WO2016031039A1 - エピタキシャル成長用テンプレート及びその作製方法、並びに、窒化物半導体装置 - Google Patents

エピタキシャル成長用テンプレート及びその作製方法、並びに、窒化物半導体装置 Download PDF

Info

Publication number
WO2016031039A1
WO2016031039A1 PCT/JP2014/072701 JP2014072701W WO2016031039A1 WO 2016031039 A1 WO2016031039 A1 WO 2016031039A1 JP 2014072701 W JP2014072701 W JP 2014072701W WO 2016031039 A1 WO2016031039 A1 WO 2016031039A1
Authority
WO
WIPO (PCT)
Prior art keywords
aln layer
atoms
sapphire substrate
concentration
template
Prior art date
Application number
PCT/JP2014/072701
Other languages
English (en)
French (fr)
Inventor
シリル ペルノ
平野 光
Original Assignee
創光科学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 創光科学株式会社 filed Critical 創光科学株式会社
Priority to EP14884264.4A priority Critical patent/EP3176293A4/en
Priority to CN201480018246.XA priority patent/CN105612276B/zh
Priority to US14/765,884 priority patent/US9556535B2/en
Priority to RU2015144456A priority patent/RU2653118C1/ru
Priority to JP2015520735A priority patent/JP5820089B1/ja
Priority to PCT/JP2014/072701 priority patent/WO2016031039A1/ja
Priority to TW103135525A priority patent/TWI534861B/zh
Publication of WO2016031039A1 publication Critical patent/WO2016031039A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/183Epitaxial-layer growth characterised by the substrate being provided with a buffer layer, e.g. a lattice matching layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/38Nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B31/00Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor
    • C30B31/06Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state
    • C30B31/08Diffusion or doping processes for single crystals or homogeneous polycrystalline material with defined structure; Apparatus therefor by contacting with diffusion material in the gaseous state the diffusion materials being a compound of the elements to be diffused
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02614Transformation of metal, e.g. oxidation, nitridation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02658Pretreatments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/203
    • H01L21/205
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • H01L33/145Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure with a current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0213Sapphire, quartz or diamond based substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32341Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm blue laser based on GaN or GaP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/173The laser chip comprising special buffer layers, e.g. dislocation prevention or reduction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2304/00Special growth methods for semiconductor lasers
    • H01S2304/04MOCVD or MOVPE

Definitions

  • the present invention relates to an epitaxial growth template as a base for epitaxially growing a GaN-based compound semiconductor layer (general formula: Al x Ga y In 1-xy N), a manufacturing method thereof, and a GaN-based nitride semiconductor device.
  • a GaN-based compound semiconductor layer generally formula: Al x Ga y In 1-xy N
  • GaN-based nitride semiconductor devices such as light-emitting diodes and semiconductor lasers are produced by growing a GaN-based compound semiconductor layer having a multilayer structure on an epitaxial growth template (see, for example, Non-Patent Document 1).
  • FIG. 7 shows a crystal layer structure of a typical conventional GaN-based light emitting diode.
  • an underlayer 102 made of AlN is formed on a sapphire substrate 101, a periodic groove structure is formed by photolithography and reactive ion etching, and then an ELO-AlN layer 103 is formed.
  • the p-type AlGaN electron blocking layer 106, the p-type AlGaN p-type cladding layer 107 having a thickness of 50 nm, and the p-type GaN contact layer 108 having a thickness of 20 nm are sequentially stacked.
  • the multiple quantum well active layer 105 has a structure in which five layers of a structure in which a GaN well layer having a thickness of 2 nm is sandwiched between AlGaN barrier layers having a thickness of 8 nm are stacked. After the crystal growth, the multi-quantum well active layer 105, the electron blocking layer 106, the p-type cladding layer 107, and the contact layer 108 are removed by etching until a partial surface of the n-type cladding layer 104 is exposed.
  • a Ni / Au p-electrode 109 is formed on the surface of the layer 108, and a Ti / Al / Ti / Au n-electrode 110 is formed on the exposed n-type cladding layer 104, for example.
  • the emission wavelength is shortened by changing the Al composition ratio and film thickness, or the emission wavelength is lengthened by adding In, and the wavelength is from 200 nm to 400 nm.
  • a light emitting diode in the ultraviolet region can be manufactured.
  • a semiconductor laser can be fabricated with a similar configuration.
  • an epitaxial growth template is formed by the sapphire substrate 101, the AlN underlayer 102, and the ELO-AlN layer 103.
  • the crystal quality of the template surface directly affects the crystal quality of the GaN-based compound semiconductor layer formed thereon, and greatly affects the characteristics of the light-emitting element formed as a result.
  • a template having a threading dislocation density reduced to 10 7 / cm 2 or less, preferably about 10 6 / cm 2 .
  • the ELO-AlN layer 103 is epitaxially grown on the AlN underlayer 102 having a periodic groove structure by using the lateral growth (ELO) method, the gap between the grooves is increased.
  • the sample (substrate) is once taken out from the reaction chamber for epitaxial growth, and the AlN underlayer is removed. It is necessary to form a periodic groove structure on the surface of the substrate by photolithography and reactive ion etching. For this reason, the AlN underlayer and the ELO-AlN layer cannot be continuously grown, which complicates the manufacturing process and lowers the throughput, leading to an increase in manufacturing cost.
  • a periodic groove structure is formed directly on the surface of the sapphire substrate by photolithography and reactive ion etching in order to reduce the complexity of the manufacturing process and reduce the throughput by omitting the etching process between the crystal growth processes.
  • a method of forming an ELO-AlN layer directly on the sapphire substrate to form a template for epitaxial growth has been proposed (see, for example, Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3).
  • the groove formed on the surface of the sapphire substrate is preferably deeper.
  • the sapphire substrate has a low etching rate and is difficult to process, it is necessary to grow an ELO-AlN layer having a low threading dislocation density in a shallow groove structure. .
  • Non-Patent Document 4 As a method for growing an AlN layer on a sapphire substrate without using a lateral growth method and producing a template free from cracks and having a low threading dislocation density and a good surface property of a crystal, for example, the following AlN layer: and continuously fed TMA (trimethylaluminum) of Al source, a pulse flow AlN layer grown by intermittently supplying NH 3 to (ammonia) of N material, a TMAl and NH 3 respectively continuously.
  • TMA trimethylaluminum
  • Non-Patent Document 4 an AlN layer is grown on a sapphire substrate without using a lateral growth method, and there are no cracks, a low threading dislocation density, and a good crystal surface property template.
  • a nucleation AlN layer and a covering AlN layer that emphasizes lateral growth and fills in the minute protrusions of the nucleation AlN layer are grown by controlling the NH 3 supply method. After that, it is necessary to grow an AlN layer by continuous supply of raw material at a high speed to form a multilayer structure in which the three-layer structure is repeatedly laminated, and the control during the growth of the AlN layer becomes complicated.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to use an epitaxial growth template having a structure in which an AlN layer is grown on a sapphire substrate, an AlN layer as a lateral growth method or a complex growth method.
  • An object of the present invention is to prepare a template that can be easily grown without using control, has no cracks, has a low threading dislocation density, and has a good crystal surface property.
  • the inventor of the present application has conducted intensive research on the surface of the sapphire substrate before and at the start of the growth of the AlN layer, so that a small amount of Ga atoms are present, and the Ga concentration in the vicinity of the interface between the substrate and the AlN layer is predetermined.
  • the present invention is a method for producing a template that has an AlN layer on the surface of a sapphire substrate and serves as an underlayer for epitaxial growth of a GaN-based compound semiconductor layer, A surface treatment step of supplying Ga atoms dispersedly on the surface of the sapphire substrate, and an AlN growth step of epitaxially growing an AlN layer on the sapphire substrate, In the concentration distribution in the depth direction perpendicular to the surface of the sapphire substrate of Ga concentration obtained by secondary ion mass spectrometry in the inner region of the AlN layer excluding the region near the surface from the surface of the AlN layer to a depth of 100 nm.
  • the position in the depth direction for obtaining the maximum value of the Ga concentration exists in a region near the interface from the interface of the sapphire substrate to a position separated by 400 nm toward the AlN layer, and the maximum value of the Ga concentration is 3
  • a method for manufacturing a template which is characterized by being 10 ⁇ 10 17 atoms / cm 3 or more and 2 ⁇ 10 20 atoms / cm 3 or less.
  • a compound serving as a Ga raw material is supplied into a growth chamber in which the AlN growth step is performed.
  • the AlN growth step is performed either after the surface treatment step is completed, simultaneously with the start of the surface treatment step, or during the surface treatment step. It starts at the timing.
  • the primary ion species used in the secondary ion mass spectrometry is O 2 + .
  • the present invention comprises a sapphire substrate in which Ga atoms are dispersed on the surface, and an AlN layer formed by epitaxial growth on the sapphire substrate, In the concentration distribution in the depth direction perpendicular to the surface of the sapphire substrate of Ga concentration obtained by secondary ion mass spectrometry in the inner region of the AlN layer excluding the region near the surface from the surface of the AlN layer to a depth of 100 nm.
  • the position in the depth direction for obtaining the maximum value of the Ga concentration exists in a region near the interface from the interface of the sapphire substrate to a position separated by 400 nm toward the AlN layer, and the maximum value of the Ga concentration is 3
  • an epitaxial growth template characterized by being 10 ⁇ 10 17 atoms / cm 3 or more and 2 ⁇ 10 20 atoms / cm 3 or less.
  • the primary ion species used in the secondary ion mass spectrometry is O 2 + .
  • the present invention provides a nitride semiconductor device comprising an epitaxial growth template having the above characteristics and one or more GaN compound semiconductor layers epitaxially grown on the template.
  • the epitaxial growth template having the above characteristics and the manufacturing method thereof, as a template for the epitaxial growth of the GaN-based compound semiconductor layer, there is no crack, a low threading dislocation density and a good crystal surface property are laterally grown. It can be easily obtained without using a method or a complicated raw material supply method.
  • a high crystal quality GaN-based compound semiconductor layer formed on the upper layer of the epitaxial growth template having the above characteristics can be stably obtained without causing an increase in manufacturing cost.
  • the performance of the configured semiconductor element can be improved.
  • FIGS. 1A to 1C are process cross-sectional views schematically showing the process of the first embodiment of the manufacturing method (hereinafter referred to as the first manufacturing method), and FIGS. ) Is a process cross-sectional view schematically showing the process of the second embodiment of the present manufacturing method (hereinafter referred to as the second manufacturing method), and FIGS.
  • It is process sectional drawing which shows typically the process of 3 Examples (henceforth the 3rd preparation method), and each shows the cross-sectional structure in the middle of preparation of this template, and after preparation.
  • the main parts are highlighted to facilitate the understanding of the description, and the dimensional ratios of the respective parts in the drawings do not necessarily match the actual ones.
  • the sapphire substrate 2 is prepared and accommodated in a reaction chamber (not shown) in which the AlN layer 3 is epitaxially grown (FIGS. 1A and 2A).
  • the AlN layer 3 is epitaxially grown by a known organometallic compound vapor phase growth (MOVPE).
  • TMG trimethyl gallium
  • MOVPE gallium raw material
  • AlN growth step see FIG. 1C
  • AlN growth process of the first manufacturing method the supply of TMG is stopped throughout the processing period.
  • TMG trimethylgallium
  • MOVPE gallium-silicon
  • AlN growth process a well-known MOVPE in the middle of the surface treatment process
  • TMG trimethyl gallium
  • MOVPE gallium raw material
  • surface treatment step see FIG. 3B
  • AlN growth step see FIGS. 3B and 3C. Therefore, in the third manufacturing method, the entire period of the surface treatment process overlaps with a period after the start of the AlN growth process (see FIG. 3B), and the supply of TMG is stopped after the completion of the surface treatment process.
  • the present template 1 includes a sapphire (0001) substrate 2 and an AlN layer 3.
  • Ga atoms 4 are dispersed and a part of the Ga atoms 4 is diffused to some extent from the surface of the sapphire substrate 2 into the AlN layer 3.
  • the Ga concentration depth direction perpendicular to the surface of the sapphire substrate 2) in the inner region excluding the near-surface region from the surface in the AlN layer 3 to a depth of 100 nm.
  • the position in the depth direction that obtains the maximum value of the Ga concentration in the concentration distribution in the direction) exists in the vicinity of the interface from the interface between the sapphire substrate 2 and the AlN layer 3 to a position separated by about 400 nm on the AlN layer 3 side. Then, the supply amount of TMG (for example, flow rate, time, etc.) so that the maximum value of the Ga concentration falls within a suitable range of 3 ⁇ 10 17 atoms / cm 3 or more and 2 ⁇ 10 20 atoms / cm 3 or less. Is adjusted.
  • the maximum value of the Ga concentration is a low impurity concentration level with respect to the AlN layer 3, and AlGaN is clearly formed as a uniform layer near the interface with the sapphire substrate 2 in the AlN layer 3. It is not a level.
  • the template for epitaxial growth (present template 1) having a dense and flat surface and free from cracks is produced by this production method.
  • the thickness of the AlN layer 3 is, for example, about 1 ⁇ m to 10 ⁇ m, and the growth temperature in the AlN growth process is, for example, within a temperature range of 1230 ° C. to 1350 ° C. higher than the crystallization temperature of AlN. Are set to about 50 Torr or less, respectively.
  • TMA trimethylaluminum
  • NH 3 ammonia
  • NH 3 / TMA predetermined flow rate ratio
  • the temperature and pressure conditions in the surface treatment step are the same as those in the AlN growth step, and the temperature of the portion preceding the AlN growth step in the first fabrication method and the second fabrication method.
  • the pressure condition may be the same as that of the AlN growth process, but the pressure condition may be set to a higher pressure (for example, about 100 Torr) than the AlN growth process.
  • Samples manufactured by the first to third manufacturing methods have good surface properties, and the non-defective samples in which the maximum value of the Ga concentration is within the preferable range (3 ⁇ 10 17 to 2 ⁇ 10 20 atoms / cm 3 ).
  • the samples produced by the above similar production methods have poor surface properties with cracks, and the maximum value of the Ga concentration is outside the above preferred range (less than 3 ⁇ 10 17 atoms / cm 3 , or 2 ⁇ This is a defective sample that is greater than 10 20 atoms / cm 3 .
  • the first manufacturing method and the first similar manufacturing method are collectively referred to as the first method
  • the second manufacturing method and the second similar manufacturing method are collectively referred to as the second method
  • the third manufacturing method and the first manufacturing method.
  • the three similar production methods are collectively referred to as a third method.
  • the Ga concentration in the AlN layer 3 is measured by secondary ion mass spectrometry.
  • oxygen ions (O 2 + ) are used as primary ion species.
  • cesium ions (Cs + ) or oxygen ions (O 2 + ) are used as primary ion species in ion mass spectrometry, but in this embodiment, the background level of Ga in AlN is Uses lower oxygen ions.
  • the primary ion species is cesium ion
  • the background level of Ga in AlN is 2 ⁇ 10 17 to 3 ⁇ 10 17 atoms / cm 3 , so the lower limit of the above preferable range of the maximum value of Ga concentration Or there is an inconvenience that a Ga concentration lower than that cannot be measured accurately.
  • the Ga background level in AlN is less than 1 ⁇ 10 17 atoms / cm 3 (about 4 to 8 ⁇ 10 16 atoms / cm 3 ). Therefore, a Ga concentration near or below the lower limit of the above preferred range can be measured.
  • the maximum value of Ga concentration in the AlN layer 3 is obtained by excluding the surface vicinity region from the surface of the AlN layer 3 to a depth of 100 nm. This is because the Ga concentration in the vicinity of the surface measured by secondary ion mass spectrometry is not accurately measured due to the influence of substances such as oxides attached to the surface of the AlN layer 3 and charge-up of the surface. This is because there is a possibility.
  • the depth (position in the depth direction) of the interface between the sapphire substrate 2 and the AlN layer 3 serving as a reference for defining the above-mentioned interface vicinity region is determined by secondary ion mass spectrometry because the nitrogen concentration greatly changes at the interface. It can be grasped from the measurement result of the nitrogen concentration. However, the depth of the interface may cause an error of about several tens of nm to 100 nm due to the matrix effect. For this reason, in this embodiment, the range of the interface vicinity region is set to 400 nm, which is longer than the error, and the maximum Ga concentration is used as a reference for evaluation. Even if the error shifts into the sapphire substrate 2 and the Ga concentration at the interface becomes an apparently small value, the relationship between the Ga concentration in the vicinity of the interface and the surface properties of the template 1 can be correctly evaluated.
  • FIG. 4 shows samples # 11 to # 17 prepared by the first method, samples # 21 to # 23 prepared by the second method, and samples # 31 to # 39 prepared by the third method (all Measurement results of the half width FWHM (arcsec) of the tilt distribution ( ⁇ mode) and the twist distribution ( ⁇ mode) obtained by analyzing each surface by an X-ray rocking curve (XRC) method, In addition to showing the results of visual inspection for the presence or absence of cracks, the results of Ga concentration measurements performed on some of the samples selected from the non-cracked non-defective samples and the cracked defective samples, respectively. Show. The value of Ga concentration in FIG.
  • the position of the interface between the sapphire substrate 2 and the AlN layer 3 is estimated from the change in the Ga concentration. Specifically, the deepest position that is equal to or greater than half the maximum value of Ga concentration in the vicinity of the interface determined by the visually set interface position from the Ga concentration distribution graph is determined as the interface position. Yes.
  • TMG In the surface treatment process (first method) of samples # 11 to # 17, TMG was supplied for 30 seconds with the flow rate adjusted in the range of 0.005 to 0.1 sccm.
  • second method In the surface treatment process (second method) of samples # 21 to # 23, TMG is supplied for 30 seconds with the flow rate adjusted in the range of 0.005 to 0.4 sccm until the AlN growth process is started. After the start of the AlN growth step, the flow rate was adjusted in the range of 0.005 to 0.1 sccm and performed for 1 minute or 10 minutes.
  • TMG In the surface treatment process (third method) of samples # 31 to # 39, TMG was supplied for 1 minute or 10 minutes with the flow rate adjusted in the range of 0.005 to 20 sccm.
  • the growth rate of AlN in the AlN growth step is about 1.2 ⁇ m / h, and the target film thickness of the AlN layer 3 is 2 ⁇ m.
  • the actual film thickness of the AlN layer 3 is somewhat between samples.
  • the AlN layer 3 is grown at a growth rate of about 1.2 ⁇ m / h for 1 minute or 10 minutes overlapping with the AlN growth process. Therefore, the film thickness grown in the meantime is about 20 nm or about 200 nm, and the growth portion of the AlN layer 3 exists in the vicinity of the interface.
  • sample # 15 good sample
  • sample # 17 defective sample
  • sample # 39 defective sample
  • FIGS. 5 shows the Ga concentration distribution in the regions of the samples # 15 and # 17 excluding the region near the surface.
  • FIG. 6 shows the Ga concentration distribution in the regions of the samples # 32 to # 34 and # 39 excluding the region near the surface.
  • the horizontal axis indicates the depth (position in the depth direction) of the AlN layer 3 and the sapphire substrate 2, but the origin (0 ⁇ m) depends on the change in the Ga concentration described above.
  • the obtained position of the interface between the sapphire substrate 2 and the AlN layer 3 is shown. Since the positive direction is the direction of the sapphire substrate 2, the depth on the AlN layer 3 side is a negative value and the depth on the sapphire substrate 2 side is positive. Indicated by value.
  • the position of the surface vicinity region of the AlN layer 3 of each sample differs.
  • samples # 15 and # 17 produced by the first method the supply amount of TMG before the AlN growth process is both kept low, but the flow rate of sample # 15 is set to 5 times that of sample # 17. ing.
  • the Ga concentration distribution of sample # 15 is about 1.34 ⁇ 10 17 atoms / cm 3 to 8.54 ⁇ 10 17 in the inner region of the AlN layer 3.
  • the Ga concentration distribution of sample # 15 is about 1.34 ⁇ 10 17 atoms / cm 3 to 8.54 ⁇ 10 17 in the inner region of the AlN layer 3.
  • the inside of the AlN layer 3 The maximum value of Ga concentration in the region (about 8.54 ⁇ 10 17 atoms / cm 3 ) is located in the region near the interface, and is the lower limit of the above preferable range (3 ⁇ 10 17 to 2 ⁇ 10 20 atoms / cm 3 ).
  • sample # 17 (defective sample) has a smaller amount of TMG supply than sample # 15, so the Ga concentration distribution is as follows in the inner region of the AlN layer 3. Within the range of about 4.04 ⁇ 10 16 atoms / cm 3 to 2.42 ⁇ 10 17 atoms / cm 3 and in the vicinity of the interface, about 8.08 ⁇ 10 16 atoms / cm 3 to 2.38.
  • is in 10 17 within the atoms / cm 3
  • the maximum value of the Ga concentration in the region of the AlN layer 3 (about 2.42 ⁇ 10 17 atoms / cm 3) is the preferred range (3 ⁇ 10 17 ⁇ 2 ⁇ 10 20 atoms / cm 3 ) which is less than the lower limit value and deviates from the preferred range, is not located in the vicinity of the interface, and is a defective sample having cracks.
  • the Ga concentration distribution is substantially flat throughout the inner region of the AlN layer 3, and there are no Ga atoms in the vicinity of the interface between the sapphire substrate 2 and the AlN layer 3.
  • the maximum value of the Ga concentration in the AlN layer 3 is the lower limit value of the above preferred range (3 ⁇ 10 17 to 2 ⁇ 10 20 atoms / cm 3 ).
  • the supply amount of TMG in the surface treatment process is greatly changed so that it can be taken from a value slightly above the upper limit value of the preferred range to a value slightly above the upper limit value of the preferred range. .
  • the supply amount of TMG increases in the order of # 32, # 33, # 34, and # 39.
  • the Ga concentration distribution of sample # 32 is about 1.44 ⁇ 10 17 atoms / cm 3 to 6.30 ⁇ 10 17 in the inner region of the AlN layer 3.
  • the inside of the AlN layer 3 The maximum value of the Ga concentration in the region (about 6.30 ⁇ 10 17 atoms / cm 3 ) is located in the region near the interface, and is the lower limit of the preferable range (3 ⁇ 10 17 to 2 ⁇ 10 20 atoms / cm 3 ).
  • sample # 32 it can be seen that the Ga concentration in the inner region of the AlN layer 3 is higher on average in the vicinity of the interface than in the vicinity of the interface. That is, more Ga atoms exist near the interface between the sapphire substrate 2 and the AlN layer 3.
  • the Ga concentration distribution of sample # 33 is about 3.08 ⁇ 10 17 atoms / cm 3 to 2.96 ⁇ 10 18 in the inner region of the AlN layer 3.
  • the Ga concentration distribution of sample # 33 is about 3.08 ⁇ 10 17 atoms / cm 3 to 2.96 ⁇ 10 18 in the inner region of the AlN layer 3.
  • the maximum value of Ga concentration in the region is located in the region near the interface, and is the lower limit of the preferred range (3 ⁇ 10 17 to 2 ⁇ 10 20 atoms / cm 3 ).
  • the sample is about 10 times the value and located below the center within the preferred range, and is a good sample without cracks.
  • Sample # 33 it can be seen that the Ga concentration in the inner region of the AlN layer 3 is higher on average in the vicinity of the interface than in the vicinity of the interface. That is, more Ga atoms exist near the interface between the sapphire substrate 2 and the AlN layer 3.
  • the Ga concentration distribution of sample # 34 is about 1.09 ⁇ 10 18 atoms / cm 3 to 1.06 ⁇ 10 20 in the inner region of the AlN layer 3.
  • the Ga concentration in the region is located in the region near the interface, and is the upper limit of the preferred range (3 ⁇ 10 17 to 2 ⁇ 10 20 atoms / cm 3 ).
  • sample # 34 it can be seen that the Ga concentration in the inner region of the AlN layer 3 is higher on average in the vicinity of the interface than in the vicinity of the interface. That is, more Ga atoms exist near the interface between the sapphire substrate 2 and the AlN layer 3.
  • the Ga concentration distribution of sample # 39 is about 3.52 ⁇ 10 17 atoms / cm 3 to 1.18 ⁇ 10 21 in the inner region of the AlN layer 3.
  • the Ga concentration in the region is located in the region near the interface, it is in the preferred range (3 ⁇ 10 17 to 2 ⁇ 10 20 atoms / cm 3).
  • the Ga concentration in the inner region of the AlN layer 3 is concentrated in the vicinity of the interface, but is about 10 times higher than that in the non-defective sample # 34.
  • Ga atoms are present in an appropriate concentration distribution near the interface between the sapphire substrate 2 and the AlN layer 3, and as a result It is important to be dispersed on the surface of the sapphire substrate and the vicinity thereof, and it is important to supply Ga atoms to the surface of the sapphire substrate before or simultaneously with the growth of the AlN layer 3.
  • the maximum value of the Ga concentration in the internal region excluding the region near the surface of the AlN layer 3 is within the above preferable range (3 ⁇ 10 17 to 2 ⁇ 10 20 atoms / cm 3 ), and It is considered that the position having the maximum value needs to exist in the interface vicinity region.
  • the depth at which the Ga concentration in the inner region of the AlN layer 3 of each of the non-defective samples # 15 and # 32 to # 34 is the maximum value is surely in the region near the interface. It can be seen that a region closer to the interface from the interface between 2 and the AlN layer 3 to a position separated by 300 nm on the AlN layer 3 side exists. Even if there is an error of about 100 nm in specifying the interface position, it can be said that the depth at which the Ga concentration becomes the maximum value is surely present in the vicinity of the interface. Further, the Ga concentration distributions of the non-defective samples # 15 and # 32 to # 34 confirm that Ga atoms are concentrated more in the vicinity of the interface between the sapphire substrate 2 and the AlN layer 3.
  • the lower limit value of the preferable range of the maximum value of the Ga concentration may be set between 3 ⁇ 10 17 atoms / cm 3 and 6 ⁇ 10 17 atoms / cm 3 .
  • the lower limit value of the preferred range is preferably 4 ⁇ 10 17 atoms / cm 3 or 5 ⁇ 10 17 atoms / cm 3 .
  • the upper limit value of the preferable range of the maximum value of the Ga concentration may be set between 1.1 ⁇ 10 20 atoms / cm 3 and 2 ⁇ 10 20 atoms / cm 3 .
  • it is preferably 1.5 ⁇ 10 20 atoms / cm 3 or 1.2 ⁇ 10 20 atoms / cm 3 .
  • the Ga concentration distribution of the sample produced by the first production method and the non-cracked good sample produced by the third production method is the maximum value of the Ga concentration in the inner region excluding the region near the surface of the AlN layer 3. Is within the preferred range where the maximum value of the Ga concentration is 3 ⁇ 10 17 atoms / cm 3 or more and 2 ⁇ 10 20 atoms / cm 3 or less.
  • the Ga concentration distribution of the sample produced by the second production method was not measured.
  • the second manufacturing method has a compromise configuration in which the surface treatment process includes both the surface treatment process of the first production method and the surface treatment process of the third production method.
  • the position in the depth direction to obtain the maximum value of the Ga concentration in the inner region excluding the region near the surface of the AlN layer 3 is the same as in the first and third manufacturing methods. It exists in the interface vicinity region, and can exist in a suitable range in which the maximum value of the Ga concentration is 3 ⁇ 10 17 atoms / cm 3 or more and 2 ⁇ 10 20 atoms / cm 3 or less. Is clear.
  • the present manufacturing method and the present template have been described in detail.
  • the feature of the present invention is that the GaN-based compound semiconductor layer including the sapphire substrate 2 and the AlN layer 3 formed thereon by epitaxial growth is epitaxially grown.
  • the manufacturing method, conditions, and the like that have been described above are merely examples for explanation. And can be changed as appropriate.
  • MOVPE is assumed as an epitaxial growth method of the AlN layer 3, and as a surface treatment process in which Ga atoms 4 are distributed and supplied to the surface of the sapphire substrate 2, the first fabrication method uses Ga in MOVPE.
  • TMG as a raw material (precursor) is supplied into the reaction chamber at a predetermined flow rate and time before the AlN growth step will be described.
  • the TMG is supplied before the AlN growth step and AlN growth step. The case where it is performed even after the growth process is started has been described.
  • the third manufacturing method the case where the supply of the TMG is started simultaneously with the start of the AlN growth process has been described.
  • the epitaxial growth method of the AlN layer 3 is not limited to MOVPE, and for example, a hydride VPE method may be used.
  • Ga atoms 4 can be distributed and supplied to the surface of the sapphire substrate 2, the depth for obtaining the maximum value of the Ga concentration exists in the region near the interface, and the maximum value of the Ga concentration is Any method can be used as long as it is within the preferable range, and the method is not limited to the methods exemplified in the first to third manufacturing methods.
  • the first to third manufacturing methods the case where the surface treatment process starts after the sapphire substrate 2 is accommodated in the reaction chamber has been described. For example, before the sapphire substrate 2 is accommodated in the reaction chamber, an appropriate amount of the surface treatment step is performed. The same effect can be obtained even if Ga raw material is supplied in advance into the reaction chamber.
  • a nitride semiconductor device produced by epitaxially growing a GaN-based compound semiconductor layer on the template 1 produced by the production method will be described.
  • An element structure such as a light emitting diode, a semiconductor laser, a switching element, and an amplifying element is formed by the laminated structure of the GaN-based compound semiconductor layers formed on the template 1.
  • the nitride semiconductor device is characterized by the template 1 as a base, and the element structure formed thereon is not limited to a specific one.
  • the element structure for example, the element structure of the upper layer portion of the conventional light emitting diode illustrated in FIG. 7 above the ELO-AlN layer 103 is directly on the template 1 or other GaN-based structure.
  • a light-emitting diode which is a nitride semiconductor device is manufactured by stacking through a compound semiconductor layer.
  • the template for epitaxial growth and the manufacturing method thereof according to the present invention can be used for manufacturing a GaN-based nitride semiconductor device such as a light emitting diode or a semiconductor laser.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Led Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

 エピタキシャル成長用テンプレートの作製方法であって、サファイア基板の表面にGa原子を分散して供給する表面処理工程と、前記サファイア基板上にAlN層をエピタキシャル成長させるAlN成長工程を有し、前記AlN層の表面から深さ100nmまでの表面近傍領域を除く前記AlN層の内部領域における2次イオン質量分析法により得られるGa濃度の前記サファイア基板の表面に垂直な深さ方向の濃度分布における前記Ga濃度の最大値を得る前記深さ方向の位置が、前記サファイア基板の界面から前記AlN層側に400nm離間した位置までの界面近傍領域内に存在し、前記Ga濃度の最大値が、3×1017atoms/cm以上、2×1020atoms/cm以下となる。

Description

エピタキシャル成長用テンプレート及びその作製方法、並びに、窒化物半導体装置
 本発明は、GaN系化合物半導体層(一般式:AlGaIn1-x-yN)をエピタキシャル成長させる下地となるエピタキシャル成長用テンプレート及びその作製方法、並びに、GaN系窒化物半導体装置に関する。
 従来から、発光ダイオードや半導体レーザ等のGaN系窒化物半導体装置は、エピタキシャル成長用テンプレート上に多層構造のGaN系化合物半導体層を成長させることにより作製されている(例えば、非特許文献1参照)。図7に、典型的な従来のGaN系発光ダイオードの結晶層構造を示す。図7に示す発光ダイオードは、サファイア基板101上に、AlNからなる下地層102を形成し、周期的な溝構造をフォトリソグラフィと反応性イオンエッチングで形成した後に、ELO-AlN層103を形成し、当該ELO-AlN層103上に、膜厚2μmのn型AlGaNのn型クラッド層104、AlGaN/GaN多重量子井戸活性層105、Al組成比が多重量子井戸活性層105より高い膜厚が20nmのp型AlGaNの電子ブロック層106、膜厚が50nmのp型AlGaNのp型クラッド層107、膜厚が20nmのp型GaNのコンタクト層108を順番に積層した積層構造を有している。多重量子井戸活性層105は、膜厚2nmのGaN井戸層を膜厚8nmのAlGaNバリア層で挟んだ構造を5層積層した構造を有している。結晶成長後、n型クラッド層104の一部表面が露出するまで、その上の多重量子井戸活性層105、電子ブロック層106、p型クラッド層107、及び、コンタクト層108をエッチング除去し、コンタクト層108の表面に、例えば、Ni/Auのp-電極109が、露出したn型クラッド層104の表面に、例えば、Ti/Al/Ti/Auのn-電極110が夫々形成されている。GaN井戸層をAlGaN井戸層として、Al組成比や膜厚を変化させることにより発光波長の短波長化を行い、或いは、Inを添加することで発光波長の長波長化を行い、波長200nmから400nm程度の紫外領域の発光ダイオードが作製できる。半導体レーザについても類似の構成で作製可能である。図7に示す結晶層構造では、サファイア基板101とAlN下地層102とELO-AlN層103によって、エピタキシャル成長用テンプレートが形成されている。
 当該テンプレート表面の結晶品質は、その上層に形成されるGaN系化合物半導体層の結晶品質に直接影響を与え、結果として形成される発光素子等の特性に大きく影響する。特に、紫外線域の発光ダイオードや半導体レーザの作製においては、貫通転位密度が10/cm以下、好ましくは10/cm程度に低減されたテンプレートを使用することが望まれる。図7に示すように、周期的な溝構造を有するAlN下地層102上に、横方向成長(ELO:Epitaxial Lateral Overgrowth)法を用いてELO-AlN層103をエピタキシャル成長させると、溝と溝の間の凸部平坦面から成長したAlN層が溝上方を覆うように横方向に成長するとともに、当該平坦面から成長する貫通転位も横方向成長によって溝上方に集約されるため、貫通転位密度が大幅に低減される。
 しかし、図7に示すサファイア基板とAlN下地層とELO-AlN層からなるテンプレートでは、AlN下地層を成長させた後、一旦、試料(基板)をエピタキシャル成長用の反応室内から取り出して、AlN下地層の表面に周期的な溝構造をフォトリソグラフィと反応性イオンエッチングで形成する必要がある。このため、AlN下地層とELO-AlN層を連続的に成長させることができず、製造工程の煩雑化及びスループットの低下を招き、製造コスト高騰の要因となる。
 他方、結晶成長工程間のエッチング加工を省略して製造工程の煩雑化及びスループットの低下を緩和するために、サファイア基板の表面に直接に周期的な溝構造をフォトリソグラフィと反応性イオンエッチング等で形成し、そのサファイア基板上に直接ELO-AlN層を形成してエピタキシャル成長用テンプレートとする方法が提案されている(例えば、特許文献1、非特許文献2、非特許文献3参照)。溝構造の基板表面にELO-AlN層を成長させるには、溝底部から成長するAlN層と、溝と溝の間の凸部平坦面から横方向成長するAlN層とが分離している必要から、サファイア基板表面に形成される溝は深い方が好ましいが、サファイア基板は、エッチングレートが低く加工が困難なため、浅い溝構造において、低貫通転位密度のELO-AlN層を成長させる必要がある。
 サファイア基板上に横方向成長法を用いずにAlN層を成長させた場合には、横方向成長法を用いることで解消される問題が顕在化し、クラックが無く、低貫通転位密度で結晶の表面性状の良好なテンプレートを作製することが極めて困難となる。
 そこで、サファイア基板上に横方向成長法を用いずにAlN層を成長させて、クラックが無く、低貫通転位密度で結晶の表面性状の良好なテンプレートを作製する方法として、例えば、下記のAlN層を、Al原料のTMA(トリメチルアルミニウム)を連続的に供給し、N原料のNH(アンモニア)を間欠的に供給して成長させたパルスフローAlN層と、TMAlとNHを夫々連続的に供給して成長させた連続AlN層を交互に積層した多層構造とする方法が提案されている(非特許文献4参照)。
特許第3455512号公報
Kentaro Nagamatsu,et al.,"High-efficiency AlGaN-based UV light-emitting diode on laterally overgrown AlN",Journal of Crystal Growth,310,pp.2326-2329,2008 N.Nakano,et al.,"Epitaxial lateral overgrowth of ALN layers on patterned sapphire substrates",Phys.Status Solidi (a)203,No.7, pp.1632-1635,2006 J.Mei,et al.,"Dislocation generation at the coalescence of aluminum nitride lateral epitaxy on shallow-grooved sapphire substrates",Applied Physics Letters 90, 221909,2007 H.Hirayama,et al.,"222-282nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AlN on sapphire",Phys.Status Solidi A 206, No. 6, 1176-1182 (2009)
 上述のように、サファイア基板上に横方向成長法によりAlN層を成長させて形成するテンプレートでは、サファイア基板或いはELO-AlN層の下地層にエッチング等で溝構造を形成する必要があり、溝構造を形成する対象に拘わらず、溝構造の形成に係る問題が存在する。
 また、上記非特許文献4に開示された方法では、サファイア基板上に横方向成長法を用いずにAlN層を成長させて、クラックが無く、低貫通転位密度で結晶の表面性状の良好なテンプレートを作製することが可能となるが、核形成AlN層と、横方向成長を強調して当該核形成AlN層の微小突起を埋める被覆AlN層とを、NHの供給方法を制御して成長させた後、その上に連続的な原料供給によるAlN層を高速成長させ、当該3層構造を繰り返して積層した多層構造とする必要があり、AlN層の成長時の制御が煩雑化する。
 本発明は、上述の問題点に鑑みてなされたものであり、その目的は、サファイア基板上にAlN層を成長させた構造を有するエピタキシャル成長用テンプレートを、AlN層を横方向成長法や複雑な成長制御を用いずに簡便に成長でき、且つ、クラックが無く、低貫通転位密度で結晶の表面性状の良好なテンプレートを作製することにある。
 本願発明者は、鋭意研究により、AlN層の成長開始前或いは開始時において、サファイア基板の表面に分散して微量のGa原子が存在し、その基板とAlN層の界面近傍領域のGa濃度が所定の範囲内であることで、その上に、横方向成長法や複雑な原料供給法を用いずにAlN層を成長させることで、クラックが無く、低貫通転位密度で結晶の表面性状の良好なテンプレートを作製できることを見出し、本願発明に至った。
 上記目的を達成するために、本発明は、サファイア基板の表面上にAlN層を有し、GaN系化合物半導体層をエピタキシャル成長させる下地となるテンプレートの作製方法であって、
 サファイア基板の表面にGa原子を分散して供給する表面処理工程と、前記サファイア基板上にAlN層をエピタキシャル成長させるAlN成長工程と、を有し、
 前記AlN層の表面から深さ100nmまでの表面近傍領域を除く前記AlN層の内部領域における2次イオン質量分析法により得られるGa濃度の前記サファイア基板の表面に垂直な深さ方向の濃度分布における前記Ga濃度の最大値を得る前記深さ方向の位置が、前記サファイア基板の界面から前記AlN層側に400nm離間した位置までの界面近傍領域内に存在し、前記Ga濃度の最大値が、3×1017atoms/cm以上、2×1020atoms/cm以下となることを特徴とするテンプレートの作製方法を提供する。
 更に、上記特徴のテンプレートの作製方法において、好適な一態様として、前記表面処理工程において、前記AlN成長工程を行う成長室内にGaの原料となる化合物を供給する。
 更に、上記特徴のテンプレートの作製方法において、好適な一態様として、前記AlN成長工程を、前記表面処理工程の終了後、前記表面処理工程の開始と同時、または、前記表面処理工程の途中の何れかのタイミングで開始する。
 更に、上記特徴のテンプレートの作製方法の好適な一態様として、前記2次イオン質量分析法で使用する1次イオン種がO である。
 更に、上記目的を達成するために、本発明は、表面にGa原子が分散して存在しているサファイア基板と、前記サファイア基板上にエピタキシャル成長してなるAlN層と、を備え、
 前記AlN層の表面から深さ100nmまでの表面近傍領域を除く前記AlN層の内部領域における2次イオン質量分析法により得られるGa濃度の前記サファイア基板の表面に垂直な深さ方向の濃度分布における前記Ga濃度の最大値を得る前記深さ方向の位置が、前記サファイア基板の界面から前記AlN層側に400nm離間した位置までの界面近傍領域内に存在し、前記Ga濃度の最大値が、3×1017atoms/cm以上、2×1020atoms/cm以下であることを特徴とするエピタキシャル成長用テンプレートを提供する。
 更に、上記特徴のエピタキシャル成長用テンプレートの好適な一態様として、前記2次イオン質量分析法で使用する1次イオン種がO である。
 更に、本発明は、上記特徴を備えたエピタキシャル成長用テンプレートと、前記テンプレート上にエピタキシャル成長してなる1層以上のGaN系化合物半導体層と、を備えることを特徴とする窒化物半導体装置を提供する。
 上記特徴のエピタキシャル成長用テンプレート及びその作製方法によれば、GaN系化合物半導体層をエピタキシャル成長させる下地となるテンプレートとして、クラックが無く、低貫通転位密度で結晶の表面性状の良好なものを、横方向成長法や複雑な原料供給法を用いずに簡便に得られる。
 上記効果の理由は明確ではないが、サファイア基板とAlNとの間の格子不整合による応力集中がサファイア基板の表面に局所的に発生して、クラックの発生に至る前に、サファイア基板の表面に分散して存在する微量且つ適量のGa原子が核となり、当該応力が分散される結果、クラックの発生が抑制されるものと推察される。
 以上の結果、製造コストの高騰を招くことなく、上記特徴のエピタキシャル成長用テンプレートの上層に形成されるGaN系化合物半導体層として高結晶品質のものが安定して得られ、当該GaN系化合物半導体層で構成される半導体素子の高性能化が図れる。
本発明に係るエピタキシャル成長用テンプレートの作製方法の第1実施例の工程を模式的に示す工程断面図である。 本発明に係るエピタキシャル成長用テンプレートの作製方法の第2実施例の工程を模式的に示す工程断面図である。 本発明に係るエピタキシャル成長用テンプレートの作製方法の第3実施例の工程を模式的に示す工程断面図である。 本発明に係るエピタキシャル成長用テンプレートの作製方法及びそれと類似する作製方法で作製されたテンプレートのサンプルの表面性状を示す複数の測定結果を纏めて示す一覧表である。 図4に示すサンプルの内のサンプル#15及び#17のGa濃度分布を示す図である。 図4に示すサンプルの内のサンプル#32~#34及び#39のGa濃度分布を示す図である。 典型的な従来のGaN系発光ダイオードの結晶層構造を模式的に示す断面図である。
 本発明に係るエピタキシャル成長用テンプレートの作製方法(以下、適宜「本作製方法」と称す。)及び本発明に係る窒化物半導体装置に含まれるエピタキシャル成長用テンプレート(以下、適宜「本テンプレート」と称す。)の実施の形態につき、図面に基づいて説明する。
 図1(a)~(c)は、本作製方法の第1実施例(以下、第1作製方法と呼ぶ)の工程を模式的に示す工程断面図であり、図2(a)~(d)は、本作製方法の第2実施例(以下、第2作製方法と呼ぶ)の工程を模式的に示す工程断面図であり、図3(a)~(c)は、本作製方法の第3実施例(以下、第3作製方法と呼ぶ)の工程を模式的に示す工程断面図であり、夫々、本テンプレートの作製途中と作製後の断面構造を示す。尚、図1~図3において、説明の理解の容易のため要部を強調して表示しており、図中の各部の寸法比は必ずしも実際のものと一致しない。
 先ず、第1~第3作製方法の何れにおいても、サファイア基板2を用意して、AlN層3をエピタキシャル成長させる反応室内(図示せず)に収容する(図1(a)、図2(a)、図3(a)参照)。本実施形態では、AlN層3は周知の有機金属化合物気相成長(MOVPE)によりエピタキシャル成長させる。
 第1作製方法では、引き続き、MOVPEでのGaの原料(前駆体)となるTMG(トリメチルガリウム)を、所定の流量及び時間で該反応室内に供給し、サファイア基板2の表面にGa原子4を分散して供給する(表面処理工程:図1(b)参照)。更に、表面にGa原子4の供給されたサファイア基板2上にAlN層3を、周知のMOVPEでエピタキシャル成長させる(AlN成長工程:図1(c)参照)。第1作製方法のAlN成長工程では、処理期間を通してTMGの供給は停止している。
 第2作製方法では、引き続き、MOVPEでのGaの原料(前駆体)となるTMG(トリメチルガリウム)を、所定の流量及び時間で該反応室内に供給し、サファイア基板2の表面にGa原子4を分散して供給する(表面処理工程:図2(b),(c)参照)。上述の第1作製方法と異なる点は、表面にGa原子4の供給されたサファイア基板2上に、表面処理工程の途中からAlN層3を、周知のMOVPEでエピタキシャル成長させる点である(AlN成長工程:図2(c),(d)参照)。従って、第2作製方法では、表面処理工程の終了前の一時期とAlN成長工程の開始後の一時期が重なっており(図2(c)参照)、表面処理工程の終了後にTMGの供給が停止する。
 第3作製方法では、引き続き、MOVPEでのGaの原料(前駆体)となるTMG(トリメチルガリウム)を、所定の流量及び時間で該反応室内に供給し、サファイア基板2の表面にGa原子4を分散して供給する(表面処理工程:図3(b)参照)。上述の第1及び第2作製方法と異なる点は、表面にGa原子4の供給されたサファイア基板2上に、表面処理工程の開始と同時にAlN層3を、周知のMOVPEでエピタキシャル成長させる点である(AlN成長工程:図3(b),(c)参照)。従って、第3作製方法では、表面処理工程の全期間とAlN成長工程の開始後の一時期が重なっており(図3(b)参照)、表面処理工程の終了後にTMGの供給が停止する。
 図1(c)、図2(d)及び図3(c)に示すように、本テンプレート1は、サファイア(0001)基板2とAlN層3を備えて構成され、サファイア基板2の表面にはGa原子4が分散して存在しており、Ga原子4の一部は、サファイア基板2の表面からAlN層3内に向かってある程度拡散して存在する。第1~第3作製方法の何れにおいても、AlN層3内の表面からの深さ100nmまでの表面近傍領域を除く内部領域におけるGa濃度の深さ方向(サファイア基板2の表面に対して垂直な方向)の濃度分布におけるGa濃度の最大値を得る当該深さ方向の位置が、サファイア基板2とAlN層3の界面から、AlN層3側に400nm程離間した位置までの界面近傍領域内に存在し、当該Ga濃度の最大値が、3×1017atoms/cm以上、2×1020atoms/cm以下の好適範囲内となるように、TMGの供給量(例えば、流量、時間等)が調整される。尚、当該Ga濃度の最大値は、AlN層3に対しては、不純物濃度レベルの低さであり、AlN層3内のサファイア基板2との界面付近にAlGaNが均一な層として明確に形成されるレベルではない。
 以上の要領で、本作製方法により、表面が緻密且つ平坦で、クラックの無いエピタキシャル成長用テンプレート(本テンプレート1)が作製される。
 AlN層3の膜厚は、一例として、1μm~10μm程度であり、AlN成長工程での成長温度は、一例として、AlNの結晶化温度より高温の1230℃~1350℃の温度範囲内に、圧力は、50Torr以下程度に、夫々設定される。本実施形態では、Al及びNの原料(前駆体)であるTMA(トリメチルアルミニウム)とNH(アンモニア)は、所定の流量比(NH/TMA)の範囲内で、何れも連続的に供給される。尚、上記各設定条件の最適値は、使用する反応室等の装置に依存して変化するため、使用する装置に応じて適宜調整する。
 第2及び第3作製方法では、表面処理工程における温度及び圧力条件は、AlN成長工程と同様の条件となり、第1作製方法、及び、第2作製方法でのAlN成長工程に先行する部分の温度及び圧力条件も、AlN成長工程と同様の条件とすることができるが、例えば、圧力条件は、AlN成長工程より高圧(例えば、100Torr程度)に設定しても良い。
 以下、第1~第3作製方法で作製した本テンプレート1のサンプルと、第1~第3作製方法と表面処理工程におけるTMGの供給条件のみが異なる類似の作製方法(第1~第3類似作製方法)で作製したサンプルについて、その表面性状を評価した結果を、図面を参照して説明する。第1~第3作製方法で作製されたサンプルは、表面性状が良好で、上記Ga濃度の最大値が上記好適範囲内(3×1017~2×1020atoms/cm)となる良品サンプルであり、上記各類似作製方法で作製したサンプルは、クラックの発生した表面性状が不良で、上記Ga濃度の最大値が上記好適範囲外(3×1017atoms/cm未満、或いは、2×1020atoms/cmより大)となる不良サンプルである。以下、説明の便宜のため、第1作製方法と第1類似作製方法を総称して第1方法、第2作製方法と第2類似作製方法を総称して第2方法、第3作製方法と第3類似作製方法を総称して第3方法と称する。
 本実施形態では、AlN層3内のGa濃度は2次イオン質量分析法により測定される。但し、1次イオン種として、酸素イオン(O )を用いている。一般的に、イオン質量分析法では、1次イオン種としてセシウムイオン(Cs)または酸素イオン(O )が使用されるが、本実施形態では、AlN中でのGaのバックグラウンドレベルがより低くなる酸素イオンを使用している。1次イオン種がセシウムイオンの場合、AlN中でのGaのバックグラウンドレベルが、2×1017~3×1017atoms/cmとなるため、Ga濃度の最大値の上記好適範囲の下限付近またはそれ以下のGa濃度を正確に測定できないという不都合がある。これに対して、1次イオン種が酸素イオンの場合、AlN中でのGaのバックグラウンドレベルが、1×1017atoms/cm未満(約4~8×1016atoms/cm)となるため、上記好適範囲の下限付近またはそれ以下のGa濃度を測定できる。
 また、AlN層3内のGa濃度の最大値は、AlN層3の表面から深さ100nmまでの表面近傍領域を除外して求める。これは、2次イオン質量分析法により測定される当該表面近傍領域のGa濃度が、AlN層3の表面に付着した酸化物等の物質や当該表面のチャージアップ等の影響を受け正確に測定されない可能性があるためである。
 上述の界面近傍領域を規定する基準となるサファイア基板2とAlN層3の界面の深さ(深さ方向の位置)は、窒素濃度が当該界面で大きく変化するため、2次イオン質量分析法による窒素濃度の測定結果から把握することができる。但し、界面の深さは、マトリクス効果のため、数10nm~100nm程度の誤差が生じ得る。このため、本実施形態では、界面近傍領域の範囲を400nmと当該誤差より長くして、更に、Ga濃度の最大値を評価の基準とすることにより、界面近傍領域を規定する界面の位置が当該誤差によりサファイア基板2内にずれて、当該界面でのGa濃度が見かけ上小さい値になったとしても、界面近傍領域におけるGa濃度の本テンプレート1の表面性状との関係を正しく評価できる。
 図4に、第1方法で作製したサンプル#11~#17、第2方法で作製したサンプル#21~#23、及び、第3方法で作製したサンプル#31~#39の各サンプル(何れも2インチウェハ)に対して実施した、各表面をX線ロッキングカーブ(XRC)法で解析したチルト分布(ωモード)とツイスト分布(ψモード)の各半値幅FWHM(arcsec)の測定結果、及び、クラックの有無の目視検査結果を示すとともに、上記各サンプルの内のクラック無の良品サンプルとクラック有の不良サンプルの中から夫々選択した一部のサンプルに対して行ったGa濃度の測定結果を示す。図4中のGa濃度の値は、表面近傍領域を除くAlN層3の内部領域におけるGa濃度の最大値と界面近傍領域内におけるGa濃度の最大値を示している。尚、図4に示すGa濃度の測定では、窒素濃度の測定を行っていないため、サファイア基板2とAlN層3の界面の位置は、Ga濃度の変化から推定している。具体的には、Ga濃度分布のグラフから目視により仮設定した界面位置によって定まる界面近傍領域内におけるGa濃度の最大値の2分の1の値以上となる最も深い位置を界面の位置と定めている。
 サンプル#11~#17の表面処理工程(第1方法)では、TMGの供給を、流量を0.005~0.1sccmの範囲で調整して、30秒間行った。サンプル#21~#23の表面処理工程(第2方法)では、TMGの供給を、AlN成長工程が開始されるまでは、流量を0.005~0.4sccmの範囲で調整し、30秒間行い、AlN成長工程の開始後は、流量を0.005~0.1sccmの範囲で調整して、1分または10分間行った。サンプル#31~#39の表面処理工程(第3方法)では、TMGの供給を、流量を0.005~20sccmの範囲で調整して、1分または10分間行った。何れのサンプルにおいても、AlN成長工程のAlNの成長速度は約1.2μm/hで、AlN層3の目標膜厚は2μmであるが、実際のAlN層3の膜厚にはサンプル間である程度バラツキがある。また、サンプル#21~#23及びサンプル#31~#39の表面処理工程では、AlN成長工程と重複する1分または10分の間、AlN層3が約1.2μm/hの成長速度で成長しているので、その間に成長する膜厚は、約20nmまたは約200nmであり、AlN層3の当該成長部分は界面近傍領域内に存在している。
 図4に示す結果より、上記TMGの供給量の調整範囲内において、第1~第3方法の何れにおいても、クラック無の良品サンプルとクラック有の不良サンプルが夫々存在することが分かる。また、一般的な傾向として、ツイスト分布の半値幅FWHMが小さいサンプルの方が、クラックの無い良品サンプルとなる傾向が顕著であるが、チルト分布の半値幅FWHMについては、クラックの有無との間に相関関係のないことが分かる。
 次に、第1作製方法で作製したサンプルの内のサンプル#15(良品サンプル)と第1類似作製方法で作製したサンプル#17(不良サンプル)、及び、第3作製方法で作製したサンプルの内のサンプル#32~#34(良品サンプル)と第3類似作製方法で作製したサンプル#39(不良サンプル)のAlN層3の深さ方向(サファイア基板2の表面に対して垂直な方向)のGa濃度分布を、2次イオン質量分析法により測定した結果について、図5及び図6を参照して、説明する。図5に、サンプル#15及び#17の上記表面近傍領域を除く領域のGa濃度分布を示す。図6に、サンプル#32~#34及び#39の上記表面近傍領域を除く領域のGa濃度分布を示す。尚、図5及び図6において、夫々横軸は、AlN層3及びサファイア基板2の深さ(深さ方向の位置)を示しているが、原点(0μm)は、上述のGa濃度の変化から求めたサファイア基板2とAlN層3の界面の位置を示しており、正方向がサファイア基板2の方向であるため、AlN層3側の深さが負値、サファイア基板2側の深さが正値で示されている。サンプル間での上記界面の位置のバラツキとAlN層3の実際の膜厚のバラツキによって、各サンプルのAlN層3の表面近傍領域の位置は、夫々異なっている。
 第1方法により作製したサンプル#15及び#17では、AlN成長工程前のTMGの供給量は何れも低めに抑えられているが、サンプル#15の流量は、サンプル#17の5倍に設定している。
 図4及び図5に示されるように、サンプル#15(良品サンプル)のGa濃度分布は、AlN層3の内部領域では、約1.34×1017atoms/cm~8.54×1017atoms/cmの範囲内にあって、界面近傍領域内では、約2.28×1017atoms/cm~8.54×1017atoms/cmの範囲内にあり、AlN層3の内部領域のGa濃度の最大値(約8.54×1017atoms/cm)は、界面近傍領域内に位置し、上記好適範囲(3×1017~2×1020atoms/cm)の下限値を超えて当該好適範囲内の下方寄りに位置し、クラックの無い良品サンプルとなっている。また、サンプル#15では、AlN層3の内部領域のGa濃度は、界面近傍領域以外より界面近傍領域の方が、平均的に高いことが分かる。つまり、Ga原子がサファイア基板2とAlN層3の界面近傍により多く存在している。
 これに対して、図4及び図5に示されるように、サンプル#17(不良サンプル)は、サンプル#15よりTMGの供給量が少ないため、Ga濃度分布は、AlN層3の内部領域では、約4.04×1016atoms/cm~2.42×1017atoms/cmの範囲内にあって、界面近傍領域内では、約8.08×1016atoms/cm~2.38×1017atoms/cmの範囲内にあり、AlN層3の内部領域のGa濃度の最大値(約2.42×1017atoms/cm)は、上記好適範囲(3×1017~2×1020atoms/cm)の下限値未満であり当該好適範囲から外れているとともに、界面近傍領域内にも位置しておらず、クラックの有る不良サンプルとなっている。また、サンプル#17では、Ga濃度分布は、AlN層3の内部領域の全域でほぼ平坦であり、Ga原子がサファイア基板2とAlN層3の界面近傍により多く存在する状態とはなっていない。
 第3方法により作製したサンプル#32~#34及び#39では、AlN層3内のGa濃度の最大値が、上記好適範囲(3×1017~2×1020atoms/cm)の下限値を僅かに上回る値から、該好適範囲の上限値を僅かに下回る値、該好適範囲の上限値を上回る値まで取り得るように、表面処理工程でのTMGの供給量を大幅に変化させている。具体的には、TMGの供給量は、#32、#33、#34、#39の順に大きくなっている。
 図4及び図6に示されるように、サンプル#32(良品サンプル)のGa濃度分布は、AlN層3の内部領域では、約1.44×1017atoms/cm~6.30×1017atoms/cmの範囲内にあって、界面近傍領域内では、約1.67×1017atoms/cm~6.30×1017atoms/cmの範囲内にあり、AlN層3の内部領域のGa濃度の最大値(約6.30×1017atoms/cm)は、界面近傍領域内に位置し、上記好適範囲(3×1017~2×1020atoms/cm)の下限値を超えて当該好適範囲内の下方寄りに位置し、クラックの無い良品サンプルとなっている。また、サンプル#32では、AlN層3の内部領域のGa濃度は、界面近傍領域以外より界面近傍領域の方が、平均的に高いことが分かる。つまり、Ga原子がサファイア基板2とAlN層3の界面近傍により多く存在している。
 図4及び図6に示されるように、サンプル#33(良品サンプル)のGa濃度分布は、AlN層3の内部領域では、約3.08×1017atoms/cm~2.96×1018atoms/cmの範囲内にあって、界面近傍領域内では、約4.52×1017atoms/cm~2.96×1018atoms/cmの範囲内にあり、AlN層3の内部領域のGa濃度の最大値(約2.96×1018atoms/cm)は、界面近傍領域内に位置し、上記好適範囲(3×1017~2×1020atoms/cm)の下限値の約10倍で、当該好適範囲内の中央より下方側に位置し、クラックの無い良品サンプルとなっている。また、サンプル#33では、AlN層3の内部領域のGa濃度は、界面近傍領域以外より界面近傍領域の方が、平均的に高いことが分かる。つまり、Ga原子がサファイア基板2とAlN層3の界面近傍により多く存在している。
 図4及び図6に示されるように、サンプル#34(良品サンプル)のGa濃度分布は、AlN層3の内部領域では、約1.09×1018atoms/cm~1.06×1020atoms/cmの範囲内にあって、界面近傍領域内では、約1.59×1018atoms/cm~1.06×1020atoms/cmの範囲内にあり、AlN層3の内部領域のGa濃度の最大値(約1.06×1020atoms/cm)は、界面近傍領域内に位置し、上記好適範囲(3×1017~2×1020atoms/cm)の上限値より下回っており、当該好適範囲内の上方寄りに位置し、クラックの無い良品サンプルとなっている。また、サンプル#34では、AlN層3の内部領域のGa濃度は、界面近傍領域以外より界面近傍領域の方が、平均的に高いことが分かる。つまり、Ga原子がサファイア基板2とAlN層3の界面近傍により多く存在している。
 図4及び図6に示されるように、サンプル#39(不良サンプル)のGa濃度分布は、AlN層3の内部領域では、約3.52×1017atoms/cm~1.18×1021atoms/cmの範囲内にあって、界面近傍領域内では、約2.42×1018atoms/cm~1.18×1021atoms/cmの範囲内にあり、AlN層3の内部領域のGa濃度の最大値(約1.18×1021atoms/cm)は、界面近傍領域内に位置してはいるが、上記好適範囲(3×1017~2×1020atoms/cm)の上限値を上回って、当該好適範囲から外れており、クラックの有る不良サンプルとなっている。また、サンプル#39では、AlN層3の内部領域のGa濃度は、界面近傍領域に集中しているが、良品サンプル#34と比較して約10倍高くなっている。
 図4~図6に示されるGa濃度の測定結果より、クラックの無い良品サンプルを得るには、Ga原子が、サファイア基板2とAlN層3の界面近傍に適量の濃度分布で存在し、その結果、サファイア基板の表面及びその近傍に分散して存在することが重要であり、そのように、サファイア基板の表面にGa原子を、AlN層3の成長前或いは同時に供給することが重要であることが分かる。より具体的には、AlN層3の表面近傍領域を除く内部領域のGa濃度の最大値が、上記好適範囲内(3×1017~2×1020atoms/cm)にあって、且つ、当該最大値となる位置が界面近傍領域内に存在することが必要であると考えられる。
 更に、各良品サンプル#15,#32~#34のAlN層3の内部領域のGa濃度の最大値となる深さは、確かに界面近傍領域内であるが、更に詳細に見れば、サファイア基板2とAlN層3の界面から、AlN層3側に300nm離間した位置までのより当該界面に近い領域に存在していることが分かる。界面位置の特定に100nm程の誤差が仮にあっても、上記Ga濃度の最大値となる深さは、確実に界面近傍領域内に存在していると言える。また、各良品サンプル#15,#32~#34のGa濃度分布は、Ga原子がサファイア基板2とAlN層3の界面近傍により多く集中して存在していることの裏付けとなっている。
 尚、当該Ga濃度の最大値の上記好適範囲の下限値は、3×1017atoms/cm~6×1017atoms/cmの間に設定されていても良い。例えば、当該好適範囲の下限値は、4×1017atoms/cm、或いは、5×1017atoms/cmであるのも好ましい。また、当該Ga濃度の最大値の上記好適範囲の上限値は、1.1×1020atoms/cm~2×1020atoms/cmの間に設定されていても良い。例えば、1.5×1020atoms/cm、或いは、1.2×1020atoms/cmであるのも好ましい。尚、当該下限値と上限値は任意に組み合わせても良い。
 上記説明では、第1作製方法で作製されたサンプル及び第3作製方法で作製されたクラックの無い良品サンプルのGa濃度分布が、AlN層3の表面近傍領域を除く内部領域のGa濃度の最大値を得る深さ方向の位置が、上記界面近傍領域内に存在し、当該Ga濃度の最大値が、3×1017atoms/cm以上、2×1020atoms/cm以下となる好適範囲内に存在することを明らかにしたが、第2作製方法で作製されたサンプルのGa濃度分布については測定を行っていなかった。しかし、第2作製方法は、上述の説明より明らかなように、表面処理工程が、第1作製方法の表面処理工程と第3作製方法の表面処理工程を両方備えた折衷構成となっているため、TMGの供給量を適切に調整することで、第1及び第3作製方法と同様に、AlN層3の表面近傍領域を除く内部領域のGa濃度の最大値を得る深さ方向の位置が、上記界面近傍領域内に存在し、当該Ga濃度の最大値が、3×1017atoms/cm以上、2×1020atoms/cm以下となる好適範囲内に存在することが可能であることが明らかである。
 以上、本作製方法及び本テンプレートについて詳細に説明したが、本発明の特徴は、サファイア基板2と、その上にエピタキシャル成長により形成されたAlN層3を備えてなるGaN系化合物半導体層をエピタキシャル成長させる下地となるテンプレート、及び、その作製方法において、上記表面近傍領域を除くAlN層3の内部領域における2次イオン質量分析法により得られるGa濃度の深さ方向の濃度分布における最大値を得る深さ方向の位置が、上記界面近傍領域内に存在し、当該Ga濃度の最大値が、3×1017atoms/cm以上、2×1020atoms/cm以下となる点にあり、上記説明に用いた作製方法や条件等は、説明のための一例であり、これらの条件等は、本発明が上記特徴を備えることを限度として、適宜変更可能である。
 また、上記実施形態では、AlN層3のエピタキシャル成長法としてMOVPEを想定し、サファイア基板2の表面にGa原子4を分散して供給する表面処理工程として、第1作製方法では、MOVPEでのGaの原料(前駆体)となるTMGを、AlN成長工程前に所定の流量及び時間で該反応室内に供給する場合を説明し、第2作製方法では、当該TMGの供給を、AlN成長工程前及びAlN成長工程開始後も行う場合を説明し、第3作製方法では、当該TMGの供給を、AlN成長工程開始と同時に開始する場合を説明した。しかし、AlN層3のエピタキシャル成長法は、MOVPEに限定されるものではなく、例えば、ハイドライドVPE法を用いても良い。更に、表面処理工程も、サファイア基板2の表面にGa原子4を分散して供給でき、上記Ga濃度の最大値を得る深さが界面近傍領域内に存在し、当該Ga濃度の最大値が上記好適範囲内となることが可能な方法であれば良く、上記第1~第3作製方法で例示した方法に限定されるものではない。上記第1~第3作製方法では、表面処理工程は、サファイア基板2を反応室内に収容した後から開始する場合を説明したが、例えば、サファイア基板2を反応室内に収容する前に、適量のGaの原料を予め反応室内に供給しておいても同様の効果を奏し得る。
 次に、本作製方法で作製された本テンプレート1上にGaN系化合物半導体層をエピタキシャル成長させて作製した窒化物半導体装置について説明する。本テンプレート1上に形成されるGaN系化合物半導体層の積層構造によって、例えば、発光ダイオード、半導体レーザ、スイッチング素子、増幅素子等の素子構造が形成される。本窒化物半導体装置は、下地となる本テンプレート1に特徴があり、その上に形成される素子構造は、特定のものに限定されるものではない。例えば、発光ダイオードの場合は、素子構造として、例えば、図7に例示した従来の発光ダイオードのELO-AlN層103より上層部分の素子構造を、本テンプレート1上に直接、或いは、他のGaN系化合物半導体層を介して積層することで、窒化物半導体装置である発光ダイオードが作製される。
 本発明に係るエピタキシャル成長用テンプレート及びその作製方法は、発光ダイオードや半導体レーザ等のGaN系窒化物半導体装置の作製に利用可能である。
 1:  エピタキシャル成長用テンプレート
 2:  サファイア基板
 3:  AlN層
 4:  Ga原子

Claims (7)

  1.  サファイア基板の表面上にAlN層を有し、GaN系化合物半導体層をエピタキシャル成長させる下地となるテンプレートの作製方法であって、
     サファイア基板の表面にGa原子を分散して供給する表面処理工程と、
     前記サファイア基板上にAlN層をエピタキシャル成長させるAlN成長工程と、を有し、
     前記AlN層の表面から深さ100nmまでの表面近傍領域を除く前記AlN層の内部領域における2次イオン質量分析法により得られるGa濃度の前記サファイア基板の表面に垂直な深さ方向の濃度分布における前記Ga濃度の最大値を得る前記深さ方向の位置が、前記サファイア基板の界面から前記AlN層側に400nm離間した位置までの界面近傍領域内に存在し、前記Ga濃度の最大値が、3×1017atoms/cm以上、2×1020atoms/cm以下となることを特徴とするテンプレートの作製方法。
  2.  前記表面処理工程において、前記AlN成長工程を行う成長室内にGaの原料となる化合物を供給することを特徴とする請求項1に記載のテンプレートの作製方法。
  3.  前記AlN成長工程を、前記表面処理工程の終了後、前記表面処理工程の開始と同時、または、前記表面処理工程の途中の何れかのタイミングで開始することを特徴とする請求項1または2に記載のテンプレートの作製方法。
  4.  前記2次イオン質量分析法で使用する1次イオン種がO であることを特徴とする請求項1~3の何れか1項に記載のテンプレートの作製方法。
  5.  表面にGa原子が分散して存在しているサファイア基板と、
     前記サファイア基板上にエピタキシャル成長してなるAlN層と、を備え、
     前記AlN層の表面から深さ100nmまでの表面近傍領域を除く前記AlN層の内部領域における2次イオン質量分析法により得られるGa濃度の前記サファイア基板の表面に垂直な深さ方向の濃度分布における前記Ga濃度の最大値を得る前記深さ方向の位置が、前記サファイア基板の界面から前記AlN層側に400nm離間した位置までの界面近傍領域内に存在し、前記Ga濃度の最大値が、3×1017atoms/cm以上、2×1020atoms/cm以下であることを特徴とするエピタキシャル成長用テンプレート。
  6.  前記2次イオン質量分析法で使用する1次イオン種がO であることを特徴とする請求項5に記載のエピタキシャル成長用テンプレート。
  7.  請求項5または6に記載のエピタキシャル成長用テンプレートと、
     前記テンプレート上にエピタキシャル成長してなる1層以上のGaN系化合物半導体層と、を備えることを特徴とする窒化物半導体装置。
PCT/JP2014/072701 2014-08-29 2014-08-29 エピタキシャル成長用テンプレート及びその作製方法、並びに、窒化物半導体装置 WO2016031039A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP14884264.4A EP3176293A4 (en) 2014-08-29 2014-08-29 Template for epitaxial growth and method of preparing same, and nitride semiconductor device
CN201480018246.XA CN105612276B (zh) 2014-08-29 2014-08-29 外延生长用模板以及其制作方法、和氮化物半导体装置
US14/765,884 US9556535B2 (en) 2014-08-29 2014-08-29 Template for epitaxial growth, method for producing the same, and nitride semiconductor device
RU2015144456A RU2653118C1 (ru) 2014-08-29 2014-08-29 Шаблон для эпитаксиального выращивания, способ его получения и нитридное полупроводниковое устройство
JP2015520735A JP5820089B1 (ja) 2014-08-29 2014-08-29 エピタキシャル成長用テンプレート及びその作製方法、並びに、窒化物半導体装置
PCT/JP2014/072701 WO2016031039A1 (ja) 2014-08-29 2014-08-29 エピタキシャル成長用テンプレート及びその作製方法、並びに、窒化物半導体装置
TW103135525A TWI534861B (zh) 2014-08-29 2014-10-14 A template for epitaxial growth and a method for producing the same, and a nitride semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/072701 WO2016031039A1 (ja) 2014-08-29 2014-08-29 エピタキシャル成長用テンプレート及びその作製方法、並びに、窒化物半導体装置

Publications (1)

Publication Number Publication Date
WO2016031039A1 true WO2016031039A1 (ja) 2016-03-03

Family

ID=54610936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072701 WO2016031039A1 (ja) 2014-08-29 2014-08-29 エピタキシャル成長用テンプレート及びその作製方法、並びに、窒化物半導体装置

Country Status (7)

Country Link
US (1) US9556535B2 (ja)
EP (1) EP3176293A4 (ja)
JP (1) JP5820089B1 (ja)
CN (1) CN105612276B (ja)
RU (1) RU2653118C1 (ja)
TW (1) TWI534861B (ja)
WO (1) WO2016031039A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10199532B1 (en) * 2017-09-08 2019-02-05 Mikro Mesa Technology Co., Ltd. Light-emitting diode and method for manufacturing the same
JP7089176B2 (ja) * 2018-06-26 2022-06-22 日亜化学工業株式会社 窒化アルミニウム膜の形成方法
CN109686821B (zh) * 2018-11-30 2021-02-19 华灿光电(浙江)有限公司 一种发光二极管的外延片的制备方法
CN111690907B (zh) * 2019-03-15 2023-04-18 马鞍山杰生半导体有限公司 一种氮化铝膜及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455512B2 (ja) 1999-11-17 2003-10-14 日本碍子株式会社 エピタキシャル成長用基板およびその製造方法
JP2008235769A (ja) * 2007-03-23 2008-10-02 Ngk Insulators Ltd AlGaN結晶層の形成方法
JP2008251643A (ja) * 2007-03-29 2008-10-16 Ngk Insulators Ltd AlGaN結晶層の形成方法
JP2010205767A (ja) * 2009-02-27 2010-09-16 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10196361B4 (de) * 2000-08-18 2008-01-03 Showa Denko K.K. Verfahren zur Herstellung eines Gruppe-III-Nitrid-Halbleiterkristalls
CN1179399C (zh) * 2002-06-28 2004-12-08 中国科学院上海微系统与信息技术研究所 一种外延生长用蓝宝石衬底的镓原子清洗的方法
JP2005209925A (ja) * 2004-01-23 2005-08-04 Nichia Chem Ind Ltd 積層半導体基板
JP4600641B2 (ja) * 2004-01-27 2010-12-15 日立電線株式会社 窒化物半導体自立基板及びそれを用いた窒化物半導体発光素子
CN100550440C (zh) * 2004-10-27 2009-10-14 三菱电机株式会社 半导体元件以及半导体元件的制造方法
US20060175681A1 (en) * 2005-02-08 2006-08-10 Jing Li Method to grow III-nitride materials using no buffer layer
WO2006097804A2 (en) * 2005-02-28 2006-09-21 Epispeed S.A. System and process for high-density,low-energy plasma enhanced vapor phase epitaxy
US8729670B2 (en) * 2008-04-16 2014-05-20 Lumigntech Co., Ltd. Semiconductor substrate and method for manufacturing the same
KR101570625B1 (ko) * 2009-12-25 2015-11-19 소코 가가쿠 가부시키가이샤 애피택셜성장용 탬플릿 및 제작방법
EP2579297B1 (en) * 2010-06-07 2020-12-16 Soko Kagaku Co., Ltd. Method of producing template for epitaxial growth and nitride semiconductor device
CN102925968B (zh) * 2012-10-17 2015-11-18 中国电子科技集团公司第五十五研究所 一种氮化物单晶薄膜的应变调控方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3455512B2 (ja) 1999-11-17 2003-10-14 日本碍子株式会社 エピタキシャル成長用基板およびその製造方法
JP2008235769A (ja) * 2007-03-23 2008-10-02 Ngk Insulators Ltd AlGaN結晶層の形成方法
JP2008251643A (ja) * 2007-03-29 2008-10-16 Ngk Insulators Ltd AlGaN結晶層の形成方法
JP2010205767A (ja) * 2009-02-27 2010-09-16 Institute Of Physical & Chemical Research 光半導体素子及びその製造方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
H. HIRAYAMA ET AL.: "222-282nm AlGaN and InAlGaN-based deep-UV LEDs fabricated on high-quality AIN on sapphire", PHYS. STATUS SOLIDI A, vol. 206, no. 6, 2009, pages 1176 - 1182, XP055161905, DOI: doi:10.1002/pssa.200880961
J. MEI ET AL.: "Dislocation generation at the coalescence of aluminum nitride lateral epitaxy on shallow-grooved sapphire substrates", APPLIED PHYSICS LETTERS, vol. 90, 2007, pages 221909, XP012095031, DOI: doi:10.1063/1.2745207
K. NAKANO ET AL.: "Epitaxial lateral overgrowth of AIN layers on patterned sapphire substrates", PHYS. STAT. SOL. (A, vol. 203, no. 7, 2006, pages 1632 - 1635
KENTARO NAGAMATSU ET AL.: "High-efficiency AlGaN-based UV light-emitting diode on laterally overgrown AIN", JOURNAL OF CRYSTAL GROWTH, vol. 310, 2008, pages 2326 - 2329
See also references of EP3176293A4

Also Published As

Publication number Publication date
EP3176293A4 (en) 2018-07-04
CN105612276B (zh) 2017-02-01
CN105612276A (zh) 2016-05-25
JPWO2016031039A1 (ja) 2017-04-27
US20160265138A1 (en) 2016-09-15
EP3176293A1 (en) 2017-06-07
TW201608609A (zh) 2016-03-01
TWI534861B (zh) 2016-05-21
US9556535B2 (en) 2017-01-31
RU2653118C1 (ru) 2018-05-07
JP5820089B1 (ja) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5635013B2 (ja) エピタキシャル成長用テンプレート及びその作製方法
JP4888857B2 (ja) Iii族窒化物半導体薄膜およびiii族窒化物半導体発光素子
JP5406985B2 (ja) エピタキシャル成長用テンプレートの作製方法及び窒化物半導体装置
WO2012121154A1 (ja) 下地基板、窒化ガリウム結晶積層基板及びその製造方法
WO2013132812A1 (ja) 窒化物半導体発光素子、光源及びその製造方法
JP6121806B2 (ja) 窒化物半導体ウェーハ、窒化物半導体素子及び窒化物半導体ウェーハの製造方法
JP6055908B2 (ja) エピタキシ基板、エピタキシ基板の製造方法、およびエピタキシ基板を備えたオプトエレクトロニクス半導体チップ
US20120248456A1 (en) Nitride semiconductor multilayer structure, method for producing same, and nitride semiconductor light-emitting element
US8658450B2 (en) Crystal growth method and semiconductor light emitting device
US20110003420A1 (en) Fabrication method of gallium nitride-based compound semiconductor
JP5820089B1 (ja) エピタキシャル成長用テンプレート及びその作製方法、並びに、窒化物半導体装置
Caliebe et al. Improvements of MOVPE grown (11-22) oriented GaN on prestructured sapphire substrates using a SiNx interlayer and HVPE overgrowth
WO2006016731A1 (en) Growth method of nitride semiconductor layer and light emitting device using the growth method
JP2017208554A (ja) 半導体積層体
JP4952616B2 (ja) 窒化物半導体基板の製造方法
US20170279003A1 (en) Group iii nitride semiconductor and method for producing same
JP7260089B2 (ja) 窒化物半導体
US20150221502A1 (en) Epitaxial wafer and method for producing same
JP2008214132A (ja) Iii族窒化物半導体薄膜、iii族窒化物半導体発光素子およびiii族窒化物半導体薄膜の製造方法
KR101581169B1 (ko) 에피택셜 성장용 템플릿 및 그 제조 방법, 그리고 질화물 반도체 장치
JP5488562B2 (ja) 窒化物半導体基板の製造方法
JP5869064B2 (ja) エピタキシャル成長用テンプレート及びその作製方法
JP2005268645A (ja) 化合物半導体及び半導体装置
JP2014187388A (ja) 結晶積層構造体及び発光素子

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015520735

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14765884

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014884264

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014884264

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020157025338

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884264

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015144456

Country of ref document: RU

Kind code of ref document: A