WO2023035158A1 - 动力电池充电的方法和电池管理系统 - Google Patents

动力电池充电的方法和电池管理系统 Download PDF

Info

Publication number
WO2023035158A1
WO2023035158A1 PCT/CN2021/117307 CN2021117307W WO2023035158A1 WO 2023035158 A1 WO2023035158 A1 WO 2023035158A1 CN 2021117307 W CN2021117307 W CN 2021117307W WO 2023035158 A1 WO2023035158 A1 WO 2023035158A1
Authority
WO
WIPO (PCT)
Prior art keywords
power battery
charging
battery
potential
discharge
Prior art date
Application number
PCT/CN2021/117307
Other languages
English (en)
French (fr)
Inventor
黄珊
李世超
李海力
赵微
谢岚
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180055686.2A priority Critical patent/CN116325413A/zh
Priority to PCT/CN2021/117307 priority patent/WO2023035158A1/zh
Priority to EP21956346.7A priority patent/EP4228118A4/en
Priority to KR1020237017879A priority patent/KR20230098257A/ko
Priority to JP2023532404A priority patent/JP7569478B2/ja
Publication of WO2023035158A1 publication Critical patent/WO2023035158A1/zh
Priority to US18/313,696 priority patent/US20230271523A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16533Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application
    • G01R19/16538Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies
    • G01R19/16542Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values characterised by the application in AC or DC supplies for batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/0071Regulation of charging or discharging current or voltage with a programmable schedule
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00716Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to integrated charge or discharge current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/007182Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Definitions

  • the present application relates to the field of battery technology, in particular to a method for charging a power battery and a battery management system.
  • Embodiments of the present application provide a power battery charging method and a battery management system, which can improve the safety performance of the power battery.
  • a method for charging a power battery including: during the charging process of the power battery, obtaining the negative electrode potential of the power battery; when the difference between the negative electrode potential and the preset potential is less than or equal to the safety threshold Next, control the power battery to discharge.
  • the BMS controls the power battery to discharge, that is, the BMS controls the power battery before the negative electrode potential reaches the preset potential. Discharging can avoid the precipitation of lithium metal on the surface of the negative electrode, thereby improving the safety performance of the power battery.
  • controlling the power battery to discharge includes: If it is less than or equal to the safety threshold, send the first charging request information to the charging pile, and the first charging request information is used to request the charging current to be 0; when the actual charging current of the power battery is less than or equal to the current threshold Under the circumstances, control the power battery to discharge.
  • the power battery is then controlled to discharge, which is conducive to improving the inhibition effect of power battery discharge on battery lithium formation.
  • the method further includes: controlling the power battery to stop discharging when the duration of the first charging request information being sent is greater than or equal to a first time interval.
  • the method further includes: controlling the power battery to stop discharging when the duration of controlling the power battery to discharge is greater than or equal to the second time interval.
  • Controlling the discharge of the power battery within a certain period of time can minimize the impact on charging efficiency under the premise of suppressing lithium deposition, and at the same time avoid abnormal drawing of the gun due to long-term discharge.
  • the method further includes: in the case of controlling the power battery to stop discharging, based on the charging matching table, sending second charging request information to the charging pile, where the second charging request information is used to request the The charging pile charges the power battery.
  • a battery management system including: an acquisition module, used to acquire the negative electrode potential of the power battery during the charging process of the power battery; When the value is less than or equal to the safety threshold, the power battery is controlled to discharge.
  • control module is specifically configured to: when the difference between the negative electrode potential and the preset potential is less than or equal to the safety threshold, send the first charging request information to the charging pile, the second A charging request message is used to request that the charging current is 0; when the collected actual charging current of the power battery is less than or equal to the current threshold, the power battery is controlled to discharge.
  • control module is further configured to: control the power battery to stop discharging when the duration of the first charging request information being sent is greater than or equal to the first time interval.
  • control module is further configured to: control the power battery to stop discharging when the duration of controlling the power battery to discharge is greater than or equal to the second time interval.
  • the battery management system further includes: a communication module, configured to send second charging request information to the charging pile based on the charging matching table in the case of controlling the power battery to stop discharging, the second The charging request information is used to request the charging pile to charge the power battery.
  • a battery management system including a memory and a processor, the memory is used to store instructions, and the processor is used to read the instructions and perform any possible operations of the first aspect and the first aspect based on the instructions. method in the implementation.
  • a readable storage medium for storing a computer program, and the computer program is used to execute the above first aspect and the method in any possible implementation manner of the first aspect.
  • Fig. 1 shows a schematic block diagram of a battery system applicable to embodiments of the present application.
  • Fig. 2 is a schematic block diagram of a method for charging a power battery disclosed in an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a polarized first-order RC equivalent circuit model disclosed in an embodiment of the present application.
  • Fig. 4 is a schematic flowchart of a method for charging a power battery disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic block diagram of a battery management system disclosed in an embodiment of the present application.
  • Fig. 6 is another schematic block diagram of the battery management system disclosed in the embodiment of the present application.
  • lithium ions will be deintercalated from the positive electrode and intercalated into the negative electrode, but when some abnormal conditions occur (for example, charging the battery at a low temperature, or charging the battery with a large charging rate or charging voltage If the lithium ions deintercalated from the positive electrode cannot be inserted into the negative electrode, then the lithium ions can only be precipitated on the surface of the negative electrode, thus forming a layer of gray substance. This phenomenon is called lithium precipitation.
  • Lithium analysis not only reduces the performance of the battery, greatly shortens the cycle life, but also limits the fast charging capacity of the battery, and may cause catastrophic consequences such as combustion and explosion.
  • the embodiment of the present application provides a power battery charging method, which is beneficial to solve the problem of lithium analysis of the power battery, thereby improving the performance of the power battery.
  • Fig. 1 shows a battery system 100 applicable to the embodiments of the present application.
  • the battery system 100 may include: a power battery 110 and a battery management system (battery management system, BMS) 120 .
  • BMS battery management system
  • the power battery 110 may include at least one battery module, which can provide energy and power for the electric vehicle.
  • the power battery 110 can be lithium-ion battery, lithium metal battery, lead-acid battery, nickel-chromium battery, nickel-hydrogen battery, lithium-sulfur battery, lithium-air battery, or sodium-ion battery.
  • the battery module in the power battery 110 can be a battery cell/battery cell, or a battery pack or battery pack. There is no specific limitation in the example.
  • the battery system 100 is generally equipped with a BMS 120, which is connected to the power battery 110 for monitoring and collecting power.
  • the parameters of the battery 110, and the BMS 120 can also realize the control and management of the power battery 110 according to the parameters.
  • the BMS 120 can be used to monitor parameters such as voltage, current and temperature of the power battery 110.
  • the BMS 120 can collect the total voltage and total current of the power battery 110 in real time, the voltage and current of a single battery cell in the power battery 110, and the temperature of at least one temperature measurement point in the power battery 110, etc.
  • the real-time, fast and accurate measurement of the above parameters is the basis for the normal operation of the BMS 120.
  • the BMS 120 can further estimate the state of charge (state of charge, SOC), state of health (state of health, SOH), power state (state of power) of the power battery 110 according to the collected parameters of the power battery 110. , SOP) and other parameters.
  • the BMS 120 acquires various parameters of the power battery 110
  • various control and management of the power battery 110 can be realized according to the various parameters.
  • the BMS 120 can control the charging and discharging of the power battery 110 according to parameters such as SOC, voltage, and current, so as to ensure the normal energy supply and release of the power battery 110.
  • the BMS 120 can also control components such as a cooling fan or a heating module according to parameters such as temperature, so as to realize thermal management of the power battery 110 .
  • the BMS 120 can also judge whether the power battery 110 is in a normal operating state according to parameters such as voltage and SOH, so as to realize fault diagnosis and early warning of the power battery 110.
  • the battery system 100 may establish a connection with a charging device 101 and an electrical device 102 to realize charging and discharging of the power battery 100 .
  • the charging device 101 may include, but is not limited to, a charging pile, and may also be called a charging machine.
  • the electric device 102 may include, but is not limited to, a power car or an external device.
  • Fig. 2 shows a schematic block diagram of a method 200 for charging a power battery disclosed in an embodiment of the present application.
  • the power battery in the embodiment of the present application may be the power battery 110 shown in FIG. 1, and the method 200 may be applied to the BMS 120 in the battery system 100 shown in FIG. It may be performed by the BMS 120 in the battery system 100 shown in FIG. 1 .
  • the method 200 includes part or all of the following:
  • an electrode generally refers to a location in a battery where a redox reaction occurs with an electrolyte solution.
  • the electrodes are divided into positive and negative.
  • the positive pole is the cathode, which gains electrons and undergoes a reduction reaction
  • the negative pole is the anode, which loses electrons and undergoes an oxidation reaction. That is, the negative potential can be called the anode potential and the positive potential can be called the cathodic potential.
  • the potential of the negative electrode of the power battery will gradually drop.
  • the preset potential can also be referred to as the lithium precipitation potential, that is, the critical potential for lithium precipitation.
  • the electrode of the lithium-ion battery is polarized during the charging process, that is, the potential of the negative electrode decreases, while the potential of the positive electrode increases.
  • the potential of the negative electrode drops to 0V (vs Li/Li + )
  • the surface of the negative electrode Lithium metal will be precipitated, which will damage the performance of the battery. In severe cases, it may cause safety accidents such as thermal runaway.
  • controlling the power battery to discharge can promote lithium metal reintercalation and inhibit the continuous accumulation of precipitated lithium metal.
  • the BMS needs a certain reaction time to control the power battery to discharge, for example, the BMS may need to negotiate with the charging pile to stop charging the power battery, and then the power battery can start discharging. Therefore, if the BMS controls the power battery to discharge when the potential of the negative electrode of the power battery reaches the preset potential, the surface of the negative electrode may still cause the precipitation of lithium metal, thereby damaging the performance of the battery.
  • the BMS controls the power battery to discharge when the difference between the negative electrode potential and the preset potential is less than or equal to the safety threshold, that is, the BMS controls the power battery to discharge when the negative electrode potential reaches the predetermined value. Controlling the discharge of the power battery before setting the potential can avoid the precipitation of lithium metal on the surface of the negative electrode before the discharge of the power battery, thereby improving the safety performance of the battery.
  • the safety threshold cannot be too large, that is, the BMS cannot control the power battery to discharge when the negative electrode potential of the power battery is far from the preset potential. In this case, although It can avoid the precipitation of lithium metal on the surface of the negative electrode, but it will also affect the charging efficiency.
  • the safety threshold can be set according to battery performance, charging speed requirements, safety requirements, etc., for example, the safety threshold can be 5mv, 10mv, or 15mv.
  • the setting of the safety threshold may also consider the accuracy of obtaining the negative electrode potential, that is, the error of the negative electrode potential.
  • the acquisition of the negative electrode potential of the power battery is not specifically limited.
  • it can be obtained by estimating the negative electrode potential of the battery through a negative electrode potential estimation model, or it can be obtained through actual measurement of a three-electrode battery with a reference electrode.
  • the BMS can separate the positive electrode and the negative electrode of the battery through the negative electrode potential estimation model, and accurately simulate the change rule of the negative electrode potential and the positive electrode potential of the battery during the charging process.
  • an equivalent circuit model, an electrochemical model, and an equivalent circuit and electrochemical coupling model, etc. may be employed.
  • the BMS can also obtain the negative electrode potential of the battery by collecting the negative electrode potential of the three-electrode battery with the reference electrode and the potential of the reference electrode, wherein the three-electrode battery refers to a battery other than the traditional two-electrode battery
  • a new reference electrode is added, such as a lithium metal reference electrode, a lithium alloy reference electrode, or a copper wire in-situ lithium-plated reference electrode.
  • BMS can establish a polarized equivalent model of a three-electrode battery, which can include positive and negative parameters to reflect the external and internal characteristics of the three-electrode battery, so as to accurately predict the potential of the negative electrode.
  • the polarized equivalent model may include a Rint model, a polarized first-order RC equivalent circuit model, a polarized second-order RC equivalent circuit model, and the like.
  • FIG. 3 shows a schematic diagram of a polarized first-order RC equivalent circuit model of an embodiment of the present application.
  • Ut is the full battery terminal voltage
  • Uca and Uan are the potential of the positive electrode relative to the reference electrode and the potential of the negative electrode relative to the reference electrode, respectively.
  • OCVca and OCVan represent the open circuit voltage of the positive electrode and the open circuit voltage of the negative electrode, respectively
  • Rca_0 and Ran_0 represent the ohmic internal resistance of the positive electrode and the ohmic internal resistance of the negative electrode, respectively
  • Uca_p and Uan_p represent the polarization voltage of the positive electrode and the polarization voltage of the negative electrode, respectively
  • Rca_p and Ran_p represent the polarization internal resistance of the positive electrode and the polarization internal resistance of the negative electrode, respectively
  • Cca_p and Can_p represent the polarization capacitance of the positive electrode and the polarization capacitance of the negative electrode, respectively
  • I represents the current.
  • Uca_p' and Uan_p' denote the derivatives of Uca_p and Uan_p, respectively.
  • the open circuit voltage OCVca of the positive pole and the open circuit voltage OCVan of the negative pole can be obtained through actual measurement, and then the calibration model parameters Rca_0, Ran_0, Rca_p can be calibrated according to the formulas (1) ⁇ (5) combined with optimization algorithms, such as the least square method, genetic algorithm, etc. , Ran_p, Cca_p, and Can_p, and finally use the extended Kalman filter algorithm, proportional-integral-differential (Proportion Integral Differential, PID) algorithm or Romberg observer to estimate the negative electrode potential.
  • PID Proportion Integral Differential
  • the extended Kalman filter algorithm is mainly composed of state equation (6) and observation equation (7), combined with recursive equations (8)-(12) to iteratively update time and state to realize state estimation.
  • X is the state quantity to be estimated
  • U is the controllable input quantity
  • Y is the output quantity
  • Q and R represent the system error and measurement error respectively
  • P is the covariance matrix of the estimation error
  • the subscript k represents the variable at time k
  • the superscript T represents the transpose operation on the matrix.
  • A, B, C and D are coefficient matrices.
  • the negative electrode potential can be obtained through the negative electrode potential estimation equation:
  • the SOC can be obtained through the ampere-hour integration method.
  • the BMS controls the power battery to discharge, and parameters such as the current magnitude and duration of the power battery discharge can be fixed or adjusted in real time.
  • the BMS can control the power battery to discharge based on the same discharge parameter.
  • the discharge parameter can be fixedly configured as a current of 10A and a discharge duration of 20s.
  • the BMS may control the power battery to discharge based on the discharge parameters determined in real time, for example, the power battery discharge parameters may be determined based on the state parameters of the power battery.
  • the state parameters of the power battery may include, for example, temperature, SOC, and SOH.
  • the discharge parameters of the power battery may be determined based on the SOC interval in which the SOC of the power battery is located. Generally, the greater the SOC of the power battery, the higher the risk of lithium precipitation in the battery.
  • the BMS can configure the discharge duration and/or discharge current corresponding to different SOC intervals in advance. For example, the discharge duration corresponding to the high SOC interval may be longer than the discharge duration corresponding to the low SOC interval. For another example, the magnitude of the discharge current corresponding to the high SOC interval may be greater than the magnitude of the discharge current corresponding to the low SOC interval.
  • Dynamically adjusting the discharge parameters of the power battery based on the state parameters of the power battery can better balance the relationship between lithium analysis and charging speed, so as to better achieve fast and safe charging.
  • determining the discharge parameters of the traction battery and controlling the discharge of the traction battery can be regarded as two independent steps without interfering with each other. That is to say, there is no necessary sequence relationship between determining the discharge parameters of the traction battery and controlling the discharge of the traction battery. If it is determined that the discharge parameter of the power battery is first, then control the power battery to discharge based on the determined discharge parameter; if it is determined that the discharge parameter of the power battery is later, then control the power battery to discharge based on the previously determined discharge parameter.
  • the method 200 further includes: when the difference between the negative potential and the preset potential is less than or equal to the safety threshold, sending the first charging request information to the charging pile, the second A charging request message is used to request that the charging current is 0; when the actual charging current of the power battery is collected to be less than or equal to the current threshold, the power battery is controlled to discharge.
  • the BMS when the BMS is physically connected to the charging pile and powered on, turn on the low-voltage auxiliary power supply, enter the handshake startup phase, send a handshake message, and then perform insulation monitoring. After the insulation monitoring is completed, it enters the handshake identification stage, and both parties can send identification messages to determine the necessary information of the power battery and charging pile.
  • the charging pile and BMS After the charging handshake phase is completed, the charging pile and BMS enter the charging parameter configuration phase. At this stage, the charging pile can send a message about the maximum output capability of the charging pile to the BMS, so that the BMS can judge whether charging can be performed according to the maximum output capability of the charging pile. After the charging parameter configuration phase is completed, the charging pile and BMS can enter the charging phase.
  • the BMS will send the battery charging demand to the charging pile, and then the charging pile can adjust the charging voltage and charging current according to the battery charging demand to ensure the normal charging process.
  • the battery charge demand would carry a charge request current.
  • the charging pile will output current to the power battery based on the charging request current sent by the BMS, and the BMS can collect the charging current of the power battery, that is, the actual charging current in the embodiment of the present application.
  • the first charging request information is similar to the battery charging demand, except that the charging request current carried in the battery charging demand is 0, that is to say, the first charging request information is used to The requested charging current is 0.
  • the charging pile After the charging pile receives the first charging request information, it controls the charging current output to the power battery to be 0. Since the actual charging current of the power battery gradually decreases after the BMS sends the first charging request information to the charging pile, if the BMS controls the power battery to discharge immediately after sending the first charging request information to the charging pile, it may be Reduce the inhibitory effect of discharge on lithium precipitation in the battery.
  • the power battery is controlled to discharge when the actual charging current is less than or equal to the current threshold.
  • the current threshold is 50A.
  • the power battery it is also possible to control the power battery to discharge after a preset time after sending the first charging request information to the charging pile.
  • the preset time may be based on sending the first charging request information from the BMS to the charging pile. Afterwards, it is the empirical value of the duration obtained when the actual charging current of the power battery drops to the current threshold.
  • the method 200 further includes: controlling the power battery to stop discharging when the duration of the first charging request message being sent is greater than or equal to a first preset time interval.
  • a timer may be started when the BMS sends the first charging request information to the charging pile, and the duration of the timer may be the first preset time interval.
  • the power battery is controlled to stop discharging.
  • the duration of the timer may be 60s, that is, the first preset time interval is 60s.
  • the timing can be started when the BMS sends the first charging request information to the charging pile, and when the timing reaches the first preset time interval, the power battery is controlled to stop discharging.
  • the first preset time interval is 60s.
  • the method 200 further includes: controlling the power battery to stop discharging when the duration of controlling the power battery to discharge is greater than or equal to the second preset time interval.
  • a timer may be started at the moment when the BMS controls the power battery to discharge.
  • the duration of the timer may be a second preset time interval.
  • the power battery is controlled to stop discharging.
  • the duration of the timer may be 20s, that is, the second preset time interval is 20s.
  • the timing can be started when the BMS controls the power battery to start discharging, and when the timing reaches the second preset time interval, the power battery is controlled to stop discharging.
  • the second preset time interval is 20s.
  • first preset time interval and the second preset time interval can be configured.
  • Controlling the discharge of the power battery within a certain period of time can minimize the impact on charging efficiency under the premise of suppressing lithium deposition, and at the same time avoid abnormal drawing of the gun due to long-term discharge.
  • the method 200 further includes: in the case of controlling the power battery to stop discharging, based on the charging matching table, sending the second charging request information to the charging pile, and the second charging request information is used for Request the charging pile to charge the power battery.
  • the BMS when the BMS controls the power battery to stop discharging, it can send the second charging request information to the charging pile based on the charging matching table.
  • the second charging request information is similar to the battery charging requirements described above.
  • the second charging request information The charging request current carried in the information is not 0, that is, the charging pile is requested to output current to the power battery. That is to say, the BMS will store a charging matching table inside, which can include the corresponding relationship between the charging request current and various state parameters of the power battery.
  • the BMS controls the power battery to stop discharging, it can be based on the current state of the power battery.
  • the state parameter is to obtain the corresponding charging request current from the charging matching table, and send it to the charging pile through the second charging request information.
  • the BMS can acquire the charging request current corresponding to the current SOC from the charging matching table. After receiving the second charging request information, the charging pile outputs a non-zero charging current to the power battery, that is, charges the power battery. Furthermore, the BMS may repeatedly perform step 210 and step 220 .
  • the method 200 further includes: controlling the power battery to discharge when the power battery is in a fully charged state or in a state of drawing a gun.
  • the discharge object of the power battery may be, for example, the electric device 102 shown in FIG. 1 , or a charging pile, which is not limited in this embodiment of the present application.
  • Fig. 4 shows a schematic flowchart of a method 400 for charging a power battery according to an embodiment of the present application. As shown in FIG. 4, the method 400 may be executed by the BMS, and the method 400 may include the following parts to obtain all content:
  • the BMS collects the negative electrode potential of the power battery in real time, for example, acquires the negative electrode potential of the power battery by using the above-mentioned three-electrode battery actual measurement.
  • step S409 if it is judged in S401 that the power battery is not in a charging state, then perform step S409;
  • the safety threshold is, for example, 10mv;
  • step S407 judging whether the discharge duration of the power battery is greater than or equal to 20s, or the duration timed in step S404 is greater than or equal to 60s;
  • the method 400 ends.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 5 shows a schematic block diagram of a battery management system 500 according to an embodiment of the present application.
  • the battery management system 500 includes:
  • An acquisition module 510 configured to acquire the negative electrode potential of the power battery during the charging process of the power battery
  • the control module 520 is configured to control the power battery to discharge when the difference between the negative electrode potential and the preset potential is less than or equal to a safety threshold.
  • the BMS controls the power battery to discharge when the difference between the negative electrode potential and the preset potential is less than or equal to the safety threshold, that is, the BMS controls the power battery to discharge when the negative electrode potential reaches the predetermined value. Controlling the discharge of the power battery before setting the potential can avoid the precipitation of lithium metal on the surface of the negative electrode before the discharge of the power battery, thereby improving the safety performance of the battery.
  • control module 520 is specifically configured to: send the first charging station to the charging pile when the difference between the negative electrode potential and the preset potential is less than or equal to the safety threshold.
  • Request information the first charging request information is used to request that the charging current is 0; when the actual charging current of the power battery is collected to be less than or equal to the current threshold, the power battery is controlled to discharge.
  • control module 520 is further configured to: control the power battery to stop discharging when the duration of the first charging request message being sent is greater than or equal to the first time interval.
  • control module 520 is further configured to: control the power battery to stop discharging when the duration of controlling the power battery to discharge is greater than or equal to the second time interval.
  • the battery management system 500 further includes: a communication module, configured to send the second charging request information to the charging pile based on the charging matching table in the case of controlling the power battery to stop discharging,
  • the second charging request information is used to request the charging pile to charge the power battery.
  • the battery management system 500 may correspond to the BMS in the method embodiment of the present application, and the above-mentioned and other operations and/or functions of each unit in the battery management system 500 are to realize the For the sake of brevity, the corresponding flow of the battery management system in the method shown in 4 will not be repeated here.
  • Fig. 6 shows a schematic block diagram of a battery management system 600 according to another embodiment of the present application.
  • the battery management system 600 includes a processor 610 and a memory 620, wherein the memory 620 is used to store instructions, and the processor 610 is used to read the instructions and execute various embodiments of the foregoing application based on the instructions. Methods.
  • the memory 620 may be an independent device independent of the processor 610 , or may be integrated in the processor 610 .
  • the battery management system 600 may further include a transceiver 630 , and the processor 610 may control the transceiver 630 to communicate with other devices such as charging piles. Specifically, information or data may be sent to other devices, or information or data sent by other devices may be received.
  • the embodiment of the present application also provides a readable storage medium for storing a computer program, and the computer program is used to execute the methods in the above-mentioned various embodiments of the present application.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory,

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种动力电池充电的方法和电池管理系统,该方法包括:在动力电池的充电过程中,获取该动力电池的负极电位;在该负极电位与预设电位的差值小于或等于安全阈值的情况下,控制该动力电池进行放电。本申请实施例的方法和电池管理系统,能够提升动力电池的安全性能。

Description

动力电池充电的方法和电池管理系统 技术领域
本申请涉及电池技术领域,特别是涉及一种动力电池充电的方法和电池管理系统。
背景技术
随着时代的发展,电动汽车由于其高环保性、低噪音、使用成本低等优点,具有巨大的市场前景且能够有效促进节能减排,有利于社会的发展和进步。
对于电动汽车及其相关领域而言,电池技术是关乎其发展的一项重要因素,尤其是电池的安全性能,影响电池相关产品的发展和应用,且影响大众对电动汽车的接受度。因此,如何提升动力电池的安全性能,是一个待解决的技术问题。
发明内容
本申请实施例提供了一种动力电池充电的方法和电池管理系统,能够提升动力电池的安全性能。
第一方面,提供了一种动力电池充电的方法,包括:在动力电池的充电过程中,获取该动力电池的负极电位;在该负极电位与预设电位的差值小于或等于安全阈值的情况下,控制该动力电池进行放电。
通过设置安全阈值,使得在负极电位与预设电位的差值小于或等于该安全阈值的情况下,BMS控制动力电池进行放电,也就是说,BMS在负极电位达到预设电位之前就控制动力电池进行放电,可以避免负极表面析出锂金属,从而能够提升动力电池的安全性能。
在一种可能的实现方式中,在该负极电位与预设电位的差值小于或等于安全阈值的情况下,控制该动力电池进行放电,包括:在该负极电位与该预设电位的差值小于或等于该安全阈值的情况下,向充电桩发送第一充电请求信息,该第一充电请求信息用于请求充电电流为0;在采集到该动力电池的实际充电电流小于或等于电流阈值的情况下,控制该动力电池进行放电。
在采集到动力电池的实际充电电流小于或等于电流阈值的情况下,再控制动力电池进行放电,有利于提高动力电池放电对电池析锂的抑制效果。
在一种可能的实现方式中,该方法还包括:在该第一充电请求信息已发送的持续时间大于或等于第一时间间隔的情况下,控制该动力电池停止放电。
在一种可能的实现方式中,该方法还包括:在控制该动力电池进行放电的持续时间大于或等于第二时间间隔的情况下,控制该动力电池停止放电。
控制动力电池在一定时间内放电,可以在抑制析锂的前提下,尽量降低对充电效率的影响,同时可以避免由于长时间放电导致的异常拔枪。
在一种可能的实现方式中,该方法还包括:在控制该动力电池停止放电的情况下,基于充电匹配表,向充电桩发送第二充电请求信息,该第二充电请求信息用于请求该充电桩对该动力电池进行充电。
第二方面,提供了一种电池管理系统,包括:获取模块,用于在动力电池的充电过程中,获取该动力电池的负极电位;控制模块,用于在该负极电位与预设电位的差值小于或等于安全阈值的情况下,控制该动力电池进行放电。
在一种可能的实现方式中,该控制模块具体用于:在该负极电位与该预设电位的差值小于或等于该安全阈值的情况下,向充电桩发送第一充电请求信息,该第一充电请求信息用于请求充电电流为0;在采集到该动力电池的实际充电电流小于或等于电流阈值的情况下,控制该动力电池进行放电。
在一种可能的实现方式中,该控制模块还用于:在该第一充电请求信息已发送的持续时间大于或等于第一时间间隔的情况下,控制该动力电池停止放电。
在一种可能的实现方式中,该控制模块还用于:在控制该动力电池进行放电的持续时间大于或等于第二时间间隔的情况下,控制该动力电池停止放电。
在一种可能的实现方式中,该电池管理系统还包括:通信模块,用于在控制该动力电池停止放电的情况下,基于充电匹配表,向充电桩发送第二充电请求信息,该第二充电请求信息用于请求该充电桩对该动力电池进行充电。
第三方面,提供了一种电池管理系统,包括存储器和处理器,该存储器用于存储指令,该处理器用于读取该指令并基于该指令执行上述第一方面和第一方面的任意可能的实现方式中的方法。
第四方面,提供了一种可读存储介质,用于存储计算机程序,该计算机程序用于执行上述第一方面和第一方面的任意可能的实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1示出了本申请实施例适用的电池系统的示意性框图。
图2是本申请实施例公开的动力电池充电的方法的示意性框图。
图3是本申请实施例公开的分极一阶RC等效电路模型的示意图。
图4是本申请实施例公开的动力电池充电的方法的示意性流程图。
图5是本申请实施例公开的电池管理系统的示意性框图。
图6是本申请实施例公开的电池管理系统的另一示意性框图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
在新能源领域中,动力电池作为用电装置,例如车辆、船舶或航天器等的主要动力源,其重要性不言而喻。目前市面上的动力电池多为可充电的二次电池(Rechargeable battery),常见的是锂离子电池或锂离子聚合物电池。
通常,锂离子电池在充电过程中,锂离子会从正极脱嵌并嵌入负极,但是当一些异常状态发生(例如,在低温下对电池进行充电,或者,通过大的充电倍率或充电电压对电池充电),并造成从正极脱嵌的锂离子无法嵌入负极的话,那么锂离子就只能析出在负极表面,从而形成一层灰色的物质,这种现象就叫做析锂。
析锂不仅使电池性能下降,循环寿命大幅缩短,还限制了电池的快充容量,并有可能引起燃烧、爆炸等灾难性后果。
有鉴于此,本申请实施例提供了一种动力电池充电的方法,有利于解决动力电池的析锂问题,从而提升动力电池的性能。
图1示出了本申请实施例适用的一种电池系统100。该电池系统100可包括:动力电池110和电池管理系统(battery management system,BMS)120。
具体地,该动力电池110可包括至少一个电池模组,其可为电动汽车提供能量和动力。从电池的种类而言,该动力电池110可以是锂离子电池、锂金属电池、铅酸电池、镍铬电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在本申请实施例中不做具体限定。从电池规模而言,本申请实施例中,动力电池110中的电池模组可以是电芯/电池单体(battery cell),也可以是电池组或电池包(battery pack),在本申请实施例中不做具体限定。
此外,为了智能化管理及维护该动力电池110,防止电池出现故障,延长电池的使用寿命,电池系统100中一般还设置有BMS 120,该BMS 120连接于动力电池110,用于监控并采集动力电池110的参数,且BMS 120还可根据该参数实现对动力电池110的控制管理。
作为示例,该BMS 120可用于监控动力电池110的电压、电流和温度等参数。其中,BMS 120可实时采集动力电池110的总电压、总电流,动力电池110中单个电池单体的电压、电流、以及动力电池110中至少一个测温点的温度等等。上述参数的实时,快速,准确的测量是BMS 120正常运行的基础。
可选地,BMS 120可根据该采集的动力电池110的参数,进一步估算动力电池110的荷电状态(state of charge,SOC)、健康状态(state of health,SOH)、功率状态(state of power,SOP)等各种参数。
进一步地,在BMS 120获取动力电池110的多种参数以后,可根据该多种参数实现对动力电池110各种控制和管理。
例如,BMS 120可根据SOC、电压、电流等参数实现对动力电池110的充放电控制,保证动力电池110正常的能量供给和释放。
又例如,BMS 120还可根据温度等参数,控制散热风扇或者加热模块等组件,实现动力电池110的热管理。
再例如,BMS 120还可根据电压、SOH等参数,判断动力电池110是否处于正常运行状态,以实现动力电池110的故障诊断和预警。
可选地,如图1所示,电池系统100可与充电设备101和用电设备102建立连接,以实现动力电池100的充放电。
可选地,该充电设备101可以包括但不限于充电桩,也可以称为是充电机。
可选地,该用电设备102可以包括但不限于是动力汽车或者外部设备。
图2示出了本申请一实施例公开的动力电池充电的方法200的示意性框图。可选地,本申请实施例中的动力电池可以是图1所示的动力电池110,该方法200可以应用于图1中所示的电池系统100中的BMS 120,换句话说,该方法200可以由图1中所示的电池系统100中的BMS 120执行。具体地,如图2所示,该方法200包括以下部分或全部内容:
S210,在该动力电池的充电过程中,获取该动力电池的负极电位。
S220,在该负极电位与预设电位的差值小于或等于安全阈值的情况下,控制该动力电池进行放电。
应理解,电极一般是指电池中与电解质溶液发生氧化还原反应的位置。电极有正负之分,一般正极为阴极,获得电子,发生还原反应;负极则为阳极,失去电子发生氧化反应。也就是说,负极电位可以称为阳极电位,而正极电位则可以称为阴极电位。
通常情况下,在动力电池的充电过程中,动力电池的负极电位会逐渐下降,当动力电池的负极电位下降至预设电位时,会引起锂金属的析出。该预设电位也可以称为是锂析出电位,即析锂的临界电位。以石墨负极体系的锂离子电池为例,锂离子电池在充电过程中电极发生极化,即负极电位下降,而正极电位上升,当负极电位降至0V(vs Li/Li +)时,负极表面会析出锂金属,损害电池性能,严重时还可能引发热失控等安全事故。
申请人发现,在动力电池的充电过程中,控制动力电池进行放电,能够促进锂金属回嵌,抑制析出的锂金属持续累积。但是由于BMS控制动力电池进行放电是需要一定的反应时间,例如,BMS可能需要先跟充电桩协商停止为动力电池进行充电,然后动力电池才能开始放电。因 此,若在动力电池的负极电位达到预设电位时,BMS才控制动力电池进行放电,负极表面还是有可能会引起锂金属的析出,从而损害电池的性能。
在本申请实施例中,通过设置安全阈值,使得在负极电位与预设电位的差值小于或等于该安全阈值的情况下,BMS控制动力电池进行放电,也就是说,BMS在负极电位达到预设电位之前就控制动力电池进行放电,可以避免负极表面在动力电池放电之前析出锂金属,从而能够提升电池的安全性能。
可选地,在本申请实施例中,该安全阈值也不能太大,即BMS不能在动力电池的负极电位远没有降至预设电位时就控制动力电池进行放电,在这种情况下,虽然可以避免负极表面析出锂金属,但是同样会影响充电效率。可选地,该安全阈值可以根据电池性能、充电速度需求和安全需求等方面设置,例如,安全阈值可以为5mv、10mv或15mv等。
可选地,在本申请实施例中,该安全阈值的设置还可以考虑获取负极电位的准确度,即该负极电位的误差。
在S210中,对动力电池的负极电位的获取不作具体限定。例如,可以通过负极电位预估模型预估电池的负极电位获得,或者可以通过带参比电极的三电极电池实测获得。
在一种实施例中,针对两电极电池,BMS可以通过负极电位预估模型,将电池的正极和负极分开,准确地模拟电池在充电过程中的负极电位和正极电位变化的规律即可。例如,可以采用等效电路模型、电化学模型、以及等效电路和电化学耦合模型等。
在另一种实施例中,BMS还可以通过采集带参比电极的三电极电池的负极电位与参比电极的电位获取电池的负极电位,其中,三电极电池是指除了包括传统两电极电池的正极和负极之外,还新增一个参比电极,该参比电极例如是锂金属参比电极、锂合金参比电极或铜丝原位镀锂参比电极等。
具体地,BMS可以建立三电极电池的分极等效模型,该分极等效模型可以包括正极参数和负极参数,以反映该三电极电池的外部特性和内部特性,以便于准确预测负极电位。其中,分极等效模型可以包括Rint模型、分极一阶RC等效电路模型、分极二阶RC等效电路模型等。
图3示出了本申请实施例的分极一阶RC等效电路模型的示意图。如图3所示,Ut为全电池端电压;Uca和Uan分别为正极相对参比电极的电位和负极相对参比电极的电位。OCVca和OCVan分别表示正极的开路电压和负极的开路电压,Rca_0和Ran_0分别表示正极的欧姆内阻和负极的欧姆内阻,Uca_p和Uan_p分别表示正极的极化电压和负极的极化电压,Rca_p和Ran_p分别表示正极的极化内阻和负极的极化内阻,Cca_p 和Can_p分别表示正极的极化电容和负极的极化电容,I表示电流。Uca_p’和Uan_p’分别表示Uca_p和Uan_p的导数。
首先,可以通过实测获得正极的开路电压OCVca和负极的开路电压OCVan,然后在根据公式(1)~(5)再结合优化算法,例如最小二乘法、遗传算法等标定模型参数Rca_0、Ran_0、Rca_p、Ran_p、Cca_p和Can_p,最后再利用扩展卡尔曼滤波算法、比例-积分-微分(Proportion Integral Differential,PID)算法或者龙贝格观测器等对负极电位进行预估。
Ut=Uca–Uan      (1)
Uca=OCVca+I*Rca_0+Uca_p      (2)
Uan=OCVan+I*Ran_0+Uan_p     (3)
Uca_p’=I/Cca_p-Uca_p/(Rca_p*Cca_p)     (4)
Uan_p’=I/Can_p-Uan_p/(Ran_p*Can_p)    (5)
下面将简单介绍利用扩展卡尔曼滤波算法对负极电位预估的实施例。扩展卡尔曼滤波算法主要由状态方程(6)和观测方程(7)组成,再结合递归方程(8)-(12)对时间和状态迭代更新实现状态估计。
X k+1=A kX k+B kU k+Q k      (6)
Y k=C kX k+R k      (7)
Figure PCTCN2021117307-appb-000001
Figure PCTCN2021117307-appb-000002
Figure PCTCN2021117307-appb-000003
Figure PCTCN2021117307-appb-000004
Figure PCTCN2021117307-appb-000005
其中,X为待估计的状态量,U为可控制输入量,Y为输出量,Q和R分别表示系统误差和测量误差,P为估计误差的协方差矩阵,下标k代表k时刻的变量,上标T表示对矩阵进行转置运算。A、B、C和D为系数矩阵。
将X、A、B、C、Q、R的值代入上述方程中:
Figure PCTCN2021117307-appb-000006
Figure PCTCN2021117307-appb-000007
Figure PCTCN2021117307-appb-000008
Figure PCTCN2021117307-appb-000009
Figure PCTCN2021117307-appb-000010
R k=0.01
即可通过负极电位预估方程获取负极电位:
Figure PCTCN2021117307-appb-000011
其中,SOC可以通过安时积分法获得。
可选地,在本申请实施例中,BMS控制动力电池进行放电,动力电池放电的电流大小、时长等参数可以是固定不变的,也可以是实时调整的。
在一种示例中,BMS可以基于相同的放电参数控制动力电池进行放电,例如,该放电参数可以固定配置为电流大小为10A,放电时长为20s。
在另一种示例中,BMS可以基于实时确定的放电参数控制动力电池进行放电,例如,可以基于动力电池的状态参数,确定动力电池的放电参数。动力电池的状态参数例如可以包括温度、SOC以及SOH等。
可选地,可以基于动力电池的SOC所在的SOC区间,确定动力电池的放电参数。通常情况下,动力电池的SOC越大,则电池析锂的风险越高。BMS可以提前配置不同的SOC区间所对应的放电时长和/或放电的电流大小。例如,高SOC区间对应的放电时长可以大于低SOC区间对应 的放电时长。再例如,高SOC区间对应的放电的电流大小可以大于低SOC区间对应的放电的电流大小。
基于动力电池的状态参数动态调整动力电池的放电参数,可以更好地平衡析锂与充电速度之间的关系,从而能够更好地实现快速且安全的充电。
需要说明的是,确定动力电池的放电参数跟控制动力电池进行放电可以看成是两个独立的步骤,互不干扰。也就是说,确定动力电池的放电参数与控制动力电池进行放电之间没有必然的时序关系。若确定动力电池的放电参数在前,则基于确定的放电参数控制动力电池进行放电;若确定动力电池的放电参数在后,则基于在先确定的放电参数控制动力电池进行放电。
可选地,在本申请实施例中,该方法200还包括:在该负极电位与预设电位的差值小于或等于该安全阈值的情况下,向充电桩发送第一充电请求信息,该第一充电请求信息用于请求充电电流为0;在采集到动力电池的实际充电电流小于或等于电流阈值的情况下,控制动力电池进行放电。
通常,当BMS与充电桩物理连接完成并上电后,开启低压辅助电源,进入握手启动阶段发送握手报文,再进行绝缘监测。绝缘监测结束后进入握手辨识阶段,双方可以发送辨识报文,确定动力电池和充电桩的必要信息。充电握手阶段完成后,充电桩和BMS进入充电参数配置阶段。在此阶段,充电桩可以向BMS发送充电桩最大输出能力的报文,从而BMS可以根据充电桩最大输出能力判断是否能够进行充电。在充电参数配置阶段完成之后,充电桩和BMS可以进入充电阶段。
在动力电池的充电过程中,BMS会向充电桩发送电池充电需求,然后充电桩可以根据电池充电需求来调整充电电压和充电电流以保证充电过程正常进行。作为示例,该电池充电需求会携带充电请求电流。然后,充电桩会基于BMS发送的充电请求电流向动力电池输出电流,BMS可以采集动力电池的充电电流,即本申请实施例中的实际充电电流。
在本申请实施例中,该第一充电请求信息同电池充电需求类似,只不过该电池充电需求中所携带的充电请求电流为0,也就是说,该第一充电请求信息用于向充电桩请求充电电流为0。而充电桩在接收到该第一充电请求信息之后,控制向动力电池输出的充电电流为0。由于BMS在向充电桩发送第一充电请求信息之后,动力电池的实际充电电流是逐渐减小的,因此,如果在向充电桩发送第一充电请求信息之后BMS立刻控制动力电池进行放电,可能会降低放电对电池析锂的抑制效果。
在一种示例中,通过实时采集动力电池的实际充电电流,在实际充电电流小于或等于电流阈值时,才控制动力电池进行放电。例如,该电流阈值为50A。
在另一种示例中,也可以在向充电桩发送第一充电请求信息之后的预设时间后再控制动力电池进行放电,该预设时间可以是基于从BMS向充电桩发送第一充电请求信息之后到动力电池的实际充电电流降到电流阈值时所获取的时长的经验值。
可选地,在本申请一实施例中,该方法200还包括:在第一充电请求信息已发送的持续时间大于或等于第一预设时间间隔的情况下,控制动力电池停止放电。
例如,可以在BMS向充电桩发送第一充电请求信息时启动定时器,该定时器的时长可以是该第一预设时间间隔,当该定时器超时时,就控制动力电池停止放电。例如,该定时器的时长可以是60s,也就是该第一预设时间间隔为60s。
再例如,可以在BMS向充电桩发送第一充电请求信息时开始计时,当计时时长达到第一预设时间间隔,则控制动力电池停止放电。例如,该第一预设时间间隔为60s。
可选地,在本申请另一实施例中,该方法200还包括:在控制动力电池进行放电的持续时间大于或等于第二预设时间间隔的情况下,控制动力电池停止放电。
例如,可以在BMS控制动力电池进行放电的开始时刻启动定时器,该定时器的时长可以是第二预设时间间隔,当该定时器超时时,就控制动力电池停止放电。例如,该定时器的时长可以是20s,也就是该第二预设时间间隔为20s。
再例如,可以在BMS控制动力电池开始放电时开始计时,当计时时长达到第二预设时间间隔,则控制动力电池停止放电。例如,该第二预设时间间隔为20s。
应理解,该第一预设时间间隔和该第二预设时间间隔可以配置。
控制动力电池在一定时间内放电,可以在抑制析锂的前提下,尽量降低对充电效率的影响,同时可以避免由于长时间放电导致的异常拔枪。
可选地,在本申请实施例中,该方法200还包括:在控制动力电池停止放电的情况下,基于充电匹配表,向充电桩发送第二充电请求信息,该第二充电请求信息用于请求充电桩对动力电池进行充电。
具体地,BMS在控制动力电池停止放电的情况下,可以基于充电匹配表,向充电桩发送第二充电请求信息,该第二充电请求信息同上文描述的电池充电需求类似,该第二充电请求信息中携带的充电请求电流不 为0,即请求充电桩向动力电池输出电流。也就是说,BMS内部会存储一张充电匹配表,该充电匹配表可以包括充电请求电流与动力电池的各种状态参数的对应关系,当BMS控制动力电池停止放电时,可以基于动力电池的当前状态参数,从该充电匹配表中获取对应的充电请求电流,并通过第二充电请求信息发送给充电桩。例如,BMS可以从充电匹配表中获取与当前SOC对应的充电请求电流。充电桩在接收到该第二充电请求信息之后,向动力电池输出不为0的充电电流,即对动力电池进行充电。进而BMS可以重复执行步骤210以及步骤220。
可选地,在本申请实施例中,该方法200还包括:在动力电池处于满充状态或者拔枪状态,控制该动力电池进行放电。
如果动力电池处于满充状态或者拔枪状态,由于此时并不清楚动力电池的当前状态是否具有析锂风险,通过控制动力电池进行放电,可以在动力电池具有析锂风险的情况下抑制析锂,从而可以提高动力电池的安全性能。
需要说明的是,动力电池的放电对象可以例如可以是图1所示的用电设备102,也可以是充电桩,本申请实施例对此不作限定。
图4示出了本申请实施例的动力电池充电的方法400的示意性流程图。如图4所示,该方法400可以由BMS执行,并且该方法400可以包括以下部分获取全部内容:
S401,判断动力电池是否处于充电状态;
S402,若在S401中判断动力电池处于充电状态,则BMS实时收集动力电池的负极电位,例如,采用上述三电极电池实测获取动力电池的负极电位。
可选地,若在S401中判断动力电池不处于充电状态,则执行步骤S409;
S403,判断(负极电位-预设电位)是否小于或等于安全阈值,该安全阈值例如为10mv;
S404,若S403中的判断结果为是,则向充电桩发送充电请求电流为0的电池充电需求,并且实时采集动力电池的实际充电电流以及开始计时;
可选地,若S403中的判断结果为否,则返回执行步骤S402;
S405,判断动力电池的实际充电电流是否小于50A;
S406,若S405中的判断结果为是,则控制动力电池以10A的电流大小放电;
可选地,若S405中的判断结果为否,则返回执行步骤S404;
S407,判断动力电池的放电时长是否大于或等于20s,或者在步骤S404中计时的时长大于或等于60s;
S408,若在S407中的判断结果为是,则控制动力电池停止放电,并且按照充电匹配表,请求充电桩向动力电池充电,即返回执行步骤S401中;
可选地,若在S407中的判断结果为否,则返回执行步骤S406;
S409,若在S401中判断动力电池处于非充电状态,则判断动力电池是否处于满充状态或者拔枪状态;
S410,若在S409中判断动力电池处于满充状态或者拔枪状态,则控制动力电池以10A的电流大小放电20s;
可选地,若在S409中判断动力电池不处于满充状态或拔枪状态,则结束方法400。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文详细描述了本申请实施例的动力电池充电的方法,下面将结合图5和图6详细描述本申请实施例的电池管理系统。方法实施例所描述的技术特征适用于以下装置实施例。
图5示出了本申请实施例的电池管理系统500的示意性框图。如图5所示,该电池管理系统500包括:
获取模块510,用于在动力电池的充电过程中,获取该动力电池的负极电位;
控制模块520,用于在该负极电位与预设电位的差值小于或等于安全阈值的情况下,控制该动力电池进行放电。
在本申请实施例中,通过设置安全阈值,使得在负极电位与预设电位的差值小于或等于该安全阈值的情况下,BMS控制动力电池进行放电,也就是说,BMS在负极电位达到预设电位之前就控制动力电池进行放电,可以避免负极表面在动力电池放电之前析出锂金属,从而能够提升电池的安全性能。
可选地,在本申请实施例中,该控制模块520具体用于:用于在该负极电位与该预设电位的差值小于或等于该安全阈值的情况下,向充电桩发送第一充电请求信息,该第一充电请求信息用于请求充电电流为0;在采集到该动力电池的实际充电电流小于或等于电流阈值的情况下,控制该动力电池进行放电。
可选地,在本申请实施例中,该控制模块520还用于:在该第一充电请求信息已发送的持续时间大于或等于第一时间间隔的情况下,控制该动力电池停止放电。
可选地,在本申请实施例中,该控制模块520还用于:在控制该动力电池进行放电的持续时间大于或等于第二时间间隔的情况下,控制该动力电池停止放电。
可选地,在本申请实施例中,该电池管理系统500还包括:通信模块,用于在控制该动力电池停止放电的情况下,基于充电匹配表,向充电桩发送第二充电请求信息,该第二充电请求信息用于请求该充电桩对该动力电池进行充电。
应理解,根据本申请实施例的电池管理系统500可对应于本申请方法实施例中的BMS,并且电池管理系统500中的各个单元的上述和其它操作和/或功能分别为了实现图2和图4所示方法中电池管理系统的相应流程,为了简洁,在此不再赘述。
图6示出了本申请另一个实施例的电池管理系统600的示意性框图。如图6所示,电池管理系统600包括处理器610和存储器620,其中,存储器620用于存储指令,处理器610用于读取所述指令并基于所述指令执行前述本申请各种实施例的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,该电池管理系统600还可以包括收发器630,处理器610可以控制该收发器630与充电桩等其他设备进行通信。具体地,可以向其他设备发送信息或数据,或者接收其他设备发送的信息或数据。
本申请实施例还提供了一种可读存储介质,用于存储计算机程序,所述计算机程序用于执行前述本申请各种实施例的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或 讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,
RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (11)

  1. 一种动力电池充电的方法,其特征在于,包括:
    在动力电池的充电过程中,获取所述动力电池的负极电位;
    在所述负极电位与预设电位的差值小于或等于安全阈值的情况下,控制所述动力电池进行放电。
  2. 根据权利要求1所述的方法,其特征在于,所述在所述负极电位与预设电位的差值小于或等于安全阈值的情况下,控制所述动力电池进行放电,包括:
    在所述负极电位与所述预设电位的差值小于或等于所述安全阈值的情况下,向充电桩发送第一充电请求信息,所述第一充电请求信息用于请求充电电流为0;
    在采集到所述动力电池的实际充电电流小于或等于电流阈值的情况下,控制所述动力电池进行放电。
  3. 根据权利要求2所述的方法,其特征在于,所述方法还包括:
    在所述第一充电请求信息已发送的持续时间大于或等于第一时间间隔的情况下,控制所述动力电池停止放电。
  4. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    在控制所述动力电池进行放电的持续时间大于或等于第二时间间隔的情况下,控制所述动力电池停止放电。
  5. 根据权利要求3或4所述的方法,其特征在于,所述方法还包括:
    在控制所述动力电池停止放电的情况下,基于充电匹配表,向充电桩发送第二充电请求信息,所述第二充电请求信息用于请求所述充电桩对所述动力电池进行充电。
  6. 一种电池管理系统,其特征在于,包括:
    获取模块,用于在动力电池的充电过程中,获取所述动力电池的负极电位;
    控制模块,用于在所述负极电位与预设电位的差值小于或等于安全阈值的情况下,控制所述动力电池进行放电。
  7. 根据权利要求6所述的电池管理系统,其特征在于,所述控制模块具体用于:
    在所述负极电位与所述预设电位的差值小于或等于所述安全阈值的情况下,向充电桩发送第一充电请求信息,所述第一充电请求信息用于请求充电电流为0;
    在采集到所述动力电池的实际充电电流小于或等于电流阈值的情况下,控制所述动力电池进行放电。
  8. 根据权利要求7所述的电池管理系统,其特征在于,所述控制模块 还用于:
    在所述第一充电请求信息已发送的持续时间大于或等于第一时间间隔的情况下,控制所述动力电池停止放电。
  9. 根据权利要求6或7所述的电池管理系统,其特征在于,所述控制模块还用于:
    在控制所述动力电池进行放电的持续时间大于或等于第二时间间隔的情况下,控制所述动力电池停止放电。
  10. 根据权利要求8或9所述的电池管理系统,其特征在于,所述电池管理系统还包括:
    通信模块,用于在控制所述动力电池停止放电的情况下,基于充电匹配表,向充电桩发送第二充电请求信息,所述第二充电请求信息用于请求所述充电桩对所述动力电池进行充电。
  11. 一种动力电池的电池管理系统,其特征在于,包括存储器和处理器,所述存储器用于存储指令,所述处理器用于读取所述指令并基于所述指令执行如权利要求1至5中任一项所述的方法。
PCT/CN2021/117307 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统 WO2023035158A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN202180055686.2A CN116325413A (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统
PCT/CN2021/117307 WO2023035158A1 (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统
EP21956346.7A EP4228118A4 (en) 2021-09-08 2021-09-08 METHOD FOR CHARGING A POWER BATTERY AND BATTERY MANAGEMENT SYSTEM
KR1020237017879A KR20230098257A (ko) 2021-09-08 2021-09-08 파워 배터리 충전 방법 및 배터리 관리 시스템
JP2023532404A JP7569478B2 (ja) 2021-09-08 2021-09-08 動力電池充電の方法及び電池管理システム
US18/313,696 US20230271523A1 (en) 2021-09-08 2023-05-08 Method for charging traction battery and battery management system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/117307 WO2023035158A1 (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/313,696 Continuation US20230271523A1 (en) 2021-09-08 2023-05-08 Method for charging traction battery and battery management system

Publications (1)

Publication Number Publication Date
WO2023035158A1 true WO2023035158A1 (zh) 2023-03-16

Family

ID=85507115

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117307 WO2023035158A1 (zh) 2021-09-08 2021-09-08 动力电池充电的方法和电池管理系统

Country Status (6)

Country Link
US (1) US20230271523A1 (zh)
EP (1) EP4228118A4 (zh)
JP (1) JP7569478B2 (zh)
KR (1) KR20230098257A (zh)
CN (1) CN116325413A (zh)
WO (1) WO2023035158A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117841673A (zh) * 2024-02-02 2024-04-09 重庆赛力斯凤凰智创科技有限公司 基于动力电池热失控的蓄电池控制方法、装置及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569927A (zh) * 2011-12-12 2012-07-11 华为技术有限公司 一种锂离子电池的充电方法和充电机
CN106663957A (zh) * 2016-03-01 2017-05-10 广东欧珀移动通信有限公司 充电方法、适配器、移动终端和充电系统
CN110071339A (zh) * 2018-01-23 2019-07-30 大众汽车有限公司 控制电池组单元的充电的方法和给电池组单元充电的方法
CN110098646A (zh) * 2018-01-31 2019-08-06 宁德新能源科技有限公司 充电方法、充电装置、终端及可读存储介质
CN111279573A (zh) * 2018-12-21 2020-06-12 深圳市大疆创新科技有限公司 对锂电池进行充电的方法及相关装置
WO2021056690A1 (zh) * 2019-09-29 2021-04-01 宁德新能源科技有限公司 电池循环中的阴极保护方法、阴极保护装置及存储介质

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5057156B2 (ja) 2008-01-31 2012-10-24 トヨタ自動車株式会社 リチウムイオン二次電池の充電方法及び充電システム
JP2014166084A (ja) 2013-02-27 2014-09-08 Hitachi Ltd 給電装置、受電装置、電気自動車、充電システム及び充電方法
FR3024299B1 (fr) * 2014-07-23 2016-09-09 Electricite De France Pilotage de charge d'une batterie metal-air
US10090695B2 (en) 2014-08-29 2018-10-02 Fairchild Semiconductor Corporation Optimized current pulse charging apparatus and method employing increasing clamp reference voltages and decreasing current pulses
JP6837950B2 (ja) * 2017-09-21 2021-03-03 株式会社東芝 二次電池、電池パック、及び車両
JP6977582B2 (ja) 2018-01-24 2021-12-08 株式会社デンソー 二次電池システム
US11056900B2 (en) 2018-01-31 2021-07-06 Ningde Amperex Technology Limited Charging method, charging device, and computer-readable medium for charging a battery
JP7395327B2 (ja) 2019-11-12 2023-12-11 日産自動車株式会社 二次電池に含まれるリチウムの析出を判定する判定装置及び判定方法
JP7372160B2 (ja) 2020-01-23 2023-10-31 トヨタ自動車株式会社 移動体及び充電制御装置
JP7295050B2 (ja) 2020-02-07 2023-06-20 プライムアースEvエナジー株式会社 リチウムイオン二次電池の制御装置及びリチウムイオン二次電池の制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569927A (zh) * 2011-12-12 2012-07-11 华为技术有限公司 一种锂离子电池的充电方法和充电机
CN106663957A (zh) * 2016-03-01 2017-05-10 广东欧珀移动通信有限公司 充电方法、适配器、移动终端和充电系统
CN110071339A (zh) * 2018-01-23 2019-07-30 大众汽车有限公司 控制电池组单元的充电的方法和给电池组单元充电的方法
CN110098646A (zh) * 2018-01-31 2019-08-06 宁德新能源科技有限公司 充电方法、充电装置、终端及可读存储介质
CN111279573A (zh) * 2018-12-21 2020-06-12 深圳市大疆创新科技有限公司 对锂电池进行充电的方法及相关装置
WO2021056690A1 (zh) * 2019-09-29 2021-04-01 宁德新能源科技有限公司 电池循环中的阴极保护方法、阴极保护装置及存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228118A4 *

Also Published As

Publication number Publication date
EP4228118A1 (en) 2023-08-16
CN116325413A (zh) 2023-06-23
JP2023551836A (ja) 2023-12-13
KR20230098257A (ko) 2023-07-03
US20230271523A1 (en) 2023-08-31
EP4228118A4 (en) 2024-04-17
JP7569478B2 (ja) 2024-10-18

Similar Documents

Publication Publication Date Title
Liu et al. Ultrafast charging of energy-dense lithium-ion batteries for urban air mobility
CN113779794B (zh) 计及微观约束的锂离子电池sop估计方法及系统
US20230402868A1 (en) Method for charging traction battery and battery management system
US20240113347A1 (en) Battery system
CN108365281A (zh) 一种bms电池管理系统的容量均衡健康管理方法
CN109616710A (zh) 基于全生命周期模型的多旋翼无人机电池充放电管控方法
WO2023035158A1 (zh) 动力电池充电的方法和电池管理系统
US20240248143A1 (en) Battery system
US20230398902A1 (en) Method for charging traction battery and battery management system
WO2023221053A1 (zh) 电池的充电方法和充电装置
WO2023035162A1 (zh) 动力电池充电的方法和电池管理系统
WO2023092414A1 (zh) 动力电池充电的方法和电池管理系统
WO2023092413A1 (zh) 动力电池充电的方法和电池管理系统
WO2023221055A1 (zh) 电池的放电方法和放电装置
US20230335822A1 (en) Method for charging power battery and battery management system
WO2023206386A1 (zh) 电池的加热方法、加热装置和加热系统
CN117872187A (zh) 电池健康状态的测试方法及装置、计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21956346

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021956346

Country of ref document: EP

Effective date: 20230511

ENP Entry into the national phase

Ref document number: 20237017879

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023532404

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE