WO2023221055A1 - 电池的放电方法和放电装置 - Google Patents

电池的放电方法和放电装置 Download PDF

Info

Publication number
WO2023221055A1
WO2023221055A1 PCT/CN2022/093940 CN2022093940W WO2023221055A1 WO 2023221055 A1 WO2023221055 A1 WO 2023221055A1 CN 2022093940 W CN2022093940 W CN 2022093940W WO 2023221055 A1 WO2023221055 A1 WO 2023221055A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
discharge
current
temperature
discharge current
Prior art date
Application number
PCT/CN2022/093940
Other languages
English (en)
French (fr)
Inventor
付成华
欧阳少聪
许宝云
黄孝键
林运美
叶永煌
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202280066942.2A priority Critical patent/CN118056313A/zh
Priority to EP22942095.5A priority patent/EP4366028A1/en
Priority to PCT/CN2022/093940 priority patent/WO2023221055A1/zh
Publication of WO2023221055A1 publication Critical patent/WO2023221055A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • H01M10/443Methods for charging or discharging in response to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery discharge method and discharge device.
  • the present application provides a battery discharge method and discharge device, which can improve the battery's discharge capability in low-temperature environments.
  • a battery discharging method includes: obtaining the temperature of the battery; when the temperature of the battery is less than a preset temperature threshold, determining that the battery is discharged based on a first discharge current until the battery meets When the conditions are preset, it is determined that the battery is discharged based on the second discharge current, wherein the first discharge current is used to heat the battery during the discharge process, and the first discharge current is greater than the second discharge current.
  • the battery's discharge capacity is poor in low-temperature environments, making it difficult to release the power inside the battery.
  • the battery when the temperature of the battery is less than the preset temperature threshold, the battery can be discharged based on a larger first discharge current to heat the battery during the discharge process. After the temperature of the battery rises, , and then the battery is discharged based on the smaller second discharge current, thereby improving the discharge capacity of the battery.
  • determining that the battery is discharged based on the first discharge current includes: when the temperature of the battery is less than the temperature threshold, and the SOC of the battery is greater than When the preset SOC threshold is reached, it is determined that the battery is discharged based on the first discharge current.
  • the above-mentioned SOC threshold can be set.
  • the temperature of the battery is less than the temperature threshold and the SOC of the battery is greater than the SOC threshold, it is determined that the battery is discharged based on the first
  • the current is discharged to heat the battery during the discharge process, until the battery meets the preset conditions, it is determined that the battery is discharged based on the second discharge current.
  • determining that the battery is to be discharged based on the first discharge current includes: when the temperature of the battery When the temperature is less than the temperature threshold, the SOC of the battery is greater than the SOC threshold, and the battery has a need to increase the discharge power, it is determined that the battery is discharged based on the first discharge current.
  • the heating process is started, that is, the battery is discharged based on the first discharge current to increase its temperature and thereby improve its discharge capacity to meet the high power output requirement. output demand; if there is no request for high-power output, the heating process may not be started, and the battery may be discharged based on the second discharge current, thereby improving energy utilization.
  • the preset condition includes that the temperature of the battery is greater than or equal to the temperature threshold and/or the SOC of the battery is less than or equal to the SOC threshold.
  • the temperature of the battery gradually increases and the SOC of the battery gradually decreases.
  • the temperature of the battery rises to the temperature threshold and good discharge performance can be obtained, there is no need to continue heating the battery, and the battery can continue to discharge based on the second discharge current.
  • the SOC of the battery decreases to the SOC threshold, in order to avoid triggering additional risks to the battery, heating of the battery can be stopped, and the battery continues to discharge based on the second discharge current.
  • the first discharge current is at least one of a pulse current, a constant voltage discharge current, and a constant power discharge current
  • the second discharge current is a direct current.
  • the duty cycle of the pulse current is greater than or equal to 0.01 and less than or equal to 50.
  • the first discharge current is greater than or equal to 0.2C and less than or equal to 10C.
  • the discharge method is performed by the BMS of the battery.
  • a battery discharge device including: a signal acquisition unit for acquiring the temperature of the battery; and a processing unit for determining that the battery is based on the first discharge when the temperature of the battery is less than a preset temperature threshold. The current is discharged until the battery meets the preset conditions, and it is determined that the battery is discharged based on the second discharge current, wherein the first discharge current is used to heat the battery during the discharge process, and the first discharge current is greater than the second discharge current.
  • the processing unit is specifically configured to: when the temperature of the battery is less than the temperature threshold and the state-of-charge SOC of the battery is greater than the preset SOC threshold, determine that the battery is discharged based on the first discharge current. Discharge.
  • the preset condition includes that the temperature of the battery is greater than or equal to the temperature threshold and/or the SOC of the battery is less than or equal to the SOC threshold.
  • the first discharge current is at least one of a pulse current, a constant voltage discharge current, and a constant power discharge current
  • the second discharge current is a direct current
  • the duty cycle of the pulse current is greater than or equal to 0.01 and less than or equal to 50.
  • the first discharge current is greater than or equal to 0.2C and less than or equal to 10C.
  • the discharging device is the BMS of the battery.
  • a battery discharging device including a memory and a processor.
  • the memory is used to store a computer program.
  • the processor is used to call and run the computer program stored in the memory, so that the discharging device implements the first The discharge method in any implementation of the aspect or the first aspect.
  • a fourth aspect provides a computer-readable storage medium, characterized in that it is used to store a computer program.
  • the computer program When executed by a computing device, the computing device implements the first aspect or any implementation of the first aspect. Discharge method in the method.
  • Figure 1 is a schematic flow chart of a battery discharge method according to an embodiment of the present application.
  • Figure 2 is a schematic diagram of the waveform of the first discharge current according to an embodiment of the present application.
  • Figure 3 is a schematic diagram of the waveform of the first discharge current according to another embodiment of the present application.
  • Figure 4 is a schematic diagram of the relationship between SOC and voltage when the battery is discharged
  • Figure 5 is a flow chart of a possible specific implementation of the discharge method shown in Figure 1;
  • Figure 6 is a schematic block diagram of a discharge device according to an embodiment of the present application.
  • Figure 7 is a schematic block diagram of a discharge device according to another embodiment of the present application.
  • lithium ions realize energy storage and discharge through the migration of Li+ between the positive and negative electrodes of the battery.
  • the migration of Li+ between the positive and negative electrodes is greatly affected by temperature, especially in low-temperature environments. Factors such as the deterioration of the kinetic conditions of the positive and negative electrodes of the battery, as well as the increase in the viscosity of the electrolyte and the decrease in conductivity will lead to a sharp decline in the performance of the lithium-ion battery, which will in turn lead to a reduction in the discharge energy of the lithium-ion battery at low temperatures, resulting in electric Problems such as poor power performance and low cruising range of the car.
  • this application proposes that when the temperature of the battery is low, a large current can be used to discharge it, so as to heat the battery while discharging, so that its temperature rises. high, and then use the normal current to discharge the battery.
  • the battery in the embodiment of the present application may be a power battery, such as a lithium-ion battery, a lithium metal battery, a lead-acid battery, a nickel separator battery, a nickel-metal hydride battery, a lithium-sulfur battery, a lithium-air battery, or a sodium-ion battery.
  • the power battery can be a battery cell or battery cell, or a battery module or battery pack, which is not limited here.
  • the power battery can be used in power devices such as cars and ships. For example, it can be used in power vehicles to supply power to the motors of power vehicles and as the power source of electric vehicles.
  • the power battery can also power other electrical devices in electric vehicles, such as in-car air conditioners, car players, etc.
  • FIG. 1 shows a schematic flow chart of a battery discharging method 100 according to an embodiment of the present application.
  • the method 100 shown in Figure 1 may be executed, for example, by a battery management system (Battery Management System, BMS) or other control module.
  • BMS Battery Management System
  • method 100 includes some or all of the following steps.
  • step 110 the temperature of the battery is obtained.
  • step 120 when the temperature of the battery is less than a preset temperature threshold, it is determined that the battery is discharged based on the first discharge current. When the battery meets the preset condition, it is determined that the battery is discharged based on the second discharge current.
  • the first discharge current is used to heat the battery during the discharge process, and the first discharge current is greater than the second discharge current.
  • the battery's discharge capacity is poor in low-temperature environments, making it difficult to release the power inside the battery.
  • the battery when the temperature of the battery is less than the preset temperature threshold, the battery can be discharged based on a larger first discharge current to heat the battery during the discharge process. After the temperature of the battery rises, , and then the battery is discharged based on the smaller second discharge current, thereby improving the discharge capacity of the battery.
  • the first discharge current may be at least one of a pulse current, a constant voltage discharge current, and a constant power discharge current
  • the second discharge current may be a direct current.
  • the first discharge current is a pulse current, that is, when the battery is discharged based on the pulse current, the peak value of the pulse current is greater than the second discharge current.
  • the first discharge current is a constant voltage discharge current, that is, when the battery is discharged based on constant voltage discharge, the discharge current gradually decreases and the battery voltage remains unchanged.
  • the first discharge current is a constant power discharge current, that is, when the battery is discharged based on constant power discharge, the discharge current gradually increases, the battery voltage gradually decreases, and the discharge power remains unchanged.
  • the discharge can also be carried out by combining constant power discharge and then constant voltage discharge.
  • Figures 2 and 3 show two possible waveforms of the first discharge current.
  • the first discharge current shown in Figure 2 is a pulse current
  • the abscissa is the discharge time
  • the ordinate is the discharge rate of the first discharge current.
  • the battery uses a large pulse current to discharge for 5 seconds and then rests for 5 seconds.
  • Figure 3 shows the current change during constant voltage discharge.
  • the abscissa is the discharge time
  • the ordinate is the discharge rate of the first discharge current.
  • the voltage is kept constant and the discharge current gradually decreases. No matter which discharge method is adopted, when the battery is discharged based on the first discharge current, the average discharge power in each discharge cycle is equal to the required discharge power.
  • the first discharge current may be much larger than the second discharge current.
  • the first discharge current is greater than or equal to 0.2C and less than or equal to 10C.
  • the peak value of the first charging current is greater than or equal to 1C and less than or equal to 5C.
  • the duty cycle of the pulse current is greater than or equal to 0.01 and less than or equal to 50.
  • the duty cycle of the pulse current is greater than or equal to 0.25 and less than or equal to 30.
  • Figure 4 shows the relationship between SOC and voltage when the battery is discharging under different discharge conditions. Specifically, as shown in the dotted box in Figure 4, after the SOC of the battery is greater than 65%, the battery is discharged based on the first discharge current and the second discharge current, and the voltage and temperature are tested to obtain the value shown in the dotted box. Curve A, Curve B, Curve C and Curve D. As shown in the dotted box, curve A represents the change of voltage with SOC when the battery is discharged based on the first discharge current, and curve B represents the change of voltage with SOC when the battery is discharged based on the second discharge current.
  • the second discharging current is a direct current
  • the first charging current is an equivalent pulse current of the direct current.
  • the second charging current is 0.5C and the pulse peak value of the first charging current is 2C. Since the first discharge current is a pulse current, the corresponding battery voltage fluctuates with highs and lows.
  • Curve E can be, for example, the SOC-OCV curve without polarization drawn by using a current of 0.05C for every 5% discharge and then depolarizing for 2 hours, that is, the static SOC-OCV curve, which can also be called the lithium insertion potential curve.
  • Curve C and curve D respectively represent the temperature rise of the battery when the battery is discharged based on the first charging current and the second charging current.
  • the area of the area surrounded by curve A, curve E and the ordinate axis represents the amount of electricity Q1 when the battery is discharged based on the first discharge current
  • the area of the area surrounded by curve B, curve E and the ordinate axis Indicates the electric quantity Q2 of the battery when it is discharged based on the second discharge current.
  • Q1>Q2 the difference between Q1 and Q2, namely the amount of electricity Q1-Q2, is used for battery heating. Therefore, it can be seen from curves C and D that when the battery is discharged based on the first discharge current, that is, the large pulse current, the temperature rises quickly, thereby achieving rapid heating of the battery.
  • the battery when the temperature of the battery is lower than the preset temperature threshold, the battery can first be discharged based on a high-rate current to heat the battery during the discharge process. After the battery temperature rises, the battery can then be discharged based on a conventional small-rate current. The current continues to discharge to ensure energy utilization during battery discharge. Because the battery discharges based on high-rate current, the temperature of the battery is quickly increased, and the depth of discharge of the battery is increased, thereby improving the discharge capability of the battery in a low-temperature environment.
  • step 120 when the temperature of the battery is less than a preset temperature threshold, determining that the battery is to be discharged based on the first discharge current includes: when the temperature of the battery is less than the temperature threshold, and the state of charge of the battery When (State of Charge, SOC) is greater than the preset SOC threshold, it is determined that the battery is discharged based on the first discharge current.
  • SOC State of Charge
  • the above-mentioned SOC threshold can be set.
  • the temperature of the battery is less than the temperature threshold and the SOC of the battery is greater than the SOC threshold, it is determined that the battery is discharged based on the first
  • the current is discharged to heat the battery during the discharge process, until the battery meets the preset conditions, it is determined that the battery is discharged based on the second discharge current.
  • step 120 when the temperature of the battery is less than the temperature threshold and the SOC of the battery is greater than the preset SOC threshold, determining that the battery is to be discharged based on the first discharge current includes: When the temperature is less than the temperature threshold, the SOC of the battery is greater than the SOC threshold, and the battery has a need to increase the discharge power, it is determined that the battery is discharged based on the first discharge current.
  • the battery has a need to increase the discharge power, that is, the battery has a high-power discharge request.
  • the vehicle has a need to increase the battery output power when accelerating.
  • the heating process is started, that is, the battery is discharged based on the first discharge current to increase its temperature and thereby improve its discharge capacity to meet the high power output requirement.
  • Output requirements if there is no request for high power output, for example, the vehicle is always running at low speed, the heating process can not be started, and the battery can be discharged based on the second discharge current, thereby improving energy utilization.
  • the preset condition includes: the temperature of the battery is greater than or equal to the temperature threshold; and/or the SOC of the battery is less than or equal to the SOC threshold.
  • the temperature of the battery gradually increases and the SOC of the battery gradually decreases.
  • the temperature of the battery rises to the temperature threshold and good discharge performance can be obtained, there is no need to continue heating the battery, and the battery can continue to discharge based on the second discharge current.
  • the SOC of the battery drops to the SOC threshold, in order to avoid triggering additional risks to the battery, heating of the battery can be stopped, and the battery continues to discharge based on the second discharge current.
  • the battery can be stopped based on the first discharging current and based on the second discharging current. Continue discharging.
  • the battery may not be heated, and the battery may be directly discharged based on the second discharge current.
  • the SOC of the battery may also be obtained. If the SOC is less than or equal to the SOC threshold, in order to ensure the safety of the battery, the battery may not be heated, and the battery may be directly discharged based on the second discharge current.
  • the heating process can be started, that is, the battery is discharged based on the first discharge current to increase its temperature and thus its discharge capacity.
  • the battery temperature is appropriate or the SOC is low, there is no need to start the heating process or end the started heating process, and the battery is discharged based on the second discharge current.
  • the above-mentioned temperature threshold and SOC threshold can be set and adjusted according to actual application conditions.
  • the temperature threshold can be between -10°C and 10°C or between -5°C and 5°C, such as 0°C.
  • the SOC threshold may be between 30% and 50, such as 40%.
  • FIG. 5 shows a flow chart of a possible specific implementation of the method 100 in FIG. 1 .
  • this method can be executed by the BMS and specifically includes the following steps.
  • step 101 the temperature of the battery is obtained.
  • step 102 it is determined whether the temperature of the battery is less than 0°C.
  • step 102 If it is determined in step 102 that the temperature of the battery is less than 0°C, execute steps 103 to 108; if it is determined in step 102 that the temperature of the battery is greater than or equal to 0°C, execute step 108 directly without executing steps 103 to 107. .
  • step 103 the SOC of the battery is collected.
  • step 104 it is determined whether the SOC of the battery is greater than 40%.
  • step 104 If it is determined in step 104 that the SOC of the battery is greater than 40%, step 105 is executed; if it is determined in step 104 that the SOC of the battery is less than or equal to 40%, step 108 is executed directly without executing steps 105 to 107.
  • step 105 it is determined whether the battery has a need to increase its discharge power.
  • step 106 If the battery needs to increase its discharge power, perform step 106; otherwise, perform step 108 directly without performing step 106 and step 107.
  • step 106 the battery is discharged based on the first discharge current.
  • step 107 it is determined whether the temperature of the battery is greater than or equal to 0°C and whether the SOC of the battery is less than or equal to 40%.
  • the temperature and SOC status of the battery need to be monitored synchronously, for example, the temperature and SOC of the battery are detected according to a certain period. And judge whether the temperature of the battery is greater than or equal to 0°C, and whether the SOC of the battery is less than or equal to 40%.
  • step 108 is performed.
  • step 108 the battery is discharged based on the second discharge current.
  • the BMS after the BMS determines the appropriate discharge strategy based on the battery's temperature and/or SOC and other information, it can output a control signal to the corresponding charge and discharge circuit, so that the battery can be discharged based on different discharge currents through the charge and discharge circuit. .
  • the positive electrode of the battery can use small particle size lithium iron phosphate (LFP) and/or use a high conductivity electrolyte to improve the discharge capacity of the battery itself.
  • LFP lithium iron phosphate
  • the particle size range of LFP is 100nm-2000nm, preferably, it can be 100nm-800nm; for another example, the conductivity range of the electrolyte is 8s/m ⁇ 24s/m, preferably, it can be 6s/m ⁇ 18s/m. m.
  • the present application also provides a battery discharge device 200 .
  • the discharge device 200 may be, for example, a battery BMS.
  • the discharge device 200 includes a signal acquisition unit 210 and a processing unit 220 .
  • the signal acquisition unit 210 is used to obtain the temperature of the battery;
  • the processing unit 220 is used to determine that the battery is discharging based on the first discharge current when the temperature of the battery is less than a preset temperature threshold, and until the battery meets the preset conditions, determine that the battery Discharging is performed based on the second discharging current, wherein the first discharging current is used to heat the battery during the discharging process, and the first discharging current is greater than the second discharging current.
  • the processing unit 220 is specifically configured to: when the temperature of the battery is less than a temperature threshold and the state of charge SOC of the battery is greater than a preset SOC threshold, determine that the battery is discharged based on the first discharge current.
  • the preset condition includes that the temperature of the battery is greater than or equal to the temperature threshold and/or the SOC of the battery is less than or equal to the SOC threshold.
  • the first discharge current is at least one of a pulse current, a constant voltage discharge current and a constant power discharge current
  • the second discharge current is a direct current
  • the duty cycle of the pulse current is greater than or equal to 0.01 and less than or equal to 50.
  • the first discharge current is greater than or equal to 0.2C and less than or equal to 10C.
  • this application also provides a battery discharging device 300, which includes a memory 310 and a processor 320.
  • the memory 310 is used to store computer programs, and the processor 320 is used to call and run the computer program stored in the memory to
  • the discharge device 300 is allowed to implement the discharge method described in any of the above embodiments.
  • This application also provides a computer-readable storage medium, which is characterized in that it is used to store a computer program.
  • the computer program When the computer program is executed by a computing device, the computing device implements the discharge method described in any of the above embodiments.
  • This application also provides a power device, which includes a power battery and the charging device in any of the above embodiments.
  • the charging device is used to charge the power battery.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供一种电池的放电方法和放电装置,能够提升电池在低温环境下的放电能力。所述放电方法包括:获取电池的温度;在所述电池的温度小于预设的温度阈值时,确定所述电池基于第一放电电流进行放电,直至所述电池满足预设条件时,确定所述电池基于第二放电电流进行放电,其中,所述第一放电电流用于在放电过程中对所述电池进行加热,所述第一放电电流大于所述第二放电电流。

Description

电池的放电方法和放电装置 技术领域
本申请涉及电池技术领域,特别地,涉及一种电池的放电方法和放电装置。
背景技术
由于具有能量密度高、可循环充电、安全环保等优点,动力电池被广泛应用于新能源汽车、消费电子、储能系统等领域中。
但是低温环境下动力电池的使用会受到一定限制,例如,动力电池在低温环境下的放电能力会严重衰退,为此,如何提升电池在低温环境下的放电能力,成为亟待解决的问题。
发明内容
本申请提供一种电池的放电方法和放电装置,能够提升电池在低温环境下的放电能力。
第一方面,提供一种电池的放电方法,该放电方法包括:获取电池的温度;在该电池的温度小于预设的温度阈值时,确定该电池基于第一放电电流进行放电,直至该电池满足预设条件时,确定该电池基于第二放电电流进行放电,其中,该第一放电电流用于在放电过程中对该电池进行加热,该第一放电电流大于该第二放电电流。
低温环境下电池的放电能力较差,导致电池内部的电量不易释放出来。本申请实施例中,在电池的温度小于预设的温度阈值时,可以使电池基于较大的第一放电电流进行放电,以在放电的过程中对电池进行加热,待电池的温度升高之后,再使电池基于较小的第二放电电流进行放电,从而提升电池的放电能力。
在一种实现方式中,该在该电池的温度小于预设的温度阈值时,确定该电池基于第一放电电流进行放电,包括:在该电池的温度小于该温度阈值,且该电池的SOC大于预设的SOC阈值时,确定该电池基于该第一放电电流进行放电。
考虑到SOC较小时容易触发电池额外的风险,为了保证电池的安全性,可以设 置上述的SOC阈值,当电池的温度小于温度阈值,且电池的SOC大于该SOC阈值时,确定电池基于第一放电电流进行放电,以在放电过程中对电池进行加热,直至该电池满足预设条件时,确定电池基于第二放电电流进行放电。
在一种实现方式中,该在该电池的温度小于该温度阈值,且该电池的SOC大于预设的SOC阈值时,确定该电池基于该第一放电电流进行放电,包括:在该电池的温度小于该温度阈值,该电池的SOC大于该SOC阈值,且该电池具有提升放电功率的需求时,确定该电池基于该第一放电电流进行放电。
在电池处于低温环境,且电池的SOC不是太低时,如果有大功率输出的请求,则启动加热流程,即电池基于第一放电电流放电以提升其温度从而改善其放电能力,以满足大功率输出的需求;如果没有大功率输出的请求,也可以不启动加热流程,而使电池基于第二放电电流进行放电,从而提高能量利用率。
在一种实现方式中,该预设条件包括该电池的温度大于或等于该温度阈值和/或该电池的SOC小于或等于该SOC阈值。
电池基于第一放电电流进行放电时,电池的温度逐渐升高,电池的SOC逐渐降低。当电池的温度升高至该温度阈值时,已经能够获得较好的放电性能,则无需对电池继续加热,电池可以基于第二放电电流继续进行放电。当电池的SOC降低至SOC阈值时,为了避免触发电池额外的风险,可以停止对电池进行加热,电池基于第二放电电流继续进行放电。
在一种实现方式中,该第一放电电流为脉冲电流、恒压放电电流以及恒功率放电电流中的至少一种,该第二放电电流为直流电流。电池通过脉冲放电、恒压放电或者恒功率放电的方式进行放电时,能够有效利用电芯的极化产热来提升电池温度。
在一种实现方式中,该脉冲电流的占空比大于或等于0.01且小于或等于50。
在一种实现方式中,该第一放电电流大于或等于0.2C且小于或等于10C。
在一种实现方式中,该放电方法由该电池的BMS执行。
第二方面,提供一种电池的放电装置,包括:信号采集单元,用于获取电池的温度;处理单元,用于在该电池的温度小于预设的温度阈值时,确定该电池基于第一放电电流进行放电,直至该电池满足预设条件时,确定该电池基于第二放电电流进行放电,其中,该第一放电电流用于在放电过程中对该电池进行加热,该第一放电电流大于该第二放电电流。
在一种实现方式中,该处理单元具体用于:在该电池的温度小于该温度阈值,且该电池的荷电状态SOC大于预设的SOC阈值时,确定该电池基于该第一放电电流进行放电。
在一种实现方式中,该预设条件包括该电池的温度大于或等于该温度阈值和/或该电池的SOC小于或等于该SOC阈值。
在一种实现方式中,该第一放电电流为脉冲电流、恒压放电电流以及恒功率放电电流中的至少一种,该第二放电电流为直流电流。
在一种实现方式中,该脉冲电流的占空比大于或等于0.01且小于或等于50。
在一种实现方式中,该第一放电电流大于或等于0.2C且小于或等于10C。
在一种实现方式中,该放电装置为该电池的BMS。
第三方面,提供一种电池的放电装置,包括存储器和处理器,该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,以使该放电装置实现根据第一方面或第一方面的任一实现方式中的放电方法。
第四方面,提供一种计算机可读存储介质,其特征在于,用于存储计算机程序,当该计算机程序被计算设备执行时,使得该计算设备实现根据第一方面或第一方面的任一实现方式中的放电方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例的电池的放电方法的示意性流程图;
图2是本申请一实施例的第一放电电流的波形的示意图;
图3是本申请另一实施例的第一放电电流的波形的示意图;
图4是电池放电时SOC和电压之间的关系的示意图;
图5是图1所示的放电方法的一种可能的具体实现方式的流程图;
图6是本申请一实施例的放电装置的示意性框图;
图7是本申请另一实施例的放电装置的示意性框图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
电池中锂离子通过Li+在电池的正极和负极之间的迁移实现电池的储能和放电,然而,Li+在正极和负极之间的迁移受温度的影响较大,特别是在低温环境中,由于电池的正极和负极的动力学条件变差,以及电解液的粘度上升,电导率下降等因素,会导致锂离子电池的性能急剧下降,进而导致锂离子电池在低温下放电能量降低,从而造成电动车的功率性能差、续航里程低等问题。
为了解决冬季电动车中电池电量无法正常释放的情况,本申请提出,在电池的温度较低时可以先采用大电流对其进行放电,以在放电的同时对电池进行加热,从而使其温度升高,之后再采用正常电流大小对电池进行放电。
本申请实施例中的电池可以是动力电池,该动力电池例如为锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等。从规模而言,该动力电池可以是电池单体或称为电芯,也可以是电池模组或电池包,在此不做限定。从应用场景而言,该动力电池可以应用于汽车、轮船等动力装置内,例如,可以应用于动力汽车,以为动力汽车的电机供电,作为电动汽车的动力 源。该动力电池还可为电动汽车中的其他用电器件供电,比如为车内空调、车载播放器等供电。
为了便于描述,以下将以动力电池应用于新能源汽车(即动力汽车、或称电动汽车)为例,对本申请的方案进行阐述。
图1示出了本申请实施例的电池的放电方法100的示意性流程图。图1所示的方法100例如可以由电池的电池管理系统(Battery Management System,BMS)或者其他控制模块执行。如图1所示,方法100包括以下步骤中的部分或全部。
在步骤110中,获取电池的温度。
在步骤120中,在电池的温度小于预设的温度阈值时,确定电池基于第一放电电流进行放电,直至电池满足预设条件时,确定电池基于第二放电电流进行放电。
其中,该第一放电电流用于在放电过程中对电池进行加热,该第一放电电流大于第二放电电流。
低温环境下电池的放电能力较差,导致电池内部的电量不易释放出来。本申请实施例中,在电池的温度小于预设的温度阈值时,可以使电池基于较大的第一放电电流进行放电,以在放电的过程中对电池进行加热,待电池的温度升高之后,再使电池基于较小的第二放电电流进行放电,从而提升电池的放电能力。
例如,该第一放电电流可以为脉冲电流、恒压放电电流以及恒功率放电电流中的至少一种,该第二放电电流为直流电流。电池通过脉冲放电、恒压放电或者恒功率放电的方式进行放电时,能够有效利用电芯的极化产热来提升电池温度。第一放电电流为脉冲电流,即电池基于脉冲电流放电时,该脉冲电流的峰值大于第二放电电流。第一放电电流为恒压放电电流,即电池基于恒压放电的方式进行放电时,放电电流逐渐降低,电池的电压保持不变。第一放电电流为恒功率放电电流,即电池基于恒功率放电的方式进行放电时,放电电流逐渐增加,电池的电压逐渐降低,放电功率保持不变。当然,也可以采用先恒功率放电再恒压放电结合的方式进行放电。
作为示例,图2和图3示出了第一放电电流的两种可能的波形。图2示出的第一放电电流为脉冲电流,横坐标为放电时间,纵坐标为第一放电电流的放电倍率。在每个放电周期中,电池采用大脉冲电流进行放电5s后,休息5s。图3示出了恒压放电时的电流变化,横坐标为放电时间,纵坐标为第一放电电流的放电倍率。在放电过程中,保持电压不变,放电电流逐渐减小。无论采用哪种放电方式,当电池基于第一放 电电流进行放电时,每个放电周期内,平均放电功率均等于需求放电功率。
应理解,该第一放电电流可以远大于该第二放电电流。例如,该第一放电电流大于或等于0.2C且小于或等于10C,优选地,该第一充电电流的峰值大于或等于1C且小于或等于5C。可以理解,电池基于第二放电电流进行放电时产生的热量极小,可以忽略。而电池基于第一放电电流进行放电时,大电流放电可以使电池的温度迅速提升。在一种实现方式中,该脉冲电流的占空比大于或等于0.01且小于或等于50,优选地,该脉冲电流的占空比大于或等于0.25且小于或等于30。
本申请实施例中,当电池基于具有上述参数值的第一放电电流进行放电时,放电30分钟可使电池的温度由-20℃提升至15℃,实现了电池的快速升温,且使电池在单位时间内的放电深度(Depth of Discharge,DoD)由80%提升至90%,改善了电池在低温环境中的放电性能。
图4示出了不同放电工况下电池放电时SOC和电压之间的关系。具体地,如图4中的虚线框所示,电池的SOC大于65%之后,电池分别基于第一放电电流和第二放电电流进行放电,并对电压和温度进行测试从而得到虚线框中所示的曲线A、曲线B、曲线C和曲线D。如虚线框中所示,曲线A表示电池基于第一放电电流进行放电时电压随SOC的变化,曲线B表示电池基于第二放电电流进行放电时电压随SOC的变化。第二放电电流为直流电流,第一充电电流为该直流电流的等效脉冲电流。图4中以第二充电电流为0.5C、第一充电电流的脉冲峰值为2C为例。由于第一放电电流为脉冲电流,对应的电池电压是高低起伏而变化的,当电压采样点的密度足够大时,呈现出曲线A所示的结果。曲线E可以是采用例如0.05C的电流每放电5%之后静止2h消除极化以此绘制得到的无极化情况下的SOC-OCV曲线,即静态SOC-OCV曲线,也可以称为嵌锂电位曲线。曲线C和曲线D分别表示电池基于第一充电电流和第二充电电流放电时电池的温升情况。
如图4所示,曲线A、曲线E与纵坐标轴围成的区域的面积表示电池基于第一放电电流进行放电时的电量Q1,曲线B、曲线E与纵坐标轴围成的区域的面积表示电池基于第二放电电流进行放电时的电量Q2。从图4中可以看出,Q1>Q2,Q1与Q2的差值部分即电量Q1-Q2用于电池的加热。因此,从曲线C和曲线D可以看出,电池基于第一放电电流即大脉冲电流进行放电时,温度上升的较快,从而实现了电池的速热。可见,电池基于大脉冲电流放电时,电池的加热效率较高,但能量利用率较低, 仅有一部分能量输出以用于车辆的行驶等,另一部分能量用在电池的产热上。
因此,在电池的温度小于预设的温度阈值时,电池可以先基于大倍率电流进行放电,以在放电的过程中对电池进行加热,待电池的温度升高之后,电池再基于常规的小倍率电流继续放电,以保证电池放电过程中的能量利用率。由于电池基于大倍率电流进行放电,快速提升了电池的温度,提升了电池的放电深度,从而改善了电池在低温环境中的放电能力。
在一种实现方式中,在步骤120中,在电池的温度小于预设的温度阈值时,确定电池基于第一放电电流进行放电,包括:在电池的温度小于温度阈值,且电池的荷电状态(State of Charge,SOC)大于预设的SOC阈值时,确定电池基于第一放电电流进行放电。
考虑到SOC较小时容易触发电池额外的风险,为了保证电池的安全性,可以设置上述的SOC阈值,当电池的温度小于温度阈值,且电池的SOC大于该SOC阈值时,确定电池基于第一放电电流进行放电,以在放电过程中对电池进行加热,直至该电池满足预设条件时,确定电池基于第二放电电流进行放电。
进一步地,在一种实现方式中,在步骤120中,在电池的温度小于温度阈值,且电池的SOC大于预设的SOC阈值时,确定电池基于第一放电电流进行放电,包括:在电池的温度小于温度阈值,电池的SOC大于SOC阈值,且电池具有提升放电功率的需求时,确定电池基于第一放电电流进行放电。
这里,电池具有提升放电功率的需求,即电池具有大功率放电请求,例如,车辆在加速等情况下会有提高电池输出功率的需求。在电池处于低温环境,且电池的SOC不是太低时,如果有大功率输出的请求,则启动加热流程,即电池基于第一放电电流放电以提升其温度从而改善其放电能力,以满足大功率输出的需求;如果没有大功率输出的请求,例如车辆始终低速行驶,也可以不启动加热流程,而使电池基于第二放电电流进行放电,从而提高能量利用率。
在一种实现方式中,该预设条件包括:电池的温度大于或等于温度阈值;和/或,电池的SOC小于或等于SOC阈值。
电池基于第一放电电流进行放电时,电池的温度逐渐升高,电池的SOC逐渐降低。当电池的温度升高至该温度阈值时,已经能够获得较好的放电性能,则无需对电池继续加热,电池可以基于第二放电电流继续进行放电。当电池的SOC降低至SOC阈 值时,为了避免触发电池额外的风险,可以停止对电池进行加热,电池基于第二放电电流继续进行放电。也就是说,在电池基于第一放电电流进行放电的过程中,当电池的温度达到该温度阈值或者该SOC降低至该SOC阈值,则可以停止电池基于第一放电电流,而基于第二放电电流继续进行放电。
当然,如果在步骤110中获取到的电池的温度大于该温度阈值,则可以不对电池进行加热,电池直接基于第二放电电流进行放电。或者,还可以获取电池的SOC,如果SOC小于或等于该SOC阈值,为了保证电池的安全性,也可以不对电池进行加热,电池直接基于第二放电电流进行放电。
也就是说,电池处于低温环境,且其SOC较高时,可以启动加热流程,即电池基于第一放电电流进行放电以提升其温度从而提升其放电能力。电池温度合适或者SOC较低时,就没有必要启动加热流程或者结束已启动的加热流程,而使电池基于第二放电电流进行放电。
本申请实施例中,上述的温度阈值和SOC阈值可以根据实际应用情况进行设定和调整,例如,该温度阈值可以在-10℃至10℃之间或者-5℃至5℃之间,比如0℃。又例如,该SOC阈值可以在30%至50之间,比如40%。
例如,图5示出了基于图1的方法100的一种可能的具体实现方式的流程图。如图5所示,假设温度阈值为0℃,SOC阈值为40%,该方法可以由BMS执行,具体包括以下步骤。
在步骤101中,获取电池的温度。
在步骤102中,判断电池的温度是否小于0℃。
如果在步骤102中判断电池的温度小于0℃,则执行步骤103至步骤108;如果在步骤102中判断电池的温度大于或等于0℃,则直接执行步骤108,而无需执行步骤103至步骤107。
在步骤103中,采集电池的SOC。
在步骤104中,判断电池的SOC是否大于40%。
如果在步骤104中判断电池的SOC大于40%,则执行步骤105;如果在步骤104中判断电池的SOC小于或等于40%,则直接执行步骤108,而无需执行步骤105至步骤107。
在步骤105中,确定电池是否具有提升其放电功率的需求。
如果电池有提升其放电功率的需求,则执行步骤106;否则直接执行步骤108,而无需执行步骤106和步骤107。
在步骤106中,电池基于第一放电电流进行放电。
在步骤107中,判断电池的温度是否大于或等于0℃,电池的SOC是否小于或等于40%。
在电池基于第一放电电流进行放电的过程中,需同步监测电池的温度和SOC的状态,例如按照一定的周期检测电池的温度和SOC。并判断电池的温度是否大于或等于0℃,电池的SOC是否小于或等于40%。
如果发现的电池的温度达到0℃或者SOC低至40%,则执行步骤108。
在步骤108中,电池基于第二放电电流进行放电。
可见,采用本申请实施例的放电策略,在低温环境下,由于电池基于第一放电电流进行放电以实现对电池的加热,使得电池能够尽快达到正常温度,提升其放电能力。
本申请实施例中,BMS根据电池的温度和/或SOC等信息确定了合适的放电策略后,可以向相应的充放电电路输出控制信号,以通过该充放电电路使电池基于不同放电电流进行放电。
为了进一步提升电池的放电能力,可选地,电池的正极可以采用小粒径的磷酸铁锂(LFP),和/或采用高导电率的电解液,以提升电池本身的放电能力。例如,LFP的粒径范围为100nm-2000nm,优选地,可以为100nm-800nm;又例如,电解液的电导率范围为8s/m~24s/m,优选地,可以为6s/m~18s/m。
如图6所示,本申请还提供一种电池的放电装置200,放电装置200例如可以是电池的BMS。如图6所示,放电装置200包括信号采集单元210和处理单元220。其中,信号采集单元210用于获取电池的温度;处理单元220用于在电池的温度小于预设的温度阈值时,确定电池基于第一放电电流进行放电,直至电池满足预设条件时,确定电池基于第二放电电流进行放电,其中,第一放电电流用于在放电过程中对电池进行加热,第一放电电流大于第二放电电流。
在一种实现方式中,处理单元220具体用于:在电池的温度小于温度阈值,且电池的荷电状态SOC大于预设的SOC阈值时,确定电池基于第一放电电流进行放电。
在一种实现方式中,该预设条件包括电池的温度大于或等于温度阈值和/或电 池的SOC小于或等于SOC阈值。
在一种实现方式中,第一放电电流为脉冲电流、恒压放电电流以及恒功率放电电流中的至少一种,第二放电电流为直流电流。
在一种实现方式中,该脉冲电流的占空比大于或等于0.01且小于或等于50。
在一种实现方式中,第一放电电流大于或等于0.2C且小于或等于10C。
如图7所示,本申请还提供一种电池的放电装置300,包括存储器310和处理器320,存储器310用于存储计算机程序,处理器320用于调用并运行存储器中存储的计算机程序,以使放电装置300实现上述任一实施例中所述的放电方法。
本申请还提供一种计算机可读存储介质,其特征在于,用于存储计算机程序,当计算机程序被计算设备执行时,使得计算设备实现上述任一实施例中所述的放电方法。
本申请还提供一种动力装置,包括动力电池、以及上述任一实施例中的充电装置,该充电装置用于对动力电池进行充电。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考上述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布 到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

Claims (18)

  1. 一种电池的放电方法,其特征在于,所述放电方法包括:
    获取电池的温度;
    在所述电池的温度小于预设的温度阈值时,确定所述电池基于第一放电电流进行放电,直至所述电池满足预设条件时,确定所述电池基于第二放电电流进行放电,其中,所述第一放电电流用于在放电过程中对所述电池进行加热,所述第一放电电流大于所述第二放电电流。
  2. 根据权利要求1所述的放电方法,其特征在于,所述在所述电池的温度小于预设的温度阈值时,确定所述电池基于第一放电电流进行放电,包括:
    在所述电池的温度小于所述温度阈值,且所述电池的荷电状态SOC大于预设的SOC阈值时,确定所述电池基于所述第一放电电流进行放电。
  3. 根据权利要求2所述的放电方法,其特征在于,所述在所述电池的温度小于所述温度阈值,且所述电池的荷电状态SOC大于预设的SOC阈值时,确定所述电池基于所述第一放电电流进行放电,包括:
    在所述电池的温度小于所述温度阈值,所述电池的SOC大于所述SOC阈值,且所述电池具有提升放电功率的需求时,确定所述电池基于所述第一放电电流进行放电。
  4. 根据权利要求2或3所述的放电方法,其特征在于,所述预设条件包括所述电池的温度大于或等于所述温度阈值和/或所述电池的SOC小于或等于所述SOC阈值。
  5. 根据权利要求1至4中任一项所述的放电方法,其特征在于,所述第一放电电流为脉冲电流、恒压放电电流以及恒功率放电电流中的至少一种,所述第二放电电流为直流电流。
  6. 根据权利要求5所述的放电方法,其特征在于,所述脉冲电流的占空比大于或等于0.01且小于或等于50。
  7. 根据权利要求1至6中任一项所述的放电方法,其特征在于,所述第一放电电流大于或等于0.2C且小于或等于10C。
  8. 根据权利要求1至7中任一项所述的放电方法,其特征在于,所述放电方法由所述电池的电池管理系统BMS执行。
  9. 一种电池的放电装置,其特征在于,包括:
    信号采集单元,用于获取电池的温度;
    处理单元,用于在所述电池的温度小于预设的温度阈值时,确定所述电池基于第一放电电流进行放电,直至所述电池满足预设条件时,确定所述电池基于第二放电电流进行放电,其中,所述第一放电电流用于在放电过程中对所述电池进行加热,所述第一放电电流大于所述第二放电电流。
  10. 根据权利要求9所述的放电装置,其特征在于,所述处理单元具体用于:
    在所述电池的温度小于所述温度阈值,且所述电池的荷电状态SOC大于预设的SOC阈值时,确定所述电池基于所述第一放电电流进行放电。
  11. 根据权利要求10所述的放电装置,其特征在于,所述处理单元具体用于:
    在所述电池的温度小于所述温度阈值,所述电池的SOC大于所述SOC阈值,且所述电池具有提升放电功率的需求时,确定所述电池基于所述第一放电电流进行放电。
  12. 根据权利要求10或11所述的放电装置,其特征在于,所述预设条件包括所述电池的温度大于或等于所述温度阈值和/或所述电池的SOC小于或等于所述SOC阈值。
  13. 根据权利要求10至12中任一项所述的放电装置,其特征在于,所述第一放电电流为脉冲电流、恒压放电电流以及恒功率放电电流中的至少一种,所述第二放电电流为直流电流。
  14. 根据权利要求13所述的放电装置,其特征在于,所述脉冲电流的占空比大于或等于0.01且小于或等于50。
  15. 根据权利要求10至14中任一项所述的放电装置,其特征在于,所述第一放电电流大于或等于0.2C且小于或等于10C。
  16. 根据权利要求10至15中任一项所述的放电装置,其特征在于,所述放电装置为所述电池的电池管理系统BMS。
  17. 一种电池的放电装置,其特征在于,包括存储器和处理器,所述存储器存储计算机指令,所述处理器调用所述计算机指令以使所述放电装置实现根据权利要求1至8中任一项所述的放电方法。
  18. 一种计算机可读存储介质,其特征在于,用于存储计算机程序,当所述计算机程序被计算设备执行时,使得所述计算设备实现根据权利要求1至8中任一项所述的放电方法。
PCT/CN2022/093940 2022-05-19 2022-05-19 电池的放电方法和放电装置 WO2023221055A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280066942.2A CN118056313A (zh) 2022-05-19 2022-05-19 电池的放电方法和放电装置
EP22942095.5A EP4366028A1 (en) 2022-05-19 2022-05-19 Battery discharging method and apparatus
PCT/CN2022/093940 WO2023221055A1 (zh) 2022-05-19 2022-05-19 电池的放电方法和放电装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/093940 WO2023221055A1 (zh) 2022-05-19 2022-05-19 电池的放电方法和放电装置

Publications (1)

Publication Number Publication Date
WO2023221055A1 true WO2023221055A1 (zh) 2023-11-23

Family

ID=88834309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093940 WO2023221055A1 (zh) 2022-05-19 2022-05-19 电池的放电方法和放电装置

Country Status (3)

Country Link
EP (1) EP4366028A1 (zh)
CN (1) CN118056313A (zh)
WO (1) WO2023221055A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273934A (ja) * 2000-01-21 2001-10-05 Japan Storage Battery Co Ltd 非水電解質電池の運転方法及び電池装置
CN104282965A (zh) * 2013-10-11 2015-01-14 同济大学 一种锂离子电池自加热装置及方法
CN104835994A (zh) * 2014-10-10 2015-08-12 北汽福田汽车股份有限公司 电动汽车及其动力电池的加热控制方法、装置
CN108777339A (zh) * 2018-04-10 2018-11-09 北京理工大学 一种锂离子电池脉冲放电自加热方法及装置
CN109075582A (zh) * 2017-03-31 2018-12-21 深圳市大疆创新科技有限公司 电池放电控制方法、电池放电控制系统及智能电池
WO2019122700A1 (fr) * 2017-12-19 2019-06-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de determination d'une sequence de courants de decharge applicable a une cellule lithium-ion a une temperature donnee
CN110085947A (zh) * 2019-03-21 2019-08-02 北京理工大学 一种电池单体快速自加热方法、系统及装置
CN111211381A (zh) * 2020-01-06 2020-05-29 科华恒盛股份有限公司 一种锂电池在低温下的放电控制方法及装置
CN114094168A (zh) * 2021-11-25 2022-02-25 东莞新能安科技有限公司 电化学装置及其充电方法、充电装置、电子设备和存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273934A (ja) * 2000-01-21 2001-10-05 Japan Storage Battery Co Ltd 非水電解質電池の運転方法及び電池装置
CN104282965A (zh) * 2013-10-11 2015-01-14 同济大学 一种锂离子电池自加热装置及方法
CN104835994A (zh) * 2014-10-10 2015-08-12 北汽福田汽车股份有限公司 电动汽车及其动力电池的加热控制方法、装置
CN109075582A (zh) * 2017-03-31 2018-12-21 深圳市大疆创新科技有限公司 电池放电控制方法、电池放电控制系统及智能电池
WO2019122700A1 (fr) * 2017-12-19 2019-06-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Procede de determination d'une sequence de courants de decharge applicable a une cellule lithium-ion a une temperature donnee
CN108777339A (zh) * 2018-04-10 2018-11-09 北京理工大学 一种锂离子电池脉冲放电自加热方法及装置
CN110085947A (zh) * 2019-03-21 2019-08-02 北京理工大学 一种电池单体快速自加热方法、系统及装置
CN111211381A (zh) * 2020-01-06 2020-05-29 科华恒盛股份有限公司 一种锂电池在低温下的放电控制方法及装置
CN114094168A (zh) * 2021-11-25 2022-02-25 东莞新能安科技有限公司 电化学装置及其充电方法、充电装置、电子设备和存储介质

Also Published As

Publication number Publication date
EP4366028A1 (en) 2024-05-08
CN118056313A (zh) 2024-05-17

Similar Documents

Publication Publication Date Title
JP5057156B2 (ja) リチウムイオン二次電池の充電方法及び充電システム
JP7418556B2 (ja) 充電方法、駆動用バッテリーのバッテリー管理システム及び充電ポスト
CN110450677B (zh) 一种基于电池老化状态估计的复合储能电动汽车的能量管理方法
WO2022170481A1 (zh) 电池充电方法、控制器、电池管理系统、电池和用电装置
CN105098272A (zh) 一种安全的锂二次电池充电方法及装置
US20220221519A1 (en) Battery charging method and device, and storage medium
US20230398902A1 (en) Method for charging traction battery and battery management system
WO2023004709A1 (zh) 电池充电的方法和充放电装置
WO2023221055A1 (zh) 电池的放电方法和放电装置
WO2023004659A1 (zh) 充放电装置和电池充电的方法
US20230034292A1 (en) Charging and discharging apparatus, method for charging battery and charging and discharging system
WO2023221053A1 (zh) 电池的充电方法和充电装置
WO2023004673A1 (zh) 电池充电的方法、电池管理系统和充放电装置
WO2023004712A1 (zh) 充放电装置、电池充电的方法和充放电系统
EP4231412A1 (en) Power battery charging method and battery management system
WO2023029048A1 (zh) 电池加热装置及其控制方法、控制电路和动力装置
WO2023035158A1 (zh) 动力电池充电的方法和电池管理系统
US20240092211A1 (en) Method and device for charging secondary battery, computer storage medium, and electronic equipment
CN118044094A (zh) 充电方法、电池管理系统、电池和充电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22942095

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022942095

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022942095

Country of ref document: EP

Effective date: 20240131