WO2023004709A1 - 电池充电的方法和充放电装置 - Google Patents

电池充电的方法和充放电装置 Download PDF

Info

Publication number
WO2023004709A1
WO2023004709A1 PCT/CN2021/109367 CN2021109367W WO2023004709A1 WO 2023004709 A1 WO2023004709 A1 WO 2023004709A1 CN 2021109367 W CN2021109367 W CN 2021109367W WO 2023004709 A1 WO2023004709 A1 WO 2023004709A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery
current
converter
discharge
Prior art date
Application number
PCT/CN2021/109367
Other languages
English (en)
French (fr)
Inventor
颜昱
左希阳
但志敏
李海力
黄珊
李世超
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21819322.5A priority Critical patent/EP4152552A1/en
Priority to CN202180070058.1A priority patent/CN116325420A/zh
Priority to JP2021575015A priority patent/JP7450645B2/ja
Priority to PCT/CN2021/109367 priority patent/WO2023004709A1/zh
Priority to KR1020217040290A priority patent/KR20230019379A/ko
Priority to US17/563,513 priority patent/US20230031352A1/en
Publication of WO2023004709A1 publication Critical patent/WO2023004709A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/24Using the vehicle's propulsion converter for charging
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/50Charging stations characterised by energy-storage or power-generation means
    • B60L53/53Batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/13Maintaining the SoC within a determined range
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/14Preventing excessive discharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • B60L58/15Preventing overcharging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/00712Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters
    • H02J7/00714Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current
    • H02J7/00716Regulation of charging or discharging current or voltage the cycle being controlled or terminated in response to electric parameters in response to battery charging or discharging current in response to integrated charge or discharge current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • H02J7/007188Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • H02J7/04Regulation of charging current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/342The other DC source being a battery actively interacting with the first one, i.e. battery to battery charging
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/20Charging or discharging characterised by the power electronics converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles

Definitions

  • the present application relates to the field of batteries, in particular to a battery charging method and a charging and discharging device.
  • Embodiments of the present application provide a battery charging method and a charging and discharging device, which can ensure the safety performance of the battery.
  • a charging and discharging device including a first DC/DC DC/DC converter, a unidirectional AC/DC AC/DC converter and a control unit, the first DC/DC converter is a single To the DC/DC converter, the control unit is configured to: receive the first charging current sent by the battery management system BMS of the battery, and based on the first charging current, control the unidirectional AC/DC converter and the The first DC/DC converter is used to charge the battery through an AC power supply; receive the first discharge current sent by the BMS, and control the discharge of the battery based on the first discharge current, wherein the first discharge The current is the discharge current sent by the BMS when the first accumulated charging amount of the battery is greater than or equal to the first accumulated charging amount threshold and the voltage of the battery cells of the battery does not exceed the full charge voltage of the battery cells; receiving the second charging current sent by the BMS, and based on the second charging current, controlling the unidirectional AC/DC converter and the first DC/DC converter to charge the battery through the AC
  • the charging and discharging device can realize charging and discharging of the battery based on the first charging current and the first discharging current sent by the BMS, thereby avoiding the heating of the battery due to continuous charging, lithium Ion accumulation and other issues, and then avoid battery safety problems caused by heat generation, lithium ion accumulation and other issues, such as battery combustion or explosion, etc., to ensure the safety performance of the battery.
  • the charging and discharging device includes a unidirectional AC/DC converter and a unidirectional DC/DC converter, that is, the structure of the charging and discharging device in the embodiment of the present application is the same as that of the existing charging pile, so without changing the existing The charging and discharging of the battery can be realized on the basis of the charging pile structure, which greatly reduces the charging cost.
  • control unit is further configured to: receive a second discharge current sent by the BMS, and based on the second discharge current, control the battery to discharge power, wherein the second discharge The current is the discharge current sent by the BMS when the second accumulated charging amount of the battery is greater than or equal to the second accumulated charging amount threshold and the voltage of the battery cells of the battery does not exceed the full charge voltage.
  • the charging and discharging device can further discharge the battery after completing the charging, discharging and recharging of the battery through information interaction with the BMS.
  • the charging and discharging device of the embodiment of the present application can charge and discharge the battery multiple times, that is, the charging and discharging process is carried out sequentially, and the battery can be gradually charged on the basis of ensuring the performance of the battery.
  • control unit is further configured to: receive a charge stop command sent by the BMS; control the one-way AC/DC converter and the first DC/DC converter based on the charge stop command.
  • the DC converter enables the AC power supply to stop charging the battery, wherein the charging stop command is a command sent by the BMS when the voltage of a battery cell of the battery exceeds the full charge voltage.
  • the charge and discharge device further includes a second DC/DC converter; the control unit is specifically configured to: control the second DC/DC converter based on the first discharge current to The electricity of the battery is discharged into the energy storage unit.
  • the charging and discharging device adds a second DC/DC converter to the existing charging pile, and the modification to the existing charging pile is small, which is beneficial to reduce the cost.
  • the second DC/DC converter is a bidirectional DC/DC converter
  • the control unit is further configured to: control the unidirectional AC/DC conversion based on the first charging current and the first DC/DC converter to charge the battery through an AC power source, control the second DC/DC converter to charge the battery through the energy storage unit; and/or based on
  • the second charging current controls the unidirectional AC/DC converter and the first DC/DC converter to charge the battery through an AC power source
  • the second DC/DC converter is controlled to charge the battery through the The energy storage unit charges the battery.
  • the energy storage unit can not only receive the electricity released by the battery, but also charge the battery. On the one hand, it avoids that the electricity in the energy storage unit cannot continue to be released to the energy storage unit because the electricity in the energy storage unit reaches full capacity. The problem ensures the normal progress of the charging process.
  • the energy storage unit charges the battery by using the received electric quantity discharged from the battery, which realizes the recycling of the electric quantity of the battery and saves electric energy.
  • the AC power supply and the energy storage unit charge the battery at the same time, which is beneficial to increase the charging rate of the battery and save charging time.
  • the first charging power of the energy storage unit to charge the battery is determined according to the discharge capacity of the energy storage unit, and the second charging power of the AC power supply to the battery It is the difference between the charging demand power of the battery and the second charging power.
  • control unit is specifically configured to: obtain the battery state of charge value SOC of the energy storage unit; if the SOC is greater than a state of charge threshold, control the second DC/DC converter to charge the battery through the energy storage unit, and based on the first charging current, control the unidirectional AC/DC converter and the first DC/DC converter to charge the battery through the AC power supply charging the battery; and/or if the SOC is greater than a state-of-charge threshold, controlling the second DC/DC converter to charge the battery through the energy storage unit, and based on the second charging current, controlling The one-way AC/DC converter and the first DC/DC converter are used to charge the battery through the AC power supply.
  • the SOC of the energy storage unit it is determined whether to use the energy storage unit to assist the AC power supply to charge the battery together, so that the charging efficiency of the charging and discharging device can be improved when the energy stored in the energy storage unit is sufficient.
  • the charging rate of the first charging current and/or the second charging current ranges from 2C to 10C.
  • the range of the charging rate of the first charging current and/or the second charging current is between 2C and 10C, which realizes the purpose of fast charging with a large current, thereby improving the battery life.
  • the charging capacity of the battery during the first charging process greatly reduces the charging time of the battery and improves the user experience.
  • the charging current is also limited, so it is impossible to use a continuous high current to achieve fast charging of the battery.
  • the technical solution of the embodiment of the application uses a high current to The battery is charged, and the battery is discharged after a high-current charge to release the lithium ions accumulated on the negative electrode of the battery during the charging process, and then the battery can be charged again with a high current to achieve rapid charging of the battery.
  • the discharge rate of the first discharge current ranges from 0.1C to 1C.
  • the discharge rate of the first discharge current ranges from 0.1C to 1C to achieve low current discharge, aiming to release the lithium ions accumulated on the negative electrode of the battery through the discharge of the battery at a small current without causing damage to the battery. Excessive charge in the battery is lost.
  • the ratio of the first accumulated discharge threshold to the first accumulated charge threshold is less than or equal to 10%.
  • setting the ratio of the cumulative discharge threshold value during the discharge process and the cumulative charge threshold value during the charging process can better control the charge capacity of the battery during the charging process and the discharge capacity of the battery during the discharge process, so that the discharge capacity Smaller, it will not cause excessive loss of the charged power in the battery.
  • At least one of the first charging current, the first discharging current, and the second charging current is determined according to a state parameter of the battery; wherein, the battery
  • the state parameters include at least one of the following parameters: battery temperature, battery voltage, battery current, battery state of charge, and battery state of health.
  • the first charging current, the second charging current and the first discharging current is a current determined according to the state parameters of the battery, it can better adapt to the current state parameters of the battery and improve the battery life. charging efficiency and/or discharging efficiency without causing damage to the battery.
  • control unit is specifically configured to: periodically receive the first charging current sent by the BMS; and/or, periodically receive the first discharge current sent by the BMS; and/or Or, periodically receive the second charging current sent by the BMS.
  • the charging and discharging device when the charging and discharging device performs a single charge and/or single discharge on the battery, the charging current and/or discharging current is regularly sent by the BMS.
  • the charging and discharging device can pass The regularly adjusted charging current and/or discharging current charges the battery to improve charging and discharging efficiency.
  • the charging and discharging device can also determine that the state of the BMS and the battery is normal through the regularly sent charging current and/or discharging current. , so as to continue to charge the battery or control the discharge of the battery to ensure the safety performance of the battery.
  • control unit is further configured to: receive the first charging voltage sent by the BMS, wherein the first charging voltage and the first charging current are carried in the first battery charging demand BCL In the message; and/or, receiving the first discharge voltage sent by the BMS, wherein the first discharge voltage and the first discharge current are carried in the second BCL message; and/or, receiving the The second charging voltage sent by the BMS, wherein the second charging voltage and the second charging current are carried in the third BCL message.
  • the communication between the charging and discharging device and the BMS is compatible with the existing communication protocol between the charging machine and the BMS. Therefore, the communication between the charging and discharging device and the BMS is easy to implement and has good application prospects.
  • a battery charging method is provided, which is applied to a charging and discharging device including a first direct current/direct current DC/DC converter and a unidirectional alternating current/direct current AC/DC converter, the first DC/DC
  • the converter is a unidirectional DC/DC converter
  • the method includes: receiving a first charging current sent by a battery management system BMS of the battery, and based on the first charging current, controlling the unidirectional AC/DC converter and The first DC/DC converter charges the battery through an AC power supply; receives the first discharge current sent by the BMS, and controls the battery to discharge power based on the first discharge current, wherein the first A discharge current is the discharge current sent by the BMS when the first accumulated charging amount of the battery is greater than or equal to the first accumulated charging amount threshold and the voltage of the battery cells of the battery does not exceed the full charge voltage of the battery cells Current: receiving the second charging current sent by the BMS, and based on the second charging current, controlling the unidirectional AC/DC converter and the first DC/
  • a charging and discharging device including a processor and a memory, the memory is used to store a computer program, and the processor is used to call the computer program to execute the above-mentioned second aspect or its various implementations method.
  • FIG. 1 is a structural diagram of a charging system applicable to an embodiment of the present application
  • Fig. 2 is a schematic flow diagram of a method for charging a battery provided in an embodiment of the present application
  • Fig. 3 is a schematic block flow diagram of another battery charging method provided by an embodiment of the present application.
  • Fig. 4 is a schematic waveform diagram of the charging current and discharging current of the battery provided by the embodiment of the present application;
  • Fig. 5 is a schematic block flow diagram of another method for charging a battery provided by an embodiment of the present application.
  • Fig. 6 is a schematic block flow diagram of another battery charging method provided by the embodiment of the present application.
  • Fig. 7 is a schematic flowchart of another method for charging a battery provided by an embodiment of the present application.
  • Fig. 8 is a schematic block flow diagram of another battery charging method provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural block diagram of a battery management system BMS provided by an embodiment of the present application.
  • Fig. 10 is a schematic structural block diagram of a charging and discharging device provided in an embodiment of the present application.
  • Fig. 11 is a schematic structural block diagram of another charging and discharging device provided by an embodiment of the present application.
  • Fig. 12 is a schematic structural block diagram of a power conversion unit in the charging and discharging device provided by the embodiment of the present application;
  • Fig. 13 is a schematic structural block diagram of another power conversion unit provided by an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of another power conversion unit provided by an embodiment of the present application.
  • FIG. 15 is a schematic flowchart of a battery charging method according to an embodiment of the present application.
  • Fig. 16 is a schematic structural block diagram of an electronic device according to an embodiment of the present application.
  • power batteries can be used as the main power source of electric devices (such as vehicles, ships or spacecraft, etc.), while energy storage batteries can be used as the source of charging for electric devices.
  • energy storage batteries can be used as the source of charging for electric devices.
  • Metaphor As an example but not a limitation, in some application scenarios, the power battery may be a battery in a power consumption device, and the energy storage battery may be a battery in a charging device.
  • power batteries and energy storage batteries are collectively referred to as batteries hereinafter.
  • lithium batteries such as lithium-ion batteries or lithium-ion polymer batteries.
  • the battery is generally charged by continuous charging, and continuous charging of the battery will cause the phenomenon of lithium deposition and heat generation of the battery.
  • lithium deposition and heat generation will not only reduce the performance of the battery, The cycle life is greatly shortened, which also limits the fast charging capacity of the battery, and may cause catastrophic consequences such as combustion and explosion, causing serious safety problems.
  • the present application proposes a new battery charging method and charging system.
  • Fig. 1 shows a structure diagram of a charging system applicable to an embodiment of the present application.
  • the charging system 100 may include: a charging and discharging device 110 and a battery system 120.
  • the battery system 120 may be an electric vehicle (including a pure electric vehicle and a plug-in hybrid electric vehicle) battery system or battery system in other application scenarios.
  • the battery 121 can be any type of battery, including but not limited to: lithium ion battery, lithium metal battery, lithium sulfur battery, lead acid battery, nickel battery, nickel metal hydride battery, or lithium air battery etc.
  • the battery 121 in the embodiment of the present application can be a battery cell/battery monomer (cell), or a battery module or a battery pack.
  • a battery module or a battery pack can be composed of multiple batteries connected in series and in parallel. Formation, in the embodiment of the present application, the specific type and scale of the battery 121 are not specifically limited.
  • the battery system 120 is generally equipped with a battery management system (battery management system, BMS) 122 for monitoring The state of the battery 121 .
  • BMS battery management system
  • the BMS 122 can be integrated with the battery 121 and set in the same device/device, or, the BMS 122 can also be set outside the battery 121 as an independent device/device.
  • the charging and discharging device 110 is a device for supplementing electric energy for the battery 121 in the battery system 120 and/or controlling the discharge of the battery 121 .
  • the charging and discharging device 110 in the embodiment of the present application may be an ordinary charging pile, a super charging pile, a charging pile supporting a vehicle to grid (V2G) mode, or may charge and/or discharge a battery Charging and discharging devices/equipment, etc.
  • the embodiment of the present application does not limit the specific type and specific application scenarios of the charging and discharging device 110 .
  • the charging and discharging device 110 can be connected to the battery 121 through the electric wire 130, and connected to the BMS 122 through the communication line 140, wherein the communication line 140 is used to realize the communication between the charging and discharging device 110 and the BMS. Information exchange.
  • the communication line 140 includes, but is not limited to, a controller area network (control area network, CAN) communication bus or a daisy chain (daisy chain) communication bus.
  • a controller area network control area network, CAN
  • daisy chain daisy chain
  • the charging and discharging device 110 can also communicate with the BMS 122 through a wireless network.
  • the embodiment of the present application does not specifically limit the wired communication type or wireless communication type between the charging and discharging device and the BMS 122.
  • FIG. 2 shows a schematic flow diagram of a battery charging method 200 proposed by an embodiment of the present application.
  • the method 200 of the embodiment of the present application may be applicable to the charging and discharging device 110 and the battery system 120 shown in FIG. 1 above.
  • the battery charging method 200 may include the following steps.
  • Step 210 the battery management system BMS obtains the first charging current.
  • Step 220 The BMS sends the first charging current to the charging and discharging device.
  • Step 230 The charging and discharging device charges the battery based on the first charging current.
  • Step 240 If the first accumulated charging amount of the battery is greater than or equal to the first accumulated charging amount threshold and the voltage of the battery cell does not exceed the full charge voltage of the battery cell, the BMS obtains the first discharge current.
  • Step 250 The BMS sends the first discharge current to the charging and discharging device.
  • Step 260 The charging and discharging device controls the discharging of the battery based on the first discharging current.
  • a charging method that can be realized between the charging and discharging device and the BMS.
  • the charging and discharging device can send the first charging current and the first discharging current based on the BMS.
  • the current realizes the charging and discharging of the battery, avoiding continuous charging of the battery, thereby avoiding problems such as heating and lithium ion accumulation caused by continuous charging of the battery. Due to heating, the temperature of the battery will rise, and the crystals produced by the accumulation of lithium ions may pierce the battery, causing electrolyte leakage and short-circuiting the battery. The rise in battery temperature and short-circuiting of the battery may cause battery safety problems, such as causing battery combustion or explosion etc.
  • the charging and discharging device can charge and discharge the battery based on the first charging current and the first discharging current sent by the BMS, which can ensure the safety performance of the battery.
  • the continuous accumulation of lithium ions will also cause the problem of lithium analysis, which will affect the service life and charging capacity of the battery. Therefore, the service life and charging capacity of the battery can also be guaranteed through the technical solutions of the embodiments of the present application.
  • the BMS can first enter the charging mode to control the charging and discharging device to charge the battery. First, the BMS obtains the first charging current. After the BMS sends the first charging current to the charging and discharging device, the charging and discharging The device charges the battery based on the received first charging current.
  • the BMS can obtain the first charging current from its own functional unit (eg, a storage unit or a processing unit), or the BMS can also obtain the first charging current from other devices.
  • the first charging current may be a preset current, and the preset current may be a fixed value, or may also change in a preset manner over time.
  • the first charging current may also be a current determined according to state parameters of the battery, and the first charging current changes with changes in the state parameters of the battery.
  • the charging and discharging device can be connected to a power supply, which can be an AC power supply and/or a DC power supply. After the charging and discharging device receives the information of the first charging current, based on the first charging current, the charging and discharging device passes through the AC power supply and/or the DC power supply. Charge the battery.
  • a power supply which can be an AC power supply and/or a DC power supply.
  • the BMS can obtain the first accumulated charging amount of the battery, and determine whether the first accumulated charging amount is greater than or equal to the first accumulated charging amount threshold, if The first accumulated charging amount of the battery is greater than or equal to the first accumulated charging amount threshold and the voltage of the battery cell does not exceed the full charge voltage of the battery cell, and the BMS obtains the first discharge current.
  • the battery can include one or more battery cells, and the BMS can monitor the voltage of one or more battery cells in the battery to monitor whether the battery is fully charged .
  • the voltages of the multiple battery cells may be different. In this case, it can be judged by judging whether the maximum voltage of the battery cells exceeds the full charge voltage of the battery cells. Whether the battery is fully charged.
  • other voltages of the battery cells in the battery may also be used to determine whether the battery is fully charged.
  • the BMS obtains the second A discharge current, that is, for the battery, it changes from charging mode to discharging mode.
  • the above-mentioned first accumulated charge amount may be the first accumulated charge capacity or may also be the first accumulated charge amount.
  • the first accumulated charging amount threshold is the first accumulated charging capacity threshold; if the first accumulated charging amount is the first accumulated charging amount, then the first accumulated charging amount The threshold is the first accumulated charging power threshold.
  • the above-mentioned first accumulated charging amount threshold may be a preset threshold, and the preset threshold may be a fixed threshold, or may also change in a preset manner over time.
  • the first accumulated charge threshold can also be determined according to the state parameters of the battery, that is, when the state parameters of the battery change, the first accumulated charge threshold also changes accordingly.
  • the first A cumulative charge threshold can be better adapted to the current state parameters of the battery, so that the current charging process can be better controlled, and the charging efficiency of the battery can be improved without causing damage to the battery.
  • step 240 to step 260 the BMS obtains the first discharge current, and sends the first discharge current to the charging and discharging device, and the charging and discharging device controls battery discharge based on the received first discharging current.
  • the BMS may obtain the first discharge current from its own functional unit (for example, a storage unit or a processing unit), or the BMS may also obtain the first discharge current from other devices.
  • the first discharge current may be a preset current, and the preset current may be a fixed value, or may also change in a preset manner over time.
  • the first discharge current may also be a current determined according to the state parameters of the battery, and the first discharge current changes with changes in the state parameters of the battery.
  • the electricity of the battery in the discharge mode or stage, can be transmitted to the energy storage device and/or the grid, which is beneficial to the recycling of electric energy.
  • the energy storage device can be installed in the charging and discharging device or outside the charging and discharging device, so that it can receive the discharge current of the battery.
  • the embodiment of the present application does not limit the specific configuration of the energy storage device.
  • the power of the battery may also be consumed in other ways, and the embodiment of the present application does not limit the specific way of consuming power.
  • the BMS can obtain the first accumulated discharge capacity of the battery during the discharge process, and determine whether the first accumulated discharge capacity is greater than or equal to the first accumulated discharge capacity threshold.
  • the above-mentioned first accumulated discharge amount may be the first accumulated discharge capacity or may also be the first accumulated discharge amount.
  • the first cumulative discharge capacity threshold is the first cumulative discharge capacity threshold; if the first cumulative discharge capacity is the first cumulative discharge capacity, the first cumulative discharge capacity The threshold is the first accumulated discharge power threshold.
  • the above-mentioned first accumulated discharge capacity threshold may be a preset threshold, and the preset threshold may be a fixed threshold, or may also change with time in a preset manner.
  • the first accumulated discharge threshold can also be determined according to the state parameters of the battery, that is, when the state parameters of the battery change, the first accumulated discharge threshold also changes accordingly.
  • the first A cumulative discharge threshold can be better adapted to the current state parameters of the battery, so as to better control the current discharge process and improve the discharge efficiency of the battery without causing damage to the battery.
  • the charging and discharging device controls the battery to stop discharging.
  • the charging and discharging device can charge and discharge the battery based on the first charging current and the first discharging current sent by the BMS, so as to avoid problems such as heating and lithium ion accumulation caused by continuous charging of the battery, and then avoid problems caused by heating, lithium ions, etc.
  • Problems such as ion aggregation cause battery safety problems, such as battery combustion or explosion, etc., to ensure the safety performance of the battery.
  • charging the battery to the first accumulative charge amount based on the first charging current and then releasing the battery to the first accumulative discharge amount based on the first discharge current can release the lithium ions accumulated on the negative electrode of the battery during the charging process to prevent continuous charging.
  • the lithium analysis problem generated during charging can improve the service life and charging capacity of the battery.
  • the battery can be charged for the second time to continue charging the battery.
  • the battery charging method 200 in the embodiment of the present application may further include the following steps.
  • Step 270 If the first cumulative discharge capacity of the battery is greater than or equal to the first cumulative discharge capacity threshold, the BMS acquires a second charging current.
  • Step 280 The BMS sends the second charging current to the charging and discharging device.
  • Step 290 The charging and discharging device charges the battery based on the second charging current.
  • step 270 to step 290 when the BMS judges that the first cumulative discharge capacity of the battery is greater than or equal to the first cumulative discharge capacity threshold, the BMS acquires the second charging current and sends the second charging current to the charging and discharging system.
  • the charging and discharging device continues to charge the battery based on the received second charging current, that is, for the battery, re-enters the charging mode from the discharging mode.
  • steps 270 to 290 refer to the relevant descriptions of steps 210 to 230 above, and details are not repeated here.
  • the charging and discharging of the battery in addition to the current information required for charging and discharging, the charging and discharging of the battery also requires the voltage information required for charging and discharging.
  • the BMS obtains the first charging current and the first charging voltage, and send the first charging current and the first charging voltage to the charging and discharging device, and the charging and discharging device is used to charge the battery based on the first charging current and the first charging voltage;
  • the BMS obtains the first discharge current and the first discharge voltage, and sends the first discharge current and the first discharge voltage to the charging and discharging device, and the charging and discharging device is used to The battery is discharged.
  • the subsequent charge and discharge process may be similar to the above charge and discharge process, and will not be repeated here.
  • Fig. 3 shows a schematic flow diagram of another battery charging method 300 provided by an embodiment of the present application.
  • the battery charging method 300 may further include the following steps in addition to the steps 210 to 290 described above.
  • Step 310 If the second accumulated charging amount of the battery is greater than or equal to the second accumulated charging amount threshold and the voltage of the battery cell does not exceed the full charge voltage of the battery cell, the BMS obtains the second discharge current.
  • Step 320 The BMS sends the second discharge current to the charging and discharging device.
  • Step 330 The charging and discharging device controls the battery to discharge based on the second discharging current.
  • the charging, discharging, and recharging and redischarging of the battery are completed through information interaction between the BMS and the charging and discharging device.
  • the embodiment of the present application can further provide a multiple-cycle charging and discharging method. The charging and discharging processes are carried out sequentially, and the battery can be gradually charged on the basis of ensuring the safety performance of the battery.
  • step 310 when the charging and discharging device is charging the battery based on the second charging current, the BMS can obtain the second accumulated charging amount of the battery, and determine whether the second accumulated charging amount is greater than or equal to the second accumulated charging amount Charge level threshold.
  • the second accumulated charging amount may only be the charging amount of the battery charged by the charging and discharging device based on the second charging current, or the second accumulated charging amount may also be the current total charging amount of the battery.
  • the battery Current total charging amount charging amount based on the first charging current+charging amount based on the second charging current ⁇ discharging amount based on the first discharging current.
  • the second accumulated charging amount threshold may also be a charging amount threshold based on a single charge, or the second accumulated charging amount threshold may also be a charging amount threshold based on a total charging amount.
  • the second accumulated charging amount may be the second accumulated charging capacity or may also be the second accumulated charging amount.
  • the first accumulated charging amount threshold is the second accumulated charging capacity threshold
  • the second accumulated charging amount is the second accumulated charging amount
  • the second accumulated charging amount is the second accumulated charging amount
  • the second accumulated charging amount The threshold is the second accumulated charging power threshold.
  • the above-mentioned second accumulated charging amount threshold may be a preset threshold, and the preset threshold may be a fixed threshold, or may also change with time in a preset manner.
  • the second accumulated charge threshold can also be determined according to the state parameters of the battery, that is, when the state parameters of the battery change, the second accumulated charge threshold also changes accordingly.
  • step 310 when the second accumulated charging amount is greater than or equal to the second accumulated charging amount threshold, and the voltage of the battery cell does not exceed the full charge voltage of the battery cell, the BMS acquires the second discharge current. And in step 320 to step 330, the BMS sends the second discharge current to the charging and discharging device, and the charging and discharging device controls battery discharge based on the received second discharging current.
  • FIG. 4 shows a schematic waveform diagram of a charging current and a discharging current of a battery provided in an embodiment of the present application.
  • the charging and discharging device charges the battery based on the first charging current until the first accumulated charging amount of the battery is greater than or equal to the first accumulated charging amount threshold and the battery cells of the battery The voltage of the battery does not exceed the full charge voltage of the battery cell.
  • the charging and discharging device controls the discharge of the battery based on the first discharge current, until the first accumulated discharge of the battery is greater than or equal to the first accumulated discharge threshold.
  • the duration of the first discharging current may be shorter than the duration of the first charging current.
  • the charging and discharging device continues to charge the battery based on the second charging current until the second accumulated charging amount of the battery is greater than or equal to the second accumulated charging amount threshold and the voltage of the battery cells of the battery does not exceed the battery
  • the charge and discharge device controls the discharge of the battery based on the second discharge current, until the second accumulated discharge of the battery is greater than or equal to the second accumulated discharge threshold.
  • the first The duration of the second charging current may be shorter than the duration of the first charging current. It can be understood that the above charging and discharging process continues until the battery is fully charged.
  • the waveform diagrams of the first charging current, the second charging current, the first discharging current and the second discharging current are only schematically shown in Fig. 4, and the first charging current can be as shown in the figure The constant current shown in 4, or can also be the changing current that changes with time, similarly, the second charging current, the first discharging current and the second discharging current can be the constant current as shown in Figure 4, or can also be Varying current over time.
  • the magnitudes of the first charging current and the second charging current schematically shown in FIG. 4 are the same, and the magnitudes of the first discharging current and the second discharging current are the same.
  • the first charging current and the second charging current The magnitudes of the currents may also be different, and the magnitudes of the first discharge current and the second discharge current may also be different, which is not specifically limited in this embodiment of the present application.
  • Fig. 5 shows a schematic block flow diagram of another battery charging method 500 provided by an embodiment of the present application.
  • the battery charging method 500 may further include the following steps in addition to the steps 210 to 290 described above.
  • Step 510 If the voltage of the battery cell exceeds the full charge voltage of the battery cell, the BMS sends a charging stop command to the charging and discharging device.
  • Step 520 the charging and discharging device stops charging the battery.
  • the BMS can monitor whether the battery has reached a fully charged state by monitoring the voltage of one or more battery cells in the battery.
  • whether the battery has reached a fully charged state can be determined by judging whether the maximum voltage of the battery cell exceeds the full charge voltage of the battery cell. When the maximum voltage of the battery cell exceeds the full charge voltage of the battery cell, it means that the battery is fully charged, and the BMS sends a charge stop command to the charge and discharge device at this time.
  • the charge stop command is used to instruct the charge and discharge device to stop charging the battery , so that the charging and discharging device stops charging the battery.
  • the steps 510 and 520 can be performed during the charging phase of the battery.
  • the BMS when the BMS enters the charging mode and the charging and discharging device receives the charging current sent by the BMS, the BMS can obtain the charging current of the battery during the process of charging the battery. Once the voltage of the battery cell exceeds the full charge voltage of the battery cell, the BMS sends a charge stop command to the charging and discharging device to stop the charging and discharging device. Charge the battery.
  • FIG. 5 only schematically shows that step 510 and step 520 are performed after step 290, that is, during the second charging process. It can be understood that step 510 and step 520 can also be performed during multiple charging During any charging process of discharging.
  • the charging and discharging device since the charging and discharging device is used to charge, discharge and recharge the battery, the safety problems caused by continuous charging can be prevented. Further, the charging current in the above method can be large Current, in order to increase the charging capacity of the battery during a single charging process, to achieve the purpose of fast charging.
  • the charging current is also limited, so it is impossible to use a continuous high current to achieve fast charging of the battery.
  • the battery is charged, and the battery is discharged after a high-current charge to release the lithium ions accumulated on the negative electrode of the battery during the charging process, and then the battery can be charged again with a high current to realize rapid charging of the battery.
  • the first charging current and/or the second charging current can be a large current.
  • the charging current in the subsequent charging process can also be large. current.
  • the charging rate of the first charging current and/or the second charging current ranges from 2C to 10C.
  • the discharge current in the embodiment of the present application is a small current, which aims to discharge the lithium ions accumulated in the negative electrode of the battery through the discharge of the battery with a small current, without causing excessive loss of the charged power in the battery.
  • the first discharge current and/or the second discharge current in the above method can be a small current.
  • the discharge current in the subsequent discharge process can also be a small current.
  • the charge rate of the first discharge current and/or the second discharge current ranges from 0.1C to 1C.
  • the cumulative discharge capacity threshold during the discharging process and the cumulative charging capacity threshold during the charging process can be set Ratio, so that the discharge capacity is small without causing excessive loss of the charged power in the battery.
  • the ratio of the first accumulated discharge threshold to the first accumulated charge threshold is less than or equal to 10%, and/or the ratio of the second accumulated discharge threshold to the second accumulated charge threshold is less than or equal to 10 %.
  • the ratio of the cumulative discharge threshold value to the cumulative charge threshold value in the subsequent charging and discharging process can also be less than or equal to 10%.
  • the first charging current and the second charging current acquired by the BMS may be the same or different.
  • the first charging current and/or the second charging current can be a preset current, or the first charging current and/or the second charging current can also be a current determined according to the state parameters of the battery, when the state parameters of the battery changes, the first charging current and/or the second charging current may be different currents corresponding to different state parameters.
  • the state parameter of the battery includes at least one of the following parameters: battery temperature, battery voltage, battery current, battery state of charge (state of charge, SOC), battery state of health (state of health, SOH) and the like.
  • first discharge current and the second discharge current acquired by the BMS may be the same or different.
  • the first discharge current and/or the second discharge current may be a preset current, or the first discharge current and/or the second discharge current may also be a current determined according to state parameters of the battery.
  • At least one of the first charging current, the second charging current, the first discharging current and the second discharging current is a current determined according to the state parameters of the battery, it can be better adapted to the current state parameters of the battery, improving The charging efficiency and/or discharging efficiency of the battery, and will not cause damage to the battery.
  • the charging current and/or discharging current in the subsequent charging and discharging process can also be a preset current, or , can also be the current determined according to the state parameters of the battery.
  • FIG. 6 shows a schematic block diagram of another battery charging method 600 provided by an embodiment of the present application.
  • step 210 above may include:
  • Step 610 The BMS obtains the state parameters of the battery, and determines the first charging current according to the state parameters.
  • Step 240 above may include:
  • Step 640 If the first accumulative charging amount of the battery is greater than or equal to the first accumulative charging amount threshold and the voltage of the battery cells does not exceed the full charge voltage of the battery cells, the BMS obtains the state parameters of the battery and determines first discharge current.
  • Step 270 above may include:
  • Step 670 If the first cumulative discharge capacity of the battery is greater than or equal to the first cumulative discharge capacity threshold, the BMS acquires state parameters of the battery, and determines a second charging current according to the state parameters.
  • the first charging current, the first discharging current and the second charging current are currents determined according to state parameters of the battery.
  • the BMS can obtain different state parameters of the battery, and determine the current charging current and discharging current according to the state parameters.
  • the mapping relationship between the state parameters of the battery and the charging current and discharging current can be obtained.
  • the state parameters determine the specific charging current and discharging current, wherein the mapping relationship can be a mapping relationship obtained by fitting a large number of experimental data, which has high reliability and accuracy.
  • the mapping relationship can specifically be a mapping table , a map or a mapping formula, etc.
  • a dedicated neural network model can also be trained according to a large amount of experimental data, and the neural network model can output charging current and discharging current according to the input state parameters of the battery.
  • the first accumulated charging amount threshold and the second accumulated charging amount threshold may be the same or different.
  • the first accumulated discharge amount threshold and the second accumulated discharge amount threshold may be the same or different.
  • At least one of the first accumulated charge threshold, the second accumulated charge threshold, the first accumulated discharge threshold and the second accumulated discharge threshold may be a preset threshold.
  • at least one of the first accumulated charge threshold, the second accumulated charge threshold, the first accumulated discharge threshold and the second accumulated discharge threshold may also be a threshold determined according to a state parameter of the battery.
  • the cumulative discharge threshold and the cumulative charging threshold in the subsequent charging and discharging process can be preset thresholds or It may also be a threshold determined according to a state parameter of the battery.
  • the first cumulative charge threshold, the second cumulative charge threshold, the first cumulative discharge threshold, and the second cumulative discharge threshold is a threshold determined according to the state parameters of the battery. It can better adapt to the current state parameters of the battery, so as to be able to better control the current charging process and/or discharging process, ensure the charging capacity and discharging capacity, and realize efficient charging of the battery.
  • At least one of the first charging current, the second charging current, the first discharging current and the second discharging current may be a current obtained by the BMS periodically or irregularly, as an example , at least one of the first charging current, the second charging current, the first discharging current and the second discharging current may be a current determined periodically or irregularly by the BMS according to the state parameters of the battery, and the current varies with the state parameters of the battery Specifically, the BMS can periodically acquire the state parameters of the battery, thereby determining at least one of the first charging current, the second charging current, the first discharging current, and the second discharging current; or, the BMS can acquire in real time The state parameter of the battery, when the state parameter changes irregularly, the BMS determines at least one of the first charging current, the second charging current, the first discharging current and the second discharging current according to the irregularly changing state parameter.
  • the BMS regularly or irregularly sends at least one of the first charging current, the second charging current, the first discharging current and the second discharging current to the charging and discharging device, so that the charging and discharging device is based on
  • the current sent periodically charges the battery or controls the discharge of the battery.
  • the charging current and/or discharging current is sent by the BMS regularly or irregularly.
  • the charging current and/or discharging current sent regularly or irregularly can also be used to indicate that the state of the BMS and the battery is normal,
  • the charge and discharge device can continue to charge the battery or control the discharge of the battery.
  • the charging and discharging device can stop charging the battery and/or stop controlling the battery discharge to ensure the battery's safety performance.
  • Fig. 7 shows a schematic flow diagram of another battery charging method 700 provided by an embodiment of the present application.
  • step 210 above may include:
  • Step 710 The BMS acquires the first charging current periodically.
  • Step 220 above may include:
  • Step 720 The BMS periodically sends the first charging current to the charging and discharging device.
  • Step 240 above may include:
  • Step 740 If the first accumulated charging amount of the battery is greater than or equal to the first accumulated charging amount threshold and the voltage of the battery cell does not exceed the full charge voltage of the battery cell, periodically obtain the first discharge current.
  • Step 250 above may include:
  • Step 750 The BMS periodically sends the first discharge current to the charging and discharging device.
  • Step 270 above may include:
  • Step 770 If the first accumulated discharge amount of the battery is greater than or equal to the first accumulated discharge amount threshold, periodically obtain the second charging current.
  • Step 280 above may include:
  • Step 780 The BMS periodically sends the second charging current to the charging and discharging device.
  • the BMS may obtain the first charging current, the first discharging current and the second charging current periodically.
  • the BMS can periodically send the first charging current, the first discharging current and the second charging current to the charging and discharging device.
  • the communication between the BMS and the charging and discharging device is compatible with the existing communication protocol between the charger and the BMS, therefore, the communication between the BMS and the charging and discharging device is easy to implement, and It has a good application prospect.
  • the BMS can also acquire at least one of the first charging voltage, the second charging voltage, the first discharging voltage, and the second discharging voltage, and convert the first charging voltage, the second charging voltage At least one of the second charging voltage, the first discharging voltage and the second discharging voltage is sent to the charging and discharging device, wherein the first charging current and the first charging voltage are carried in the first battery charging request (BCL) message, And/or, the first discharging current and the first discharging voltage are carried in the second BCL message, and/or, the second charging current and the second charging voltage are carried in the third BCL message, and/or, the second The discharge current and the second discharge voltage are carried in the fourth BCL message.
  • BCL battery charging request
  • the charging and discharging device charges the battery and controls the battery to discharge based on the second charging current and the second discharging current
  • the charging current, charging voltage, discharging current and discharging voltage in the subsequent charging and discharging process can also be carried in the In the BCL message, it is sent to the charging and discharging device through the BMS.
  • Fig. 8 shows a schematic flow diagram of another battery charging method 800 provided by an embodiment of the present application.
  • the battery charging method 800 may include the following steps.
  • Step 810 The BMS acquires a first charging current and a first charging voltage.
  • Step 820 The BMS sends a first BCL message to the charging and discharging device, where the first BCL message carries a first charging current and a first charging voltage.
  • Step 830 The charging and discharging device charges the battery based on the first charging current and the first charging voltage.
  • Step 840 If the first accumulated charging amount of the battery is greater than or equal to the first accumulated charging amount threshold and the voltage of the battery cell does not exceed the full charge voltage of the battery cell, the BMS obtains the first discharge current and the first discharge voltage.
  • Step 850 The BMS sends a second BCL message to the charging and discharging device, where the second BCL message carries the first discharge current and the second discharge voltage.
  • Step 860 The charging and discharging device controls the battery to discharge based on the first discharging current and the second discharging voltage.
  • Step 870 If the first cumulative discharge capacity of the battery is greater than or equal to the first cumulative discharge capacity threshold, the BMS acquires a second charging current and a second charging voltage.
  • Step 880 The BMS sends a third BCL message to the charging and discharging device, where the third BCL message carries the second charging current and the second charging voltage.
  • Step 890 The charging and discharging device charges the battery based on the second charging current and the second charging voltage.
  • the BMS uses the battery charging demand BCL message in the communication protocol between the existing charger and the BMS, the BMS sends the charging current and the discharging current to the charging and discharging device, and the charging and discharging device based on the received charging current and discharge current to charge the battery or control the discharge of the battery.
  • the charging voltage (including the above-mentioned first charging voltage and the second charging voltage) is different from the range of the discharging voltage (including the above-mentioned first discharging voltage and the second discharging voltage), and the charging current (including The above-mentioned first charging current and second charging current) and the discharge current (including the above-mentioned first discharge current and second discharge current) have different ranges.
  • the voltage and current that can be carried in it Determine whether it belongs to the charging voltage and charging current, or whether it belongs to the discharging voltage and discharging current.
  • the BMS can determine the charging voltage and discharging voltage according to the state parameters of the battery, or the charging voltage and discharging voltage can also be preset values.
  • the BMS can periodically obtain the charging current and charging voltage, and periodically send BCL messages carrying the charging current and charging voltage to the charging and discharging device.
  • the BMS can also periodically obtain the discharging current and discharge voltage, and regularly send BCL messages carrying the discharge current and discharge voltage to the charging and discharging device.
  • the regular sending method of the BCL message may be the same as the regular sending method of the BCL message in the existing standard.
  • the information exchange message of charging and discharging current and/or voltage is taken as an example for illustration. It can be understood that in order to realize charging and discharging of the battery, in addition to the processing of the charging and discharging phase, it may also include the processing before charging and discharging.
  • the handshake interaction between the car and the charger, the parameter configuration interaction of charging and discharging, etc., are not specifically limited in this embodiment of the present invention.
  • the communication protocol between the charger and the BMS includes a communication protocol in a vehicle to grid (vehicle to grid, V2G) mode and a grid to vehicle (grid to vehicle, G2V) mode.
  • V2G vehicle to grid
  • G2V grid to vehicle
  • FIG. 9 shows a schematic structural block diagram of a battery management system BMS 900 according to an embodiment of the present application.
  • the BMS 900 includes: an acquisition unit 910, a sending unit 920 and a processing unit 930.
  • the obtaining unit 910 is used to obtain the first charging current; the sending unit 920 is used to send the first charging current to the charging and discharging device, so that the charging and discharging device charges the battery based on the first charging current;
  • the processing unit 930 is configured to determine that when the first accumulated charging amount of the battery is greater than or equal to the first accumulated charging amount threshold and the voltage of the battery cell does not exceed the full charge voltage of the battery cell, the acquiring unit 910 is also configured to acquire the first accumulated charging amount threshold.
  • the sending unit 920 is also used to send the first discharge current to the charging and discharging device, so that the charging and discharging device controls the discharge of the battery based on the first discharging current; optionally, the processing unit 930 is also used to determine the first accumulation of the battery When the discharge amount is greater than or equal to the first accumulated discharge amount threshold, the acquiring unit 910 is also used to acquire the second charging current; the sending unit 920 is also used to send the second charging current to the charging and discharging device, so that the charging and discharging device is based on the second The charging current charges the battery.
  • the processing unit 930 is further configured to determine that when the second accumulated charging amount of the battery is greater than or equal to the second accumulated charging amount threshold and the voltage of the battery cells of the battery does not exceed the full charge voltage of the battery cells, the acquiring unit 910 further It is used to obtain the second discharge current; the sending unit 920 is also used to send the second discharge current to the charging and discharging device, so that the charging and discharging device controls battery discharge based on the second discharging current.
  • the processing unit 930 is also used to determine that the voltage of the battery cell exceeds the full charge voltage of the battery cell, and the sending unit 920 is also used to send a charging stop command to the charging and discharging device, and the charging stopping command is used to indicate charging and discharging The device stops charging the battery.
  • the charging rate of the first charging current and/or the second charging current ranges from 2C to 10C.
  • the discharge rate of the first discharge current and/or the second discharge current ranges from 0.1C to 1C.
  • the ratio of the first accumulated discharge threshold to the first accumulated charge threshold is less than or equal to 10%, and/or the ratio of the second accumulated discharge threshold to the second accumulated charge threshold is less than or equal to 10%.
  • the obtaining unit 910 is used to obtain the state parameters of the battery, and determine the first charging current according to the state parameters; and/or, the obtaining unit 910 is used to obtain the state parameters of the battery, and determine the first discharge current according to the state parameters; And/or, the acquiring unit 910 is configured to acquire the state parameters of the battery, and determine the first discharge current according to the state parameters; wherein, the state parameters of the battery include at least one of the following parameters: battery temperature, battery voltage, battery current, battery State of charge and battery health.
  • the acquiring unit 910 is used to periodically acquire the first charging current, and the sending unit 920 is used to periodically send the first charging current to the charging and discharging device; and/or, the acquiring unit 910 is used to periodically acquire the first discharging current, and send The unit 920 is configured to periodically send the first discharge current to the charging and discharging device; and/or the acquiring unit 910 is configured to periodically acquire the second charging current, and the sending unit 920 is configured to periodically send the second charging current to the charging and discharging device.
  • the obtaining unit 910 is also used to obtain the first charging voltage
  • the sending unit 920 is also used to send the first charging voltage to the charging and discharging device, wherein the first charging current and the first charging voltage are carried in the first battery charging In the demand BCL message; and/or, the acquiring unit 910 is also used to acquire the first discharge voltage, and the sending unit 920 is also used to send the first discharge voltage to the charging and discharging device, wherein the first discharging current and the first discharging voltage carried in the second BCL message; and/or, the sending unit 920 is also used to obtain the second charging voltage, and the sending unit 920 is also used to send the second charging voltage to the charging and discharging device, wherein the second charging current and the first The second charging voltage is carried in the third BCL message, and/or, the acquiring unit 910 is also used to acquire the second discharging voltage, and the sending unit 920 is also used to send the second discharging voltage to the charging and discharging device, wherein the second discharging
  • Fig. 10 shows a schematic structural block diagram of a charging and discharging device 1000 according to an embodiment of the present application.
  • the charging and discharging device 1000 includes: a receiving unit 1010 and a processing unit 1020 .
  • the receiving unit 1010 is used to receive the first charging current sent by the battery management system BMS; the processing unit 1020 is used to charge the battery based on the first charging current; the receiving unit 1010 is also used to receive the first charging current sent by the BMS.
  • the first discharge current the processing unit 1020 is also used to control battery discharge based on the first discharge current, wherein the first discharge current is when the first accumulated charging amount of the battery is greater than or equal to the first accumulated charging amount threshold and the battery cells of the battery When the voltage does not exceed the full charge voltage of the battery cell, the discharge current sent by the BMS; the receiving unit 1010 is also used to receive the second charging current sent by the BMS, and the processing unit 1020 is also used to charge the battery based on the second charging current, wherein , the second charging current is the charging current sent by the BMS when the first accumulated discharge amount of the battery is greater than or equal to the first accumulated discharge amount threshold.
  • the receiving unit 1010 is also used to receive the second discharge current sent by the BMS
  • the processing unit 1020 is also used to control the discharge of the battery based on the second discharge current, wherein the second discharge current is when the second accumulated charge of the battery is greater than Or the discharge current sent by the BMS when it is equal to the second accumulated charging amount threshold and the voltage of the battery cell does not exceed the full charge voltage of the battery cell.
  • the receiving unit 1010 is also configured to receive a charging stop command sent by the BMS, and the processing unit 1020 is configured to stop charging the battery, wherein the charging stop command is when the voltage of the battery cell exceeds the full charge voltage of the battery cell , the command sent by the BMS.
  • the charging rate of the first charging current and/or the second charging current ranges from 2C to 10C.
  • the discharge rate of the first discharge current and/or the second discharge current ranges from 0.1C to 1C.
  • the ratio of the first accumulated discharge threshold to the first accumulated charge threshold is less than or equal to 10%, and/or the ratio of the second accumulated discharge threshold to the second accumulated charge threshold is less than or equal to 10%.
  • At least one of the first charging current, the first discharging current and the second charging current is determined by the BMS according to the state parameters of the battery; wherein, the state parameters of the battery include at least one of the following parameters: temperature, battery voltage, battery current, battery state of charge, and battery state of health.
  • the receiving unit 1010 is used to regularly receive the first charging current sent by the BMS; and/or, the receiving unit 1010 is used to regularly receive the first discharge current sent by the BMS; and/or, the receiving unit 1010 is used to regularly receive the BMS send the second charging current.
  • the receiving unit 1010 is also configured to receive the first charging voltage sent by the BMS, where the first charging voltage and the first charging current are carried in the first battery charging demand BCL message; and/or, the receiving unit 1010 is also For receiving the first discharge voltage sent by the BMS, wherein the first discharge voltage and the first discharge current are carried in the second BCL message; and/or, the receiving unit 1010 is also used for receiving the second charge voltage sent by the BMS, Wherein, the second charging voltage and the second charging current are carried in the third BCL message; and/or, the receiving unit 1010 is also used to receive the second discharging voltage sent by the BMS, wherein the second discharging voltage and the second discharging current Carried in the fourth BCL message.
  • the above describes the battery charging method and device embodiment based on the information interaction between the charging and discharging device and the BMS in this application in conjunction with Fig. 2 to Fig. 10.
  • the charging and discharging device it can be realized through different hardware architectures Charge the battery and control the discharge of the battery.
  • Fig. 11 shows a schematic structural block diagram of another charging and discharging device provided by an embodiment of the present application.
  • the charging and discharging device 1100 may include: a control unit 1110 and a power conversion unit 1120 .
  • control unit 1110 is used to receive the first charging current sent by the BMS, and based on the first charging current, control the power conversion unit 1120 to charge the battery; the control unit 1110 is also used to receive the first discharge current sent by the BMS.
  • the control unit 1110 is also used to receive the second charge current sent by the BMS, and based on the second charge current, control the power conversion unit 1120 to charge the battery, wherein , the second charging current is the charging current sent by the BMS when the first accumulated discharge amount of the battery is greater than or equal to the first accumulated discharge amount threshold.
  • the power conversion unit 1120 may include a high-voltage device for realizing high-power electric energy conversion
  • the control unit 1110 may include a low-voltage circuit for realizing the control function of the high-voltage device in the power conversion unit 1120 .
  • the control unit 1110 can also establish a communication connection with the BMS.
  • the control unit 1110 can establish a communication connection with the BMS through a communication bus, or the control unit 1110 can also establish a communication connection with the BMS through a wireless network. communication connection.
  • FIG. 12 shows a schematic structural block diagram of a power conversion unit 1120 provided in the embodiment of the present application.
  • the power conversion unit 1120 can be connected to an alternating current (alternating current, AC) power supply and a battery, wherein the power conversion unit 1120 includes a unidirectional AC/DC (alternating current/direct current, AC/DC) converter 1210 and a first DC/DC (direct current/direct current, DC/DC) converter 1220.
  • the first DC/DC converter 1220 is a unidirectional DC/DC converter.
  • the first end of the unidirectional AC/DC converter 1210 can be connected to an AC power source, and the second end of the unidirectional AC/DC converter 1210 can be connected to the first DC/DC converter 1220.
  • the second end of the first DC/DC converter 1220 may be connected to the battery for current transmission between the battery and the AC power source.
  • the BMS can send the first charging current to the control unit 1110, and accordingly, the control unit 1110 can be configured to receive the first charging current sent by the BMS, and control the unidirectional AC/DC converter based on the first charging current 1210 and the first DC/DC converter 1220 to charge the battery through AC power.
  • the BMS can send the first discharge current to the control unit 1110,
  • the control unit 1110 may be configured to receive a first discharge current, and control the battery to discharge power based on the first discharge current.
  • the above charging and discharging device in the process of charging the battery, can realize charging and discharging the battery based on the first charging current and the first discharging current sent by the BMS, avoiding continuous charging of the battery, thereby avoiding damage to the battery caused by continuous charging. Fever, lithium ion accumulation and other issues. Due to heating, the temperature of the battery will rise, and the crystals produced by the accumulation of lithium ions may pierce the battery, causing electrolyte leakage and short-circuiting the battery. The rise in battery temperature and short-circuiting of the battery may cause battery safety problems, such as causing battery combustion or explosion etc.
  • the charging and discharging device can charge and discharge the battery based on the first charging current and the first discharging current sent by the BMS, which can ensure the safety performance of the battery.
  • the continuous accumulation of lithium ions will also cause the problem of lithium deposition, which will affect the service life and charging capacity of the battery. Therefore, the above charging and discharging device can also ensure the service life and charging capacity of the battery.
  • the charging and discharging device includes a unidirectional AC/DC converter and a unidirectional DC/DC converter, so that the structure of the charging and discharging device in the embodiment of the present application is the same as that of the existing charging pile, that is, without modification On the basis of the existing charging pile structure, the charging and discharging of the battery can be realized, which greatly reduces the charging cost.
  • control unit 1110 can also be configured to receive the second charging current sent by the BMS, and based on the second charging current, control the one-way AC
  • the /DC converter 1210 and the first DC/DC converter 1220 are used to charge the battery through an AC power source.
  • control unit 1110 when the control unit 1110 controls the one-way AC/DC converter 1210 and the first DC/DC converter 1220 to charge the battery through an AC power source, the control unit 1110 can control the one-way AC/DC converter 1210 and the first DC/DC converter 1220.
  • the BMS can also send the second discharge current to the control unit 1110.
  • the control unit 1110 can also be configured to receive the second discharge current sent by the BMS, and control the battery to discharge power based on the second discharge current.
  • the BMS can send a charge stop command to the control unit 1110, and the charge stop command is used to instruct the charge and discharge device to stop charging the battery.
  • the control unit 1110 is configured to receive the charging stop command sent by the BMS, and based on the charging stop command, control the one-way AC/DC converter 1210 and the first DC/DC converter 1220 so that the AC power supply stops charging the battery.
  • the control unit controls the AC/DC converter and the first DC/DC converter by receiving a charging stop command so that the AC power supply stops charging the battery, preventing the battery from charging.
  • the problem of overcharging occurs, which further ensures the safety performance of the battery.
  • the power conversion unit 1120 may further include a second DC/DC converter 1230 .
  • the second terminal of the second DC/DC converter 1230 may be connected to the battery and the second terminal of the first DC/DC converter 1220 respectively.
  • control unit 1100 can be specifically configured to: control the second DC/DC converter 1230 to discharge the electric power of the battery into the energy storage unit based on the first discharge current.
  • the technical solution releases the electric power of the battery into the energy storage unit, so that the energy storage unit can perform other operations based on the received electric power, thereby avoiding the waste of electric power.
  • the energy storage unit may be a low-power energy storage unit.
  • the energy storage unit may be a super battery or a lithium carbonate battery.
  • the cost of the charging system can be reduced.
  • the energy storage unit may be provided independently of the charging and discharging device 1110, or the charging and discharging device 1110 may also include an energy storage unit. It should be noted that when the charging and discharging device includes an energy storage unit, as shown in FIG.
  • the conversion unit 1120 is connected to each other, which is not specifically limited in this embodiment of the present application.
  • the solution of the embodiment of the present application is described below by taking the energy storage unit 1240 as a part of the power conversion unit 1120 as an example.
  • the first end of the unidirectional AC/DC converter 1210 is connected to the AC power supply, and the second end is connected to the first end of the first DC/DC converter 1220.
  • the second terminal of the first DC/DC converter 1220 is respectively connected to the battery and the second terminal of the second DC/DC converter 1230 , and the first terminal of the second DC/DC converter 1230 is connected to the energy storage unit 1240 .
  • control unit 1110 can control the one-way AC/DC converter 1210 and the first DC/DC converter 1220 to turn off the mode of charging the battery, and control the second DC/DC converter 1230 to turn on the charging mode to the battery. A mode in which the energy storage unit 1240 is discharged.
  • the second DC/DC converter 1230 may be a unidirectional DC/DC converter.
  • the second DC/DC converter 1230 may be a bidirectional DC/DC converter.
  • the control unit 1110 can also control the one-way AC/DC conversion based on the first charging current.
  • the inverter 1210 and the first DC/DC converter 1220 are used to charge the battery through the AC power supply, and at the same time, the second DC/DC converter 1230 is controlled to charge the battery through the energy storage unit 1240 .
  • the control unit 1110 may also control the second DC/DC converter 1230 while controlling the unidirectional AC/DC converter 1210 and the first DC/DC converter 1220 based on the second charging current to charge the battery through an AC power source. To charge the battery through the energy storage unit 1240.
  • the energy storage unit can not only receive the electricity released by the battery, but also charge the battery. On the one hand, it avoids that the electricity in the energy storage unit cannot continue to be released to the energy storage unit because the electricity in the energy storage unit reaches full capacity. The problem ensures the normal progress of the charging process.
  • the energy storage unit charges the battery by using the received electric quantity discharged from the battery, which realizes the recycling of the electric quantity of the battery and saves electric energy.
  • the AC power supply and the energy storage unit charge the battery at the same time, which is beneficial to increase the charging rate of the battery and save charging time.
  • the first charging current may be different from the current that the energy storage unit 1240 charges the battery.
  • the second charging current is also different from the current that the energy storage unit 1240 charges the battery.
  • the first charging current may be greater than the current for charging the battery by the energy storage unit 1240 .
  • the charging rate of the energy storage unit 1240 for charging the battery may be less than 0.5C1, where C1 is the capacity of the energy storage unit 1240 .
  • the AC power charges the battery, and controls the second DC/DC converter 1230 to charge the battery through the energy storage unit 1240 .
  • control unit 1110 can obtain the SOC of the energy storage unit 1240 first, and then determine the AC power to charge the battery based on the SOC of the energy storage unit 1240, or determine the AC power based on the SOC of the energy storage unit 1240 and the energy storage unit 1240 to charge the battery at the same time.
  • the energy storage unit 1240 may send a first message to the control unit 1110, where the first message includes the SOC of the energy storage unit 1240, so that the control unit 1110 may acquire the SOC of the energy storage unit 1240.
  • the energy storage unit 1240 can store the SOC in the cloud, so that the control unit 1110 can obtain the SOC of the energy storage unit 1240 from the cloud.
  • control unit 1110 can not only control the one-way AC/DC converter 1210 and the first DC/DC converter 1220 to charge the battery through the AC power , can also control the second DC/DC converter 1230 to charge the battery through the energy storage unit 1240 .
  • the control unit 1110 may only control the one-way AC/DC converter 1210 and the first DC/DC converter 1220 to charge the battery through an AC power source.
  • the control unit 1110 may send a charging request message to other devices, so that other devices charge the energy storage unit 1240 until the SOC of the energy storage unit 1240 is greater than or equal to the charge state. Power status threshold. Afterwards, the AC power source and the energy storage unit 1240 can simultaneously charge the battery.
  • the state of charge threshold may be a fixed value.
  • the state of charge threshold may be variable.
  • the state of charge threshold may vary with time, environment (such as temperature) and other factors.
  • the state of charge threshold may be preset on the control unit 1110 , or may be sent to the control unit 1110 by the energy storage unit.
  • the SOC of the energy storage unit it is determined whether to use the energy storage unit to assist the AC power supply to charge the battery together, so that the charging efficiency of the charging and discharging device can be improved when the energy stored in the energy storage unit is sufficient.
  • the first charging power of the energy storage unit 1240 to the battery is W1
  • the second charging power of the AC power supply to the battery is W2
  • W2 is the charging power of the battery.
  • the first charging power W1 may be determined prior to the second charging power W2.
  • W1 may be determined according to the discharge capability of the energy storage unit 1240 .
  • W1 may also be determined according to the current state of the energy storage unit 1240 , for example, the ampere-hour of the energy storage unit 1240 , the temperature of the energy storage unit 1240 , and the like.
  • the aforementioned AC power source includes but is not limited to a power grid, which can be used to provide three-phase AC power.
  • the power grid can not only provide enough power to charge the battery, but also can receive more power released by the battery.
  • the above-mentioned AC power supply may also be a single-phase AC power supply.
  • the embodiment of the present application does not limit the specific type of the AC power supply.
  • Fig. 15 shows a schematic flowchart of a battery charging method 1500 according to an embodiment of the present application.
  • the method 1500 can be applied to a charging and discharging device including a first DC/DC DC/DC converter and a unidirectional AC/DC AC/DC converter, for example, it can be applied to a charging and discharging device including a unidirectional AC/DC converter in FIG. 12 In the charging and discharging device of the converter 1210 and the first DC/DC converter 1220 .
  • the method embodiments correspond to the device embodiments, and similar descriptions may refer to the device embodiments.
  • the battery charging method 1500 may include the following steps:
  • the BMS receives the first discharge current sent by the BMS, and control the discharge of the battery based on the first discharge current, wherein the first discharge current is when the first accumulated charge of the battery is greater than or equal to the first accumulated charge threshold and the battery When the voltage of the battery cell does not exceed the full charge voltage of the battery cell, the discharge current sent by the BMS.
  • the second charging current is the charging current sent by the BMS when the first cumulative discharge capacity of the battery is greater than or equal to the first cumulative discharge capacity threshold.
  • the method 1500 further includes: receiving the second discharge current sent by the BMS, and controlling the battery to discharge the power based on the second discharge current, wherein the second discharge current is when the second accumulated charge of the battery The discharge current sent by the BMS when the amount is greater than or equal to the second accumulated charge amount threshold and the voltage of the battery cells does not exceed the full charge voltage.
  • the method 1500 further includes: receiving a charging stop command sent by the BMS; based on the charging stop command, controlling the unidirectional AC/DC converter and the first DC/DC converter so that the AC power supply stops charging Battery charging, wherein the charging stop command is a command sent by the BMS when the voltage of the battery cell exceeds the full charge voltage.
  • the charging and discharging device further includes a second DC/DC converter, such as the second DC/DC converter 1230 in FIG. 13 and FIG. 14 .
  • Controlling the discharge of battery power based on the first discharge current includes: controlling the second DC/DC converter to discharge the battery power into the energy storage unit based on the first discharge current.
  • the second DC/DC converter is a bidirectional DC/DC converter
  • the method 1500 further includes: controlling the unidirectional AC/DC converter and the first DC/DC converter based on the first charging current When the converter is used to charge the battery through the AC power supply, the second DC/DC converter is controlled to charge the battery through the energy storage unit; and/or when the unidirectional AC/DC converter and the first DC/DC converter are controlled based on the second charging current When the DC converter is used to charge the battery through the AC power supply, the second DC/DC converter is controlled to charge the battery through the energy storage unit.
  • the first charging power of the energy storage unit to charge the battery is determined according to the discharge capacity of the energy storage unit, and the second charging power of the AC power supply to the battery is the charging demand power of the battery and the first charging power. 2. The difference in charging power.
  • charging the battery includes: acquiring the battery state of charge value SOC of the energy storage unit; if the SOC is greater than the state of charge threshold, controlling the second DC/DC converter to charge the battery through the energy storage unit charging the battery, and based on the first charging current, controlling the unidirectional AC/DC converter and the first DC/DC converter to charge the battery from an AC source; and/or controlling the second DC/DC if the SOC is greater than a state-of-charge threshold
  • the DC converter is used to charge the battery through the energy storage unit, and based on the second charging current, the unidirectional AC/DC converter, the first DC/DC converter is controlled to charge the battery through the AC power source.
  • the charging rate of the first charging current and/or the second charging current ranges from 2C to 10C.
  • the discharge rate of the first discharge current ranges from 0.1C to 1C.
  • the ratio of the first accumulated discharge threshold to the first accumulated charge threshold is less than or equal to 10%.
  • At least one of the first charging current, the first discharging current and the second charging current is determined according to the state parameters of the battery; wherein the state parameters of the battery include the following parameters At least one of: battery temperature, battery voltage, battery current, battery state of charge, and battery state of health.
  • receiving the first charging current sent by the BMS of the battery includes: regularly receiving the first charging current sent by the BMS; and/or receiving the first discharging current sent by the BMS includes: regularly receiving The first discharging current sent by the BMS; and/or, receiving the second charging current sent by the BMS includes: regularly receiving the second charging current sent by the BMS.
  • the method 1500 further includes: receiving the first charging voltage sent by the BMS, where the first charging voltage and the first charging current are carried in the first BCL message; and/or receiving the BMS Sending the first discharge voltage, wherein the first discharge voltage and the first discharge current are carried in the second BCL message; and/or receiving the second charge voltage sent by the BMS, wherein the second charge voltage and the second charge The current is carried in the third BCL message.
  • FIG. 16 shows a schematic structural block diagram of an electronic device 1600 according to an embodiment of the present application.
  • an electronic device 1600 includes a memory 1610 and a processor 1620, wherein the memory 1610 is used to store a computer program, and the processor 1620 is used to read the computer program and execute the aforementioned various programs of the present application based on the computer program. Example method.
  • the electronic device 1600 can be used for any one or more of BMS and charging and discharging devices.
  • the processor in the BMS in addition to the processor in the charging and discharging device reading the corresponding computer program and executing the charging method corresponding to the charging and discharging device in the above various embodiments based on the computer program, the processor in the BMS can also read The corresponding computer program executes the charging method corresponding to the BMS in the foregoing various embodiments based on the computer program.
  • an embodiment of the present application further provides a readable storage medium for storing a computer program, and the computer program is used to execute the methods in the foregoing various embodiments of the present application.
  • the computer program may be a computer program in the above charging and discharging device and/or BMS.
  • sequence numbers of the processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池充电的方法和充放电装置,能够保证电池的安全性能。该充放电装置包括第一DC/DC转换器、单向AC/DC转换器和控制单元,第一DC/DC转换器为单向DC/DC转换器,控制单元用于:接收第一充电电流,并基于第一充电电流,控制单向AC/DC转换器和第一DC/DC转换器以通过交流电源对电池充电;接收第一放电电流,并基于第一放电电流控制电池释放电量;接收第二充电电流,并基于第二充电电流,控制单向AC/DC转换器和第一DC/DC转换器以通过交流电源对所述电池充电。

Description

电池充电的方法和充放电装置 技术领域
本申请涉及电池领域,特别是涉及一种电池充电的方法和充放电装置。
背景技术
随着时代的发展,电动汽车由于其高环保性、低噪音、使用成本低等优点,具有巨大的市场前景且能够有效促进节能减排,有利社会的发展和进步。
对于电动汽车及其相关领域而言,电池技术是关乎其发展的一项重要因素,尤其是电池的安全性能,影响电池相关产品的发展和应用,且影响大众对电动汽车的接受度。因此,如何保证电池的安全性能,是一个待解决的技术问题。
发明内容
本申请实施例提供一种电池充电的方法和充放电装置,能够保证电池的安全性能。
第一方面,提供了一种充放电装置,包括第一直流/直流DC/DC转换器、单向交流/直流AC/DC转换器和控制单元,所述第一DC/DC转换器为单向DC/DC转换器,所述控制单元用于:接收电池的电池管理系统BMS发送的第一充电电流,并基于所述第一充电电流,控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过交流电源对所述电池充电;接收所述BMS发送的第一放电电流,并基于所述第一放电电流控制所述电池释放电量,其中,所述第一放电电流是当所述电池的第一累积充电量大于或等于第一累积充电量阈值且所述电池的电池单体的电压未超过电池单体的满充电压时,所述BMS发送的放电电流;接收所述BMS发送的第二充电电流,并基于所述第二充电电流,控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过所述交流电源对所述电池充电,其中,所述第二充电电流是当所述电池的第一累积放电量大于或等于第一累积放电量阈值时,所述BMS发送的充电电流。
本申请实施例,在对电池进行充电的过程中,充放电装置可基于BMS发送的第一充电电流和第一放电电流实现对电池的充电和放电,从而避免电池因持续充电造成的发热、锂离子聚集等问题,继而避免由于发热、锂离子聚集等问题引发电池的安全问题,例如电池燃烧或爆炸等,保证电池的安全性能。
进一步地,充放电装置包括单向AC/DC转换器和单向DC/DC转换器,即本申请实施例的充放电装置的结构与现有的充电桩结构相同,因此,在不改动现有充电桩 结构的基础上即可以实现对电池的充电和放电,大大减小了充电成本。
在一些可能的实施例中,所述控制单元还用于:接收所述BMS发送的第二放电电流,并基于所述第二放电电流,控制所述电池释放电量,其中,所述第二放电电流是当所述电池的第二累积充电量大于或等于第二累积充电量阈值且所述电池的电池单体的电压未超过所述满充电压时,所述BMS发送的放电电流。
上述技术方案,充放电装置通过和BMS之间的信息交互,完成对电池的充电、放电以及再次充电之后,可进一步地对电池进行再次放电。按照该方式,本申请实施例的充放电装置可对电池进行多次充放电,即充电和放电过程依次循环进行,在保证电池性能的基础上,实现对电池的逐步充电。
在一些可能的实施例中,所述控制单元还用于:接收所述BMS发送的充电停止命令;基于所述充电停止命令,控制所述单向AC/DC转换器和所述第一DC/DC转换器以使所述交流电源停止对所述电池充电,其中,所述充电停止命令是当所述电池的电池单体的电压超过所述满充电压时,所述BMS发送的命令。
在一些可能的实施例中,所述充放电装置还包括第二DC/DC转换器;所述控制单元具体用于:基于所述第一放电电流,控制所述第二DC/DC转换器以将所述电池的电量释放到储能单元中。
上述技术方案,将电池的电量释放到储能单元中,使得储能单元可基于接收到的电量进行其他操作,避免了电量的浪费。此外,本申请实施例的充放电装置在现有充电桩的基础上增加了第二DC/DC转化器,对现有充电桩的改动较小,有利于减小成本。
在一些可能的实施例中,所述第二DC/DC转换器为双向DC/DC转换器,所述控制单元还用于:在基于所述第一充电电流控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过交流电源对所述电池充电时,控制所述第二DC/DC转换器以通过所述储能单元对所述电池充电;和/或在基于所述第二充电电流控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过交流电源对所述电池充电时,控制所述第二DC/DC转换器以通过所述储能单元对所述电池充电。
上述技术方案,储能单元除了可以接收电池释放的电量之外,还可以对电池进行充电,一方面,避免了因储能单元中的电量达到满额而无法继续将电池的电量释放到储能单元的问题,保证了充电过程的正常进行。另一方面,储能单元利用接收到的电池释放的电量对电池进行充电,实现了电池电量的循环利用,节省了电能。再一方面,交流电源和储能单元同时对电池进行充电,有利于提高电池的充电速率,节省充电时间。
在一些可能的实施例中,所述储能单元向所述电池充电的第一充电功率是根据所述储能单元的放电能力确定的,所述交流电源向所述电池充电的第二充电功率为所述电池的充电需求功率与所述第二充电功率之差。
在一些可能的实施例中,所述控制单元具体用于:获取所述储能单元的电池荷电状态值SOC;若所述SOC大于荷电状态阈值,控制所述第二DC/DC转换器以通过所述储能单元对所述电池充电,以及基于所述第一充电电流,控制所述单向AC/DC转 换器和所述第一DC/DC转换器以通过所述交流电源对所述电池充电;和/或若所述SOC大于荷电状态阈值,控制所述第二DC/DC转换器以通过所述储能单元对所述电池充电,以及基于所述第二充电电流,控制所述单向AC/DC转换器、所述第一DC/DC转换器以通过所述交流电源对所述电池充电。
上述技术方案,根据储能单元的SOC,确定是否使用储能单元辅助交流电源一起向电池充电,从而能够在储能单元存储的电量足够时提升充放电装置的充电效率。
在一些可能的实施例中,所述第一充电电流和/或所述第二充电电流的充电倍率的范围为2C至10C之间。
上述技术方案,在保证电池的安全性能的基础上,第一充电电流和/或第二充电电流的充电倍率的范围为2C至10C之间,实现了大电流快速充电的目的,从而提高了单次充电过程中电池的充电量,大大减小了电池的充电时间,提高了用户体验。
进一步地,受限于持续充电过程中锂离子在负极聚集,充电电流也受到了限制,因而无法利用持续的大电流实现对电池的快速充电,而本申请实施例的技术方案,利用大电流对电池进行充电,且在一次大电流充电后对电池进行放电,释放充电过程中聚集于电池负极的锂离子,进而后续可以再次利用大电流对电池进行充电,以实现电池的快速充电。
在一些可能的实施例中,所述第一放电电流的放电倍率的范围为0.1C至1C之间。
上述技术方案,第一放电电流的放电倍率的范围为0.1C至1C之间,以实现小电流放电,旨在通过电池小电流的放电,释放聚集于电池负极的锂离子,而不会造成电池中已充入的电量过多流失。
在一些可能的实施例中,所述第一累积放电量阈值与所述第一累积充电量阈值之比小于或等于10%。
上述技术方案,设置放电过程中的累积放电量阈值以及充电过程中的累积充电阈量值的比例,可以更好的控制充电过程中电池的充电量和放电过程中电池的放电量,使得放电量较小,不会造成电池中已充入的电量过多流失。
在一些可能的实施例中,所述第一充电电流、所述第一放电电流与所述第二充电电流中的至少一项是根据所述电池的状态参数确定得到的;其中,所述电池的状态参数包括以下参数中的至少一项:电池温度,电池电压、电池电流、电池荷电状态和电池健康状态。
上述技术方案,第一充电电流、第二充电电流和第一放电电流中的至少一种为根据电池的状态参数确定的电流时,其可以更好的适应于电池当前的状态参数,提升电池的充电效率和/或放电效率,且不会对电池造成损伤影响。
在一些可能的实施例中,所述控制单元具体用于:定期接收所述BMS发送的所述第一充电电流;和/或,定期接收所述BMS发送的所述第一放电电流;和/或,定期接收所述BMS发送的所述第二充电电流。
上述技术方案,充放电装置在对电池进行单次充电和/或单次放电的过程中,充电电流和/或放电电流是BMS定期发送的,一方面,通过该实施方式,充放电装置可 通过定期调整的充电电流和/或放电电流对电池进行充电,以提高充放电效率,另一方面,充放电装置还可以通过该定期发送的充电电流和/或放电电流,确定BMS和电池的状态正常,从而可继续对电池进行充电或控制电池放电,以保证电池的安全性能。
在一些可能的实施例中,所述控制单元还用于:接收所述BMS发送的第一充电电压,其中,所述第一充电电压和所述第一充电电流携带于第一电池充电需求BCL报文中;和/或,接收所述BMS发送的第一放电电压,其中,所述第一放电电压和所述第一放电电流携带于第二BCL报文中;和/或,接收所述BMS发送的第二充电电压,其中,所述第二充电电压和所述第二充电电流携带于第三BCL报文中。
上述技术方案,充放电装置和BMS之间的通信可兼容现有的充电机和BMS之间的通信协议,因此,充放电装置和BMS之间的通信便于实现,且具有良好的应用前景。
第二方面,提供了一种电池充电的方法,应用于包括第一直流/直流DC/DC转换器和单向交流/直流AC/DC转换器的充放电装置,所述第一DC/DC转换器为单向DC/DC转换器,所述方法包括:接收电池的电池管理系统BMS发送的第一充电电流,并基于所述第一充电电流,控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过交流电源对所述电池充电;接收所述BMS发送的第一放电电流,并基于所述第一放电电流控制所述电池释放电量,其中,所述第一放电电流是当所述电池的第一累积充电量大于或等于第一累积充电量阈值且所述电池的电池单体的电压未超过电池单体的满充电压时,所述BMS发送的放电电流;接收所述BMS发送的第二充电电流,并基于所述第二充电电流,控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过所述交流电源对所述电池充电,其中,所述第二充电电流是当所述电池的第一累积放电量大于或等于第一累积放电量阈值时,所述BMS发送的充电电流。
第三方面,提供了一种充放电装置,包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,执行上述第二方面或其各实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例适用的一种充电系统的架构图;
图2是本申请实施例提供的一种电池充电的方法的示意性流程框图;
图3是本申请实施例提供的另一电池充电的方法的示意性流程框图;
图4是本申请实施例提供的电池的充电电流和放电电流的示意性波形图;
图5是本申请实施例提供的另一电池充电的方法的示意性流程框图;
图6是本申请实施例提供的另一电池充电的方法的示意性流程框图;
图7是本申请实施例提供的另一电池充电的方法的示意性流程框图;
图8是本申请实施例提供的另一电池充电的方法的示意性流程框图;
图9是本申请实施例提供的一种电池管理系统BMS的示意性结构框图;
图10是本申请实施例提供的一种充放电装置的示意性结构框图;
图11是本申请实施例提供的另一充放电装置的示意性结构框图;
图12是本申请实施例提供的充放电装置中一种功率转换单元的示意性结构框图;
图13是本申请实施例提供的另一种功率转换单元的示意性结构框图;
图14是本申请实施例提供的再一种功率转换单元的示意性结构图;
图15是本申请实施例的一种电池充电的方法的示意性流程图;
图16是本申请一个实施例的电子装置的示意性结构框图。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
在新能源领域中,动力电池可作为用电装置(例如车辆、船舶或航天器等)的主要动力源,而储能电池可作为用电装置的充电来源,二者的重要性均不言而喻。作为示例而非限定,在一些应用场景中,动力电池可为用电装置中的电池,储能电池可为充电装置中的电池。为了便于描述,在下文中,动力电池和储能电池均可统称为电池。
目前,市面上的电池多为可充电的蓄电池,最常见的是锂电池,例如锂离子电池或锂离子聚合物电池等等。在充电过程中,一般采用持续充电的方式对电池进行充电,而对电池进行持续充电会造成电池的析锂、发热等现象的发生,其中,析锂、发热等现象不仅会使电池性能下降,循环寿命大幅缩短,还限制了电池的快充容量,并有可能引起燃烧、爆炸等灾难性后果,造成严重的安全问题。
为了保证电池的安全性能,本申请提出一种新的电池充电的方法和充电系统。
图1示出了本申请实施例适用的一种充电系统的架构图。
如图1所示,该充电系统100可包括:充放电装置110和电池系统120,可选地,该电池系统120可为电动汽车(包含纯电动汽车和可插电的混合动力电动汽车)中的电池系统或者其它应用场景下的电池系统。
可选地,电池系统120中可设置有至少一个电池包(battery pack),该至少一 个电池包的整体可统称为电池121。从电池的种类而言,该电池121可以是任意类型的电池,包括但不限于:锂离子电池、锂金属电池、锂硫电池、铅酸电池、镍隔电池、镍氢电池、或者锂空气电池等等。从电池的规模而言,本申请实施例中的电池121可以是电芯/电池单体(cell),也可以是电池模组或电池包,电池模组或电池包均可由多个电池串并联形成,在本申请实施例中,电池121的具体类型和规模均不做具体限定。
此外,为了智能化管理及维护该电池121,防止电池出现过充电和过放电,延长电池的使用寿命,电池系统120中一般还设置有电池管理系统(battery management system,BMS)122,用于监控电池121的状态。可选地,该BMS 122可以与电池121集成设置于同一设备/装置中,或者,该BMS 122也可作为独立的设备/装置设置于电池121之外。
具体地,充放电装置110是一种为电池系统120中的电池121补充电能和/或控制电池121放电的装置。
可选地,本申请实施例中的充放电装置110可以为普通充电桩、超级充电桩、支持汽车对电网(vehicle to grid,V2G)模式的充电桩,或者可以对电池进行充和/或放电的充放电装置/设备等。本申请实施例对充放电装置110的具体类型和具体应用场景不做限定。
可选地,如图1所示,充放电装置110可通过电线130连接于电池121,且通过通信线140连接于BMS 122,其中,通信线140用于实现充放电装置110以及BMS之间的信息交互。
作为示例,该通信线140包括但不限于是控制器局域网(control area network,CAN)通信总线或者菊花链(daisy chain)通信总线。
可选地,充放电装置110除了可通过通信线140与BMS 122进行通信以外,还可以通过无线网络与BMS 122进行通信。本申请实施例对充放电装置与BMS 122的有线通信类型或无线通信类型均不做具体限定。
图2示出了本申请实施例提出的一种电池充电的方法200的示意性流程框图。可选地,本申请实施例的方法200可适用于上文图1所示的充放电装置110和电池系统120。
如图2所示,该电池充电的方法200可包括以下步骤。
步骤210:电池管理系统BMS获取第一充电电流。
步骤220:BMS向充放电装置发送第一充电电流。
步骤230:充放电装置基于第一充电电流对电池充电。
步骤240:若电池的第一累积充电量大于或等于第一累积充电量阈值且电池的电池单体的电压未超过电池单体的满充电压,BMS获取第一放电电流。
步骤250:BMS向充放电装置发送第一放电电流。
步骤260:充放电装置基于第一放电电流控制电池放电。
在本申请实施例中,提供了一种可实现于充放电装置以及BMS之间的充电方法,在对电池进行充电的过程中,充放电装置可基于BMS发送的第一充电电流和第一放电电流实现对电池的充电和放电,避免持续对电池充电,从而避免电池因持续充电 造成的发热、锂离子聚集等问题。由于发热会造成电池温度上升,锂离子聚集产生的结晶物可能会刺穿电池,引发电解液泄露造成电池短路,电池温度上升和电池短路等均可能会造成电池的安全问题,例如引发电池燃烧或爆炸等。因此,通过本申请实施例的技术方案,充放电装置基于BMS发送的第一充电电流和第一放电电流实现对电池的充电和放电,可以保证电池的安全性能。另外,持续充电的过程中,锂离子持续聚集也会造成析锂问题,影响电池的使用寿命和充电能力,因此,通过本申请实施例的技术方案,也可保证电池的使用寿命和充电容量。
具体地,在步骤210至步骤230中,BMS可先进入充电模式以控制充放电装置对电池充电,首先,BMS获取第一充电电流,在BMS向充放电装置发送第一充电电流后,充放电装置基于接收的第一充电电流对电池充电。
可选地,BMS可从其自身的功能单元(例如,存储单元或者处理单元)中获取第一充电电流,或者,BMS也可从其它装置获取第一充电电流。在一些实施方式中,该第一充电电流可为预设电流,该预设电流可以为固定值,或者也可以随时间按照预设方式进行变化。或者,在另一些实施方式中,该第一充电电流也可为根据电池的状态参数确定的电流,该第一充电电流随电池的状态参数的变化而变化。
可选地,充放电装置可连接于电源,该电源可为交流电源和/或直流电源,充放电装置接收第一充电电流的信息后,基于第一充电电流,通过交流电源和/或直流电源对电池充电。
进一步地,当充放电装置基于第一充电电流对电池充电的过程中,BMS可获取电池的第一累积充电量,并判断该第一累积充电量是否大于或等于第一累积充电量阈值,若电池的第一累积充电量大于或等于第一累积充电量阈值且电池的电池单体的电压未超过电池单体的满充电压,BMS获取第一放电电流。
具体地,如上文图1中对于电池的说明可知,电池可包括一个或多个电池单体,BMS可通过监控电池中一个或多个电池单体的电压,以监控该电池是否达到满充状态。可选地,若电池包括多个电池单体,则多个电池单体的电压可能不同,在该情况下,可通过判断电池单体的最大电压是否超过电池单体的满充电压,以判断电池是否达到满充状态。或者,在其它方式中,除了电池单体的最大电压以外,也可利用电池中电池单体的其它电压,判断电池是否达到满充状态。
在电池的电池单体的电压未超过电池单体的满充电压,即电池未达到满充状态的前提下,若电池的第一累积充电量大于或等于第一累积充电量阈值,BMS获取第一放电电流,即对于电池来说,由充电模式转入放电模式。
可选地,上述第一累积充电量可以为第一累积充电容量或者也可以为第一累积充电电量。对应的,若第一累积充电量为第一累积充电容量,则第一累积充电量阈值为第一累积充电容量阈值,若第一累积充电量为第一累积充电电量,则第一累积充电量阈值为第一累积充电电量阈值。
在一些实施方式中,上述第一累积充电量阈值可以为预设阈值,该预设阈值可以为固定阈值,或者也可以随时间按照预设方式进行变化。
在另一些实施方式中,该第一累积充电量阈值也可以根据电池的状态参数确定, 即电池的状态参数发生变化时,该第一累积充电量阈值也随之变化,通过该实施方式,第一累积充电量阈值可以更好的适应于电池当前的状态参数,以能够更好的控制当前的充电过程,提升电池的充电效率,且不会对电池造成损伤影响。
进一步地,在步骤240至步骤260中,BMS获取第一放电电流,并将该第一放电电流发送给充放电装置,充放电装置基于接收到的第一放电电流控制电池放电。
可选地,BMS可从其自身的功能单元(例如,存储单元或者处理单元)中获取第一放电电流,或者,BMS也可从其它装置获取第一放电电流。在一些实施方式中,该第一放电电流可为预设电流,该预设电流可以为固定值,或者也可以随时间按照预设方式进行变化。或者,在另一些实施方式中,该第一放电电流也可为根据电池的状态参数确定的电流,该第一放电电流随电池的状态参数的变化而变化。在一些实施方式中,在放电模式或放电阶段,可将电池的电传输至储能装置中和/或电网,有利于电能的循环利用。该储能装置可以设置于充放电装置中也可设置于充放电装置以外,旨在使得其可接收电池的放电电流,本申请实施例对储能装置的具体设置不做限定。可选的,在放电模式,也可将电池的电量用其他方式消耗,本申请实施例对消耗电能的具体方式不做限定。
进一步地,在充放电装置控制电池放电的过程中,BMS可获取电池在放电过程中的第一累积放电量,并判断该第一累积放电量是否大于或等于第一累积放电量阈值。
可选地,上述第一累积放电量可以为第一累积放电容量或者也可以为第一累积放电电量。对应的,若第一累积放电量为第一累积放电容量,则第一累积放电量阈值为第一累积放电容量阈值,若第一累积放电量为第一累积放电电量,则第一累积放电量阈值为第一累积放电电量阈值。
在一些实施方式中,上述第一累积放电量阈值可以为预设阈值,该预设阈值可以为固定阈值,或者也可以随时间按照预设方式进行变化。
在另一些实施方式中,该第一累积放电量阈值也可以根据电池的状态参数确定,即电池的状态参数发生变化时,该第一累积放电量阈值也随之变化,通过该实施方式,第一累积放电量阈值可以更好的适应于电池当前的状态参数,以能够更好的控制当前的放电过程,提升电池的放电效率,且不会对电池造成损伤影响。
当第一累积放电量大于或等于第一累积放电量阈值时,充放电装置控制电池停止放电。
通过上述过程,充放电装置基于BMS发送的第一充电电流和第一放电电流实现对电池的充电和放电,从而避免电池因持续充电造成的发热、锂离子聚集等问题,继而避免由于发热、锂离子聚集等问题引发电池的安全问题,例如电池燃烧或爆炸等,保证电池的安全性能。另外,基于第一充电电流对电池充到第一累计充电量后再基于第一放电电流将电池的电量释放到第一累计放电量,可以释放充电过程中聚集于电池负极的锂离子,防止持续充电中产生的析锂问题,从而提升电池的使用寿命和充电能力。
对于电池充电来说,在经过一次充电以及一次放电之后,可继续对电池进行第二次充电,以继续对电池进行充电。
可选地,如图2所示,本申请实施例中的电池充电的方法200还可进一步包括以下步骤。
步骤270:若电池的第一累积放电量大于或等于第一累积放电量阈值,BMS获取第二充电电流。
步骤280:BMS向充放电装置发送第二充电电流。
步骤290:充放电装置基于第二充电电流对电池充电。
具体地,在上述步骤270至步骤290中,BMS判断电池的第一累积放电量大于或等于第一累积放电量阈值时,BMS获取第二充电电流,并将该第二充电电流发送至充放电装置,充放电装置基于接收的第二充电电流继续对电池充电,即对于电池来说,由放电模式重新进入充电模式。可选地,该步骤270至步骤290的其它相关技术方案可以参见上文中步骤210至步骤230的相关描述,此处不做过多赘述。
可理解的,在上述申请实施例中,对电池进行充放电除了上述充放电所需的电流信息,还需要充放电所需的电压信息,例如,在步骤210至230中:BMS获取第一充电电流和第一充电电压,并向充放电装置发送该第一充电电流和第一充电电压,该充放电装置用于基于该第一充电电流和第一充电电压对电池充电;在步骤240至260中,BMS获取第一放电电流和第一放电电压,并向充放电装置发送该第一放电电流和第一放电电压,该充放电装置用于基于该第一放电电流和该第一放电电压对电池放电。后续充放电过程可与上述充放电过程类似,不再赘述。
图3示出了本申请实施例提供的另一电池充电的方法300的示意性流程框图。
如图3所示,该电池充电的方法300除了包括上述步骤210至步骤290以外,还可进一步包括以下步骤。
步骤310:若电池的第二累积充电量大于或等于第二累积充电量阈值且电池的电池单体的电压未超过电池单体的满充电压,BMS获取第二放电电流。
步骤320:BMS向充放电装置发送第二放电电流。
步骤330:充放电装置基于第二放电电流控制电池放电。
在本申请实施例中,通过BMS和充放电装置之间的信息交互,完成对电池的充电、放电以及再次充电、再次放电。按照该方式,本申请实施例可进一步提供一种多次循环的充放电方法,充电和放电过程依次循环进行,在保证电池安全性能的基础上,实现对电池的逐步充电。
具体地,在步骤310中,当充放电装置基于第二充电电流对电池充电的过程中,BMS可获取电池的第二累积充电量,并判断该第二累积充电量是否大于或等于第二累积充电量阈值。
可选地,该第二累积充电量可以仅为充放电装置基于第二充电电流对电池的充电量,或者,该第二累积充电量也可以为电池当前的总充电量,作为示例,该电池当前总的充电量=基于第一充电电流的充电量+基于第二充电电流的充电量-基于第一放电电流的放电量。对应的,第二累积充电量阈值也可以为基于单次充电的充电量阈值,或者,第二累积充电量阈值也可以为基于总充电量的充电量阈值。
与上文介绍的第一累积充电量和第一累积充电量阈值类似,本申请实施例中, 第二累积充电量可以为第二累积充电容量或者也可以为第二累积充电电量。对应的,若第二累积充电量为第二累积充电容量,则第一累积充电量阈值为第二累积充电容量阈值,若第二累积充电量为第二累积充电电量,则第二累积充电量阈值为第二累积充电电量阈值。
可选地,在一些实施方式中,上述第二累积充电量阈值可以为预设阈值,该预设阈值可以为固定阈值,或者也可以随时间按照预设方式进行变化。
在另一些实施方式中,该第二累积充电量阈值也可以根据电池的状态参数确定,即电池的状态参数发生变化时,该第二累积充电量阈值也随之变化。
进一步地,在步骤310中,当第二累积充电量大于或等于第二累积充电量阈值,且电池的电池单体的电压未超过电池单体的满充电压时,BMS获取第二放电电流。且在步骤320至步骤330中,BMS将该第二放电电流发送给充放电装置,且充放电装置基于接收到的第二放电电流控制电池放电。
具体地,上述步骤中的其它相关技术方案可以参见上文步骤240至步骤260的相关描述,此处不做过多赘述。
作为示例,图4示出了一种本申请实施例提供的电池的充电电流和放电电流的示意性波形图。
如图4所示,从t1至t2时段,充放电装置基于第一充电电流对电池充电,充电至该电池的第一累积充电量大于或等于第一累积充电量阈值且该电池的电池单体的电压未超过电池单体的满充电压,从t2至t3时段,充放电装置基于第一放电电流控制电池放电,放电至该电池的第一累积放电量大于或等于第一累积放电量阈值,可选的,第一放电电流的持续时间可小于第一充电电流的持续时间。从t3至t4时段,充放电装置基于第二充电电流对电池继续充电,充电至该电池的第二累积充电量大于或等于第二累积充电量阈值且该电池的电池单体的电压未超过电池单体的满充电压,从t4至t5时段,充放电装置基于第二放电电流控制电池放电,放电至该电池的第二累积放电量大于或等于第二累积放电量阈值,可选的,第二充电电流的持续时间可小于第一充电电流的持续时间。可以理解的,上述充放过程持续进行直至该电池充满。
需要说明的是,图4中仅示意性的示出了第一充电电流、第二充电电流、第一放电电流和第二放电电流的波形图,第一充电电流在t1至t2可为如图4所示的恒定电流,或者也可以为随时间变化的变化电流,类似地,第二充电电流、第一放电电流和第二放电电流可为如图4所示的恒定电流,或者也可以为随时间变化的变化电流。另外,图4中示意性的示出的第一充电电流和第二充电电流的大小相同,第一放电电流和第二放电电流的大小相同,除此之外,第一充电电流和第二充电电流的大小也可以不同,第一放电电流和第二放电电流的大小也可以不同,本申请实施例对此不做具体限定。
图5示出了本申请实施例提供的另一电池充电的方法500的示意性流程框图。
如图5所示,该电池充电的方法500除了包括上述步骤210至步骤290以外,还可进一步包括以下步骤。
步骤510:若电池的电池单体的电压超过电池单体的满充电压,BMS向充放电 装置发送充电停止命令。
步骤520:充放电装置停止对电池充电。
具体地,如上文所述,BMS可通过监控电池中一个或多个电池单体的电压,以监控该电池是否达到满充状态。可选地,在一些实施方式中,可通过判断电池单体的最大电压是否超过电池单体的满充电压,以判断电池是否达到满充状态。当电池单体的最大电压超过电池单体的满充电压,则说明电池达到满充状态,BMS此时向充放电装置发送充电停止命令,该充电停止命令用于指示充放电装置停止对电池充电,以使得充放电装置停止对电池充电。
可选地,该步骤510和步骤520可在电池的充电阶段执行,换言之,当BMS进入充电模式,且充放电装置接收BMS发送的充电电流后,对电池进行充电的过程中,BMS可获取电池的电池单体的电压,以判断电池是否达到满充状态,一旦电池的电池单体的电压超过电池单体的满充电压,则BMS向充放电装置发送充电停止命令,以使得充放电装置停止对电池充电。
因此,图5仅示意性的示出了步骤510和步骤520执行于步骤290之后,即执行于第二次充电过程中,可以理解的是,该步骤510和步骤520还可以执行于多次充放电的任意一次充电过程中。
可选地,在上述方法实施例中,由于利用了充放电装置对电池进行充电、放电以及再次充电,可以防止持续充电对电池引发的安全问题,进一步地,上述方法中的充电电流可以为大电流,以提高单次充电过程中电池的充电量,实现快速充电的目的。
另外,受限于持续充电过程中锂离子在负极聚集,充电电流也受到了限制,因而无法利用持续的大电流实现对电池的快速充电,而本申请实施例的技术方案,利用大电流对电池进行充电,且在一次大电流充电后对电池进行放电,释放充电过程中聚集于电池负极的锂离子,进而后续可以再次利用大电流对电池进行充电,以实现电池的快速充电。
具体地,在上述方法中,第一充电电流和/或第二充电电流可以为大电流,此外,在充放电装置基于第二充电电流对电池充电后,后续充电过程的充电电流也可为大电流。
可选地,为了实现大电流快速充电,第一充电电流和/或第二充电电流的充电倍率的范围为2C至10C之间。
进一步地,本申请实施例中放电电流为小电流,旨在通过电池小电流的放电,释放聚集于电池负极的锂离子,而不会造成电池中已充入的电量过多流失。
具体地,上述方法中的第一放电电流和/或第二放电电流可以为小电流,此外,在充放电装置基于第二放电电流控制电池放电后,后续放电过程的放电电流也可为小电流。
可选地,为了实现小电流放电,第一放电电流和/或第二放电电流的充电倍率的范围为0.1C至1C之间。
可选地,在上述方法中,为了更好的控制充电过程中电池的充电量和放电过程中电池的放电量,可设置放电过程中的累积放电量阈值以及充电过程中的累积充电量 阈值的比例,以使得放电量较小,而不会造成电池中已充入的电量过多流失。
作为示例,在上述方法中,第一累积放电量阈值与第一累积充电量阈值之比小于等于10%,和/或,第二累积放电量阈值与第二累积充电量阈值之比小于等于10%。
除此之外,在充放电装置基于第二充电电流和第二放电放电电流对电池充电和控制电池放电后,后续充放电过程中的累积放电量阈值与累积充电量阈值之比也可小于等于10%。
需要说明的是,上述比例10%还可以随着应用场景以及应用需求的变化而调整,本申请对于该比例的具体数值不做限定。
可选地,在上述方法实施例中,BMS获取的第一充电电流和第二充电电流可以相同或者不同。该第一充电电流和/或第二充电电流可以为预设的电流,或者,该第一充电电流和/或第二充电电流也可以为根据电池的状态参数确定的电流,当电池的状态参数发生变化,则第一充电电流和/或第二充电电流可为不同状态参数下对应的不同电流。其中,电池的状态参数包括以下参数中的至少一项:电池温度,电池电压、电池电流、电池荷电状态(state of charge,SOC)和电池健康状态(state of health,SOH)等等。
类似的,BMS获取的第一放电电流和第二放电电流可以相同或者不同。该第一放电电流和/或第二放电电流可以为预设的电流,或者,该第一放电电流和/或第二放电电流也可以为根据电池的状态参数确定的电流。
若第一充电电流、第二充电电流、第一放电电流和第二放电电流中的至少一种为根据电池的状态参数确定的电流时,其可以更好的适应于电池当前的状态参数,提升电池的充电效率和/或放电效率,且不会对电池造成损伤影响。
除此之外,在充放电装置基于第二充电电流和第二放电放电电流对电池充电和控制电池放电后,后续充放电过程中充电电流和/或放电电流同样可为预设的电流,或者,也可以为根据电池的状态参数确定的电流。
图6示出了本申请实施例提供的另一电池充电的方法600的示意性流程框图。
基于上文图2所示的方法200,如图6所示,上文步骤210可包括:
步骤610:BMS获取电池的状态参数,并根据状态参数确定第一充电电流。
上文步骤240可包括:
步骤640:若电池的第一累积充电量大于或等于第一累积充电量阈值且电池的电池单体的电压未超过电池单体的满充电压,BMS获取电池的状态参数,并根据状态参数确定第一放电电流。
上文步骤270可包括:
步骤670:若电池的第一累积放电量大于或等于第一累积放电量阈值,BMS获取电池的状态参数,并根据状态参数确定第二充电电流。
除此之外,本申请实施例中方法600的其它步骤可参见上文图2所示实施例的相关描述,此处不做过多赘述。
具体地,本申请实施例中,第一充电电流、第一放电电流以及第二充电电流均为根据电池的状态参数确定的电流。在不同时段,BMS可获取电池不同的状态参数, 并根据该状态参数确定当前的充电电流和放电电流。
可选地,根据电池的状态参数确定充电电流和放电电流可有多种实现方式,作为一种示例,可获取电池的状态参数与充电电流、放电电流的映射关系,根据该映射关系,通过电池的状态参数确定具体的充电电流和放电电流,其中,该映射关系可以是由大量的实验数据拟合得到的映射关系,具有较高的可信度和准确度,该映射关系具体可为映射表,映射图或者映射公式等等。此外,在其它示例中,还可根据大量的实验数据训练专用的神经网络模型,该神经网络模型可根据输入的电池的状态参数,输出充电电流和放电电流。
可选地,除了充电电流和放电电流以外,在上述方法实施例中,第一累积充电量阈值与第二累积充电量阈值可以相同或者不同。第一累积放电量阈值与第二累积放电量阈值可以相同或者不同。该第一累积充电量阈值、第二累积充电量阈值、第一累积放电量阈值与第二累积放电量阈值中的至少一种可为预设阈值。或者,该第一累积充电量阈值、第二累积充电量阈值、第一累积放电量阈值与第二累积放电量阈值中的至少一种也可以为根据电池的状态参数确定的阈值。
除此之外,在充放电装置基于第二充电电流和第二放电放电电流对电池充电和控制电池放电后,后续充放电过程中的累积放电量阈值与累积充电量阈值可以为预设阈值或者也可以为根据电池的状态参数确定的阈值。
通过上述申请实施例,若第一累积充电量阈值、第二累积充电量阈值、第一累积放电量阈值与第二累积放电量阈值中的至少一种为根据电池的状态参数确定的阈值时,其可以更好的适应于电池当前的状态参数,以能够更好的控制当前的充电过程和/或放电过程,保证充电量和放电量,实现电池的高效充电。
可选地,在上述方法实施例中,第一充电电流、第二充电电流、第一放电电流和第二放电电流中的至少一种可为BMS定期或不定期获取的电流,作为一种示例,第一充电电流、第二充电电流、第一放电电流和第二放电电流中的至少一种可为BMS定期或不定期根据电池的状态参数确定的电流,该电流随着电池的状态参数的变化而随之变化,具体地,BMS可定期获取电池的状态参数,从而确定第一充电电流、第二充电电流、第一放电电流和第二放电电流中的至少一种;或者,BMS实时获取电池的状态参数,当状态参数不定期变化时,BMS根据不定期变化的状态参数确定第一充电电流、第二充电电流、第一放电电流和第二放电电流中的至少一种。
进一步地,在此基础上,BMS定期或不定期向充放电装置发送该第一充电电流、第二充电电流、第一放电电流和第二放电电流中的至少一种,以使得充放电装置基于定期发送的电流对电池充电或控制电池放电。
在该实现方式中,充放电装置在对电池进行单次充电和/或单次放电的过程中,充电电流和/或放电电流是BMS定期或不定期发送的,一方面,可以通过该实施方式,定期或不定期调整充电电流和/或放电电流,以提高充放电效率,另一方面,还可以通过该定期或不定期发送的充电电流和/或放电电流,表示BMS和电池的状态正常,充放电装置可继续对电池进行充电或控制电池放电。因此,在该实施方式中,若充放电装置未接收到BMS定期或不定期发送的充电电流和/或放电电流,充放电装置可停止对电 池充电和/或停止控制电池放电,以保证电池的安全性能。
图7示出了本申请实施例提供的另一电池充电的方法700的示意性流程框图。
基于上文图2所示的方法200,如图7所示,上文步骤210可包括:
步骤710:BMS定期获取第一充电电流。
上文步骤220可包括:
步骤720:BMS定期向充放电装置发送第一充电电流。
上文步骤240可包括:
步骤740:若电池的第一累积充电量大于或等于第一累积充电量阈值且电池的电池单体的电压未超过电池单体的满充电压,定期获取第一放电电流。
上文步骤250可包括:
步骤750:BMS定期向充放电装置发送第一放电电流。
上文步骤270可包括:
步骤770:若电池的第一累积放电量大于或等于第一累积放电量阈值,定期获取第二充电电流。
上文步骤280可包括:
步骤780:BMS定期向充放电装置发送第二充电电流。
除此之外,本申请实施例中方法700的其它步骤可参见上文图2所示实施例的相关描述,此处不做过多赘述。
在本申请实施例中,BMS可定期获取第一充电电流、第一放电电流以及第二充电电流。对应的,BMS可定期向充放电装置发送第一充电电流、第一放电电流以及第二充电电流。
可理解的,在上述实施例中,对电池进行充放电除了上述充放电所需的电流信息,还需要充放电所需的电压信息,充放电所需的电压的获取方式对本发明实施例不造成任何限定。
可选地,在上述方法实施例中,BMS和充放电装置之间的通信可兼容现有的充电机和BMS之间的通信协议,因此,BMS和充放电装置之间的通信便于实现,且具有良好的应用前景。
具体地,在上述方法实施例的基础上,BMS还可获取第一充电电压、第二充电电压、第一放电电压和第二放电电压中的至少一种,并将该第一充电电压、第二充电电压、第一放电电压和第二放电电压中的至少一种发送给充放电装置,其中,该第一充电电流、第一充电电压携带于第一电池充电需求(BCL)报文中,和/或,第一放电电流、第一放电电压携带于第二BCL报文中,和/或,第二充电电流、第二充电电压携带于第三BCL报文中,和/或,第二放电电流、第二放电电压携带于第四BCL报文中。
除此之外,在充放电装置基于第二充电电流和第二放电放电电流对电池充电和控制电池放电后,后续充放电过程中的充电电流、充电电压、放电电流与放电电压也可以携带于BCL报文中,通过BMS发送给充放电装置。
图8示出了本申请实施例提供的另一电池充电的方法800的示意性流程框图。
如图8所示,该电池充电的方法800可包括以下步骤。
步骤810:BMS获取第一充电电流和第一充电电压。
步骤820:BMS向充放电装置发送第一BCL报文,该第一BCL报文携带第一充电电流和第一充电电压。
步骤830:充放电装置基于第一充电电流和第一充电电压对电池充电。
步骤840:若电池的第一累积充电量大于或等于第一累积充电量阈值且电池的电池单体的电压未超过电池单体的满充电压,BMS获取第一放电电流和第一放电电压。
步骤850:BMS向充放电装置发送第二BCL报文,该第二BCL报文携带第一放电电流和第二放电电压。
步骤860:充放电装置基于第一放电电流和第二放电电压控制电池放电。
步骤870:若电池的第一累积放电量大于或等于第一累积放电量阈值,BMS获取第二充电电流和第二充电电压。
步骤880:BMS向充放电装置发送第三BCL报文,该第三BCL报文携带第二充电电流和第二充电电压。
步骤890:充放电装置基于第二充电电流和第二充电电压对电池充电。
在本申请实施例中,利用现有的充电机和BMS之间的通信协议中的电池充电需求BCL报文,BMS向充放电装置发送充电电流和放电电流,且充放电装置基于接收的充电电流和放电电流对电池充电或者控制电池放电。
可选地,在BCL报文中,充电电压(包括上述第一充电电压和第二充电电压)与放电电压(包括上述第一放电电压和第二放电电压)的范围不同,且充电电流(包括上述第一充电电流和第二充电电流)与放电电流(包括上述第一放电电流和第二放电电流)的范围不同,充放电装置接收到的BCL报文中,可通过其中携带的电压和电流的大小,判断其属于充电电压和充电电流,还是属于放电电压和放电电流。
可选地,BMS可根据电池的状态参数确定充电电压和放电电压,或者,该充电电压和放电电压也可为预设值。
可选地,在一些实施方式中,BMS可定期获取充电电流和充电电压,且定期向充放电装置发送携带有该充电电流和充电电压的BCL报文,类似地,BMS也可定期获取放电电流和放电电压,且定期向充放电装置发送携带有该放电电流和放电电压的BCL报文。在该实施方式中,BCL报文的定期发送方式可与现有标准中BCL报文的定期发送方式相同。
上述实施例中以充放电电流和/或电压的信息交互报文为例进行说明的,可以理解的,为了实现对电池进行充放电,除了充放电阶段的处理外,还可以包含充放电前的车与充电机的握手交互、充放电的参数配置交互等,本发明实施例对此不作具体限定。
可选的,充电机和BMS之间的通信协议包括汽车对电网(vehicle to grid,V2G)模式和电网对汽车(grid to vehicle,G2V)模式下的通信协议。
上文结合图2至图8说明了本申请提供的电池充电的方法的具体实施例,下面,结合图9至图12说明本申请提供的相关装置的具体实施例,可以理解的是,下述各装置实施例中的相关描述可以参考前述各方法实施例,为了简洁,不再赘述。
图9示出了本申请一个实施例的电池管理系统BMS 900的示意性结构框图。如图9所示,该BMS 900包括:获取单元910,发送单元920和处理单元930。
在本申请的一个实施例中,获取单元910用于获取第一充电电流;发送单元920用于将第一充电电流发送给充放电装置,以使充放电装置基于第一充电电流对电池充电;处理单元930用于确定电池的第一累积充电量大于或等于第一累积充电量阈值且电池的电池单体的电压未超过电池单体的满充电压时,获取单元910还用于获取第一放电电流;发送单元920还用于将第一放电电流发送给充放电装置,以使充放电装置基于第一放电电流控制电池放电;可选地,处理单元930还用于确定电池的第一累积放电量大于或等于第一累积放电量阈值时,获取单元910还用于获取第二充电电流;发送单元920还用于将第二充电电流发送给充放电装置,以使充放电装置基于第二充电电流对电池充电。
可选地,处理单元930还用于确定电池的第二累积充电量大于或等于第二累积充电量阈值且电池的电池单体的电压未超过电池单体的满充电压时,获取单元910还用于获取第二放电电流;发送单元920还用于将第二放电电流发送给充放电装置,以使充放电装置基于第二放电电流控制电池放电。
可选地,处理单元930还用于确定电池的电池单体的电压超过电池单体的满充电压,发送单元920还用于向充放电装置发送充电停止命令,充电停止命令用于指示充放电装置停止对电池充电。
可选地,第一充电电流和/或第二充电电流的充电倍率的范围为2C至10C之间。
可选地,第一放电电流和/或第二放电电流的放电倍率的范围为0.1C至1C之间。
可选地,第一累积放电量阈值与第一累积充电量阈值之比小于等于10%,和/或,第二累积放电量阈值与第二累积充电量阈值之比小于等于10%。
可选地,获取单元910用于获取电池的状态参数,并根据状态参数确定第一充电电流;和/或,获取单元910用于获取电池的状态参数,并根据状态参数确定第一放电电流;和/或,获取单元910用于获取电池的状态参数,并根据状态参数确定第一放电电流;其中,电池的状态参数包括以下参数中的至少一项:电池温度,电池电压、电池电流、电池荷电状态和电池健康状态。
可选地,获取单元910用于定期获取第一充电电流,发送单元920用于将第一充电电流定期发送给充放电装置;和/或,获取单元910用于定期获取第一放电电流,发送单元920用于将第一放电电流定期发送给充放电装置;和/或,获取单元910用于定期获取第二充电电流,发送单元920用于将第二充电电流定期发送给充放电装置。
可选地,获取单元910还用于获取第一充电电压,发送单元920还用于将第一充电电压发送给充放电装置,其中,第一充电电流和第一充电电压携带于第一电池充电需求BCL报文中;和/或,获取单元910还用于获取第一放电电压,发送单元920还用于将第一放电电压发送给充放电装置,其中,第一放电电流和第一放电电压携带于第二BCL报文中;和/或,发送单元920还用于获取第二充电电压,发送单元920还用于将第二充电电压发送给充放电装置,其中,第二充电电流和第二充电电压携带于第三BCL报文中,和/或,获取单元910还用于获取第二放电电压,发送单元920还用于 将第二放电电压发送给充放电装置,其中,第二放电电流和第二放电电压携带于第四BCL报文中。
图10示出了本申请一个实施例的充放电装置1000的示意性结构框图。如图10所示,该充放电装置1000包括:接收单元1010和处理单元1020。
在本申请的一个实施例中,接收单元1010用于接收电池管理系统BMS发送的第一充电电流;处理单元1020用于基于第一充电电流对电池充电;接收单元1010还用于接收BMS发送的第一放电电流,处理单元1020还用于基于第一放电电流控制电池放电,其中,第一放电电流是当电池的第一累积充电量大于或等于第一累积充电量阈值且电池的电池单体的电压未超过电池单体的满充电压时,BMS发送的放电电流;接收单元1010还用于接收BMS发送的第二充电电流,处理单元1020还用于基于第二充电电流对电池充电,其中,第二充电电流是当电池的第一累积放电量大于或等于第一累积放电量阈值时,BMS发送的充电电流。
可选地,接收单元1010还用于接收BMS发送的第二放电电流,处理单元1020还用于基于第二放电电流控制电池放电,其中,第二放电电流是当电池的第二累积充电量大于或等于第二累积充电量阈值且电池的电池单体的电压未超过电池单体的满充电压时,BMS发送的放电电流。
可选地,接收单元1010还用于接收BMS发送的充电停止命令,处理单元1020用于停止对电池充电,其中,充电停止命令是当电池的电池单体的电压超过电池单体的满充电压时,BMS发送的命令。
可选地,第一充电电流和/或第二充电电流的充电倍率的范围为2C至10C之间。
可选地,第一放电电流和/或第二放电电流的放电倍率的范围为0.1C至1C之间。
可选地,第一累积放电量阈值与第一累积充电量阈值之比小于等于10%,和/或,第二累积放电量阈值与第二累积充电量阈值之比小于等于10%。
可选地,第一充电电流、第一放电电流与第二充电电流中的至少一项是BMS根据电池的状态参数确定得到的;其中,电池的状态参数包括以下参数中的至少一项:电池温度,电池电压、电池电流、电池荷电状态和电池健康状态。
可选地,接收单元1010用于定期接收BMS发送的第一充电电流;和/或,接收单元1010用于定期接收BMS发送的第一放电电流;和/或,接收单元1010用于定期接收BMS发送的第二充电电流。
可选地,接收单元1010还用于接收BMS发送的第一充电电压,其中,第一充电电压和第一充电电流携带于第一电池充电需求BCL报文中;和/或,接收单元1010还用于接收BMS发送的第一放电电压,其中,第一放电电压和第一放电电流携带于第二BCL报文中;和/或,接收单元1010还用于接收BMS发送的第二充电电压,其中,第二充电电压和第二充电电流携带于第三BCL报文中;和/或,接收单元1010还用于接收BMS发送的第二放电电压,其中,第二放电电压和第二放电电流携带于第四BCL报文中。
上文结合图2至图10说明了本申请提供基于充放电装置和BMS之间的信息交互实现的电池充电的方法和装置实施例,对于充放电装置而言,其可通过不同的硬件 架构实现对电池的充电并控制电池的放电。
图11示出了本申请实施例提供的另一充放电装置的示意性结构框图。
如图11所示,充放电装置1100可包括:控制单元1110和功率转换单元1120。
在一种实施方式中,控制单元1110用于接收BMS发送的第一充电电流,并基于第一充电电流,控制功率转换单元1120对电池充电;控制单元1110还用于接收BMS发送的第一放电电流,并基于第一放电电流,控制功率转换单元1120以使得电池放电,其中,第一放电电流是当电池的第一累积充电量大于或等于第一累积充电量阈值且电池的电池单体的电压未超过电池单体的满充电压时,BMS发送的放电电流;控制单元1110还用于接收BMS发送的第二充电电流,并基于第二充电电流,控制功率转换单元1120对电池充电,其中,第二充电电流是当电池的第一累积放电量大于或等于第一累积放电量阈值时,BMS发送的充电电流。
具体地,功率转换单元1120可包括高压器件,用于实现大功率的电能转换,而控制单元1110可包括低压电路,用于实现功率转换单元1120中高压器件的控制功能。除此之外,控制单元1110还可与BMS建立通信连接,例如,作为示例但非限定,控制单元1110可通过通信总线与BMS建立通信连接,或者,控制单元1110也可通过无线网与BMS建立通信连接。
可选地,作为一种示例,图12示出了本申请实施例提供的一种功率转换单元1120的示意性结构框图。
如图12所示,功率转换单元1120可连接于交流(alternating current,AC)电源和电池,其中,功率转换单元1120包括单向交流/直流(alternating current/direct current,AC/DC)转换器1210和第一直流/直流(direct current/direct current,DC/DC)转换器1220。其中,第一DC/DC转换器1220为单向DC/DC转换器。
从图12中可以看出,单向AC/DC转换器1210的第一端可连接至AC电源,单向AC/DC转换器1210的第二端可连接至第一DC/DC转换器1220的第一端,第一DC/DC转换器1220的第二端可连接至电池,以实现电池与AC电源之间的电流传输。
在该情况下,BMS可以向控制单元1110发送第一充电电流,相应地,控制单元1110可以用于接收BMS发送的第一充电电流,并基于第一充电电流,控制单向AC/DC转换器1210和第一DC/DC转换器1220以通过交流电源对电池充电。
并且,在电池的第一累积充电量大于或等于第一累积充电量阈值且电池的电池单体的电压未超过电池单体的满充电压时,BMS可向控制单元1110发送第一放电电流,控制单元1110可以用于接收第一放电电流,并基于第一放电电流控制电池释放电量。
上述充放电装置,在对电池进行充电的过程中,可基于BMS发送的第一充电电流和第一放电电流实现对电池的充电和放电,避免持续对电池充电,从而避免电池因持续充电造成的发热、锂离子聚集等问题。由于发热会造成电池温度上升,锂离子聚集产生的结晶物可能会刺穿电池,引发电解液泄露造成电池短路,电池温度上升和电池短路等均可能会造成电池的安全问题,例如引发电池燃烧或爆炸等。因此,充放电装置基于BMS发送的第一充电电流和第一放电电流实现对电池的充电和放电,可以保证电池的安全性能。另外,持续充电的过程中,锂离子持续聚集也会造成析锂问题, 影响电池的使用寿命和充电能力,因此,上述充放电装置也可保证电池的使用寿命和充电容量。
进一步地,充放电装置包括单向AC/DC转换器和单向DC/DC转换器,这样本申请实施例的充放电装置的结构与现有的充电桩结构相同,也就是说,在不改动现有充电桩结构的基础上即能实现对电池的充电和放电,大大减小了充电成本。
在电池的第一累积放电量大于或等于第一累积放电量阈值时,可选地,控制单元1110还可以用于接收BMS发送的第二充电电流,并基于第二充电电流,控制单向AC/DC转换器1210和第一DC/DC转换器1220以通过交流电源对电池充电。
其中,在控制单元1110控制单向AC/DC转换器1210和第一DC/DC转换器1220以通过交流电源对电池充电时,控制单元1110可以依次控制单向AC/DC转换器1210和第一DC/DC转换器1220。
除了第一充电电流、第一放电电流和第二充电电流之外,当电池的第二累积充电量大于或等于第二累积充电量阈值且电池的电池单体的电压未超过满充电压时,BMS还可以向控制单元1110发送第二放电电流,相应地,控制单元1110还可以用于接收BMS发送的第二放电电流,并基于第二放电电流,控制电池释放电量。
在对电池循环进行充电和放电的过程中,当电池的电池单体的电压超过满充电压时,BMS可向控制单元1110发送充电停止命令,该充电停止命令用于指示充放电装置停止对电池充电。相应地,控制单元1110用于接收BMS发送的充电停止命令,并基于充电停止命令,控制单向AC/DC转换器1210和第一DC/DC转换器1220以使交流电源停止对电池充电。
该技术方案,在电池的电池单体的电压超过满充电压时,控制单元通过接收充电停止命令控制AC/DC转换器和第一DC/DC转换器以使交流电源停止对电池充电,防止电池出现过充电的问题,进一步保证了电池的安全性能。
可选地,如图13所示,功率转换单元1120还可以包括第二DC/DC转换器1230。具体而言,第二DC/DC转换器1230的第二端可以分别连接至电池和第一DC/DC转换器1220的第二端。
基于此,控制单元1100具体可以用于:基于第一放电电流,控制第二DC/DC转换器1230以将电池的电量释放到储能单元中。该技术方案将电池的电量释放到储能单元中,使得储能单元可基于接收到的电量进行其他操作,避免了电量的浪费。
可选地,储能单元可以是小功率储能单元。例如,储能单元可以是超级电池或者碳酸锂电池。通过将储能单元设置为小功率储能单元,可降低充电系统的成本。
可选地,储能单元可以独立于充放电装置1110设置,或者,充放电装置1110也可以包括储能单元。需要说明的是,在充放电装置包括储能单元时,如图14所示,储能单元可以作为功率转换单元1120的一部分,也可以作为与功率转换单元1120相互独立的单元并通过电线与功率转化单元1120相连,本申请实施例对此不作具体限定。
为了描述方便,下文以储能单元1240作为功率转换单元1120的一部分为例描述本申请实施例的方案。
从图14中可以看出,在功率转换单元1120中,单向AC/DC转换器1210的第 一端与交流电源连接,第二端与第一DC/DC转换器1220的第一端连接,第一DC/DC转换器1220的第二端分别连接至电池和第二DC/DC转换器1230的第二端,第二DC/DC转换器1230的第一端与储能单元1240连接。
进一步地,在对电池放电之前,控制单元1110可以控制单向AC/DC转换器1210和第一DC/DC转换器1220关闭向电池充电的模式,且控制第二DC/DC转换器1230开启向储能单元1240放电的模式。
在一种实现方式中,第二DC/DC转换器1230可以为单向DC/DC转换器。
在另一种实现方式中,考虑到电池将电量释放到储能单元中,由于储能电源可储存的电量是有限的,可能会出现储能单元的电量达到满额,导致电池无法释放电量的情况。因此,再次参考图14,第二DC/DC转换器1230可以为双向DC/DC转换器。
在这种情况下,控制单元1110除了可以控制第二DC/DC转换器1230以将电池的电量释放到储能单元1240中之外,还可以在基于第一充电电流控制单向AC/DC转换器1210和第一DC/DC转换器1220以通过交流电源对电池充电的同时,控制第二DC/DC转换器1230以通过储能单元1240对电池充电。或者,控制单元1110还可以在基于第二充电电流控制单向AC/DC转换器1210和第一DC/DC转换器1220以通过交流电源对电池充电的同时,控制第二DC/DC转换器1230以通过储能单元1240对电池充电。
上述技术方案,储能单元除了可以接收电池释放的电量之外,还可以对电池进行充电,一方面,避免了因储能单元中的电量达到满额而无法继续将电池的电量释放到储能单元的问题,保证了充电过程的正常进行。另一方面,储能单元利用接收到的电池释放的电量对电池进行充电,实现了电池电量的循环利用,节省了电能。再一方面,交流电源和储能单元同时对电池进行充电,有利于提高电池的充电速率,节省充电时间。
可选地,第一充电电流与储能单元1240对电池充电的电流可以不同,类似地,第二充电电流与储能单元1240对电池充电的电流也不同。示例性地,第一充电电流可以大于储能单元1240对电池充电的电流。例如,储能单元1240对电池充电的充电倍率可以小于0.5C1,C1为储能单元1240的容量。
基于图14的功率转换单元1120对电池进行充电时,作为一种可能的实施例,控制单元1110可以在任何条件下控制单向AC/DC转换器1210和第一DC/DC转换器1220以通过交流电源对电池充电,以及控制第二DC/DC转换器1230以通过储能单元1240对电池充电。
在另一种可能的实施例中,控制单元1110可以先获取储能单元1240的SOC,再基于储能单元1240的SOC确定交流电源向电池充电,或者,基于储能单元1240的SOC确定交流电源和储能单元1240同时向电池充电。
可选地,储能单元1240可以向控制单元1110发送第一消息,该第一消息中包括储能单元1240的SOC,从而控制单元1110可以获取到储能单元1240的SOC。
可选地,储能单元1240可以将SOC储存到云端,这样,控制单元1110可以从云端获取到储能单元1240的SOC。
具体而言,若储能单元1240的SOC大于或者等于荷电状态阈值,则控制单元1110不仅可以控制单向AC/DC转换器1210和第一DC/DC转换器1220以通过交流电源对电池充电,还可以控制第二DC/DC转换器1230以通过储能单元1240对电池充电。
若储能单元1240的SOC小于荷电状态阈值,则控制单元1110可以仅控制单向AC/DC转换器1210和第一DC/DC转换器1220以通过交流电源对电池充电。或者,在储能单元1240的SOC小于荷电状态阈值时,控制单元1110可以向其他装置发送充电请求消息,以使其他装置对储能单元1240进行充电直至储能单元1240的SOC大于或等于荷电状态阈值。之后,交流电源和储能单元1240可以同时对电池进行充电。
其中,荷电状态阈值可以为固定值。或者,荷电状态阈值可以为变量。例如,荷电状态阈值可以随随时间、环境(比如温度)等因素的变化而变化。
荷电状态阈值可以是预设在控制单元1110上的,或者,也可以是储能单元发送给控制单元1110的。
上述技术方案,根据储能单元的SOC,确定是否使用储能单元辅助交流电源一起向电池充电,从而能够在储能单元存储的电量足够时提升充放电装置的充电效率。
在交流电源和储能单元1240同时对电池进行充电的过程中,储能单元1240向电池充电的第一充电功率为W1,交流电源向电池充电的第二充电功率为W2,W2为电池的充电需求功率与W1之差。可选地,第一充电功率W1可以是先于第二充电功率W2确定的。
其中,W1可以是根据储能单元1240的放电能力确定的。除此之外,W1也可以是根据储能单元1240当前时刻的状态确定的,比如,储能单元1240的安时数大小、储能单元1240的温度等。
可选地,上述交流电源包括但不限于是电网,其可用于提供三相交流电,电网既能提供足够的电量给电池充电,也能够接收较多的电池释放的电量。
或者,在其它实施方式中,上述交流电源也可为单相交流电源。本申请实施例对交流电源的具体类型不做限定。
另外,本申请实施例中关于充电电流、放电电流、累积充电量、累积放电量、累积充电量阈值、累积放电量阈值等相关技术方案可参见上文相关描述,此处不做过多赘述。
图15示出了本申请实施例的电池充电的方法1500的示意性流程图。其中,方法1500可以应用于包括第一直流/直流DC/DC转换器和单向交流/直流AC/DC转换器的充放电装置,例如,可以应用于图12中的包括单向AC/DC转换器1210和第一DC/DC转换器1220的充放电装置中。应理解,方法实施例与装置实施例相互对应,类似的描述可以参照装置实施例。
如图15所示,该电池充电的方法1500可以包括如下步骤:
在1510中,接收BMS发送的第一充电电流,并基于第一充电电流,控制单向AC/DC转换器和第一DC/DC转换器以通过交流电源对电池充电。
在1520中,接收BMS发送的第一放电电流,并基于第一放电电流控制电池释放电量,其中,第一放电电流是当电池的第一累积充电量大于或等于第一累积充电量 阈值且电池的电池单体的电压未超过电池单体的满充电压时,BMS发送的放电电流。
在1530中,接收BMS发送的第二充电电流,并基于第二充电电流,控制单向AC/DC转换器和第一DC/DC转换器以通过交流电源对电池充电,其中,第二充电电流是当电池的第一累积放电量大于或等于第一累积放电量阈值时,BMS发送的充电电流。
可选地,在一些实施例中,方法1500还包括:接收BMS发送的第二放电电流,并基于第二放电电流,控制电池释放电量,其中,第二放电电流是当电池的第二累积充电量大于或等于第二累积充电量阈值且电池的电池单体的电压未超过满充电压时,BMS发送的放电电流。
可选地,在一些实施例中,方法1500还包括:接收BMS发送的充电停止命令;基于充电停止命令,控制单向AC/DC转换器和第一DC/DC转换器以使交流电源停止对电池充电,其中,充电停止命令是当电池的电池单体的电压超过满充电压时,BMS发送的命令。
可选地,在一些实施例中,充放电装置还包括第二DC/DC转换器,如图13和图14中第二DC/DC转换器1230。基于第一放电电流控制电池释放电量,包括:基于第一放电电流,控制第二DC/DC转换器以将电池的电量释放到储能单元中。
可选地,在一些实施例中,第二DC/DC转换器为双向DC/DC转换器,方法1500还包括:在基于第一充电电流控制单向AC/DC转换器和第一DC/DC转换器以通过交流电源对电池充电时,控制第二DC/DC转换器以通过储能单元对电池充电;和/或在基于第二充电电流控制单向AC/DC转换器和第一DC/DC转换器以通过交流电源对电池充电时,控制第二DC/DC转换器以通过储能单元对电池充电。
可选地,在一些实施例中,储能单元向电池充电的第一充电功率是根据储能单元的放电能力确定的,交流电源向电池充电的第二充电功率为电池的充电需求功率与第二充电功率之差。
可选地,在一些实施例中,对电池充电,包括:获取储能单元的电池荷电状态值SOC;若SOC大于荷电状态阈值,控制第二DC/DC转换器以通过储能单元对电池充电,以及基于第一充电电流,控制单向AC/DC转换器和第一DC/DC转换器以通过交流电源对电池充电;和/或若SOC大于荷电状态阈值,控制第二DC/DC转换器以通过储能单元对电池充电,以及基于第二充电电流,控制单向AC/DC转换器、第一DC/DC转换器以通过交流电源对电池充电。
可选地,在一些实施例中,第一充电电流和/或第二充电电流的充电倍率的范围为2C至10C之间。
可选地,在一些实施例中,第一放电电流的放电倍率的范围为0.1C至1C之间。
可选地,在一些实施例中,第一累积放电量阈值与第一累积充电量阈值之比小于或等于10%。
可选地,在一些实施例中,第一充电电流、第一放电电流与第二充电电流中的至少一项是根据电池的状态参数确定得到的;其中,电池的状态参数包括以下参数中的至少一项:电池温度,电池电压、电池电流、电池荷电状态和电池健康状态。
可选地,在一些实施例中,接收电池的BMS发送的第一充电电流,包括:定 期接收BMS发送的第一充电电流;和/或,接收BMS发送的第一放电电流,包括:定期接收BMS发送的第一放电电流;和/或,接收BMS发送的第二充电电流,包括:定期接收BMS发送的第二充电电流。
可选地,在一些实施例中,方法1500还包括:接收BMS发送的第一充电电压,其中,第一充电电压和第一充电电流携带于第一BCL报文中;和/或,接收BMS发送的第一放电电压,其中,第一放电电压和第一放电电流携带于第二BCL报文中;和/或,接收BMS发送的第二充电电压,其中,第二充电电压和第二充电电流携带于第三BCL报文中。
图16示出了本申请一个实施例的电子装置1600的示意性结构框图。如图16所示,电子装置1600包括存储器1610和处理器1620,其中,存储器1610用于存储计算机程序,处理器1620用于读取所述计算机程序并基于所述计算机程序执行前述本申请各种实施例的方法。
可选地,该电子装置1600可用于:BMS和充放电装置中任意一种或者多种。本申请实施例中,除了充放电装置中的处理器读取相应的计算机程序并基于该计算机程序执行前述各种实施例中充放电装置对应的充电方法以外,BMS中的处理器也可读取相应的计算机程序并基于该计算机程序执行前述各种实施例中BMS对应的充电方法。
此外,本申请实施例还提供了一种可读存储介质,用于存储计算机程序,所述计算机程序用于执行前述本申请各种实施例的方法。可选地,该计算机程序可以为上述充放电装置和/或BMS中的计算机程序。
应理解,本文中的具体的例子只是为了帮助本领域技术人员更好地理解本申请实施例,而非限制本申请实施例的范围。
还应理解,在本申请的各种实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,本说明书中描述的各种实施方式,既可以单独实施,也可以组合实施,本申请实施例对此并不限定。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (27)

  1. 一种充放电装置,其特征在于,包括第一直流/直流DC/DC转换器、单向交流/直流AC/DC转换器和控制单元,所述第一DC/DC转换器为单向DC/DC转换器,所述控制单元用于:
    接收电池的电池管理系统BMS发送的第一充电电流,并基于所述第一充电电流,控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过交流电源对所述电池充电;
    接收所述BMS发送的第一放电电流,并基于所述第一放电电流控制所述电池释放电量,其中,所述第一放电电流是当所述电池的第一累积充电量大于或等于第一累积充电量阈值且所述电池的电池单体的电压未超过电池单体的满充电压时,所述BMS发送的放电电流;
    接收所述BMS发送的第二充电电流,并基于所述第二充电电流,控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过所述交流电源对所述电池充电,其中,所述第二充电电流是当所述电池的第一累积放电量大于或等于第一累积放电量阈值时,所述BMS发送的充电电流。
  2. 根据权利要求1所述的充放电装置,其特征在于,所述控制单元还用于:
    接收所述BMS发送的第二放电电流,并基于所述第二放电电流,控制所述电池释放电量,其中,所述第二放电电流是当所述电池的第二累积充电量大于或等于第二累积充电量阈值且所述电池的电池单体的电压未超过所述满充电压时,所述BMS发送的放电电流。
  3. 根据权利要求1或2所述的充放电装置,其特征在于,所述控制单元还用于:
    接收所述BMS发送的充电停止命令;
    基于所述充电停止命令,控制所述单向AC/DC转换器和所述第一DC/DC转换器以使所述交流电源停止对所述电池充电,其中,所述充电停止命令是当所述电池的电池单体的电压超过所述满充电压时,所述BMS发送的命令。
  4. 根据权利要求1至3中任一项所述的充放电装置,其特征在于,所述充放电装置还包括第二DC/DC转换器;
    所述控制单元具体用于:
    基于所述第一放电电流,控制所述第二DC/DC转换器以将所述电池的电量释放到储能单元中。
  5. 根据权利要求4所述的充放电装置,其特征在于,所述第二DC/DC转换器为双向DC/DC转换器,所述控制单元还用于:
    在基于所述第一充电电流控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过交流电源对所述电池充电时,控制所述第二DC/DC转换器以通过所述储能单元对所述电池充电;和/或
    在基于所述第二充电电流控制所述单向AC/DC转换器和所述第一DC/DC转换器 以通过交流电源对所述电池充电时,控制所述第二DC/DC转换器以通过所述储能单元对所述电池充电。
  6. 根据权利要求5所述的充放电装置,其特征在于,所述储能单元向所述电池充电的第一充电功率是根据所述储能单元的放电能力确定的,所述交流电源向所述电池充电的第二充电功率为所述电池的充电需求功率与所述第二充电功率之差。
  7. 根据权利要求5或6所述的充放电装置,其特征在于,所述控制单元具体用于:
    获取所述储能单元的电池荷电状态值SOC;
    若所述SOC大于荷电状态阈值,控制所述第二DC/DC转换器以通过所述储能单元对所述电池充电,以及基于所述第一充电电流,控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过所述交流电源对所述电池充电;和/或
    若所述SOC大于荷电状态阈值,控制所述第二DC/DC转换器以通过所述储能单元对所述电池充电,以及基于所述第二充电电流,控制所述单向AC/DC转换器、所述第一DC/DC转换器以通过所述交流电源对所述电池充电。
  8. 根据权利要求1至7中任一项所述的充放电装置,其特征在于,所述第一充电电流和/或所述第二充电电流的充电倍率的范围为2C至10C之间。
  9. 根据权利要求1至8中任一项所述的充放电装置,其特征在于,所述第一放电电流的放电倍率的范围为0.1C至1C之间。
  10. 根据权利要求1至9中任一项所述的充放电装置,其特征在于,所述第一累积放电量阈值与所述第一累积充电量阈值之比小于或等于10%。
  11. 根据权利要求1至10中任一项所述的充放电装置,其特征在于,所述第一充电电流、所述第一放电电流与所述第二充电电流中的至少一项是根据所述电池的状态参数确定得到的;
    其中,所述电池的状态参数包括以下参数中的至少一项:电池温度,电池电压、电池电流、电池荷电状态和电池健康状态。
  12. 根据权利要求1至11中任一项所述的充放电装置,其特征在于,所述控制单元具体用于:
    定期接收所述BMS发送的所述第一充电电流;和/或,
    定期接收所述BMS发送的所述第一放电电流;和/或,
    定期接收所述BMS发送的所述第二充电电流。
  13. 根据权利要求1至12中任一项所述的充放电装置,其特征在于,所述控制单元还用于:
    接收所述BMS发送的第一充电电压,其中,所述第一充电电压和所述第一充电电流携带于第一电池充电需求报文中;和/或,
    接收所述BMS发送的第一放电电压,其中,所述第一放电电压和所述第一放电电流携带于第二电池充电需求报文中;和/或,
    接收所述BMS发送的第二充电电压,其中,所述第二充电电压和所述第二充电电流携带于第三电池充电需求报文中。
  14. 一种电池充电的方法,其特征在于,应用于包括第一直流/直流DC/DC转换器和单向交流/直流AC/DC转换器的充放电装置,所述第一DC/DC转换器为单向DC/DC转换器,所述方法包括:
    接收电池的电池管理系统BMS发送的第一充电电流,并基于所述第一充电电流,控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过交流电源对所述电池充电;
    接收所述BMS发送的第一放电电流,并基于所述第一放电电流控制所述电池释放电量,其中,所述第一放电电流是当所述电池的第一累积充电量大于或等于第一累积充电量阈值且所述电池的电池单体的电压未超过电池单体的满充电压时,所述BMS发送的放电电流;
    接收所述BMS发送的第二充电电流,并基于所述第二充电电流,控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过所述交流电源对所述电池充电,其中,所述第二充电电流是当所述电池的第一累积放电量大于或等于第一累积放电量阈值时,所述BMS发送的充电电流。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    接收所述BMS发送的第二放电电流,并基于所述第二放电电流,控制所述电池释放电量,其中,所述第二放电电流是当所述电池的第二累积充电量大于或等于第二累积充电量阈值且所述电池的电池单体的电压未超过所述满充电压时,所述BMS发送的放电电流。
  16. 根据权利要求14或15所述的方法,其特征在于,所述方法还包括:
    接收所述BMS发送的充电停止命令;
    基于所述充电停止命令,控制所述单向AC/DC转换器和所述第一DC/DC转换器以使所述交流电源停止对所述电池充电,其中,所述充电停止命令是当所述电池的电池单体的电压超过所述满充电压时,所述BMS发送的命令。
  17. 根据权利要求14至16中任一项所述的方法,其特征在于,所述充放电装置还包括第二DC/DC转换器,所述基于所述第一放电电流控制所述电池释放电量,包括:
    基于所述第一放电电流,控制所述第二DC/DC转换器以将所述电池的电量释放到储能单元中。
  18. 根据权利要求17所述的方法,其特征在于,所述第二DC/DC转换器为双向DC/DC转换器,所述方法还包括:
    在基于所述第一充电电流控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过交流电源对所述电池充电时,控制所述第二DC/DC转换器以通过所述储能单元对所述电池充电;和/或
    在基于所述第二充电电流控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过交流电源对所述电池充电时,控制所述第二DC/DC转换器以通过所述储能单元对所述电池充电。
  19. 根据权利要求18所述的方法,其特征在于,所述储能单元向所述电池充电的第一充电功率是根据所述储能单元的放电能力确定的,所述交流电源向所述电池充电 的第二充电功率为所述电池的充电需求功率与所述第二充电功率之差。
  20. 根据权利要求18或19所述的方法,其特征在于,所述对所述电池充电,包括:
    获取所述储能单元的电池荷电状态值SOC;
    若所述SOC大于荷电状态阈值,控制所述第二DC/DC转换器以通过所述储能单元对所述电池充电,以及基于所述第一充电电流,控制所述单向AC/DC转换器和所述第一DC/DC转换器以通过所述交流电源对所述电池充电;和/或
    若所述SOC大于荷电状态阈值,控制所述第二DC/DC转换器以通过所述储能单元对所述电池充电,以及基于所述第二充电电流,控制所述单向AC/DC转换器、所述第一DC/DC转换器以通过所述交流电源对所述电池充电。
  21. 根据权利要求14至20中任一项所述的方法,其特征在于,所述第一充电电流和/或所述第二充电电流的充电倍率的范围为2C至10C之间。
  22. 根据权利要求14至21中任一项所述的方法,其特征在于,所述第一放电电流的放电倍率的范围为0.1C至1C之间。
  23. 根据权利要求14至22中任一项所述的方法,其特征在于,所述第一累积放电量阈值与所述第一累积充电量阈值之比小于或等于10%。
  24. 根据权利要求14至23中任一项所述的方法,其特征在于,所述第一充电电流、所述第一放电电流与所述第二充电电流中的至少一项是根据所述电池的状态参数确定得到的;
    其中,所述电池的状态参数包括以下参数中的至少一项:电池温度,电池电压、电池电流、电池荷电状态和电池健康状态。
  25. 根据权利要求14至24中任一项所述的方法,其特征在于,所述接收电池的电池管理系统BMS发送的第一充电电流,包括:
    定期接收所述BMS发送的所述第一充电电流;和/或,
    所述接收所述BMS发送的第一放电电流,包括:
    定期接收所述BMS发送的所述第一放电电流;和/或,
    所述接收所述BMS发送的第二充电电流,包括:
    定期接收所述BMS发送的所述第二充电电流。
  26. 根据权利要求14至25中任一项所述的方法,其特征在于,所述方法还包括:
    接收所述BMS发送的第一充电电压,其中,所述第一充电电压和所述第一充电电流携带于第一电池充电需求报文中;和/或,
    接收所述BMS发送的第一放电电压,其中,所述第一放电电压和所述第一放电电流携带于第二电池充电需求报文中;和/或,
    接收所述BMS发送的第二充电电压,其中,所述第二充电电压和所述第二充电电流携带于第三电池充电需求报文中。
  27. 一种充放电装置,其特征在于,包括:包括处理器和存储器,所述存储器用于存储计算机程序,所述处理器用于调用所述计算机程序,执行如权利要求14至26中任一项所述的电池充电的方法。
PCT/CN2021/109367 2021-07-29 2021-07-29 电池充电的方法和充放电装置 WO2023004709A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21819322.5A EP4152552A1 (en) 2021-07-29 2021-07-29 Battery charging method and charging and discharging apparatus
CN202180070058.1A CN116325420A (zh) 2021-07-29 2021-07-29 电池充电的方法和充放电装置
JP2021575015A JP7450645B2 (ja) 2021-07-29 2021-07-29 電池充電方法及び充放電装置
PCT/CN2021/109367 WO2023004709A1 (zh) 2021-07-29 2021-07-29 电池充电的方法和充放电装置
KR1020217040290A KR20230019379A (ko) 2021-07-29 2021-07-29 배터리 충전 방법 및 충방전 장치
US17/563,513 US20230031352A1 (en) 2021-07-29 2021-12-28 Method for charging battery, charging and discharging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/109367 WO2023004709A1 (zh) 2021-07-29 2021-07-29 电池充电的方法和充放电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/563,513 Continuation US20230031352A1 (en) 2021-07-29 2021-12-28 Method for charging battery, charging and discharging device

Publications (1)

Publication Number Publication Date
WO2023004709A1 true WO2023004709A1 (zh) 2023-02-02

Family

ID=85037996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109367 WO2023004709A1 (zh) 2021-07-29 2021-07-29 电池充电的方法和充放电装置

Country Status (6)

Country Link
US (1) US20230031352A1 (zh)
EP (1) EP4152552A1 (zh)
JP (1) JP7450645B2 (zh)
KR (1) KR20230019379A (zh)
CN (1) CN116325420A (zh)
WO (1) WO2023004709A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023004712A1 (zh) * 2021-07-29 2023-02-02 宁德时代新能源科技股份有限公司 充放电装置、电池充电的方法和充放电系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104040823A (zh) * 2011-11-30 2014-09-10 H科技公司 为可充电电池充电的方法和装置
CN108032740A (zh) * 2017-10-24 2018-05-15 合肥成科电子科技有限公司 一种储能式电动汽车充电桩系统
CN207442505U (zh) * 2017-11-14 2018-06-01 宁波三星智能电气有限公司 一种储能式充电桩
CN108528263A (zh) * 2018-06-08 2018-09-14 重庆聚陆新能源有限公司 一种高效率的电动汽车直流快充系统
CN111279573A (zh) * 2018-12-21 2020-06-12 深圳市大疆创新科技有限公司 对锂电池进行充电的方法及相关装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102422504A (zh) * 2009-05-18 2012-04-18 波士顿电力公司 可充电电池的能量效率及快速充电模式
JP5016121B2 (ja) * 2010-02-19 2012-09-05 Jfeエンジニアリング株式会社 急速充電装置及び移動式充電装置
WO2014112608A1 (en) 2013-01-21 2014-07-24 Semiconductor Energy Laboratory Co., Ltd. Secondary battery, secondary battery module, method for charging the secondary battery and the secondary battery module, method for discharging the secondary battery and the secondary battery module, method for operating the secondary battery and the secondary battery module, power storage system, and method for operating the power storage system
US10040363B2 (en) * 2015-10-15 2018-08-07 Powin Energy Corporation Battery-assisted electric vehicle charging system and method
CN106374559B (zh) * 2016-09-14 2021-08-20 华为技术有限公司 串联电池组的快速充电方法及相关设备
US10491025B1 (en) * 2017-07-19 2019-11-26 Facebook, Inc. Apparatus, systems, and methods for pulse charging rechargeable batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104040823A (zh) * 2011-11-30 2014-09-10 H科技公司 为可充电电池充电的方法和装置
CN108032740A (zh) * 2017-10-24 2018-05-15 合肥成科电子科技有限公司 一种储能式电动汽车充电桩系统
CN207442505U (zh) * 2017-11-14 2018-06-01 宁波三星智能电气有限公司 一种储能式充电桩
CN108528263A (zh) * 2018-06-08 2018-09-14 重庆聚陆新能源有限公司 一种高效率的电动汽车直流快充系统
CN111279573A (zh) * 2018-12-21 2020-06-12 深圳市大疆创新科技有限公司 对锂电池进行充电的方法及相关装置

Also Published As

Publication number Publication date
JP7450645B2 (ja) 2024-03-15
CN116325420A (zh) 2023-06-23
EP4152552A4 (en) 2023-03-22
EP4152552A1 (en) 2023-03-22
KR20230019379A (ko) 2023-02-08
JP2023543097A (ja) 2023-10-13
US20230031352A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
WO2023004716A1 (zh) 充放电装置、电池充电和放电的方法、以及充放电系统
JP7418556B2 (ja) 充電方法、駆動用バッテリーのバッテリー管理システム及び充電ポスト
WO2023004709A1 (zh) 电池充电的方法和充放电装置
WO2023004712A1 (zh) 充放电装置、电池充电的方法和充放电系统
WO2023004711A1 (zh) 充放电装置、电池充电的方法和充放电系统
WO2023004659A1 (zh) 充放电装置和电池充电的方法
WO2023004673A1 (zh) 电池充电的方法、电池管理系统和充放电装置
KR102684131B1 (ko) 충방전 장치 및 배터리 충전 방법
WO2023221055A1 (zh) 电池的放电方法和放电装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021575015

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021819322

Country of ref document: EP

Effective date: 20211214

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21819322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE