WO2016029733A1 - 对锂离子电池的容量进行管理的方法 - Google Patents

对锂离子电池的容量进行管理的方法 Download PDF

Info

Publication number
WO2016029733A1
WO2016029733A1 PCT/CN2015/081710 CN2015081710W WO2016029733A1 WO 2016029733 A1 WO2016029733 A1 WO 2016029733A1 CN 2015081710 W CN2015081710 W CN 2015081710W WO 2016029733 A1 WO2016029733 A1 WO 2016029733A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium ion
ion battery
active material
capacity
charging
Prior art date
Application number
PCT/CN2015/081710
Other languages
English (en)
French (fr)
Inventor
王莉
何向明
白骜骏
李建军
尚玉明
高剑
Original Assignee
江苏华东锂电技术研究院有限公司
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏华东锂电技术研究院有限公司, 清华大学 filed Critical 江苏华东锂电技术研究院有限公司
Publication of WO2016029733A1 publication Critical patent/WO2016029733A1/zh
Priority to US15/442,493 priority Critical patent/US20170170669A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/445Methods for charging or discharging in response to gas pressure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of lithium ion battery management, and in particular to a method for managing the capacity of a lithium ion battery.
  • the remaining capacity of the battery also known as the state of charge (SOC) of the battery, is one of the important parameters of the battery state, which can provide a basis for the control and management of the electric vehicle. Ensure that the SOC is maintained within a reasonable range to prevent damage to the battery caused by overcharging or overdischarging, which enables us to use the battery more reasonably, improve the service life of the battery, fully utilize the power performance of the battery system, and reduce the maintenance of the battery system. cost.
  • battery SOC estimation strategies mainly include open circuit voltage method, Ampere measurement method, fuzzy neural network method and Kalman filter method. Fuzzy neural network method and Kalman filtering method need to analyze and model the battery data. The method is more complicated, and due to the hardware limitation of the battery management system and the maturity of the algorithm itself, most of the domestic and foreign achievements still stay in the computer. In the simulation result stage, there is still a certain distance from the actual application.
  • the current common method for estimating the SOC of a battery is still a simple and effective open circuit voltage method and an ammeter measurement method.
  • the open circuit voltage method uses a monotonic relationship between the open circuit voltage of the battery and the SOC, and establishes a relationship between the remaining capacity (SOC) and the open circuit voltage (OCV), and determines the SOC value according to the detected open circuit voltage value, but this method is
  • SOC-OCV relationship is strictly measured and is only applicable to batteries with significant changes in SOC with OCV.
  • lithium-ion batteries represented by lithium iron phosphate have a flat charging and discharging platform, and SOC-OCV is relatively flat, so it is not suitable for open circuit.
  • the voltage method estimates the SOC, and even if the SOC-OCV curve of the lithium ion battery is sufficiently steep, if the absolute voltage measurement is not accurate, it will affect the judgment of the SOV.
  • the An-time measurement method integrates the charge and discharge current of the battery with the time during the operation of the battery system, and then estimates the dynamic SOC value of the battery.
  • the Ammeter measurement method requires higher current sampling accuracy. Therefore, there is a certain error in the method, and as the usage time increases, the cumulative error will become larger and larger. Therefore, in actual use, the SOC-OCV curve is often used in conjunction with the open circuit voltage method to correct the Ampere measurement method, but the lithium ion The flatter SOC-OCV curve of the battery has little significance for the correction of the Ampere measurement method. Therefore, how to monitor and manage the remaining capacity of lithium-ion batteries is still one of the urgent problems to be solved.
  • a method of managing the capacity of a lithium ion battery comprising:
  • the preset warning capacity of the lithium ion battery during charging is C, 0 ⁇ C ⁇ 100%;
  • the four negative electrode active materials do not change the crystal structure of each other after mixing, and the lithium potential of the first negative electrode active material is higher than the lithium potential of the fourth negative electrode active material, and the specific capacity of the first negative electrode active material is MmAh.
  • the charging platform of the positive active material is V5
  • the discharge platform of the first negative active material is V31 ⁇ V32
  • the discharge platform of the fourth negative active material is V41 ⁇ V42
  • V32 is greater than V41
  • the second lithium is The ion battery is charged at a rate, and the voltage of the second lithium ion battery during charging is monitored. When the voltage falls within the range of (V5-V32) ⁇ (V5-V41), charging of the lithium ion battery is issued. The capacity has reached the warning of C.
  • the method for managing the capacity of the lithium ion battery provided by the invention is not only simple, convenient and easy to operate, but also solves the problem that the SOC measurement of the lithium ion battery is inaccurate due to the inaccurate voltage platform and the inaccurate measurement of the absolute voltage. Effectively monitor and manage the capacity of lithium-ion batteries.
  • FIG. 1 is a schematic view showing a curve of a rate discharge of a first lithium ion battery according to a first embodiment of the present invention.
  • FIG. 2a is a discharge curve of a lithium iron phosphate half-cell
  • FIG. 2b is a charging curve of a half-cell of a third negative active material formed by mixing graphite and a phosphorus-carbon composite material
  • FIG. 2c is a subtraction of the voltage of FIG. 2a from the voltage of FIG.
  • the full battery discharge curve obtained from the voltage, Figure 2d is the actual measured discharge curve of the full battery.
  • FIG 3 is a schematic view showing a curve of rate charging of a second lithium ion battery according to a second embodiment of the present invention.
  • FIG. 4a is a charging curve of a lithium iron phosphate half-cell
  • FIG. 4b is a discharge curve of a half-cell of a third negative active material formed by mixing graphite and a phosphorus-carbon composite material
  • FIG. 4c is a subtraction of the voltage of FIG. 4a from the voltage of FIG. 4a.
  • the full battery charging curve obtained from the voltage, Figure 4d is the actual measured full battery charging curve.
  • FIG. 5 is a test chart of a rate charging curve of a third negative active material half-cell of different x values according to Embodiment 1 of the present invention.
  • a first embodiment of the present invention provides a method for managing a capacity of a lithium ion battery, including:
  • the discharge platform of the positive active material is V0
  • the charging platform of the first negative active material is V11 ⁇ V12
  • the charging platform of the second negative active material is V21 ⁇ V22
  • V21 is greater than V12
  • the first a lithium ion battery performs a rate discharge, and monitors a voltage of the first lithium ion battery during discharge, and when the voltage falls within a range of (V0-V21) ⁇ (V0-V12), the first lithium is emitted.
  • the discharge capacity of the ion battery has reached the warning of D.
  • D can be set according to actual needs, for example, when over-discharge control is required for the first lithium ion battery, D can be set to 50% to 95%.
  • the positive active material is undoped or doped spinel structure lithium manganate, layered lithium manganate, lithium nickelate, lithium cobaltate, lithium iron phosphate, lithium nickel manganese oxide or One of lithium nickel cobalt manganese oxides.
  • the spinel structure lithium manganate may be represented by a chemical formula of Li m Mn 2-n L n O 4 , which may be represented by a chemical formula of Li m Ni 1-n L n O 2
  • the lithium cobaltate The chemical formula may be represented by Li m Co 1-n L n O 2
  • the chemical formula of the layered lithium manganate may be Li m Mn 1-n L n O 2
  • the chemical formula of the lithium iron phosphate may be Li m Fe 1- n L n PO 4 indicates that the chemical formula of the lithium nickel manganese oxide can be represented by Li m Ni 0.5+za Mn 1.5-zb L a R b O 4
  • the chemical formula of the lithium nickel cobalt manganese oxide can be obtained by Li m Ni c Co d Mn e L f O 2 represents, where 0.1 ⁇ m ⁇ 1.1, 0 ⁇ n ⁇ 1, 0 ⁇ z ⁇ 1.5, 0 ⁇ az ⁇
  • L and R are selected from one or more of an alkali metal element, an alkaline earth metal element, a Group 13 element, a Group 14 element, a transition group element, and a rare earth element.
  • L and R are selected from the group consisting of Mn, Ni, Cr. At least one of Co, V, Ti, Al, Fe, Ga, Nd, and Mg.
  • the first negative active material or the second negative active material may be one of graphite, lithium titanate, titanium oxide or a phosphorus-carbon composite.
  • the lithium titanate is undoped lithium titanate or doped lithium titanate, and the undoped lithium titanate or doped lithium titanate has a spinel structure.
  • the undoped lithium titanate has a chemical formula of Li 4 Ti 5 O 12 ;
  • the doped lithium titanate has the chemical formula Li (4-g) A g Ti 5 O 12 or Li 4 A h Ti (5 -h) O 12 represents 0, wherein 0 ⁇ g ⁇ 0.33, and 0 ⁇ h ⁇ 0.5, and A is selected from the group consisting of an alkali metal element, an alkaline earth metal element, a group 13 element, a group 14 element, a transition group element, and a rare earth element.
  • One or more kinds are preferably at least one of Mn, Ni, Cr, Co, V, Al, Fe, Ga, Nd, Nb, and Mg.
  • the phosphorus-carbon composite material is an electrochemical reversible lithium storage phosphorus composite material formed by adsorbing phosphorus in a pore of a porous carbon material, and the phosphorus in the phosphorus-carbon composite material is used for reversible electrochemical lithium storage and having pores.
  • the carbon material is used to improve the electrochemical performance of phosphorus, and the phosphorus-carbon composite material has a high specific capacity and good electrical conductivity.
  • the charge/discharge platform of the positive electrode active material or the negative electrode active material means a voltage platform which is exhibited when the positive electrode active material or the negative electrode active material and the lithium sheet constitute a half-cell for charging/discharging.
  • a positive electrode active material or a negative electrode active material is charged/discharged in a half-cell of its composition, its voltage undergoes three states, namely, rising/decreasing-relatively smooth-rising/decreasing, which is relatively stable in these three stages. The period is the longest, and this relatively stable stage is the charge/discharge platform of the positive active material or the negative active material.
  • the charge/discharge curve will have two slope mutation points, which will be relatively stable between the two slope mutation points/
  • the discharge curve is defined as the charge/discharge platform of the positive electrode active material or the negative electrode active material, and the two slope mutation points serve as the starting point and the end point of the charge/discharge platform.
  • the discharge platform V0 of the positive electrode active material refers to an intermediate value of voltage values corresponding to two slope mutation points in the discharge curve of the positive electrode active material and the half cell composed of the lithium sheet. Since the general positive electrode active materials each have a long and stable charge and discharge platform, the discharge platform of the positive electrode active material can be expressed by the above intermediate value.
  • V11 and V12 are voltage values corresponding to the start and end points of the charging platform of the first negative active material, respectively.
  • V21 and V22 are voltage values corresponding to the start and end points of the second negative active material charging platform, respectively.
  • a first negative active material having a low lithium potential is first discharged (refer to segments E to H in FIG. 1), the first negative active material
  • the second negative active material having a high lithium potential starts to be discharged (refer to paragraphs H to L in Fig. 1).
  • the discharge remaining capacity of the first lithium ion battery is a preset D.
  • the anode active material corresponds to its discharge process in the full battery during the half-cell charging process, and the anode active material corresponds to its charging process in the full battery during the half-cell discharge process, therefore, when a positive active material and a kind
  • the negative electrode active material is composed of a full battery for discharging
  • the discharge curve of the whole battery has a matching relationship with the discharge curve of the positive active material and the charging curve of the negative active material;
  • a positive active material and a negative electrode are active
  • the charging curve of the full battery has a clear matching relationship with the charging curve of the positive active material and the discharge curve of the negative active material;
  • the voltage of the whole battery should be the voltage of the two electrodes to the lithium voltage. Poor, the coincident portion of the two-electrode voltage platform is the portion of the full battery that is stably discharged.
  • the discharge platform corresponding to the first negative active material is a F to G segment, and the F and G points are respectively the discharge platforms corresponding to the first negative active material.
  • the voltage Vf at point F is (V0-V11)
  • the voltage Vg at point G is (V0-V12)
  • the discharge platform corresponding to the second negative active material is I to J
  • I point and J The points are respectively the starting point and the starting point of the discharge platform corresponding to the second negative electrode active material
  • the voltage Vi at the point I is (V0 - V21)
  • the voltage Vj at the point J is (V0 - V22).
  • the discharge curve of the first lithium ion battery appears to jump from I to J in the F to G segment, and the discharge curve of the first lithium ion battery appears at this time.
  • a sharp pressure difference change the starting point of the pressure difference change is the Vg of the G point, and the end point is the Vi of the I point. Since the pressure difference between the G point and the I point changes very sharply, the slope of the discharge curve is large. Therefore, any voltage value can be found in the voltage range between Vi and Vg as the first lithium ion discharge remaining capacity has reached the D indication.
  • the voltage value corresponding to the other points except the D point in the G to I segment is used as the warning value.
  • the error but due to the terminal voltage effect of the electrode material at the beginning of its discharge and at the end of the discharge, the slope of the G to I segment curve is very steep, so the error is small, and generally, the error does not exceed 5%.
  • the range of (Vh-pVh) ⁇ (Vh+pVh) may be used as the warning range that the discharge capacity of the first lithium ion battery has reached the preset D, 0 ⁇ p ⁇ 10%.
  • an alert may be issued when the voltage value of the first lithium ion battery is exactly Vh.
  • the first negative active material and the second negative active material determined by the material are different, in the case where the mixing ratio of the first negative active material and the second negative active material is different in the third negative active material,
  • the first negative active material and the second negative active material respectively have corresponding voltage values corresponding to the starting point and the end point of the corresponding discharge platform during discharge of the first lithium ion battery, but are determined from the first negative active material
  • the position where the pressure difference change occurs when the corresponding discharge platform jumps to the discharge platform corresponding to the second negative active material, and the remaining of the first lithium ion battery in the discharge process occurs when the pressure difference change occurs.
  • the capacity values are also different.
  • the mass percentage of the second negative active material in the third negative active material is set to x, and the mass percentage of the first negative active material in the third negative active material is (1-x)
  • the correction coefficient k1 is a constant here, and 0.9 ⁇ k1 ⁇ 1.1, which can be specifically set according to the material properties of the positive and negative electrode active materials selected when preparing the first lithium ion battery.
  • the positive active material is lithium iron phosphate
  • the first negative active material is graphite
  • the second negative active material is a phosphorus-carbon composite
  • FIG. b is a charging curve of a half-cell of a third anode active material formed by mixing graphite and a phosphorus-carbon composite material
  • FIG. c is a discharge curve using the lithium iron phosphate half-cell.
  • the discharge curve of the first lithium ion battery obtained by subtracting the voltage of the half-cell charging curve of the third negative active material
  • the battery management system may be alerted to perform the next action, for example, the first lithium ion battery may be stopped to continue discharging. The first lithium ion battery is prevented from being over-discharged.
  • the step of determining the correction coefficient k1 may be further included to more accurately manage the remaining capacity of the first lithium ion battery during actual use.
  • the specific steps include:
  • the table may further use the data Vg, Vh and Vi is corrected, respectively after the correction level Vg, Vh and Vi flat level.
  • Vi flat [Vi1+Vi2+Vi3 ⁇ +Vi(n-1)+Vin]/ n
  • Vh level [Vh1 + Vh2 + Vh3 ⁇ ⁇ ⁇ + Vh (n-1) + Vhn] / n.
  • step S13 the voltage of the first lithium ion battery during discharge is monitored, and when the voltage falls within the range of Vg flat to Vi flat , the discharge remaining capacity of the first lithium ion battery has reached D. Warning.
  • a warning is issued, 0 ⁇ p ⁇ 10%. More preferably, exactly level alert when the Vh voltage value of the first lithium ion battery.
  • a second embodiment of the present invention provides a method for managing a charging capacity of a lithium ion battery, including:
  • the preset warning capacity of the second lithium ion battery during charging is C, 0 ⁇ C ⁇ 100%;
  • the charging platform of the positive active material is V5
  • the discharge platform of the first negative active material is V31 ⁇ V32
  • the discharge platform of the fourth negative active material is V41 ⁇ V42
  • V32 is greater than V41
  • the first The lithium-ion battery is subjected to rate charging, and the voltage of the second lithium ion battery during charging is monitored.
  • the voltage falls within the range of (V5-V32) ⁇ (V5-V41)
  • the lithium ion battery is emitted.
  • the charging capacity has reached the warning of C.
  • the fourth anode active material may be one of graphite, lithium titanate, titania or a phosphorus-carbon composite.
  • the lithium titanate is undoped lithium titanate or doped lithium titanate, and the undoped lithium titanate or doped lithium titanate has a spinel structure.
  • the chemical formula of the undoped lithium titanate is Li4Ti5O12; the chemical formula of the doped lithium titanate is Li(4-g)AgTi5O12 or Li4AhTi(5-h)O12, wherein 0 ⁇ g ⁇ 0.33, and 0 ⁇ h ⁇ 0.5, A is selected from one or more of an alkali metal element, an alkaline earth metal element, a Group 13 element, a Group 14 element, a transition group element, and a rare earth element, preferably Mn, Ni, Cr, Co. At least one of V, Al, Fe, Ga, Nd, Nb, and Mg.
  • the phosphorus-carbon composite material is an electrochemical reversible lithium storage phosphorus composite material formed by in situ recombination of sublimated phosphorus on the surface of a porous carbon material, and the phosphorus in the phosphorus-carbon composite material is used for reversible electrochemistry.
  • Lithium storage, porous carbon materials are used to improve the electrochemical performance of phosphorus.
  • the second embodiment of the present invention is substantially the same as the method of the first embodiment, except that the lithium potential of the first negative active material is higher than the lithium potential of the fourth negative active material, see the figure. 3.
  • first charging the first negative active material having a high lithium potential (refer to segments O to R in FIG. 1), which is basic to the first negative active material.
  • the fourth negative active material having a low lithium potential is charged (see the R to U segments in Fig. 1).
  • the charging capacity of the second lithium ion battery is a preset C.
  • the charging platform corresponding to the first negative active material is a P to Q segment, and the P and Q points are charging platforms corresponding to the first negative active material, respectively.
  • the starting point and the end point, the voltage Vp at the point P is (V5-V31), and the voltage Vq at the point Q is (V5-V32);
  • the charging platform corresponding to the fourth negative active material is S to T, S point and The point T is the start point and the end point of the charging platform corresponding to the fourth negative electrode active material, respectively, and the voltage Vs at the point S is (V5 - V41), and the voltage Vf at the point F is (V5 - V42).
  • the charging curve of the second lithium ion battery appears to jump from S to T segments from P to R segments, and a charging curve of the first lithium ion battery appears at this time.
  • the sharp pressure difference changes, that is, from the Vq of the Q point to the Vs of the S point. Since the pressure difference between the Q point and the S point changes very sharply, the slope of this charging curve is large, so it can be at the Q point to the S. Find any voltage value within the voltage range between the points as the second lithium ion charging capacity has reached the C indication.
  • the voltage corresponding to the R point is the voltage corresponding to the second lithium ion battery reaching the preset C value
  • the voltage value corresponding to the other points except the R point in the Q to S segment will be used as the warning value.
  • a certain error but due to the terminal voltage effect of the electrode material in the initial stage of charging and the end of charging, the voltage slope of the Q to S section is very steep, so the error is small, and generally, the error does not exceed 5%.
  • the range of (Vr-pVr) ⁇ (Vr+pVr) may be used as the warning range that the second lithium ion battery charging capacity has reached the preset C, 0 ⁇ p ⁇ 10%.
  • an alert may be issued when the voltage value of the first lithium ion battery is exactly Vr.
  • the mass percentage of the fourth negative active material in the fifth negative active material is set to y, and the mass percentage of the first negative active material in the fifth negative active material is (1-y)
  • the correction coefficient k2 is a constant here, 0.9 ⁇ k2 ⁇ 1.1, and can be specifically set according to the material properties of the positive and negative electrode active materials selected when preparing the second lithium ion battery.
  • lithium iron phosphate is used as a positive electrode active material
  • a phosphorus-carbon composite material is used as a first negative electrode active material
  • graphite is used as a fourth negative electrode active material
  • FIG. The charging curve of the lithium iron phosphate half-cell
  • Figure b is the discharge curve of the half-cell of the fifth active material formed by mixing the graphite and the phosphorus-carbon composite material
  • Figure c is the voltage of the charging curve using the lithium iron phosphate half-cell.
  • a charging curve of the second lithium ion battery obtained by the voltage of the half-cell discharge curve of the fifth negative active material
  • FIG. d is a charging curve of the second ion battery actually measured
  • FIG. Therefore, in the present embodiment, k2 1 is set.
  • the battery management system may be alerted to perform the next action, for example, the second lithium ion battery may be stopped to continue charging.
  • the second lithium ion battery is prevented from being overcharged.
  • a step of determining the correction coefficient k2 may be further included to more accurately manage the charging capacity of the second lithium ion battery during actual use, and the specific steps include:
  • Vq [Vq1+Vq2+Vq3 ⁇ +Vq(n-1)+Vqn]/n
  • Vr flat [Vr1 + Vr2 + Vr3 ⁇ ⁇ ⁇ + Vr (n-1) + Vrn] / n.
  • step S33 the second voltage during charging of the lithium ion battery is monitored, when the voltage level falls within a range Vq ⁇ Vs level, the issue of the second charge capacity of the lithium ion battery has reached the C Warning.
  • Vq ⁇ Vs level the voltage level falls within a range
  • Vr flat + pVr flat the voltage of the second lithium ion battery falls within the range of (Vr flat - pVr flat ) ⁇ (Vr flat + pVr flat )
  • a warning is issued, 0 ⁇ p ⁇ 10%.
  • exactly alert level Vr is voltage value of the second lithium ion battery.
  • a lithium ion half-cell is prepared by mixing graphite and phosphorus-carbon composite materials with different mixing ratios.
  • the preparation method of the lithium ion half-cell is as follows:
  • a button battery is produced to obtain a lithium ion half battery.
  • the charging ratio is calculated by using 350 mAh/g as the standard specific capacity, and charging is performed at 0.1 C.
  • the charging curve of the lithium ion half-cell of the different mixing ratio is as shown in FIG. 3, from the first lithium ion battery. Read the values corresponding to the table below on the charging curve and make a list.
  • the charging curve of the lithium ion half-cell corresponds to a discharge curve of a lithium ion full battery prepared by mixing graphite and a phosphorus-carbon composite. It is preset that the discharge capacity of the lithium ion full battery is 90%, and the discharge is stopped to control the overdischarge of the lithium ion battery.
  • the theoretical capacity of the graphite is 350 mAh/g, and the theoretical capacity of the phosphorus-carbon composite material (containing 40% of phosphorus).
  • the mass percentage of graphite in the third negative electrode active material was calculated to be 95.5%, and the mass percentage of the phosphorus-carbon composite material in the third negative electrode active material was 4.5%, and a lithium ion full battery was prepared in accordance with the above ratio.
  • the invention adds another negative active material having a different voltage platform to the first negative active material in the first negative active material of the lithium ion battery, so that the negative active material of the lithium ion battery has two voltage platforms, the lithium ion battery
  • a voltage difference change occurs when the two voltage platforms are switched, and the position where the pressure difference change occurs has a correspondence relationship with the discharge remaining capacity or the charging capacity of the lithium ion battery, thereby detecting the The pressure difference changes to determine whether the lithium ion battery reaches the corresponding discharge remaining capacity or charging capacity.
  • the Ampere measurement method may be corrected by using a correspondence relationship between the position at which the pressure difference change occurs and the discharge remaining capacity or the charge capacity of the lithium ion battery.
  • the method for managing the capacity of the lithium ion battery provided by the invention is not only simple, convenient and easy to operate, but also solves the problem that the SOC measurement of the lithium ion battery is inaccurate due to the inaccurate voltage platform and the inaccurate measurement of the absolute voltage. Effectively monitor and manage the capacity of lithium-ion batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种对锂离子电池的容量进行管理的方法,包括在该锂离子电池第一负极活性材料中添加与该第一负极活性材料具有不同电压平台的另一负极活性材料,使该锂离子电池的负极活性材料具有两个电压平台,该锂离子电池在放电过程中两个电压平台进行转换时会产生一个剧烈的压差变化,该压差变化出现的位置与该锂离子电池的充电容量具有一对应关系,从而可通过检测该压差变化来确定该锂离子电池是否达到与之对应的充电容量。

Description

对锂离子电池的容量进行管理的方法 技术领域
本发明涉及锂离子电池管理领域,具体涉及一种对锂离子电池的容量进行管理的方法。
背景技术
电池剩余容量又称电池的荷电状态(State of Charge,SOC)是电池状态的重要参数之一,能为电动汽车的控制管理提供依据。保证SOC维持在合理的范围内,防止过充或过放对电池的损伤,能使我们更加合理的利用电池,提高电池的使用寿命,充分发挥电池系统的动力性能,降低对电池系统进行维护的成本。
目前电池SOC估算策略主要有:开路电压法、安时计量法、模糊神经网络法和卡尔曼滤波法。模糊神经网络法和卡尔曼滤波法需要对电池数据进行分析与建模,方法较为复杂,且由于受到电池管理系统的硬件限制和算法自身的成熟度,目前国内外绝大多数成果还停留在计算机仿真结果阶段,离具体实际应用还有一定距离。当前对电池SOC进行估算的常用方法仍然是简单有效的开路电压法和安时计量法。
开路电压法是利用电池的开路电压与SOC的单调关系,通过建立剩余容量(SOC)-开路电压(OCV)之间的关系曲线,根据检测到的开路电压值确定SOC值,但这种方法对SOC-OCV关系测量严格,只适用于SOC随OCV变化明显的电池,而当前以磷酸铁锂为代表的锂离子电池由于具有很平坦的充放电平台,SOC-OCV较为平坦,因此不适合使用开路电压法对SOC进行估算,而且即使锂离子电池的SOC-OCV曲线足够陡峭,但若绝对电压测量不准确,也会影响对SOV的判断。安时计量法是在电池系统工作过程中将电池的充放电电流对时间进行积分运算,然后估算电池的动态SOC值,但安时计量法对电流采样精度要求较高,实际上目前安时计量法因此存在一定的误差,且随着使用时间的增加,累积误差会越来越大,因此在实际使用时,常会结合开路电压法利用SOC-OCV曲线对安时计量法进行修正,但锂离子电池较平坦的SOC-OCV曲线对安时计量法的修正意义不大。因此,如何对锂离子电池剩余容量进行监测和管理仍是目前急需解决的难题之一。
发明内容
有鉴于此,确有必要提供一种能够对锂离子电池的容量进行有效监测和管理的方法。
一种对锂离子电池的容量进行管理的方法,包括:
预设锂离子电池在充电过程中的警示容量为C,0<C<100%;
将一第一负极活性材料和一第四负极活性材料混合得到第五负极活性材料,使用该第五负极活性材料和一正极活性材料制备所述锂离子电池,该第一负极活性材料与该第四负极活性材料混合后不会改变彼此的晶型结构,且该第一负极活性材料的对锂电位高于该第四负极活性材料的对锂电位,该第一负极活性材料的比容量为MmAh/g,该第四负极活性材料的比容量分别为ZmAh/g,该第四负极活性材料在所述第五负极活性材料中所占的质量百分比y=(k2-C)M/[(k2-C)M+CZ],k2为校正系数,k2为常量,0.9<k2<1.1;以及
所述正极活性材料的充电平台为V5,所述第一负极活性材料的放电平台为V31~V32,所述第四负极活性材料的放电平台为V41~V42,V32大于V41,将该第二锂离子电池进行倍率充电,对所述第二锂离子电池的在充电过程中的电压进行监测,当电压落入(V5-V32)~(V5-V41)的范围时,发出该锂离子电池的充电容量已达到C的警示。
本发明提供的对锂离子电池容量进行管理的办法,不仅简单、方便、容易操作,而且解决了锂离子电池由于电压平台过平和绝对电压测量不准确而带来的SOC测量不准确的问题,能够对锂离子电池的容量进行有效监测和管理。
附图说明
图1为本发明第一实施例第一锂离子电池倍率放电的曲线示意图。
图2a为磷酸铁锂半电池的放电曲线,图2b为石墨和磷-碳复合材料混合形成的第三负极活性材料的半电池的充电曲线,图2c为由图2a的电压减去图2b的电压得到的全电池放电曲线,图2d为实际测量的全电池的放电曲线。
图3为本发明第二实施例第二锂离子电池倍率充电的曲线示意图。
图4a为磷酸铁锂半电池的充电曲线,图4b为石墨和磷-碳复合材料混合形成的第三负极活性材料的半电池的放电曲线,图4c为由图4a的电压减去图4b的电压得到的全电池充电曲线,图4d为实际测量的全电池的充电曲线。
图5为本发明实施例1不同x值的第三负极活性材料半电池的倍率充电曲线测试图。
具体实施方式
本发明第一实施例提供一种对锂离子电池的容量进行管理的方法,包括:
S11,预设第一锂离子电池在放电过程中的警示容量为D,0<D<100%;
S12,将一第一负极活性材料和一第二负极活性材料混合得到第三负极活性材料,使用该第三负极活性材料和一正极活性材料制备所述第一锂离子电池,该第一负极活性材料与该第二负极活性材料混合后不会改变彼此的晶型结构,且该第一负极活性材料的对锂电位低于该第二负极活性材料的对锂电位,该第一负极活性材料与该第二负极活性材料的比容量分别为MmAh/g及NmAh/g,该第二负极活性材料在所述第三负极活性材料中所占的质量百分比x=(k1-D)M/[(k1-D)M+DN];
S13,所述正极活性材料的放电平台为V0,所述第一负极活性材料的充电平台为V11~V12,所述第二负极活性材料的充电平台为V21~V22,V21大于V12,将该第一锂离子电池进行倍率放电,对所述第一锂离子电池的在放电过程中的电压进行监测,当电压落入(V0-V21)~(V0-V12)的范围时,发出该第一锂离子电池的放电剩余容量已达到D的警示。
在步骤S11中,可根据实际需要对D进行设置,例如当需要对该第一锂离子电池进行过放控制时,D可设置为50%至95%。
在步骤S12中,该正极活性材料为未掺杂或掺杂的尖晶石结构的锰酸锂、层状锰酸锂、镍酸锂、钴酸锂、磷酸铁锂、锂镍锰氧化物或锂镍钴锰氧化物中的一种。具体地,该尖晶石结构的锰酸锂可以由化学式LimMn2-nLnO4表示,该镍酸锂可以由化学式LimNi1-nLnO2表示,该钴酸锂的化学式可以由LimCo1-nLnO2表示,该层状锰酸锂的化学式可以由LimMn1-nLnO2,该磷酸铁锂的化学式可以由LimFe1-nLnPO4表示,该锂镍锰氧化物的化学式可以由LimNi0.5+z-aMn1.5-z-bLaRbO4表示,该锂镍钴锰氧化物的化学式可以由LimNicCodMneLfO2表示,其中0.1≤m≤1.1,0≤n<1,0≤z<1.5,0≤a-z<0.5,0≤b+z<1.5,0<c<1,0<d<1, 0<e<1,0≤f≤0.2,c+d+e+f=1。L和R选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡族元素及稀土元素中的一种或多种,优选地,L和R选自Mn、Ni、Cr、Co、V、Ti、Al、Fe、Ga、Nd及Mg中的至少一种。
所述第一负极活性材料或所述第二负极活性材料可以为石墨、钛酸锂、二氧化钛或磷-碳复合材料中的一种。该钛酸锂为非掺杂的钛酸锂或掺杂的钛酸锂,该非掺杂的钛酸锂或掺杂的钛酸锂具有尖晶石结构。具体地,该非掺杂的钛酸锂的化学式为Li4Ti5O12;该掺杂的钛酸锂的化学式Li(4-g)AgTi5O12或Li4AhTi(5-h)O12表示,其中0<g≤0.33,且0<h≤0.5,A选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡族元素及稀土元素中的一种或多种,优选为Mn、Ni、Cr、Co、V、Al、Fe、Ga、Nd、Nb及Mg中的至少一种。该磷-碳复合材料为将磷升华后吸附在多孔碳材料的孔中形成的电化学可逆储锂的磷复合材料,该磷-碳复合材料中的磷用于可逆电化学储锂,有孔碳材料用于提高磷的电化学性能,该磷-碳复合材料具有较高的比容量及较好的导电性。
本发明中涉及的正极活性材料或负极活性材料的充/放电平台是指该正极活性材料或负极活性材料与锂片组成半电池进行充/放电时所表现出的电压平台。一种正极活性材料或负极活性材料在其组成的半电池中进行充/放电时,其电压要经历三个状态,即上升/下降-相对平稳-上升/下降,在这三个阶段中相对平稳期是最长的,这一相对平稳的阶段就是该正极活性材料或负极活性材料的充/放电平台。即该正极活性材料或负极活性材料在其组成的半电池中充/放电时,其充/放电曲线会出现两个斜率突变点,将处于这两个斜率突变点之间的相对平稳的充/放电曲线定义为该正极活性材料或负极活性材料的充/放电平台,所述两个斜率突变点作为该充/放电平台的起始点和终点。
在步骤S13中,所述正极活性材料的放电平台V0指的是该正极活性材料与锂片组成的半电池的放电曲线中两个斜率突变点所对应的电压值的中间值。由于一般的正极活性材料均具有长而平稳的充放电平台,因此可用上述中间值表示所述正极活性材料的放电平台。V11和V12分别为所述第一负极活性材料的充电平台的起点和终点所对应的电压值。V21和V22分别为所述第二负极活性材料充电平台的起点和终点所对应的电压值。
请参阅图1,在所述第一锂离子电池的放电过程中,对锂电位低的第一负极活性材料先进行放电(请参阅图1中E到H段),所述第一负极活性材料基本放电完毕后,对锂电位高的第二负极活性材料开始放电(请参阅图1中H到L段)。当所述第一负极活性材料停止放电,所述第二负极活性材料开始放电时(对应图1中的H点),该第一锂离子电池的放电剩余容量为预设的D。
由于负极活性材料在半电池充电过程对应其在全电池中的放电过程,而该负极活性材料在半电池放电过程对应其在全电池中的充电过程,因此,当一种正极活性材料与一种负极活性材料组成全电池进行放电时,该全电池的放电曲线与该正极活性材料的放电曲线及该负极活性材料的充电曲线有较明显的匹配关系;当一种正极活性材料与一种负极活性材料组成全电池进行充电时,该全电池的充电曲线与该正极活性材料的充电曲线及该负极活性材料的放电曲线有较明显的匹配关系;该全电池的电压应为两电极对锂电压之差,两电极电压平台的重合部分即为该全电池稳定放电的部分。
在所述第一锂离子电池的放电曲线中,所述第一负极活性材料所对应的放电平台为F到G段,F点和G点分别为所述第一负极活性材料所对应放电平台的起点和始点,F点的电压Vf为(V0-V11),G点的电压Vg为(V0-V12);所述第二负极活性材料所对应的放电平台为I到J段,I点和J点分别为所述第二负极活性材料所对应放电平台的起点和始点,I点的电压Vi为(V0-V21),J点的电压Vj为(V0-V22)。在所述锂离子电池放电剩余容量达到D前后,所述第一锂离子电池的放电曲线表现为由F到G段跳跃I到J段,此时所述第一锂离子电池的放电曲线会出现一个剧烈的压差变化,该压差变化的始点为G点的Vg,终点为I点的Vi,由于G点到I点之间的压差变化很剧烈,这一段放电曲线的斜率很大,因此可在Vi到Vg之间的电压范围内找任一电压值作为该第一锂离子放电剩余容量已达到D指示。
由于H点的电压Vh为所述第一锂离子电池到达预设D值时正好对应的电压,因此以G到I段中除D点外的其他点所对应的电压值作为警示值会存在一定的误差,但由于电极材料在其放电初期和放电末期的端电压效应,G到I段曲线的斜率十分陡峭,因此该误差较小,一般地,该误差不会超过5%。为了进一步较小该误差,可以(Vh-pVh)~(Vh+pVh)的范围作为该第一锂离子电池放电剩余容量已到达预设D的警示范围,0<p<10%。更为优选地,可在所述第一锂离子电池的电压值正好为Vh时发出警示。本实施例以G点的电压Vg和I点的电压Vi的中间值作为H点的电压值Vh,即Vh=(Vg+Vi)/2。
另外,对于材料确定的第一负极活性材料和第二负极活性材料,在所述第三负极活性材料中所述第一负极活性材料与第二负极活性材料的混合比例不同的情况下,所述第一负极活性材料、第二负极活性材料在所述第一锂离子电池放电过程中对应的放电平台的起点和终点各自对应的电压值是确定不变的,但从所述第一负极活性材料对应的放电平台跳跃到所述第二负极活性材料对应的放电平台时产生的压差变化出现的位置是不同的,上述压差变化出现时对应的该第一锂离子电池在放电过程中的剩余容量值也是不同的。设定所述第二负极活性材料在所述第三负极活性材料中的质量百分数为x,则所述第一负极活性材料在所述第三负极活性材料中的质量百分数为(1-x),当所述第一负极活性材料放电完毕,所述第二负极活性材料开始放电时该第一锂离子电池的理论放电剩余容量Dt=(1-x)M/[(1-x)M+xN],以校正系数k1对该理论放电剩余容量Dt进行修正计算该混合比例下实际的放电剩余容量D,则,D=k1Dt=k1(1-x)M/[(1-x)M+xN]。在步骤S1中对D值进行预设后,可算出所述第二负极活性材料在所述第三负极活性材料中的混合比例x=(k1-D)M/[(k1-D)M+DN]。所述校正系数k1在此处是一个常量,0.9<k1<1.1,具体可根据制备所述第一锂离子电池时选用的正负极活性材料的材料性质进行设定。
请参阅图2,在本发明的一个实施例中,所述正极活性材料为磷酸铁锂,所述第一负极活性材料为石墨,所述第二负极活性材料为磷-碳复合材料,图a为所述磷酸铁锂半电池的放电曲线,图b为石墨和磷-碳复合材料混合形成的第三负极活性材料的半电池的充电曲线,图c为使用所述磷酸铁锂半电池放电曲线的电压减去所述第三负极活性材料的半电池充电曲线的电压得到的所述第一锂离子电池的放电曲线,图d为实际测量的所述第一锂离子电池的放电曲线,从图2可以看出,图c和图d几乎重合,因此,在本实施例中,设定k1=1。
当所述第一锂离子电池的剩余容量已达到预设的D时,可对电池管理系统发出警示,以进行下一步的动作,例如此时可停止所述第一锂离子电池继续进行放电来防止所述第一锂离子电池过放。
在所述步骤S12前,可进一步包括一测定校正系数k1的步骤,用以更准确的对所述第一锂离子电池在实际使用过程中的放电剩余容量进行管理,具体步骤包括:
S21,在其他条件完全相同的情况下,设定x为不同的数值x1,x2,x3······x(n-1),xn分别制备所述第一锂离子电池,0<x1<1,0<x2<1,0<x3<1,······,0<x(n-1)<1,0<xn<1;
S22,对所述多个第一锂离子电池进行倍率放电,从该多个第一锂离子电池的放电曲线上读取下表所对应的数值,并进行列表,以及
x x1 x2 x3 ··· x(n-1) xn
Vg Vg1 Vg2 Vg3 ··· Vg(n-1) Vgn
Vi Vi1 Vi2 Vi3 ··· Vi(n-1) Vin
Vh Vh1 Vh2 Vh3 ··· Vh(n-1) Vhn
D D1 D2 D3 ··· D(n-1) Dn
Dt Dt1 Dt2 Dt3 ··· Dt(n-1) Dtn
D/Dt D1/Dt1 D2/Dt2 D3/Dt3 ··· D(n-1)/Dt(n-1) Dn/Dtn
S23,计算k1,k1=[D1/Dt1+D2/Dt2+D3/Dt3···+D(n-1)/Dt(n-1)+Dn/Dtn]/n。
在步骤S12中,可根据预设的D值和步骤23中得到的k1计算x=(k1-D)M/[(k1-D)M+DN],再根据x值制备所述第一锂离子电池。
进一步地,在计算出k1后,还可进一步利用上表的数据对Vg、Vi和Vh进行校正,分别得到校正后的Vg、Vi和Vh。其中,Vg=[Vg1+Vg2+Vg3···+Vg(n-1)+Vgn]/n,Vi=[Vi1+Vi2+Vi3···+Vi(n-1)+Vin]/n,Vh=[Vh1+Vh2+Vh3···+Vh(n-1)+Vhn]/n。
在步骤S13中,对所述第一锂离子电池的在放电过程中的电压进行监测,当电压落入Vg~Vi的范围时,发出该第一锂离子电池的放电剩余容量已达到D的警示。优选地,当所述第一锂离子电池的电压落入(Vh-pVh)~(Vh+pVh)的范围时发出警示,0<p<10%。更为优选地,在所述第一锂离子电池的电压值正好为Vh时发出警示。
本发明第二实施例提供一种对锂离子电池的充电容量进行管理的方法,包括:
S31,预设第二锂离子电池在充电过程中的警示容量为C,0<C<100%;
S32,将所述第一负极活性材料和一第四负极活性材料混合得到第五负极活性材料,使用该第五负极活性材料和所述正极活性材料制备所述第二锂离子电池,该第一负极活性材料与该第四负极活性材料混合后不会改变彼此的晶型结构,且该第一负极活性材料的对锂电位高于该第四负极活性材料的对锂电位,该第四负极活性材料的比容量分别为ZmAh/g,该第四负极活性材料在所述第五负极活性材料中所占的质量百分比y=(k2-C)M/[(k2-C)M+CZ];
S33,所述正极活性材料的充电平台为V5,所述第一负极活性材料的放电平台为V31~V32,所述第四负极活性材料的放电平台为V41~V42,V32大于V41,将该第二锂离子电池进行倍率充电,对所述第二锂离子电池的在充电过程中的电压进行监测,当电压落入(V5-V32)~(V5-V41)的范围时,发出该锂离子电池的充电容量已达到C的警示。
所述第四负极活性材料可以为石墨、钛酸锂、二氧化钛或磷-碳复合材料中的一种。该钛酸锂为非掺杂的钛酸锂或掺杂的钛酸锂,该非掺杂的钛酸锂或掺杂的钛酸锂具有尖晶石结构。具体地,该非掺杂的钛酸锂的化学式为Li4Ti5O12;该掺杂的钛酸锂的化学式Li(4-g)AgTi5O12或Li4AhTi(5-h)O12表示,其中0<g≤0.33,且0<h≤0.5,A选自碱金属元素、碱土金属元素、第13族元素、第14族元素、过渡族元素及稀土元素中的一种或多种,优选为Mn、Ni、Cr、Co、V、Al、Fe、Ga、Nd、Nb及Mg中的至少一种。该磷-碳复合材料为将升华的磷通过吸附的方式在有孔碳材料表面原位复合形成的电化学可逆储锂的磷复合材料,该磷-碳复合材料中的磷用于可逆电化学储锂,有孔碳材料用于提高磷的电化学性能。
本发明第二实施例与第一实施例的方法基本相同,其不同之处在于,所述第一负极活性材料的对锂电位高于所述第四负极活性材料的对锂电位,请参阅图3,在所述第二锂离子电池的充电过程中,先对对锂电位高的第一负极活性材料进行充电(请参阅图1中O到R段),对所述第一负极活性材料基本充电完毕后,对对锂电位低的第四负极活性材料开始充电(请参阅图1中R到U段)。当对所述第一负极活性材料充电完毕,开始对所述第四负极活性材料充电时(对应图1中的R点),该第二锂离子电池的充电容量为预设的C。
在所述第二锂离子电池的充电曲线中,所述第一负极活性材料所对应的充电平台为P到Q段,P点和Q点分别为所述第一负极活性材料所对应的充电平台的起点和终点,P点的电压Vp为(V5-V31),Q点的电压Vq为(V5-V32);所述第四负极活性材料所对应的充电平台为S到T段,S点和T点分别为所述第四负极活性材料所对应的充电平台的起点和终点,S点的电压Vs为(V5-V41),F点的电压Vf为(V5-V42)。在所述锂离子电池充电容量达到C前后,所述第二锂离子电池的充电曲线表现为由P到R段跳跃S到T段,此时所述第一锂离子电池的充电曲线会出现一个剧烈的压差变化,即由Q点的Vq跳跃到S点的Vs,由于Q点到S点之间的压差变化很剧烈,这一段充电曲线的斜率很大,因此可在Q点到S点之间的电压范围内找任一电压值作为该第二锂离子充电容量已达到C指示。
由于R点所对应的电压为所述第二锂离子电池到达预设C值时正好对应的电压,因此以Q到S段中除R点外的其他点所对应的电压值作为警示值会存在一定的误差,但由于电极材料在其充电初期和充电末期的端电压效应,Q到S段的电压斜率十分陡峭,因此该误差较小,一般地,该误差不会超过5%。为了进一步较小该误差,可以以(Vr-pVr)~(Vr+pVr)的范围作为该第二锂离子电池充电容量已到达预设C的警示范围,0<p<10%。更为优选地,可在所述第一锂离子电池的电压值正好为Vr时发出警示。在本实施例中,以Q点的电压Vq和S点的电压Vs的中间值作为R点的电压值Vr,即Vr=(Vq+Vs)/2。
设定所述第四负极活性材料在所述第五负极活性材料中的质量百分数为y,则所述第一负极活性材料在所述第五负极活性材料中的质量百分数为(1-y),当对所述第一负极活性材料充电完毕,对所述第四负极活性材料开始充电时,该第二锂离子电池的理论充电容量Ct=(1-y)M/[(1-y)M+yZ],以k2值对该理论充电容量Ct进行修正计算该混合比例下实际的充电容量C,则,C=k2Ct=k2(1-y)M/[(1-y)M+xZ]。在步骤S1中对C值进行预设后,可算出所述第二负极活性材料在所述第五负极活性材料中的混合比例y=(k2-C)M/[(k2-C)M+CZ]。所述校正系数k2在此处是一个常量,0.9<k2<1.1,具体可根据制备所述第二锂离子电池时选用的正负极活性材料的材料性质进行设定。
请参阅图4,在本发明的一个实施例中,以磷酸铁锂作为正极活性材料,以磷-碳复合材料作为第一负极活性材料,以石墨作为第四负极活性材料,图a为所述磷酸铁锂半电池的充电曲线,图b为石墨和磷-碳复合材料混合形成的第五活性材料的半电池的放电曲线,图c为使用所述磷酸铁锂半电池充电曲线的电压减去所述第五负极活性材料的半电池放电曲线的电压得到的所述第二锂离子电池的充电曲线,图d为实际测量的所述第二离子电池的充电曲线,图c和图d几乎重合,因此,在本实施例中,设定k2=1。
当所述第二锂离子电池的充电容量已达到预设的C时,可对电池管理系统发出警示,以进行下一步的动作,例如此时可停止所述第二锂离子电池继续进行充电来防止所述第二锂离子电池过充。
在所述步骤S32前,可进一步包括一测定校正系数k2的步骤,用以更准确的对所述第二锂离子电池在实际使用过程中的充电容量进行管理,具体步骤包括:
S41,在其他条件完全相同的情况下,设定y为不同的数值y1,y2,y3······y(n-1),yn分别制备所述第二锂离子电池,0<y1<1,0<y2<1,0<y3<1,······,0<y(n-1)<1,0<yn<1;
S42,对所述多个第二锂离子电池进行倍率充电,从该所个第二锂离子电池的充电曲线上读取下表所对应的数值,并进行列表,以及
y y1 y2 y3 ··· y(n-1) yn
Vq Vq1 Vq2 Vq3 ··· Vq(n-1) Vqn
Vs Vs1 Vs2 Vs3 ··· Vs(n-1) Vsn
Vr Vr1 Vr2 Vr3 ··· Vr(n-1) Vrn
C C1 C2 C3 ··· C(n-1) Cn
Ct Ct1 Ct2 Ct3 ··· Ct(n-1) Ctn
C/Ct C1/Ct1 C2/Ct2 C3/Ct3 ··· C(n-1)/Ct(n-1) Cn/Ctn
S43,计算k2,k2=[C1/Ct1+C2/Ct2+C3/Ct3···+C(n-1)/Ct(n-1)+Cn/Ctn]/n。
在步骤S32中,可根据预设的C值和步骤23中得到的k2计算y=(k2-C)M/[(k2-C)M+CZ],再根据y值制备所述第二锂离子电池。
进一步地,在计算出k2后,还可进一步利用上表的数据对Vq、Vs和Vr进行校正,分别得到校正后的Vq、Vs和Vr。其中,Vq=[Vq1+Vq2+Vq3···+Vq(n-1)+Vqn]/n,Vs=[Vs1+Vs2+Vs3···+Vs(n-1)+Vsn]/n,Vr=[Vr1+Vr2+Vr3···+Vr(n-1)+Vrn]/n。
在步骤S33中,对所述第二锂离子电池的在充电过程中的电压进行监测,当电压落入Vq~Vs的范围时,发出该第二锂离子电池的充电容量已达到C的警示。优选地,当所述第二锂离子电池的电压落入(Vr-pVr)~(Vr+pVr)的范围时发出警示,0<p<10%。更为优选地,在所述第二锂离子电池的电压值正好为Vr时发出警示。
实施例1
将不同混合比例的石墨、磷-碳复合材料混合制备锂离子半电池,该锂离子半电池的制备方法如下:
(1)称量石墨、磷-碳复合材料(含磷40%)、乙炔黑,加入PVDF(用N-甲基吡咯烷酮溶解,质量分数10%),令石墨+P-C材料:乙炔黑:PVDF=7:2:1(质量比),再加入N-甲基吡咯烷酮使粘度适当(石墨、P-C材料、乙炔黑、PVDF总量0.5g,加入N-甲基吡咯烷酮约1.5mL)。倒入研钵中研磨混合。
(2)取铜箔,将表面用酒精擦拭干净,粘在玻璃板上。待铜箔表面干燥后,将研钵中的混合液倒在铜箔一端,进行刮涂。
(3)将刮涂好的铜箔放入60℃烘箱烘干24h,取出铜箔,冲片,将极片放入真空烘箱60℃烘干24h。
(4)用烘干好的极片与锂片作为两极,用LBC305-01作为电解液,制作纽扣电池,得到锂离子半电池。
得到锂离子半电池后,以350mAh/g为标准比容量计算,用0.1C进行倍率充电,该不同混合比例的锂离子半电池的充电曲线如图3所示,从该第一锂离子电池的充电曲线上读取下表所对应的数值,并进行列表。
x 0 10% 20% 29% 100%
Vg 0.25V 0.25V 0.25V 0.25V --
Vi -- 0.75V 0.75V 0.75V 0.75V
Vh -- 0.5V 0.5V 0.5V --
D -- 302/400=75.5% 265/421=62.9% 253/530=47.7% --
Dt -- 315/419=75.1% 280/488=57.4% 249/550=45.3% --
D/Dt -- 1.005 1.096 1.053 --
计算出k1=(1.005+1.096+1.053)/4=1.051,Vh=0.5V。
该锂离子半电池的充电曲线对应着由石墨、磷-碳复合材料混合制备的锂离子全电池的放电曲线。预设所述锂离子全电池的放电剩余容量为90%时停止放电从而控制该锂离子电池过放,石墨的理论容量为350mAh/g,磷-碳复合材料(含磷40%)的理论容量为1038mAh/g,计算出石墨在第三负极活性材料中的质量百分比为95.5%,磷-碳复合材料在第三负极活性材料中的质量百分比为4.5%,按照上述比例制备锂离子全电池。对该锂离子全电池在放电过程中的电压进行监测,当所述锂离子电池的电压落入(3.45V-0.5V×110%)至(3.45V-0.5V×90%)时,即2.9V至3.00V时,使该锂离子全电池停止放电。
本发明在锂离子电池第一负极活性材料中添加与该第一负极活性材料具有不同电压平台的另一负极活性材料,使该锂离子电池的负极活性材料具有两个电压平台,该锂离子电池在充放电过程中两个电压平台进行转换时会产生一个剧烈的压差变化,该压差变化出现的位置与该锂离子电池的放电剩余容量或充电容量具有一对应关系,从而可通过检测该压差变化来确定该锂离子电池是否达到与之对应的放电剩余容量或充电容量。此外,还可利用该压差变化出现的位置与该锂离子电池的放电剩余容量或充电容量之间对应关系来对安时计量法进行修正。
本发明提供的对锂离子电池容量进行管理的办法,不仅简单、方便、容易操作,而且解决了锂离子电池由于电压平台过平和绝对电压测量不准确而带来的SOC测量不准确的问题,能够对锂离子电池的容量进行有效监测和管理。
另外,本领域技术人员还可以在本发明精神内做其它变化,当然,这些依据本发明精神所做的变化,都应包含在本发明所要求保护的范围之内。

Claims (9)

  1. 一种对锂离子电池的容量进行管理的方法,包括:
    预设锂离子电池在充电过程中的警示容量为C,0<C<100%;
    将一第一负极活性材料和一第四负极活性材料混合得到第五负极活性材料,使用该第五负极活性材料和一正极活性材料制备所述锂离子电池,该第一负极活性材料与该第四负极活性材料混合后不会改变彼此的晶型结构,且该第一负极活性材料的对锂电位高于该第四负极活性材料的对锂电位,该第一负极活性材料的比容量为MmAh/g,该第四负极活性材料的比容量分别为ZmAh/g,该第四负极活性材料在所述第五负极活性材料中所占的质量百分比y=(k2-C)M/[(k2-C)M+CZ] ,k2为校正系数,k2为常量,0.9<k2<1.1;以及
    所述正极活性材料的充电平台为V5,所述第一负极活性材料的放电平台为V31~V32,所述第四负极活性材料的放电平台为V41~V42,V32大于V41,将该锂离子电池进行倍率充电,对所述锂离子电池的在充电过程中的电压进行监测,当电压落入(V5-V32)~(V5-V41)的范围时,发出该锂离子电池的充电容量已达到C的警示。
  2. 如权利要求1所述的对锂离子电池的容量进行管理的方法,其特征在于,当所述锂离子电池在充电过程中的电压落入(Vr-pVr)~(Vr+pVr)的范围时发出该锂离子电池的放电剩余容量已达到C的警示,其中,Vr=(V5-V32+V5-V41)/2,0<p<10%。
  3. 如权利要求1所述的对锂离子电池的容量进行管理的方法,其特征在于,当所述锂离子电池的电压为Vr时,发出该锂离子电池的充电容量已达到C的警示,其中,Vr=(V5-V32+V5-V41)/2。
  4. 如权利要求1所述的对锂离子电池的容量进行管理的方法,其特征在于,所述第一负极活性材料或所述第四负极活性材料为石墨、钛酸锂、二氧化钛或磷-碳复合材料中的一种。
  5. 如权利要求1所述的对锂离子电池的容量进行管理的方法,其特征在于,进一步包括一测定所述校正系数k2的步骤,包括:
    在其他条件完全相同的情况下,设定y为不同的数值y1,y2,y3······y(n-1),yn分别制备所述锂离子电池,0<y1<1,0<y2<1,0<y3<1,······,0<y(n-1)<1,0<yn<1;
    对所述多个锂离子电池进行倍率充电,从该多个锂离子电池的充电曲线上读取下表所对应的数值,并进行列表,以及
    y y1 y2 y3 ··· y(n-1) yn Vq Vq1 Vq2 Vq3 ··· Vq(n-1) Vqn Vs Vs1 Vs2 Vs3 ··· Vs(n-1) Vsn Vr Vr1 Vr2 Vr3 ··· Vr(n-1) Vrn C C1 C2 C3 ··· C(n-1) Cn Ct Ct1 Ct2 Ct3 ··· Ct(n-1) Ctn C/Ct C1/Ct1 C2/Ct2 C3/Ct3 ··· C(n-1)/Ct(n-1) Cn/Ctn
    其中,Vq为所述锂离子电池的充电曲线上所述第一负极活性材料所对应的充电平台的终点的电压值,Vs为所述锂离子电池的充电曲线上所述第四负极活性材料所对应的充电平台的起点的电压值,Vr=(Vq+Vs)/2,C为所述锂离子电池的充电曲线上Vr对应的充电容量,Ct为所述y对应的理论充电容量,Ct=(1-y)M/[(1-y)M+yZ];以及
    计算k2,k2=[C1/Ct1+C2/Ct2+C3/Ct3···+C(n-1)/Ct(n-1)+Cn/Ctn]/n。
  6. 如权利要求5所述的对锂离子电池的容量进行管理的方法,其特征在于,进一步包括一对Vq、Vs和Vr进行校正的步骤,对Vq、Vs和Vr进行校正后分别得到Vq、Vs和Vr,Vq=[Vq1+Vq2+Vq3···+Vq(n-1)+Vqn]/n,Vs=[Vs1+Vs2+Vs3···+Vs(n-1)+Vsn]/n,Vr=[Vr1+Vr2+Vr3···+Vr(n-1)+Vrn]/n。
  7. 如权利要求6所述的对锂离子电池的容量进行管理的方法,其特征在于,对所述锂离子电池的在充电过程中的电压进行监测,当所述锂离子电池的电压落入Vq~Vs的范围时,发出该锂离子电池的充电容量已达到C的警示。
  8. 如权利要求6所述的对锂离子电池的容量进行管理的方法,其特征在于,对所述锂离子电池在充电过程中的电压进行监测,当所述锂离子电池的电压落入(Vr-pVr)~(Vr+pVr)的范围时,发出该锂离子电池的充电容量已达到C的警示,0<p<10%。
  9. 如权利要求6所述的对锂离子电池的容量进行管理的方法,其特征在于,对所述锂离子电池的在放电过程中的电压进行监测,当所述锂离子电池的电压值正好为Vr时,发出该锂离子电池的充电容量已达到C的警示。
PCT/CN2015/081710 2014-08-25 2015-06-17 对锂离子电池的容量进行管理的方法 WO2016029733A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/442,493 US20170170669A1 (en) 2014-08-25 2017-02-24 Method for managing capacity of lithium ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410420983.4 2014-08-25
CN201410420983.4A CN104319425B (zh) 2014-08-25 2014-08-25 对锂离子电池的容量进行管理的方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/442,493 Continuation US20170170669A1 (en) 2014-08-25 2017-02-24 Method for managing capacity of lithium ion battery

Publications (1)

Publication Number Publication Date
WO2016029733A1 true WO2016029733A1 (zh) 2016-03-03

Family

ID=52374628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/081710 WO2016029733A1 (zh) 2014-08-25 2015-06-17 对锂离子电池的容量进行管理的方法

Country Status (3)

Country Link
US (1) US20170170669A1 (zh)
CN (1) CN104319425B (zh)
WO (1) WO2016029733A1 (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104319425B (zh) * 2014-08-25 2016-06-22 江苏华东锂电技术研究院有限公司 对锂离子电池的容量进行管理的方法
CN108141059B (zh) * 2015-09-29 2021-09-07 株式会社村田制作所 供电系统
JP6368948B2 (ja) * 2015-09-29 2018-08-08 株式会社村田製作所 蓄電システム、移動機構、搬送機構、車両及び自動車
EP3358665B1 (en) * 2015-09-29 2021-10-27 Murata Manufacturing Co., Ltd. Power storage pack
US20170214035A1 (en) * 2016-01-26 2017-07-27 Uchicago Argonne, Llc Phosphorus-carbon composites as battery anode materials
CN109435773B (zh) * 2017-08-31 2022-02-08 比亚迪股份有限公司 电池均衡方法、系统、车辆、存储介质及电子设备
KR102452626B1 (ko) * 2018-03-07 2022-10-06 주식회사 엘지에너지솔루션 Soc-ocv 프로파일 추정 방법 및 장치
US10625627B2 (en) 2018-05-22 2020-04-21 Ford Global Technologies, Llc Method of remedying lithium plating in a high voltage battery
CN108828448B (zh) * 2018-06-08 2020-08-28 江苏大学 基于充电电压曲线融合卡尔曼滤波的电池荷电状态在线估算方法
JP7214993B2 (ja) * 2018-06-29 2023-01-31 株式会社リコー 蓄電システム
CN110109030B (zh) * 2019-04-30 2020-05-08 清华大学 电池组一致性评价方法与电池组均衡策略
JPWO2023053195A1 (zh) * 2021-09-28 2023-04-06
WO2023245573A1 (zh) * 2022-06-23 2023-12-28 宁德时代新能源科技股份有限公司 电池充电控制方法、装置、计算设备及介质
CN115436833B (zh) * 2022-10-19 2024-04-12 阳光电源股份有限公司 一种储能系统及其soc校正方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924381A (zh) * 2009-05-13 2010-12-22 通用汽车环球科技运作公司 用于电池系统的充电状态的标记物
CN102456912A (zh) * 2010-12-31 2012-05-16 深圳市海盈科技有限公司 磷酸铁锂锂离子电池及其电量状态检测方法及配对方法
WO2012124211A1 (ja) * 2011-03-14 2012-09-20 三菱自動車工業株式会社 リチウムイオン電池の容量回復方法
CN104319426A (zh) * 2014-08-25 2015-01-28 江苏华东锂电技术研究院有限公司 对锂离子电池的容量进行管理的方法
CN104319425A (zh) * 2014-08-25 2015-01-28 江苏华东锂电技术研究院有限公司 对锂离子电池的容量进行管理的方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278000A (en) * 1992-09-02 1994-01-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Overcharge and overdischarge protection of ambient temperature secondary lithium cells
CA2110097C (en) * 1992-11-30 2002-07-09 Soichiro Kawakami Secondary battery
US5656915A (en) * 1995-08-28 1997-08-12 Eaves; Stephen S. Multicell battery pack bilateral power distribution unit with individual cell monitoring and control
US6425087B1 (en) * 1999-05-28 2002-07-23 Palm, Inc. Method and apparatus for using residual energy in a battery-powered computer
US6753110B1 (en) * 1999-10-08 2004-06-22 National Research Council Of Canada Cathode active material for lithium electrochemical cells
JP3844733B2 (ja) * 2002-12-26 2006-11-15 松下電器産業株式会社 非水電解質二次電池
US10629947B2 (en) * 2008-08-05 2020-04-21 Sion Power Corporation Electrochemical cell
JP4578811B2 (ja) * 2004-01-21 2010-11-10 セイコーインスツル株式会社 非水電解質二次電池のハンダ付け方法
US8617745B2 (en) * 2004-02-06 2013-12-31 A123 Systems Llc Lithium secondary cell with high charge and discharge rate capability and low impedance growth
JP5317390B2 (ja) * 2006-02-09 2013-10-16 三洋電機株式会社 非水電解質二次電池
KR100788487B1 (ko) * 2006-08-08 2007-12-24 재단법인서울대학교산학협력재단 흑린 및 흑린 탄소 복합체의 제조 방법, 제조된 흑린 및 흑린 탄소 복합체 및 이를 포함하는 리튬 이차 전지와 그 이용 방법
JP5558349B2 (ja) * 2007-07-12 2014-07-23 エー123 システムズ, インコーポレイテッド リチウムイオンバッテリー用の多機能合金オリビン
US8663825B2 (en) * 2009-03-05 2014-03-04 Eaglepicher Technologies, Llc End of life indication system and method for non-aqueous cell having amorphous or semi-crystalline copper manganese oxide cathode material
US20110114875A1 (en) * 2009-11-16 2011-05-19 Guiqing Huang Electrochemically active materials and precursors thereto
JP5761617B2 (ja) * 2010-02-17 2015-08-12 株式会社Gsユアサ 非水電解質二次電池用正極活物質及び非水電解質二次電池
TWI536702B (zh) * 2010-07-15 2016-06-01 Z動力能源有限責任公司 用於將電池組再充電之方法及裝置
US9166222B2 (en) * 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
KR101256070B1 (ko) * 2010-11-25 2013-04-18 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
CN103384931B (zh) * 2010-12-23 2016-03-30 野猫技术开发公司 具有改良性能的锂离子蓄电池材料
JP2012142156A (ja) * 2010-12-28 2012-07-26 Sony Corp リチウムイオン二次電池、正極活物質、正極、電動工具、電動車両および電力貯蔵システム
CN102117937B (zh) * 2011-01-12 2013-02-20 合肥国轩高科动力能源有限公司 一种磷酸铁锂电池的自放电筛选方法
US8703344B2 (en) * 2011-06-09 2014-04-22 Asahi Kasei Kabushiki Kaisha Materials for battery electrolytes and methods for use
JP6032473B2 (ja) * 2011-09-09 2016-11-30 株式会社Gsユアサ 状態管理装置、蓄電素子の均等化方法
JP2013077424A (ja) * 2011-09-30 2013-04-25 Fuji Heavy Ind Ltd リチウムイオン二次電池
PL3252854T3 (pl) * 2012-04-13 2019-04-30 Lg Chemical Ltd System bateryjny dla baterii akumulatorowej zawierającej zmieszany materiał katodowy, oraz aparatura i sposób zarządzania nią
US20130330640A1 (en) * 2012-06-12 2013-12-12 Michael Edward Badding Metal supported nanowire cathode catalysts for li-air batteries
EP2848954B1 (en) * 2012-06-13 2018-12-05 LG Chem, Ltd. Apparatus and method for estimating state of charge of secondary battery including blended cathode material
KR101454828B1 (ko) * 2012-06-13 2014-10-28 주식회사 엘지화학 혼합 양극재를 포함하는 이차 전지의 전압 추정 장치 및 방법
CN103579633B (zh) * 2012-08-09 2016-02-17 清华大学 正极及锂离子电池
US9552901B2 (en) * 2012-08-17 2017-01-24 Envia Systems, Inc. Lithium ion batteries with high energy density, excellent cycling capability and low internal impedance
CN102881897B (zh) * 2012-09-05 2015-11-18 曙鹏科技(深圳)有限公司 复合铁锂材料以及采用该复合铁锂材料的锂离子电池
CN103675685B (zh) * 2012-09-14 2016-11-02 清华大学 锂离子电池的测试方法及安全性的判断方法
CN102916224B (zh) * 2012-09-20 2016-03-23 东莞新能源科技有限公司 一种锂离子电池化成方法
US20160336597A1 (en) * 2014-01-17 2016-11-17 Brookhaven Science Associates, Llc High-Energy Cathodes for Lithium Rechargeable Batteries
US9864012B2 (en) * 2014-02-20 2018-01-09 NOHMs Technologies, Inc. Charge control and termination of lithium sulfur cells and fuel gauging systems and methods
WO2016003532A1 (en) * 2014-06-30 2016-01-07 University Of Southern California Free-standing active material/carbon nanomaterial network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101924381A (zh) * 2009-05-13 2010-12-22 通用汽车环球科技运作公司 用于电池系统的充电状态的标记物
CN102456912A (zh) * 2010-12-31 2012-05-16 深圳市海盈科技有限公司 磷酸铁锂锂离子电池及其电量状态检测方法及配对方法
WO2012124211A1 (ja) * 2011-03-14 2012-09-20 三菱自動車工業株式会社 リチウムイオン電池の容量回復方法
CN104319426A (zh) * 2014-08-25 2015-01-28 江苏华东锂电技术研究院有限公司 对锂离子电池的容量进行管理的方法
CN104319425A (zh) * 2014-08-25 2015-01-28 江苏华东锂电技术研究院有限公司 对锂离子电池的容量进行管理的方法

Also Published As

Publication number Publication date
CN104319425A (zh) 2015-01-28
CN104319425B (zh) 2016-06-22
US20170170669A1 (en) 2017-06-15

Similar Documents

Publication Publication Date Title
WO2016029733A1 (zh) 对锂离子电池的容量进行管理的方法
CN102074757B (zh) 一种锂离子电池荷电状态的估算方法
CN102520361B (zh) 一种电池组soh值评估方法
CN108107372A (zh) 基于soc分区估算的蓄电池健康状况量化方法及系统
CN102903976B (zh) 一种纯电动汽车充电过程soc修正方法
WO2021184318A1 (zh) 改善电池循环性能的方法和电子装置
CN110531278B (zh) 二次电池的劣化状态推定方法、劣化状态推定装置、控制方法及控制系统
CN102696143A (zh) 非水电解质二次电池的充放电控制系统及控制方法、以及电池包
CN107004910A (zh) 用于锂离子电池的阳极材料及其制备和使用方法
US20240113347A1 (en) Battery system
CN112526353B (zh) 一种退役锂离子动力电池soc快速检测方法及装置
CN108110254B (zh) 磷酸铁及磷酸铁复合材料作为负极在锂离子电池中的应用
JP2013044701A (ja) 電池システム
US20230266397A1 (en) Battery system
CN107492660B (zh) 正极浆料、正极片及锂离子电池
CN104319426B (zh) 对锂离子电池的容量进行管理的方法
CN110277595B (zh) 二次电池系统和二次电池控制方法
Nakamura et al. Impact of the electrode potential of negative electrode on the increase in resistance of LiNi1/2Mn3/2O4 positive electrode
WO2021184376A1 (zh) 改善电池循环性能的方法和电子装置
CN108054450A (zh) 一种锂电池管理系统
CN114076790A (zh) 用于锂离子电池的基于电化学阻抗谱法的锂析出诊断方法
CN112379277A (zh) 锂离子电池容量的预测方法
WO2023035158A1 (zh) 动力电池充电的方法和电池管理系统
CN111025170B (zh) 一种混合材料体系锂离子电芯循环寿命预估方法
JP7003745B2 (ja) 二次電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15836878

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15836878

Country of ref document: EP

Kind code of ref document: A1