 038 during application of RF power changes rapidly beyond the response speed of the constant power control of the V in the suppress variations in power supplied to the plasma load by the constant voltage control of the V in It will be difficult to do.
- An object of the present invention is to solve the above-mentioned conventional problems, to suppress an excessive increase in load voltage caused by impedance mismatch on a transmission path, and to regenerate high-frequency power.
- the present invention pays attention to the fact that the voltage rise caused by impedance mismatch on the transmission path becomes excessive due to the standing wave caused by the reflected wave caused by the impedance mismatch, and the parallel impedance is connected to the transmission path when the voltage rises Thus, the voltage due to the standing wave is regenerated, the excessive voltage of the load voltage is reduced, and the energy utilization efficiency is improved.
- FIG. 17 shows a circuit example in which the load shown in FIG. 15 is replaced with a plasma impedance and matching circuit.
- the active component R L in the plasma impedance is matched by the matching circuit so that the load impedance Z L is 50 ⁇ when 100 [Omega.
- the description here shows an example of operation at an operating frequency of 13.56 MHz.
- the effective component R L of the plasma load impedance Z L is 100 ⁇ as the resistance component in the steady state and the resistance component in the open state when the plasma is extinguished is 100 k ⁇
- the electrode voltage V pp which is the load voltage when the electrical length l of the path is changed from 0 ° to 180 °
- of the impedance Z amp are shown in FIGS. 18 (a) and 18 (b), respectively. It is represented by Also shows the impedance Z # 038 of the load impedance Z L and the high-frequency amplifier circuit in the Smith chart of FIG. 18 (c).
- the electrode voltage V pp proportional to the load voltage VL has a maximum value when the absolute value
- the load impedance Z L is determined from the impedance Z g0 and current I g0 at the output end of the high-frequency power source, the characteristic impedance Z 0 of the transmission path, and the length of the transmission path.
- the impedance Z g0 of the output terminal of the high frequency power supply and the impedance Z amp viewed from the high frequency amplifier circuit in the high frequency power supply are impedance matched, the impedance Z amp viewed from the high frequency amplifier circuit is the output terminal. It is in agreement with the impedance Zg0 of.
- the electrical length l of the transmission path that maximizes the load voltage V L can be obtained by using the load impedance Z L instead of the impedance Z amp.
- the size of the electrode voltage V pp is proportional to the load voltage V L, the electrode voltage V pp can be obtained electrical length l of a transmission path becomes maximum.
- m2 represents the impedance Z amp being The voltage reflection coefficient ⁇ in the short state is shown, and the phase angle is 180 °.
- M3 represents a voltage reflection coefficient ⁇ having an impedance of ⁇ .
- FIG. 18A shows the electrode voltage V pp at the position of the electrical length l of the transmission path when m1 is used as a reference.
- the electrode voltage V pp at a constant time shows a constant value of 200 V regardless of the electrical length l of the transmission path, whereas the electrode voltage V pp when the plasma is extinguished varies greatly depending on the electrical length l of the transmission path. It is shown that when l is at a position of 106 ° (position indicated by m2), it is about 5 ⁇ 10 4 V, which is about 25 times the maximum in comparison with the steady-state voltage.
- FIG. 18B shows the absolute value
- of the impedance Z amp varies depending on the electrical length l of the transmission path.
- the electrical length l is at a position of 106 ° (position indicated by m2)
- of the impedance Z amp is It shows that it becomes minimum. Therefore, m2 corresponds to a position where the absolute value
- FIG. 18 (a), the (b), the position of the electrical length 0 ° transmission path indicates the position of the load impedance Z L is the voltage reflection coefficient a open ⁇ is m1, the electrical length of the transmission path 106 The position of ° indicates a position where the impedance Z amp is in a short state and the voltage reflection coefficient ⁇ is m2.
- the length of the transmission path is set so that the electrical length 1 does not cause the impedance Z amp to be in a short state, so that the electrode voltage V pp is excessive. It is assumed that the voltage is avoided.
- the electrical length l of the transmission path varies depending on the length of the transmission path and the variation of the distribution constant, it is difficult to match the length of the cable actually installed to the set electrical length l, and the variation of the distribution constant Therefore, it is difficult to stably avoid the electrode voltage V pp from becoming an excessive voltage.
- FIG. 19 is a schematic diagram for explaining the state of the standing wave at the time of matching and at the time of mismatching
- FIG. 19 (a) shows the state at the time of matching
- FIG. 19 (b) shows the load short-circuited
- the load FIG. 19C shows a mismatch state when the reflection coefficient of the impedance Z L is ⁇ 1
- FIG. 19C shows a mismatch state when the load is released and the reflection coefficient of the load impedance Z L is 1.
- 19A, 19B, and 19C the voltage and current when the end of the transmission path is short-circuited are indicated by a solid line, and the current is indicated by a broken line.
- Standing waves are not generated when matched, and standing waves are generated when mismatched.
- the standing wave generated by the short-circuited load and the standing wave generated by the open load have the opposite positional relationship between the antinodes and nodes of the standing wave.
- the load voltage V L at the load impedance Z L increases due to the impedance mismatch of the transmission path, and when the position on the transmission path corresponds to the antinode of the standing wave, the voltage increase is more excessive. Become.
- the present invention reduces the impedance at the connection position by generating a parallel impedance with respect to the load impedance on the transmission path between the high frequency amplifier circuit of the high frequency power supply and the high frequency load, and generates an excessive voltage on the transmission path. In addition to suppressing this, high-frequency power is regenerated from the transmission path by parallel impedance, and energy efficiency is improved.
- the function of the circulator of the present invention is not a function related to the traveling wave and reflected wave of a normal circulator, but branches the current from the transmission path, and conducts the branched current with directionality.
- the term circulator is used from the viewpoint of a directional current conduction function.
- the present invention includes each aspect of a regenerative circulator, a high-frequency power supply device, and a high-frequency power regeneration method, all of which include technical matters common to the regenerative circulator, and each aspect of the present invention relates to a transmission path for the regenerative circulator.
- the regenerative circulator of the present invention is a circulator having a regenerative function, and by changing the impedance state at a predetermined position on the transmission path, the voltage state of the standing wave is changed to suppress an increase in the voltage standing wave ratio. At the same time, power is regenerated from the transmission path.
- the regenerative circulator of the present invention is a regenerative circulator that regenerates high-frequency power from a transmission path between a high-frequency amplifier circuit of a high-frequency power supply and a high-frequency load, and an input end of the regenerative circulator is connected to the transmission path, Based on the comparison between the voltage at the input end and the set voltage, a parallel impedance is configured for the transmission path.
- the parallel impedance regenerates by taking high frequency power in one direction from the connection position on the transmission path.
- the regenerative circulator can return the electric power regenerated from the transmission path to the high-frequency power supply, supply it to other devices including the power supply device, and store it in the power storage device.
- the parallel impedance of the regenerative circulator will be described. In the state where the impedance is matched on the transmission path, the voltage at the input terminal of the regenerative circulator is in a steady voltage state and thus is lower than the set voltage. In this voltage state, no current is conducted from the transmission path toward the regenerative circulator, and the regenerative circulator does not constitute a parallel impedance to the transmission path.
- the voltage at the input end of the regenerative circulator increases due to the occurrence of a standing wave, which may be higher than the set voltage.
- a standing wave which may be higher than the set voltage.
- current is conducted from the transmission path toward the regenerative circulator, and the regenerative circulator forms a parallel impedance with respect to the transmission path.
- the voltage at the input terminal of the regenerative circulator may not increase due to the load impedance or the electrical length of the transmission line even if the impedance is mismatched.
- the parallel impedance connected to the transmission path reduces the voltage standing wave ratio (VSWR) by changing the impedance state where a standing wave is generated on the transmission path, and suppresses the voltage rise.
- VSWR voltage standing wave ratio
- parallel impedance can regenerate power by taking in current from the transmission path.
- Mode of connection position of regenerative circulator The regenerative circulator on the transmission path can take a plurality of modes in the configuration of the position where the input end is connected.
- the first aspect of the position where the input end of the regenerative circulator is connected is a position corresponding to the antinode portion of the standing wave generated due to impedance mismatch on the transmission path.
- the voltage is high in the antinode and low voltage in the node.
- the regenerative circulator By connecting the input terminal of the regenerative circulator to the antinode where high voltage is generated on the transmission path, the regenerative circulator takes in current from the high voltage section on the transmission path and transmits when the acquired voltage exceeds the set voltage.
- a parallel impedance can be configured for the path.
- the second aspect of the position where the input terminal of the regenerative circulator is connected is that the output of the high frequency amplifier circuit is a quarter wavelength ( ⁇ / 4) of the high frequency wavelength ( ⁇ ) output by the high frequency power supply on the transmission path.
- the electrical length is an odd multiple of.
- the regenerative circulator By connecting the input terminal of the regenerative circulator to the position of the electrical length where high voltage is generated on the transmission path, the regenerative circulator takes in current from the high voltage part on the transmission path, and when the acquired voltage exceeds the set voltage Can constitute a parallel impedance to the transmission path.
- the regenerative circulator of the present invention includes a directional coupler that takes in high-frequency power from a transmission path in one direction.
- the directional coupler takes in high-frequency power from the transmission path based on a comparison between the voltage at the input end of the regenerative circulator and the set voltage, and limits the upper limit of the voltage at the input end of the regenerative circulator to the set voltage during the regenerative operation. .
- the first form of the directional coupler according to the present invention includes a transformer.
- the turn ratio of the transformer is a value based on the voltage ratio between the set voltage and the voltage at the output terminal of the regenerative circulator. Therefore, the set voltage is determined by the turn ratio of the transformer and the voltage at the output terminal of the regenerative circulator.
- the set voltage is determined by the voltage at the output end of the regenerative circulator.
- the second form of the directional coupler is configured to include a rectifier that converts alternating current into direct current in addition to the transformer provided in the first form.
- the rectifier converts the alternating current output of the transformer into direct current and regenerates the converted direct current.
- a configuration in which a capacitor is provided on the secondary side of the transformer a configuration in which a DC reactor is provided in the subsequent stage of the rectifier, or a capacitor is provided in the secondary side of the transformer and a DC is provided in the subsequent stage of the rectifier It can be set as the structure provided with a reactor. Noise can be removed by providing a capacitor on the secondary side of the transformer or providing a DC reactor after the rectifier.
- condenser can be set as the structure provided in the diode bridge which comprises a rectifier.
- the high-frequency power supply device of the present invention includes a high-frequency power source that supplies high-frequency power to a high-frequency load, and a regenerative circulator that takes in high-frequency power in one direction from a transmission path between the high-frequency amplifier circuit and the high-frequency load provided in the high-frequency power source and regenerates Prepare.
- the regenerative circulator provided in the high-frequency power supply device is the regenerative circulator of the present invention, the input end of the regenerative circulator is connected on the transmission path, and the transmission is performed based on a comparison between the voltage at the input end of the regenerative circulator and the set voltage.
- a parallel impedance is configured for the path, and the parallel impedance takes in high frequency power from the connection position and regenerates it.
- the regenerative circulator provided in the high-frequency power supply device of the present invention can be the same as the regenerative circulator shown in the regenerative circulator.
- the high frequency power regeneration method of the present invention is a method of regenerating high frequency power by a regenerative circulator from a transmission path between a high frequency amplifier circuit and a high frequency load of a high frequency power supply, and the input end of the regenerative circulator is connected to the transmission path. Then, based on the comparison between the voltage at the input terminal of the regenerative circulator and the set voltage, a parallel impedance is configured for the transmission path, and the parallel impedance takes in high frequency power from the connection position and regenerates.
- the regeneration circulator may be the same as the regeneration circulator shown in the regeneration circulator.
- the input end of the regenerative circulator is connected to a position corresponding to the antinode portion of the standing wave generated by impedance mismatch on the transmission path, and the input end of the regenerative circulator Based on the comparison between the voltage and the set voltage, a parallel impedance is configured for the transmission path, and high-frequency power is captured and regenerated from the connection position by the parallel impedance.
- the second aspect of the high frequency power regeneration method of the present invention is that the input end of the regenerative circulator is on the transmission path, and the high frequency wavelength ( ⁇ ) output by the high frequency power source on the transmission path is from the output end of the high frequency amplifier circuit.
- high-frequency power is taken in from the transmission path based on a comparison between the voltage at the input terminal of the regenerative circulator and the set voltage by the parallel impedance, and during the regenerative operation, the input terminal of the regenerative circulator Limit the upper voltage limit to the set voltage.
- regeneration is performed after the AC output of the high-frequency power is converted to DC.
- the present invention it is possible to suppress an excessive voltage increase of the load voltage caused by impedance mismatch on the transmission path. Moreover, the high frequency power can be regenerated.
- a regenerative circulator according to the present invention and a high-frequency power supply device including the regenerative circulator will be described with reference to FIGS.
- FIG. 1 is a schematic diagram for explaining the configuration of a regenerative circulator and a high-frequency power supply device according to the present invention.
- the high-frequency power supply device 1 includes a high-frequency power supply 10 and a regenerative circulator 20.
- the regenerative circulator 20 is connected to the transmission path 3 of the high-frequency power supply 10, forms a parallel impedance with respect to the transmission path 3, and power from the transmission path 3. To regenerate. Regeneration by the regenerative circulator 20 can be performed by returning the captured power to the high-frequency power source 10, supplying power to a device (not shown), or storing it in a power storage device (not shown).
- the high frequency power supply 10 can be constituted by, for example, a DC power supply 11 and a high frequency amplification circuit 12.
- the high frequency amplifier circuit 12 converts the direct current from the direct current power source 11 into a high frequency, and boosts and outputs a high frequency output.
- the high frequency output is supplied to the high frequency load 2 via the transmission path 3.
- the transmission path 3 is a transmission line that supplies electric power from the output end of the high-frequency amplifier circuit 12 to the input end of the high-frequency load 2, for example, a power cable disposed between the high-frequency power source 10 and the high-frequency load 2, It is formed by the wiring and circuit configuration in the power supply 10.
- the traveling wave output from the high frequency amplification circuit 12 is supplied to the high frequency load 2 without being reflected.
- the impedance of the high frequency load 2 fluctuates and a mismatch occurs between the characteristic impedance of the transmission path and the impedance of the high frequency load 2
- a part or all of the traveling wave output from the high frequency amplifier circuit 12 is generated. Is reflected, and a standing wave is formed by the traveling wave and the reflected wave.
- the regenerative circulator 20 has a function of conducting the current branched from the transmission path 3 in one direction only in the direction of the regenerative circulator 20.
- the circulator in the regenerative circulator represents a function of current conduction with directionality.
- the regenerative circulator 20 has a regenerative function in addition to the circulator function described above.
- the regenerative function of the regenerative circulator 20 changes the voltage state of the standing wave by changing the impedance state at a predetermined position on the transmission path 3 between the high-frequency amplifier circuit 12 and the high-frequency load 2 of the high-frequency power supply 10. While suppressing an increase in the standing wave ratio, high-frequency power is regenerated from the transmission path.
- the input end of the regenerative circulator 20 is connected to the transmission path 3 and forms a parallel impedance with respect to the transmission path 3 based on the comparison between the voltage at the input end of the regenerative circulator 20 and the set voltage. Parallel impedance takes in high-frequency power from the connection position on the transmission path 3 in one direction and regenerates it.
- the voltage at the input terminal of the regenerative circulator 20 is in a steady voltage state, and thus is lower than the set voltage. In this steady voltage state, no current is conducted from the transmission path 3 toward the regenerative circulator 20, and the regenerative circulator 20 does not constitute a parallel impedance with respect to the transmission path 3.
- the voltage at the input terminal of the regenerative circulator rises and may be higher than the set voltage.
- a standing wave is generated when the impedance is mismatched.
- the input voltage of the regenerative circulator does not necessarily increase, and the impedance does not depend on the load impedance or the electrical length of the transmission line. Even in the matched state, the input terminal voltage of the regenerative circulator may not increase.
- the parallel impedance connected to the transmission path 3 changes the impedance state of the transmission path 3 to lower the voltage standing wave ratio (VSWR), suppresses the voltage rise, and takes in the current from the transmission path 3 to obtain a direct current power supply.
- the regenerative power is not limited to the DC power source 11 and may be regenerated to other DC power sources or power storage devices.
- the second aspect corresponds to the configuration example of the first aspect.
- FIG. 1 corresponds to a first mode of connection of the regenerative circulator to the transmission path.
- the first mode is a mode in which the input end of the regenerative circulator 20 is connected to a position corresponding to the antinode portion of the standing wave generated by impedance mismatch on the transmission path 3.
- a standing wave is generated on the transmission path 3 due to impedance mismatch, a high voltage is applied to the antinode and a low voltage is applied to the node.
- FIG. 1 shows a configuration example in which the input end of the regenerative circulator 20 is connected to the antinode portion of the standing wave of the transmission path 3.
- the regenerative circulator 20 When the input end of the regenerative circulator 20 is connected to the antinode portion where the high voltage is generated on the transmission path 3, the regenerative circulator 20 takes in the current from the antinode portion on the transmission path 3, and the acquired voltage exceeds the set voltage. Constitutes a parallel impedance to the transmission path 3.
- FIG. 2 is a schematic diagram for explaining the second aspect of the connection of the regenerative circulator to the transmission path.
- FIG. 2 is a diagram in which the input end of the regenerative circulator is connected from the output end of the high-frequency amplifier circuit to a position of a predetermined electrical length. An embodiment is shown. 2, the connection position of the input end of the regeneration circulator 20 is indicated by P, which represents the impedance of the P in Z P
- a high-frequency power source 10 is connected to a high-frequency load 2 by a transmission line 4 having a characteristic impedance Z 0 , and an output circuit 13 impedance-matched by the impedance Z 0 is connected to the high-frequency amplifier circuit 12. Since the output circuit 13 is impedance matched with the impedance Z 0 , the impedance Z amp when the load side is viewed from the high frequency amplifier circuit 12 matches the impedance Z g0 of the output terminal of the high frequency power supply 10.
- the second mode is a case where the high frequency load is in a short (short circuit) state.
- the second mode is a mode in which standing waves generated when the end of the transmission path is in a short state is reduced.
- the input end of the regenerative circulator 20 is connected to the output end of the high-frequency amplifier circuit 12 (impedance Z amp ). From the position), the transmission line 3 is connected to a position having an electrical length that is an odd multiple of a quarter wavelength ( ⁇ / 4) of the high-frequency wavelength ( ⁇ ) output from the high-frequency power supply 10.
- connection position is represented by (2n ⁇ 1) ⁇ / 4.
- FIG. 3A shows a state in which the parallel impedance is configured by the regenerative circulator when the high-frequency load impedance Z L is in a short-circuited state
- FIG. 3B shows the high-frequency load impedance Z L being
- FIG. 3C shows a standing wave generated in a regenerative operation by a parallel impedance.
- the high-frequency wavelength ( ⁇ ) output from the high-frequency power source on the transmission path from the output end of the high-frequency amplifier circuit at the end The position of the electrical length that is an odd multiple of the quarter wavelength ( ⁇ / 4) of) becomes an antinode of the standing wave and becomes a high voltage.
- the voltages and currents in FIGS. 3B and 3C indicate the voltage when the end of the transmission path is short-circuited with a solid line and the current with a broken line.
- FIG. 3B shows a state before regeneration
- FIG. 3C shows a state after regeneration.
- FIG. 3 shows an example in which the set voltage is k times the voltage VL on the high frequency load side.
- the standing wave voltage at the end in the short state is zero, but here, the voltage at the position corresponding to the antinode of the standing wave on the load side is the voltage VL on the high frequency load side.
- Connected regenerated circulator constitutes a parallel impedance Z R, whereby the peak value of the standing wave is reduced, the voltage V L of the high frequency load is reduced.
- FIG. 4 is a diagram for explaining the regenerative operation by the parallel impedance.
- k times the load voltage VL is used as the set voltage for performing the regenerative operation.
- V P of the connecting position P of the regenerative circulators when in a consistent state in a steady voltage determined on the basis of the matching impedance, the output terminals of the high frequency amplifier circuit in the case where a mismatched state Impedance Z amp decreases from Z 0 and increases in voltage.
- the voltage V P exceeds k ⁇ V L of the set voltage
- the regeneration operation of the regenerative circulator starts a current flows from the transmission path circulator ( Figure 4 (b)).
- Regeneration circulator acts as a parallel impedance Z R by the regenerative operation (FIG. 4 (c)), the impedance Z # 038 at the output end of the reduced high-frequency amplifier circuit connected to the parallel impedance Z R in the impedance Z go high-frequency power supply output by being, impedance increases (FIG. 4 (d)), suppresses the voltage rise of the voltage V P.
- the impedance Z amp during the regenerative operation does not exceed the steady state value.
- FIG. 5 shows a configuration example in which the input end of the regenerative circulator 20 is connected to the position of the electrical length of (2n ⁇ 1) ⁇ / 4 from the output end of the high-frequency amplifier circuit 12.
- the high frequency amplifier circuit 12 can be constituted by a bridge circuit 12 a of semiconductor switching elements and a transformer 12 b.
- the output circuit 13 is composed of a series circuit of a LPF (low-pass filter circuit) 13b for removing the matching circuit 13a and the noise component of the characteristic impedance Z 0 and the impedance matching of the transmission line 4.
- the matching circuit 13a can be configured by an LC circuit, for example.
- the LC circuit and the LPF (low-pass filter circuit) 13b are designed so that the electrical length is (2n-1) ⁇ / 4.
- the connection position of the regenerative circulator is It works to prevent high impedance. This is synonymous with preventing the impedance Z amp from the regenerative circuit at the point of the electrical length (2n ⁇ 1) ⁇ / 4 from becoming a low impedance.
- the regenerative circulator 20 is a circuit that starts regenerative circulator power regeneration, and includes a directional coupler 21 and a rectifier circuit 22 that take in high-frequency power in one direction from the transmission path as shown in FIGS.
- the directional coupler 21 takes in the high frequency power from the transmission path based on the comparison between the input terminal voltage of the regenerative circulator 20 and the set voltage, and sets the upper limit of the voltage at the input terminal of the regenerative circulator to the set voltage during the regenerative operation. Restrict.
- the rectifier circuit 22 converts alternating current into direct current and regenerates the direct current power source 11 or the like.
- the electrode voltage V pp when the electrical length l of the transmission path is changed from 0 ° to 180 ° is shown for each case with and without the regenerative circulator.
- the electrode voltage V pp of FIG. 6 indicates that the regenerative operation is performed when the electrical length is in the range of about 85 ° to 125 °, and the electrode voltage V pp is suppressed.
- the regenerative circulator 20 includes a transformer 20a on the input side and a rectifier 20b including a diode bridge circuit on the output side.
- the transformer 20 a corresponds to the directional coupler 21, and the rectifier 20 b corresponds to the rectifier circuit 22.
- the output side can regenerate DC power to the DC voltage source by connecting to the DC voltage source of the DC power source 11, for example. Note that the DC power is not limited to the DC voltage source of the high frequency power supply, and may be regenerated to another DC voltage source.
- Fig. 8 shows a modified circuit example of the regenerative circulator.
- the capacitor 20c is connected to the secondary side of the transformer constituting the transformer 20a, so that the transformer secondary side due to the commutation overlap angle caused by the leakage current (leakage) flowing through the transformer. Compensates for voltage waveform distortion.
- the AC component to the DC power source (V DD ) of the regeneration destination is reduced by connecting the inductances 20d and 20e to the output side of the diode bridge. It is good also as a structure which combined the capacitor
- FIG. 9 is a circuit example of a high frequency power supply device and a regenerative circulator.
- the parameters in the steady state where the plasma is ignited and the parameters when the regenerative circulator is not provided and in the abnormal state where the plasma is extinguished are as follows. Note During plasma ignition, the load impedance Z L is 50 [Omega, active component R L is 100 [Omega.
- each parameter of the abnormal state in which the plasma is extinguished is as follows.
- the effective load impedance R L is set to 100 k ⁇ .
- FIG. 10 shows waveforms of the output terminal voltage V g0 , the electrode voltage V pp , the output current I dc of the DC power supply, and the input voltage I inv to the high frequency amplifier circuit in the time axis domain.
- each parameter of the abnormal state in which the plasma is extinguished is as follows.
- the effective load impedance R L is set to 100 k ⁇ .
- FIG. 11 shows respective waveforms of the output terminal voltage V g0 , the electrode voltage V pp , the output current I dc of the DC power supply, and the input voltage I inv to the high frequency amplifier circuit in the time axis domain.
- FIG. 12 shows on the Smith chart the impedance locus of the output terminal impedance Z amp of the high-frequency amplifier circuit with respect to the electrical length of the transmission line.
- FIG. 12A shows a change in the output terminal impedance Z amp when the plasma is extinguished when the regenerative circulator is not provided
- FIG. 12B shows the plasma extinguished when the regenerative circulator is provided. The change of the output terminal impedance Z amp at the time is shown.
- A, B, and C correspond to impedances with electrical lengths of 0, ⁇ / 4, and ⁇ / 2, respectively, and A, B, and C correspond to changes in electrical length from 0 to ⁇ / 2. Impedance changes in the order of C.
- the load end voltage is the largest at the position corresponding to the antinode of the standing wave
- the impedance Z amp viewed from the high frequency amplifier circuit corresponding to the node portion of the standing wave is a low impedance corresponding to the short state. Since the load end voltage is proportional to the electrode voltage, the impedance Z amp becomes low impedance when the electrode voltage becomes maximum .
- the impedance of the load end is at the position of the electrical length A.
- the impedance Z amp seen from the high frequency amplifier circuit is changed from A to ⁇ / It becomes the position of the electrical length B moved by 4.
- the impedance of the electrical length B is 0, which corresponds to a short state.
- a and C correspond to impedances with electrical lengths of 0 and ⁇ / 2
- D corresponds to impedance between electrical lengths of 0 and ⁇ / 4
- E represents electrical length. This corresponds to an impedance between ⁇ / 4 and ⁇ / 2
- the impedance changes in the order of A, D, E, and C as the electrical length changes from 0 to ⁇ / 2.
- the parallel impedance is connected to the transmission path at the electrical length D, and the load impedance is not included.
- the impedance changes along an impedance locus that avoids the low impedance point of the electrical length B.
- the impedance Z amp When the impedance Z amp returns from the short state to the open state between ⁇ / 4 and ⁇ / 2, the effective amount generated when the parallel impedance is disconnected from the transmission path in the electrical length E disappears. The impedance changes toward the high impedance point of the electrical length C.
- the output terminal impedance Z amp of the high frequency amplifier circuit can be avoided from the low impedance in the short state.
- the effective amount generated by the parallel impedance is generated by returning power to the DC power supply voltage V DD through the regenerative circulator, and is not generated by adding a loss component such as an internal dummy load. Can be avoided and the regeneration efficiency can be improved.
- the output power during total reflection is limited to 4000 W, As a result, the upper limit of the electrode voltage V pp is also limited.
- the class D RF generator generates a square wave with an inverter.
- the effective value voltage of the fundamental wave component of the square wave voltage is V in
- the on-resistance of the inverter is R on
- the transformer turns ratio is N
- connection position P of the regenerative circulator and the load end is an integer multiple of the wavelength ⁇
- the connection position P is used instead of the load voltage V L.
- allowable voltage ratio k as a regenerative operation is started when the the voltage V P can be set allowable voltage ratio k
- the regenerative operation start voltage V P-regen became k times the voltage V P-Z0 during alignment May be set.
- FIG. 14 shows the relationship between the regenerative operation start voltage V P-regen and the voltage V P-Z0 when the allowable voltage ratio k is 2.
- the DC power supply voltage V DD of the regeneration destination is the average value (2 ⁇ 2v P-regen / ⁇ ) of v P-regen (v L-regen ) and the turns ratio of the transformer N can be determined.
- a regenerative circulator, a high frequency power supply device, and a regenerative method according to the present invention include a liquid crystal panel manufacturing device, a semiconductor manufacturing device, a power supply device that supplies high frequency power to a load device in which a load is a plasma load, and a power supply. Can be applied to the method.
- I dc output current I g0 current I inv input voltage N turns ratio P connection position R L effective component R in internal resistance R on resistance value V DD DC power supply voltage V L load voltage V P regenerative operation start voltage V g0 output terminal voltage V in AC voltage source V pp electrode voltage Z 0 characteristic impedance Z L load impedance Z P impedance Z R parallel impedance Z amp output terminal impedance Z g0 output terminal impedance i L rms current i g0 rms current k allowable Voltage ratio v L load voltage ⁇ Voltage reflection coefficient ⁇ Wavelength 1 High frequency power supply 2 High frequency load 3 Transmission path 4 Transmission line 10 High frequency power supply 11 DC power supply 12 High frequency amplification circuit 12a Bridge circuit 12b Transformer 13 Output circuit 13a LC circuit 13b LPF 20 regenerative circulator 20a transformer 20b rectifier 20c capacitor 20d, 20e inductance 20f voltage divider 21 directional coupler 22 rectifier circuit 101 generator 102 load 104 transmission path 111
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Computer Networks & Wireless Communication (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Amplifiers (AREA)
- Plasma Technology (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
Description
以下、伝送経路の電気長および定在波による電圧変化について説明する。
負荷側の電圧は、高周波電源と負荷とを結ぶ伝送経路の電気長によって変動することが知られている。
本願発明は、高周波電源の高周波増幅回路と高周波負荷との間の伝送経路上において負荷インピーダンスに対して並列インピーダンスを構成することによって、接続位置のインピーダンスを低減して伝送経路上において過剰電圧が発生することを抑制すると共に、並列インピーダンスによって伝送経路上から高周波電力を回生し、エネルギー効率を向上させる。
本願発明の回生サーキュレータは回生機能を備えたサーキュレータであり、伝送経路上の所定位置においてインピーダンス状態を変更する構成によって、定在波の電圧状態を変化させて電圧定在波比の上昇を抑制すると共に、伝送経路から電力を回生する。
回生サーキュレータの並列インピーダンスについて説明する。伝送経路上において、インピーダンスが整合した状態では、回生サーキュレータの入力端の電圧は定常電圧状態にあるため設定電圧と比較して低電圧である。この電圧状態においては、伝送経路から回生サーキュレータ側に向かって電流は導通せず、回生サーキュレータは伝送経路に対する並列インピーダンスを構成しない。
伝送経路上において回生サーキュレータは、入力端が接続される位置の構成において複数の態様を採ることができる。
回生サーキュレータの入力端が接続される位置の第1の態様は、伝送経路上においてインピーダンス不整合により発生する定在波の腹部分に相当する位置である。伝送経路上において、インピーダンスの不整合によって定在波が発生すると腹部分では高電圧となり節部分では低電圧となる。
回生サーキュレータの入力端が接続される位置の第2の態様は、高周波増幅回路の出力から、伝送経路上において高周波電源が出力する高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置である。
本願発明の高周波電源装置は、高周波負荷に高周波電力を供給する高周波電源と、高周波電源が備える高周波増幅回路と高周波負荷との間の伝送経路から高周波電力を片方向に取り込んで回生する回生サーキュレータを備える。高周波電源装置が備える回生サーキュレータは、本願発明の回生サーキュレータであって、回生サーキュレータの入力端は伝送経路上に接続され、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、並列インピーダンスは接続位置から高周波電力を取り込み回生する。
本願発明の高周波電力の回生方法は、高周波電源の高周波増幅回路と高周波負荷との間の伝送経路上から高周波電力を回生サーキュレータによって回生する方法であり、回生サーキュレータの入力端は伝送経路上に接続され、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、伝送経路に対して並列インピーダンスを構成し、並列インピーダンスは接続位置から高周波電力を取り込み回生する。
本願発明の高周波電力の回生方法の第1の態様は、回生サーキュレータの入力端を伝送経路上においてインピーダンス不整合により発生する定在波の腹部分に相当する位置に接続し、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、伝送経路に対して並列インピーダンスを構成し、並列インピーダンスによって接続位置から高周波電力を取り込み回生する。
本願発明の高周波電力の回生方法の第2の態様は、回生サーキュレータの入力端を伝送経路上において、高周波増幅回路の出力端から、伝送経路上において高周波電源が出力する高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置に接続し、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、伝送経路に対して並列インピーダンスを構成し、並列インピーダンスによって接続位置から高周波電力を片方向で取り込み回生する。
図1は本願発明の回生サーキュレータおよび高周波電源装置の構成を説明するための概略図である。
図1は伝達経路に対する回生サーキュレータの接続の第1の態様に対応している。第1の態様は、回生サーキュレータ20の入力端を、伝送経路3上においてインピーダンス不整合により発生する定在波の腹部分に相当する位置に接続する態様である。伝送経路3上においてインピーダンス不整合によって定在波が発生すると、腹部分では高電圧となり節部分では低電圧となる。図1は伝送経路3の定在波の腹部分に回生サーキュレータ20の入力端を接続する構成例を示している。
図2は伝送経路に対する回生サーキュレータの接続について第2の態様を説明するための概略図であり、図2は回生サーキュレータの入力端を高周波増幅回路の出力端から所定の電気長の位置に接続する態様を示している。図2において、回生サーキュレータ20の入力端の接続位置はPで示し、このPにおけるインピーダンスをZPで表している
以下、本願発明の回生サーキュレータおよび高周波電源装置について、図5~図8を用いて前記した第2の態様の構成例を説明する。
以下、本願発明の回生サーキュレータの動作例について図9~図13を用いて説明する。
直流電源電圧VDD:290V
進行波 :4000W(高周波電源の出力端での測定値)
反射波 :0W(高周波電源の出力端での測定値)
高周波増幅回路の出力端インピーダンスZamp:40+j20Ω
負荷インピーダンスの有効分RLの電圧Vpp:1794V
負荷インピーダンスの有効分RL :100Ω
高周波電源装置の出力端インピーダンスZg0 :50Ω
図9の回路例において回生サーキュレータを備えていない場合に、プラズマが消灯している異常状態の各パラメータは下記のとおりである。なお、プラズマ消灯時において、負荷インピーダンスの有効分RLは100kΩとしている。
進行波 :49000W(高周波電源の出力端での測定値)
反射波 :49000W(高周波電源の出力端での測定値)
高周波増幅回路の出力端インピーダンスZamp:0.05-j0.01Ω
負荷インピーダンスの有効分RLの電圧Vpp :12530V
負荷インピーダンスの有効分RL :100kΩ
高周波電源装置の出力端インピーダンスZg0 :オープン(40kΩ)
図9の回路例において回生サーキュレータを備えている場合に、プラズマが消灯している異常状態の各パラメータは下記のとおりである。なお、プラズマ消灯時において、負荷インピーダンスの有効分RLは100kΩとしている。
進行波 :4000W(高周波電源の出力端での測定値)
反射波 :4000W(高周波電源の出力端での測定値)
高周波増幅回路の出力端インピーダンスZamp:18.9+j6.0Ω
負荷インピーダンスの有効分RLの電圧Vpp :3560V
負荷インピーダンスの有効分RL :100kΩ
高周波電源装置の出力端インピーダンスZg0 :オープン(40kΩ)
上記したように、高周波増幅回路の出力端から見たインピーダンスZampが低インピーダンスとなるインピーダンス状態と、定在波による負荷端電圧の上昇とは対応関係にある。以下、回生動作によってインピーダンスZampを低インピーダンスから回避する動作条件について説明する。
Rin=2RonN2 ・・・(1)
vamp=vg0=vin-Riniamp=vin-Rinig0
iamp=ig0
Zamp=vamp/iamp=vg0/ig0=Zg0
・・・(2)
である。
vL-set=vP-set
iL-set=iP-set
ZL=ZP
・・・(3)
vg0(λ/4)=j(vP-setZ0)/ZP
ig0(λ/4)=jvP-set/Z0
Zg0(λ/4)=vg0(λ/4)/ig0(λ/4)=Z0 2/ZP
・・・(4)
で表される。
式(4)において、ZL=Z0に整合している場合の添え字をZ0で表記し、回生動作時の添え字をregenで表記し、負荷電圧VLが整合時の負荷電圧VL-Z0のk倍となった時に回生動作が開始するとして負荷電圧VLの許容電圧比kを定めると、回生時の高周波増幅回路から見たインピーダンスZamp(λ/4)-regen、および回生サーキュレータの接続位置PのインピーダンスZP(λ/4)-regenはそれぞれ以下の式で表される。
Zamp(λ/4)-regen={Z0-(k-1)Rin}/k
ZP(λ/4)-regen=kZ0 2/{Z0-(k-1)Rin}
・・・(5)
ZL=∞
Rin=8Ω
Z0=50Ω
伝送線路の電気長l=λ/4
の場合に、回生サーキュレータを用いてk=2としたときに負荷電圧vLを抑制する例を示す。
Zamp={Z0-(k-1)Rin}/k={50-(2-1)×8}/2=21[Ω]
ZP=ZR=kZ0 2/{Z0-(k-1)Rin}=2×502/{50-(2-1)×8}
≒119[Ω]
となる。
負荷電圧VLが整合時における実効値電圧vL-Z0のk倍となった時点で回生動作を開始して直流電源電圧VDDへ直流電力を回生 (regeneration)させると共に、負荷電圧VLの上限電圧を回生動作時の負荷電圧VL-regenに制限する。
N×VDD=2√2×vL-regen/π=(2√2×k×vL-Z0)/π
N=(2√2×k×vL-Z0)/(π×VDD)
≒(0.9×k×vL-Z0)/(π×VDD)
・・・(6)
Idc 出力電流
Ig0 電流
Iinv 入力電圧
N 巻数比
P 接続位置
RL 有効分
Rin 内部抵抗
Ron 抵抗値
VDD 直流電源電圧
VL 負荷電圧
VP 回生動作開始電圧
Vg0 出力端電圧
Vin 交流電圧源
Vpp 電極電圧
Z0 特性インピーダンス
ZL 負荷インピーダンス
ZP インピーダンス
ZR 並列インピーダンス
Zamp 出力端インピーダンス
Zg0 出力端インピーダンス
iL 実効値電流
ig0 実効値電流
k 許容電圧比
vL 負荷電圧
Γ 電圧反射係数
λ 波長
1 高周波電源装置
2 高周波負荷
3 伝送経路
4 伝送線路
10 高周波電源
11 直流電源
12 高周波増幅回路
12a ブリッジ回路
12b 変成器
13 出力回路
13a LC回路
13b LPF
20 回生サーキュレータ
20a 変成器
20b 整流器
20c コンデンサ
20d,20e インダクタンス
20f 分圧器
21 方向性結合器
22 整流回路
101 ジェネレータ
102 負荷
104 伝送経路
111 直流電源
112 高周波増幅回路
112a ブリッジ回路
112b 変圧器
113 出力回路
113a 整合回路
113b フィルタ回路
Claims (21)
- 高周波電源の高周波増幅回路と高周波負荷との間の伝送経路上から高周波電力を回生する回生サーキュレータであり、
前記回生サーキュレータの入力端は前記伝送経路上に接続され、
前記回生サーキュレータは、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
前記並列インピーダンスは前記接続位置から高周波電力を片方向で取り込み回生することを特徴とする、回生サーキュレータ。 - 前記回生サーキュレータの入力端の前記伝送経路上の接続位置は、前記伝送経路上においてインピーダンス不整合により発生する定在波の腹部分に相当する位置であり、
前記回生サーキュレータは、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
前記並列インピーダンスは前記接続位置から高周波電力を片方向で取り込み回生することを特徴とする、請求項1に記載の回生サーキュレータ。 - 前記回生サーキュレータの入力端の前記伝送経路上の接続位置は、高周波増幅回路の出力端から、前記伝送経路上において前記高周波電源が出力する高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置であり、
前記回生サーキュレータは、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
前記並列インピーダンスは前記接続位置から高周波電力を片方向で取り込み回生することを特徴とする、請求項1又は2に記載の回生サーキュレータ。 - 前記伝送経路から高周波電力を片方向に取り込む方向性結合器を備え、
前記方向性結合器は、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて前記伝送経路から高周波電力を取り込み、
回生動作中において、回生サーキュレータの入力端の電圧の上限を設定電圧に制限することを特徴とする、請求項1から3の何れか一つに記載の回生サーキュレータ。 - 前記方向性結合器は変成器を備え、
前記変成器の巻き数比は、前記設定電圧と回生サーキュレータの出力端の電圧の電圧比に基づく値であることを特徴とする、請求項4に記載の回生サーキュレータ。 - 前記変成器の交流出力を直流に変換する整流器を備えることを特徴とする、請求項5に記載の回生サーキュレータ。
- 前記変成器の2次側にコンデンサを並列に備えることを特徴とする、請求項5又は6に記載の回生サーキュレータ。
- 前記整流器の後段に直流リアクトルを直列に備えることを特徴とする、請求項6又は7に記載の回生サーキュレータ。
- 高周波負荷に高周波電力を供給する高周波電源と、
前記高周波電源が備える高周波増幅回路と高周波負荷との間の伝送経路から高周波電力を片方向に取り込んで回生する回生サーキュレータを備え、
前記回生サーキュレータの入力端は前記伝送経路上に接続され、
前記回生サーキュレータは、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
前記並列インピーダンスは前記接続位置から高周波電力を取り込み回生することを特徴とする、高周波電源装置。 - 前記回生サーキュレータの入力端の前記伝送経路上の接続位置は、前記伝送経路上においてインピーダンス不整合により発生する定在波の腹部分に相当する位置であり、
前記回生サーキュレータは、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
前記並列インピーダンスは前記接続位置から高周波電力を取り込み回生することを特徴とする、請求項9に記載の高周波電源装置。 - 前記回生サーキュレータの入力端の前記伝送経路上の接続位置は、高周波増幅回路の出力端から、前記伝送経路上において前記高周波電源が出力する高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置であり、
前記回生サーキュレータは、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
前記並列インピーダンスは前記接続位置から高周波電力を片方向で取り込み回生することを特徴とする、請求項9又は10に記載の高周波電源装置。 - 前記伝送経路から高周波電力を片方向に取り込む方向性結合器を備え、
前記方向性結合器は、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて前記伝送経路から高周波電力を取り込み、
回生動作中において、回生サーキュレータの入力端の電圧の上限を設定電圧に制限することを特徴とする、請求項9~11の何れか一つに記載の高周波電源装置。 - 前記方向性結合器は変成器を備え、
前記変成器の巻き数比は、前記設定電圧と回生サーキュレータの出力端の電圧の電圧比に基づく値であることを特徴とする、請求項12に記載の高周波電源装置。 - 前記変成器の交流出力を直流に変換する整流器を備えることを特徴とする、請求項13に記載の高周波電源装置。
- 前記変成器の2次側にコンデンサを並列に備えることを特徴とする、請求項13又は14に記載の高周波電源装置。
- 前記整流器の後段に直流リアクトルを直列に備えることを特徴とする、請求項14又は15に記載の高周波電源装置。
- 高周波電源の高周波増幅回路と高周波負荷との間の伝送経路上から高周波電力を回生サーキュレータによって回生する方法であり、
前記回生サーキュレータの入力端を前記伝送経路上に接続し、
前記回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
前記並列インピーダンスによって前記接続位置から高周波電力を取り込み回生することを特徴とする、高周波電力の回生方法。 - 前記回生サーキュレータにおいて、入力端を前記伝送経路上において、前記伝送経路上においてインピーダンス不整合により発生する定在波の腹部分に相当する位置に接続し、
前記回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
前記並列インピーダンスによって前記接続位置から高周波電力を取り込み回生することを特徴とする、請求項17に記載の高周波電力の回生方法。 - 前記回生サーキュレータにおいて、入力端を前記伝送経路上において、高周波増幅回路の出力端から、前記伝送経路上において前記高周波電源が出力する高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置に接続し、
前記回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
前記並列インピーダンスによって前記接続位置から高周波電力を片方向で取り込み回生することを特徴とする、請求項17又は18に記載の高周波電力の回生方法。 - 前記並列インピーダンスによって、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて前記伝送経路から高周波電力を取り込み、
回生動作中において、回生サーキュレータの入力端の電圧の上限を設定電圧に制限することを特徴とする、請求項17~19の何れか一つに記載の高周波電力の回生方法。 - 高周波電力の交流出力を直流に変換した後に回生することを特徴とする、請求項17~19の何れか一つに記載の高周波電力の回生方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177004777A KR101913050B1 (ko) | 2014-08-25 | 2014-11-19 | 회생 서큘레이터, 고주파 전원장치, 및 고주파 전력의 회생방법 |
CN201480081515.7A CN106797141B (zh) | 2014-08-25 | 2014-11-19 | 再生循环器、高频电源装置、以及高频电力的再生方法 |
EP14900492.1A EP3197013B1 (en) | 2014-08-25 | 2014-11-19 | Regeneration circulator, high-frequency power supply device, and high-frequency power regeneration method |
US15/503,778 US10355607B2 (en) | 2014-08-25 | 2014-11-19 | Regeneration circulator, high-frequency power supply device, and high-frequency power regeneration method |
PL14900492T PL3197013T3 (pl) | 2014-08-25 | 2014-11-19 | Cyrkulator do odzyskiwania, urządzenie w postaci źródła zasilania o wysokiej częstotliwości i sposób odzyskiwania mocy o wysokiej częstotliwości |
TW103143486A TWI576017B (zh) | 2014-08-25 | 2014-12-12 | 再生循環器、高頻電源裝置及高頻電力之再生方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014170664A JP5797313B1 (ja) | 2014-08-25 | 2014-08-25 | 回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法 |
JP2014-170664 | 2014-08-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016031091A1 true WO2016031091A1 (ja) | 2016-03-03 |
Family
ID=54348596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/080580 WO2016031091A1 (ja) | 2014-08-25 | 2014-11-19 | 回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US10355607B2 (ja) |
EP (1) | EP3197013B1 (ja) |
JP (1) | JP5797313B1 (ja) |
KR (1) | KR101913050B1 (ja) |
CN (1) | CN106797141B (ja) |
PL (1) | PL3197013T3 (ja) |
TW (1) | TWI576017B (ja) |
WO (1) | WO2016031091A1 (ja) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6608761B2 (ja) * | 2016-04-14 | 2019-11-20 | ファナック株式会社 | Dcリンクコンデンサの電圧変動を抑制するモータ駆動装置 |
JP6671045B2 (ja) * | 2016-09-02 | 2020-03-25 | パナソニックIpマネジメント株式会社 | 電力変換システム |
WO2018061932A1 (ja) | 2016-09-30 | 2018-04-05 | 株式会社アルバック | 電源装置 |
US10672590B2 (en) * | 2018-03-14 | 2020-06-02 | Lam Research Corporation | Frequency tuning for a matchless plasma source |
JP7117693B2 (ja) * | 2018-03-22 | 2022-08-15 | 大成建設株式会社 | 電力伝送システム |
KR20210123343A (ko) * | 2019-01-31 | 2021-10-13 | 이글 하버 테크놀로지스, 인코포레이티드 | 정밀 플라즈마 제어 시스템 |
JP7348101B2 (ja) * | 2020-02-18 | 2023-09-20 | 株式会社京三製作所 | 高周波電源装置の制御方法及び高周波電源装置 |
WO2021211582A1 (en) * | 2020-04-13 | 2021-10-21 | Advanced Energy Industries, Inc. | Input impedance networks with power recovery |
DE102022122044A1 (de) * | 2022-08-31 | 2024-02-29 | TRUMPF Hüttinger GmbH + Co. KG | Plasmazustandsüberwachungsvorrichtung zum Anschluss an eine Impedanzanpassungsschaltung für ein Plasmaerzeugungssystem, ein Plasmaerzeugungssystem und ein Verfahren zur Überwachung des Plasmaerzeugungssystems |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001186062A (ja) * | 1999-12-24 | 2001-07-06 | Shinko Electric Co Ltd | 電力線搬送通信装置 |
JP2013162626A (ja) * | 2012-02-03 | 2013-08-19 | Nec Corp | 電子棚札システム |
JP2014003774A (ja) * | 2012-06-15 | 2014-01-09 | Ryukoku Univ | 移動型無線電力受電装置及びそれを用いた無線電力伝送システム |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3082377B2 (ja) | 1991-02-28 | 2000-08-28 | ソニー株式会社 | 分布定数回路型磁界検出装置 |
US5559685A (en) | 1994-10-12 | 1996-09-24 | Electronic Power Conditioning, Inc. | Voltage clamped parallel resonant converter with controllable duty cycle |
JP3920420B2 (ja) | 1996-10-08 | 2007-05-30 | 富士通株式会社 | Eh整合器、マイクロ波自動整合方法、半導体製造装置 |
AU6358600A (en) * | 1999-07-22 | 2001-02-13 | Paul George Bennett | Power supplies having protection circuits |
US7180758B2 (en) | 1999-07-22 | 2007-02-20 | Mks Instruments, Inc. | Class E amplifier with inductive clamp |
JP4141797B2 (ja) | 2002-10-31 | 2008-08-27 | 株式会社東芝 | 低反射型リミタ並びに低反射型リミタを用いた送受信モジュールおよびアクティブフェーズドアレーアンテナ |
JP2004205328A (ja) * | 2002-12-25 | 2004-07-22 | Daihen Corp | 高周波電源装置 |
US8217299B2 (en) | 2007-02-22 | 2012-07-10 | Advanced Energy Industries, Inc. | Arc recovery without over-voltage for plasma chamber power supplies using a shunt switch |
JP4808182B2 (ja) | 2007-04-27 | 2011-11-02 | 株式会社エヌ・ティ・ティ・ドコモ | 無線通信装置、無線通信装置の給電方法 |
TWI363481B (en) | 2008-03-28 | 2012-05-01 | Delta Electronics Inc | Synchronous rectifying circuit having burst mode controller and controlling method thereof |
US8885369B2 (en) * | 2009-10-29 | 2014-11-11 | Nihon Dengyo Kosaku Co., Ltd. | Power regeneration device, method of regenerating power, power storage system, method of storing power, and high frequency device |
US9965140B2 (en) * | 2011-12-26 | 2018-05-08 | TrackThings LLC | Method and apparatus of a marking objects in images displayed on a portable unit |
JP5534365B2 (ja) | 2012-06-18 | 2014-06-25 | 株式会社京三製作所 | 高周波電力供給装置、及び反射波電力制御方法 |
JP5534366B2 (ja) | 2012-06-18 | 2014-06-25 | 株式会社京三製作所 | 高周波電力供給装置、及びイグニッション電圧選定方法 |
TWI599272B (zh) | 2012-09-14 | 2017-09-11 | 蘭姆研究公司 | 根據三個或更多狀態之功率及頻率調整 |
US9294100B2 (en) | 2012-12-04 | 2016-03-22 | Advanced Energy Industries, Inc. | Frequency tuning system and method for finding a global optimum |
-
2014
- 2014-08-25 JP JP2014170664A patent/JP5797313B1/ja active Active
- 2014-11-19 WO PCT/JP2014/080580 patent/WO2016031091A1/ja active Application Filing
- 2014-11-19 CN CN201480081515.7A patent/CN106797141B/zh active Active
- 2014-11-19 US US15/503,778 patent/US10355607B2/en active Active
- 2014-11-19 PL PL14900492T patent/PL3197013T3/pl unknown
- 2014-11-19 KR KR1020177004777A patent/KR101913050B1/ko active IP Right Grant
- 2014-11-19 EP EP14900492.1A patent/EP3197013B1/en active Active
- 2014-12-12 TW TW103143486A patent/TWI576017B/zh active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001186062A (ja) * | 1999-12-24 | 2001-07-06 | Shinko Electric Co Ltd | 電力線搬送通信装置 |
JP2013162626A (ja) * | 2012-02-03 | 2013-08-19 | Nec Corp | 電子棚札システム |
JP2014003774A (ja) * | 2012-06-15 | 2014-01-09 | Ryukoku Univ | 移動型無線電力受電装置及びそれを用いた無線電力伝送システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3197013A4 * |
Also Published As
Publication number | Publication date |
---|---|
US10355607B2 (en) | 2019-07-16 |
CN106797141B (zh) | 2019-04-26 |
EP3197013A1 (en) | 2017-07-26 |
PL3197013T3 (pl) | 2021-05-31 |
EP3197013A4 (en) | 2018-03-21 |
US20170279364A1 (en) | 2017-09-28 |
KR20170038187A (ko) | 2017-04-06 |
JP5797313B1 (ja) | 2015-10-21 |
CN106797141A (zh) | 2017-05-31 |
TW201608936A (zh) | 2016-03-01 |
KR101913050B1 (ko) | 2018-10-29 |
EP3197013B1 (en) | 2021-01-06 |
JP2016046951A (ja) | 2016-04-04 |
TWI576017B (zh) | 2017-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5797313B1 (ja) | 回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法 | |
US9072159B2 (en) | High-frequency power supply device and ignition voltage selection method | |
US10447225B2 (en) | Filter apparatus and power supply system | |
US5008894A (en) | Drive system for RF-excited gas lasers | |
EP3229363B1 (en) | Power converter | |
WO2008105985A1 (en) | Power combiner | |
US10796885B2 (en) | Circuit for impedance matching between a generator and a load at multiple frequencies, assembly comprising such a circuit and related use | |
CN107735945A (zh) | 非线性高频放大器设备 | |
CN107565577A (zh) | 气体管切换的柔性交流电传输系统 | |
JP2014068120A (ja) | マイクロ波増幅器 | |
JP5011717B2 (ja) | 交流−交流変換装置 | |
KR102143178B1 (ko) | 부하 변동에 속응성을 가진 플라즈마 파워 장치 및 그의 제어 방법 | |
JP2008243670A (ja) | 高周波電源装置 | |
JP2012119088A (ja) | プラズマ処理装置 | |
JP6094205B2 (ja) | ワイヤレス電力伝送システム | |
JP2015138602A (ja) | プラズマ処理用整合器、プラズマ処理装置、および、プラズマ処理用整合器の駆動方法 | |
US20210135086A1 (en) | Output filter for power train | |
Badapanda et al. | AC-DC converter power modules of a solid state modular high voltage DC power supply | |
JP2008079487A (ja) | 交流電源装置 | |
CN102723715B (zh) | 超级电容和消除低次谐波电容补偿电路结构 | |
KR20230064902A (ko) | 플라즈마 전력 공급 시스템 및 이의 전력 공급 방법 | |
Zhou et al. | High-frequency Inverter Design for a Wide Range of Resistive and Reactive Load Variation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14900492 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15503778 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20177004777 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2014900492 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2014900492 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |