JP2005268645A - 化合物半導体及び半導体装置 - Google Patents

化合物半導体及び半導体装置 Download PDF

Info

Publication number
JP2005268645A
JP2005268645A JP2004081236A JP2004081236A JP2005268645A JP 2005268645 A JP2005268645 A JP 2005268645A JP 2004081236 A JP2004081236 A JP 2004081236A JP 2004081236 A JP2004081236 A JP 2004081236A JP 2005268645 A JP2005268645 A JP 2005268645A
Authority
JP
Japan
Prior art keywords
compound semiconductor
buffer layer
substrate
layer
lattice mismatch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004081236A
Other languages
English (en)
Inventor
Yasuo Sato
泰雄 里
Tomokimi Hino
智公 日野
Hironobu Narui
啓修 成井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2004081236A priority Critical patent/JP2005268645A/ja
Publication of JP2005268645A publication Critical patent/JP2005268645A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】 基体と、この基体上に形成される化合物半導体層との格子不整合性が2%以上ある化合物半導体において、化合物半導体層における結晶欠陥すなわち転位の発生を低減する。
【解決手段】 基体2上に、バッファ層3と化合物半導体層4とが形成された化合物半導体1において、バッファ層3の基体2に対する格子不整合性とその変化率を選定することによって、結晶欠陥の低減が可能とされる。
【選択図】 図2

Description

本発明は、化合物半導体及び半導体装置、特に基体に対して2%以上の格子不整合性を有する化合物半導体層を有する化合物半導体と、この化合物半導体を有する半導体装置に関する。
従来、対象波長帯を1.3μmとする光学デバイスや、高電子移動度トランジスタ等の半導体装置を構成する半導体は、その基体として、InGaAs等の化合物半導体による化合物半導体層との格子整合がとれるInP基板が用いられてきた。
しかし、InPは高価であり、また、きわめて柔らかく取り扱いにくいことから、半導体の基体として用いることに問題がある。
このため、近年、GaAs基板を基体として用いる試みがなされているが、GaAs基板上に、これと格子定数の異なる半導体結晶を成長させることは格子の不整合を伴うことから、この格子不整合によって多数の結晶欠陥が発生し、結晶性の低下が進行する。
この、半導体における結晶欠陥の発生と、これによる結晶性の低下は、各種半導体或いは半導体装置を構成した場合に、特性劣化、不良品の発生率を高める。
例えば、半導体レーザによる発光素子、半導体発光装置を構成した場合には、非発光再結合による発光効率の低下のみならず、動作中に欠陥が増殖し、素子及び装置の短寿命化が問題となる。
また、例えば、フォトダイオードによる受光素子、半導体受光装置を構成した場合には、非発光再結合に基づくキャリアトラップによって、受光に対する応答速度の低下、出力低下を来す。
これに対し、基板と化合物半導体層との間に格子不整合がある化合物半導体において、化合物半導体層の形成に先立って、図14に概略断面図を示すような、基板と化合物半導体層との格子不整合を緩和する傾斜組成型のバッファ層を基板上に形成し、この上に化合物半導体層を形成することによって、格子不整合による結晶欠陥の発生を低減する半導体素子の提案がなされている(例えば特許文献1)。
特開2002−373999号公報
しかし、この手法は結晶欠陥の数すなわち転位の密度の減少を図るにとどまるものであり、いったん発生した結晶欠陥すなわち転位を押し止める抑制効果が小さく、転位の発生による化合物半導体層の結晶性の低下を充分に抑制することはできない。
また、半導体を構成する化合物半導体層のIn組成が高くなって基板との格子不整合が大きくなり、特に2%以上になると、急激に転位密度が増加してしまうという問題があり、この問題に対する十分な検討はなされてこなかった。
本発明は、上述の化合物半導体ならびにこの化合物半導体を有する半導体装置における、上述の諸問題の解決を図るものである。
本発明による化合物半導体は、基体と、該基体に対し2%以上の格子不整合性を有する化合物半導体層とから成る化合物半導体であって、上述の基体上に、歪を緩和するバッファ層を介して化合物半導体層が形成され、バッファ層の基体に対する格子不整合性の変化率が、2.6×10−5/nm以上かつ1.8×10−4/nm以下から始まり、このバッファ層の成長に従って上述の変化率が連続的に減少する構成としたことを特徴とする。
また、本発明は、上述の化合物半導体において、バッファ層及び化合物半導体層が、III−V族化合物半導体からなることを特徴とする。
また、本発明は、上述の化合物半導体において、バッファ層の、基体から1/4の厚さ領域における、基体に対する格子不整合性が、0.7%以上2.0%以下であることを特徴とする。
また、本発明は、上述の化合物半導体において、上述のバッファ層が、成長に従って変化率が連続的に減少する構成を有する領域と、化合物半導体層に比して基体に対する格子不整合性が大とされた構成を有する領域とから成ることを特徴とする。
また、本発明は、上述の化合物半導体において、上述の基体が、GaAsもしくはSiよりなることを特徴とする。
本発明による半導体装置は、基体と、この基体に対し2%以上の格子不整合性を有する化合物半導体層とから成る化合物半導体を有する半導体装置であって、上述の基体上に、歪を緩和するバッファ層を介して化合物半導体層が形成され、バッファ層の上記基体に対する格子不整合性の変化率が、2.6×10−5/nm以上かつ1.8×10−4/nm以下から始まり、このバッファ層の成長に従って上述の変化率が連続的に減少する構成としたことを特徴とする。
また、本発明は、上述の半導体装置において、上述のバッファ層及び化合物半導体層が、III−V族化合物半導体からなることを特徴とする。
また、本発明は、上述の半導体装置において、バッファ層の、基体から1/4の厚さ領域における、基体に対する格子不整合性が、0.7%以上2.0%以下であることを特徴とする。
また、本発明は、上述の半導体装置において、上述のバッファ層が、成長に従って変化率が連続的に減少する構成を有する領域と、化合物半導体層に比して基体に対する格子不整合性が大とされた構成を有する領域とから成ることを特徴とする。
また、本発明は、上述の半導体装置において、基体が、GaAsもしくはSiよりなることを特徴とする。
なお、以下の説明で用いる化合物半導体層またはバッファ層の、基体に対する格子不整合性とは、[数1]に示す式によって定義される。[数1]において、Sは格子不整合性、a1は基体の格子定数、a2は任意のIn組成における化合物半導体層またはバッファ層の格子定数である。
Figure 2005268645
本発明による化合物半導体及び半導体装置においては、歪を緩和するバッファ層の、基体に対する格子不整合性の変化率が、2.6×10−5/nm以上かつ1.8×10−4/nm以下から始まり、バッファ層の成長に従って、この変化率が連続的に減少する構成としたことから、後述する理由によって、化合物半導体層の結晶性の向上が図られた。
また、本発明による化合物半導体及び半導体装置においては、バッファ層の、基体から1/4の厚さ領域における、基体に対する格子不整合性が、0.7%以上2.0%以下とした場合に、化合物半導体層の結晶性を、特に良好なものとすることができた。
更に、基体との格子不整合によってバッファ層の実効格子定数に変化が生じた場合にも、バッファ層が、成長に従って上述の変化率が連続的に減少する構成を有する領域と、化合物半導体層に比して基体に対する格子不整合性が大とされた構成を有する領域とから成るものとすることによって、バッファ層上に形成される化合物半導体層歪み量を小さくすることができた。
したがって、バッファ層上の化合物半導体層における結晶欠陥が低減され、化合物半導体層の厚さをより大として化合物半導体を構成することも可能とされるものである。
更に、本発明による化合物半導体及び半導体装置においては、基体に対し2%以上の格子不整合性を有する化合物半導体層を有する構成において、基体がGaAsもしくはSiよりなる構成とすることができることから、Si基板上での受発光デバイスと電子デバイスとの集積による光電子集積回路(OEIC;Optical Electronic integrated circuit)を構成することができ、更に光通信用の1.3μm〜1.5μm波長帯の光学素子等の付加価値の高いデバイスの構成が可能とされるなど、本発明構成によれば、重要かつ多くの効果をもたらすことができるものである。
以下、図面を参照して本発明の実施の形態例を説明するが、本発明は、この実施の形態例に限られるものではない。
[化合物半導体の第1の実施例]
まず、本発明による化合物半導体の第1の実施例を、理解を容易にするために、化合物半導体の製造方法の一例と共に、図1〜図8を参照して説明する。
この実施例における化合物半導体の製造は、図1に概略構成図を示す製造装置により、有機金属化学気相成長(MOCVD)法によって行う。
そして、このMOCVD装置によって、図2Aに概略断面図を示すような、基体2上にバッファ層3が形成され、この上に化合物半導体層4が形成された、本発明による化合物半導体1が得られるものである。
製造装置11は、原料供給系11aと、この原料供給系11aからの原料が供給されて目的とする成膜、すなわちバッファ層3と化合物半導体4との成膜を行う成膜系11bとを有して成る。
原料供給部11aは、少なくとも、ガス供給部12とバブラー部14とを有する。
ガス供給部12は、例えばキャリアガスとしての水素ガス(H)のガス供給源12a、12b、12c、及び12eと、アルシン(AsH)の供給源12dとを有し、これらガス供給源12a〜12eからのガスの流量をそれぞれ調整すなわち制御する流量制御装置13a〜13eを有する構成とすることができる。
バブラー部14は、例えばTMA(トリメチルアルシン)、TMI(トリメチルインジウム)、TBA(ターシャリーブチルアルシン)の気体供給源を構成するバブラー14a、14b、及び14cを有する。
成膜系11bは、目的とする成膜を行う成長室16を有して成る。成長室16内には、被成膜体の基体2が支持されるサセプタ17を有する。また、成長室16には、原料供給系11aからのガスの供給ライン15が連結されるガス導入口と、排気口すなわち排気ポート19とを有する。
また、この成長室16には、例えば高周波加熱コイルによる加熱器18が設けられている。
この製造装置11によって、成長室16内のサセプタ17に配置された基体2上に成膜がなされる。基体2は、例えばGaAsあるいはSi基板より成る。
この成膜作業は、バブラー14a〜14cに、ガス供給源12a〜12cからの水素ガスを、それぞれ流量制御装置13a〜13cによって流量調整して供給し、各バブラー14a〜14cの各原料、この例ではTMA、TMI、TBAをバブリングによって気化する。
一方、ガス供給源12d及び12eからの原料ガスとキャリアガス(水素ガス)とは、それぞれ流量制御装置13d及び13eによって流量調整がなされて、上述したバブラー14a〜14cからの原料ガスと共に、成膜系11bへの供給ライン15に送給される。
この場合、流量制御装置13a〜13eによってガス流量の制御がなされ、(各ガス供給源のガス濃度)×(ガス流量)が原料の実流量となる。また、各バブラー14a〜14cからの原料ガスの実流量は、(キャリアガス流量)×(バブラー内原料蒸気圧)/(バブラー内圧)によって定められる。
そして、上述した原料供給系11aの供給ライン15からの混合ガスを成長室16に導き、この混合ガスを雰囲気とした状態で加熱器18によって加熱されたサセプタ17上の基体2上に供給する。このようにして、原料の基体上における熱分解に基づいて結晶成長を行う。
また、排気ポート19によって成長室16内の圧力を管理ないし制御することにより、成膜系11bにおける基体2上の各エピタキシャル成長工程の条件を選定することができる。
通常、製造装置11において、成膜系11bの成長室16内の成長温度を直接測定することは困難であることから、例えばサセプタ17内に設けられた熱電対によってサセプタ17の温度を測定する。
この場合、予め例えばAlの融点温度660℃と例えばSi及びAlの共晶温度577℃とを用いて熱電対の測定温度と成長室16内の実温度との差を得ておき、この結果に基づいて較正を行うことにより、熱電対によるサセプタ17の温度の測定によって、成長室16内の実温度すなわち成長温度を測定することができるものである。
図2Aに、この第1の実施例における、本発明による化合物半導体の概略断面図を示す。すなわち、この第1の実施例において、本発明による化合物半導体は、GaAsによる基体2上の、例えばIn組成Xを0から0.45まで連続的に変化させたInGa(1−X)Asによるバッファ層3(厚さ1μm)と、このバッファ層3の上に形成された、例えばIn組成0.45のIn0.45GaAsによる化合物半導体層4(厚さ1μm)とからなる構成を有する。
この実施例において、バッファ層3は、図2Bに示すように、膜厚の増加、すなわち基体2からの距離の増大につれてIn組成が連続的に増加し、かつその変化率が厚さに従って減少するように行った。この構造を、この第1の実施例における第1構造とする。
なお、この第1構造によるバッファ層3は、格子不整合性の変化率が7×10−5nm−1から始まり、基体から1/4厚さにおける格子不整合性は1.2%であった。
また、図3及び図4に、基体2上のバッファ層3及び化合物半導体層4の厚さが図2Aに示したものと同一で、かつIn組成の連続的な増加が図2Bに示したものとは異なる構成とした例を示す。これらの構造を、それぞれ、この第1の実施例における第2構造、第3構造とする。
なお、第2構造によるバッファ層3は、格子不整合性の変化率が3.2×10−5nm−1から始まり、基体から1/4厚さにおける格子不整合性は0.8%であった。また、第3構造によるバッファ層3は、格子不整合性の変化率が1.8×10−8nm−1から始まり、基体から1/4厚さにおける格子不整合性は0.54%であった。
上述の第1構造においては、図2Bに示すように、膜厚に対するIn組成の変化が上に凸となる曲線を描く。すなわち、膜厚の増加に対してIn組成が連続的に増加し、格子不整合性の変化率は厚さに従って連続的に減少する組成となっている。
これに対して、上述の第2構造においては、図3Bに示すように、膜厚に対するInの組成の変化が直線を描く。すなわち、膜厚の増加に対してIn組成が連続的に増加し、かつ格子不整合性の変化率は全ての領域で0である。
また、上述の第3構造においては、図4Bに示すように、膜厚に対するInの組成の変化が下に凸となる曲線を描く。すなわち、膜厚の増加に対してIn組成が連続的に増加し、格子不整合性の変化率は厚さとともに増加する組成となっている。
これら第1構造、第2構造及び第3構造による各化合物半導体1に対して、X線回折法により行った、結晶性に関する評価となるX線半値幅の測定結果を[表1]に示す。
一般に、結晶に対してX線の回折の条件は、入射X線波長をλ、結晶の格子面間隔をd、回折角をθとすると、[数2]のように表すことができる。
X線回折法では、結晶からの回折曲線、すなわち回折X線強度の角度依存性が基本的な測定量となる。回折曲線の、回折角度、半値幅、回折強度等から、測定対象の結晶性に関する種々の情報を得ることができる。
特に半値幅は、結晶の格子面の配列の完全性を判断する基準とされ、また、通常は測定装置によらず、結晶固有の値が得られることから重要である。この半値幅が小さいほど、測定対象物の結晶欠陥が少なく、結晶性が良いとされている。
なお、この実施の形態におけるX線半値幅は、測定対象物すなわち上述の第1構造、第2構造及び第3構造による各化合物半導体1の、化合物半導体層4の(004)方向におけるω方向の半値幅である。
Figure 2005268645
Figure 2005268645
[表1]から、上述の第1構造、第2構造及び第3構造による各化合物半導体のうち、第1構造による化合物半導体に対する測定において、最も小さいX線半値幅が得られたことがわかる。この結果からは、化合物半導体1の構成としては、上述の第1構造による構成が最も好適であると考えられる。
次に、これら第1構造、第2構造及び第3構造による各化合物半導体1に対して、フォトルミネッセンス(PL)測定により行った、結晶性の評価となるPL発光強度の測定結果を[表2]に示す。
PL測定は、対象とする化合物半導体において、高効率なPL発光が室温で得られる場合に、その発光強度、発光波長、発光スペクトルの半値全幅(FWHM;Full Width at Half Maximum)が化合物半導体の結晶性に強く影響されることから、結晶の品質を知る上で重要な測定とされており、通常、結晶性が良好であるほど発光強度は強く検出される。
Figure 2005268645
[表2]から、上述の第1構造、第2構造及び第3構造による各化合物半導体のうち、第1構造による化合物半導体に対する測定において、最も大きな発光強度が得られたことがわかる。この結果からも、化合物半導体1の構成としては、上述の第1構造による構成が最も好適であると考えられる。
次に、上述の第1構造による化合物半導体1における、バッファ層の格子不整合性の変化率について行った検討の結果について、図5及び図6を参照して説明する。
この検討においては、バッファ層3の基体2側、すなわち図1の製造装置による基体2上へのバッファ層3の成膜開始直後の領域の、基体に対する格子不整合性の変化率をパラメータとして、作製した化合物半導体1に対してX線回折法及びPL発光測定による分析を行った。
図5に示す結果から、バッファ層3の成膜開始直後の領域の、基体に対する格子不整合性の変化率が2.6×10−5nm−5以上1.8×10−4nm−4未満の範囲である場合に、X線半値幅が特に小とされ、例えば結晶性が良好とされる1200secよりも小とされることから、上述の第1構造による化合物半導体1の化合物半導体層4の結晶性は良好なものとされると考えられる。
また、図6に示す結果からも、バッファ層3の成膜開始直後の領域の、基体に対する格子不整合性の変化率が2.6×10−5nm−5以上1.8×10−4nm−4未満の範囲である場合に、PL発光強度が特に大とされ、上述の第1構造による化合物半導体1の化合物半導体層4の結晶性は良好なものとされると考えられる。
次に、上述の第1構造による化合物半導体1における、バッファ層3の全厚さのうち、基体から1/4の領域の、基体2に対する格子不整合性について行った検討の結果について、図7及び図8を参照して説明する。
この検討においては、バッファ層3の基体2側、すなわち図1の製造装置による基体2上へのバッファ層3の全厚さのうち、基体から1/4(この例では厚さ0.25μm)の領域の、基体に対する格子不整合性をパラメータとして、作製した化合物半導体1に対してX線回折法及びPL発光測定による分析を行った。
図7に示す結果から、バッファ層3の全厚さのうち、基体から1/4の領域の、基体2に対する格子不整合性が0.7%以上2.0%以下の範囲である場合に、X線半値幅が特に小とされ、例えば結晶性が良好とされる1200secよりも小とされることから、上述の第1構造による化合物半導体1の化合物半導体層4の結晶性が特に良好なものとされると考えられる。
また、図8に示す結果からも、バッファ層3の全厚さのうち、基体から1/4の領域の、基体2に対する格子不整合性が0.7%以上2.0%以下の範囲である場合に、PL発光強度が特に大とされ、上述の第1構造による化合物半導体1の化合物半導体層4の結晶性が特に良好なものとされると考えられる。
以上の検討結果より、基体2上へのバッファ層3の成膜開始直後の領域の、基体に対する格子不整合性の変化率については2.6×10−5nm−5以上1.8×10−4nm−4未満とし、バッファ層3の全厚さのうち、基体から1/4の領域の、基体2に対する格子不整合性については0.7%以上2.0%以下の範囲とすることが最適と考えられる。
[化合物半導体の第2の実施例]
本発明による化合物半導体の第2の実施例について、図9を参照して説明する。
この第2の実施例において本発明による化合物半導体は、図9Aに概略断面図を示すように、GaAsによる基体2上の、例えばIn組成Xを0から0.50まで連続的に変化させたInGa(1−X)Asによるバッファ層3(厚さ1μm)と、このバッファ層3の上に形成された、例えばIn組成0.45のIn0.45GaAsによる化合物半導体層4(厚さ1μm)とからなる構成を有する。
この実施例において、バッファ層3は、図9Bに示すように、格子不整合性の変化率が7×10−5nm−1から始まり、膜厚の増加、すなわち基体2からの距離の増大につれてIn組成が連続的に増加し、かつその変化率が厚さに従って減少するように行った。また、バッファ層の厚さ1/4(この例では0.25μm)の領域における格子不整合性は1.2%であった。
この第2の実施例においては、上述の第1の実施例における検討結果を踏まえ、バッファ層3の構成は、図9Bに示すように、膜厚に対するIn組成の変化が上に凸となる曲線を描く構成とした。すなわち、膜厚の増加に対してIn組成が連続的に増加し、格子不整合性の変化率は厚さに従って連続的に減少する組成となっている。
このように、バッファ層3の構成を、直上に形成される化合物半導体層4の格子不整合性よりも大きい格子不整合性を有する構成とすることにより、バッファ層3による緩和が促進され、化合物半導体層4での歪み量が小さくなることから、化合物半導体層4の厚さをより大として化合物半導体1を構成することが可能とされる。
すなわち、本発明による化合物半導体1においては、バッファ層3の格子定数が、バッファ層3と基体2との格子不整合によって、理論値に比して基体2の格子定数に近づいた場合にも、このように、バッファ層3の構成を、成長に従って上述の変化率が連続的に減少する領域に加えて、化合物半導体層4の基体2に対する格子不整合性に比して大きな格子不整合性をもつ領域を有する構成とすることによって、バッファ層上の化合物半導体層における結晶欠陥の低減を図ることができるものである。
[化合物半導体の第3の実施例]
本発明による化合物半導体の第3の実施例について、図10及び図11を参照して説明する。
この第3の実施例は、基体2がSiよりなる実施例である。
通常、Siによる基板上にGaAs層を直接成長させると多数の欠陥が発生してしまい、バッファ層を介して化合物半導体層を形成しても結晶性の悪化は避けられない。しかし、この実施例においては、化合物半導体1において、基体2とバッファ層3との間に、第1及び第2のバッファ下地層5及び6を介在させて化合物半導体1を構成したものであり、このようにすることによって、欠陥発生が抑制される。
この場合、バッファ層3の構成は、In組成Xを0から0.45まで変化させたInGa(1−X)Asによる構成とし、図10Bに示すように、膜厚と共にIn組成が連続的に増加し、かつその変化率が厚さに従って減少する構成とした。なお、このバッファ層3の形成は、必ずしもこの構成によらなくとも、例えば上述したような膜厚に対して直線的にIn組成が増加する構成によるなど、所望の構成とすることができる。
このような構成によって、本発明による化合物半導体においては、基体2がSiからなり、バッファ層3上に形成される化合物半導体層4と上述の基体2との間の格子不整合性が2%以上である場合にも、化合物半導体層4における転位すなわち結晶欠陥を低減することができるものである。
なお、上述の第1及び第2のバッファ下地層5及び6は、以下に説明するような2段階成長法によって形成することが望ましい。
すなわち、まず、成長温度を低温例えば300℃として第1のバッファ下地層5(厚さ100Å)を形成した後、例えば温度を800℃まで上昇させてアニール処理を行い、第1のバッファ下地層5中の転位すなわち結晶欠陥の移動を促進して転位の低減化を図った後、温度を高温例えば600℃として第2のバッファ下地層6(厚さ1μm)を形成する。
また、上述のアニール処理において、図11に示すような、温度を例えば100℃まで下げてから、800℃まで昇温した状態で5分間アニールを行って100℃まで降温する作業を例えば3回繰り返すサーマルサイクルアニール(TCA;Thermal Cycle Anneal)を導入することによって、より効果的に転位の低減化を図ることができる。
[半導体装置の第1の実施例]
本発明による半導体装置の第1の実施例として、本発明による化合物半導体を有する発光素子の実施の形態例について、図12の概略断面図を参照して説明する。
この実施例において、本発明による半導体装置すなわち発光素子21は、基体22上に、バッファ層23が形成され、このバッファ層23上に、後述するように、複数の化合物半導体層による発光部24が形成され、基体22の裏面に第1電極25が、発光部24の上面に第2電極26が被着形成された構成を有する。
なお、バッファ層23は、上述の化合物半導体の実施例で説明した、基体に対する格子不整合性とその変化率の選定がなされた構成とすることができることから、発光部24の結晶性を良好なものとすることができる。
この実施例において、発光部24は、複数の化合物半導体層、例えば例えば第1導電型(例えばn型)のInPよりなる第1導電型クラッド層24aと、例えばInGaAsPによる活性層24bと、例えば第2導電型(例えばp型)のInPよりなる第2導電型クラッド層24cとを有する。すなわち、この実施例は、半導体レーザを例とする、本発明による半導体装置の一例としての発光素子の実施例である。
[半導体装置の第2の実施例]
次に、本発明による半導体装置の第2の実施例として、本発明による化合物半導体を有する受光素子の実施の形態例について、図13の概略断面図を参照して説明する。
この実施例において、本発明による半導体装置すなわち受光素子31は、基体32上に、バッファ層33が形成され、このバッファ層33上に、後述するように、複数の化合物半導体層による受光部34が形成され、基体32の裏面に第1電極35が、受光部34の上面に第2電極36が被着形成された構成を有する。
なお、バッファ層33は、上述の化合物半導体の実施例で説明した、基体に対する格子不整合性とその変化率の選定がなされた構成とすることができることから、受光部34の結晶性を良好なものとすることができる。
この実施例において、受光部34は、複数の化合物半導体層、例えばIn0.53GaAsによる空乏層34aと、例えば第2導電型(例えばp型)のIn0.53GaAsによる第2導電層とを有する。すなわち、この実施例は、フォトダイオードを例とする、本発明による半導体装置の一例としての受光素子の実施例である。
以上の実施例で説明したように、本発明による化合物半導体及び半導体装置によれば、歪を緩和するバッファ層の、基体に対する格子不整合性の変化率を選定することによって化合物半導体層の結晶性の向上が図られ、バッファ層の基体から1/4の厚さ領域における基体に対する格子不整合性を選定することにより、化合物半導体層の結晶性を、特に良好なものとすることができる。
また、基体との格子不整合によってバッファ層の実効格子定数に変化が生じた場合にも、バッファ層が、成長に従って上述の格子不整合性の変化率が連続的に減少する構成を有する領域と、化合物半導体層に比して基体に対する格子不整合性が大とされた構成を有する領域とから成るものとすることによって、バッファ層上に形成される化合物半導体層歪み量を小さくすることができる。
更に、本発明による化合物半導体及び半導体装置においては、基体に対し2%以上の格子不整合性を有する化合物半導体層を有する構成において、基体がGaAsもしくはSiよりなる構成とすることができるものである。
なお、本発明による化合物半導体及び半導体装置の実施の形態例について説明したが、本発明による化合物半導体及び半導体装置は、この実施の形態例に限られるものでないことは言うまでもない。
本発明による化合物半導体の説明に供する、化合物半導体の製造装置の構成例を示す概略構成図である。 図2A及び図2Bは、それぞれ、本発明による化合物半導体の一例の一構成における概略断面図、及びこの化合物半導体を構成するバッファ層の厚さとIn組成の分布の変化を示す模式図である。 図3A及び図3Bは、それぞれ、本発明による化合物半導体の一例の別の構成における概略断面図、及びこの化合物半導体を構成するバッファ層の厚さとIn組成の分布の変化を示す模式図である。 図4A及び図4Bは、それぞれ、本発明による化合物半導体の一例の別の構成における概略断面図、及びこの化合物半導体を構成するバッファ層の厚さとIn組成の分布の変化を示す模式図である。 本発明による化合物半導体の一例の構造における、バッファ層の基体側の領域における格子不整合性の変化率と、この格子不整合性の変化率による構成を有するバッファ層からなる化合物半導体に対するX線回折法による分析の、X線半値幅との関係を示す模式図である。 本発明による化合物半導体の一例の構造における、バッファ層の基体側の領域における格子不整合性の変化率と、この格子不整合性の変化率による構成を有するバッファ層からなる化合物半導体に対するPL発光測定の、発光強度との関係を示す模式図である。 本発明による化合物半導体の一例の構造における、バッファ層の基体から1/4厚さの領域における格子不整合性と、この格子不整合性による構成を有するバッファ層からなる化合物半導体に対するX線回折法による分析の、X半値幅との関係を示す模式図である。 本発明による化合物半導体の一例の構造における、バッファ層の基体から1/4厚さの領域における格子不整合性と、この格子不整合性による構成を有するバッファ層からなる化合物半導体に対するPL発光測定の、発光強度との関係を示す模式図である。 図9A及び図9Bは、それぞれ、本発明による化合物半導体の別の例の一構成における概略断面図、及びこの化合物半導体を構成するバッファ層の厚さとIn組成の分布の変化を示す模式図である。 図10A及び図10Bは、それぞれ、本発明による化合物半導体の別の例の一構成における概略断面図、及びこの化合物半導体を構成するバッファ層の厚さとIn組成の分布の変化を示す模式図である。 本発明による化合物半導体の一例の説明に供する、TCAの一例の模式図である。 本発明による半導体装置の第1の実施例の、発光素子の一例の概略断面図である。 本発明による半導体装置の第2の実施例の、受光素子の一例の概略断面図である。 従来の化合物半導体の概略断面図である。
符号の説明
1・・・化合物半導体、2・・・基体(基板)、3・・・バッファ層、3a・・・第1のバッファ構成層、3b・・・第2のバッファ構成層、3c・・・第3のバッファ構成層、3d・・・第4のバッファ構成層、4・・・化合物半導体層、5・・・第1のバッファ下地層、6・・・第2のバッファ下地層、11・・・化合物半導体の製造装置(MOCVD装置)、11a・・・原料供給系、11b・・・成膜系、12・・・ガス供給部、12a〜12e・・・ガス供給源、13a〜13e・・・流量制御装置、14・・・バブラー部、14a〜14c・・・バブラー、15・・・供給ライン、16・・・成長室、17・・・サセプタ、18・・・加熱器、19・・・排気ポート、21・・・半導体装置(発光素子)、22・・・基体、23・・・バッファ層、24・・・発光部、24a・・・第1導電型クラッド層、24b・・・活性層、24c・・・第2導電型クラッド層、25・・・第1電極、26・・・第2電極、31・・・半導体装置(受光素子)、32・・・基体、33・・・バッファ層、34・・・受光部、34a・・・空乏層、34b・・・第2導電層、35・・・第1電極、36・・・第2電極、101・・・従来の化合物半導体、102・・・InP基板、103・・・バッファ層、104・・・光吸収層、105・・・窓層

Claims (10)

  1. 基体と、該基体に対し2%以上の格子不整合性を有する化合物半導体層とから成る化合物半導体であって、
    上記基体上に、歪を緩和するバッファ層を介して上記化合物半導体層が形成され、
    上記バッファ層の上記基体に対する格子不整合性の変化率が、2.6×10−5/nm以上かつ1.8×10−4/nm以下から始まり、該バッファ層の成長に従って上記変化率が連続的に減少する構成としたことを特徴とする化合物半導体。
  2. 上記バッファ層及び上記化合物半導体層が、III−V族化合物半導体からなることを特徴とする請求項1に記載の化合物半導体。
  3. 上記バッファ層の、上記基体から1/4の厚さ領域における、上記基体に対する格子不整合性が、0.7%以上2.0%以下であることを特徴とする請求項1または2に記載の化合物半導体。
  4. 上記バッファ層が、成長に従って上記変化率が連続的に減少する構成を有する領域と、上記化合物半導体層に比して上記基体に対する格子不整合性が大とされた構成を有する領域とから成ることを特徴とする請求項1または2に記載の化合物半導体。
  5. 上記基体が、GaAsもしくはSiよりなることを特徴とする請求項1または2に記載の化合物半導体。
  6. 基体と、該基体に対し2%以上の格子不整合性を有する化合物半導体層とから成る化合物半導体を有する半導体装置であって、
    上記基体上に、歪を緩和するバッファ層を介して上記化合物半導体層が形成され、
    上記バッファ層の上記基体に対する格子不整合性の変化率が、2.6×10−5/nm以上かつ1.8×10−4/nm以下から始まり、該バッファ層の成長に従って上記変化率が連続的に減少する構成としたことを特徴とする半導体装置。
  7. 上記バッファ層及び上記化合物半導体層が、III−V族化合物半導体からなることを特徴とする請求項6に記載の半導体装置。
  8. 上記バッファ層の、上記基体から1/4の厚さ領域における、上記基体に対する格子不整合性が、0.7%以上2.0%以下であることを特徴とする請求項6または7に記載の半導体装置。
  9. 上記バッファ層が、成長に従って上記変化率が連続的に減少する構成を有する領域と、上記化合物半導体層に比して上記基体に対する格子不整合性が大とされた構成を有する領域とから成ることを特徴とする請求項6または7に記載の半導体装置。
  10. 上記基体が、GaAsもしくはSiよりなることを特徴とする請求項6または7に記載の半導体装置。
JP2004081236A 2004-03-19 2004-03-19 化合物半導体及び半導体装置 Pending JP2005268645A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081236A JP2005268645A (ja) 2004-03-19 2004-03-19 化合物半導体及び半導体装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081236A JP2005268645A (ja) 2004-03-19 2004-03-19 化合物半導体及び半導体装置

Publications (1)

Publication Number Publication Date
JP2005268645A true JP2005268645A (ja) 2005-09-29

Family

ID=35092848

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081236A Pending JP2005268645A (ja) 2004-03-19 2004-03-19 化合物半導体及び半導体装置

Country Status (1)

Country Link
JP (1) JP2005268645A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115414A (ja) * 2011-12-01 2013-06-10 Sharp Corp 化合物半導体太陽電池セル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013115414A (ja) * 2011-12-01 2013-06-10 Sharp Corp 化合物半導体太陽電池セル

Similar Documents

Publication Publication Date Title
US7728323B2 (en) Nitride-based semiconductor substrate, method of making the same and epitaxial substrate for nitride-based semiconductor light emitting device
JP5274785B2 (ja) AlGaN結晶層の形成方法
KR101096331B1 (ko) 화합물 반도체의 제조 방법 및 반도체 장치의 제조 방법
EP2684988A1 (en) Base, substrate with gallium nitride crystal layer, and process for producing same
JP4991828B2 (ja) 窒化ガリウム系化合物半導体の作製方法
US7632741B2 (en) Method for forming AlGaN crystal layer
JP5073624B2 (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
CN102067286B (zh) 氮化物半导体的晶体生长方法和半导体装置的制造方法
JP2007281057A (ja) 3族窒化物半導体の積層構造、及びその製造方法、並びに、半導体発光素子、及びその製造方法
JP5820089B1 (ja) エピタキシャル成長用テンプレート及びその作製方法、並びに、窒化物半導体装置
JP3626423B2 (ja) フォトニックデバイスの製造方法
JP4781028B2 (ja) Iii族窒化物半導体積層体及びiii族窒化物半導体発光素子の製造方法
JP2012204540A (ja) 半導体装置およびその製造方法
JP2005536883A (ja) AlGaN単層またはAlGaN多層構造のMBE成長
JPH05243613A (ja) 発光素子およびその製造方法
JP2005268645A (ja) 化合物半導体及び半導体装置
JP4545074B2 (ja) 半導体の製造方法
JP2005268646A (ja) 化合物半導体及び半導体装置
JP4440876B2 (ja) 半導体量子ドット構造の製造方法
JP2005263588A (ja) 化合物半導体及び半導体装置
JP2010073749A (ja) 酸化亜鉛系半導体の成長方法及び半導体発光素子の製造方法
JP2006093681A (ja) 化合物半導体用ゲルマニウム添加源、それを用いた化合物半導体の製造方法、および化合物半導体
KR101581169B1 (ko) 에피택셜 성장용 템플릿 및 그 제조 방법, 그리고 질화물 반도체 장치
JP2023122382A (ja) 半導体積層体の製造方法及び半導体積層体
JPH10149992A (ja) 薄膜成長装置及びこれを用いた窒化ガリウム系化合物半導体の製造方法