WO2016031091A1 - 回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法 - Google Patents

回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法 Download PDF

Info

Publication number
WO2016031091A1
WO2016031091A1 PCT/JP2014/080580 JP2014080580W WO2016031091A1 WO 2016031091 A1 WO2016031091 A1 WO 2016031091A1 JP 2014080580 W JP2014080580 W JP 2014080580W WO 2016031091 A1 WO2016031091 A1 WO 2016031091A1
Authority
WO
WIPO (PCT)
Prior art keywords
regenerative
circulator
voltage
transmission path
frequency power
Prior art date
Application number
PCT/JP2014/080580
Other languages
English (en)
French (fr)
Inventor
譲原 逸男
諭 相川
亮介 大間
Original Assignee
株式会社京三製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=54348596&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016031091(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社京三製作所 filed Critical 株式会社京三製作所
Priority to KR1020177004777A priority Critical patent/KR101913050B1/ko
Priority to CN201480081515.7A priority patent/CN106797141B/zh
Priority to EP14900492.1A priority patent/EP3197013B1/en
Priority to US15/503,778 priority patent/US10355607B2/en
Priority to PL14900492T priority patent/PL3197013T3/pl
Priority to TW103143486A priority patent/TWI576017B/zh
Publication of WO2016031091A1 publication Critical patent/WO2016031091A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/32Non-reciprocal transmission devices
    • H01P1/38Circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/56Modifications of input or output impedances, not otherwise provided for
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • H03F3/193High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/217Class D power amplifiers; Switching amplifiers
    • H03F3/2171Class D power amplifiers; Switching amplifiers with field-effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/601Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators using FET's, e.g. GaAs FET's
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/46Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/387A circuit being added at the output of an amplifier to adapt the output impedance of the amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/451Indexing scheme relating to amplifiers the amplifier being a radio frequency amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/541Transformer coupled at the output of an amplifier

Definitions

  • the present invention relates to a power supply for supplying high frequency power to a load device in which a load such as a liquid crystal panel manufacturing device, a semiconductor manufacturing device, a laser oscillator or the like is a plasma load, and in particular, power from a transmission path for transmitting high frequency power.
  • the present invention relates to a regenerative circulator that regenerates, a high-frequency power supply device that includes the regenerative circulator, and a regenerative method that regenerates high-frequency power.
  • a class D RF generator As a high-frequency power source (RF generator) that supplies high-frequency power to a high-frequency load such as a plasma load (plasma source), for example, a class D RF generator is known. Since the class D RF generator operates in a switch mode by switching of the RF power amplifying element, its internal resistance R in is determined by the ON resistance value R on in the saturation region of the RF power amplifying element. The ON resistance value R on is generally lower than the characteristic impedance Z 0 for transmitting output power.
  • the high frequency power supply outputs the high frequency generated by the internal high frequency amplifier circuit to the transmission path via an output circuit such as a power combining circuit or a matching circuit, and supplies it to the load.
  • an output circuit such as a power combining circuit or a matching circuit
  • the impedance Z amp viewed from the high-frequency amplifier circuit is expressed by impedance-converting the impedance Z g0 at the output end when the high-frequency power source is stationary by the output circuit in the high-frequency power source.
  • FIG. 15 is a diagram showing a schematic circuit of a class D RF generator.
  • a class D RF generator 101 converts the direct current of a direct current power source 111 into a high frequency by a high frequency amplifier circuit 112, passes the obtained high frequency through an output circuit 113, and then passes through the transmission path 104 from the output end of the generator. Supply to load 102.
  • the high frequency amplifier circuit 112 includes, for example, a bridge circuit 112a of an RF power amplifier element and a transformer 112b.
  • the output circuit 113 for example, matching circuit 113a for causing the impedance Z 0 and the impedance matching of the transmission path 104, and a filter circuit 113b for removing noise component.
  • the impedance Z amp viewed from the high-frequency amplifier circuit 112 is obtained by impedance-converting the impedance Z g0 at the output end of the class D RF generator 101 with the impedance of the output circuit 113.
  • FIG. 15 (b) is a diagram schematically showing the impedance Z # 038, in the circuit of the bridge circuit 112a and the transformer 112b alternating voltage source V in and the internal resistance R in the DC power supply 111 and the high-frequency amplifier circuit 112 This is shown in the replaced configuration.
  • a 3 dB coupler is built in the class D RF generator and the reflected waves are reflected by an internal dummy load.
  • the structure which reduces can be considered.
  • a configuration is known in which a circulator is disposed on a transmission path to prevent a reflected wave from returning to a high-frequency source, and the reflected wave is converted to heat by a dummy load (see the background art section of Patent Document 1).
  • the circulator is a passive element that has a function of outputting a high-frequency signal input to a certain port among a plurality of ports only to the next port, and prevents the reflected wave from returning to the high-frequency source, thereby improving the high-frequency signal. Source damage and unstable operation are prevented.
  • the configuration using the 3 dB coupler the 3 dB coupler main body and the internal dummy load must be mounted inside the high frequency power supply, and there is a problem that the configuration of the high frequency power supply becomes large.
  • the configuration using the 3 dB coupler has a problem that a high-frequency amplifier circuit that is a multiple of 2 of the number of 3 dB couplers is required, and when a reflected wave is generated, the reflected current flowing through the high-frequency amplifier circuit is about 200% or less. There is a problem of generating balance.
  • Z amp is a value obtained by impedance-converting the impedance Z g0 of the output terminal of the high-frequency power supply device to the impedance viewed from the internal high-frequency amplifier circuit, and reflects fluctuations in the load impedance. .
  • Load conditions vary due to impedance mismatch.
  • the plasma load is a dynamic load that varies depending on various conditions such as pressure in the plasma chamber, gas flow rate, and arcing.
  • the impedance Z amp varies corresponding to the variation of the load impedance.
  • R in is a fixed constant determined by the characteristics of the power amplifying element during application of high frequency power
  • V in is the voltage V DD of the DC power supply.
  • FIG. 16 shows an example of the change in the output power with respect to the fluctuation of the impedance Z amp .
  • V in 52 V
  • R in 2 ⁇
  • the steady state impedance Z amp is 50 ⁇
  • the impedance Z amp is changed from 1 ⁇ to 100 ⁇ and supplied to the load.
  • impedance Z amp changes from 50 ⁇ to 2 ⁇ , to the load
  • the power supplied from 50W to 340W varies about 7 times.
  • the V in can be constant voltage control
  • the range rate of change of the impedance Z # 038 is the response speed of the constant voltage control of the V in
  • the output power can be held at the set power.
  • the impedance Z # 038 during application of RF power changes rapidly beyond the response speed of the constant power control of the V in the suppress variations in power supplied to the plasma load by the constant voltage control of the V in It will be difficult to do.
  • An object of the present invention is to solve the above-mentioned conventional problems, to suppress an excessive increase in load voltage caused by impedance mismatch on a transmission path, and to regenerate high-frequency power.
  • the present invention pays attention to the fact that the voltage rise caused by impedance mismatch on the transmission path becomes excessive due to the standing wave caused by the reflected wave caused by the impedance mismatch, and the parallel impedance is connected to the transmission path when the voltage rises Thus, the voltage due to the standing wave is regenerated, the excessive voltage of the load voltage is reduced, and the energy utilization efficiency is improved.
  • FIG. 17 shows a circuit example in which the load shown in FIG. 15 is replaced with a plasma impedance and matching circuit.
  • the active component R L in the plasma impedance is matched by the matching circuit so that the load impedance Z L is 50 ⁇ when 100 [Omega.
  • the description here shows an example of operation at an operating frequency of 13.56 MHz.
  • the effective component R L of the plasma load impedance Z L is 100 ⁇ as the resistance component in the steady state and the resistance component in the open state when the plasma is extinguished is 100 k ⁇
  • the electrode voltage V pp which is the load voltage when the electrical length l of the path is changed from 0 ° to 180 °
  • of the impedance Z amp are shown in FIGS. 18 (a) and 18 (b), respectively. It is represented by Also shows the impedance Z # 038 of the load impedance Z L and the high-frequency amplifier circuit in the Smith chart of FIG. 18 (c).
  • the electrode voltage V pp proportional to the load voltage VL has a maximum value when the absolute value
  • the load impedance Z L is determined from the impedance Z g0 and current I g0 at the output end of the high-frequency power source, the characteristic impedance Z 0 of the transmission path, and the length of the transmission path.
  • the impedance Z g0 of the output terminal of the high frequency power supply and the impedance Z amp viewed from the high frequency amplifier circuit in the high frequency power supply are impedance matched, the impedance Z amp viewed from the high frequency amplifier circuit is the output terminal. It is in agreement with the impedance Zg0 of.
  • the electrical length l of the transmission path that maximizes the load voltage V L can be obtained by using the load impedance Z L instead of the impedance Z amp.
  • the size of the electrode voltage V pp is proportional to the load voltage V L, the electrode voltage V pp can be obtained electrical length l of a transmission path becomes maximum.
  • m2 represents the impedance Z amp being The voltage reflection coefficient ⁇ in the short state is shown, and the phase angle is 180 °.
  • M3 represents a voltage reflection coefficient ⁇ having an impedance of ⁇ .
  • FIG. 18A shows the electrode voltage V pp at the position of the electrical length l of the transmission path when m1 is used as a reference.
  • the electrode voltage V pp at a constant time shows a constant value of 200 V regardless of the electrical length l of the transmission path, whereas the electrode voltage V pp when the plasma is extinguished varies greatly depending on the electrical length l of the transmission path. It is shown that when l is at a position of 106 ° (position indicated by m2), it is about 5 ⁇ 10 4 V, which is about 25 times the maximum in comparison with the steady-state voltage.
  • FIG. 18B shows the absolute value
  • of the impedance Z amp varies depending on the electrical length l of the transmission path.
  • the electrical length l is at a position of 106 ° (position indicated by m2)
  • of the impedance Z amp is It shows that it becomes minimum. Therefore, m2 corresponds to a position where the absolute value
  • FIG. 18 (a), the (b), the position of the electrical length 0 ° transmission path indicates the position of the load impedance Z L is the voltage reflection coefficient a open ⁇ is m1, the electrical length of the transmission path 106 The position of ° indicates a position where the impedance Z amp is in a short state and the voltage reflection coefficient ⁇ is m2.
  • the length of the transmission path is set so that the electrical length 1 does not cause the impedance Z amp to be in a short state, so that the electrode voltage V pp is excessive. It is assumed that the voltage is avoided.
  • the electrical length l of the transmission path varies depending on the length of the transmission path and the variation of the distribution constant, it is difficult to match the length of the cable actually installed to the set electrical length l, and the variation of the distribution constant Therefore, it is difficult to stably avoid the electrode voltage V pp from becoming an excessive voltage.
  • FIG. 19 is a schematic diagram for explaining the state of the standing wave at the time of matching and at the time of mismatching
  • FIG. 19 (a) shows the state at the time of matching
  • FIG. 19 (b) shows the load short-circuited
  • the load FIG. 19C shows a mismatch state when the reflection coefficient of the impedance Z L is ⁇ 1
  • FIG. 19C shows a mismatch state when the load is released and the reflection coefficient of the load impedance Z L is 1.
  • 19A, 19B, and 19C the voltage and current when the end of the transmission path is short-circuited are indicated by a solid line, and the current is indicated by a broken line.
  • Standing waves are not generated when matched, and standing waves are generated when mismatched.
  • the standing wave generated by the short-circuited load and the standing wave generated by the open load have the opposite positional relationship between the antinodes and nodes of the standing wave.
  • the load voltage V L at the load impedance Z L increases due to the impedance mismatch of the transmission path, and when the position on the transmission path corresponds to the antinode of the standing wave, the voltage increase is more excessive. Become.
  • the present invention reduces the impedance at the connection position by generating a parallel impedance with respect to the load impedance on the transmission path between the high frequency amplifier circuit of the high frequency power supply and the high frequency load, and generates an excessive voltage on the transmission path. In addition to suppressing this, high-frequency power is regenerated from the transmission path by parallel impedance, and energy efficiency is improved.
  • the function of the circulator of the present invention is not a function related to the traveling wave and reflected wave of a normal circulator, but branches the current from the transmission path, and conducts the branched current with directionality.
  • the term circulator is used from the viewpoint of a directional current conduction function.
  • the present invention includes each aspect of a regenerative circulator, a high-frequency power supply device, and a high-frequency power regeneration method, all of which include technical matters common to the regenerative circulator, and each aspect of the present invention relates to a transmission path for the regenerative circulator.
  • the regenerative circulator of the present invention is a circulator having a regenerative function, and by changing the impedance state at a predetermined position on the transmission path, the voltage state of the standing wave is changed to suppress an increase in the voltage standing wave ratio. At the same time, power is regenerated from the transmission path.
  • the regenerative circulator of the present invention is a regenerative circulator that regenerates high-frequency power from a transmission path between a high-frequency amplifier circuit of a high-frequency power supply and a high-frequency load, and an input end of the regenerative circulator is connected to the transmission path, Based on the comparison between the voltage at the input end and the set voltage, a parallel impedance is configured for the transmission path.
  • the parallel impedance regenerates by taking high frequency power in one direction from the connection position on the transmission path.
  • the regenerative circulator can return the electric power regenerated from the transmission path to the high-frequency power supply, supply it to other devices including the power supply device, and store it in the power storage device.
  • the parallel impedance of the regenerative circulator will be described. In the state where the impedance is matched on the transmission path, the voltage at the input terminal of the regenerative circulator is in a steady voltage state and thus is lower than the set voltage. In this voltage state, no current is conducted from the transmission path toward the regenerative circulator, and the regenerative circulator does not constitute a parallel impedance to the transmission path.
  • the voltage at the input end of the regenerative circulator increases due to the occurrence of a standing wave, which may be higher than the set voltage.
  • a standing wave which may be higher than the set voltage.
  • current is conducted from the transmission path toward the regenerative circulator, and the regenerative circulator forms a parallel impedance with respect to the transmission path.
  • the voltage at the input terminal of the regenerative circulator may not increase due to the load impedance or the electrical length of the transmission line even if the impedance is mismatched.
  • the parallel impedance connected to the transmission path reduces the voltage standing wave ratio (VSWR) by changing the impedance state where a standing wave is generated on the transmission path, and suppresses the voltage rise.
  • VSWR voltage standing wave ratio
  • parallel impedance can regenerate power by taking in current from the transmission path.
  • Mode of connection position of regenerative circulator The regenerative circulator on the transmission path can take a plurality of modes in the configuration of the position where the input end is connected.
  • the first aspect of the position where the input end of the regenerative circulator is connected is a position corresponding to the antinode portion of the standing wave generated due to impedance mismatch on the transmission path.
  • the voltage is high in the antinode and low voltage in the node.
  • the regenerative circulator By connecting the input terminal of the regenerative circulator to the antinode where high voltage is generated on the transmission path, the regenerative circulator takes in current from the high voltage section on the transmission path and transmits when the acquired voltage exceeds the set voltage.
  • a parallel impedance can be configured for the path.
  • the second aspect of the position where the input terminal of the regenerative circulator is connected is that the output of the high frequency amplifier circuit is a quarter wavelength ( ⁇ / 4) of the high frequency wavelength ( ⁇ ) output by the high frequency power supply on the transmission path.
  • the electrical length is an odd multiple of.
  • the regenerative circulator By connecting the input terminal of the regenerative circulator to the position of the electrical length where high voltage is generated on the transmission path, the regenerative circulator takes in current from the high voltage part on the transmission path, and when the acquired voltage exceeds the set voltage Can constitute a parallel impedance to the transmission path.
  • the regenerative circulator of the present invention includes a directional coupler that takes in high-frequency power from a transmission path in one direction.
  • the directional coupler takes in high-frequency power from the transmission path based on a comparison between the voltage at the input end of the regenerative circulator and the set voltage, and limits the upper limit of the voltage at the input end of the regenerative circulator to the set voltage during the regenerative operation. .
  • the first form of the directional coupler according to the present invention includes a transformer.
  • the turn ratio of the transformer is a value based on the voltage ratio between the set voltage and the voltage at the output terminal of the regenerative circulator. Therefore, the set voltage is determined by the turn ratio of the transformer and the voltage at the output terminal of the regenerative circulator.
  • the set voltage is determined by the voltage at the output end of the regenerative circulator.
  • the second form of the directional coupler is configured to include a rectifier that converts alternating current into direct current in addition to the transformer provided in the first form.
  • the rectifier converts the alternating current output of the transformer into direct current and regenerates the converted direct current.
  • a configuration in which a capacitor is provided on the secondary side of the transformer a configuration in which a DC reactor is provided in the subsequent stage of the rectifier, or a capacitor is provided in the secondary side of the transformer and a DC is provided in the subsequent stage of the rectifier It can be set as the structure provided with a reactor. Noise can be removed by providing a capacitor on the secondary side of the transformer or providing a DC reactor after the rectifier.
  • condenser can be set as the structure provided in the diode bridge which comprises a rectifier.
  • the high-frequency power supply device of the present invention includes a high-frequency power source that supplies high-frequency power to a high-frequency load, and a regenerative circulator that takes in high-frequency power in one direction from a transmission path between the high-frequency amplifier circuit and the high-frequency load provided in the high-frequency power source and regenerates Prepare.
  • the regenerative circulator provided in the high-frequency power supply device is the regenerative circulator of the present invention, the input end of the regenerative circulator is connected on the transmission path, and the transmission is performed based on a comparison between the voltage at the input end of the regenerative circulator and the set voltage.
  • a parallel impedance is configured for the path, and the parallel impedance takes in high frequency power from the connection position and regenerates it.
  • the regenerative circulator provided in the high-frequency power supply device of the present invention can be the same as the regenerative circulator shown in the regenerative circulator.
  • the high frequency power regeneration method of the present invention is a method of regenerating high frequency power by a regenerative circulator from a transmission path between a high frequency amplifier circuit and a high frequency load of a high frequency power supply, and the input end of the regenerative circulator is connected to the transmission path. Then, based on the comparison between the voltage at the input terminal of the regenerative circulator and the set voltage, a parallel impedance is configured for the transmission path, and the parallel impedance takes in high frequency power from the connection position and regenerates.
  • the regeneration circulator may be the same as the regeneration circulator shown in the regeneration circulator.
  • the input end of the regenerative circulator is connected to a position corresponding to the antinode portion of the standing wave generated by impedance mismatch on the transmission path, and the input end of the regenerative circulator Based on the comparison between the voltage and the set voltage, a parallel impedance is configured for the transmission path, and high-frequency power is captured and regenerated from the connection position by the parallel impedance.
  • the second aspect of the high frequency power regeneration method of the present invention is that the input end of the regenerative circulator is on the transmission path, and the high frequency wavelength ( ⁇ ) output by the high frequency power source on the transmission path is from the output end of the high frequency amplifier circuit.
  • high-frequency power is taken in from the transmission path based on a comparison between the voltage at the input terminal of the regenerative circulator and the set voltage by the parallel impedance, and during the regenerative operation, the input terminal of the regenerative circulator Limit the upper voltage limit to the set voltage.
  • regeneration is performed after the AC output of the high-frequency power is converted to DC.
  • the present invention it is possible to suppress an excessive voltage increase of the load voltage caused by impedance mismatch on the transmission path. Moreover, the high frequency power can be regenerated.
  • a regenerative circulator according to the present invention and a high-frequency power supply device including the regenerative circulator will be described with reference to FIGS.
  • FIG. 1 is a schematic diagram for explaining the configuration of a regenerative circulator and a high-frequency power supply device according to the present invention.
  • the high-frequency power supply device 1 includes a high-frequency power supply 10 and a regenerative circulator 20.
  • the regenerative circulator 20 is connected to the transmission path 3 of the high-frequency power supply 10, forms a parallel impedance with respect to the transmission path 3, and power from the transmission path 3. To regenerate. Regeneration by the regenerative circulator 20 can be performed by returning the captured power to the high-frequency power source 10, supplying power to a device (not shown), or storing it in a power storage device (not shown).
  • the high frequency power supply 10 can be constituted by, for example, a DC power supply 11 and a high frequency amplification circuit 12.
  • the high frequency amplifier circuit 12 converts the direct current from the direct current power source 11 into a high frequency, and boosts and outputs a high frequency output.
  • the high frequency output is supplied to the high frequency load 2 via the transmission path 3.
  • the transmission path 3 is a transmission line that supplies electric power from the output end of the high-frequency amplifier circuit 12 to the input end of the high-frequency load 2, for example, a power cable disposed between the high-frequency power source 10 and the high-frequency load 2, It is formed by the wiring and circuit configuration in the power supply 10.
  • the traveling wave output from the high frequency amplification circuit 12 is supplied to the high frequency load 2 without being reflected.
  • the impedance of the high frequency load 2 fluctuates and a mismatch occurs between the characteristic impedance of the transmission path and the impedance of the high frequency load 2
  • a part or all of the traveling wave output from the high frequency amplifier circuit 12 is generated. Is reflected, and a standing wave is formed by the traveling wave and the reflected wave.
  • the regenerative circulator 20 has a function of conducting the current branched from the transmission path 3 in one direction only in the direction of the regenerative circulator 20.
  • the circulator in the regenerative circulator represents a function of current conduction with directionality.
  • the regenerative circulator 20 has a regenerative function in addition to the circulator function described above.
  • the regenerative function of the regenerative circulator 20 changes the voltage state of the standing wave by changing the impedance state at a predetermined position on the transmission path 3 between the high-frequency amplifier circuit 12 and the high-frequency load 2 of the high-frequency power supply 10. While suppressing an increase in the standing wave ratio, high-frequency power is regenerated from the transmission path.
  • the input end of the regenerative circulator 20 is connected to the transmission path 3 and forms a parallel impedance with respect to the transmission path 3 based on the comparison between the voltage at the input end of the regenerative circulator 20 and the set voltage. Parallel impedance takes in high-frequency power from the connection position on the transmission path 3 in one direction and regenerates it.
  • the voltage at the input terminal of the regenerative circulator 20 is in a steady voltage state, and thus is lower than the set voltage. In this steady voltage state, no current is conducted from the transmission path 3 toward the regenerative circulator 20, and the regenerative circulator 20 does not constitute a parallel impedance with respect to the transmission path 3.
  • the voltage at the input terminal of the regenerative circulator rises and may be higher than the set voltage.
  • a standing wave is generated when the impedance is mismatched.
  • the input voltage of the regenerative circulator does not necessarily increase, and the impedance does not depend on the load impedance or the electrical length of the transmission line. Even in the matched state, the input terminal voltage of the regenerative circulator may not increase.
  • the parallel impedance connected to the transmission path 3 changes the impedance state of the transmission path 3 to lower the voltage standing wave ratio (VSWR), suppresses the voltage rise, and takes in the current from the transmission path 3 to obtain a direct current power supply.
  • the regenerative power is not limited to the DC power source 11 and may be regenerated to other DC power sources or power storage devices.
  • the second aspect corresponds to the configuration example of the first aspect.
  • FIG. 1 corresponds to a first mode of connection of the regenerative circulator to the transmission path.
  • the first mode is a mode in which the input end of the regenerative circulator 20 is connected to a position corresponding to the antinode portion of the standing wave generated by impedance mismatch on the transmission path 3.
  • a standing wave is generated on the transmission path 3 due to impedance mismatch, a high voltage is applied to the antinode and a low voltage is applied to the node.
  • FIG. 1 shows a configuration example in which the input end of the regenerative circulator 20 is connected to the antinode portion of the standing wave of the transmission path 3.
  • the regenerative circulator 20 When the input end of the regenerative circulator 20 is connected to the antinode portion where the high voltage is generated on the transmission path 3, the regenerative circulator 20 takes in the current from the antinode portion on the transmission path 3, and the acquired voltage exceeds the set voltage. Constitutes a parallel impedance to the transmission path 3.
  • FIG. 2 is a schematic diagram for explaining the second aspect of the connection of the regenerative circulator to the transmission path.
  • FIG. 2 is a diagram in which the input end of the regenerative circulator is connected from the output end of the high-frequency amplifier circuit to a position of a predetermined electrical length. An embodiment is shown. 2, the connection position of the input end of the regeneration circulator 20 is indicated by P, which represents the impedance of the P in Z P
  • a high-frequency power source 10 is connected to a high-frequency load 2 by a transmission line 4 having a characteristic impedance Z 0 , and an output circuit 13 impedance-matched by the impedance Z 0 is connected to the high-frequency amplifier circuit 12. Since the output circuit 13 is impedance matched with the impedance Z 0 , the impedance Z amp when the load side is viewed from the high frequency amplifier circuit 12 matches the impedance Z g0 of the output terminal of the high frequency power supply 10.
  • the second mode is a case where the high frequency load is in a short (short circuit) state.
  • the second mode is a mode in which standing waves generated when the end of the transmission path is in a short state is reduced.
  • the input end of the regenerative circulator 20 is connected to the output end of the high-frequency amplifier circuit 12 (impedance Z amp ). From the position), the transmission line 3 is connected to a position having an electrical length that is an odd multiple of a quarter wavelength ( ⁇ / 4) of the high-frequency wavelength ( ⁇ ) output from the high-frequency power supply 10.
  • connection position is represented by (2n ⁇ 1) ⁇ / 4.
  • FIG. 3A shows a state in which the parallel impedance is configured by the regenerative circulator when the high-frequency load impedance Z L is in a short-circuited state
  • FIG. 3B shows the high-frequency load impedance Z L being
  • FIG. 3C shows a standing wave generated in a regenerative operation by a parallel impedance.
  • the high-frequency wavelength ( ⁇ ) output from the high-frequency power source on the transmission path from the output end of the high-frequency amplifier circuit at the end The position of the electrical length that is an odd multiple of the quarter wavelength ( ⁇ / 4) of) becomes an antinode of the standing wave and becomes a high voltage.
  • the voltages and currents in FIGS. 3B and 3C indicate the voltage when the end of the transmission path is short-circuited with a solid line and the current with a broken line.
  • FIG. 3B shows a state before regeneration
  • FIG. 3C shows a state after regeneration.
  • FIG. 3 shows an example in which the set voltage is k times the voltage VL on the high frequency load side.
  • the standing wave voltage at the end in the short state is zero, but here, the voltage at the position corresponding to the antinode of the standing wave on the load side is the voltage VL on the high frequency load side.
  • Connected regenerated circulator constitutes a parallel impedance Z R, whereby the peak value of the standing wave is reduced, the voltage V L of the high frequency load is reduced.
  • FIG. 4 is a diagram for explaining the regenerative operation by the parallel impedance.
  • k times the load voltage VL is used as the set voltage for performing the regenerative operation.
  • V P of the connecting position P of the regenerative circulators when in a consistent state in a steady voltage determined on the basis of the matching impedance, the output terminals of the high frequency amplifier circuit in the case where a mismatched state Impedance Z amp decreases from Z 0 and increases in voltage.
  • the voltage V P exceeds k ⁇ V L of the set voltage
  • the regeneration operation of the regenerative circulator starts a current flows from the transmission path circulator ( Figure 4 (b)).
  • Regeneration circulator acts as a parallel impedance Z R by the regenerative operation (FIG. 4 (c)), the impedance Z # 038 at the output end of the reduced high-frequency amplifier circuit connected to the parallel impedance Z R in the impedance Z go high-frequency power supply output by being, impedance increases (FIG. 4 (d)), suppresses the voltage rise of the voltage V P.
  • the impedance Z amp during the regenerative operation does not exceed the steady state value.
  • FIG. 5 shows a configuration example in which the input end of the regenerative circulator 20 is connected to the position of the electrical length of (2n ⁇ 1) ⁇ / 4 from the output end of the high-frequency amplifier circuit 12.
  • the high frequency amplifier circuit 12 can be constituted by a bridge circuit 12 a of semiconductor switching elements and a transformer 12 b.
  • the output circuit 13 is composed of a series circuit of a LPF (low-pass filter circuit) 13b for removing the matching circuit 13a and the noise component of the characteristic impedance Z 0 and the impedance matching of the transmission line 4.
  • the matching circuit 13a can be configured by an LC circuit, for example.
  • the LC circuit and the LPF (low-pass filter circuit) 13b are designed so that the electrical length is (2n-1) ⁇ / 4.
  • the connection position of the regenerative circulator is It works to prevent high impedance. This is synonymous with preventing the impedance Z amp from the regenerative circuit at the point of the electrical length (2n ⁇ 1) ⁇ / 4 from becoming a low impedance.
  • the regenerative circulator 20 is a circuit that starts regenerative circulator power regeneration, and includes a directional coupler 21 and a rectifier circuit 22 that take in high-frequency power in one direction from the transmission path as shown in FIGS.
  • the directional coupler 21 takes in the high frequency power from the transmission path based on the comparison between the input terminal voltage of the regenerative circulator 20 and the set voltage, and sets the upper limit of the voltage at the input terminal of the regenerative circulator to the set voltage during the regenerative operation. Restrict.
  • the rectifier circuit 22 converts alternating current into direct current and regenerates the direct current power source 11 or the like.
  • the electrode voltage V pp when the electrical length l of the transmission path is changed from 0 ° to 180 ° is shown for each case with and without the regenerative circulator.
  • the electrode voltage V pp of FIG. 6 indicates that the regenerative operation is performed when the electrical length is in the range of about 85 ° to 125 °, and the electrode voltage V pp is suppressed.
  • the regenerative circulator 20 includes a transformer 20a on the input side and a rectifier 20b including a diode bridge circuit on the output side.
  • the transformer 20 a corresponds to the directional coupler 21, and the rectifier 20 b corresponds to the rectifier circuit 22.
  • the output side can regenerate DC power to the DC voltage source by connecting to the DC voltage source of the DC power source 11, for example. Note that the DC power is not limited to the DC voltage source of the high frequency power supply, and may be regenerated to another DC voltage source.
  • Fig. 8 shows a modified circuit example of the regenerative circulator.
  • the capacitor 20c is connected to the secondary side of the transformer constituting the transformer 20a, so that the transformer secondary side due to the commutation overlap angle caused by the leakage current (leakage) flowing through the transformer. Compensates for voltage waveform distortion.
  • the AC component to the DC power source (V DD ) of the regeneration destination is reduced by connecting the inductances 20d and 20e to the output side of the diode bridge. It is good also as a structure which combined the capacitor
  • FIG. 9 is a circuit example of a high frequency power supply device and a regenerative circulator.
  • the parameters in the steady state where the plasma is ignited and the parameters when the regenerative circulator is not provided and in the abnormal state where the plasma is extinguished are as follows. Note During plasma ignition, the load impedance Z L is 50 [Omega, active component R L is 100 [Omega.
  • each parameter of the abnormal state in which the plasma is extinguished is as follows.
  • the effective load impedance R L is set to 100 k ⁇ .
  • FIG. 10 shows waveforms of the output terminal voltage V g0 , the electrode voltage V pp , the output current I dc of the DC power supply, and the input voltage I inv to the high frequency amplifier circuit in the time axis domain.
  • each parameter of the abnormal state in which the plasma is extinguished is as follows.
  • the effective load impedance R L is set to 100 k ⁇ .
  • FIG. 11 shows respective waveforms of the output terminal voltage V g0 , the electrode voltage V pp , the output current I dc of the DC power supply, and the input voltage I inv to the high frequency amplifier circuit in the time axis domain.
  • FIG. 12 shows on the Smith chart the impedance locus of the output terminal impedance Z amp of the high-frequency amplifier circuit with respect to the electrical length of the transmission line.
  • FIG. 12A shows a change in the output terminal impedance Z amp when the plasma is extinguished when the regenerative circulator is not provided
  • FIG. 12B shows the plasma extinguished when the regenerative circulator is provided. The change of the output terminal impedance Z amp at the time is shown.
  • A, B, and C correspond to impedances with electrical lengths of 0, ⁇ / 4, and ⁇ / 2, respectively, and A, B, and C correspond to changes in electrical length from 0 to ⁇ / 2. Impedance changes in the order of C.
  • the load end voltage is the largest at the position corresponding to the antinode of the standing wave
  • the impedance Z amp viewed from the high frequency amplifier circuit corresponding to the node portion of the standing wave is a low impedance corresponding to the short state. Since the load end voltage is proportional to the electrode voltage, the impedance Z amp becomes low impedance when the electrode voltage becomes maximum .
  • the impedance of the load end is at the position of the electrical length A.
  • the impedance Z amp seen from the high frequency amplifier circuit is changed from A to ⁇ / It becomes the position of the electrical length B moved by 4.
  • the impedance of the electrical length B is 0, which corresponds to a short state.
  • a and C correspond to impedances with electrical lengths of 0 and ⁇ / 2
  • D corresponds to impedance between electrical lengths of 0 and ⁇ / 4
  • E represents electrical length. This corresponds to an impedance between ⁇ / 4 and ⁇ / 2
  • the impedance changes in the order of A, D, E, and C as the electrical length changes from 0 to ⁇ / 2.
  • the parallel impedance is connected to the transmission path at the electrical length D, and the load impedance is not included.
  • the impedance changes along an impedance locus that avoids the low impedance point of the electrical length B.
  • the impedance Z amp When the impedance Z amp returns from the short state to the open state between ⁇ / 4 and ⁇ / 2, the effective amount generated when the parallel impedance is disconnected from the transmission path in the electrical length E disappears. The impedance changes toward the high impedance point of the electrical length C.
  • the output terminal impedance Z amp of the high frequency amplifier circuit can be avoided from the low impedance in the short state.
  • the effective amount generated by the parallel impedance is generated by returning power to the DC power supply voltage V DD through the regenerative circulator, and is not generated by adding a loss component such as an internal dummy load. Can be avoided and the regeneration efficiency can be improved.
  • the output power during total reflection is limited to 4000 W, As a result, the upper limit of the electrode voltage V pp is also limited.
  • the class D RF generator generates a square wave with an inverter.
  • the effective value voltage of the fundamental wave component of the square wave voltage is V in
  • the on-resistance of the inverter is R on
  • the transformer turns ratio is N
  • connection position P of the regenerative circulator and the load end is an integer multiple of the wavelength ⁇
  • the connection position P is used instead of the load voltage V L.
  • allowable voltage ratio k as a regenerative operation is started when the the voltage V P can be set allowable voltage ratio k
  • the regenerative operation start voltage V P-regen became k times the voltage V P-Z0 during alignment May be set.
  • FIG. 14 shows the relationship between the regenerative operation start voltage V P-regen and the voltage V P-Z0 when the allowable voltage ratio k is 2.
  • the DC power supply voltage V DD of the regeneration destination is the average value (2 ⁇ 2v P-regen / ⁇ ) of v P-regen (v L-regen ) and the turns ratio of the transformer N can be determined.
  • a regenerative circulator, a high frequency power supply device, and a regenerative method according to the present invention include a liquid crystal panel manufacturing device, a semiconductor manufacturing device, a power supply device that supplies high frequency power to a load device in which a load is a plasma load, and a power supply. Can be applied to the method.
  • I dc output current I g0 current I inv input voltage N turns ratio P connection position R L effective component R in internal resistance R on resistance value V DD DC power supply voltage V L load voltage V P regenerative operation start voltage V g0 output terminal voltage V in AC voltage source V pp electrode voltage Z 0 characteristic impedance Z L load impedance Z P impedance Z R parallel impedance Z amp output terminal impedance Z g0 output terminal impedance i L rms current i g0 rms current k allowable Voltage ratio v L load voltage ⁇ Voltage reflection coefficient ⁇ Wavelength 1 High frequency power supply 2 High frequency load 3 Transmission path 4 Transmission line 10 High frequency power supply 11 DC power supply 12 High frequency amplification circuit 12a Bridge circuit 12b Transformer 13 Output circuit 13a LC circuit 13b LPF 20 regenerative circulator 20a transformer 20b rectifier 20c capacitor 20d, 20e inductance 20f voltage divider 21 directional coupler 22 rectifier circuit 101 generator 102 load 104 transmission path 111

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electromagnetism (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Amplifiers (AREA)
  • Plasma Technology (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

伝送経路上のインピーダンス不整合によって生じる負荷電圧の過剰な電圧上昇を抑制すること、および高周波電力を回生する。電圧上昇時に伝送経路に並列インピーダンスが接続される構成とすることによって定在波による電圧を回生し、負荷電圧の過剰電圧を低減すると共に、エネルギーの利用効率を向上させる。高周波電源の高周波増幅回路と高周波負荷との間の伝送経路上において負荷インピーダンスに対して並列インピーダンスを構成することによって、接続位置のインピーダンスを低減して伝送経路上において過剰電圧が発生することを抑制し、並列インピーダンスによって伝送経路上から高周波電力を回生する。

Description

回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法
 本願発明は、例えば液晶パネル製造装置、半導体製造装置、レーザ発振器等の負荷がプラズマ負荷となる負荷装置に対して高周波電力を供給する電力供給に関し、特に、高周波電力を伝送する伝送経路上から電力を回生する回生サーキュレータ、回生サーキュレータを備えた高周波電源装置、及び高周波電力を回生する回生方法に関する。
 プラズマ負荷(プラズマソース)等の高周波負荷に高周波電力を供給する高周波電源(RFジェネレータ)として、例えばD級RFジェネレータが知られている。D級RFジェネレータはRF電力増幅素子のスイッチングによるスイッチモードで動作するため、その内部抵抗RinはRF電力増幅素子の飽和領域のON抵抗値Ronによって定まる。ON抵抗値Ronは、一般的には出力電力を伝送する特性インピーダンスZより低抵抗である。
 D級RFジェネレータは出力電力を特性インピーダンスZの伝送経路を介して負荷装置に給電するため、ジェネレータの出力端から見たインピーダンスZg0は定常時において特性インピーダンスZと等しくなるように(Zg0=Z)設計することで、供給電力が最大となるようにしている。
 高周波電源は、内部の高周波増幅回路で生成した高周波を、電力合成回路や整合回路等の出力回路を介して伝送経路に出力し、負荷に供給する。一般に、高周波増幅回路から見たインピーダンスZampは、高周波電源の定常時における出力端のインピーダンスZg0を高周波電源内の出力回路によってインピーダンス変換して表される。
 図15は、D級RFジェネレータの概略回路を示す図である。図15(a)において、D級RFジェネレータ101は直流電源111の直流を高周波増幅回路112で高周波化し、得られた高周波を出力回路113に通した後にジェネレータの出力端から伝送経路104を介して負荷102に供給する。
 高周波増幅回路112は、例えばRF電力増幅素子のブリッジ回路112aと変圧器112bにより構成される。出力回路113は、例えば伝送経路104のインピーダンスZとインピーダンス整合させるための整合回路113aや、ノイズ分を除去するフィルタ回路113bで構成される。高周波増幅回路112から見たインピーダンスZampは、D級RFジェネレータ101の出力端のインピーダンスZg0を出力回路113のインピーダンスでインピーダンス変換したものである。
 図15(b)は、インピーダンスZampを簡略化して示した図であり、直流電源111と高周波増幅回路112のブリッジ回路112a及び変圧器112bを交流電圧源Vinと内部抵抗Rinの回路で置き換えた構成で示している。この回路の出力電力はZamp=Rin=2Ronとなる時に最大電力となるが、実際にはRF電力増幅素子の仕様や直流電源部の仕様による制限や、Zampを遅れ負荷にする必要性から、最大電力となるZamp=Rinに設定される訳ではない。
 高周波電源装置において、伝送経路上のインピーダンス不整合により発生する反射波によって生じる高周波源の損傷や、不安定動作を防止するために、D級RFジェネレータに3dBカプラを内蔵させ内部ダミーロードで反射波を低減させる構成が考えられる。
 また、伝送経路上にサーキュレータを配置して反射波が高周波源に戻ることを防ぐと共に、ダミーロードで反射波を熱に変換する構成が知られている(特許文献1の背景技術の項参照)。ここで、サーキュレータは複数のポートの内のあるポートに入力した高周波信号を次のポートにのみ出力する機能を備えた受動素子であり、反射波が高周波源に戻るのを防止することによって、高周波源の損傷や不安定動作を防止している。
 しかしながら、3dBカプラを用いた構成では、3dBカプラ本体及び内部ダミーロードを高周波電源内部に実装しなければならず、高周波電源の構成が大きくなるという問題がある。また、3dBカプラによる構成では、3dBカプラの個数の2の倍数の高周波増幅回路が必要となるという問題がある上、反射波が発生すると高周波増幅回路に流れる反射電流が最大で200%余りのアンバランスを発生するという問題がある。
 したがって、ダミーロードを用いる構成では、反射波はポートに接続されたダミーロードで熱変換されるため、エネルギーの利用効率が低いという問題がある。この問題を解決する構成として、伝送経路から反射高調波を取り出し、取り出した反射高調波を直流に変換して、高周波電力を回生する電力回生の技術が提案されている(特許文献1)。
国際公開番号WO2011/052653
 図15(b)の回路構成において、整合回路、フィルタ回路、および伝送経路が無損失である場合には、負荷に供給される電力はVin、Rin、Zampをパラメータとして表される。これら供給電力を定める3つのパラメータの内、Zampは高周波電源装置の出力端のインピーダンスZg0を内部の高周波増幅回路から見たインピーダンスにインピーダンス変換した値であり、負荷インピーダンスの変動が反映される。
 負荷状態はインピーダンス不整合によって変動する。例えば、プラズマ負荷は、プラズマチャンバ内の圧力、ガス流量、アーキング等の諸条件によって変動する動的な負荷であることが知られている。インピーダンスZampは負荷インピーダンスの変動に対応して変動する。一方、前記した3つのパラメータの内、高周波電力の印加中においてRinは電力増幅素子の特性で決まる固定定数であり、Vinは直流電源の電圧VDDである。
 図16はインピーダンスZampの変動に対する出力電力の変化の一例を示している。ここでは、図15(b)の回路例においてVin=52V、Rin=2Ωとし、定常時のインピーダンスZampを50Ωとし、インピーダンスZampを1Ω~100Ωまで変化させた時に負荷へ供給される電力を示している。図16によれば、例えば、定格運転(Zamp=50Ω、出力電力=50W)の状態から負荷変動によってインピーダンスに不整合が生じ、インピーダンスZampが50Ωから2Ωに変化した場合には、負荷への供給電力は50Wから340Wとなり約7倍変化する。
 インピーダンスZampの急変による供給電力の変動に対して、Vinを定電圧制御することが可能であるため、インピーダンスZampの変化速度がVinの定電圧制御の応答速度の範囲内であれば出力電力を設定電力に保持することができる。しかしながら、高周波電力の印加中においてインピーダンスZampがVinの定電力制御の応答速度を越えて急激に変化した場合には、Vinの定電圧制御によってはプラズマ負荷への供給電力の変動を抑制することは困難となる。
 プラズマ負荷への供給電力の急激な変動は、電極電圧Vpp等の負荷電圧に急激な電圧増加を招く要因となる。過大な電極電圧Vppは、瞬時的であっても絶縁破壊によるアーキングの発生要因となり、プロセス中の半導体や液晶パネルの不良原因となる。
 本発明は前記した従来の問題点を解決し、伝送経路上のインピーダンス不整合によって生じる負荷電圧の過剰な電圧上昇を抑制すること、および高周波電力を回生することを目的とする。
 本願発明は、伝送経路上のインピーダンス不整合によって生じる電圧上昇はインピーダンス不整合で生じた反射波による定在波によって過剰となることに注目し、電圧上昇時に伝送経路に並列インピーダンスが接続される構成とすることによって定在波による電圧を回生し、負荷電圧の過剰電圧を低減すると共に、エネルギーの利用効率を向上させる。
(電気長および定在波による電圧変化)
 以下、伝送経路の電気長および定在波による電圧変化について説明する。
 負荷側の電圧は、高周波電源と負荷とを結ぶ伝送経路の電気長によって変動することが知られている。
 図17は、図15に示した負荷をプラズマインピーダンスおよび整合回路に置き換えた回路例を示している。図17の回路例では、プラズマインピーダンス中の有効分Rが100Ωの時に負荷インピーダンスZが50Ωとなるように整合回路によって整合している。なお、ここでの説明は動作周波数13.56MHzで動作させる例を示している。
 高周波電源の動作の一例として、プラズマの負荷インピーダンスZの有効分Rについて、定常時の抵抗分として100Ωを想定し、プラズマが消灯した際の開放時の抵抗分として100kΩを想定すると、伝送経路の電気長lを0°から180°まで変化させたときの負荷電圧である電極電圧Vpp、およびインピーダンスZampの絶対値|Zamp|はそれぞれ図18(a)及び図18(b)で表される。また、負荷インピーダンスZと高周波増幅回路のインピーダンスZampとを図18(c)のスミスチャートで示している。
 図18(a),(b)に示す様に、負荷電圧Vと比例関係にある電極電圧Vppは、インピーダンスZampの絶対値|Zamp|が極小値にあるとき極大値となる関係にあるため、インピーダンスZampの絶対値|Zamp|と電気長lとの関係から負荷電圧Vの電圧増加を知ることができる。
 一般的に、負荷インピーダンスZは、高周波電源の出力端のインピーダンスZg0と電流Ig0、および伝送経路の特性インピーダンスZと伝送経路の長さとから定まる。ここで、高周波電源の出力端のインピーダンスZg0と、高周波電源内の高周波増幅回路から見たインピーダンスZampとがインピーダンス整合されている場合には、高周波増幅回路から見たインピーダンスZampは出力端のインピーダンスZg0と一致する。
 したがって、高周波電源の内部の電気長が既知である場合には、インピーダンスZampの代わりに負荷インピーダンスZを用いることによって、負荷電圧Vが最大となる伝送経路の電気長lを求めることができ、電極電圧Vppの大きさは負荷電圧Vに比例するため、電極電圧Vppが最大となる伝送経路の電気長lを求めることができる。
 図18(c)のスミスチャートにおいて、m1(Γ=0.998∠32.352°)はプラズマが消灯したときの負荷インピーダンスZに対応する電圧反射係数Γを示し、m2はインピーダンスZampがショート状態にあるときの電圧反射係数Γを示しその位相角は180°である。また、m3はインピーダンスが∞の電圧反射係数Γを示している。図示する例では、負荷インピーダンスZと高周波増幅回路のインピーダンスZampとの間の伝送経路の電気長lは106°(=180°+32°/2)であることを示している。
 図18(a)は、m1を基準としたときに伝送経路の電気長lの位置の電極電圧Vppを示している。定常時の電極電圧Vppは伝送経路の電気長lに係わらず200Vの一定値を示すのに対して、プラズマ消灯時の電極電圧Vppは伝送経路の電気長lによって大きく変化し、電気長lが106°の位置(m2で示す位置)にあるときには定常時の電圧と比較して最大で約25倍に当たる約5×10Vとなることを示している。
 通常、真空チャンバの耐圧は定常時電圧に対して25倍もの高電圧に耐え得る設計とはなっていないため、このような過剰な電極電圧Vppの発生はアーキングが発生する要因となる。
 図18(b)は、m1を基準としたときに伝送経路の電気長lにある位置のインピーダンスZampの絶対値|Zamp|を示している。インピーダンスZampの絶対値|Zamp|は伝送経路の電気長lによって変化し、電気長lが106°の位置(m2で示した位置)にあるときインピーダンスZampの絶対値|Zamp|は極小となることを示している。したがって、m2は、高周波増幅回路から見たインピーダンスZampの絶対値|Zamp|が極小となる位置に相当している。
 図18(a),(b)において、伝送経路の電気長が0°の位置は負荷インピーダンスZがオープン状態であって電圧反射係数Γがm1の位置を示し、伝送経路の電気長が106°の位置はインピーダンスZampがショート状態であって電圧反射係数Γがm2の位置を示している。
 ここで、上記した伝送経路の電気長と電圧との関係から、伝送経路の長さをその電気長lがインピーダンスZampをショート状態としない長さに設定することによって、電極電圧Vppが過剰電圧となることを避けることが想定される。しかしながら、伝送経路の電気長lは伝送経路の長さや分布定数の変動等によって変化するため、実際に設置するケーブルの長さを設定した電気長lに合わせることは難しく、また、分布定数の変動によって電気長も変化するため、電極電圧Vppが過剰電圧となることを安定して回避することは困難である。
 インピーダンス不整合による反射波によって定在波が発生することが知られており、定在波の振幅が極大値をとることによってインピーダンス不整合で上昇した電圧はより過剰電圧となる。
 図19は整合時および不整合時の定在波の状態を説明するための模式図であり、図19(a)は整合時の状態を示し、図19(b)は負荷が短絡し、負荷インピーダンスZの反射係数が-1のときの不整合状態を示し、図19(c)は負荷が開放し、負荷インピーダンスZの反射係数が1のときの不整合状態を示している。なお、図19(a),(b),(c)中の電圧、電流は、伝送経路の端部が短絡したときの電圧を実線で表示し、電流を破線で表示している。
 整合時には定在波は発生せず、不整合時には定在波が発生する。短絡状態の負荷で発生する定在波と開放状態の負荷で発生する定在波とは、定在波の腹と節は逆の位置関係である。
 伝送経路の特性インピーダンスZが50Ωのとき、負荷を50Ωで終端した場合には、伝送経路への電圧、電流は電気長に係わらず一定となるため定在波は発生しない。一方、短絡負荷の場合には、伝送経路の負荷側の端では電圧が零、電流が極大となり、定在波の節となる。また、開放負荷の場合には、伝送経路の負荷側の端では電流が零、電圧が極大となり、定在波の腹となる。
 上記したように、負荷インピーダンスZにおける負荷電圧Vは、伝送経路のインピーダンス不整合によって電圧上昇し、伝送経路上の位置が定在波の腹に相当する場合には電圧上昇はより過剰となる。
(本願発明の構成)
 本願発明は、高周波電源の高周波増幅回路と高周波負荷との間の伝送経路上において負荷インピーダンスに対して並列インピーダンスを構成することによって、接続位置のインピーダンスを低減して伝送経路上において過剰電圧が発生することを抑制すると共に、並列インピーダンスによって伝送経路上から高周波電力を回生し、エネルギー効率を向上させる。
 サーキュレータが通常に備える機能として、進行波と反射波とを分離し、進行波および反射波の導通方向に方向性を持たせる機能が知られている。これに対して、本願発明のサーキュレータが備える機能は、通常のサーキュレータの進行波と反射波とに係わる機能ではなく、伝送経路から電流を分岐し、分岐した電流を方向性を有して導通させる機能を意味するものであり、本願発明では方向性を有した電流導通の機能という観点においてサーキュレータの用語を用いている。
 本願発明は、回生サーキュレータ、高周波電源装置、および高周波電力の回生方法の各態様を含み、何れも回生サーキュレータについて共通した技術事項を備えるものであり、本願発明の各態様は回生サーキュレータについて、伝送経路上の所定位置においてインピーダンス状態を変更することによって、定在波の電圧状態を変化させて電圧定在波比の上昇を抑制すると共に、伝送経路から電力を回生する技術事項を共通して備える。
 (回生サーキュレータの態様)
 本願発明の回生サーキュレータは回生機能を備えたサーキュレータであり、伝送経路上の所定位置においてインピーダンス状態を変更する構成によって、定在波の電圧状態を変化させて電圧定在波比の上昇を抑制すると共に、伝送経路から電力を回生する。
 本願発明の回生サーキュレータは、高周波電源の高周波増幅回路と高周波負荷との間の伝送経路上から高周波電力を回生する回生サーキュレータであり、回生サーキュレータの入力端は伝送経路上に接続され、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、伝送経路に対して並列インピーダンスを構成する。並列インピーダンスは伝送経路上の接続位置から高周波電力を片方向で取り込み、回生する。
 回生サーキュレータは、伝送経路から回生した電力を高周波電源に戻す他、電源装置を含む他の装置に供給したり、蓄電装置に蓄電することができる。
 回生サーキュレータの並列インピーダンスの機能:
 回生サーキュレータの並列インピーダンスについて説明する。伝送経路上において、インピーダンスが整合した状態では、回生サーキュレータの入力端の電圧は定常電圧状態にあるため設定電圧と比較して低電圧である。この電圧状態においては、伝送経路から回生サーキュレータ側に向かって電流は導通せず、回生サーキュレータは伝送経路に対する並列インピーダンスを構成しない。
 他方、伝送経路上において、定在波の発生によって回生サーキュレータの入力端の電圧が上昇し、設定電圧と比較して高電圧になる場合がある。この電圧上昇状態においては、伝送経路から回生サーキュレータ側に向かって電流が導通し、回生サーキュレータは伝送経路に対して並列インピーダンスを構成する。なお、定在波の発生要因としてインピーダンスの不整合があるが、インピーダンスが不整合の状態であっても負荷インピーダンスや伝送線路の電気長によって回生サーキュレータの入力端の電圧が上昇しない場合がある。
 伝送経路に接続された並列インピーダンスは、伝送経路上において定在波が発生するインピーダンス状態を変更して電圧定在波比(VSWR)を低下させ、電圧上昇を抑制する。
 また、並列インピーダンスは伝送経路から電流を取り込むことで電力を回生することができる。
 回生サーキュレータの接続位置の態様:
 伝送経路上において回生サーキュレータは、入力端が接続される位置の構成において複数の態様を採ることができる。
 第1の態様:
 回生サーキュレータの入力端が接続される位置の第1の態様は、伝送経路上においてインピーダンス不整合により発生する定在波の腹部分に相当する位置である。伝送経路上において、インピーダンスの不整合によって定在波が発生すると腹部分では高電圧となり節部分では低電圧となる。
 伝送経路上において高電圧が発生する腹部分に回生サーキュレータの入力端を接続することによって、回生サーキュレータは伝送経路上の高電圧部分から電流を取り込み、取り込んだ電圧が設定電圧を越える場合には伝送経路に対して並列インピーダンスを構成することができる。
 第2の態様:
 回生サーキュレータの入力端が接続される位置の第2の態様は、高周波増幅回路の出力から、伝送経路上において高周波電源が出力する高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置である。
 伝送経路上において高電圧が発生する電気長の位置に回生サーキュレータの入力端を接続することによって、回生サーキュレータは伝送経路上の高電圧部分から電流を取り込み、取り込んだ電圧が設定電圧を越える場合には伝送経路に対して並列インピーダンスを構成することができる。
 本願発明の回生サーキュレータは、伝送経路から高周波電力を片方向に取り込む方向性結合器を備える。方向性結合器は、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて伝送経路から高周波電力を取り込み、回生動作中において、回生サーキュレータの入力端の電圧の上限を設定電圧に制限する。
 本願発明の方向性結合器の第1の形態は変成器を備える。変成器の巻き数比は、設定電圧と回生サーキュレータの出力端の電圧の電圧比に基づく値である。したがって、設定電圧は、変成器の巻き数比と回生サーキュレータの出力端の電圧とによって定まる。
 変成器の巻き数比が1:1(=一次側巻き数:二次側巻き数)の場合には、設定電圧は、回生サーキュレータの出力端の電圧によって定まる。
 方向性結合器の第2の形態は、第1の形態が備える変成器に加えて交流を直流に変換する整流器を備える構成とする。整流器は変成器の交流出力を直流に変換し、変換した直流を回生する。第1の形態及び第2の形態において、変成器の2次側にコンデンサを設ける構成、整流器の後段に直流リアクトルを備える構成、あるいは変成器の2次側にコンデンサを設けると共に整流器の後段に直流リアクトルを備える構成とすることができる。変成器の2次側にコンデンサを設けることや整流器の後段に直流リアクトルを設けることによってノイズ分を除去することができる。コンデンサは、整流器を構成するダイオードブリッジに設ける構成とすることができる。
(高周波電源装置の態様)
 本願発明の高周波電源装置は、高周波負荷に高周波電力を供給する高周波電源と、高周波電源が備える高周波増幅回路と高周波負荷との間の伝送経路から高周波電力を片方向に取り込んで回生する回生サーキュレータを備える。高周波電源装置が備える回生サーキュレータは、本願発明の回生サーキュレータであって、回生サーキュレータの入力端は伝送経路上に接続され、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、並列インピーダンスは接続位置から高周波電力を取り込み回生する。
 本願発明の高周波電源装置が備える回生サーキュレータは、前記の回生サーキュレータの態様で示した回生サーキュレータの態様と同様とすることができる。
 (高周波電力の回生方法の態様)
 本願発明の高周波電力の回生方法は、高周波電源の高周波増幅回路と高周波負荷との間の伝送経路上から高周波電力を回生サーキュレータによって回生する方法であり、回生サーキュレータの入力端は伝送経路上に接続され、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、伝送経路に対して並列インピーダンスを構成し、並列インピーダンスは接続位置から高周波電力を取り込み回生する。
 本願発明の高周波電力の回生方法において、回生サーキュレータは前記の回生サーキュレータの態様で示した回生サーキュレータの態様と同様とすることができる。
 (第1の態様)
 本願発明の高周波電力の回生方法の第1の態様は、回生サーキュレータの入力端を伝送経路上においてインピーダンス不整合により発生する定在波の腹部分に相当する位置に接続し、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、伝送経路に対して並列インピーダンスを構成し、並列インピーダンスによって接続位置から高周波電力を取り込み回生する。
 (第2の態様)
 本願発明の高周波電力の回生方法の第2の態様は、回生サーキュレータの入力端を伝送経路上において、高周波増幅回路の出力端から、伝送経路上において高周波電源が出力する高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置に接続し、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、伝送経路に対して並列インピーダンスを構成し、並列インピーダンスによって接続位置から高周波電力を片方向で取り込み回生する。
 第1の態様、第2の態様において、並列インピーダンスによって、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて伝送経路から高周波電力を取り込み、回生動作中において、回生サーキュレータの入力端の電圧の上限を設定電圧に制限する。また、高周波電力の交流出力を直流に変換した後に回生する。
 以上説明したように、本発明によれば、伝送経路上のインピーダンス不整合によって生じる負荷電圧の過剰な電圧上昇を抑制することができる。また、高周波電力を回生することができる。
本願発明の回生サーキュレータおよび高周波電源装置の構成を説明するための概略図である。 回生サーキュレータの入力端の接続位置を説明するための概略図である。 回生サーキュレータの入力端の接続位置の第2の態様を説明するための概略図である。 並列インピーダンスによる回生動作を説明するための図である。 回生サーキュレータの入力端の接続例を説明するための図である。 電極電圧Vppの電気長に対する変化を説明するための図である。 回生サーキュレータの回路例を説明するための図である。 回生サーキュレータの回路例を説明するための図である。 高周波電源装置および回生サーキュレータの回路例を説明するための図である。 時間軸ドメインの高周波電源の各部の電圧および電流の波形を説明するための図である。 時間軸ドメインの高周波電源の各部の電圧および電流の波形を説明するための図である。 出力端インピーダンスZampのインピーダンス軌跡を示すスミスチャートである。 高周波電源装置の回路例である。 回生動作開始電圧VP-regenと電圧VP-Z0との関係を示す図である。 D級RFジェネレータの回路例を説明するための図である。 インピーダンスZampの変動に対する出力電力の変化例を示す図である。 D級RFジェネレータの回路例を説明するための図である。 電気長に対する電極電圧、インピーダンス、反射係数比を説明するための図である。 整合時および不整合時の定在波の状態を説明するための模式図である。
 本願発明の回生サーキュレータおよび回生サーキュレータを備える高周波電源装置について図1~図4を用いて説明する。
 (本願発明の構成)
 図1は本願発明の回生サーキュレータおよび高周波電源装置の構成を説明するための概略図である。
 高周波電源装置1は、高周波電源10と回生サーキュレータ20とを備え、回生サーキュレータ20は高周波電源10の伝送経路3に接続され、伝送経路3に対して並列インピーダンスを構成すると共に、伝送経路3から電力を取り込んで回生する。回生サーキュレータ20による回生は、取り込んだ電力を高周波電源10に戻す他、図示しない装置に電力供給したり、図示しない蓄電装置に蓄電することで行うことができる。
 高周波電源10は、例えば直流電源11と高周波増幅回路12で構成することができる。高周波増幅回路12は直流電源11からの直流を高周波に直流/高周波変換すると共に昇圧して高周波出力を出力する。高周波出力は、伝送経路3を介して高周波負荷2に供給される。
 伝送経路3は、高周波増幅回路12の出力端から高周波負荷2の入力端に電力を供給する伝送線路であり、例えば、高周波電源10と高周波負荷2の間に配設される電力ケーブルや、高周波電源10内の配線および回路構成によって形成される。
 伝送経路3において、伝送経路の特性インピーダンスと高周波負荷2のインピーダンスとが整合されている場合には、高周波増幅回路12から出力された進行波は反射されることなく高周波負荷2に供給される。これに対して、高周波負荷2のインピーダンスが変動し、伝送経路の特性インピーダンスと高周波負荷2のインピーダンスとの間に不整合が生じると、高周波増幅回路12から出力された進行波の一部あるいは全部が反射され、進行波と反射波によって定在波が形成される。
 回生サーキュレータ20は、伝送経路3から分岐した電流を、回生サーキュレータ20の方向にのみ片方向に導通させる機能を有する。回生サーキュレータ中のサーキュレータは方向性を有した電流導通の機能を表すものである。
 回生サーキュレータ20は上記したサーキュレータ機能の他に回生機能を備える。回生サーキュレータ20の回生機能は、高周波電源10の高周波増幅回路12と高周波負荷2との間の伝送経路3上の所定位置においてインピーダンス状態を変更することによって定在波の電圧状態を変化させ、電圧定在波比の上昇を抑制すると共に、伝送経路から高周波電力を回生する。回生サーキュレータ20の入力端は伝送経路3上に接続され、回生サーキュレータ20の入力端の電圧と設定電圧との比較に基づいて、伝送経路3に対して並列インピーダンスを構成する。並列インピーダンスは伝送経路3上の接続位置から高周波電力を片方向で取り込み、回生する
 伝送経路3上においてインピーダンスが整合した状態にあるときには、回生サーキュレータ20の入力端の電圧は定常電圧状態にあるため設定電圧と比較して低電圧である。この定常電圧状態においては、伝送経路3から回生サーキュレータ20側に向かって電流は導通せず、回生サーキュレータ20は伝送経路3に対して並列インピーダンスを構成しない。
 伝送経路3上で定在波が発生すると、回生サーキュレータの入力端の電圧は上昇し、設定電圧と比較して高電圧になる場合がある。定在波はインピーダンスが不整合であるときに発生するが、インピーダンスが不整合であれば必ず回生サーキュレータの入力端電圧が上昇する訳ではなく、負荷インピーダンスや伝送線路の電気長によってはインピーダンスが不整合の状態であっても回生サーキュレータの入力端電圧が上昇しない場合がある。
 回生サーキュレータの入力端電圧が設定電圧と比較して高電圧である電圧状態では、伝送経路3から回生サーキュレータ20側に向かって電流が導通し、回生サーキュレータ20は伝送経路3に対して並列インピーダンスを構成する。伝送経路3に接続された並列インピーダンスは、伝送経路3のインピーダンス状態を変更して電圧定在波比(VSWR)を低下させ、電圧上昇を抑制し、伝送経路3から電流を取り込むことで直流電源11へ電力を回生する。なお、回生電力は直流電源11に限らず他の直流電源や蓄電装置に回生してもよい。
 以下、回生サーキュレータ20を伝送経路3に接続する態様について、第1の態様、第2の態様について説明する。なお、第2の態様は第1の態様の構成例に相当している。
 第1の態様:
 図1は伝達経路に対する回生サーキュレータの接続の第1の態様に対応している。第1の態様は、回生サーキュレータ20の入力端を、伝送経路3上においてインピーダンス不整合により発生する定在波の腹部分に相当する位置に接続する態様である。伝送経路3上においてインピーダンス不整合によって定在波が発生すると、腹部分では高電圧となり節部分では低電圧となる。図1は伝送経路3の定在波の腹部分に回生サーキュレータ20の入力端を接続する構成例を示している。
 伝送経路3上において高電圧が発生する腹部分に回生サーキュレータ20の入力端を接続することによって、回生サーキュレータ20は伝送経路3上の腹部分から電流を取り込み、取り込んだ電圧が設定電圧を越える場合には伝送経路3に対して並列インピーダンスを構成する。
 第2の態様:
 図2は伝送経路に対する回生サーキュレータの接続について第2の態様を説明するための概略図であり、図2は回生サーキュレータの入力端を高周波増幅回路の出力端から所定の電気長の位置に接続する態様を示している。図2において、回生サーキュレータ20の入力端の接続位置はPで示し、このPにおけるインピーダンスをZで表している
 図2において、高周波電源10は高周波負荷2との間を特性インピーダンスZの伝送線路4で接続し、高周波増幅回路12にはインピーダンスZでインピーダンス整合された出力回路13が接続されている。出力回路13はインピーダンスZでインピーダンス整合されているため、高周波増幅回路12から負荷側を見たインピーダンスZampは高周波電源10の出力端のインピーダンスZg0と一致している。
 高周波負荷がショート(短絡)状態あるいはオープン(開放)状態となると、伝送経路にインピーダンス不整合が生じて反射波が発生し定在波が形成される。第2の態様は高周波負荷がショート(短絡)状態の場合である。
 第2の態様は、伝送経路の端部がショート状態にある際に発生する定在波を低減する態様であり、回生サーキュレータ20の入力端を、高周波増幅回路12の出力端(インピーダンスZampの位置)から、伝送経路3上において高周波電源10が出力する高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置に接続する。
 図3は、回生サーキュレータ20の入力端を伝送経路3上において高周波増幅回路12の出力端から高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置に接続する場合を示している。ここで整数nとしたとき、接続位置は(2n-1)λ/4で表される。
 図3(a)は高周波負荷のインピーダンスZがショート(短絡)状態にある場合に、回生サーキュレータによって並列インピーダンスが構成された状態を示し、図3(b)は、高周波負荷のインピーダンスZがショート(短絡)状態の場合に発生する定在波を示し、図3(c)は並列インピーダンスによる回生動作における定在波を示している。
 伝送経路の端部がショート状態となることでインピーダンスが不整合となり定在波が発生すると、端部である高周波増幅回路の出力端から、伝送経路上において高周波電源が出力する高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置は定在波の腹部分となり高電圧となる。図3(b),(c)中の電圧、電流は、伝送経路の端部が短絡したときの電圧を実線で表示し、電流を破線で表示している。図3(b)は回生前の状態を表し、図3(c)は回生後の状態を表している。
 伝送経路上において高電圧が発生する電気長の位置に回生サーキュレータの入力端を接続することによって、回生サーキュレータは伝送経路上の高電圧部分から電流を取り込み、取り込んだ電圧が設定電圧を越える場合には伝送経路に対して並列インピーダンスを構成することができる。図3では、高周波負荷側の電圧Vのk倍を設定電圧とした例を示している。なお、ショート状態の端部の定在波電圧は零となるが、ここでは負荷側において定在波の腹部分に当たる位置の電圧を高周波負荷側の電圧Vとしている。
 接続された回生サーキュレータは並列インピーダンスZを構成し、これによって定在波の波高値は低減され、高周波負荷側の電圧Vは低減される。
 図4は並列インピーダンスによる回生動作を説明するための図である。ここでは、回生動作を行う設定電圧として負荷電圧Vのk倍を用いた例を示している。図4(a)において、回生サーキュレータの接続位置Pの電圧Vは、整合状態にあるときには整合インピーダンスに基づいて定まる定常電圧にあり、不整合状態となった場合には高周波増幅回路の出力端のインピーダンスZampはZから低下し、電圧上昇する。電圧Vが設定電圧のk・Vを越えると、回生サーキュレータの回生動作が開始してサーキュレータに伝送経路から電流が流れる(図4(b))。
 回生サーキュレータは、回生動作によって並列インピーダンスZとして作用し(図4(c))、低下した高周波増幅回路の出力端のインピーダンスZampは高周波電源出力端のインピーダンスZgoに並列インピーダンスZが接続されたことにより、インピーダンスが増加し(図4(d))、電圧Vの電圧上昇を抑制する。なお、回生動作時のインピーダンスZampは定常時の値を越えない。
 (構成例)
 以下、本願発明の回生サーキュレータおよび高周波電源装置について、図5~図8を用いて前記した第2の態様の構成例を説明する。
 図5は、高周波増幅回路12の出力端から(2n-1)λ/4の電気長の位置に回生サーキュレータ20の入力端を接続した構成例を示している。高周波電源装置1において、高周波増幅回路12は、半導体スイッチング素子のブリッジ回路12aと変成器12bから構成することができる。また、出力回路13は、伝送線路4の特性インピーダンスZとインピーダンス整合する整合回路13aとノイズ分を除去するLPF(ローパスフィルタ回路)13bとの直列接続回路で構成される。整合回路13aは、例えばLC回路で構成することができる。LC回路とLPF(ローパスフィルタ回路)13bは電気長が(2n-1)λ/4となるように設計する。
 回生サーキュレータ20は、入力端の交流電圧があるレベルを超えると回生サーキュレータの回路に電流が流れ始めるので、見かけ上負荷(インピーダンス)が回路に並列接続されることになり、回生サーキュレータの接続位置が高インピーダンスになるのを防ぐ作用を奏する。このことは、同時に回生回路から電気長(2n-1)λ/4の点のインピーダンスZampが低インピーダンスになるのを防ぐ事と同義である。
 回生サーキュレータ20は、回生サーキュレータ電力の回生を開始する回路であり、図1,2に示すように伝送経路から高周波電力を片方向に取り込む方向性結合器21及び整流回路22を備える。方向性結合器21は、回生サーキュレータ20の入力端の電圧と設定電圧との比較に基づいて伝送経路から高周波電力を取り込み、回生動作中において、回生サーキュレータの入力端の電圧の上限を設定電圧に制限する。整流回路22は、交流を直流に変換し、直流電源11等に回生する。
 図6は、図5の変成器12bの巻数比を1:2とした高周波増幅回路を出力回路13の回路に接続し、負荷インピーダンスZの有効分を100kΩ(≒Open)としてプラズマが消えた場合を想定し、伝送経路の電気長lを0°~180°変化させた時の電極電圧Vppについて、回生サーキュレータを備える場合と備えない場合の各場合について示している。図6の電極電圧Vppは、電気長が約85°~125°の範囲で回生動作し、電極電圧Vppが抑制されることを示している。
 図7,8は回生サーキュレータの回路例を示している。図7に示す回路例において、回生サーキュレータ20は、入力側に変成器20aを備え、出力側にダイオードブリッジ回路からなる整流器20bを備えて構成される。変成器20aは方向性結合器21に対応し、整流器20bは整流回路22に対応している。出力側は、例えば直流電源11の直流電圧源に接続することによって、直流電力を直流電圧源に回生することができる。なお、直流電力は高周波電源の直流電圧源に限らず、他の直流電圧源に回生してもよい。
 図8は回生サーキュレータの変形回路例である。図8(a)に示す回路例は、変成器20aを構成するトランスの二次側にコンデンサ20cを接続することによって、トランスに流れる漏れ電流(リーケージ)による転流重なり角によるトランス二次側の電圧波形歪みを補償する。
 図8(b),(c)に示す回路例では、ダイオードブリッジの出力側にインダクタンス20d,20eを接続することによって、回生先の直流電源(VDD)への交流成分を低減する。図8(a)のコンンデンサおよび図8(b),(c)のインダクタンスとを組み合わせた構成としてもよい。
 (動作例)
 以下、本願発明の回生サーキュレータの動作例について図9~図13を用いて説明する。
 図9は高周波電源装置および回生サーキュレータの回路例である。図9の回路例において、プラズマが着火している定常状態のパラメータ、およびプラズマが消灯している異常状態において回生サーキュレータを備えていない場合と備えている場合のパラメータは下記のとおりである。なおプラズマ着火時において、負荷インピーダンスZは50Ωであり、有効分Rは100Ωである。
 [定常状態]
 直流電源電圧VDD:290V
 進行波      :4000W(高周波電源の出力端での測定値)
 反射波      :0W(高周波電源の出力端での測定値)
 高周波増幅回路の出力端インピーダンスZamp:40+j20Ω
 負荷インピーダンスの有効分Rの電圧Vpp:1794V
 負荷インピーダンスの有効分RL         :100Ω
 高周波電源装置の出力端インピーダンスZg0 :50Ω
 [異常状態:回生サーキュレータを備えていない場合]
 図9の回路例において回生サーキュレータを備えていない場合に、プラズマが消灯している異常状態の各パラメータは下記のとおりである。なお、プラズマ消灯時において、負荷インピーダンスの有効分Rは100kΩとしている。
 直流電源電圧VDD :290V
 進行波      :49000W(高周波電源の出力端での測定値)
 反射波      :49000W(高周波電源の出力端での測定値)
 高周波増幅回路の出力端インピーダンスZamp:0.05-j0.01Ω
 負荷インピーダンスの有効分Rの電圧Vpp :12530V
 負荷インピーダンスの有効分RL          :100kΩ
 高周波電源装置の出力端インピーダンスZg0 :オープン(40kΩ)
 図10は、時間軸ドメインの高周波電源の出力端電圧Vg0、電極電圧Vpp、および直流電源の出力電流Idc、高周波増幅回路への入力電圧Iinvの各波形を示している。なお、図10ではt=12usでプラズマが消灯した時のデータを示している。
 回生サーキュレータを備えていない場合には、4kW定格の電源に対して49kWもの出力電力を出力することになり、電力増幅素子が過電圧もしくは過損失にて破損する可能性がある他、定常時の電極電圧Vppが1794Vであるのに対して、異常時には12530Vの高電圧が真空装置の電極に印加されることになるため、電極破損もしくは絶縁破壊によるアーキングの発生要因となる可能性があるという問題点がある。
 [異常状態:回生サーキュレータを備えている場合]
 図9の回路例において回生サーキュレータを備えている場合に、プラズマが消灯している異常状態の各パラメータは下記のとおりである。なお、プラズマ消灯時において、負荷インピーダンスの有効分Rは100kΩとしている。
 直流電源電圧VDD :290V
 進行波      :4000W(高周波電源の出力端での測定値)
 反射波      :4000W(高周波電源の出力端での測定値)
 高周波増幅回路の出力端インピーダンスZamp:18.9+j6.0Ω
 負荷インピーダンスの有効分Rの電圧Vpp :3560V
 負荷インピーダンスの有効分RL          :100kΩ
 高周波電源装置の出力端インピーダンスZg0 :オープン(40kΩ)
 図11は、時間軸ドメインの高周波電源の出力端電圧Vg0、電極電圧Vpp、および直流電源の出力電流Idc、高周波増幅回路への入力電圧Iinvの各波形を示している。なお、図11ではt=12usでプラズマが消灯した時のデータを示している。
 図12は、伝送線路の電気長に対する高周波増幅回路の出力端インピーダンスZampのインピーダンス軌跡をスミスチャート上で示している。図12(a)は回生サーキュレータを備えていない場合において、プラズマが消灯したときの出力端インピーダンスZampの変化を示し、図12(b)は回生サーキュレータを備えている場合において、プラズマが消灯したときの出力端インピーダンスZampの変化を示している。
 図12(a)において、A,B,Cは電気長がそれぞれ0,λ/4,λ/2のインピーダンスに相当し、0からλ/2への電気長の変化に伴ってA,B,Cの順でインピーダンスが変化する。
 定在波の腹部分と節部分との間には電気長でλ/4の関係があるため、負荷端電圧が最も大きくなるのは負荷端が定在波の腹部分に相当する位置にあるときであり、このとき定在波の節部分に相当する高周波増幅回路から見たインピーダンスZampはショート状態に相当する低インピーダンスである。なお、負荷端電圧は電極電圧に比例するため、電極電圧が最も大きくなるときインピーダンスZampは低インピーダンスとなる。
 図12(a)において、負荷端電圧(電極電圧)が最も大きくなるとき、負荷端のインピーダンスは電気長Aの位置にあり、このとき、高周波増幅回路から見たインピーダンスZampはAからλ/4だけ移動した電気長Bの位置となる。電気長Bのインピーダンスは0でありショート状態に相当する。
 したがって、高周波増幅回路から見たインピーダンスZampを観察したとき、インピーダンスZampが0の電気長Bの位置にあるときには、負荷端のインピーダンスはインピーダンスが∞に相当する電気長Aの位置にあり、負荷端電圧(電極電圧)は増大する。
 図12(b)において、A,Cは電気長がそれぞれ0,λ/2のインピーダンスに相当し、Dは電気長が0とλ/4との間のインピーダンスに相当し、Eは電気長がλ/4とλ/2の間のインピーダンスに相当し、0からλ/2への電気長の変化に伴ってA,D,E,Cの順でインピーダンスが変化する。
 回生サーキュレータを備えた構成では、0とλ/4との間においてインピーダンスZampがショート状態に近づくと、電気長Dにおいて伝送経路に並列インピーダンスが接続された状態となって、負荷インピーダンスが備える以外の有効分が発生し、電気長Bの低インピーダンス点を避けたインピーダンス軌跡に沿ってインピーダンスが変化する。
 λ/4とλ/2の間においてインピーダンスZampがショート状態からオープン状態に戻る際に、電気長Eにおいて伝送経路から並列インピーダンスの接続が外れた状態となって発生していた有効分が消え、電気長Cの高インピーダンス点に向かってインピーダンスが変化する。
 したがって、回生サーキュレータを備えることによって、高周波増幅回路の出力端インピーダンスZampをショート状態の低インピーダンスから避けた状態とすることができる。
 回生サーキュレータによる並列インピーダンスによってインピーダンスZampの低インピーダンス化を避けることができるため、負荷電圧Vおよび電極電圧Vppが定常時の何十倍もの値に跳ね上がることを抑制することができる。
 並列インピーダンスによって発生する有効分は、回生サーキュレータを通して直流電源電圧VDDに電力を戻すことによって発生するものであり、内部ダミーロード等の損失成分を追加することで生じるものではないため、回生したエネルギーが損失することを避けることができ回生効率を向上させることができる。
 また、全反射時の出力電力は4000Wに制限され、その結果、電極電圧Vppの上限も制限される。
出力電力および電圧の上限を制限することによって、電力増幅素子の破損、真空装置の電極破損、アーキングによる半導体素子の破損等を抑制することができる。
(回生動作の開始条件)
 上記したように、高周波増幅回路の出力端から見たインピーダンスZampが低インピーダンスとなるインピーダンス状態と、定在波による負荷端電圧の上昇とは対応関係にある。以下、回生動作によってインピーダンスZampを低インピーダンスから回避する動作条件について説明する。
 D級RFジェネレータはインバータで方形波を発生させる。図13の回路例において、方形波電圧の基本波成分の実効値電圧をVin、インバータのオン抵抗をRon、トランス巻数比をNとすると、内部抵抗Rinは以下の式で表される。
 Rin=2Ron2   ・・・(1)
 このとき、高周波出力の実効値電圧Vg0、実効値電流ig0の関係は、
 vamp=vg0=vin-Rinamp=vin-Ring0
 amp=ig0
 Zamp=vamp/iamp=vg0/ig0=Zg0
                        ・・・(2)
である。
 同軸ケーブル長lにおける負荷側の実効値電圧V、実効値電流iとし、伝送経路長l=λ/4、βl=π/2とし、VをVL(λ/4)に置換し、VL(λ/4)を基準ベクトルに設定して、VL(λ/4)=VL-setとすると、
 vL-set=vP-set
 iL-set=iP-set
 Z=Z
                        ・・・(3)
 vg0(λ/4)=j(vP-set)/Z
 ig0(λ/4)=jvP-set/Z
 g0(λ/4)=vg0(λ/4)/ig0(λ/4)=Z /Z
                        ・・・(4)
で表される。
[回生動作時の許容電圧比kとZamp]
 式(4)において、Z=Zに整合している場合の添え字をZ0で表記し、回生動作時の添え字をregenで表記し、負荷電圧Vが整合時の負荷電圧VL-Z0のk倍となった時に回生動作が開始するとして負荷電圧Vの許容電圧比kを定めると、回生時の高周波増幅回路から見たインピーダンスZamp(λ/4)-regen、および回生サーキュレータの接続位置PのインピーダンスZP(λ/4)-regenはそれぞれ以下の式で表される。
 Zamp(λ/4)-regen={Z-(k-1)Rin}/k 
 ZP(λ/4)-regen=kZ /{Z-(k-1)Rin
                        ・・・(5)
 なお、回生サーキュレータの接続位置Pと負荷端との間の電気長が波長λの整数倍の関係にあるときはV=Vの関係にあるため、負荷電圧Vに代えて接続位置Pの電圧Vによって許容電圧比kを設定することができ、回生動作開始電圧VP-regenを整合時の電圧VP-Z0のk倍となった時に回生動作が開始するとして許容電圧比kを設定してもよい。図14は、許容電圧比kを2としたとき、回生動作開始電圧VP-regenと電圧VP-Z0との関係を示している。
 以下、計算例として負荷電圧vが最も大きくなる以下の条件として、例えば、
 Z=∞
 Rin=8Ω
 Z=50Ω
 伝送線路の電気長l=λ/4
の場合に、回生サーキュレータを用いてk=2としたときに負荷電圧vを抑制する例を示す。
 回生サーキュレータの接続位置Pより負荷側のインピーダンスZは負荷側がオープン状態のインピーダンス(Z=∞)の状態において、回生サーキュレータにより並列インピーダンスZが接続されると、インピーダンスZは映像インピーダンスによりZ=Zとなる。
 式(5)を用いてZampとZを求めると、
 Zamp={Z-(k-1)Rin}/k={50-(2-1)×8}/2=21[Ω]
 Z=Z=kZ /{Z-(k-1)Rin}=2×50/{50-(2-1)×8}
                                             ≒119[Ω]
となる。
 このことは、P点において無限大の負荷インピーダンスに並列にZ (約119Ω)が接続された状態となり、Zampが低インピダーンス(ショート)となることから回避されたことを表している。
 なお、式(5)において、負荷がオープン状態(Z=∞)においても許容電圧比kを1に設定することによってZamp=Z=50Ωとなり、整合状態とすることができる。
 許容電圧比k=1は、回生動作を開始する負荷電圧Vを整合時の負荷電圧VL-Z0とすることを意味し、正常状態においても回生動作を行うことで、インピーダンスの不整合によって異常状態となった場合であっても負荷電圧Vを整合時の負荷電圧VL-Z0に維持することができる。
 [回生動作時のVL-regenと直流電源電圧VDDの関係]
 負荷電圧Vが整合時における実効値電圧vL-Z0のk倍となった時点で回生動作を開始して直流電源電圧VDDへ直流電力を回生 (regeneration)させると共に、負荷電圧Vの上限電圧を回生動作時の負荷電圧VL-regenに制限する。
 変圧器を用いて回生を行う場合には、回生先の直流電源電圧VDDはvP-regen(vL-regen)の平均値(2√2vP-regen/π)と変圧器の巻数比Nによって定めることができる。
 Z=Zの時に、高周波増幅回路のインバータへ印加される直流電源電圧VDDと回生動作開始電圧VP-Z0(VL-Z0)が既知であるときには、変圧器の巻数比Nは許容電圧比kから以下の式(6)で表すことができる。
 N×VDD=2√2×vL-regen/π=(2√2×k×vL-Z0)/π
 N=(2√2×k×vL-Z0)/(π×VDD
  ≒(0.9×k×vL-Z0)/(π×VDD
                        ・・・(6)
 なお、上記実施の形態及び変形例における記述は、本発明に係る直流電源装置および直流電源装置の制御方法の一例であり、本発明は各実施の形態に限定されるものではなく、本発明の趣旨に基づいて種々変形することが可能であり、これらを本発明の範囲から排除するものではない。
 本発明の回生サーキュレータ、高周波電源装置、回生方法は、液晶パネル製造装置、半導体製造装置、レーザ発振器等の負荷がプラズマ負荷となる負荷装置に対して高周波電力を供給する電力供給装置、および電力供給方法に適用することができる。
 A~E  電気長
 Idc  出力電流
 Ig0  電流
 Iinv  入力電圧
 N  巻数比
 P  接続位置
 R  有効分
 Rin  内部抵抗
 Ron  抵抗値
 VDD  直流電源電圧
 V  負荷電圧
 V  回生動作開始電圧
 Vg0  出力端電圧
 Vin  交流電圧源
 Vpp  電極電圧
 Z  特性インピーダンス
 Z  負荷インピーダンス
 Z  インピーダンス
 Z  並列インピーダンス
 Zamp  出力端インピーダンス
 Zg0  出力端インピーダンス
 i  実効値電流
 ig0  実効値電流
 k   許容電圧比
 v  負荷電圧
 Γ  電圧反射係数
 λ  波長
 1  高周波電源装置
 2  高周波負荷
 3  伝送経路
 4  伝送線路
 10  高周波電源
 11  直流電源
 12  高周波増幅回路
 12a  ブリッジ回路
 12b  変成器
 13  出力回路
 13a  LC回路
 13b  LPF
 20  回生サーキュレータ
 20a  変成器
 20b  整流器
 20c  コンデンサ
 20d,20e  インダクタンス
 20f  分圧器
 21  方向性結合器
 22  整流回路
 101  ジェネレータ
 102  負荷
 104  伝送経路
 111  直流電源
 112  高周波増幅回路
 112a  ブリッジ回路
 112b  変圧器
 113  出力回路
 113a  整合回路
 113b  フィルタ回路

Claims (21)

  1.  高周波電源の高周波増幅回路と高周波負荷との間の伝送経路上から高周波電力を回生する回生サーキュレータであり、
     前記回生サーキュレータの入力端は前記伝送経路上に接続され、
     前記回生サーキュレータは、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
     前記並列インピーダンスは前記接続位置から高周波電力を片方向で取り込み回生することを特徴とする、回生サーキュレータ。
  2.  前記回生サーキュレータの入力端の前記伝送経路上の接続位置は、前記伝送経路上においてインピーダンス不整合により発生する定在波の腹部分に相当する位置であり、
     前記回生サーキュレータは、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
     前記並列インピーダンスは前記接続位置から高周波電力を片方向で取り込み回生することを特徴とする、請求項1に記載の回生サーキュレータ。
  3.  前記回生サーキュレータの入力端の前記伝送経路上の接続位置は、高周波増幅回路の出力端から、前記伝送経路上において前記高周波電源が出力する高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置であり、
     前記回生サーキュレータは、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
     前記並列インピーダンスは前記接続位置から高周波電力を片方向で取り込み回生することを特徴とする、請求項1又は2に記載の回生サーキュレータ。
  4.  前記伝送経路から高周波電力を片方向に取り込む方向性結合器を備え、
     前記方向性結合器は、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて前記伝送経路から高周波電力を取り込み、
     回生動作中において、回生サーキュレータの入力端の電圧の上限を設定電圧に制限することを特徴とする、請求項1から3の何れか一つに記載の回生サーキュレータ。
  5.  前記方向性結合器は変成器を備え、
     前記変成器の巻き数比は、前記設定電圧と回生サーキュレータの出力端の電圧の電圧比に基づく値であることを特徴とする、請求項4に記載の回生サーキュレータ。
  6.  前記変成器の交流出力を直流に変換する整流器を備えることを特徴とする、請求項5に記載の回生サーキュレータ。
  7.  前記変成器の2次側にコンデンサを並列に備えることを特徴とする、請求項5又は6に記載の回生サーキュレータ。
  8.  前記整流器の後段に直流リアクトルを直列に備えることを特徴とする、請求項6又は7に記載の回生サーキュレータ。
  9.  高周波負荷に高周波電力を供給する高周波電源と、
     前記高周波電源が備える高周波増幅回路と高周波負荷との間の伝送経路から高周波電力を片方向に取り込んで回生する回生サーキュレータを備え、
     前記回生サーキュレータの入力端は前記伝送経路上に接続され、
     前記回生サーキュレータは、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
     前記並列インピーダンスは前記接続位置から高周波電力を取り込み回生することを特徴とする、高周波電源装置。
  10.  前記回生サーキュレータの入力端の前記伝送経路上の接続位置は、前記伝送経路上においてインピーダンス不整合により発生する定在波の腹部分に相当する位置であり、
     前記回生サーキュレータは、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
     前記並列インピーダンスは前記接続位置から高周波電力を取り込み回生することを特徴とする、請求項9に記載の高周波電源装置。
  11.  前記回生サーキュレータの入力端の前記伝送経路上の接続位置は、高周波増幅回路の出力端から、前記伝送経路上において前記高周波電源が出力する高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置であり、
     前記回生サーキュレータは、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
     前記並列インピーダンスは前記接続位置から高周波電力を片方向で取り込み回生することを特徴とする、請求項9又は10に記載の高周波電源装置。
  12.  前記伝送経路から高周波電力を片方向に取り込む方向性結合器を備え、
     前記方向性結合器は、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて前記伝送経路から高周波電力を取り込み、
     回生動作中において、回生サーキュレータの入力端の電圧の上限を設定電圧に制限することを特徴とする、請求項9~11の何れか一つに記載の高周波電源装置。
  13.  前記方向性結合器は変成器を備え、
     前記変成器の巻き数比は、前記設定電圧と回生サーキュレータの出力端の電圧の電圧比に基づく値であることを特徴とする、請求項12に記載の高周波電源装置。
  14.  前記変成器の交流出力を直流に変換する整流器を備えることを特徴とする、請求項13に記載の高周波電源装置。
  15.  前記変成器の2次側にコンデンサを並列に備えることを特徴とする、請求項13又は14に記載の高周波電源装置。
  16.  前記整流器の後段に直流リアクトルを直列に備えることを特徴とする、請求項14又は15に記載の高周波電源装置。
  17.  高周波電源の高周波増幅回路と高周波負荷との間の伝送経路上から高周波電力を回生サーキュレータによって回生する方法であり、
     前記回生サーキュレータの入力端を前記伝送経路上に接続し、
     前記回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
     前記並列インピーダンスによって前記接続位置から高周波電力を取り込み回生することを特徴とする、高周波電力の回生方法。
  18.  前記回生サーキュレータにおいて、入力端を前記伝送経路上において、前記伝送経路上においてインピーダンス不整合により発生する定在波の腹部分に相当する位置に接続し、
     前記回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
     前記並列インピーダンスによって前記接続位置から高周波電力を取り込み回生することを特徴とする、請求項17に記載の高周波電力の回生方法。
  19.  前記回生サーキュレータにおいて、入力端を前記伝送経路上において、高周波増幅回路の出力端から、前記伝送経路上において前記高周波電源が出力する高周波の波長(λ)の4分の1波長(λ/4)の奇数倍の電気長の位置に接続し、
     前記回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて、前記伝送経路に対して並列インピーダンスを構成し、
     前記並列インピーダンスによって前記接続位置から高周波電力を片方向で取り込み回生することを特徴とする、請求項17又は18に記載の高周波電力の回生方法。
  20.  前記並列インピーダンスによって、回生サーキュレータの入力端の電圧と設定電圧との比較に基づいて前記伝送経路から高周波電力を取り込み、
     回生動作中において、回生サーキュレータの入力端の電圧の上限を設定電圧に制限することを特徴とする、請求項17~19の何れか一つに記載の高周波電力の回生方法。
  21.  高周波電力の交流出力を直流に変換した後に回生することを特徴とする、請求項17~19の何れか一つに記載の高周波電力の回生方法。
PCT/JP2014/080580 2014-08-25 2014-11-19 回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法 WO2016031091A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020177004777A KR101913050B1 (ko) 2014-08-25 2014-11-19 회생 서큘레이터, 고주파 전원장치, 및 고주파 전력의 회생방법
CN201480081515.7A CN106797141B (zh) 2014-08-25 2014-11-19 再生循环器、高频电源装置、以及高频电力的再生方法
EP14900492.1A EP3197013B1 (en) 2014-08-25 2014-11-19 Regeneration circulator, high-frequency power supply device, and high-frequency power regeneration method
US15/503,778 US10355607B2 (en) 2014-08-25 2014-11-19 Regeneration circulator, high-frequency power supply device, and high-frequency power regeneration method
PL14900492T PL3197013T3 (pl) 2014-08-25 2014-11-19 Cyrkulator do odzyskiwania, urządzenie w postaci źródła zasilania o wysokiej częstotliwości i sposób odzyskiwania mocy o wysokiej częstotliwości
TW103143486A TWI576017B (zh) 2014-08-25 2014-12-12 再生循環器、高頻電源裝置及高頻電力之再生方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014170664A JP5797313B1 (ja) 2014-08-25 2014-08-25 回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法
JP2014-170664 2014-08-25

Publications (1)

Publication Number Publication Date
WO2016031091A1 true WO2016031091A1 (ja) 2016-03-03

Family

ID=54348596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080580 WO2016031091A1 (ja) 2014-08-25 2014-11-19 回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法

Country Status (8)

Country Link
US (1) US10355607B2 (ja)
EP (1) EP3197013B1 (ja)
JP (1) JP5797313B1 (ja)
KR (1) KR101913050B1 (ja)
CN (1) CN106797141B (ja)
PL (1) PL3197013T3 (ja)
TW (1) TWI576017B (ja)
WO (1) WO2016031091A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6608761B2 (ja) * 2016-04-14 2019-11-20 ファナック株式会社 Dcリンクコンデンサの電圧変動を抑制するモータ駆動装置
JP6671045B2 (ja) * 2016-09-02 2020-03-25 パナソニックIpマネジメント株式会社 電力変換システム
WO2018061932A1 (ja) 2016-09-30 2018-04-05 株式会社アルバック 電源装置
US10672590B2 (en) * 2018-03-14 2020-06-02 Lam Research Corporation Frequency tuning for a matchless plasma source
JP7117693B2 (ja) * 2018-03-22 2022-08-15 大成建設株式会社 電力伝送システム
KR20210123343A (ko) * 2019-01-31 2021-10-13 이글 하버 테크놀로지스, 인코포레이티드 정밀 플라즈마 제어 시스템
JP7348101B2 (ja) * 2020-02-18 2023-09-20 株式会社京三製作所 高周波電源装置の制御方法及び高周波電源装置
WO2021211582A1 (en) * 2020-04-13 2021-10-21 Advanced Energy Industries, Inc. Input impedance networks with power recovery
DE102022122044A1 (de) * 2022-08-31 2024-02-29 TRUMPF Hüttinger GmbH + Co. KG Plasmazustandsüberwachungsvorrichtung zum Anschluss an eine Impedanzanpassungsschaltung für ein Plasmaerzeugungssystem, ein Plasmaerzeugungssystem und ein Verfahren zur Überwachung des Plasmaerzeugungssystems

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186062A (ja) * 1999-12-24 2001-07-06 Shinko Electric Co Ltd 電力線搬送通信装置
JP2013162626A (ja) * 2012-02-03 2013-08-19 Nec Corp 電子棚札システム
JP2014003774A (ja) * 2012-06-15 2014-01-09 Ryukoku Univ 移動型無線電力受電装置及びそれを用いた無線電力伝送システム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3082377B2 (ja) 1991-02-28 2000-08-28 ソニー株式会社 分布定数回路型磁界検出装置
US5559685A (en) 1994-10-12 1996-09-24 Electronic Power Conditioning, Inc. Voltage clamped parallel resonant converter with controllable duty cycle
JP3920420B2 (ja) 1996-10-08 2007-05-30 富士通株式会社 Eh整合器、マイクロ波自動整合方法、半導体製造装置
AU6358600A (en) * 1999-07-22 2001-02-13 Paul George Bennett Power supplies having protection circuits
US7180758B2 (en) 1999-07-22 2007-02-20 Mks Instruments, Inc. Class E amplifier with inductive clamp
JP4141797B2 (ja) 2002-10-31 2008-08-27 株式会社東芝 低反射型リミタ並びに低反射型リミタを用いた送受信モジュールおよびアクティブフェーズドアレーアンテナ
JP2004205328A (ja) * 2002-12-25 2004-07-22 Daihen Corp 高周波電源装置
US8217299B2 (en) 2007-02-22 2012-07-10 Advanced Energy Industries, Inc. Arc recovery without over-voltage for plasma chamber power supplies using a shunt switch
JP4808182B2 (ja) 2007-04-27 2011-11-02 株式会社エヌ・ティ・ティ・ドコモ 無線通信装置、無線通信装置の給電方法
TWI363481B (en) 2008-03-28 2012-05-01 Delta Electronics Inc Synchronous rectifying circuit having burst mode controller and controlling method thereof
US8885369B2 (en) * 2009-10-29 2014-11-11 Nihon Dengyo Kosaku Co., Ltd. Power regeneration device, method of regenerating power, power storage system, method of storing power, and high frequency device
US9965140B2 (en) * 2011-12-26 2018-05-08 TrackThings LLC Method and apparatus of a marking objects in images displayed on a portable unit
JP5534365B2 (ja) 2012-06-18 2014-06-25 株式会社京三製作所 高周波電力供給装置、及び反射波電力制御方法
JP5534366B2 (ja) 2012-06-18 2014-06-25 株式会社京三製作所 高周波電力供給装置、及びイグニッション電圧選定方法
TWI599272B (zh) 2012-09-14 2017-09-11 蘭姆研究公司 根據三個或更多狀態之功率及頻率調整
US9294100B2 (en) 2012-12-04 2016-03-22 Advanced Energy Industries, Inc. Frequency tuning system and method for finding a global optimum

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001186062A (ja) * 1999-12-24 2001-07-06 Shinko Electric Co Ltd 電力線搬送通信装置
JP2013162626A (ja) * 2012-02-03 2013-08-19 Nec Corp 電子棚札システム
JP2014003774A (ja) * 2012-06-15 2014-01-09 Ryukoku Univ 移動型無線電力受電装置及びそれを用いた無線電力伝送システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3197013A4 *

Also Published As

Publication number Publication date
US10355607B2 (en) 2019-07-16
CN106797141B (zh) 2019-04-26
EP3197013A1 (en) 2017-07-26
PL3197013T3 (pl) 2021-05-31
EP3197013A4 (en) 2018-03-21
US20170279364A1 (en) 2017-09-28
KR20170038187A (ko) 2017-04-06
JP5797313B1 (ja) 2015-10-21
CN106797141A (zh) 2017-05-31
TW201608936A (zh) 2016-03-01
KR101913050B1 (ko) 2018-10-29
EP3197013B1 (en) 2021-01-06
JP2016046951A (ja) 2016-04-04
TWI576017B (zh) 2017-03-21

Similar Documents

Publication Publication Date Title
JP5797313B1 (ja) 回生サーキュレータ、高周波電源装置、及び高周波電力の回生方法
US9072159B2 (en) High-frequency power supply device and ignition voltage selection method
US10447225B2 (en) Filter apparatus and power supply system
US5008894A (en) Drive system for RF-excited gas lasers
EP3229363B1 (en) Power converter
WO2008105985A1 (en) Power combiner
US10796885B2 (en) Circuit for impedance matching between a generator and a load at multiple frequencies, assembly comprising such a circuit and related use
CN107735945A (zh) 非线性高频放大器设备
CN107565577A (zh) 气体管切换的柔性交流电传输系统
JP2014068120A (ja) マイクロ波増幅器
JP5011717B2 (ja) 交流−交流変換装置
KR102143178B1 (ko) 부하 변동에 속응성을 가진 플라즈마 파워 장치 및 그의 제어 방법
JP2008243670A (ja) 高周波電源装置
JP2012119088A (ja) プラズマ処理装置
JP6094205B2 (ja) ワイヤレス電力伝送システム
JP2015138602A (ja) プラズマ処理用整合器、プラズマ処理装置、および、プラズマ処理用整合器の駆動方法
US20210135086A1 (en) Output filter for power train
Badapanda et al. AC-DC converter power modules of a solid state modular high voltage DC power supply
JP2008079487A (ja) 交流電源装置
CN102723715B (zh) 超级电容和消除低次谐波电容补偿电路结构
KR20230064902A (ko) 플라즈마 전력 공급 시스템 및 이의 전력 공급 방법
Zhou et al. High-frequency Inverter Design for a Wide Range of Resistive and Reactive Load Variation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14900492

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15503778

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177004777

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2014900492

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014900492

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE