WO2023029048A1 - 电池加热装置及其控制方法、控制电路和动力装置 - Google Patents

电池加热装置及其控制方法、控制电路和动力装置 Download PDF

Info

Publication number
WO2023029048A1
WO2023029048A1 PCT/CN2021/116736 CN2021116736W WO2023029048A1 WO 2023029048 A1 WO2023029048 A1 WO 2023029048A1 CN 2021116736 W CN2021116736 W CN 2021116736W WO 2023029048 A1 WO2023029048 A1 WO 2023029048A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
bridge arm
sub
energy storage
storage element
Prior art date
Application number
PCT/CN2021/116736
Other languages
English (en)
French (fr)
Inventor
黄孝键
潘先喜
但志敏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202180032903.6A priority Critical patent/CN115668586A/zh
Priority to PCT/CN2021/116736 priority patent/WO2023029048A1/zh
Priority to EP21955579.4A priority patent/EP4228057A4/en
Priority to JP2023537696A priority patent/JP2024500452A/ja
Priority to KR1020237020324A priority patent/KR20230109695A/ko
Priority to EP22851620.9A priority patent/EP4369474A1/en
Priority to PCT/CN2022/088567 priority patent/WO2023010898A1/zh
Priority to KR1020247004327A priority patent/KR20240031382A/ko
Priority to CN202280004725.0A priority patent/CN115917836B/zh
Publication of WO2023029048A1 publication Critical patent/WO2023029048A1/zh
Priority to US18/459,392 priority patent/US20230411734A1/en
Priority to US18/431,824 priority patent/US20240178690A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/27Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by heating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M10/4264Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing with capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/615Heating or keeping warm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/633Control systems characterised by algorithms, flow charts, software details or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/63Control systems
    • H01M10/637Control systems characterised by the use of reversible temperature-sensitive devices, e.g. NTC, PTC or bimetal devices; characterised by control of the internal current flowing through the cells, e.g. by switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/657Means for temperature control structurally associated with the cells by electric or electromagnetic means
    • H01M10/6571Resistive heaters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • H02J7/007192Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery heating device, a control method of the battery heating device, a control circuit and a power device of the battery heating device.
  • Embodiments of the present application provide a battery heating device, a control method of the battery heating device, a control circuit of the battery heating device, and a power device, which can improve the heating efficiency of a power battery.
  • a battery heating device which is connected to a power battery for heating the power battery, the power battery includes a first battery and a second battery, and the battery heating device includes:
  • a heating module including a first bridge arm, a second bridge arm and an energy storage element
  • a control module configured to control the first bridge arm and the second bridge arm to form a circuit for discharging the first battery to the energy storage element, and to discharge the energy storage element and the first battery to the energy storage element.
  • the battery heating device can heat two batteries at the same time.
  • the battery heating device includes two bridge arms and energy storage elements. During the discharge and charging process, the two batteries are connected in series. By controlling the two bridge arms Arm, forming a circuit in which one battery discharges to the energy storage element, and a circuit in which the energy storage element and the battery charge the other battery, so that the two batteries are heated simultaneously during the process of discharging and charging, with high heating efficiency.
  • the first end of the first bridge arm is connected to the first end of the first battery
  • the first end of the second bridge arm is connected to the first end of the second battery.
  • the ends are connected, the second end of the first bridge arm, the second end of the second bridge arm, the second end of the first battery and the second end of the second battery are connected
  • the The first bridge arm includes a first sub-bridge arm and a second sub-bridge arm
  • the second bridge arm includes a third sub-bridge arm and a fourth sub-bridge arm; the first end of the first battery and the second
  • the first terminal of the battery is positive, and the second terminal of the first battery and the second terminal of the second battery are negative; or, the first terminal of the first battery and the first terminal of the second battery terminal is a negative pole, and the second terminal of the first battery and the second terminal of the second battery are positive poles.
  • the first end of the energy storage element is connected between the first sub-bridge arm and the second sub-bridge arm, and the second end of the energy storage element is connected between the Between the third sub-bridge arm and the fourth sub-bridge arm; or, the first end of the energy storage element is connected to the second end of the first bridge arm, and the second end of the energy storage element connected to the second end of the second bridge arm.
  • control module is specifically configured to:
  • the first end of the energy storage element is connected between the first sub-bridge arm and the second sub-bridge arm, and the second end of the energy storage element is connected between the between the third sub-bridge arm and the fourth sub-bridge arm; or, the first end of the energy storage element is connected to the first end of the first bridge arm, and the second end of the energy storage element connected to the first end of the second bridge arm.
  • control module is specifically configured to:
  • each sub-bridge arm is controlled, thereby forming a circuit for the first battery to discharge to the energy storage element, and the energy storage element and the first battery to charge the second battery and/or form a circuit in which the second battery discharges to the energy storage element, and a circuit in which the energy storage element and the second battery charges the first battery.
  • the discharge circuit and the charge circuit are switched back and forth, so that the first battery and the second battery are repeatedly charged and discharged, and the first battery and the second battery are heated during the charge and discharge process.
  • the first sub-bridge arm includes a first switch transistor
  • the second sub-bridge arm includes a second switch transistor
  • the third sub-bridge arm includes a third switch transistor
  • the The fourth sub-bridge arm includes a fourth switch tube.
  • the control circuit controls the first switch tube, the second switch tube, the third switch tube and the fourth switch tube to respectively realize the The sub-bridge arm, the third sub-bridge arm and the fourth sub-bridge arm are turned on and off.
  • a state switching switch is connected between the first terminal of the first battery and the first terminal of the second battery, or, the second terminal of the first battery and the A state switching switch is connected between the second terminals of the second battery, and the control module is also used for: controlling the state switching switch to be disconnected so that the first battery and the second battery are connected in series .
  • a state switching switch is connected between the two batteries, and the connection relationship between the first battery and the second battery can be switched through the state switching switch.
  • the state switching switch can be controlled to be turned off, so that the first battery and the second battery are connected in series.
  • the state switching switch can be controlled to be closed so that the first battery and the second battery are connected in parallel.
  • the energy storage element includes an inductor; or, the energy storage element includes an inductor and a first capacitor connected in series.
  • a second capacitor is connected in parallel to both ends of the first battery, and a third capacitor is connected in parallel to both ends of the second battery.
  • the second capacitor and the third capacitor can realize functions such as voltage stabilization and improve the voltage stability of the power battery.
  • the first battery and the second battery are also connected to a drive circuit of the motor, and are used to provide power to the drive circuit.
  • a method for controlling a battery heating device is provided.
  • the battery heating device is connected to a power battery for heating the power battery.
  • the battery heating device includes a first bridge arm and a second bridge arm and an energy storage element, the power battery includes a first battery and a second battery, and the control method includes:
  • two batteries can be heated at the same time.
  • the two batteries are connected in series.
  • the two bridge arms in the battery heating device are controlled to form one The circuit for discharging the battery to the energy storage element, and the circuit for charging the energy storage element and the battery to another battery, so that the two batteries are heated simultaneously during the process of discharging and charging, with high heating efficiency.
  • the first end of the first bridge arm is connected to the first end of the first battery
  • the first end of the second bridge arm is connected to the first end of the second battery.
  • the ends are connected, the second end of the first bridge arm, the second end of the second bridge arm, the second end of the first battery and the second end of the second battery are connected
  • the The first bridge arm includes a first sub-bridge arm and a second sub-bridge arm
  • the second bridge arm includes a third sub-bridge arm and a fourth sub-bridge arm; the first end of the first battery and the second
  • the first terminal of the battery is positive, and the second terminal of the first battery and the second terminal of the second battery are negative; or, the first terminal of the first battery and the first terminal of the second battery terminal is a negative pole, and the second terminal of the first battery and the second terminal of the second battery are positive poles.
  • the first end of the energy storage element is connected between the first sub-bridge arm and the second sub-bridge arm, and the second end of the energy storage element is connected between the Between the third sub-bridge arm and the fourth sub-bridge arm; or, the first end of the energy storage element is connected to the second end of the first bridge arm, and the second end of the energy storage element connected to the second end of the second bridge arm.
  • the controlling the first bridge arm and the second bridge arm includes: receiving a heating request message; generating a first control signal according to the heating request message, wherein the The first control signal is used for:
  • the first end of the energy storage element is connected between the first sub-bridge arm and the second sub-bridge arm, and the second end of the energy storage element is connected between the between the third sub-bridge arm and the fourth sub-bridge arm; or, the first end of the energy storage element is connected to the first end of the first bridge arm, and the second end of the energy storage element connected to the first end of the second bridge arm.
  • the controlling the first bridge arm and the second bridge arm includes: receiving a heating request message; generating a third control signal according to the heating request message, wherein the The third control signal is used for:
  • each sub-bridge arm is controlled, thereby forming a circuit for the first battery to discharge to the energy storage element, and the energy storage element and the first battery to charge the second battery and/or form a circuit in which the second battery discharges to the energy storage element, and a circuit in which the energy storage element and the second battery charges the first battery.
  • the discharge circuit and the charge circuit are switched back and forth, so that the first battery and the second battery are repeatedly charged and discharged, and the first battery and the second battery are heated during the charge and discharge process.
  • control method further includes: receiving a heating stop message; generating a second control signal according to the heating stop message, where the second control signal is used to control the battery heating device Stop heating the power battery.
  • the first sub-bridge arm includes a first switch transistor
  • the second sub-bridge arm includes a second switch transistor
  • the third sub-bridge arm includes a third switch transistor
  • the The fourth sub-bridge arm includes a fourth switch tube.
  • a state switching switch is connected between the first terminal of the first battery and the first terminal of the second battery, or, the second terminal of the first battery and the A state switching switch is connected between the second terminals of the second battery, and the control method is also used to: control the state switching switch to be turned off, so that the first battery and the second battery are connected in series .
  • the energy storage element includes an inductor; or, the energy storage element includes an inductor and a first capacitor connected in series.
  • a second capacitor is connected in parallel to both ends of the first battery, and a third capacitor is connected in parallel to both ends of the second battery.
  • the second capacitor and the third capacitor can realize functions such as voltage stabilization and improve the voltage stability of the power battery.
  • the first battery and the second battery are also connected to a drive circuit of the motor, and are used to provide power to the drive circuit.
  • a control circuit for a battery heating device which is characterized in that it includes a processor, and the processor is configured to execute the method in the above-mentioned second aspect or any possible implementation manner of the second aspect.
  • a power device including: a power battery, the power battery includes a first battery and a second battery; the battery heating device in the above first aspect or any possible implementation of the first aspect, so The battery heating device is connected to the power battery, and is used to heat the power battery; and, the motor, the drive circuit of the motor is connected to the power battery, and the power battery is used to provide the drive circuit with power supply.
  • the battery heating device can heat two batteries at the same time.
  • the battery heating device includes two bridge arms and energy storage elements. During the process of discharging and charging, the two batteries are connected in series. By controlling the two bridge arms , forming a circuit in which one battery discharges to the energy storage element, and a circuit in which the energy storage element and the battery charge the other battery, so that the two batteries are heated simultaneously during the process of discharging and charging, with high heating efficiency .
  • Fig. 1 is a schematic diagram of an application scenario of a battery heating device according to an embodiment of the present application.
  • Fig. 2 is a schematic block diagram of a battery heating device according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a possible implementation based on the battery heating device shown in FIG. 2 .
  • FIG. 4 is a schematic diagram of another possible implementation based on the battery heating device shown in FIG. 2 .
  • FIG. 5 is a schematic diagram of another possible implementation based on the battery heating device shown in FIG. 2 .
  • FIG. 6 is a schematic diagram of another possible implementation based on the battery heating device shown in FIG. 2 .
  • Fig. 7 is a schematic flowchart of a control method of a battery heating device according to an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a control circuit of a battery heating device according to an embodiment of the present application.
  • Fig. 9 is a schematic block diagram of a power plant according to an embodiment of the present application.
  • the charging and discharging capacity of the power battery is greatly limited in the low temperature environment, which seriously affects the customer's car experience in winter. Therefore, in order to be able to use the power battery normally, it is necessary to heat the power battery in a low temperature environment.
  • the power battery in the embodiment of the present application may be lithium-ion battery, lithium metal battery, lead-acid battery, nickel-battery, nickel-metal hydride battery, lithium-sulfur battery, lithium-air battery or sodium-ion battery, etc., which are not limited herein.
  • the power battery in the embodiment of this application can be a single battery cell, or a battery module or battery pack, which is not limited here.
  • the power battery can be used in power devices such as automobiles and ships. For example, it can be applied to electric vehicles to supply power to the motors of electric vehicles as the power source of electric vehicles.
  • the power battery can also supply power to other electrical devices in the electric vehicle, such as the air conditioner in the car, the car player, etc.
  • each battery is usually heated sequentially, or multiple batteries are connected in parallel and then heated simultaneously.
  • the above-mentioned first method prolongs the heating time, and the second method causes the current used for heating to be shunted. Both methods lead to low heating efficiency and affect user experience.
  • the present application provides a dual-branch battery heating scheme.
  • the two batteries are connected in series to realize simultaneous heating of the two batteries. Since the current used for heating is not shunted, thus Improved efficiency of battery heating.
  • Fig. 1 shows a schematic diagram of an application scenario of a battery heating device according to an embodiment of the present application.
  • the battery heating device 110 is connected to the power battery 120 , and the battery heating device 110 is used to heat the power battery 120 .
  • the power battery 120 includes N batteries, where N is a positive integer greater than or equal to 2, such as the first battery, the second battery, . . . , the Nth battery shown in FIG. 1 .
  • the battery heating device 110 in the embodiment of the present application can simultaneously heat two of the batteries each time. That is to say, the N batteries can be divided into multiple groups, each group has two batteries, and the battery heating device 110 heats one group of batteries each time.
  • the embodiment of the present application does not limit how to group the N batteries, nor does it limit the order of heating each group of batteries.
  • the battery heating device 110 heats the first battery and the second battery at the same time.
  • the power battery 120 may also be connected to a power system, and the power system includes a motor and the like.
  • the power battery 120 can be connected with the drive circuit of the motor, and is used to provide power to the drive circuit of the motor, so that the power vehicle loaded with the power battery 120 can run.
  • the battery management system (Battery Management System, BMS) of the power battery 120 collects state information of the power battery 120, such as battery temperature, state of charge (State of Charge, SOC), voltage signal, current signal, etc. , and determine whether the power battery 120 needs to be heated according to the state information.
  • the BMS can send a heating request to a vehicle controller (Vehicle Control Unit, VCU).
  • VCU Vehicle Control Unit
  • the VCU may determine whether to use the battery heating device 110 to heat the power battery 120 according to the SOC of the power battery 120 . Wherein, when the power of the power battery 120 is sufficient, that is, the SOC is high, for example, higher than a threshold, the battery heating device 110 may be used to heat the power battery 120 .
  • the battery heating device 110 may not be used to heat the power battery.
  • a motor controller such as a Microprogrammed Control Unit (MCU)
  • MCU Microprogrammed Control Unit
  • the power battery 120 can be heated or kept warm by using the heat generated by the working loss of the motor, for example, heating the cooling liquid of the power battery 120 by using the heat generated by the working loss of the motor when driving, thereby The cooling liquid heats or keeps the power battery 120 warm.
  • the battery heating device 110 can be turned on to heat the power battery 120, and the length of the heating cycle of the battery heating device 110 can be adjusted, or the heating frequency of the battery heating device 110 can be adjusted.
  • the present application does not limit the usage scenarios of the battery heating device 110 , and the battery heating device 110 in the embodiment of the present application can be used to heat the power battery 120 under any necessary circumstances.
  • the BMS of the power battery 120 can also monitor whether the temperature of the power battery 120 is abnormal.
  • the BMS can send information about the abnormal temperature to the VCU, and the VCU controls the battery heating device 110 to stop heating the power battery 120 .
  • the power battery 120 can be heated or kept warm by using the heat generated by the working loss of the motor, for example, heating the cooling liquid of the power battery 120 by using the heat generated by the working loss of the motor, so that the power battery 120 can be heated or kept warm by the cooling liquid.
  • the VCU may control the battery heating device 110 to stop heating the power battery 120 .
  • the power battery 120 can be kept warm by using the heat generated by the motor working loss, for example, heating the cooling liquid of the power battery 120 by using the heat generated by the working loss of the motor, so that the power battery 120 can be kept warm by the cooling liquid.
  • FIG. 2 is a schematic block diagram of a battery heating device 110 according to an embodiment of the present application.
  • the battery heating device 110 includes a heating module 1110 and a control module 1120 .
  • the power battery 120 includes a first battery 121 and a second battery 122 .
  • the battery heating device 110 can heat the first battery 121 and the second battery 122 at the same time.
  • the heating module 1110 includes a first bridge arm 1111 , a second bridge arm 1112 and an energy storage element 1113 .
  • the energy storage element 1113 may be, for example, an inductor L, or an inductor L and a first capacitor connected in series.
  • a second capacitor C1 may be connected in parallel to both ends of the first battery 121
  • a third capacitor C2 may be connected in parallel to both ends of the second battery 122 .
  • the second capacitor C1 and the third capacitor C2 can realize functions such as voltage stabilization, reduce voltage fluctuations of the first battery 121 and the second battery 122 , and improve voltage stability of the first battery 121 and the second battery 122 . In this way, during the driving process, the sampling accuracy requirement of the motor controller for the battery voltage can be reduced.
  • the control module 1120 is used to: control the first bridge arm 1111 and the second bridge arm 1112 to form a circuit in which the first battery 121 discharges to the energy storage element 1113, and the energy storage element 1113 and the first battery 121 charge the second battery 122 to heat the first battery 121 and the second battery 122 in the process of discharging and charging; and/or, control the first bridge arm 1111 and the second bridge arm 1112 to form the second battery 122 to store energy
  • the circuit for discharging the element 1113 and the circuit for charging the first battery 121 from the energy storage element 1113 and the second battery 122 are used to heat the first battery 121 and the second battery 122 during the process of discharging and charging.
  • the control module 1120 may be a VCU, or a control module relatively independent of the VCU, for example, a control module specially set for the battery heating device 110, which is not limited in this embodiment of the present application.
  • the control module 1120 needs to control the first bridge arm 1111 and the second bridge arm 1112 in the heating module 1110, by controlling the first bridge arm 1111 and the second bridge arm 1112 are turned on or off to form a circuit in which one of the first battery 121 and the second battery 122 discharges to the energy storage element, and the battery and the energy storage element charge the other battery. circuit.
  • the discharge circuit and the charge circuit are switched back and forth. Since there is current flow inside the two batteries during the discharge and charge process, the temperature of the battery will increase, and the two batteries can be heated at the same time, with high heating efficiency.
  • the first end E11 of the first bridge arm 1111 is connected to the first end of the first battery 121
  • the first end E21 of the second bridge arm 1112 is connected to the first end of the second battery 122
  • the first end E21 of the second bridge arm 1112 is connected to the first end of the second battery 122.
  • the second end E12 of the first bridge arm 1111 , the second end E22 of the second bridge arm 1112 , the second end of the first battery 121 and the second end of the second battery 122 are connected.
  • the first bridge arm 1111 includes a first sub-bridge arm 1101 and a second sub-bridge arm 1102
  • the second bridge arm 1112 includes a third sub-bridge arm 1103 and a fourth sub-bridge arm 1104 .
  • the first end of the first battery 121 is the positive pole of the first battery 121
  • the second end of the first battery 121 is the negative pole of the first battery 121
  • the first end of the second battery 122 is the positive pole of the second battery 122
  • the second end of the second battery 122 is the negative pole of the second battery 122 .
  • the first end of the first battery 121 is the negative pole of the first battery 121
  • the second end of the first battery 121 is the positive pole of the first battery 121
  • the first end of the second battery 122 is the negative pole of the second battery 122
  • the second end of the second battery 122 is the positive pole of the second battery 122 .
  • a state switching switch is connected between the first terminal E11 of the first battery 121 and the first terminal E21 of the second battery 122, or, the second terminal E12 of the first battery 121 and the second terminal of the second battery 122
  • a state switch is connected between E22.
  • the switching tube V15 shown in FIG. 3 to FIG. 6 The control module 1120 is also used to control the state switching switch to be turned off, so that the first battery 121 and the second battery 122 are connected in series.
  • the state switching switch can be controlled to be turned off, so that the first battery 121 and the second battery 122 are connected in series. In other cases, for example, when the first battery 121 and the second battery 122 supply power to the power system, etc., the state switching switch can be controlled to be closed so that the first battery and the second battery are connected in parallel.
  • the serial connection mentioned here may mean that the positive pole of the first battery 121 is connected with the positive pole of the second battery 122 , and the negative pole of the first battery 121 is connected with the negative pole of the second battery 122 . In this way, mutual flow of current between the first battery 121 and the second battery 122 is realized, and energy exchange between the first battery 121 and the second battery 122 is realized.
  • the energy storage element 1113 of the present application may be connected between the first bridge arm 1111 and the second bridge arm 1112 .
  • one end of the energy storage element 1113 is connected between the first sub-bridge arm 1101 and the second sub-bridge arm 1102, and the other end of the energy storage element 1113 is connected to the third sub-bridge arm 1103. and the fourth sub-bridge arm 1104 .
  • one end of the energy storage element 1113 is connected to the second end E12 of the first bridge arm 1111 , and the other end of the energy storage element 1113 is connected between the second ends E22 of the second bridge arm 1112 .
  • one end of the energy storage element 1113 is connected to the first end E11 of the first bridge arm 1111 , and the other end of the energy storage element 1113 is connected between the first ends E21 of the second bridge arm 1112 .
  • the fourth sub-bridge arm 1104 is turned on at the same time, forming a loop including the first battery 121, the first sub-bridge arm 1101, the energy storage element 1113 and the fourth sub-bridge arm 1104, for discharging the first battery 121 to the energy storage element 1113 and, control the first sub-bridge arm 1101 and the third sub-bridge arm 1103 to conduct at the same time, forming the first battery 121, the first sub-bridge arm 1101, the energy storage element L, the third sub-bridge arm 1103 and the second battery 122 is used for the first battery 121 and the energy storage element 1113 to charge the second battery 122 .
  • the control module 1120 can also control the second sub-bridge arm 1102 and the third sub-bridge The arms 1103 are turned on at the same time to form a loop including the second battery 122, the third sub-bridge arm 1103, the energy storage element 1113 and the second sub-bridge arm 1102, for the second battery 122 to discharge the energy storage element 1113; and, control The first sub-bridge arm 1101 and the third sub-bridge arm 1103 are turned on at the same time, forming a circuit including the second battery 122, the third sub-bridge arm 1103, the energy storage element 1113, the first sub-bridge arm 1101 and the first battery 121, The second battery 122 and the energy storage element 1113 are used to charge the first battery 121 .
  • the first terminal of the first battery 121 is the positive pole of the first battery 121
  • the second terminal of the first battery 121 is the negative pole of the first battery 121
  • the first terminal of the second battery 122 is terminal is the positive pole of the second battery 122
  • the second terminal of the second battery 122 is the negative pole of the second battery 122
  • the energy storage element 1113 is an inductor L as an example
  • the arm 1103 includes a third switching transistor V13
  • the fourth sub-bridge arm 1104 includes a fourth switching transistor V14.
  • the control circuit 1120 controls the first switch tube V11, the second switch tube V12, the third switch tube V13 and the fourth switch tube V14 to realize the first sub-bridge arm 1101, the second sub-bridge arm 1102, and the third sub-bridge arm respectively.
  • the conduction between the bridge arm 1103 and the fourth sub-bridge arm 1104 is a third switching transistor V13
  • the fourth sub-bridge arm 1104 includes a fourth switching transistor V14.
  • each heating cycle may include a first stage and a second stage.
  • the first switch tube V11 and the fourth switch tube V14 are closed, and the second switch tube V12 and the third switch tube V13 are turned off, forming a circuit comprising the first battery 121, the first switch tube V11, the inductor L and The loop of the fourth switching tube V14, which is used for discharging the first battery 121 and storing energy in the inductor L, the discharge path from the first battery 121 to the inductor L is: the positive pole of the first battery 121 ⁇ V11 ⁇ L ⁇ V14 ⁇ the first The negative pole of the battery 121; in the second stage, the first switching tube V11 and the third switching tube V13 are closed, and the second switching tube V12 and the fourth switching tube V14 are disconnected, forming a battery including the first battery 121, the first switching tube V11, The loop of the inductor L, the third switching
  • each heating cycle may also include the third stage and the fourth stage.
  • the third stage the second switch tube V12 and the third switch tube V13 are closed, and the first switch tube V11 and the fourth switch tube V14 are turned off, forming a circuit comprising the second battery 122, the third switch tube V13, the inductor L and The loop of the second switching tube V12 is used for the discharge of the second battery 122 and the energy storage of the inductor L.
  • the discharge path of the second battery 122 to the inductor L is: the positive pole of the second battery 122 ⁇ V13 ⁇ L ⁇ V12 ⁇ the second The negative pole of the battery 122; in the fourth stage, the first switching tube V11 and the third switching tube V13 are closed, and the second switching tube V12 and the fourth switching tube V14 are disconnected, forming a battery including the second battery 122, the third switching tube V13,
  • the loop of the inductor L, the first switching tube V11 and the first battery 121, which is used for the second battery 122 and the inductor L to charge the first battery 121, the charging path is: the positive pole of the second battery 122 ⁇ V13 ⁇ L ⁇ V11 ⁇ the positive electrode of the first battery 121 ⁇ the negative electrode of the first battery 121 ⁇ the negative electrode of the second battery 122 .
  • the charging time of the first battery 121 can be controlled by controlling the repeated switching of the first switch tube V11 and the second switch tube V12 .
  • the control module 1120 can control the second sub-bridge arm 1102 and the third sub-bridge arm 1103 to be turned on simultaneously to form a loop including the first battery 121, the second sub-bridge arm 1102, the energy storage element 1113 and the third sub-bridge arm 1103, It is used to discharge the first battery 121 to the energy storage element 1113; in the second stage, control the second sub-bridge arm 1102 and the fourth sub-bridge arm 1104 to be turned on at the same time, forming a battery including the first battery 121, the second sub-bridge arm 1102, The circuit of the energy storage element L, the fourth sub-bridge arm 1104 and the second battery 122 is used for the first battery 121 and the energy storage element 1113 to charge the second battery 122; in the third stage, the control module 1120 can also control the first The sub-bridge arm 1101 and
  • each sub-bridge arm in the heating module 1110 shown in Figure 3 to Figure 6 is controlled to form one of the batteries to the energy storage element. 1113 discharge circuit, and the energy storage element 1113 and the battery charging circuit to another battery, the discharge circuit and the charging circuit are switched back and forth, so that the two batteries are heated simultaneously during the process of discharging and charging, with high heating efficiency.
  • the heating module 1110 shown in FIG. 3 is only for illustration, and each sub-bridge arm may also have other implementation manners.
  • the first sub-bridge arm 1101 may include a first switching transistor V11 and a first freewheeling diode D11 connected in parallel with the first switching transistor V11;
  • the second sub-bridge The arm 1102 may include a second switch tube V12, and a second freewheeling diode D12 connected in parallel with the second switch tube V12;
  • the third sub-bridge arm 1103 may include a third switch tube V13, and a second freewheel diode D12 connected in parallel with the third switch tube V13.
  • the fourth sub-bridge arm 1104 may include a fourth switching transistor V14 and a fourth freewheeling diode D14 connected in parallel with the fourth switching transistor V14.
  • Freewheeling diodes are often used in conjunction with inductors. When the current of the inductor changes suddenly, the voltage across the inductor will change suddenly, which may damage other components in the circuit loop. And when it cooperates with a freewheeling diode, the current of the inductor can change more smoothly, avoiding sudden changes in the voltage and improving the safety of the circuit.
  • the current when entering the second stage from the first stage of a heating cycle, that is, when the third switching tube V13 and the fourth switching tube V14 are switched, due to the switching delay, the current may be at the first During the stage, the first battery 121 stays in the discharge path of the inductor L for a short time. At this time, the fourth freewheeling diode D14 can buffer the current, avoid sudden changes in the voltage, and improve the safety of the circuit.
  • the freewheeling diode, the fourth switching transistor V14 and the fourth freewheeling diode D14 connected in parallel thereto may all be referred to as Insulated Gate Bipolar Translator (IGBT).
  • IGBT Insulated Gate Bipolar Translator
  • each sub-bridge arm may also include a switching tube and a freewheeling diode connected in parallel with the switching tube, which are not shown in this application.
  • each sub-bridge arm does not limit the specific form of each sub-bridge arm, and the function of the battery heating module 1110 can still be realized when each sub-bridge arm does not include a freewheeling diode.
  • connection or “connection” mentioned in the embodiments of the present application may be direct connection or indirect connection through other elements, which is not limited in the present application.
  • the embodiment of the present application also provides a method for controlling a battery heating device.
  • a method for controlling a battery heating device for the structure of the battery heating device, reference may be made to the above specific descriptions for FIG. 1 to FIG. 6 , which will not be repeated here.
  • the control method 700 of the battery heating device includes some or all of the following steps.
  • step 710 the first bridge arm and the second bridge arm are controlled to form a circuit in which the first battery discharges to the energy storage element, and the energy storage element and the first battery discharge to the energy storage element.
  • a circuit for charging the second battery is used to heat the first battery and the second battery. and / or,
  • step 720 the first bridge arm and the second bridge arm are controlled to form a circuit in which the second battery discharges to the energy storage element, and the energy storage element and the second battery discharge to the energy storage element.
  • a circuit for charging the first battery is used to heat the first battery and the second battery.
  • two batteries can be heated at the same time.
  • the two batteries are connected in series.
  • the two bridge arms in the battery heating device are controlled to form one of the batteries.
  • the first end of the first bridge arm is connected to the first end of the first battery
  • the first end of the second bridge arm is connected to the first end of the second battery
  • the second end of the first bridge arm, the second end of the second bridge arm, the second end of the first battery and the second end of the second battery are connected
  • the first The bridge arm includes a first sub-bridge arm and a second sub-bridge arm
  • the second bridge arm includes a third sub-bridge arm and a fourth sub-bridge arm
  • the first end of the first battery and the The first terminal is positive, and the second terminal of the first battery and the second terminal of the second battery are negative; or, the first terminal of the first battery and the first terminal of the second battery are The negative pole, the second terminal of the first battery and the second terminal of the second battery are positive poles.
  • the first end of the energy storage element is connected between the first sub-bridge arm and the second sub-bridge arm, and the second end of the energy storage element is connected between the Between the third sub-bridge arm and the fourth sub-bridge arm; or, the first end of the energy storage element is connected to the second end of the first bridge arm, and the second end of the energy storage element connected to the second end of the second bridge arm.
  • the controlling the first bridge arm and the second bridge arm includes: receiving a heating request message; generating a first control signal according to the heating request message , wherein the first control signal is used to: control the first sub-bridge arm and the fourth sub-bridge arm to be turned on at the same time, forming a battery comprising the first battery, the first sub-bridge arm, the A circuit of the energy storage element and the fourth sub-bridge arm, used for discharging the first battery to the energy storage element; and controlling the simultaneous conduction of the first sub-bridge arm and the third sub-bridge arm , forming a circuit including the first battery, the first sub-bridge arm, the energy storage element, the third sub-bridge arm and the second battery, for the first battery and the storage The energy element charges the second battery.
  • the controlling the first bridge arm and the second bridge arm includes: receiving a heating request message; generating a first control signal according to the heating request message , wherein the first control signal is used to: control the second sub-bridge arm and the third sub-bridge arm to be turned on at the same time, forming a battery including the second battery, the third sub-bridge arm, the A circuit between the energy storage element and the second sub-bridge arm, used for discharging the second battery to the energy storage element; and controlling the simultaneous conduction of the first sub-bridge arm and the third sub-bridge arm , forming a circuit including the second battery, the third sub-bridge arm, the energy storage element, the first sub-bridge arm and the first battery, for the second battery and the storage The energy element charges the first battery.
  • the first end of the energy storage element is connected between the first sub-bridge arm and the second sub-bridge arm, and the second end of the energy storage element is connected between the between the third sub-bridge arm and the fourth sub-bridge arm; or, the first end of the energy storage element is connected to the first end of the first bridge arm, and the second end of the energy storage element connected to the first end of the second bridge arm.
  • the controlling the first bridge arm and the second bridge arm includes: receiving a heating request message; generating a third control signal according to the heating request message , wherein the third control signal is used to: control the second sub-bridge arm and the third sub-bridge arm to be turned on at the same time, forming a battery including the first battery, the second sub-bridge arm, the A circuit of the energy storage element and the third sub-bridge arm, used for discharging the first battery to the energy storage element; and controlling the simultaneous conduction of the second sub-bridge arm and the fourth sub-bridge arm , forming a loop including the first battery, the second sub-bridge arm, the energy storage element, the fourth sub-bridge arm and the second battery, for the first battery and the storage The energy element charges the second battery.
  • the controlling the first bridge arm and the second bridge arm includes: receiving a heating request message; generating a third control signal according to the heating request message , wherein the third control signal is used to: control the first sub-bridge arm and the fourth sub-bridge arm to be turned on at the same time, forming a battery comprising the second battery, the fourth sub-bridge arm, the A circuit between the energy storage element and the first sub-bridge arm, used for discharging the second battery to the energy storage element; and controlling the simultaneous conduction of the second sub-bridge arm and the fourth sub-bridge arm , forming a circuit including the second battery, the fourth sub-bridge arm, the energy storage element, the second sub-bridge arm and the first battery, for the second battery and the storage The energy element charges the first battery.
  • control method further includes: receiving a heating stop message; generating a second control signal according to the heating stop message, where the second control signal is used to control the battery heating device Stop heating the power battery.
  • the first sub-bridge arm includes a first switch transistor
  • the second sub-bridge arm includes a second switch transistor
  • the third sub-bridge arm includes a third switch transistor
  • the fourth sub-bridge arm includes a third switch transistor.
  • the sub-bridge arm includes a fourth switch tube.
  • a state switching switch is connected between the first terminal of the first battery and the first terminal of the second battery, or, the second terminal of the first battery and the second terminal
  • a state switching switch is connected between the second terminals of the batteries, and the control method is further used to: control the state switching switch to be turned off, so that the first battery and the second battery are connected in series.
  • the energy storage element includes an inductor; or, the energy storage element includes an inductor and a first capacitor connected in series.
  • a second capacitor is connected in parallel to both ends of the first battery, and a third capacitor is connected in parallel to both ends of the second battery.
  • the first battery and the second battery are also connected to a drive circuit of the motor, and are used to provide power to the drive circuit.
  • Fig. 8 shows a schematic block diagram of a control circuit 800 of a battery heating device according to an embodiment of the present application.
  • the control circuit 800 includes a processor 820.
  • the control circuit 800 further includes a memory 810, wherein the memory 810 is used to store instructions, and the processor 820 is used to read the instructions and execute them based on the instructions.
  • the processor 820 may, for example, correspond to a control module of any of the above-mentioned battery heating devices.
  • Fig. 9 shows a schematic block diagram of a power device 900 according to an embodiment of the present application.
  • the power device 900 includes: a power battery 120; a battery heating device 110 in any of the above-mentioned embodiments, the battery heating device 110 is connected to the power battery 120 for heating the power battery 120; and a motor 130, a drive circuit 131 of the motor 130 and The power battery 120 is connected, and the power battery 120 is used to provide power to the drive circuit 131 .
  • the power plant 900 may be, for example, a power car.
  • the embodiment of the present application also provides a readable storage medium for storing a computer program, and the computer program is used to execute the methods in the above-mentioned embodiments of the present application.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种电池加热装置及其控制方法、控制电路和动力装置。所述电池加热装置包括:加热模块,包括第一桥臂、第二桥臂和储能元件;以及,控制模块,用于控制所述第一桥臂和所述第二桥臂,形成所述第一电池向所述储能元件放电的回路、以及所述储能元件和所述第一电池向所述第二电池充电的回路,和/或,形成所述第二电池向所述储能元件放电的回路、以及所述储能元件和所述第二电池向所述第一电池充电的回路,以对所述第一电池和所述第二电池进行加热。该电池加热装置可以同时对两个电池进行加热,提高了加热效率。

Description

电池加热装置及其控制方法、控制电路和动力装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池加热装置、电池加热装置的控制方法、电池加热装置的控制电路和动力装置。
背景技术
由于具有能量密度高、可循环充电、安全环保等优点,动力电池被广泛应用于新能源汽车、消费电子、储能系统等领域中。
但是低温环境下动力电池的使用会受到一定限制。具体地,动力电池在低温环境下的放电容量会严重衰退,以及电池在低温环境下无法充电。因此,为了能够正常使用动力电池,需要在低温环境下为动力电池进行加热。如何提高动力电池的加热效率,成为亟待解决的问题。
发明内容
本申请实施例提供了一种电池加热装置、电池加热装置的控制方法、电池加热装置的控制电路和动力装置,能够提高动力电池的加热效率。
第一方面,提供了一种电池加热装置,与动力电池相连,用于对所述动力电池进行加热,所述动力电池包括第一电池和第二电池,所述电池加热装置包括:
加热模块,包括第一桥臂、第二桥臂和储能元件;以及,
控制模块,用于控制所述第一桥臂和所述第二桥臂,形成所述第一电池向所述储能元件放电的回路、以及所述储能元件和所述第一电池向所述第二电池充电的回路,和/或,形成所述第二电池向所述储能元件放电的回路、以及所述储能元件和所述第二电池向所述第一电池充电的回路,以对所述第一电池和所述第二电池进行加热。
本申请实施例中,电池加热装置可以同时对两个电池进行加热,该电池加热装置包括两个桥臂和储能元件,在放电和充电的过程中两个电池为串联,通过控制两个桥臂,形成其中一个电池向储能元件放电的回路,以及储能元件和该电池向另一个电池充电的回路,从而在放电和充电的过程中对两个电池同时进行加热,具有较高的加热效率。
在一种可能的实现方式中,所述第一桥臂的第一端与所述第一电池的第一端相连,所述第二桥臂的第一端与所述第二电池的第一端相连,所述第一桥臂的第二 端、所述第二桥臂的第二端、所述第一电池的第二端和所述第二电池的第二端相连,其中,所述第一桥臂包括第一子桥臂和第二子桥臂,所述第二桥臂包括第三子桥臂和第四子桥臂;所述第一电池的第一端和所述第二电池的第一端为正极,所述第一电池的第二端和所述第二电池的第二端为负极;或者,所述第一电池的第一端和所述第二电池的第一端为负极,所述第一电池的第二端和所述第二电池的第二端为正极。
在一种可能的实现方式中,所述储能元件的第一端连接在所述第一子桥臂和所述第二子桥臂之间,所述储能元件的第二端连接在所述第三子桥臂和所述第四子桥臂之间;或者,所述储能元件的第一端连接在所述第一桥臂的第二端,所述储能元件的第二端连接在所述第二桥臂的第二端。
在一种可能的实现方式中,所述控制模块具体用于:
控制所述第一子桥臂和所述第四子桥臂同时导通,形成包括所述第一电池、所述第一子桥臂、所述储能元件和所述第四子桥臂的回路,用于所述第一电池向所述储能元件放电;以及,控制所述第一子桥臂和所述第三子桥臂同时导通,形成包括所述第一电池、所述第一子桥臂、所述储能元件、所述第三子桥臂和所述第二电池的回路,用于所述第一电池和所述储能元件向所述第二电池充电;和/或,
控制所述第二子桥臂和所述第三子桥臂同时导通,形成包括所述第二电池、所述第三子桥臂、所述储能元件和所述第二子桥臂的回路,用于所述第二电池向所述储能元件放电;以及,控制所述第一子桥臂和所述第三子桥臂同时导通,形成包括所述第二电池、所述第三子桥臂、所述储能元件、所述第一子桥臂和所述第一电池的回路,用于所述第二电池和所述储能元件向所述第一电池充电。
在一种可能的实现方式中,所述储能元件的第一端连接在所述第一子桥臂和所述第二子桥臂之间,所述储能元件的第二端连接在所述第三子桥臂和所述第四子桥臂之间;或者,所述储能元件的第一端连接在所述第一桥臂的第一端,所述储能元件的第二端连接在所述第二桥臂的第一端。
在一种可能的实现方式中,所述控制模块具体用于:
控制所述第二子桥臂和所述第三子桥臂同时导通,形成包括所述第一电池、所述第二子桥臂、所述储能元件和所述第三子桥臂的回路,用于所述第一电池向所述储能元件放电;以及,控制所述第二子桥臂和所述第四子桥臂同时导通,形成包括所述第一电池、所述第二子桥臂、所述储能元件、所述第四子桥臂和所述第二电池的回路,用于所述第一电池和所述储能元件向所述第二电池充电;和/或,
控制所述第一子桥臂和所述第四子桥臂同时导通,形成包括所述第二电池、所述第四子桥臂、所述储能元件和所述第一子桥臂的回路,用于所述第二电池向所述储能元件放电;以及,控制所述第二子桥臂和所述第四子桥臂同时导通,形成包括所述第二电池、所述第四子桥臂、所述储能元件、所述第二子桥臂和所述第一电池的回路,用于所述第二电池和所述储能元件向所述第一电池充电。
上述实施例中,通过设计合理的控制时序,控制各个子桥臂的导通和断开,从而形成第一电池向储能元件放电的回路、以及储能元件和第一电池向第二电池充电的回路,和/或形成第二电池向储能元件放电的回路、以及储能元件和第二电池向 所述第一电池充电的回路。放电回路和充电回路来回切换,从而使第一电池和第二电池之间反复进行充放电,在充放电过程中实现对第一电池和第二电池的加热。
在一种可能的实现方式中,所述第一子桥臂包括第一开关管,所述第二子桥臂包括第二开关管,所述第三子桥臂包括第三开关管,所述第四子桥臂包括第四开关管。其中,所述控制电路通过控制所述第一开关管、所述第二开关管、所述第三开关管和所述第四开关管,分别实现所述第一子桥臂、所述第二子桥臂、所述第三子桥臂和所述第四子桥臂的导通和断开。
在一种可能的实现方式中,所述第一电池的第一端和所述第二电池的第一端之间连接有状态切换开关,或者,所述第一电池的第二端和所述第二电池的第二端之间连接有状态切换开关,所述控制模块还用于:控制所述状态切换开关断开,以使所述第一电池和所述第二电池之间串行连接。
该实施例中,两个电池之间还连接有状态切换开关,第一电池和第二电池之间的连接关系可以通过状态切换开关进行切换。当加热第一电池和第二电池时,可以控制状态切换开关断开,以使第一电池和第二电池之间串行连接。而在其他情况,例如第一电池和第二电池向动力系统供电时,可以控制状态切换开关闭合,以使第一电池和第二电池之间并联。
在一种可能的实现方式中,所述储能元件包括电感;或者,所述储能元件包括串联的电感和第一电容。
在一种可能的实现方式中,所述第一电池的两端并联有第二电容,所述第二电池的两端并联有第三电容。该第二电容和该第三电容可以实现稳压等功能,提高动力电池的电压稳定性。
在一种可能的实现方式中,所述第一电池和所述第二电池还与电机的驱动电路相连,用于向所述驱动电路提供电源。
第二方面,提供了一种电池加热装置的控制方法,所述电池加热装置与动力电池相连,用于对所述动力电池进行加热,所述电池加热装置包括第一桥臂、第二桥臂和储能元件,所述动力电池包括第一电池和第二电池,所述控制方法包括:
控制所述第一桥臂和所述第二桥臂,形成所述第一电池向所述储能元件放电的回路、以及所述储能元件和所述第一电池向所述第二电池充电的回路,和/或,形成所述第二电池向所述储能元件放电的回路、以及所述储能元件和所述第二电池向所述第一电池充电的回路,以对所述第一电池和所述第二电池进行加热。
在本申请实施例中,可以同时对两个电池进行加热,在放电和充电的过程中两个电池为串联,通过设计合理的控制时序,控制电池加热装置中的两个桥臂,形成其中一个电池向储能元件放电的回路,以及储能元件和该电池向另一个电池充电的回路,从而在放电和充电的过程中对两个电池同时进行加热,具有较高的加热效率。
在一种可能的实现方式中,所述第一桥臂的第一端与所述第一电池的第一端相连,所述第二桥臂的第一端与所述第二电池的第一端相连,所述第一桥臂的第二端、所述第二桥臂的第二端、所述第一电池的第二端和所述第二电池的第二端相连,其中,所述第一桥臂包括第一子桥臂和第二子桥臂,所述第二桥臂包括第三子桥臂和 第四子桥臂;所述第一电池的第一端和所述第二电池的第一端为正极,所述第一电池的第二端和所述第二电池的第二端为负极;或者,所述第一电池的第一端和所述第二电池的第一端为负极,所述第一电池的第二端和所述第二电池的第二端为正极。
在一种可能的实现方式中,所述储能元件的第一端连接在所述第一子桥臂和所述第二子桥臂之间,所述储能元件的第二端连接在所述第三子桥臂和所述第四子桥臂之间;或者,所述储能元件的第一端连接在所述第一桥臂的第二端,所述储能元件的第二端连接在所述第二桥臂的第二端。
在一种可能的实现方式中,所述控制所述第一桥臂和所述第二桥臂,包括:接收加热请求消息;根据所述加热请求消息,生成第一控制信号,其中,所述第一控制信号用于:
控制所述第一子桥臂和所述第四子桥臂同时导通,形成包括所述第一电池、所述第一子桥臂、所述储能元件和所述第四子桥臂的回路,用于所述第一电池向所述储能元件放电;以及,控制所述第一子桥臂和所述第三子桥臂同时导通,形成包括所述第一电池、所述第一子桥臂、所述储能元件、所述第三子桥臂和所述第二电池的回路,用于所述第一电池和所述储能元件向所述第二电池充电;和/或,
控制所述第二子桥臂和所述第三子桥臂同时导通,形成包括所述第二电池、所述第三子桥臂、所述储能元件和所述第二子桥臂的回路,用于所述第二电池向所述储能元件放电;以及,控制所述第一子桥臂和所述第三子桥臂同时导通,形成包括所述第二电池、所述第三子桥臂、所述储能元件、所述第一子桥臂和所述第一电池的回路,用于所述第二电池和所述储能元件向所述第一电池充电。
在一种可能的实现方式中,所述储能元件的第一端连接在所述第一子桥臂和所述第二子桥臂之间,所述储能元件的第二端连接在所述第三子桥臂和所述第四子桥臂之间;或者,所述储能元件的第一端连接在所述第一桥臂的第一端,所述储能元件的第二端连接在所述第二桥臂的第一端。
在一种可能的实现方式中,所述控制所述第一桥臂和所述第二桥臂,包括:接收加热请求消息;根据所述加热请求消息,生成第三控制信号,其中,所述第三控制信号用于:
控制所述第二子桥臂和所述第三子桥臂同时导通,形成包括所述第一电池、所述第二子桥臂、所述储能元件和所述第三子桥臂的回路,用于所述第一电池向所述储能元件放电;以及,控制所述第二子桥臂和所述第四子桥臂同时导通,形成包括所述第一电池、所述第二子桥臂、所述储能元件、所述第四子桥臂和所述第二电池的回路,用于所述第一电池和所述储能元件向所述第二电池充电;和/或,
控制所述第一子桥臂和所述第四子桥臂同时导通,形成包括所述第二电池、所述第四子桥臂、所述储能元件和所述第一子桥臂的回路,用于所述第二电池向所述储能元件放电;以及,控制所述第二子桥臂和所述第四子桥臂同时导通,形成包括所述第二电池、所述第四子桥臂、所述储能元件、所述第二子桥臂和所述第一电池的回路,用于所述第二电池和所述储能元件向所述第一电池充电。
上述实施例中,通过设计合理的控制时序,控制各个子桥臂的导通和断 开,从而形成第一电池向储能元件放电的回路、以及储能元件和第一电池向第二电池充电的回路,和/或形成第二电池向储能元件放电的回路、以及储能元件和第二电池向所述第一电池充电的回路。放电回路和充电回路来回切换,从而使第一电池和第二电池之间反复进行充放电,在充放电过程中实现对第一电池和第二电池的加热。
在一种可能的实现方式中,所述控制方法还包括:接收加热停止消息;根据所述加热停止消息,生成第二控制信号,其中,所述第二控制信号用于控制所述电池加热装置停止对所述动力电池加热。
在一种可能的实现方式中,所述第一子桥臂包括第一开关管,所述第二子桥臂包括第二开关管,所述第三子桥臂包括第三开关管,所述第四子桥臂包括第四开关管。其中,通过控制所述第一开关管、所述第二开关管、所述第三开关管和所述第四开关管,分别实现所述第一子桥臂、所述第二子桥臂、所述第三子桥臂和所述第四子桥臂的导通和断开。
在一种可能的实现方式中,所述第一电池的第一端和所述第二电池的第一端之间连接有状态切换开关,或者,所述第一电池的第二端和所述第二电池的第二端之间连接有状态切换开关,所述控制方法还用于:控制所述状态切换开关断开,以使所述第一电池和所述第二电池之间串行连接。
在一种可能的实现方式中,所述储能元件包括电感;或者,所述储能元件包括串联的电感和第一电容。
在一种可能的实现方式中,所述第一电池的两端并联有第二电容,所述第二电池的两端并联有第三电容。该第二电容和该第三电容可以实现稳压等功能,提高动力电池的电压稳定性。
在一种可能的实现方式中,所述第一电池和所述第二电池还与电机的驱动电路相连,用于向所述驱动电路提供电源。
第三方面,提供了一种电池加热装置的控制电路,其特征在于,包括处理器,所述处理器用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第四方面,提供了一种动力装置,包括:动力电池,所述动力电池包括第一电池和第二电池;上述第一方面或第一方面的任意可能的实现方式中的电池加热装置,所述电池加热装置与所述动力电池相连,用于对所述动力电池进行加热;以及,电机,所述电机的驱动电路与所述动力电池相连,所述动力电池用于向所述驱动电路提供电源。
基于上述技术方案,电池加热装置可以同时对两个电池进行加热,该电池加热装置包括两个桥臂和储能元件,在放电和充电的过程中两个电池为串联,通过控制两个桥臂,形成其中一个电池向储能元件放电的回路,以及储能元件和该电池向另一个电池充电的回路,从而在放电和充电的过程中对两个电池同时进行加热,具有较高的加热效率。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请实施例的电池加热装置的应用场景的示意图。
图2是本申请实施例的电池加热装置的示意性框图。
图3是基于图2所示的电池加热装置的一种可能的实现方式的示意图。
图4是基于图2所示的电池加热装置的另一种可能的实现方式的示意图。
图5是基于图2所示的电池加热装置的另一种可能的实现方式的示意图。
图6是基于图2所示的电池加热装置的另一种可能的实现方式的示意图。
图7是本申请实施例的电池加热装置的控制方法的示意性流程图。
图8是本申请实施例的电池加热装置的控制电路的示意性框图。
图9是本申请实施例的动力装置的示意性框图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
随着时代的发展,新能源汽车由于其环保性、低嗓音、使用成本低等优点,具有巨大的市场前景且能够有效促进节能减排,有利于社会的发展和进步。
由于动力电池的电化学特性,在低温环境下,动力电池的充放电能力被大大限制,严重影响客户冬季用车体验。因此,为了能够正常使用动力电池,需要在低温环境下为动力电池进行加热。
本申请实施例中的动力电池可以为锂离子电池、锂金属电池、铅酸电池、镍隔电池、镍氢电池、锂硫电池、锂空气电池或者钠离子电池等,在此不做限定。从 规模而言,本申请实施例中的动力电池可以为电芯单体,也可以是电池模组或电池包,在此不做限定。从应用场景而言,该动力电池可应用于汽车、轮船等动力装置内。例如,可以应用于动力汽车,以为动力汽车的电机供电,作为电动汽车的动力源。该动力电池还可为电动汽车中的其他用电器件供电,比如为车内空调、车载播放器等供电。
为了便于描述,以下将以动力电池应用于新能源汽车(即动力汽车、或称电动汽车)为例,对本申请的方案进行阐述。
当动力电池包括多个电池时,现有技术中,通常采用依次加热每个电池,或将多个电池并联后同时加热的方式。但是上述第一种方式延长了加热的时间,第二种方式使得用于加热的电流被分流,两种方式均导致加热效率低,影响用户体验。
为此,本申请提供了一种双支路电池加热的方案,通过合理的控制使得两个电池被串行连接,实现同时对两个电池进行加热,由于用于加热的电流未被分流,从而提高了电池加热的效率。
图1示出了本申请实施例的电池加热装置的应用场景的示意图。如图1所示,电池加热装置110与动力电池120连接,电池加热装置110用于对动力电池120加热。动力电池120包括N个电池,N为大于或者等于2的正整数,例如图1中所示的第一电池、第二电池、……、第N电池等。本申请实施例中的电池加热装置110每次可以同时对其中两个电池进行加热。也就是说,可以将N个电池分为多组,每组两个电池,电池加热装置110每次加热其中的一组电池。本申请实施例不限定如何对N个电池进行分组,也不限定对各组电池进行加热的顺序。以下,以第一电池和第二电池为例,描述电池加热装置110如何同时对第一电池和第二电池进行加热。
此外,动力电池120还可以与动力系统连接,动力系统包括电机等。动力电池120可以与电机的驱动电路连接,用于向电机的驱动电路提供电源,从而使装载有该动力电池120的动力汽车行驶。
在一种实现方式中,动力电池120的电池管理系统(Battery Management System,BMS)采集动力电池120的状态信息,例如电池温度、荷电状态(State of Charge,SOC)、电压信号、电流信号等,并根据该状态信息确定动力电池120是否需要加热。当确定需要对动力电池120进行加热时,BMS可以向整车控制器(Vehicle Control Unit,VCU)发送加热请求。VCU根据BMS发送的加热请求,确定是否开启电池加热装置110对动力电池120进行加热。
例如,VCU接收到BMS发送的加热请求后,可以根据动力电池120的SOC,确定是否利用电池加热装置110对动力电池120进行加热。其中,当动力电池120的电量充足,即SOC较高,比如高于一个阈值时,可以利用电池加热装置110对动力电池120进行加热。
又例如,当动力电池120的电量不足,即SOC较低,比如低于一个阈值时,为了降低电池加热损耗,也可以不利用电池加热装置110对动力电池加热。电机控制器,例如微程序控制器(Microprogrammed Control Unit,MCU)可以根据电机的电压和电流等信息,确定电机状态,并发送给VCU。因此,如果电机此时处于正常工作 的状态,那么可以利用电机工作损耗产生的热量对动力电池120进行加热或保温,例如利用行车时电机工作损耗产生的热量加热动力电池120的冷却液,从而由该冷却液对动力电池120加热或保温。
或者,当动力电池120的SOC较低时,也可以开启电池加热装置110对动力电池120进行加热,并调整电池加热装置110的加热周期的长度,或者说,调整电池加热装置110的加热频率。
本申请并不限定电池加热装置110的使用场景,本申请实施例的电池加热装置110可以在任何需要的情况下,用来对动力电池120进行加热。
在电池加热装置110对动力电池120加热的过程中,动力电池120的BMS还可以监测动力电池120的温度是否存在异常。当动力电池120的温度存在异常时,BMS可以向VCU发送温度异常的信息,则VCU控制电池加热装置110停止对动力电池120加热。此时,可以利用电机工作损耗产生的热量对动力电池120进行加热或保温,例如利用电机工作损耗产生的热量加热动力电池120的冷却液,从而由冷却液对动力电池120加热或保温。
在电池加热装置110对动力电池120加热过程中,如果动力电池120的温度已满足要求,则VCU可以控制电池加热装置110停止对动力电池120加热。此时,可以利用电机工作损耗产生的热量对动力电池120进行保温,例如利用电机工作损耗产生的热量加热动力电池120的冷却液,从而由冷却液对动力电池120保温。
以下,结合图2至图4,对本申请实施例的电池加热装置110加热动力电池120的方案进行描述。
图2是本申请实施例的电池加热装置110的示意性框图。如图2所示,电池加热装置110包括加热模块1110和控制模块1120。动力电池120包括第一电池121和第二电池122。电池加热装置110可以同时对第一电池121和第二电池122进行加热。
其中,加热模块1110包括第一桥臂1111、第二桥臂1112和储能元件1113。储能元件1113例如可以是电感L,或者是串联在一起的电感L和第一电容。
第一电池121的两端例如还可以并联有第二电容C1,第二电池122的两端例如还可以并联有第三电容C2。该第二电容C1和该第三电容C2可以实现稳压等功能,减小第一电池121和第二电池122的电压波动,提高第一电池121和第二电池122的电压稳定性。这样,在行车过程中,可以降低电机控制器对电池电压的采样精度要求。
控制模块1120用于:控制第一桥臂1111和第二桥臂1112,以形成第一电池121向储能元件1113放电的回路、以及储能元件1113和第一电池121向第二电池122充电的回路,以在放电和充电的过程中对第一电池121和第二电池122进行加热;和/或,控制第一桥臂1111和第二桥臂1112,以形成第二电池122向储能元件1113放电的回路、以及储能元件1113和第二电池122向第一电池121充电的回路,以在放电和充电的过程中对第一电池121和第二电池122进行加热。
控制模块1120可以是VCU,也可以是与VCU相对独立的控制模块,例如是针对电池加热装置110专门设置的控制模块,本申请实施例对此不做限定。
可见,电池加热装置110对第一电池121和第二电池122进行加热时,需要控制模块1120对加热模块1110中的第一桥臂1111和第二桥臂1112进行控制,通过控制第一桥臂1111和第二桥臂1112的导通或断开,形成第一电池121和第二电池122中的一个电池向储能元件放电的回路、以及该电池和储能元件向其中另一个电池充电的回路。放电回路和充电回路来回切换,由于放电和充电过程中两个电池内部都存在电流的流动,因此会使电池的温度升高,实现对两个电池的同时加热,且具有较高的加热效率。
在一种实现方式中,第一桥臂1111的第一端E11与第一电池121的第一端相连,第二桥臂1112的第一端E21与第二电池122的第一端相连,第一桥臂1111的第二端E12、第二桥臂1112的第二端E22、第一电池121的第二端和第二电池122的第二端相连。其中,第一桥臂1111包括第一子桥臂1101和第二子桥臂1102,第二桥臂1112包括第三子桥臂1103和第四子桥臂1104。
其中,第一电池121的第一端为第一电池121的正极,第一电池121的第二端为第一电池121的负极。第二电池122的第一端为第二电池122的正极,第二电池122的第二端为第二电池122的负极。
或者,第一电池121的第一端为第一电池121的负极,第一电池121的第二端为第一电池121的正极。第二电池122的第一端为第二电池122的负极,第二电池122的第二端为第二电池122的正极。
进一步地,第一电池121的第一端E11和第二电池122的第一端E21之间连接有状态切换开关,或者,第一电池121的第二端E12和第二电池122的第二端E22之间连接有状态切换开关。例如图3至图6中所示的开关管V15。控制模块1120还用于控制该状态切换开关断开,以使第一电池121和二电池122之间串行连接。
由于第一电池121和二电池122之间的连接关系可以通过状态切换开关进行切换。当需要加热第一电池和第二电池时,可以控制状态切换开关断开,以使第一电池121和第二电池122之间串行连接。而在其他情况,例如第一电池121和第二电池122向动力系统等供电时,可以控制状态切换开关闭合,以使第一电池和第二电池之间并联。
此处所述的串行连接,可以是指,第一电池121的正极和第二电池122的正极相连,第一电池121的负极和第二电池122的负极相连。这样,就实现了电流在第一电池121和第二电池122之间的相互流动,实现了第一电池121和第二电池122之间的能量交换。
本申请的储能元件1113可以连接在第一桥臂1111和第二桥臂1112之间。例如,如图3和图4所示,储能元件1113的一端连接在第一子桥臂1101和第二子桥臂1102之间,储能元件1113的另一端连接在第三子桥臂1103和第四子桥臂1104之间。
又例如,如图5所示,储能元件1113的一端连接在第一桥臂1111的第二端E12,储能元件1113的另一端连接在第二桥臂1112的第二端E22之间。
又例如,如图6所示,储能元件1113的一端连接在第一桥臂1111的第一端E11,储能元件1113的另一端连接在第二桥臂1112的第一端E21之间。
在一种实现方式中,对于图3至图5所示的加热模块1110,在对串行连接第一电池121和第二电池122进行加热时,控制模块1120可以控制第一子桥臂1101和第四子桥臂1104同时导通,形成包括第一电池121、第一子桥臂1101、储能元件1113和第四子桥臂1104的回路,用于第一电池121向储能元件1113放电;以及,控制第一子桥臂1101和第三子桥臂1103同时导通,形成包括第一电池121、第一子桥臂1101、储能元件L、第三子桥臂1103和第二电池122的回路,用于第一电池121和储能元件1113向第二电池122充电。
或者,对于图3至图5所示的加热模块1110,在对串行连接第一电池121和第二电池122进行加热时,控制模块1120也可以控制第二子桥臂1102和第三子桥臂1103同时导通,形成包括第二电池122、第三子桥臂1103、储能元件1113和第二子桥臂1102的回路,用于第二电池122向储能元件1113放电;以及,控制第一子桥臂1101和第三子桥臂1103同时导通,形成包括第二电池122、第三子桥臂1103、储能元件1113、第一子桥臂1101和第一电池121的回路,用于第二电池122和储能元件1113向第一电池121充电。
以下,结合图3至图5,并以第一电池121的第一端为第一电池121的正极,第一电池121的第二端为第一电池121的负极,第二电池122的第一端为第二电池122的正极,第二电池122的第二端为第二电池122的负极,且储能元件1113为电感L为例,对电池加热的过程进行详细描述。
在一种实现方式中,如图3至图5所示的加热模块1110,第一子桥臂1101包括第一开关管V11,第二子桥臂1102包括第二开关管V12,第三子桥臂1103包括第三开关管V13,第四子桥臂1104包括第四开关管V14。其中,控制电路1120通过控制第一开关管V11、第二开关管V12、第三开关管V13和第四开关管V14,分别实现第一子桥臂1101、第二子桥臂1102、第三子桥臂1103和第四子桥臂1104的导通。
具体来说,在一种实现方式中,对于图3至图5所示的加热模块1110,每个加热周期可以包括第一阶段和第二阶段。其中,在第一阶段,第一开关管V11和第四开关管V14闭合,第二开关管V12和第三开关管V13断开,形成包括第一电池121、第一开关管V11、电感L和第四开关管V14的回路,该回路用于第一电池121放电和电感L储能,第一电池121向电感L的放电路径为:第一电池121的正极→V11→L→V14→第一电池121的负极;在第二阶段,第一开关管V11和第三开关管V13闭合,第二开关管V12和第四开关管V14断开,形成包括第一电池121、第一开关管V11、电感L、第三开关管V13和第二电池122的回路,该回路用于第一电池121和电感L向第二电池122充电,充电路径为:第一电池121的正极→V11→L→V13→第二电池122的正极→第二电池122的负极→第一电池121的负极。并且,为了保持该状态不变,可以通过控制第三开关管V13和第四开关管V14的反复切换,来控制向第二电池122充电的时间。
进一步地,每个加热周期除了包括第一阶段和第二阶段,还可以包括第三阶段和第四阶段。其中,在第三阶段,第二开关管V12和第三开关管V13闭合,第一开关管V11和第四开关管V14断开,形成包括第二电池122、第三开关管V13、电感L 和第二开关管V12的回路,该回路用于第二电池122放电和电感L储能,第二电池122向电感L的放电路径为:第二电池122的正极→V13→L→V12→第二电池122的负极;在第四阶段,第一开关管V11和第三开关管V13闭合,第二开关管V12和第四开关管V14断开,形成包括第二电池122、第三开关管V13、电感L、第一开关管V11和第一电池121的回路,该回路用于第二电池122和电感L向第一电池121充电,充电路径为:第二电池122的正极→V13→L→V11→第一电池121的正极→第一电池121的负极→第二电池122的负极。并且,为了保持该状态不变,可以通过控制第一开关管V11和第二开关管V12的反复切换,来控制向第一电池121充电的时间。
类似地,在另一种实现方式中,对于图3、图4和图6所示的加热模块1110,在对串行连接第一电池121和第二电池122进行加热时,在第一阶段,控制模块1120可以控制第二子桥臂1102和第三子桥臂1103同时导通,形成包括第一电池121、第二子桥臂1102、储能元件1113和第三子桥臂1103的回路,用于第一电池121向储能元件1113放电;在第二阶段,控制第二子桥臂1102和第四子桥臂1104同时导通,形成包括第一电池121、第二子桥臂1102、储能元件L、第四子桥臂1104和第二电池122的回路,用于第一电池121和储能元件1113向第二电池122充电;在第三阶段,控制模块1120也可以控制第一子桥臂1101和第四子桥臂1104同时导通,形成包括第二电池122、第四子桥臂1104、储能元件1113和第一子桥臂1101的回路,用于第二电池122向储能元件1113放电;在第四阶段,控制第二子桥臂1102和第四子桥臂1104同时导通,形成包括第二电池122、第四子桥臂1104、储能元件1113、第二子桥臂1102和第一电池121的回路,用于第二电池122和储能元件1113向第一电池121充电。其中,控制模块1120可以通过控制各个子桥臂上的开关管,来实现各个子桥臂的导通和断开。
可见,针对加热模块1110的具体电路结构,通过设计合理的控制时序,控制图3至图6所示的加热模块1110中各个子桥臂的导通和断开,形成其中一个电池向储能元件1113放电的回路,以及储能元件1113和该电池向另一个电池充电的回路,放电回路和充电回路来回切换,从而在放电和充电的过程中对两个电池同时进行加热,具有较高的加热效率。
应理解,图3所示的加热模块1110仅为示意,各个子桥臂也可以具有其他实现方式。例如,如图4所示的一种更优选的实现方式,第一子桥臂1101可以包括第一开关管V11、以及与第一开关管V11并联的第一续流二极管D11;第二子桥臂1102可以包括第二开关管V12、以及与第二开关管V12并联的第二续流二极管D12;第三子桥臂1103可以包括第三开关管V13、以及与第三开关管V13并联的第三续流二极管D13;第四子桥臂1104可以包括第四开关管V14、以及与第四开关管V14并联的第四续流二极管D14。
续流二极管通常用于配合电感使用。当电感的电流突然变化时,电感两端的电压会发生突变,有可能损坏电路回路中的其他元件。而当配合续流二极管时,电感的电流可以较平缓地变化,避免电压发生突变,提高电路的安全性。
举例来说,如图4所示,从一个加热周期的第一阶段进入第二阶段时,即第 三开关管V13和第四开关管V14进行换时,由于存在切换延迟,电流可能在第一阶段中第一电池121向电感L的放电路径中短暂存留,这时,第四续流二极管D14就可以对该电流进行缓冲,避免电压发生突变,提高电路的安全性。
应理解,在一些情况下,第一开关管V11和与其并联的第一续流二极管、第二开关管V12和与其并联的第二续流二极管D12、第三开关管V13和与其并联的第三续流二极管、第四开关管V14和与其并联的第四续流二极管D14,均可以称为绝缘栅门极晶体管(Insulated Gate Bipolar Translator,IGBT)。
类似地,对于图5和图6所示的加热模块1110,每个子桥臂也可以包括开关管以及与该开关管并联的续流二极管,本申请不再示出。
本申请实施例对各个子桥臂的具体形式不做限定,在各个子桥臂不包括续流二极管的情况下,仍可以实现电池加热模块1110的功能。
本申请实施例中所述的“连接”或者“相连”,可以是直接连接,或者是通过其他元件间接连接,本申请对此不做限定。
本申请实施例还提供一种电池加热装置的控制方法。这里,电池加热装置的结构可以参考上述针对图1至图6的具体描述,这里不再赘述。如图7所示,电池加热装置的控制方法700包括以下步骤中的部分或全部。
在步骤710中,控制所述第一桥臂和所述第二桥臂,形成所述第一电池向所述储能元件放电的回路、以及所述储能元件和所述第一电池向所述第二电池充电的回路,以对所述第一电池和所述第二电池进行加热。和/或,
在步骤720中,控制所述第一桥臂和所述第二桥臂,形成所述第二电池向所述储能元件放电的回路、以及所述储能元件和所述第二电池向所述第一电池充电的回路,以对所述第一电池和所述第二电池进行加热。
基于上述技术方案,可以同时对两个电池进行加热,在放电和充电的过程中两个电池为串联,通过设计合理的控制时序,控制电池加热装置中的两个桥臂,形成其中一个电池向储能元件放电的回路,以及储能元件和该电池向另一个电池充电的回路,从而在放电和充电的过程中对两个电池同时进行加热,具有较高的加热效率。
在一种实现方式中,所述第一桥臂的第一端与所述第一电池的第一端相连,所述第二桥臂的第一端与所述第二电池的第一端相连,所述第一桥臂的第二端、所述第二桥臂的第二端、所述第一电池的第二端和所述第二电池的第二端相连,其中,所述第一桥臂包括第一子桥臂和第二子桥臂,所述第二桥臂包括第三子桥臂和第四子桥臂;所述第一电池的第一端和所述第二电池的第一端为正极,所述第一电池的第二端和所述第二电池的第二端为负极;或者,所述第一电池的第一端和所述第二电池的第一端为负极,所述第一电池的第二端和所述第二电池的第二端为正极。
在一种可能的实现方式中,所述储能元件的第一端连接在所述第一子桥臂和所述第二子桥臂之间,所述储能元件的第二端连接在所述第三子桥臂和所述第四子桥臂之间;或者,所述储能元件的第一端连接在所述第一桥臂的第二端,所述储能元件的第二端连接在所述第二桥臂的第二端。
在一种可能的实现方式中,在步骤710中,所述控制所述第一桥臂和所述第 二桥臂,包括:接收加热请求消息;根据所述加热请求消息,生成第一控制信号,其中,所述第一控制信号用于:控制所述第一子桥臂和所述第四子桥臂同时导通,形成包括所述第一电池、所述第一子桥臂、所述储能元件和所述第四子桥臂的回路,用于所述第一电池向所述储能元件放电;以及,控制所述第一子桥臂和所述第三子桥臂同时导通,形成包括所述第一电池、所述第一子桥臂、所述储能元件、所述第三子桥臂和所述第二电池的回路,用于所述第一电池和所述储能元件向所述第二电池充电。
在一种可能的实现方式中,在步骤720中,所述控制所述第一桥臂和所述第二桥臂,包括:接收加热请求消息;根据所述加热请求消息,生成第一控制信号,其中,所述第一控制信号用于:控制所述第二子桥臂和所述第三子桥臂同时导通,形成包括所述第二电池、所述第三子桥臂、所述储能元件和所述第二子桥臂的回路,用于所述第二电池向所述储能元件放电;以及,控制所述第一子桥臂和所述第三子桥臂同时导通,形成包括所述第二电池、所述第三子桥臂、所述储能元件、所述第一子桥臂和所述第一电池的回路,用于所述第二电池和所述储能元件向所述第一电池充电。
在一种可能的实现方式中,所述储能元件的第一端连接在所述第一子桥臂和所述第二子桥臂之间,所述储能元件的第二端连接在所述第三子桥臂和所述第四子桥臂之间;或者,所述储能元件的第一端连接在所述第一桥臂的第一端,所述储能元件的第二端连接在所述第二桥臂的第一端。
在一种可能的实现方式中,在步骤710中,所述控制所述第一桥臂和所述第二桥臂,包括:接收加热请求消息;根据所述加热请求消息,生成第三控制信号,其中,所述第三控制信号用于:控制所述第二子桥臂和所述第三子桥臂同时导通,形成包括所述第一电池、所述第二子桥臂、所述储能元件和所述第三子桥臂的回路,用于所述第一电池向所述储能元件放电;以及,控制所述第二子桥臂和所述第四子桥臂同时导通,形成包括所述第一电池、所述第二子桥臂、所述储能元件、所述第四子桥臂和所述第二电池的回路,用于所述第一电池和所述储能元件向所述第二电池充电。
在一种可能的实现方式中,在步骤720中,所述控制所述第一桥臂和所述第二桥臂,包括:接收加热请求消息;根据所述加热请求消息,生成第三控制信号,其中,所述第三控制信号用于:控制所述第一子桥臂和所述第四子桥臂同时导通,形成包括所述第二电池、所述第四子桥臂、所述储能元件和所述第一子桥臂的回路,用于所述第二电池向所述储能元件放电;以及,控制所述第二子桥臂和所述第四子桥臂同时导通,形成包括所述第二电池、所述第四子桥臂、所述储能元件、所述第二子桥臂和所述第一电池的回路,用于所述第二电池和所述储能元件向所述第一电池充电。
在一种可能的实现方式中,所述控制方法还包括:接收加热停止消息;根据所述加热停止消息,生成第二控制信号,其中,所述第二控制信号用于控制所述电池加热装置停止对所述动力电池加热。
在一种实现方式中,所述第一子桥臂包括第一开关管,所述第二子桥臂包括第二开关管,所述第三子桥臂包括第三开关管,所述第四子桥臂包括第四开关管。其中,通过控制所述第一开关管、所述第二开关管、所述第三开关管和所述第四开关管,分别实现所述第一子桥臂、所述第二子桥臂、所述第三子桥臂和所述第四子桥臂 的导通和断开。
在一种实现方式中,所述第一电池的第一端和所述第二电池的第一端之间连接有状态切换开关,或者,所述第一电池的第二端和所述第二电池的第二端之间连接有状态切换开关,所述控制方法还用于:控制所述状态切换开关断开,以使所述第一电池和所述第二电池之间串行连接。
在一种实现方式中,所述储能元件包括电感;或者,所述储能元件包括串联的电感和第一电容。
在一种实现方式中,所述第一电池的两端并联有第二电容,所述第二电池的两端并联有第三电容。
在一种实现方式中,所述第一电池和所述第二电池还与电机的驱动电路相连,用于向所述驱动电路提供电源。
应理解,方法实施例中对各个桥臂的具体控制以及产生的有益效果,可以参考上述装置实施例中的相应描述,为了简洁,这里不再赘述。
图8示出了本申请实施例的电池加热装置的控制电路800的示意性框图。如图8所示,控制电路800包括处理器820,可选地,该控制电路800还包括存储器810,其中,存储器810用于存储指令,处理器820用于读取该指令并基于该指令执行上述本申请各个实施例中的方法。
处理器820例如可以对应于上述任一电池加热装置的控制模块。
图9示出了本申请实施例的动力装置900的示意性框图。动力装置900包括:动力电池120;上述任一实施例中的电池加热装置110,电池加热装置110与动力电池120相连,用于为动力电池120加热;以及电机130,电机130的驱动电路131与动力电池120相连,动力电池120用于向驱动电路131提供电源。
动力装置900例如可以是动力汽车。
本申请实施例还提供了一种可读存储介质,用于存储计算机程序,该计算机程序用于执行上述本申请各个实施例中的方法。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考上述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以 是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。

Claims (23)

  1. 一种电池加热装置,其特征在于,与动力电池相连,用于对所述动力电池进行加热,所述动力电池包括第一电池和第二电池,所述电池加热装置包括:
    加热模块,包括第一桥臂、第二桥臂和储能元件;以及,
    控制模块,用于控制所述第一桥臂和所述第二桥臂,形成所述第一电池向所述储能元件放电的回路、以及所述储能元件和所述第一电池向所述第二电池充电的回路,和/或,形成所述第二电池向所述储能元件放电的回路、以及所述储能元件和所述第二电池向所述第一电池充电的回路,以对所述第一电池和所述第二电池进行加热。
  2. 根据权利要求1所述的电池加热装置,其特征在于,
    所述第一桥臂的第一端与所述第一电池的第一端相连,所述第二桥臂的第一端与所述第二电池的第一端相连,所述第一桥臂的第二端、所述第二桥臂的第二端、所述第一电池的第二端和所述第二电池的第二端相连,其中,所述第一桥臂包括第一子桥臂和第二子桥臂,所述第二桥臂包括第三子桥臂和第四子桥臂;
    所述第一电池的第一端为所述第一电池的正极,所述第一电池的第二端为所述第一电池的负极,所述第二电池的第一端为所述第二电池的正极,所述第二电池的第二端为所述第二电池的负极;或者,所述第一电池的第一端为所述第一电池的负极,所述第一电池的第二端为所述第一电池的正极,所述第二电池的第一端为所述第二电池的负极,所述第二电池的第二端为所述第二电池的正极。
  3. 根据权利要求2所述的电池加热装置,其特征在于,
    所述储能元件的第一端连接在所述第一子桥臂和所述第二子桥臂之间,所述储能元件的第二端连接在所述第三子桥臂和所述第四子桥臂之间;或者,
    所述储能元件的第一端连接在所述第一桥臂的第二端,所述储能元件的第二端连接在所述第二桥臂的第二端。
  4. 根据权利要求3所述的电池加热装置,其特征在于,所述控制模块具体用于:
    控制所述第一子桥臂和所述第四子桥臂同时导通,形成包括所述第一电池、所述第一子桥臂、所述储能元件和所述第四子桥臂的回路,用于所述第一电池向所述储能元件放电;
    控制所述第一子桥臂和所述第三子桥臂同时导通,形成包括所述第一电池、所述 第一子桥臂、所述储能元件、所述第三子桥臂和所述第二电池的回路,用于所述第一电池和所述储能元件向所述第二电池充电;
    和/或,
    控制所述第二子桥臂和所述第三子桥臂同时导通,形成包括所述第二电池、所述第三子桥臂、所述储能元件和所述第二子桥臂的回路,用于所述第二电池向所述储能元件放电;
    控制所述第一子桥臂和所述第三子桥臂同时导通,形成包括所述第二电池、所述第三子桥臂、所述储能元件、所述第一子桥臂和所述第一电池的回路,用于所述第二电池和所述储能元件向所述第一电池充电。
  5. 根据权利要求2所述的电池加热装置,其特征在于,
    所述储能元件的第一端连接在所述第一子桥臂和所述第二子桥臂之间,所述储能元件的第二端连接在所述第三子桥臂和所述第四子桥臂之间;或者,
    所述储能元件的第一端连接在所述第一桥臂的第一端,所述储能元件的第二端连接在所述第二桥臂的第一端。
  6. 根据权利要求5所述的电池加热装置,其特征在于,所述控制模块具体用于:
    控制所述第二子桥臂和所述第三子桥臂同时导通,形成包括所述第一电池、所述第二子桥臂、所述储能元件和所述第三子桥臂的回路,用于所述第一电池向所述储能元件放电;
    控制所述第二子桥臂和所述第四子桥臂同时导通,形成包括所述第一电池、所述第二子桥臂、所述储能元件、所述第四子桥臂和所述第二电池的回路,用于所述第一电池和所述储能元件向所述第二电池充电;
    和/或,
    控制所述第一子桥臂和所述第四子桥臂同时导通,形成包括所述第二电池、所述第四子桥臂、所述储能元件和所述第一子桥臂的回路,用于所述第二电池向所述储能元件放电;
    控制所述第二子桥臂和所述第四子桥臂同时导通,形成包括所述第二电池、所述第四子桥臂、所述储能元件、所述第二子桥臂和所述第一电池的回路,用于所述第二电池和所述储能元件向所述第一电池充电。
  7. 根据权利要求2至6中任一项所述的电池加热装置,其特征在于,
    所述第一子桥臂包括第一开关管,所述第二子桥臂包括第二开关管,所述第三子桥臂包括第三开关管,所述第四子桥臂包括第四开关管,
    其中,所述控制电路通过控制所述第一开关管、所述第二开关管、所述第三开关管和所述第四开关管,分别实现所述第一子桥臂、所述第二子桥臂、所述第三子桥臂和所述第四子桥臂的导通和断开。
  8. 根据权利要求1至7中任一项所述的电池加热装置,其特征在于,所述第一电池的第一端和所述第二电池的第一端之间连接有状态切换开关,或者,所述第一电池的第二端和所述第二电池的第二端之间连接有状态切换开关,所述控制模块还用于:
    控制所述状态切换开关断开,以使所述第一电池和所述第二电池之间串行连接。
  9. 根据权利要求1至8中任一项所述的电池加热装置,其特征在于,
    所述储能元件包括电感;或者,
    所述储能元件包括串联的电感和第一电容。
  10. 根据权利要求1至9中任一项所述的电池加热装置,其特征在于,所述第一电池的两端并联有第二电容,所述第二电池的两端并联有第三电容。
  11. 一种电池加热装置的控制方法,其特征在于,所述电池加热装置与动力电池相连,用于对所述动力电池进行加热,所述电池加热装置包括第一桥臂、第二桥臂和储能元件,所述动力电池包括第一电池和第二电池,所述控制方法包括:
    控制所述第一桥臂和所述第二桥臂,形成所述第一电池向所述储能元件放电的回路、以及所述储能元件和所述第一电池向所述第二电池充电的回路,和/或,形成所述第二电池向所述储能元件放电的回路、以及所述储能元件和所述第二电池向所述第一电池充电的回路,以对所述第一电池和所述第二电池进行加热。
  12. 根据权利要求11所述的控制方法,其特征在于,
    所述第一桥臂的第一端与所述第一电池的第一端相连,所述第二桥臂的第一端与所述第二电池的第一端相连,所述第一桥臂的第二端、所述第二桥臂的第二端、所述第一电池的第二端和所述第二电池的第二端相连,其中,所述第一桥臂包括第一子桥臂和第二子桥臂,所述第二桥臂包括第三子桥臂和第四子桥臂;
    所述第一电池的第一端和所述第二电池的第一端为正极,所述第一电池的第二端和所述第二电池的第二端为负极;或者,所述第一电池的第一端和所述第二电池的第一端为负极,所述第一电池的第二端和所述第二电池的第二端为正极。
  13. 根据权利要求12所述的控制方法,其特征在于,
    所述储能元件的第一端连接在所述第一子桥臂和所述第二子桥臂之间,所述储能元件的第二端连接在所述第三子桥臂和所述第四子桥臂之间;或者,
    所述储能元件的第一端连接在所述第一桥臂的第二端,所述储能元件的第二端连接在所述第二桥臂的第二端。
  14. 根据权利要求13所述的控制方法,其特征在于,所述控制所述第一桥臂和所述第二桥臂,包括:
    接收加热请求消息;
    根据所述加热请求消息,生成第一控制信号,其中,所述第一控制信号用于:
    控制所述第一子桥臂和所述第四子桥臂同时导通,形成包括所述第一电池、所述第一子桥臂、所述储能元件和所述第四子桥臂的回路,用于所述第一电池向所述储能元件放电;
    控制所述第一子桥臂和所述第三子桥臂同时导通,形成包括所述第一电池、所述第一子桥臂、所述储能元件、所述第三子桥臂和所述第二电池的回路,用于所述第一电池和所述储能元件向所述第二电池充电;
    和/或,
    控制所述第二子桥臂和所述第三子桥臂同时导通,形成包括所述第二电池、所述第三子桥臂、所述储能元件和所述第二子桥臂的回路,用于所述第二电池向所述储能元件放电;
    控制所述第一子桥臂和所述第三子桥臂同时导通,形成包括所述第二电池、所述第三子桥臂、所述储能元件、所述第一子桥臂和所述第一电池的回路,用于所述第二电池和所述储能元件向所述第一电池充电。
  15. 根据权利要求12所述的控制方法,其特征在于,
    所述储能元件的第一端连接在所述第一子桥臂和所述第二子桥臂之间,所述储能元件的第二端连接在所述第三子桥臂和所述第四子桥臂之间;或者,
    所述储能元件的第一端连接在所述第一桥臂的第一端,所述储能元件的第二端连接在所述第二桥臂的第一端。
  16. 根据权利要求15所述的控制方法,其特征在于,所述控制所述第一桥臂和所述第二桥臂,包括:
    接收加热请求消息;
    根据所述加热请求消息,生成第三控制信号,其中,所述第三控制信号用于:
    控制所述第二子桥臂和所述第三子桥臂同时导通,形成包括所述第一电池、所述第二子桥臂、所述储能元件和所述第三子桥臂的回路,用于所述第一电池向所述储能元件放电;
    控制所述第二子桥臂和所述第四子桥臂同时导通,形成包括所述第一电池、所述第二子桥臂、所述储能元件、所述第四子桥臂和所述第二电池的回路,用于所述第一电池和所述储能元件向所述第二电池充电;
    和/或,
    控制所述第一子桥臂和所述第四子桥臂同时导通,形成包括所述第二电池、所述第四子桥臂、所述储能元件和所述第一子桥臂的回路,用于所述第二电池向所述储能元件放电;
    控制所述第二子桥臂和所述第四子桥臂同时导通,形成包括所述第二电池、所述第四子桥臂、所述储能元件、所述第二子桥臂和所述第一电池的回路,用于所述第二电池和所述储能元件向所述第一电池充电。
  17. 根据权利要求14或16所述的控制方法,其特征在于,所述控制方法还包括:
    接收加热停止消息;
    根据所述加热停止消息,生成第二控制信号,其中,所述第二控制信号用于控制所述电池加热装置停止对所述动力电池加热。
  18. 根据权利要求12至17中任一项所述的控制方法,其特征在于,
    所述第一子桥臂包括第一开关管,所述第二子桥臂包括第二开关管,所述第三子桥臂包括第三开关管,所述第四子桥臂包括第四开关管,
    其中,通过控制所述第一开关管、所述第二开关管、所述第三开关管和所述第四开关管,分别实现所述第一子桥臂、所述第二子桥臂、所述第三子桥臂和所述第四子桥臂的导通和断开。
  19. 根据权利要求11至18中任一项所述的控制方法,其特征在于,所述第一电池的第一端和所述第二电池的第一端之间连接有状态切换开关,或者,所述第一电池的第二端和所述第二电池的第二端之间连接有状态切换开关,所述控制方法还用于:
    控制所述状态切换开关断开,以使所述第一电池和所述第二电池之间串行连接。
  20. 根据权利要求11至19中任一项所述的控制方法,其特征在于,
    所述储能元件包括电感;或者,
    所述储能元件包括串联的电感和第一电容。
  21. 根据权利要求11至20中任一项所述的控制方法,其特征在于,所述第一电池的两端并联有第二电容,所述第二电池的两端并联有第三电容。
  22. 根据权利要求11至21所述的控制方法,其特征在于,所述第一电池和所述第二电池还与电机的驱动电路相连,用于向所述驱动电路提供电源。
  23. 一种动力装置,其特征在于,包括:
    动力电池,所述动力电池包括第一电池和第二电池;
    根据权利要求1至10中任一项所述的电池加热装置,与所述动力电池相连,用于对所述动力电池进行加热;以及,
    电机,所述电机的驱动电路与所述动力电池相连,所述动力电池用于向所述驱动电路提供电源。
PCT/CN2021/116736 2021-08-05 2021-09-06 电池加热装置及其控制方法、控制电路和动力装置 WO2023029048A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
CN202180032903.6A CN115668586A (zh) 2021-09-06 2021-09-06 电池加热装置及其控制方法、控制电路和动力装置
PCT/CN2021/116736 WO2023029048A1 (zh) 2021-09-06 2021-09-06 电池加热装置及其控制方法、控制电路和动力装置
EP21955579.4A EP4228057A4 (en) 2021-09-06 2021-09-06 BATTERY HEATING DEVICE AND CONTROL METHOD, CONTROL CIRCUIT AND POWER SUPPLY DEVICE THEREFOR
JP2023537696A JP2024500452A (ja) 2021-09-06 2021-09-06 電池加熱装置及びその制御方法、制御回路と動力装置
KR1020237020324A KR20230109695A (ko) 2021-09-06 2021-09-06 배터리 가열 장치 및 그 제어 방법, 제어 회로 및 파워 장치
EP22851620.9A EP4369474A1 (en) 2021-08-05 2022-04-22 Charging and discharging circuit, system and control method therefor
PCT/CN2022/088567 WO2023010898A1 (zh) 2021-08-05 2022-04-22 充放电电路、系统及其控制方法
KR1020247004327A KR20240031382A (ko) 2021-08-05 2022-04-22 충방전회로, 시스템 및 그 제어 방법
CN202280004725.0A CN115917836B (zh) 2021-08-05 2022-04-22 充放电电路、系统及其控制方法
US18/459,392 US20230411734A1 (en) 2021-09-06 2023-08-31 Battery heating device and control method and circuit therefor, and power device
US18/431,824 US20240178690A1 (en) 2021-08-05 2024-02-02 Charge/discharge circuit, system, and control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116736 WO2023029048A1 (zh) 2021-09-06 2021-09-06 电池加热装置及其控制方法、控制电路和动力装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/459,392 Continuation US20230411734A1 (en) 2021-09-06 2023-08-31 Battery heating device and control method and circuit therefor, and power device

Publications (1)

Publication Number Publication Date
WO2023029048A1 true WO2023029048A1 (zh) 2023-03-09

Family

ID=85015102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116736 WO2023029048A1 (zh) 2021-08-05 2021-09-06 电池加热装置及其控制方法、控制电路和动力装置

Country Status (6)

Country Link
US (1) US20230411734A1 (zh)
EP (1) EP4228057A4 (zh)
JP (1) JP2024500452A (zh)
KR (1) KR20230109695A (zh)
CN (1) CN115668586A (zh)
WO (1) WO2023029048A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144861A1 (en) * 2009-12-14 2011-06-16 Control Solutions LLC Electronic circuit for charging and heating a battery
JP2016170000A (ja) * 2015-03-12 2016-09-23 日立マクセル株式会社 電池試験装置及びその動作方法
CN109962660A (zh) * 2019-03-28 2019-07-02 清华大学 驱动电路、电动汽车驱动系统及驱动方法
CN110116653A (zh) * 2019-04-19 2019-08-13 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
CN212587580U (zh) * 2020-05-29 2021-02-23 比亚迪股份有限公司 电池能量处理装置和车辆
CN113506934A (zh) * 2021-06-24 2021-10-15 武汉理工大学 一种锂电池加热系统及加热方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144861A1 (en) * 2009-12-14 2011-06-16 Control Solutions LLC Electronic circuit for charging and heating a battery
JP2016170000A (ja) * 2015-03-12 2016-09-23 日立マクセル株式会社 電池試験装置及びその動作方法
CN109962660A (zh) * 2019-03-28 2019-07-02 清华大学 驱动电路、电动汽车驱动系统及驱动方法
CN110116653A (zh) * 2019-04-19 2019-08-13 清华大学 电动汽车驱动系统、驱动电路及电动汽车电池加热方法
CN212587580U (zh) * 2020-05-29 2021-02-23 比亚迪股份有限公司 电池能量处理装置和车辆
CN113506934A (zh) * 2021-06-24 2021-10-15 武汉理工大学 一种锂电池加热系统及加热方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4228057A4 *

Also Published As

Publication number Publication date
US20230411734A1 (en) 2023-12-21
JP2024500452A (ja) 2024-01-09
EP4228057A1 (en) 2023-08-16
EP4228057A4 (en) 2024-02-21
CN115668586A (zh) 2023-01-31
KR20230109695A (ko) 2023-07-20

Similar Documents

Publication Publication Date Title
WO2023092999A1 (zh) 电池加热系统、电池包和用电装置
JP7418556B2 (ja) 充電方法、駆動用バッテリーのバッテリー管理システム及び充電ポスト
US20220239140A1 (en) Charging method and power conversion apparatus
US20240154440A1 (en) Charge-and-discharge circuit, charge-and-discharge system and charge-and-discharge control method
US20240010103A1 (en) Battery heating method, charging device, and battery management system
US20240178473A1 (en) Battery heating apparatus and control method thereof, control circuit and power plant
US20230036620A1 (en) Charging-and-discharging apparatus, method for charging a battery and charging-and-discharging system
WO2023070553A1 (zh) 动力电池的加热方法和加热系统
WO2023029048A1 (zh) 电池加热装置及其控制方法、控制电路和动力装置
US12051934B2 (en) Method for charging battery, charging and discharging device
US20230029492A1 (en) Charging and discharging apparatus and battery charging method
WO2023029047A1 (zh) 电池加热装置及其控制方法、控制电路和动力装置
WO2023221055A1 (zh) 电池的放电方法和放电装置
WO2023004673A1 (zh) 电池充电的方法、电池管理系统和充放电装置
WO2023123770A1 (zh) 电池充电方法和车辆电气系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955579

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021955579

Country of ref document: EP

Effective date: 20230510

ENP Entry into the national phase

Ref document number: 20237020324

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023537696

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE