WO2016021604A1 - 糖質原料からの共重合ポリヒドロキシアルカン酸の製造法 - Google Patents

糖質原料からの共重合ポリヒドロキシアルカン酸の製造法 Download PDF

Info

Publication number
WO2016021604A1
WO2016021604A1 PCT/JP2015/072107 JP2015072107W WO2016021604A1 WO 2016021604 A1 WO2016021604 A1 WO 2016021604A1 JP 2015072107 W JP2015072107 W JP 2015072107W WO 2016021604 A1 WO2016021604 A1 WO 2016021604A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
coa
strain
nucleic acid
mol
Prior art date
Application number
PCT/JP2015/072107
Other languages
English (en)
French (fr)
Inventor
俊昭 福居
和泉 折田
Original Assignee
国立大学法人東京工業大学
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 株式会社カネカ filed Critical 国立大学法人東京工業大学
Priority to CN201580040495.3A priority Critical patent/CN106574279A/zh
Priority to EP15830587.0A priority patent/EP3187590B1/en
Priority to JP2016540249A priority patent/JP6755515B2/ja
Priority to US15/501,512 priority patent/US10538791B2/en
Publication of WO2016021604A1 publication Critical patent/WO2016021604A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/001Oxidoreductases (1.) acting on the CH-CH group of donors (1.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y103/00Oxidoreductases acting on the CH-CH group of donors (1.3)
    • C12Y103/01Oxidoreductases acting on the CH-CH group of donors (1.3) with NAD+ or NADP+ as acceptor (1.3.1)
    • C12Y103/01086Crotonyl-CoA reductase (1.3.1.86)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01094Ethylmalonyl-CoA decarboxylase (4.1.1.94)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01119Enoyl-CoA hydratase 2 (4.2.1.119)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)

Definitions

  • the present invention relates to the production of poly (3-hydroxybutanoic acid-co-3-hydroxyhexanoic acid), which is one of copolymerized polyhydroxyalkanoic acids that are degradable by microorganisms and excellent in biocompatibility, by microorganisms.
  • the present invention relates to a method for improving the production amount of a copolymer and improving the fraction of 3-hydroxyhexanoic acid in the copolymer using sugar and / or glycerol as a basic raw material.
  • Plastic is an indispensable material in modern society because it can realize various physical properties depending on the structure and is inexpensive.
  • most plastics are synthesized using petroleum as a raw material, and have been developed and produced for long-term stability.
  • many petroleum synthetic plastics are not decomposed in the natural environment after disposal, and management and disposal of plastic waste that has become unnecessary has become a major problem in countries around the world.
  • the depletion of fossil resources represented by oil is an exploratory problem. Even if fossil resources are available for years due to advances in mining technology, they remain limited resources, and consumption of fossil resources will continue to expand as a result of growing demand resulting from global economic growth. It is predicted to go.
  • the increase in atmospheric carbon dioxide concentration due to the consumption of fossil resources is also a major environmental problem. Therefore, it is necessary to control the consumption of fossil resources and to build a social system that does not depend on fossil resources.
  • Bioplastic is a general term for two types of biodegradable plastic and biomass plastic.
  • Biodegradable plastics are plastics that are decomposed by microorganisms in the environment, and do not cause waste disposal problems that are a problem with petroleum synthetic plastics.
  • Biomass plastic is a plastic made from renewable biomass resources derived from animals and plants, and the carbon dioxide produced by combustion is carbon dioxide in the atmosphere that was originally immobilized by plant photosynthesis (carbon neutral). In terms of fossil resource depletion and greenhouse gas emissions, this material can contribute to the construction of a future recycling society.
  • Polyhydroxyalkanoic acid in which many microorganisms accumulate in cells as an energy source, is expected to be a plastic material that uses biomass as a raw material and is biodegradable.
  • Poly (3-hydroxybutanoic acid) [P (3HB)] is a typical PHA biosynthesized by many microorganisms, but P (3HB) is hard and brittle, making it difficult to put it into practical use as a material.
  • PHA copolymers having hydroxyalkanoic acids having different structures as comonomer units have improved flexibility, research on biosynthesis of PHA copolymers has been vigorously conducted so far. .
  • a poly (3-hydroxybutanoic acid-co-3-hydroxyvaleric acid) copolymer is converted into 1,4-butanediol or ⁇
  • a poly (3-hydroxybutanoic acid-co-4-hydroxybutanoic acid) copolymer is biosynthesized by adding butyllactone.
  • Poly ((R) -3-hydroxybutanoic acid-co-3-hydroxyhexanoic acid) copolymer [P (), which is biosynthesized by cultivating soil bacteria such as Aeromonas caviae (Aeromonas caviae) using vegetable oil or fatty acid as a carbon source 3HB-co-3HHx)] increases in flexibility depending on its copolymer composition, and a copolymer containing about 10 mol% of (R) -3-hydroxyhexanoic acid (3HHx) units exhibits moderate flexibility. It turns out to be an excellent plastic.
  • P () which is biosynthesized by cultivating soil bacteria such as Aeromonas caviae (Aeromonas caviae) using vegetable oil or fatty acid as a carbon source 3HB-co-3HHx)
  • increases in flexibility depending on its copolymer composition and a copolymer containing about 10 mol% of (R) -3-hydroxyhexanoic acid (3HHx) units exhibits moderate
  • Patent Document 1 P (3HB-co-3HHx) biosynthesized by Caviae from vegetable oil has a 3HHx fraction of 10 to 20 mol%, showing flexibility suitable for practical use, but its cell accumulation rate is as low as about 15% by weight. It was difficult to apply to actual production (Patent Document 1, Patent Document 2, Non-Patent Document 1).
  • the hydrogen bacterium Cupriavidus necator known as an efficient P (3HB) producing fungus functions as a substrate-specific PHA-polymerizing enzyme, and ⁇ -oxidation that degrades the polyester biosynthetic pathway and fatty acids.
  • Recombinant strains have been developed that efficiently produce P (3HB-co-3HHx) with a high 3HHx fraction using vegetable oil as a carbon source by modifying the pathway (Patent Document 3, Patent Document 4, Patent Document 5) , Patent Literature 6, Non Patent Literature 2, Non Patent Literature 3, Non Patent Literature 4, and Non Patent Literature 5).
  • crotonyl-CoA is produced from (R) -3HB-CoA.
  • a gene phaJ Ac of (R) -specific enoyl-CoA hydratase derived from Caviae and a gene ccr Sc of crotonyl-CoA reductase derived from Streptomyces cinnamonensis (Streptomyces cinnamonensis) that reduces the double bond of crotonyl-CoA Along with the gene phaC Ac of the broad substrate-specific PHA synthase, C.I. This was introduced into a nematic PHA synthase-deficient strain PHB - 4.
  • the prepared recombinant strain was designed by biosynthesizing P (3HB-co-3HHx) containing 1.2 to 1.6 mol% of 3HHx units with fructose as a single carbon source at 39 to 49% by weight.
  • the route was found to work, but the 3HHx fraction was low and not sufficient to improve polymer properties (Non-Patent Document 8).
  • JP-A-5-93049 Japanese Patent Laid-Open No. 7-265065 Japanese Patent No. 3062459 JP 2008-86238 A JP 2008-29218 A International Publication No. 2011/105379
  • the acetoacetyl-CoA reductase gene (phaB1) present in the phaCAB1 operon of the necator strain was deleted, the crotonyl-CoA reductase gene was incorporated, and the (R) -specific enoyl-CoA hydratase gene and ethylmalonyl-CoA decarboxylation Recombinant C into which an enzyme gene has been incorporated
  • the necator strain was found to be able to produce P (3HB-co-3HHx) having a high 3HHx fraction with a high accumulation rate using carbohydrates and glycerol as raw materials, and the present invention was completed.
  • the present invention is as follows.
  • Transforming the genetic enoyl-CoA hydratase gene and the ethylmalonyl-CoA decarboxylase gene by homologous recombination, or by introducing an autonomously replicating vector incorporating the gene into the strain
  • a method for producing poly (3-hydroxybutanoic acid-co-3-hydroxyhexanoic acid) comprising growing a transformant in a medium containing saccharide and / or glycerol as [2] Recombinant C.
  • a chromosome of a recombinant strain lacking a gene encoding acetoacetyl-CoA reductase on the chromosome of a necator strain is transformed by crotonyl-CoA reductase gene by homologous recombination, or the gene is transformed into the gene
  • Poly (3-hydroxybutanoic acid-co- which comprises transforming by introducing an autonomously replicating vector into which is incorporated and growing the transformant in a medium containing carbohydrate and / or glycerol as a carbon source. 3-hydroxyhexanoic acid).
  • the method further comprises transforming the (R) -specific enoyl-CoA hydratase gene by homologous recombination or introducing an autonomously replicating vector into which the gene is incorporated.
  • the method further comprises transforming the ethylmalonyl-CoA decarboxylase gene by homologous recombination, or by introducing an autonomously replicating vector into which the gene has been incorporated. [2] and [3].
  • the crotonyl-CoA reductase gene is (A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 1; or (b) hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 under stringent conditions and from crotonyl-CoA to butyryl-
  • the crotonyl-CoA reductase gene is (A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 2; or (b) hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 2 under stringent conditions and from crotonyl-CoA to butyryl-
  • the (R) -specific enoyl-CoA hydratase gene is C.I.
  • the ethylmalonyl-CoA decarboxylase gene is (A) a nucleic acid comprising the base sequence represented by SEQ ID NO: 4; or (b) hybridizing with a nucleic acid comprising the base sequence represented by SEQ ID NO: 4 under stringent conditions and removing ethylmalonyl-CoA.
  • C The schematic diagram of the genotypes of necator H16 strain (wild strain), MF01 strain, MF01 ⁇ B1 strain, MF01 ⁇ B1B3 strain is shown.
  • C.I. introduced pBPP-ccrMeJ4a-emd The P (3HH-co-3HHx) biosynthesis pathway from fructose in necator MF01 ⁇ B1 is shown.
  • the present inventors broadly started carbohydrates and glycerol, unlike conventional vegetable oils, by developing 3HB units and 3HHx units from acetyl-CoA and by developing new metabolic pathways for copolymerization.
  • the present invention relates to recombinant C.I. to which P (3HH-co-3HHx) production ability is imparted.
  • a chromosome of a necator strain is transformed by homologous recombination with a crotonyl-CoA reductase gene, a (R) -specific enoyl-CoA hydratase gene, and an ethylmalonyl-CoA decarboxylase gene;
  • a method for producing P (3HH-co-3HHx) comprising transforming by introducing an autonomously replicating vector into which is incorporated, and growing the transformant in a medium containing carbohydrate or glycerol as a carbon source And a method for improving the production amount of the copolymer and / or the fraction of 3HHx units in the copolymer.
  • the crotonyl-CoA reductase gene, the (R) -specific enoyl-CoA hydratase gene, and the ethylmalonyl-CoA decarboxylase gene are all transformed by homologous recombination, or
  • the strain may be introduced as an autonomously replicating vector in which the gene is incorporated, or the crotonyl-CoA reductase gene, the (R) -specific enoyl-CoA hydratase gene, and the ethylmalonyl-CoA decarboxylase gene.
  • one or two genes may be transformed by homologous recombination, and the remaining genes may be introduced as autonomously replicating vectors in which the genes are incorporated into the strain.
  • C.I. The gene encoding acetoacetyl-CoA reductase on the chromosome of the necator strain may be deleted.
  • the present invention relates to recombinant C.I. to which P (3HH-co-3HHx) production ability is imparted.
  • a chromosome of a recombinant strain lacking a gene encoding acetoacetyl-CoA reductase on the chromosome of a necator strain is transformed by crotonyl-CoA reductase gene by homologous recombination, or the gene is transformed into the gene
  • a method for producing P (3HH-co-3HHx) comprising transforming by introducing an autonomously replicating vector into which is incorporated, and growing the transformant in a medium containing carbohydrate or glycerol as a carbon source And a method for improving the production amount of the copolymer and / or the fraction of 3HHx units in the copolymer.
  • the transformant used in the production method described above is transformed by homologous recombination of the (R) -specific enoyl-CoA hydratase gene, or by introducing an autonomously replicating vector incorporating the gene. It may be transformed. Furthermore, the transformant used in the above production method is obtained by homologous recombination of the ethylmalonyl-CoA decarboxylase gene, or the (R) -specific enoyl-CoA hydratase gene and the ethylmalonyl-CoA decarboxylase gene. It may be transformed or transformed by introducing an autonomously replicating vector incorporating the gene.
  • the host used in the production method of the present invention is C. a. necator.
  • C.I. used in the production method of the present invention.
  • Necators include, but are not limited to, JMP134 strain (DSM4058) and H16 strain (DSM428). More specifically, in the present invention, recombinant C.I. to which P (3HB-co-3HHx) producing ability is imparted.
  • Necator strains are preferably used. For example, NSDG strain, MF01 strain, and NSDG ⁇ A strain may be used.
  • NSDG strain refers to C.I.
  • phaC NSDG means A.I.
  • MF01 strain is a transformant in which phaA Cn of the NSDG strain is replaced with a broad substrate-specific ⁇ -ketothiolase gene bktB Cn .
  • NSDG ⁇ A refers to a transformant in which the phaA Cn that is a ⁇ -ketothiolase gene is deleted from the NSDG strain.
  • the three H16 mutants are C.I. Based on the sequence information of the gene encoding necata PHA synthase, it can be prepared using a general genetic engineering technique (see, for example, JP2008-29218, International Publication WO2011 / 105379) ).
  • crotonyl-CoA reductase (ccr)
  • the recombinant C.I. It is necessary to introduce a gene (ccr) encoding crotonyl-CoA reductase into a necator strain by transformation.
  • crotonyl-CoA reductase refers to the reduction of crotonyl-CoA having 4 carbon atoms, which is an intermediate in the fatty acid ⁇ -oxidation pathway, and a substrate of ⁇ -ketothiolase (BktB).
  • butylyl-CoA is condensed with another molecule of acetyl-CoA by the action of ⁇ -ketothiolase, and further converted to supply (R) -3HHx-CoA having 6 carbon atoms, and polyester polymerization showing a wide substrate specificity Copolymerized with (R) -3HB-CoA by the enzyme.
  • the origin of the biological species of ccr that can be used in the present invention is not particularly limited as long as the reductase after translation has the above-mentioned activity.
  • ccr Sc a gene encoding crotonyl-CoA reductase derived from cinnamonensis
  • ccr Me A gene encoding crotonyl-CoA reductase derived from extorquens
  • the ccr used in the present invention includes single-stranded or double-stranded DNA and its RNA complement.
  • DNA includes, for example, naturally-derived DNA, recombinant DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof.
  • the nucleic acid used in the present invention DNA is preferable.
  • codons are degenerate and some amino acids have multiple base sequences encoding one amino acid.
  • any base sequence of a nucleic acid encoding crotonyl-CoA reductase can be used. Nucleic acids having sequences are also within the scope of the present invention.
  • the base sequence of ccr Sc GenBank Accession No. AF178673 and ccr Me base sequence: NCBI-GeneID: 7990208 can be used. Isolation and identification of ccr can be carried out by ordinary molecular biological techniques. These genes can be amplified using genomic DNA as a template by designing synthetic nucleotides as primers based on the nucleotide sequence of SEQ ID NO: 1 or 2, as described in Example 1 described later.
  • ccr Sc when the primers of SEQ ID NOs: 11 and 12 are used, a DNA fragment of about 1.3 kbp is obtained as a PCR product.
  • these are agarose gel electrophoresis.
  • Nucleic acids can be isolated according to a conventional method such as a method of separating DNA fragments by a molecular weight such as a method of cutting out a specific band.
  • the ccr Me using primers of SEQ ID NO: 13 and 14, can be isolated as well.
  • PCR polymerase chain reaction
  • LCR ligase chain reaction
  • SDA strand displacement reactions
  • ccr is S.I. cinnamonensis derived from (a) a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 1; or (b) hybridizing with a nucleic acid comprising the nucleotide sequence represented by SEQ ID NO: 1 under stringent conditions; and It may be composed of a nucleic acid encoding a protein having a catalytic activity to produce butyryl-CoA from crotonyl-CoA.
  • ccr is M.I.
  • nucleic acid containing a nucleotide sequence represented by SEQ ID NO: 2 or (b) hybridizing with a nucleic acid comprising a nucleotide sequence represented by SEQ ID NO: 2 under stringent conditions; It may be composed of a nucleic acid encoding a protein having a catalytic activity to produce butyryl-CoA from crotonyl-CoA.
  • under stringent conditions means to hybridize under moderate or high stringent conditions.
  • moderately stringent conditions can be easily determined by those skilled in the art based on, for example, the length of DNA.
  • Basic conditions are described in Sambrook, J. et al. Are shown in Molecular Cloning, A Laboratory Manual (3rd edition), Cold Spring Harbor Laboratory, 7.42-7.45 (2001), with regard to nitrocellulose filters, 5 ⁇ SSC, 0.5% SDS, 1.
  • High stringency conditions can also be readily determined by one skilled in the art based on, for example, the length of the DNA. Generally, such conditions include hybridization and / or washing at higher temperatures and / or lower salt concentrations than moderately stringent conditions, such as hybridization conditions as described above, and about 68 ° C. Defined with 0.2 ⁇ SSC, 0.1% SDS wash.
  • the temperature and wash solution salt concentration can be adjusted as needed according to factors such as the length of the probe.
  • Homologous nucleic acids cloned using the nucleic acid amplification reaction or hybridization as described above are at least 30% or more, preferably 50% or more, respectively, with respect to the base sequence described in SEQ ID NO: 1 or 2. More preferably 70% or more, even more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more.
  • the percent identity can be determined by visual inspection and mathematical calculation. Alternatively, the percent identity of two nucleic acid sequences is determined by Devereux, J. et al. , Et al. , Nucl. Acids Res. 12: 387 (1984) and determined by comparing sequence information using the GAP computer program (GCG Wisconsin Package, version 10.3) available from the University of Wisconsin Genetics Computer Group (UWGCG). can do.
  • ccr introduced into the host may be ccr Sc or ccr Me , and may be a nucleic acid comprising the base sequence represented by SEQ ID NO: 1 or 2.
  • genes introduced on the chromosome of the host are appropriately transcribed and further translated into a protein having the desired activity, these genes are suitable on the chromosome. It needs to be integrated so that it is under the control of the promoter.
  • a promoter of a different species from the host may be introduced into the chromosome by genetic engineering and used as appropriate.
  • a gene (phaJ) encoding (R) -specific enoyl-CoA hydratase is further introduced into a host into which the gene encoding crotonyl-CoA reductase is introduced. Also good.
  • “(R) -specific enoyl-CoA hydratase” used in the present invention is a fatty acid ⁇ -oxidation intermediate, 2-enoyl-CoA, which is a PHA monomer (R) -3-hydroxy. It means an enzyme that converts to acyl-CoA, and the origin of the biological species is not particularly limited as long as it has this activity. Necator strain.
  • phaJ used in the present invention includes single-stranded or double-stranded DNA and its RNA complement.
  • DNA includes, for example, naturally-derived DNA, recombinant DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof.
  • the nucleic acid used in the present invention DNA is preferable.
  • codons are degenerate and some amino acids have multiple base sequences encoding one amino acid.
  • the base sequence of a nucleic acid encoding (R) -specific enoyl-CoA hydratase may be used.
  • a nucleic acid having any base sequence is included in the scope of the present invention.
  • examples of phaJ used in the present invention include C.I. H16 from necator A1070 (hereinafter referred to as “phaJ4a”) (NCBI-GeneID: 4248869) can be used.
  • phaJ4a C.I. H16 from necator A1070
  • isolation and identification of phaJ introduced into a host can be performed by a normal molecular biological technique.
  • phaJ is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3 under stringent conditions.
  • phaJ is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 3 and stringent. It may be composed of a nucleic acid that encodes a protein that hybridizes under conditions and has an activity of converting a fatty acid ⁇ -oxidation intermediate into (R) -3-hydroxyacyl-CoA.
  • stringent conditions are as described above, and the homologous nucleic acid cloned using a nucleic acid amplification reaction, hybridization, or the like, respectively, with respect to the base sequence described in SEQ ID NO: 3, At least 30% or more, preferably 50% or more, more preferably 70% or more, even more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more.
  • the gene encoding (R) -specific enoyl-CoA hydratase introduced into the host is phaJ4a, and may be a nucleic acid comprising the base sequence represented by SEQ ID NO: 3. Good.
  • these genes are under the control of appropriate promoters in order for the genes introduced into the host to be properly transcribed and further translated into proteins with the desired activity. Need to be incorporated.
  • the promoter instead of the promoter inherent in the host chromosome, a promoter of a different species from the host may be introduced into the chromosome by genetic engineering and used as appropriate.
  • Ethylmalonyl-CoA decarboxylase gene (emd)
  • the above-described crotonyl-CoA reductase encoding gene is introduced into a host, instead of the gene encoding (R) -specific enoyl-CoA hydratase (phaJ) or
  • an ethylmalonyl-CoA decarboxylase gene (emd) may be introduced.
  • ethylmalonyl-CoA decarboxylase used in the present invention is a catalyst for decarboxylation of ethylmalonyl-CoA to butyryl-CoA produced by side reaction with propionyl-CoA carboxylase or the like in animal cells.
  • the origin of the biological species is not particularly limited.
  • the emd used in the present invention includes single-stranded or double-stranded DNA and its RNA complement.
  • DNA includes, for example, naturally-derived DNA, recombinant DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof.
  • the nucleic acid used in the present invention DNA is preferable.
  • codons are degenerate and some amino acids have multiple base sequences encoding one amino acid, but any nucleic acid base sequence encoding ethylmalonyl-CoA decarboxylase may be used. Nucleic acids having the base sequences are also included in the scope of the present invention.
  • the emd used in the present invention is, for example, an amino acid sequence of mouse-derived ethylmalonyl-CoA decarboxylase (GenBank Accession No. NP). 001103665), an artificially back-translated gene (hereinafter referred to as “emd Mm ”) can be used.
  • emd Mm an artificially back-translated gene
  • Such artificial genes can be obtained by gene synthesis by various companies.
  • emd is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 4; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 4 under stringent conditions.
  • emd is (a) a nucleic acid comprising the base sequence represented by SEQ ID NO: 4; or (b) a nucleic acid comprising the base sequence represented by SEQ ID NO: 4 and stringent. It may consist of a nucleic acid that hybridizes under conditions and encodes a protein having catalytic activity to decarboxylate ethynylmalonyl-CoA to produce butyryl-CoA.
  • the “stringent conditions” are as described above, and the homologous nucleic acid cloned using a nucleic acid amplification reaction, hybridization, or the like is the base sequence described in SEQ ID NO: 4, respectively. At least 30% or more, preferably 50% or more, more preferably 70% or more, even more preferably 90% or more, still more preferably 95% or more, and most preferably 98% or more.
  • the ethylmalonyl-CoA decarboxylase gene introduced into the host may be an emd Mm nucleic acid comprising the base sequence represented by SEQ ID NO: 4.
  • these genes are under the control of appropriate promoters in order for the genes introduced into the host to be properly transcribed and further translated into proteins with the desired activity. Need to be incorporated.
  • the promoter instead of the promoter inherent in the host chromosome, a promoter of a different species from the host may be introduced into the chromosome by genetic engineering and used as appropriate.
  • acetoacetyl-CoA reductase a recombinant C. elegans gene lacking a gene encoding acetoacetyl-CoA reductase has been deleted. It is preferable to use necator strains.
  • the “acetoacetyl-CoA reductase” is an enzyme having a catalytic function to produce (R) -3HB-CoA using acetoacetyl-CoA as a substrate.
  • PhaB1 In necator, “PhaB1”, “PhaB2”, and “PhaB3” are known, and in the above reaction under the growth conditions in fructose, PhaB1 mainly functions, but PhaB3 that is a paralog also functions. Have been reported (Budde, C.F., et al., J. Bacteriol., 192: 5319-5328 (2010)). As described above, the recombinant C.I. used in the production method of one embodiment of the present invention.
  • a strain lacking a gene encoding acetoacetyl-CoA reductase is used as a necator strain, and the aceacetyl-CoA reductase to be deleted is preferably encoded by phaB1 or phaB1 and phaB3. Yes, more preferably phaB1.
  • the nucleotide sequences of the genes to be deleted are known. For example, by referring to NCBI-GeneID: 4249784 and NCBI-GeneID: 4250155, respectively, either or both of these genes can be identified. Deleted recombinant C.I. It can be used to obtain necator strains.
  • deletion means a state in which a part or all of a gene of interest has disappeared due to genetic manipulation, and as a result, the protein encoded by the gene. It is intended that some or all of the activity is lost.
  • the deletion mutation can be performed by a known site mutagenesis method (Current Protocols in Molecular Biology 1, Volume 8.1.1, 1994) or a commercially available kit (LA PCR in vitro Mutagenesis series of Takara). Kit).
  • each or any combination of these genes for introducing ccr, phaJ, and emd into the host chromosome is homologous.
  • a gene replacement vector incorporated into a replacement vector or an expression vector incorporating each or any combination of the genes into an autonomously replicating vector is provided.
  • a method for incorporating a gene into a vector for example, Sambrook, J. et al. Et al., Molecular Cloning, A Laboratory Manual (3rd edition), Cold Spring Harbor Laboratory, 1.1 (2001).
  • a commercially available ligation kit for example, manufactured by Toyobo Co., Ltd. can also be used.
  • a vector can be prepared simply by ligating a desired gene to a recombination vector (for example, plasmid DNA) available in the technical field by a conventional method.
  • a recombination vector for example, plasmid DNA
  • a polyester-polymerizing enzyme gene derived from a microorganism already incorporated in the chromosome of a microorganism is used as a foreign substrate-specific polyester polymerizing enzyme.
  • the vector for homologous recombination pK18mobsacB (Schaffer, A., et al., Gene, 145: 69-73 (1994)), pJQ200 (Quantt, J. and Hynes) , MP, “Versatile suclide vectors whoh select direct selection for gene replacement in gram-negative bacteria”, Gene (1 93) 127: 15-21
  • pBBR1-MCS2 GeneBank Accession No. U23751
  • pJRD215 M16198
  • E. coli include, for example, pBAD24 (GenBank Accession No. X81837), pDONR201, pBluescript, p It is possible to use the C118, pUC18, pUC19, pBR322 and the like.
  • a recombinant vector suitable for the host cell in order to express the desired protein can do.
  • a vector is a region in which the gene used in the present invention functions so that homologous recombination occurs with the gene of the target host cell (if necessary, an autonomous replication origin, a conjugative transfer region, a selectable marker (for example, , Kanamycin resistance gene), etc.) are appropriately arranged or introduced so that the nucleic acid is constructed or constructed so that it is appropriately recombined.
  • a transformant can be prepared by incorporating a recombinant vector into a host cell.
  • the host cell can be either a prokaryotic cell (for example, E. coli (S17-1 strain, etc.), Bacillus subtilis) or a eukaryotic cell (mammalian cell, yeast, insect cell, etc.).
  • Introduction (transformation) of a recombinant vector into a host cell can be performed using a known method.
  • bacteria E. coli, Bacillus subtilis, etc.
  • the method of Cohen et al. Proc. Natl. Acad. Sci. USA, 69: 2110 (1972)
  • the protoplast method Mol. Gen.
  • a conjugation transfer method can be used to introduce an expression vector into cells belonging to the genus Ralstonia, Alcaligenes, Pseudomonas, etc. (J. Bacteriol., 147: 198). (1981)).
  • This conjugation transfer method is based on the nature of cells that transfer a chromosome genome or plasmid from one cell to another by contact between cells. For example, self-transmission carrying the target DNA.
  • a series of bridge formation in both cells a series of bridge formation in both cells, replication and transfer of the plasmid, and separation of the cells upon completion of DNA synthesis It is a means that enables gene transfer by a process.
  • a crotonyl-CoA reductase gene is introduced into the chromosome of a recombinant strain in which the gene encoding acetoacetyl-CoA reductase of necator strain has been deleted, and (R) -specific enoyl-CoA hydratase gene or ethylmalonyl -By introducing a CoA decarboxylase gene, the copolymer is produced and accumulated in the recombinant strain or in a culture (for example, a medium), and the desired co-polymer is obtained from the recombinant strain or culture. This is done by collecting the coalescence.
  • the recombinant strain in order to synthesize the copolymer, it is preferable to place the recombinant strain under appropriate culture conditions.
  • the culture conditions of the parent strain before performing such recombinant strain culture and gene recombination may be followed.
  • the recombinant strain may be grown in a medium containing carbohydrate and / or glycerol as a carbon source.
  • the medium when the necator strain is used as a host include a medium in which a saccharide or glycerol that can be assimilated by the microorganism strain is added, and any of nitrogen sources, inorganic salts, and other organic nutrient sources is restricted.
  • the medium temperature is in the range of 25 ° C. to 37 ° C., and aerobically cultured for 1 to 10 days, so that the copolymer is produced and accumulated in the cells, and then recovered and purified. A desired copolymer can be produced.
  • sugar when using saccharide
  • the supply source is not specifically limited.
  • “Sugar” is a polyhydric alcohol having an aldehyde group or a ketone group, and means a monosaccharide, oligosaccharide, oligosaccharide, or sugar derivative. Specific examples of monosaccharides include glucose, galactose, mannose, glucosamine, N-acetylglucosamine, and fructose.
  • disaccharide examples include maltose, isomaltose, lactose, lactosamine, N-acetyllactosamine, cellobiose, melibiose and the like.
  • Oligosaccharides include homo-oligomers composed of glucose, galactose, mannose, glucosamine, N-acetylglucosamine, fructose, etc., or two components such as glucose, galactose, mannose, glucosamine, N-acetylglucosamine, fructose, sialic acid
  • Hetero-oligomers composed of the above are mentioned, and examples thereof include maltooligosaccharides, isomaltooligosaccharides, lactoligosaccharides, lactosamine oligosaccharides, N-acetyllactosamine oligosaccharides, cellooligosaccharides, and merbiooligosaccharides.
  • polysaccharides include those found in a wide range of organisms such as animals, plants (including seaweed), insects, and microorganisms.
  • N-linked sugar chains O-linked sugar chains, glycosaminoglycans, starches Amylose, amylopectin, cellulose, chitin, glycogen, agarose, alginic acid, hyaluronic acid, inulin, glucomannan and the like.
  • sugar derivatives include deoxyribose (C 5 H 10 O 4 ) and sulfated polysaccharides.
  • the sugar concentration in the medium is preferably 0.1 to 5%, but can be appropriately adjusted by those skilled in the art.
  • Glycerol is often used interchangeably with “glycerin”. More suitably, however, “glycerol” is applied to 1,2,3-propanetriol, which is a chemically pure compound, whereas “glycerin” has been purified with a glycerol content generally greater than 95%. Applicable to commercial products. According to the present invention, it may be any when used as a carbon source. The concentration of glycerol or glycerin in the medium is preferably 0.1 to 5%, but can be appropriately adjusted by those skilled in the art. In addition, the present invention does not exclude an embodiment in which a carbohydrate and glycerol (or glycerin) are mixed and used as a carbon source.
  • a nitrogen source or an inorganic substance may be added to the medium.
  • the nitrogen source include ammonia, ammonium chloride, ammonium sulfate, ammonium phosphate and the like, as well as peptone, meat extract, yeast extract, corn steep liquor and the like.
  • inorganic substances include monopotassium phosphate, dipotassium phosphate, magnesium phosphate, magnesium sulfate, and sodium chloride.
  • Cultivation is usually carried out using shaking culture, and it is preferable to carry out the aerobic conditions at 25 ° C. to 37 ° C. for at least one day after induction of gene expression.
  • an antibiotic kanamycin, ampicillin or the like may be added to the medium.
  • arabinose, indoleacrylic acid (IAA), isopropyl- ⁇ -D-thiogalactopyranoside (IPTG) or the like can be used as a gene expression inducer.
  • IAA indoleacrylic acid
  • IPTG isopropyl- ⁇ -D-thiogalactopyranoside
  • a person skilled in the art can appropriately select culture conditions and conditions for inducing gene expression that are possible for desired gene expression.
  • the copolymer can be purified as follows: The transformant is recovered from the medium by centrifugation and washed with distilled water. Thereafter, it is dried or freeze-dried. Thereafter, the transformant dried in chloroform is suspended, and stirred at room temperature for a predetermined time to extract the copolymer. In the extraction stage, heating may be performed if necessary. The residue is removed by filtration, methanol is added to the supernatant to precipitate the copolymer, and the precipitate is filtered or centrifuged to remove the supernatant and dried to obtain a purified copolymer. Then, although not limited, the composition ratio of the monomer units of the obtained copolymer can be confirmed using NMR (nuclear magnetic resonance) and gas chromatography.
  • the 3HHx fraction in P (3HB-co-3HHx) may be at least 1% mol or more, for example, 1 mol%, 2 mol%, 3 mol%, 4 mol%, 5 mol% It may be mol%, 6 mol%, 7 mol%, 8 mol%, 9 mol%, 10 mol%, or more.
  • the 3HHx fraction may be 99 mol% or less, for example, 99 mol%, 98 mol%, 97 mol%, 96 mol%, 95 mol%, 94 mol%, 93 mol%, 92 mol%. 91 mol%, 90 mol%, or less.
  • the possible range of the 3HHx fraction is not limited, but for example, 1 to 99 mol%, 1 to 95 mol%, 1 to 90 mol%, 1 to 85 mol%, 1 to 80 mol%, 1 to 75 mol %, 1 to 70 mol%, 1 to 65 mol%, 1 to 60 mol%, 1 to 55 mol%, 1 to 50 mol%, 1 to 45 mol%, 1 to 40 mol%, 1 to 35 mol%, 1 to 30 mol%, 1 to 25 mol%, 1 to 20 mol%, 2 to 99 mol%, 2 to 95 mol%, 2 to 90 mol%, 2 to 85 mol%, 2 to 80 mol%, 2 to 75 mol%, 2 to 70 mol%, 2 to 65 mol%, 2 to 60 mol%, 2 to 55 mol%, 2 to 50 mol%, 2 to 45 mol%, 2 to 40 mol%, 2 to 35 mol%, 2 to 30 mol%, 2 to 25 mol%, 2 to 20 mol
  • the 3HHx fraction is preferably 3 to 90 mol%, more preferably 4 to 80 mol%, and still more preferably 5 to 70 mol%.
  • mol% refers to the sum of the number of moles of each component in a multi-component system divided by the number of moles of a component.
  • the copolymer obtained by the control method of the present invention is accumulated in the cells at a rate of 20 to 95% by weight, preferably 40 to 95% by weight, based on the dry cell weight.
  • Example 1 C. as a host Necator strain and crotonyl-CoA reductase (1) Host The necator wild-type strain H16 has a phaCAB1 operon encoding PHA synthase (PhaC), ⁇ -ketothiolase (PhaA), and acetoacetyl-CoA reductase (PhaB1) constituting the P (3HB) biosynthesis pathway on the chromosome. Have. C. produced previously. necator MF01 strain is a phaC in the phaCAB1 operon of H16 strain. phaA was converted to C. aeruginosa to the mutated gene phaC NSDG of PHA synthase derived from Caviae.
  • PhaC PHA synthase
  • PhaA ⁇ -ketothiolase
  • PhaB1 acetoacetyl-CoA reductase
  • PCR basically uses KOD Plus DNA polymerase (manufactured by Toyobo Co., Ltd.). One cycle of reaction at 98 ° C. for 20 seconds, 60 ° C. for 20 seconds, and 68 ° C. for 2 minutes and 30 seconds. This was performed for 30 cycles, and the temperature conditions were adjusted as necessary.
  • plasmid vector for deletion of acetoacetyl-CoA reductase gene phaB1 The plasmid pK18msbktBR for homologous recombination for deleting the gene (phaB1) encoding acetoacetyl-CoA reductase PhaB1 on the chromosome of necator MF01 strain was prepared as follows. First, C.I. by PCR using the genomic DNA fragment of Necator H16 strain as a template and oligonucleotides of the following sequences 1 and 2 as primers. Necator-derived ⁇ -ketothiolase (BktB) was amplified.
  • Sequence 1 TACATGGATCCAAGGGAGGCAAAGTCATGACGCGGTGAAGTGGGTAGTG (SEQ ID NO: 5)
  • Sequence 2 GGATCATATGCTTTCCTCAGATACGCTCGAGATATGGC (SEQ ID NO: 6)
  • pK18msNSDG-R including a DNA fragment in which phaC NSDG and phaB1 downstream region were linked
  • Plasmid pK18ms ⁇ phaB3 for homologous recombination for deleting the gene (phaB3) encoding acetoacetyl-CoA reductase PhaB3 on the chromosome of necator MF01 strain was prepared as follows. First, C.I. by PCR using the genomic DNA fragment of Necator H16 strain as a template and oligonucleotides of the following Sequence 3 and Sequence 4, and Sequence 5 and Sequence 6 as primers. The upstream region and the downstream region of phaB3 derived from the necator strain were each amplified.
  • Sequence 3 TTTGGAATTCTACCTAGGGATCAAATTAGAGGAAA (SEQ ID NO: 7)
  • Sequence 4 CCTTACTGCATGTGCCTGCTTCATTCTCGTAAAGTTGAAAG (SEQ ID NO: 8)
  • Sequence 5 GAATGAAGCAGGCACATGCAGTAAGGGTGCTGGGG (SEQ ID NO: 9)
  • Sequence 6 TCCTAAGCTTGCTGACCGTGATCCGTCGACAACTTTGAAGACCCTGA (SEQ ID NO: 10)
  • regions 4 and 5 are overlapped with each other.
  • the upstream and downstream fragments of the amplified phaB3 were purified and mixed, and the fragment in which the upstream and downstream of phaB3 were linked by the fusion PCR method using the oligonucleotides of sequence 3 and sequence 6 as primers.
  • the amplified upstream / downstream ligated fragment of phaB3 was treated with EcoRI and HindIII. This restriction enzyme-treated fragment was ligated with a vector plasmid pK18mobsacB treated with EcoRI and HindIII to obtain a phaB3 deletion plasmid pK18ms ⁇ phaB3.
  • C.I. Necator MF01 strain was cultured overnight at 30 ° C. in 3.0 ml of NR medium (1% fish meat extract, 1% polypeptone, 0.2% yeast extract). Thereafter, C.I. A 0.1 ml culture of necator MF01 was mixed and cultured at 30 ° C. for 6 hours. This bacterial cell mixture was applied to a Simons Citrate agar medium (Difco) supplemented with 0.2 mg / ml kanamycin and cultured at 30 ° C. for 3 days. The recombinant Escherichia coli plasmid is C.I.
  • the bacterial cells transferred to the necator and incorporated into the chromosome by homologous recombination show kanamycin resistance, while the recombinant Escherichia coli cannot grow on the Simmons Citrate agar medium.
  • Levansucrase encoded by sacB on the pK18mobsacB-derived vector accumulates toxic polysaccharide in cells using sucrose as a substrate. For this reason, only a strain from which the plasmid region has been eliminated (pop-out strain) can grow in a medium supplemented with 10% sucrose. From these colonies, a strain in which homologous recombination at the target site occurred on the chromosome was selected by the PCR method.
  • the MF01 ⁇ B1 strain lacking phaB1 was transformed by transforming the MF01 strain using pK18msbktBR, and the MF01 ⁇ B3 strain lacking phaB3 was obtained by transforming the MF01 strain using pK18ms ⁇ phaB3. Furthermore, MF01 ⁇ B1B3 strain in which phaB1 and phaB3 were double deleted was obtained by transforming MF01 ⁇ B1 strain with pK18ms ⁇ phaB3 (FIG. 1).
  • crotonyl-CoA reductase gene ccr expression vector
  • An expression vector pBBR-ccrSc arranged downstream of the lac promoter of plasmid pBBR1-MCS2 capable of autonomous replication in necator cells was prepared.
  • methanol-utilizing bacteria M methanol-utilizing bacteria
  • extorquens-derived crotonyl-CoA reductase gene (ccr Me )
  • An expression vector arranged downstream of the lac promoter of the plasmid pBBR1-MCS2 capable of autonomous replication in necator cells, pBBR-ccrMe, and an expression vector abolished downstream of the phaP1 promoter of pBPP, pBPP-ccrMe were prepared. More specifically, it is as follows.
  • Sequence 7 ACGAATTCAGGAGGAACCTGGATGAAGGAAATCCTGACG (SEQ ID NO: 11)
  • Sequence 8 AGGTCTAGAGTGCGTTCAGACGTGGCGA (SEQ ID NO: 12)
  • the amplified ccr Sc fragment was treated with restriction enzymes EcoRI and XbaI.
  • This restriction enzyme-treated fragment was ligated with a fragment obtained by treating pBBR1-MCS2 with restriction enzymes EcoRI and XbaI to obtain a plasmid pBBR-ccrSc for ccr Sc expression.
  • the restriction enzyme-treated fragment was ligated with a fragment obtained by treating pBBR1-MCS2 with restriction enzymes EcoRI and XbaI to obtain a plasmid pBBR-ccrMe for expression of ccr Me .
  • This restriction enzyme-treated fragment was ligated with a fragment obtained by treating pBPP-ccrMe with the restriction enzyme HindIII to obtain a plasmid pBPP-ccrMeJ4a (FIG. 2) for coexpression of ccr Me and phaJ4a.
  • Necator MF01 strain is considered to have a very strong pathway for supplying (R) -3HB-CoA, which is a C4 unit, and MF01 ⁇ B1 strain (FIG. 1) in which phaB1 is further deleted from the modified pha operon of MF01 strain was prepared.
  • both ccr Sc and ccr Me were effective in incorporating 3HHx units into PHA, but the ccr Me- introduced strain had a higher 3HHx fraction and a PHA accumulation rate than the ccr Sc- introduced strain. And production was low.
  • pBPP contains the lac promoter region of pBBR1-MCS2 in C.I. This is an expression plasmid substituted with the necator-derived phaP1 promoter (Fukui, T., et al., Appl. Microbiol. Biotechnol., 89: 1527-1536 (2011)).
  • An expression vector pBPP-ccrMe (FIG. 2) in which ccr Me was inserted into pBPP was prepared. Necator MF01 strain, MF01 ⁇ B1 strain, and MF01 ⁇ B1B3 strain were each transformed.
  • Example 2 Improvement of biosynthesis pathway of P (3HB-co-3HHx) from carbohydrate raw material As described above, the expression of exogenous ccr is accompanied by a decrease in PHA production, so P (3HB-co-3HHx) biosynthesis The route was improved.
  • C.I For the purpose of strengthening the supply of both (R) -3HB-CoA and (R) -3HHx-CoA, C.I.
  • PhaJ4a generates (R) -3HB-CoA and (R) -3HHx-CoA by catalyzing an (R) -specific hydration reaction on enoyl-CoA of C4 and C6.
  • It has been reported that it exhibits higher activity against C6 enoyl-CoA than C4 International Publication WO2011 / 105379; Kawashima, Y., et al., Appl. Environ. Microbiol., 78: 493-). 502 (2012)).
  • An expression vector pBPP-ccrMeJ4a (FIG. 2) in which phaJ4a was inserted into pBPP-ccrMe was prepared.
  • MF01 strain MF01 ⁇ B1 strain
  • MF01 ⁇ B1B3 strain were each transformed.
  • “phaJ4a” corresponds to the gene “phaJ1 Cn ” encoding (R) -specific enoyl-CoA hydratase described in International Publication WO2011 / 105379.
  • crotonyl-CoA reductase is a bifunctional enzyme that exhibits not only reducing activity against crotonyl-CoA but also reductive carbon fixation in the presence of carbon dioxide (Erb, TJ, et al. Proc. Natl. Acad. Sci. US 106: 8871-8876 (2009)).
  • This reductive carbonation reaction produces ethylmalonyl-CoA from crotonyl-CoA, which may constitute an undesirable alternative pathway in the P (3HB-co-3HHx) biosynthesis of the present invention.
  • Example 3 C.I. PHA biosynthesis from fructose, glucose and glycerol by the nector NSDG ⁇ B-GG strain
  • the necator wild strain H16 grows well with fructose and gluconic acid and accumulates polyester, but cannot grow with glucose and grows very slowly when glycerol is used as a carbon source.
  • Glucose is a monosaccharide constituting starch and cellulose, and utilization of glucose is important from the viewpoint of utilization of plant-derived biomass resources.
  • glycerol has been produced in large quantities as a by-product in the production of biodiesel from vegetable oil, and its effective use is desired.
  • the NSDG ⁇ B-GG strain was prepared by accumulating in the nector NSDG strain and further deleting PhaB1, which is an acetoacetyl-CoA reductase. Using this strain as a host, a plasmid pBPP-ccr Me- phaJ4a-emd Mm for establishing a copolymer polyester biosynthetic pathway was introduced to biosynthesize copolyesters from various carbon sources.
  • a region containing about 1 kbp each of the nagE gene and its upstream and downstream was amplified by PCR using the genomic DNA of necator H16 strain as a template and oligonucleotides of the following sequences 1 and 2 as primers.
  • Sequence 15 GGAATTCATTGAGGTGGCCCGCGAATATCGGCAGCCT (SEQ ID NO: 19)
  • Sequence 16 GGAATTCAGGTGCGCTTCGACAAGTCACTACTTT (SEQ ID NO: 20)
  • the 5′-end of the amplified fragment was phosphorylated and inserted into the HincII site of the general-purpose plasmid pUC118.
  • Sequence 17 GGCCAACCAGCGCGCGCCCCGCCGGCGGCGTCTCGT (SEQ ID NO: 21)
  • Sequence 18 GCATGCCTGTTCTCGATGGCACTGACCT (SEQ ID NO: 22)
  • the 5′-end of the amplified fragment was phosphorylated and self-ligated.
  • the obtained plasmid was treated with restriction enzymes BamHI and XbaI to obtain a fragment containing a mutated nagE gene. This fragment was ligated with the fragment of pK18mobSacB cleaved with the same restriction enzymes to obtain pK18msNagE.
  • G265R was obtained.
  • the plasmid pK18ms ⁇ nagR for homologous recombination for deleting the nagR gene on the chromosome of the necator NSDG strain was prepared as follows. First, C.I. The region containing about 1 kbp each of the nagR gene and its upstream / downstream was amplified by PCR using the genomic DNA of necator H16 strain as a template and oligonucleotides of the following sequences 19 and 20 as primers.
  • Sequence 19 TGCAGTTCGTATGCGACCGCATCGA (SEQ ID NO: 23)
  • Sequence 20 GGAATTCAGGTGCGCTTCGACAAGTCCATACTTT (SEQ ID NO: 24)
  • the 5′-end of the amplified fragment was phosphorylated and inserted into the HincII site of the general-purpose plasmid pUC118.
  • a region not containing the nagR gene was amplified by an inverse PCR method using this plasmid as a template and oligonucleotides of the following sequences 21 and 22 as primers.
  • Sequence 21 TGCCCGGCACGCCCCGCAACCGGGCGCTCGA (SEQ ID NO: 25)
  • Sequence 22 TGCGAATCCCTCGTAGTACCAGATGTGGA (SEQ ID NO: 26)
  • the 5′-end of the amplified fragment was phosphorylated and self-ligated.
  • the obtained plasmid was treated with restriction enzymes EcoRI and HindIII to obtain a fragment in which the nagR gene was deleted and the upstream and downstream were connected.
  • PK18ms ⁇ nagR was obtained by ligation with a fragment of pK18mobSacB cleaved with the same restriction enzyme.
  • h16 by the PCR method using the genomic DNA of Necator H16 strain as a template and oligonucleotides of the following sequences 23 and 24 as primers.
  • a region containing about 750 bp upstream and downstream of the start codon of the A2858 gene was amplified.
  • Sequence 23 ATACCGTCGACGGGTGCTGGCTCCCGAGAGTTT (SEQ ID NO: 27)
  • Sequence 24 CTGCAGTCGACCCTGCCGCGCCCACGCCGCTTTT (SEQ ID NO: 28)
  • the amplified fragment was treated with the restriction enzyme SalI and inserted into the SalI site of pK18mobSacB.
  • Sequence 25 GCGGGCAACGGATGGAGGTAAGCA (SEQ ID NO: 29)
  • Sequence 26 CTTACCTCCATCCGTTGCCCGCTTCG (SEQ ID NO: 30)
  • the glpFK gene region was amplified by PCR using the genomic DNA of Escherichia coli MG1655 strain as a template and oligonucleotides of the following sequences 27 and 28 as primers.
  • Sequence 27 ATGAGTCAAAACATCAACCTT (SEQ ID NO: 31)
  • Sequence 28 TTATTCGGTCGGTTCTCCCAC (SEQ ID NO: 32)
  • the 5′-end of the amplified glpFK gene region fragment was phosphorylated and h16 was obtained by the above-described inverse PCR method. It was ligated with the fragment opened at the start codon of the A2858 gene.
  • h16 The glpFK gene is h16 upstream of the A2858 gene.
  • a plasmid ligated in the same direction as the A2858 gene was selected to obtain pK18msglpFK-A2858.
  • Sequence 29 TCGACCGGCGCCGCACTTCTC (SEQ ID NO: 33)
  • Sequence 30 GCATGCCAGTGTCTTACTTCT (SEQ ID NO: 34)
  • the obtained DNA fragment was treated with restriction enzymes NdeI and SphI, and ligated with a fragment containing the plasmid backbone of pK18msNSDG-AB similarly cut with restriction enzymes NdeI and SphI to obtain pK18msC′R.
  • C.I C.I.
  • the ⁇ -ketothiolase gene phaA Cn having a recognition sequence for the restriction enzyme NdeI at both ends was amplified by PCR using the genomic DNA of necator H16 strain as a template and oligonucleotides of the following sequences 31 and 32 as primers.
  • the obtained phaA Cn fragment was cleaved with NdeI and inserted into the NdeI site of pK18msC′R to obtain pK18msC′AR.
  • This plasmid was digested with restriction enzymes SbfI and BamHI to remove the phaC NSDG gene, and blunt ended and self-ligated to obtain pK18msAR2.
  • Necator NSDG ⁇ B-GG strain was prepared. Furthermore, it was introduced into NSDG ⁇ B-GG strain by conjugal transfer plasmid pBPP-ccr Me -phaJ4a-emd Mm for establishing a P (3HB-co-3HHx) biosynthetic pathway.
  • PHA biosynthesis from glucose raw material, fructose raw material, and glycerol raw material is a nitrogen source-limited inorganic salt medium containing 1.0 wt% fructose, glucose, and glycerol as the sole carbon source. This was performed by culturing the cells. The culture time was 72 hours for fructose and glucose and 96 hours for glycerol. The accumulation rate and composition of PHA accumulated in the cells were determined by gas chromatography.
  • Table 5 shows the results of culturing strains in which pBPP-ccrMeJ4a-emd was introduced into the nector NSDG ⁇ B-GG strain.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

 本発明は、糖質やグリセロールを出発原料として3-ヒドロキシヘキサン酸(3HH)の分率の高いポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)(P(3HB-co-3HH))の生産量を向上させる方法を提供することを目的とする。本発明によれば、P(3HB-co-3HH)生産能を付与した組換えクプリアヴィダス・ネカトール株の染色体に、クロトニル-CoA還元酵素遺伝子を相同性組換えによって形質転換し、又は前記株に該クロトニル-CoA還元酵素遺伝子が組み込まれた自律複製ベクターを導入することによって形質転換し、炭素源として糖質やグリセロールを含有する培地で形質転換体を増殖させることを含む、P(3HB-co-3HH)共重合体を製造する方法、並びに該共重合体の生産量及び/又は該共重合体中の3HHxの分率を向上させる方法が提供される。

Description

糖質原料からの共重合ポリヒドロキシアルカン酸の製造法
 本発明は、微生物により分解可能であり、生体適合性にも優れた共重合ポリヒドロキシアルカン酸の1つであるポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)の微生物による製造において、糖質及び/又はグリセロールを基本原料として、共重合体の生産量を向上させ、共重合体中の3-ヒドロキシヘキサン酸の分率を向上させる方法に関する。
 プラスチックは構造に応じて多用な物性を実現でき、かつ安価であることから、現代社会において欠かせない素材である。しかし、プラスチックのほとんどは石油を原料として合成され、長期安定性を求めて開発・生産されてきた。その結果、石油合成プラスチックの多くは廃棄後に自然環境中では分解されないため、不要になったプラスチック廃棄物の管理と処分が世界各国で大きな問題となっている。また、石油に代表される化石資源の枯渇も探刻な問題である。採掘技術の進歩により化石資源の可採年数が延びたとしても、これらが限りある資源であることに変わりはなく、世界の経済成長に起因する需要の拡大により化石資源の消費は今後も拡大していくと予測されている。加えて、化石資源の消費による大気中の二酸化炭素濃度の上昇も大きな環境問題となっている。そのため、化石資源の消費を抑制し、化石資源に依存しない社会体系を構築していくことが必要である。
 このような背景から、環境低負荷型のプラスチック素材であるバイオプラスチックの開発と実用化が望まれている。バイオプラスチックとは、「生分解性プラスチック」と「バイオマスプラスチック」の二種類の総称である。生分解性プラスチックは環境中の微生物によって分解されるプラスチックであり、石油合成プラスチックで問題となっている廃棄物処理の問題が生じない。またバイオマスプラスチックは動植物に由来する再生可能なバイオマス資源を原料とするプラスチックであり、その燃焼により生じる二酸化炭素はもともと植物の光合成により固定化された大気中の二酸化炭素である(カーボンニュートラル)ために化石資源の枯渇と温室効果ガス排出の観点から将来の循環型社会の構築に貢献できる素材と言える。
 多くの微生物がエネルギー源として細胞内に蓄積するポリヒドロキシアルカン酸(PHA)はバイオマスを原料とし、かつ生分解性を有するプラスチック素材として期待されている。ポリ(3-ヒドロキシブタン酸)[P(3HB)]は多くの微生物が生合成する代表的なPHAあるが、P(3HB)は固くて脆いという物性のため材料としての実用化は困難である。一方で、異なる構造を有するヒドロキシアルカン酸をコモノマーユニットとしたPHA共重合体の多くでは柔軟性などが改善されるため、これまでにPHA共重合体生合成の研究が精力的に行われてきた。例えば、P(3HB)生産菌にプロピオン酸やペンタン酸といった前駆体を与えることでポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシ吉草酸)共重合体が、1,4-ブタンジオールあるいはγ-ブチルラクトンを添加することでポリ(3-ヒドロキシブタン酸-co-4-ヒドロキシブタン酸)共重合体が生合成される。近年では、PHA生産菌の遺伝子改変により、前駆体の添加無しにバイオマスからPHA共重合体を生合成する研究が各国で進められている。
 土壌細菌Aeromonas caviae(アエロモナス・キャビエ)などを植物油や脂肪酸を炭素源として培養すると生合成されるポリ((R)-3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)共重合体[P(3HB-co-3HHx)]は、その共重合組成に応じて柔軟性が増加し、(R)-3-ヒドロキシヘキサン酸(3HHx)ユニットを10mol%程度含む共重合体は適度な柔軟性を示す優れたプラスチックとなることがわかっている。A.caviaeが植物油から生合成するP(3HB-co-3HHx)の3HHx分率は10~20mol%であり、実用化に適した柔軟性を示すものの、その菌体内蓄積率は約15重量%と低く、実生産に適用することは困難であった(特許文献1、特許文献2、非特許文献1)。
 そこで、効率的P(3HB)生産菌として知られている水素細菌Cupriavidus necator(クプリアヴィダス・ネカトール)に基質特異性の広いPHA重合酵素を機能させ、さらにポリエステル生合成経路や脂肪酸を分解するβ-酸化経路の改変などにより、植物油を炭素源として3HHx分率の高いP(3HB-co-3HHx)を効率的に生産する組換え株が開発されている(特許文献3、特許文献4、特許文献5、特許文献6、非特許文献2、非特許文献3、非特許文献4、非特許文献5)。
 上記のP(3HB-co-3HHx)の微生物合成の研究は植物油、長鎖脂肪酸、酪酸又はブタノールを原料とするものである。一方で、多糖由来の糖質を原料としたP(3HB-co-3HHx)の生産技術は、多糖類が地球上で多量に存在し、かつ再生産されるバイオマス資源であることを考慮すると非常に重要である。しかしながら、糖質原料からP(3HB-co-3HHx)を生合成する野生型微生物としてはBacillus sp.INT005株がグルコースからP(3HB-co-3HHx)を生合成することが報告されているのみであるが、その3HHx分率は1.6mol%と低く、またその生合成経路も明らかにされていない(非特許文献6)。
 組換え微生物による糖質原料からのP(3HB-co-3HHx)の生合成についても報告例は非常に少ない。Qiuらは脂肪酸生合成経路中間体からチオエステル交換反応によりモノマーである(R)-3-ヒドロキシヘキサノイル-CoA((R)-3HHx-CoA)を生成する酵素遺伝子、及び(R)-3-ヒドロキシブチリル-CoA((R)-3HB-CoA)生成経路を導入したPseudomonas putida(シュードモナス・プチダ)組換え株によりグルコースからP(3HB-co-19mol% 3HHx)を乾燥菌体重量あたり10重量%で、及びチオエステラーゼ遺伝子を導入することで脂肪酸生合成経路中の長鎖アシル-アシルキャリアータンパク質を切断してアシル基を遊離させ、そのアシル基の分解を経由して(R)-3HHx-CoAを生成するAeromonas hydrophila(アエロモナス・ヒドロフィラ)組換え株によりP(3HB-co-14mol% 3HHx)を10重量%で生合成している(非特許文献7)。
 一方、本発明者らは以前に、C.necator組換え株によるフルクトース原料からのP(3HB-co-3HHx)生合成について検討した。すなわち、糖質に由来するアセチル-CoA2分子が縮合して生成した炭素数4の中間体からブチリル-CoAを生成させ、そのブチリル-CoAともう一分子のアセチル-CoAとを縮合させることによって炭素数6の中間体を生成させ、さらなる変換反応で生じた(R)-3HHx-CoAが(R)-3HB-CoAと共重合する経路を考案した。この人工代謝経路構築のため、(R)-3HB-CoAからクロトニル-CoAを生成するA.caviae由来(R)-特異的エノイル-CoAヒドラターゼの遺伝子phaJAcと、クロトニル-CoAの二重結合を還元する放線菌Streptomyces cinnamonensis(ストレプトミセス・シナモネンシス)由来クロトニル-CoA還元酵素の遺伝子ccrScを、広基質特異性PHA重合酵素の遺伝子phaCAcと同時にC.necatorのPHA重合酵素欠損株PHB-4株に導入した。その結果、作製した組換え株はフルクトースを単一炭素源として1.2~1.6mol%の3HHxユニットを含むP(3HB-co-3HHx)を39~49重量%で生合成し、設計した経路は確かに機能することを見出したが、3HHx分率は低く、ポリマー物性の改善には十分でなかった(非特許文献8)。
特開平5-93049号公報 特開平7-265065号公報 特許第3062459号公報 特開2008-86238号公報 特開2008-29218号公報 国際公開第2011/105379号
Doi,Y.,et al.,Macromoclecules,28:4822-4828(1995) Fukui,T.& Doi,Y.,Appl.Microbiol.Biotechnol.,49:333-336(1998) Mifune,J.,et al.,Polym.Degrad.Stab.,95:1305-1312(2010) Kawashima,Y.,et al.,Appl.Environ.Microbiol.,78:493-502(2012) Insomphun,C.et al.,J.Biosci.Bioeng.,117:184-190(2014) Tajima et al.,J.Biosci.Bioeng.,95:77-81(2005) Qiu,Y.Z.,et al.,Biotechnol.Lett.,27:1381-1386(2005) Fukui,T.,et al.,Biomacromolecules,3:618-624(2002)
 上記のように、植物油や脂肪酸を原料として3HHx分率の高いP(3HB-co-3HHx)を製造する方法は数多いが、糖質やグリセロールを原料とする方法はほとんど例がない。Qiuらによる報告では3HHx分率は十分に高いものの、菌体重量あたりの蓄積率は20重量%以下と生産効率が低い。一方で本発明者らによる先行技術では菌体重量あたりの蓄積率は39~49重量%と高いものの、3HHxは1.6mol%以下と低く、柔軟性の発現には不十分であった。糖質やグリセロールから3HHx分率の高いP(3HB-co-3HHx)を高い蓄積率で製造する方法の確立は長らく課題とされていた。
 そこで、本発明者らは、以前に考案した新規代謝経路について抜本的な見直しを行ったところ、クロトニル-CoA還元酵素遺伝子、(R)-特異的エノイル-CoAヒドラターゼ遺伝子、及びエチルマロニル-CoA脱炭酸酵素遺伝子を組み込んだ組換えC.necator株、並びにC.necator株のphaCAB1オペロンに存在するアセトアセチル-CoA還元酵素遺伝子(phaB1)欠失させ、クロトニル-CoA還元酵素遺伝子を組み込み、さらに(R)-特異的エノイル-CoAヒドラターゼ遺伝子とエチルマロニル-CoA脱炭酸酵素遺伝子を組み込んだ組換えC.necator株が、糖質やグリセロールを原料として3HHx分率の高いP(3HB-co-3HHx)を高い蓄積率で製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下の通りである。
 [1]ポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)生産能を付与した組換えCupriavidus necator(クプリアヴィダス・ネカトール)株の染色体に、クロトニル-CoA還元酵素遺伝子、(R)-特異的エノイル-CoAヒドラターゼ遺伝子、及びエチルマロニル-CoA脱炭酸酵素遺伝子を相同性組換えによって形質転換し、又は前記株に該遺伝子が組み込まれた自律複製ベクターを導入することによって形質転換し、炭素源として糖質及び/又はグリセロールを含有する培地で形質転換体を増殖させることを含む、ポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)を製造する方法。
 [2]ポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)生産能を付与した組換えC.necator株の染色体上のアセトアセチル-CoA還元酵素をコードする遺伝子を欠失させた組換え株の染色体に、クロトニル-CoA還元酵素遺伝子を相同性組換えによって形質転換し、又は前記株に該遺伝子が組み込まれた自律複製ベクターを導入することによって形質転換し、炭素源として糖質及び/又はグリセロールを含有する培地で形質転換体を増殖させることを含む、ポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)を製造する方法。
 [3]前記形質転換体において、(R)-特異的エノイル-CoAヒドラターゼ遺伝子を相同性組換えによって形質転換し、又は該遺伝子が組み込まれた自律複製ベクターの導入によって形質転換することをさらに含む、上記[2]に記載の方法。
 [4]前記形質転換体において、エチルマロニル-CoA脱炭酸酵素遺伝子を相同性組換えによって形質転換し、又は該遺伝子が組み込まれた自律複製ベクターの導入によって形質転換することをさらに含む、上記[2]及び[3]に記載の方法。
 [5]C.necatorが、JMP134株(DSM4058)又はH16株(DSM428)である、上記[1]~[4]に記載の方法。
 [6]組換えC.necator株が、MF01株、NSDG株、又はNSDGΔA株である、上記[1]~[5]に記載の方法。
 [7]クロトニル-CoA還元酵素遺伝子が放線菌Streptomyces cinnamonensis(ストレプトミセス・シナモネンシス)由来である、上記[1]~[6]に記載の方法。
 [8]クロトニル-CoA還元酵素遺伝子が、
(a)配列番号1で表される塩基配列を含む核酸;又は
(b)配列番号1で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつクロトニル-CoAからブチリル-CoAを生成する触媒活性を有するタンパク質をコードする核酸
からなる、上記[7]に記載の方法。
 [9]クロトニル-CoA還元酵素遺伝子がメタノール資化性菌Methylobacterium extorquens(メチロバクテリウム・エクストークエンス)由来である、上記[1]~[6]に記載の方法。
 [10]クロトニル-CoA還元酵素遺伝子が、
(a)配列番号2で表される塩基配列を含む核酸;又は
(b)配列番号2で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつクロトニル-CoAからブチリル-CoAを生成する触媒活性を有するタンパク質をコードする核酸
からなる、上記[9]に記載の方法。
 [11](R)-特異的エノイル-CoAヒドラターゼ遺伝子が、C.necator由来であり、
(a)配列番号3で表される塩基配列を含む核酸;又は
(b)配列番号3で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつ脂肪酸β-酸化経路中間体である2-エノイル-CoAを(R)-3-ヒドロキシアシル-CoAに変換する活性を有するタンパク質をコードする核酸
からなる、上記[1]~[10]に記載の方法。
 [12]エチルマロニル-CoA脱炭酸酵素遺伝子が、
(a)配列番号4で表される塩基配列を含む核酸;又は
(b)配列番号4で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつエチルマロニル-CoAを脱炭酸し、ブチリル-CoAを生成する触媒活性を有するタンパク質をコードする核酸
からなる、上記[1]~[11]に記載の方法。
 C.necatorにアセチル-CoAから3HBユニットと3HHxユニットを生成する新規な代謝経路を遺伝子操作によって構築することで、糖質やグリセロールを出発原料として、P(3HB-co-3HHx)の生産量及び3HHxの分率を向上させる方法を提供することができる。
C.necator H16株(野生株)、MF01株、MF01ΔB1株、MF01ΔΔB1B3株の遺伝子型の概略図を示す。 クロトニル-CoA還元酵素遺伝子ccrMe発現ベクターpBPP-ccrMe、ccrMe及び(R)-特異的エノイル-CoAヒドラターゼ遺伝子phaJ4a共発現ベクターpBPP-ccrMeJ4a、ccrMe、phaJ4a、及びエチルマロニル-CoA脱炭酸酵素遺伝子emdMmの共発現ベクターpBPP-ccrMeJ4a-emdの概略図を示す。 pBPP-ccrMeJ4a-emdを導入したC.necator MF01ΔB1におけるフルクトースからのP(3HH-co-3HHx)生合成経路を示す。
 以下、本発明の説明のために、好ましい実施形態に関して詳述する。
 上記の通り、本発明者らは、アセチル-CoAから3HBユニットと3HHxユニットを生成し、共重合する新規な代謝経路を開拓することによって、従来の植物油とは異なり、広く糖質やグリセロールを出発原料として上記課題を解決することに成功した。より具体的には、本発明は、P(3HH-co-3HHx)生産能を付与した組換えC.necator株の染色体に、クロトニル-CoA還元酵素遺伝子、(R)-特異的エノイル-CoAヒドラターゼ遺伝子、及びエチルマロニル-CoA脱炭酸酵素遺伝子を相同性組換えによって形質転換し、又は前記株に該遺伝子が組み込まれた自律複製ベクターを導入することによって形質転換し、炭素源として糖質やグリセロールを含有する培地で形質転換体を増殖させることを含む、P(3HH-co-3HHx)を製造する方法、並びに該共重合体の生産量及び/又は該共重合体中の3HHxユニットの分率を向上させる方法に関する。なお、ここで、クロトニル-CoA還元酵素遺伝子、(R)-特異的エノイル-CoAヒドラターゼ遺伝子、及びエチルマロニル-CoA脱炭酸酵素遺伝子は、そのすべてが相同性組換えによって形質転換されているか、又は前記株に該遺伝子が組み込まれた自律複製ベクターとして導入されていてもよいし、クロトニル-CoA還元酵素遺伝子、(R)-特異的エノイル-CoAヒドラターゼ遺伝子、及びエチルマロニル-CoA脱炭酸酵素遺伝子のうち、1つ又は2つの遺伝子が相同性組換えによって形質転換されていて、残りの遺伝子が前記株に該遺伝子が組み込まれた自律複製ベクターとして導入されている形態であってもかまわない。さらに、本態様において、C.necator株の染色体上のアセトアセチル-CoA還元酵素をコードする遺伝子が欠失されていてもよい。
 異なる形態として、本発明は、P(3HH-co-3HHx)生産能を付与した組換えC.necator株の染色体上のアセトアセチル-CoA還元酵素をコードする遺伝子を欠失させた組換え株の染色体に、クロトニル-CoA還元酵素遺伝子を相同性組換えによって形質転換し、又は前記株に該遺伝子が組み込まれた自律複製ベクターを導入することによって形質転換し、炭素源として糖質やグリセロールを含有する培地で形質転換体を増殖させることを含む、P(3HH-co-3HHx)を製造する方法、並びに該共重合体の生産量及び/又は該共重合体中の3HHxユニットの分率を向上させる方法に関する。一態様では、上記生産方法に使用される形質転換体は、(R)-特異的エノイル-CoAヒドラターゼ遺伝子を相同性組換えによって形質転換され、又は該遺伝子が組み込まれた自律複製ベクターの導入によって形質転換されてもよい。さらに、上記生産方法に使用される形質転換体は、エチルマロニル-CoA脱炭酸酵素遺伝子、又は(R)-特異的エノイル-CoAヒドラターゼ遺伝子及びエチルマロニル-CoA脱炭酸酵素遺伝子を相同性組換えによって形質転換され、又は該遺伝子が組み込まれた自律複製ベクターの導入によって形質転換されてもよい。
(1)宿主(微生物)
 本発明の生産方法に使用される宿主は、PHA生産菌であるC.necatorである。特に、本発明の生産方法に使用されるC.necatorとしては、限定されないが、JMP134株(DSM4058)及びH16株(DSM428)が挙げられる。より具体的には、本発明においては、P(3HB-co-3HHx)生産能を付与した組換えC.necator株を用いることが好ましく、例えば、NSDG株、MF01株、及びNSDGΔA株を使用してもよい。
 本明細書において使用するとき、「NSDG株」とは、C.necator野生株の一種であるH16株(ATCC16699株、DSM428株)の染色体上のphaオペロン中の本来のPHA重合酵素遺伝子phaCを、A.caviae由来PHA重合酵素の変異体の遺伝子であるphaCNSDGに相同性組換えにより置換した組換え株である(国際公開WO2011/105379参照)。ここで、「phaCNSDG」とは、A.caviae株由来のPHA重合酵素(phaCAc)の149番のアスパラギンがセリンに、かつ171番のアスパラギン酸がグリシンに置換された変異体をコードする遺伝子である。なお、phaCNSDG遺伝子のクローニングについては、通常の分子生物学的手法により行うことができる。また、本明細書において使用するとき、「MF01株」とは、前記NSDG株のphaACnを広基質特異性β-ケトチオラーゼ遺伝子bktBCnに置換した形質転換体である。また、「NSDGΔA」とは、前記NSDG株において、β-ケトチオラーゼ遺伝子であるphaACnを欠失させた形質転換体をいう。上記3種のH16変異株は、C.necatorのPHA重合酵素をコードする遺伝子の配列情報を基にして、一般的な遺伝子工学的手法を用いて作製することができる(例えば、特開2008-29218、国際公開WO2011/105379を参照されたい)。
(2)クロトニル-CoA還元酵素をコードする遺伝子(ccr)
 本発明によれば、P(3HB-co-3HHx)の生産量の向上、及び/又は3HHx分率の向上には、該共重合体の生産能を付与した組換えC.necator株に形質転換によってクロトニル-CoA還元酵素をコードする遺伝子(ccr)を導入させることが必要である。ここで、本明細書において使用される「クロトニル-CoA還元酵素」とは、脂肪酸β-酸化経路の中間体である炭素数4のクロトニル-CoAを還元し、β-ケトチオラーゼ(BktB)の基質となるブチリル-CoAを生成する酵素である。ブチリル-CoAがβ-ケトチオラーゼの作用によりもう1分子のアセチル-CoAと縮合し、さらに変換されることにより炭素数6の(R)-3HHx-CoAが供給され、広基質特異性を示すポリエステル重合酵素により(R)-3HB-CoAとともに共重合される。本発明において使用され得るccrは、翻訳後の該還元酵素が上記の活性を有する限り、生物種の由来は特に限定されないが、好ましくは、放線菌S.cinnamonensis由来のクロトニル-CoA還元酵素をコードする遺伝子(以下「ccrSc」と称することがある)又はメタノール資化性菌M.extorquens由来のクロトニル-CoA還元酵素をコードする遺伝子(以下「ccrMe」と称することがある)である。
 なお、本発明に使用されるccrは、一本鎖又は二本鎖型DNA、及びそのRNA相補体も含む。DNAには、例えば、天然由来のDNA、組換えDNA、化学合成したDNA、PCRによって増幅されたDNA、及びそれらの組み合わせが含まれる。本発明で使用される核酸としてはDNAが好ましい。なお、周知の通り、コドンには縮重があり、1つのアミノ酸をコードする塩基配列が複数存在するアミノ酸もあるが、クロトニル-CoA還元酵素をコードする核酸の塩基配列であれば、いずれの塩基配列を有する核酸も本発明の範囲に含まれる。
 本発明の一実施形態において、本発明に使用されるccrとして、例えば、ccrScの塩基配列:GenBank Accession No.AF178673、及びccrMeの塩基配列:NCBI-GeneID:7990208を利用することができる。ccrの単離及び同定は、通常の分子生物学的手法により行うことができる。これらの遺伝子は、例えば、後述する実施例1に記載するように、配列番号1又は2の塩基配列に基づいてプライマーとして合成ヌクレオチドを設計し、ゲノムDNAを鋳型として増幅することができる。なお、実施例1に示すように、ccrScについては、配列番号11及び12のプライマーを使用した場合、PCR産物として約1.3kbpのDNA断片が得られるので、例えば、これらをアガロースゲル電気泳動等の分子量によりDNA断片を篩い分ける方法で分離し、特定のバンドを切り出す方法等の常法に従って核酸を単離することができる。一方、ccrMeについて、配列番号13及び14のプライマーを使用して、同様に単離することができる。
 ここで、核酸を増幅するための手法としては、例えば、ポリメラーゼ連鎖反応(PCR)(Saiki,R.K.,et al.,Science,230:1350-1354(1985))、ライゲース連鎖反応(LCR)(Wu,D.Y.,et al.,Genomics,4:560-569(1989))、及び転写に基づく増幅(Kwoh,D.Y.,et al.,Proc.Natl.Acad.Sci.USA,86:1173-1177(1989))等の温度循環を必要とする反応、並びに鎖置換反応(SDA)(Walker,G.T.,et al.,Proc.Natl.Acad.Sci.USA,89:392-396(1992);Walker,G.T.,et al.,Nuc.Acids Res.,20:1691-1696(1992))、自己保持配列複製(3SR)(Guatelli,J.C.,et al.,Proc.Natl.Acad.Sci.USA,87:1874-1878(1990))、及びQβレプリカーゼシステム(Lizardi,P.M.,et al.,BioTechnology,6:1197-1202(1988))等の恒温反応を利用することができるが、これらに限定されない。本発明の生産法においては、PCR法を使用することが好ましい。
 本発明の実施形態において、ccrは、S.cinnamonensis由来であって、(a)配列番号1で表される塩基配列を含む核酸;又は(b)配列番号1で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつクロトニル-CoAからブチリル-CoAを生成する触媒活性を有するタンパク質をコードする核酸からなるものであってもよい。本発明の別の実施形態において、ccrは、M.extorquens由来であって、(a)配列番号2で表される塩基配列を含む核酸;又は(b)配列番号2で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつクロトニル-CoAからブチリル-CoAを生成する触媒活性を有するタンパク質をコードする核酸からなるものであってもよい。
 本明細書において、「ストリンジェントな条件下」とは、中程度又は高程度なストリンジェントな条件においてハイブリダイズすることを意味する。具体的には、中程度のストリンジェントな条件は、例えば、DNAの長さに基づき、一般の技術を有する当業者によって、容易に決定することが可能である。基本的な条件は、Sambrook,J.ら、Molecular Cloning,A Laboratory Manual(3rd edition),Cold Spring Harbor Laboratory,7.42-7.45(2001)に示されるが、ニトロセルロースフィルターに関し、5×SSC、0.5% SDS、1.0mM EDTA(pH8.0)の前洗浄溶液、約40~50℃での、約50%ホルムアミド、2×SSC~6×SSC(又は約42℃での約50%ホルムアミド中の、スターク溶液(Stark’s solution)などの他の同様のハイブリダイゼーション溶液)のハイブリダイゼーション条件、及び約60℃、0.5×SSC、0.1% SDSの洗浄条件の使用が含まれる。高ストリンジェントな条件もまた、例えばDNAの長さに基づき、当業者によって、容易に決定することが可能である。一般的に、こうした条件は、中程度にストリンジェントな条件よりも高い温度及び/又は低い塩濃度でのハイブリダイゼーション及び/又は洗浄を含み、例えば上記のようなハイブリダイゼーション条件、及び約68℃、0.2×SSC、0.1% SDSの洗浄を伴うと定義される。当業者は、温度及び洗浄溶液塩濃度は、プローブの長さ等の要因に従って、必要に応じて調整可能であることを認識するであろう。
 上記のような核酸増幅反応又はハイブリダイゼーション等を使用してクローニングされる相同な核酸は、配列番号1又は2に記載の塩基配列に対して、それぞれ、少なくとも30%以上、好ましくは50%以上、より好ましくは70%以上、さらにより好ましくは90%以上、さらになお好ましくは95%以上、最も好ましくは98%以上の同一性を有する。なお、同一性パーセントは、視覚的検査及び数学的計算によって決定することが可能である。あるいは、2つの核酸配列の同一性パーセントは、Devereux,J.,et al.,Nucl.Acids Res.,12:387(1984)に記載され、そしてウィスコンシン大学遺伝学コンピューターグループ(UWGCG)より入手可能なGAPコンピュータープログラム(GCG Wisconsin Package、バージョン10.3)を用いて、配列情報を比較することによって決定することができる。
 本発明のより好ましい態様では、宿主に導入されるccrは、ccrSc又はccrMeであって、配列番号1又は2で表される塩基配列からなる核酸であってもよい。なお、当業者に理解されるように、宿主の染色体上に導入された遺伝子が適切に転写され、さらには所望の活性を有するタンパク質に翻訳されるために、これらの遺伝子は染色体上で適切なプロモーターの制御下にあるように組み込まれる必要がある。なお、プロモーターに関して、宿主の染色体に固有に存在するプロモーターに代えて、宿主と異なる種のプロモーターを遺伝子工学的操作により染色体に導入し、適宜使用してもよい。
(3)(R)-特異的エノイル-CoAヒドラターゼをコードする遺伝子(phaJ)
 本発明による共重合体の生産方法において、上記のクロトニル-CoA還元酵素をコード遺伝子が導入された宿主に、(R)-特異的エノイル-CoAヒドラターゼをコードする遺伝子(phaJ)をさらに導入してもよい。ここで、本発明に使用される「(R)-特異的エノイル-CoAヒドラターゼ」とは、脂肪酸β-酸化系中間体である2-エノイル-CoAをPHAモノマーである(R)-3-ヒドロキシアシル-CoAに変換する酵素を意味し、この活性を有する限りにおいては、生物種の由来は特に限定されないが、好ましくは、C.necator株由来である。
 なお、本発明に使用されるphaJは、一本鎖又は二本鎖型DNA、及びそのRNA相補体も含む。DNAには、例えば、天然由来のDNA、組換えDNA、化学合成したDNA、PCRによって増幅されたDNA、及びそれらの組み合わせが含まれる。本発明で使用される核酸としてはDNAが好ましい。なお、周知の通り、コドンには縮重があり、1つのアミノ酸をコードする塩基配列が複数存在するアミノ酸もあるが、(R)-特異的エノイル-CoAヒドラターゼをコードする核酸の塩基配列であれば、いずれの塩基配列を有する核酸も本発明の範囲に含まれる。
 本発明の一実施形態において、本発明に使用されるphaJとして、例えば、C.necator由来のH16 A1070(以下「phaJ4a」とする)(NCBI-GeneID:4248689)を利用することができる。なお、宿主に導入されるphaJの単離及び同定は、通常の分子生物学的手法により行うことができる。さらに、本発明の実施形態において、phaJは、(a)配列番号3で表される塩基配列を含む核酸;又は(b)配列番号3で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつ脂肪酸β-酸化系中間体であるエノイル-CoAを(R)-3-ヒドロキシアシル-CoAに変換する活性を有するタンパク質をコードする核酸からなるものであってもよい。さらに、本発明の他の実施形態において、phaJは、(a)配列番号3で表される塩基配列からなる核酸;又は(b)配列番号3で表される塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつ脂肪酸β-酸化系中間体を(R)-3-ヒドロキシアシル-CoAに変換する活性を有するタンパク質をコードする核酸からなるものであってもよい。
 なお、「ストリンジェントな条件」については、上述した通りであり、核酸増幅反応又はハイブリダイゼーション等を使用してクローニングされる相同な核酸は、配列番号3に記載の塩基配列に対して、それぞれ、少なくとも30%以上、好ましくは50%以上、より好ましくは70%以上、さらにより好ましくは90%以上、さらになお好ましくは95%以上、最も好ましくは98%以上の同一性を有する。
 本発明のより好ましい態様では、宿主に導入される(R)-特異的エノイル-CoAヒドラターゼをコードする遺伝子は、phaJ4aであって、配列番号3で表される塩基配列からなる核酸であってもよい。なお、当業者に理解されるように、宿主に導入された遺伝子が適切に転写され、さらには所望の活性を有するタンパク質に翻訳されるために、これらの遺伝子は適切なプロモーターの制御下にあるように組み込まれる必要がある。なお、プロモーターに関して、宿主の染色体に固有に存在するプロモーターに代えて、宿主と異なる種のプロモーターを遺伝子工学的操作により染色体に導入し、適宜使用してもよい。
(4)エチルマロニル-CoA脱炭酸酵素遺伝子(emd)
 本発明による共重合体の生産方法において、上記のクロトニル-CoA還元酵素をコード遺伝子が導入された宿主に、(R)-特異的エノイル-CoAヒドラターゼをコードする遺伝子(phaJ)に代えて又は該遺伝子に加えて、エチルマロニル-CoA脱炭酸酵素遺伝子(emd)を導入してもよい。ここで、本発明に使用される「エチルマロニル-CoA脱炭酸酵素」とは、動物細胞においてプロピオニル-CoAカルボキシラーゼなどによる副反応で生じたエチルマロニル-CoAのブチリル-CoAへの脱炭酸反応を触媒する酵素を意味し、この活性を有する限りにおいては、生物種の由来は特に限定されない。
 なお、本発明に使用されるemdは、一本鎖又は二本鎖型DNA、及びそのRNA相補体も含む。DNAには、例えば、天然由来のDNA、組換えDNA、化学合成したDNA、PCRによって増幅されたDNA、及びそれらの組み合わせが含まれる。本発明で使用される核酸としてはDNAが好ましい。なお、周知の通り、コドンには縮重があり、1つのアミノ酸をコードする塩基配列が複数存在するアミノ酸もあるが、エチルマロニル-CoA脱炭酸酵素をコードする核酸の塩基配列であれば、いずれの塩基配列を有する核酸も本発明の範囲に含まれる。
 本発明の一実施形態において、本発明に使用されるemdとして、例えば、マウス由来のエチルマロニル-CoA脱炭酸酵素のアミノ酸配列(GenBank Accession No.NP 001103665)を基に、人工的に逆翻訳した遺伝子(以下「emdMm」とする)を利用することができる。このような人工遺伝子は、各種企業による遺伝子受託合成によって入手できる。さらに、本発明の実施形態において、emdは、(a)配列番号4で表される塩基配列を含む核酸;又は(b)配列番号4で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつエチニルマロニル-CoAを脱炭酸し、ブチリル-CoAを生成する触媒活性を有するタンパク質をコードする核酸からなるものであってもよい。さらに、本発明の他の実施形態において、emdは、(a)配列番号4で表される塩基配列からなる核酸;又は(b)配列番号4で表される塩基配列からなる核酸とストリンジェントな条件下でハイブリダイズし、かつエチニルマロニル-CoAを脱炭酸し、ブチリル-CoAを生成する触媒活性を有するタンパク質をコードする核酸からなるものであってもよい。
 なお、「ストリンジェントな条件」については、上述した通りであり、核酸増幅反応又はハイブリダイゼーション等を使用してクローニングされる相同な核酸は、配列番号4に記載の塩基配列に対して、それぞれ、少なくとも30%以上、好ましくは50%以上、より好ましくは70%以上、さらにより好ましくは90%以上、さらになお好ましくは95%以上、最も好ましくは98%以上の同一性を有する。
 本発明のより好ましい態様では、宿主に導入されるエチルマロニル-CoA脱炭酸酵素遺伝子は、emdMmであって、配列番号4で表される塩基配列からなる核酸であってもよい。なお、当業者に理解されるように、宿主に導入された遺伝子が適切に転写され、さらには所望の活性を有するタンパク質に翻訳されるために、これらの遺伝子は適切なプロモーターの制御下にあるように組み込まれる必要がある。なお、プロモーターに関して、宿主の染色体に固有に存在するプロモーターに代えて、宿主と異なる種のプロモーターを遺伝子工学的操作により染色体に導入し、適宜使用してもよい。
(5)アセトアセチル-CoA還元酵素をコードする遺伝子
 本発明の一態様によれば、アセトアセチル-CoA還元酵素をコードする遺伝子を欠失させた組換えC.necator株を用いることが好ましい。「アセトアセチル-CoA還元酵素」とは、アセトアセチル-CoAを基質として(R)-3HB-CoAを生成する触媒機能を有する酵素であり、C.necatorにおいては、「PhaB1」、「PhaB2」、及び「PhaB3」が知られ、フルクトースでの増殖条件における上記の反応においては、PhaB1が主体となって機能するが、パラログであるPhaB3も機能することが報告されている(Budde,C.F.,et al.,J.Bacteriol.,192:5319-5328(2010))。上記の通り、本発明の一態様の生産方法に使用される組換えC.necator株として、アセトアセチル-CoA還元酵素をコードする遺伝子を欠失させた株を使用することが好ましく、欠失させるアセトアセチル-CoA還元酵素をコード遺伝子としては、好ましくはphaB1又はphaB1及びphaB3であり、より好ましくはphaB1である。ここで、欠失させる遺伝子(phaB1とphaB3)の塩基配列は公知であり、例えば、それぞれNCBI-GeneID:4249784、NCBI-GeneID:4250155を参照することによって、これらの遺伝子のいずれか又はその両方を欠失させた組換えC.necator株を得るため利用することができる。本明細書において使用するとき、「欠失」とは、対象とする遺伝子の一部又は全部が、遺伝子操作によって存在しなくなった状態を意味し、その結果として、該遺伝子によってコードされたタンパク質の活性の一部又は全部が失われることを意図する。なお、欠失の変異は、公知の部位突然変異誘発方法(Current Protocols in Molecular Biology 1巻,8.1.1頁,1994年)により、あるいは市販のキット(Takara社のLA PCR in vitro Mutagenesisシリーズキット)を用いて誘発することができる。
(6)遺伝子置換ベクターの構築及び組換え微生物の作製
 本発明によれば、ccr、phaJ、及びemdを宿主の染色体に導入するための、これらの遺伝子の各々若しくはいずれかの組み合わせを相同性組換え用ベクターに組み込んだ遺伝子置換ベクター、又は該遺伝子の各々若しくはいずれかの組み合わせを自律複製ベクターに組み込んだ発現ベクターが提供される。ここで、ベクターに遺伝子を組み込む方法としては、例えば、Sambrook,J.ら,Molecular Cloning,A Laboratory Manual(3rd edition),Cold Spring Harbor Laboratory,1.1(2001)に記載の方法などが挙げられる。簡便には、市販のライゲーションキット(例えば、トーヨーボー社製等)を用いることもできる。
 ベクターは、簡単には当該技術分野において入手可能な組換え用ベクター(例えば、プラスミドDNA等)に所望の遺伝子を常法により連結することによって調製することができる。本発明のポリヒドロキシアルカン酸共重合体の制御方法に用いられるベクターとしては、微生物内で、微生物の染色体に既に組み込まれている微生物由来のポリエステル重合酵素遺伝子を外来の広基質特異性ポリエステル重合酵素遺伝子によって置換することを目的として、限定されないが、相同性組換え用ベクターpK18mobsacB(Schafer,A.,et al.,Gene,145:69-73(1994))、pJQ200(Quandt,J.及びHynes,M.P.,“Versatile suicide vectors which allow direct selection for gene replacement in gram-negative bacteria”,Gene(1993)127:15-21を使用することが好ましい。あるいは、グラム陰性菌で自律複製することが知られている広宿主域ベクターpBBR1-MCS2(GenBank Accession No.U23751)、pJRD215(M16198)(Davision,J.,et al.,Gene,51:275-80(1987)を参照)、pJB861(U82000)、pHRP311(Parales,R.E.& Harwood,C.S.,Gene,133:23-30(1993)を参照)が例示されるが、これらに限定されない。また、大腸菌用のプラスミドとして、例えば、pBAD24(GenBank Accession No.X81837)、pDONR201、pBluescript、pUC118、pUC18、pUC19、pBR322等を使用することができる。
 また、当業者であれば、組換えベクターに適合するように制限末端を適宜選択することができ、さらに、所望のタンパク質を発現させるために、宿主細胞に適した組換えベクターを適宜選択することができる。このようなベクターは、本発明で使用する遺伝子が目的の宿主細胞の遺伝子と相同性組換えが起るように機能する領域(必要に応じて、自立複製起点、接合伝達領域、選択マーカー(例えば、カナマイシン耐性遺伝子)等)が適切に配列されており又は導入することにより、該核酸が適切に組換えられるように構築されている又は構築することが好ましい。
 一般的に、形質転換体は、組換えベクターを宿主細胞に組み込むことによって作製することができる。この場合、宿主細胞として原核細胞(例えば、大腸菌(S17-1株等)、枯草菌)であっても真核細胞(哺乳類細胞、酵母、昆虫細胞等)であっても使用することができる。組換えベクターの宿主細胞への導入(形質転換)は公知の方法を用いて行うことができる。例えば、細菌(大腸菌、Bacillus subtilis等)の場合は、例えばCohenらの方法(Proc.Natl.Acad.Sci.USA,69:2110(1972))、プロトプラスト法(Mol.Gen.Genet.,168:111(1979))やコンピテント法(J.Mol.Biol.,56:209(1971))、塩化カルシウム法、エレクトロポレーション法等が挙げられる。また、Ralstonia(ラルストニア)属、Alcaligenes(アルカリゲネス)属、Pseudomonas(シュードモナス)属等に属する菌体への発現ベクターの導入では、接合伝達法を使用することができる(J.Bacteriol.,147:198(1981))。
 この接合伝達法は、簡単には、細胞同士の接触によって染色体ゲノム又はプラスミドを一方の細胞から他方の細胞に移行させる細胞の性質を利用したものであり、例えば、目的のDNAを担持する自己伝達性プラスミドが導入された供与菌と該プラスミドを有しない受容菌との接合に始まり、両菌体における橋の形成、該プラスミドの複製と移行、並びにDNA合成の完了と共に菌体の分離といった一連の工程によって遺伝子導入を可能にする手段である。
(7)P(3HB-co-3HHx)共重合体の合成
 本発明によれば、P(3HB-co-3HHx)共重合体の合成は、該共重合体生産能を付与した組換えC.necator株の染色体にクロトニル-CoA還元酵素遺伝子、(R)-特異的エノイル-CoAヒドラターゼ遺伝子、及びエチルマロニル-CoA脱炭酸酵素遺伝子を導入することによって、又は該共重合体生産能を付与した組換えC.necator株のアセトアセチル-CoA還元酵素をコードする遺伝子を欠失させた組換え株の染色体にクロトニル-CoA還元酵素遺伝子を導入し、さらには(R)-特異的エノイル-CoAヒドラターゼ遺伝子又はエチルマロニル-CoA脱炭酸酵素遺伝子を導入することによって、該組換え株内又は培養物(例えば、培地)中に該共重合体を生成及び蓄積させ、組換え株又は培養物から目的とする該共重合体を採取することにより行われる。なお、当業者にも理解されるように、該共重合体を合成させるために、上記組換え株を適切な培養条件下に置くことが好ましい。このような組換え株の培養、遺伝子組換えを行う前の親株の培養条件に従ってもよい。また、本発明の特定の一実施形態において、炭素源として糖質及び/又はグリセロールを含有する培地中で組換え株を増殖させてもよい。
 一例として、組換えC.necator株を宿主とした場合の培地として、該微生物株が資化し得る糖質やグリセロールを添加し、窒素源、無機塩類、その他の有機栄養源のいずれかを制限した培地が挙げられる。典型的には、培地温度を25℃~37℃の範囲にし、好気的に1~10日培養することにより、共重合体を菌体内に生成し蓄積させ、その後、回収・精製することによって所望の共重合体を生産することができる。また、糖質を炭素源として用いる場合、使用可能な糖質としては、一般的に市販されている糖質を使用することができ、その供給源は特に限定されない。「糖質」とは、アルデヒド基又はケトン基を持つ多価アルコールであって、単糖、少糖(オリゴ糖)、多糖、糖の誘導体を意味する。具体的には、単糖では、グルコース、ガラクトース、マンノース、グルコサミン、N-アセチルグルコサミン、フルクトースなどが挙げられる。二糖では、マルトース、イソマルトース、ラクトース、ラクトサミン、N-アセチルラクトサミン、セロビオース、メリビオースなどが挙げられる。オリゴ糖としては、グルコース、ガラクトース、マンノース、グルコサミン、N-アセチルグルコサミン、フルクトースなどから構成されるホモオリゴマー、あるいは、グルコース、ガラクトース、マンノース、グルコサミン、N-アセチルグルコサミン、フルクトース、シアル酸などの2成分以上より構成されるヘテロオリゴマーが挙げられ、例えば、マルトオリゴ糖、イソマルトオリゴ糖、ラクトオリゴ糖、ラクトサミンオリゴ糖、N-アセチルラクトサミンオリゴ糖、セロオリゴ糖、メリビオオリゴ糖などが挙げられる。多糖としては、動物、植物(海藻を含む)、昆虫、微生物など広範囲な生物で見いだされているものが挙げられ、例えば、N結合型糖鎖、O結合型糖鎖、グリコサミノグリカン、澱粉、アミロース、アミロペクチン、セルロース、キチン、グリコーゲン、アガロース、アルギン酸、ヒアルロン酸、イヌリン、グルコマンナンなどが挙げられる。糖の誘導体としては、デオキシリボース(C5104)、硫酸化多糖類などが挙げられる。なお、培地中の糖質の濃度は、0.1~5%が好ましいが、当業者であれば適宜調整することができる。
 「グリセロール」は、しばしば、「グリセリン」と互換的に用いられる。しかしながら、より適切には、「グリセロール」は化学的に高純度の化合物である1,2,3-プロパントリオールに適用され、一方、「グリセリン」はグリセロール含有量が一般に95%以上の精製された商業的製品に適用される。本発明によれば、炭素源として使用する場合、いずれであってもよい。なお、培地中のグリセロール又はグリセリンの濃度は、0.1~5%が好ましいが、当業者であれば適宜調整することができる。また、本発明は、炭素源として、糖質とグリセロール(又はグリセリン)を混合して使用する態様を排除するものではない。
 また、必要であれば、培地中に窒素源や無機物を添加してもよい。窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム等のアンモニウム塩の他、ペプトン、肉エキス、酵母エキス、コーンスティープリカー等が挙げられる。無機物としては、例えばリン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム等が挙げられる。
 培養は、通常、振とう培養が用いられ、好気的条件下で、25℃~37℃で遺伝子発現誘導後少なくとも1日以上行うことが好ましい。抗生物質として、カナマイシン、アンピシリン等を培地に添加してもよい。また、必要であれば、遺伝子発現誘導剤として、アラビノース、インドールアクリル酸(IAA)、イソプロピル-β-D-チオガラクトピラノシド(IPTG)等を使用することができる。当業者であれば、所望の遺伝子発現のために可能な培養条件、遺伝子発現の誘導条件等を適宜選択できる。
(8)P(3HB-co-3HHx)の精製と構造解析
 本発明において、共重合体は、下記の通り精製することができる:培地から遠心分離によって形質転換体を回収し、蒸留水で洗浄後、乾燥又は凍結乾燥させる。その後、クロロホルムに乾燥した形質転換体を懸濁させ、室温で所定時間撹拌し、共重合体を抽出する。抽出の段階で、必要であれば加熱してもよい。濾過によって残渣を除去し、上清にメタノールを加えて共重合体を沈殿させ、沈殿物を濾過又は遠心分離によって、上清を除去し、乾燥させて精製した共重合体を得ることができる。その後、限定されないが、NMR(核磁気共鳴)、ガスクロマトグラフィーを用いて、得られた共重合体のモノマーユニットの組成比を確認することができる。
 本発明の一態様において、P(3HB-co-3HHx)における3HHx分率は、少なくとも1%モル以上であればよく、例えば、1モル%、2モル%、3モル%、4モル%、5モル%、6モル%、7モル%、8モル%、9モル%、10モル%、又はそれ以上であってもよい。また、該3HHx分率は、99モル%以下であればよく、例えば、99モル%、98モル%、97モル%、96モル%、95モル%、94モル%、93モル%、92モル%、91モル%、90モル%、又はそれ以下であってもよい。3HHx分率の取り得る範囲としては、限定されないが、例えば、1~99モル%、1~95モル%、1~90モル%、1~85モル%、1~80モル%、1~75モル%、1~70モル%、1~65モル%、1~60モル%、1~55モル%、1~50モル%、1~45モル%、1~40モル%、1~35モル%、1~30モル%、1~25モル%、1~20モル%、2~99モル%、2~95モル%、2~90モル%、2~85モル%、2~80モル%、2~75モル%、2~70モル%、2~65モル%、2~60モル%、2~55モル%、2~50モル%、2~45モル%、2~40モル%、2~35モル%、2~30モル%、2~25モル%、2~20モル%、3~99モル%、3~95モル%、3~90モル%、3~85モル%、3~80モル%、3~75モル%、3~70モル%、3~65モル%、3~60モル%、3~55モル%、3~50モル%、3~45モル%、3~40モル%、3~35モル%、3~30モル%、3~25モル%、3~20モル%、4~99モル%、4~95モル%、4~90モル%、4~85モル%、4~80モル%、4~75モル%、4~70モル%、4~65モル%、4~60モル%、4~55モル%、4~50モル%、4~45モル%、4~40モル%、4~35モル%、4~30モル%、4~25モル%、4~20モル%、5~99モル%、5~95モル%、5~90モル%、5~85モル%、5~80モル%、5~75モル%、5~70モル%、5~65モル%、5~60モル%、5~55モル%、5~50モル%、5~45モル%、5~40モル%、5~35モル%、5~30モル%、5~25モル%、5~20モル%が挙げられる。3HHx分率は、好ましくは3~90モル%、より好ましくは4~80モル%、さらに好ましくは5~70モル%である。ここで、用語「モル%」は、本明細書中で使用するとき、多成分系における各成分のモル数の和で、ある成分のモル数を割ったものをいう。また、本発明の制御方法によって得られる共重合体は、乾燥菌体重量あたり20~95重量%、好ましくは40~95重量%の割合で菌体に蓄積される。
 以下、本発明を実施例に基づきより具体的に説明する。もっとも、本発明は下記実施例に限定されるものではない。
実施例1:宿主とするC.necator株、及びクロトニル-CoA還元酵素の検討
(1)宿主
 C.necator野生株であるH16株は、P(3HB)生合成経路を構成するPHA重合酵素(PhaC)、β-ケトチオラーゼ(PhaA)、アセトアセチル-CoA還元酵素(PhaB1)をコードするphaCAB1オペロンを染色体上に有する。以前に作製したC.necator MF01株は、H16株のphaCAB1オペロン中のphaCをA.caviae由来のPHA重合酵素の変異遺伝子phaCNSDGに、phaAをC.necator由来の広基質特異性β-ケトチオラーゼの遺伝子bktBに置換した組換え株であり(図1)、大豆油を炭素源として2.6mol%の3HHxユニットを含むP(3HB-co-3HHx)を生合成可能である(国際公開WO2011/105379、Mifune,J.,et al.,Polym.Degrad.Stab.,95:1305-1312(2010))。以下、これらの株を用いて、P(3HB-co-3HHx)の生産量及び3HHx分率について検討した。なお、以下の実施例において、PCRは基本的にKOD Plus DNAポリメラーゼ(トーヨーボー社製)を用い、98℃で20秒、60℃で20秒、68℃で2分30秒の反応を1サイクルとしてこれを30サイクル行い、必要に応じて温度条件を適宜、調節した。
(2)アセトアセチル-CoA還元酵素遺伝子phaB1欠失用プラスミドベクターの作製
 C.necator MF01株の染色体上でアセトアセチル-CoA還元酵素PhaB1をコードする遺伝子(phaB1)を欠失させるための相同性組換え用プラスミドpK18msbktBRは以下のように作製した。まず、C.necator H16株のゲノムDNA断片を鋳型として下記の配列1と配列2のオリゴヌクレオチドをプライマーとしたPCR法によって、C.necator由来のβ-ケトチオラーゼ(BktB)を増幅した。
 配列1:TACATGGATCCAAGGGAGGCAAAGTCATGACGCGTGAAGTGGTAGTG(配列番号5)
 配列2:GGATCATATGCTTCCTCAGATACGCTCGAAGATGGC(配列番号6)
 増幅したbktB断片を制限酵素BamHIとNdeIで処理した。この制限酵素処理断片を、以前に作製された相同性組換え用プラスミドpK18msNSDG-R(phaCNSDGとphaB1下流領域が連結されたDNA断片を含む)(Mifune,J.,et al.,Polym.Degrad.Stab.,95:1305-1312(2010))を制限酵素BamHIとNdeIで処理した断片と連結することによりphaB1欠失用プラスミドpK18msbktBRを得た。
(3)アセトアセチル-CoA還元酵素遺伝子phaB3欠失用プラスミドベクターの作製
 C.necator MF01株の染色体上でアセトアセチル-CoA還元酵素PhaB3をコードする遺伝子(phaB3)を欠失させるための相同性組換え用プラスミドpK18msΔphaB3は以下のように作製した。まず、C.necator H16株のゲノムDNA断片を鋳型として下記の配列3と配列4、及び配列5と配列6のオリゴヌクレオチドをプライマーとしたPCR法によって、C.necator株由来のphaB3の上流領域と下流領域をそれぞれ増幅した。
 配列3:TTTGGAATTCTACCTAGGGATCAAATTAGAGGAAA(配列番号7)
 配列4:CCTTACTGCATGTGCCTGCTTCATTCTCGTAAAGTTGAAAG(配列番号8)
 配列5:GAATGAAGCAGGCACATGCAGTAAGGGTGCTGGG(配列番号9)
 配列6:TCCTAAGCTTGCTGACCGTGATCGTCGACAACTTTGAAGACCTGA(配列番号10)
 ここで、配列4と配列5には互いにオーバーラップする領域を付加してある。次に、増幅したphaB3の上流断片と下流断片を精製して混合し、配列3と配列6のオリゴヌクレオチドをプライマーとしたフュージョンPCR法によってphaB3の上下流が連結された断片を増幅した。増幅したphaB3の上下流連結断片をEcoRIとHindIIIで処理した。この制限酵素処理断片を、EcoRIとHindIIIで処理したベクタープラスミドpK18mobsacBと連結することによりphaB3欠失用プラスミドpK18msΔphaB3を得た。
(4)接合伝達及び相同性組換えによるC.necator MF01株の形質転換
 実施例1(2)で得られた組換えプラスミドpK18msbktBR、(3)で得られたpK18msΔphaB3を、C.necator MF01株に接合伝達により導入し、相同性組換えによって遺伝子が破壊された株を取得した。まず、塩化カルシウム法によって、作製したベクターを大腸菌S17-1株に導入した。次に、この組換え大腸菌をLB培地(1%トリプトン、1%塩化ナトリウム、0.5%イーストエキス、pH7.2)3.0ml中で37℃終夜培養した。これと並行して、C.necator MF01株をNR培地(1%魚肉エキス、1%ポリペプトン、0.2%イーストエキス)3.0ml中で30℃終夜培養した。その後、大腸菌の培養液0.2mlに対して、C.necator MF01株の培養液0.1mlを混合し、30℃で6時間培養した。この菌体混合液を0.2mg/mlカナマイシンを添加したSimmons Citrate寒天培地(ディフコ社製)に塗布し、30℃で3日間培養した。組換え大腸菌のプラスミドが、C.necatorに伝達され相同性組換えにより染色体上に取り込まれた該菌体はカナマイシン耐性を示し、一方、組換え大腸菌はSimmons Citrate寒天培地では増殖不能であるため、上記培地上で増殖したコロニーは組換え大腸菌からベクターが染色体に取り込まれたC.necator形質転換体(ポップイン株)である。さらに、ポップイン株をNR培地で30℃終夜培養した後、10%スクロースを添加したNR培地に塗布し、30℃で3日間培養した。pK18mobsacB由来ベクター上のsacBにコードされるレヴァンスクラーゼはスクロースを基質にして細胞内に毒性多糖を蓄積する。このため、10%スクロース添加培地においてはプラスミド領域が脱離した株(ポップアウト株)のみが生育することができる。これらのコロニーの中から染色体上において標的部位での相同性組換えが生じた株をPCR法によって選抜した。pK18msbktBRを用いてMF01株を形質転換することでphaB1が欠失したMF01ΔB1株を、pK18msΔphaB3を用いてMF01株を形質転換することでphaB3が欠失したMF01ΔB3株を取得した。さらにpK18msΔphaB3を用いてMF01ΔB1株を形質転換することでphaB1とphaB3が二重欠失したMF01ΔΔB1B3株を取得した(図1)。
(5)クロトニル-CoA還元酵素遺伝子ccr発現ベクターの作製
 放線菌S.cinnamonensis由来クロトニル-CoA還元酵素遺伝子(ccrSc)を、C.necator細胞内で自律複製可能なプラスミドpBBR1-MCS2のlacプロモーター下流に配した発現ベクター、pBBR-ccrScを作製した。また、メタノール資化性菌M.extorquens由来クロトニル-CoA還元酵素遺伝子(ccrMe)をC.necator細胞内で自律複製可能なプラスミドpBBR1-MCS2のlacプロモーター下流に配した発現ベクター、pBBR-ccrMe、及びpBPPのphaP1プロモーター下流に廃した発現ベクター、pBPP-ccrMeを作製した。より具体的には、以下の通りである。
(i)pBBR-ccrScの作製
 ccrScがすでに組み込まれたpJBccrEE32d13(Fukui,T.,et al.,Biomacromolecules,3:618-624(2002))を鋳型として下記の配列7と配列8のオリゴヌクレオチドをプライマーとしたPCR法によって、ccrScを増幅した。なお、ccrSc(配列番号1)はGTGを開始コドンとするが、配列7を用いたPCRによって開始コドンはATGに変換される。
 配列7:ACGAATTCAGGAGGAACCTGGATGAAGGAAATCCTGGACG(配列番号11)
 配列8:AGGTCTAGAGTGCGTTCAGACGTTGCGGA(配列番号12)
 増幅したccrSc断片を制限酵素EcoRIとXbaIで処理した。この制限酵素処理断片を、pBBR1-MCS2を制限酵素EcoRIとXbaIで処理した断片と連結することによりccrSc発現用プラスミドpBBR-ccrScを得た。
(ii)pBBR-ccrMeの作製
 M.extorquens AM1株のゲノムDNAを鋳型として下記の配列9と配列10のオリゴヌクレオチドをプライマーとしたPCR法によって、ccrMeを増幅した。
 配列9:ACGAATTCAGGAGGAACCTGGATGGCTGCAAGCGCAGCACC(配列番号13)
 配列10:AGGTCTAGATCACATCGCCTTGAGCGG(配列番号14)
 増幅したccrMe断片を制限酵素EcoRIとXbaIで処理した。この制限酵素処理断片を、pBBR1-MCS2を制限酵素EcoRIとXbaIで処理した断片と連結することによりccrMe発現用プラスミドpBBR-ccrMeを得た。
(iii)pBPP-ccrMeの作製
 M.extorquens AM1株のゲノムDNAを鋳型として下記の配列9と配列10のオリゴヌクレオチドをプライマーとしたPCR法によって、ccrMeを増幅した。
 配列11:ATACATATGGCTGCAAGCGCAGCACCGGCCT(配列番号15)
 配列12:TATGAATTCTCACATCGCCTTGAGCGGGCC(配列番号16)
 増幅したccrMe断片を制限酵素NdeIとEcoRIで処理した。この制限酵素処理断片を、pBPPを制限酵素NdeIとEcoRIで処理した断片と連結することによりccrMe発現用プラスミドpBPP-ccrMe(図2)を得た。
(6)クロトニル-CoA還元酵素遺伝子ccrMe及び(R)-特異的エノイル-CoAヒドラターゼ遺伝子phaJ4aの共発現ベクターの作製
 C.necator H161株のゲノムDNAを鋳型として下記の配列11と配列12のオリゴヌクレオチドをプライマーとしたPCR法によって、phaJ4aを増幅した。
 配列13:CCCAAGCTTTATCGTCAAGAGGAGACTATCG(配列番号17)
 配列14:CCCAAGCTTGGATCCTCACCCGTAGCGGCGCGTGAT(配列番号18)
 増幅したphaJ4a断片を制限酵素HindIIIで処理した。この制限酵素処理断片を、pBPP-ccrMeを制限酵素HindIIIで処理した断片と連結することによりccrMe及びphaJ4a共発現用プラスミドpBPP-ccrMeJ4a(図2)を得た。
(7)クロトニル-CoA還元酵素遺伝子ccrMe、(R)-特異的エノイル-CoAヒドラターゼ遺伝子phaJ4a、及びエチルマロニル-CoA脱炭酸酵素遺伝子emdMmの共発現ベクターの作製
 まず、pBPP-ccrMeJ4aをEcoRIとHindIIIで切断し、末端平滑化後にセルフライゲーションすることで、ベクター上のEcoRIサイトからHindIIIサイトまでに領域が欠失したプラスミドを作製した。人工合成したemdMmが組み込まれたベクター(オペロン社により委託合成)からemdMmをBamHIで切り出し、上述のpBPP-ccrMeJ4a改変ベクターをBamHIで処理した断片と連結することにより、ccrMe、phaJ4a、emdMm共発現用プラスミドpBPP-ccrMeJ4a-emd(図2)を得た。
(8)フルクトース原料からのPHA生合成
 C.necator MF01株(図1)を宿主とし、pBBR1-ccrSc又はpBBR1-ccrMeを導入した組換え株を0.5%フルクトースを唯一の炭素源とする窒素源制限無機塩培地で培養したところ、いずれの株も蓄積PHAはP(3HB)であり、3HHxユニットは検出されなかった(表1)。
Figure JPOXMLDOC01-appb-T000001
 この結果はC.necator MF01株ではC4ユニットである(R)-3HB-CoAを供給する経路が非常に強いためと考え、MF01株の改変phaオペロンからさらにphaB1を欠失させたMF01ΔB1株(図1)を作製して宿主としたところ、pBBR1-ccrSc導入株は2.4mol%の3HHxユニットを含むP(3HB-co-3HHx)を乾燥菌体重量あたり34重量%で、pBBR1-ccrMe導入株は6.7mol%の3HHxユニットを含むP(3HB-co-3HHx)を22重量%でフルクトース原料から生合成し、ccr単独発現株による糖質からのP(3HB-co-3HHx)においてはphaB1の欠失が重要であることが示唆された。
 一方、C.necator H16株のフルクトースの培養では、アセトアセチル-CoAから(R)-3HB-CoAへの還元は主にPhaB1が機能するが、そのパラログであるPhaB3も一部機能していることが報告されている。そこで、MF01ΔB1株からphaB3(染色体上でphaオペロン外に存在)をさらに欠失させたMF01ΔΔB1B3株(図1)を作製して宿主としたところ、蓄積率は約7重量%に減少したものの、18~19mol%の3HHxユニットを含むP(3HB-co-3HHx)を生合成した。MF01ΔB1株、MF01ΔΔB1B3株において、ccrSc及びccrMeのいずれもPHAへの3HHxユニットの取り込みに有効であったが、ccrSc導入株よりccrMe導入株の方が3HHx分率が高く、PHA蓄積率及び生産量が低かった。
 また、lacプロモーターとは異なるプロモーターを有するプラスミドとして、以前に作製した組換えプラスミドpBPPを使用した。pBPPは、pBBR1-MCS2のlacプロモーター領域をC.necator由来phaP1プロモーターに置換した発現プラスミドである(Fukui,T.,et al.,Appl.Microbiol.Biotechnol.,89:1527-1536(2011))。pBPPにccrMeを挿入した発現ベクターpBPP-ccrMe(図2)を作製し、C.necator MF01株、MF01ΔB1株、MF01ΔΔB1B3株をそれぞれ形質転換した。得られた組換え株を同様にフルクトース炭素源で培養したところ、上述の結果と同様にMF01株を宿主とした場合ではP(3HB)のみが生合成されたが、MF01ΔB1株では11.1mol%の3HHxユニットを含むP(3HB-co-3HHx)を13重量%で、MF01ΔΔB1B3株では19.1mol%の3HHxユニットを含むP(3HB-co-3HHx)を4重量%で生合成した(表2)。ccrの発現による3HHxユニットの導入ではPHA生産量の減少を伴うが、3HHx分率の増加及びPHA生産量の減少からpBBR1-ccrMeよりpBPP-ccrMeのほうがccrMeの発現が強いことが示唆された。
Figure JPOXMLDOC01-appb-T000002
実施例2:糖質原料からのP(3HB-co-3HHx)生合成経路の改良
 上述のように外来ccrの発現はPHA生産量の減少を伴うため、P(3HB-co-3HHx)生合成経路の改良を行った。(R)-3HB-CoA及び(R)-3HHx-CoAの両方の供給の強化を目的として、C.necator由来(R)-特異的エノイル-CoAヒドラターゼの1つをコードする遺伝子(phaJ4a)を使用した。その発現産物であるPhaJ4aは、C4、C6のエノイル-CoAに対して(R)-特異的な水和反応を触媒することで(R)-3HB-CoA、(R)-3HHx-CoAを生成するが、C4よりC6のエノイル-CoAに対して高い活性を示すことが報告されている(国際公開WO2011/105379;Kawashima,Y.,et al.,Appl.Environ.Microbiol.,78:493-502(2012))。pBPP-ccrMeにphaJ4aを挿入した発現ベクターpBPP-ccrMeJ4a(図2)を作製し、C.necator MF01株、MF01ΔB1株、MF01ΔΔB1B3株をそれぞれ形質転換した。なお、本明細書中の「phaJ4a」は国際公開WO2011/105379に記載の(R)-特異的エノイル-CoAヒドラターゼをコードする遺伝子「phaJ1Cn」に対応する。
 得られた組換え株を同様にフルクトース炭素源で培養したところ、MF01株を宿主とした場合で0.35mol%の微量の3HHxを含むP(3HB-co-3HHx)が生合成された。またMF01ΔB1株では5.3mol%の3HHxユニットを含むP(3HB-co-3HHx)を31重量%で、MF01ΔΔB1B3株では7.2mol%の3HHxユニットを含むP(3HB-co-3HHx)を24重量%で生合成した。pBPP-ccrMe導入株と比較して3HHx分率は低下したが、PHA生産量は顕著に増加した(表3)。
Figure JPOXMLDOC01-appb-T000003
 近年、クロトニル-CoA還元酵素はクロトニル-CoAに対する還元活性だけではなく、二酸化炭素存在下では還元的炭酸固定活性を示す二機能酵素であることが報告された(Erb,T.J.,et al.,Proc.Natl.Acad.Sci.U.S.A 106:8871-8876(2009))。この還元的炭酸固定反応ではクロトニル-CoAからエチルマロニル-CoAが生成するが、この反応は本発明のP(3HB-co-3HHx)生合成において望ましくない副経路を構成する可能性がある。一方で、最近、動物細胞ではプロピオニル-CoAカルボキシラーゼなどによる副反応で生じたエチルマロニル-CoAをブチリル-CoAに分解するためのエチルマロニル-CoA脱炭酸酵素が発見された(Linster,C.L.,et al.,J.Biol.Chem.286:42992-43003(2011))。そこで、クロトニル-CoA還元酵素を導入したP(3HB-co-3HHx)生合成経路においてもエチルマロニル-CoA脱炭酸酵素の機能は効果的ではないかと考え、pBPP-ccrMeJ4aにさらにマウス由来エチルマロニル-CoA脱炭酸酵素をコードする人工遺伝子emdMmを挿入した発現ベクターpBPP-ccrMeJ4a-emd(図2)を作製し、上記と同様に使用した。その結果、MF01ΔB1株では22.2mol%の3HHxユニットを含むP(3HB-co-3HHx)を48重量%で、MF01ΔΔB1B3株では37.7mol%の3HHxユニットを含むP(3HB-co-3HHx)を41重量%でフルクトース原料から生合成し、3HHx分率及びPHA生産量が共に大きく増加した(表4、図3)。
 また、MF01株においてもpBPP-ccrMeJ4a-emdの導入によってフルクトースから6.4mol%の3HHxユニットを含むP(3HB-co-3HHx)を49重量%で生合成し、クロトニル-CoA還元酵素、(R)-特異的エノイル-CoAヒドラターゼ、エチルマロニル-CoA脱炭酸酵素の各遺伝子を高発現させた場合では、アセトアセチル-CoA還元酵素PhaB1を欠失させていない株においても著量の3HHxユニットを含む共重合ポリエステルが生合成可能であることが示された。
Figure JPOXMLDOC01-appb-T000004
実施例3:C.necatorNSDGΔB-GG株によるフルクトース、グルコース、グリセロールからのPHA生合成
 C.necator野生株であるH16株はフルクトースやグルコン酸で良好に増殖しポリエステルを蓄積するが、グルコースでは増殖できず、またグリセロールを炭素源とした際の増殖は極めて遅い。グルコースはデンプンやセルロースを構成する単糖であり、グルコースの利用は植物由来バイオマス資源の利用の観点で重要である。また、グリセロールは近年、植物油からのバイオディーゼルの生産における副成生物として大量に生じており、その有効利用が望まれている。
 発明者はこれまでにC.necator H16株の改変によって、推定GlcNAc特異的ホスホトランスフェラーゼシステムのサブユニットNagEの1アミノ酸置換の変異と推定転写制御因子NagRの欠失によって高いグルコース資化能を付与している(Orita et al.J.Biosci.Bioeng.113:63-69(2012))。またグリセロールの取り込みとリン酸化に機能する大腸菌由来GlpF(グリセロールトランスポーター)とGlpK(グリセロールキナーゼ)の導入によって、グリセロール資化能を強化している(Fukui et al. Appl. Mcirobiol. Biotechnol.98:7559-7568(2014))。そこで、この2つの改変をC.necator NSDG株に集積し、さらにアセトアセチル-CoA還元酵素であるPhaB1を欠失させたNSDGΔB-GG株を作製した。この株を宿主として共重合ポリエスエル生合成経路確立のためのプラスミドpBPP-ccrMe-phaJ4a-emdMmを導入し、各種炭素源からの共重合ポリエステルの生合成を行った。
(i)C.necator NSDGΔB-GG株の作製
(1)nagE変異及びnagR欠失用プラスミドベクターの作製
 C.necator NSDG株へのグルコース資化能の付与はNagEの265番目グリシンからアルギニンへの置換、及びNagRの欠失により行った。NagEのアミノ酸置換は染色体上のnagE遺伝子793番目の塩基をグアニンからシトシンに置換する変異により導入した。このための相同性組換え用プラスミドpK18msNagE G265Rは以下のように作製した。まず、C.necator H16株のゲノムDNAを鋳型、下記の配列1と配列2のオリゴヌクレオチドをプライマーとしたPCR法によって、nagE遺伝子とその上下流それぞれ約1kbpを含む領域を増幅した。
 配列15:GGAATTCTATTGAGGTGGCCGCGAATATCGGCAGCCT(配列番号19)
 配列16:GGAATTCAGGTGCGCTTCGACAAGTCATACTTT(配列番号20)
 増幅した断片の5’-末端をリン酸化し、汎用プラスミドpUC118のHincII部位に挿入した。このプラスミドを鋳型、下記の配列17と配列18のオリゴヌクレオチドをプライマーとしたインバースPCR法によって、nagE遺伝子の793番目塩基のグアニンをシトシンに置換する変異を導入した。
 配列17:GGCCAACCAGCGCGCGCCCCGCCGGCGGCGTCTCGT(配列番号21)
配列18:GCATGCTGTTCTCGATGGCACTGACCT(配列番号22)
 増幅した断片の5’-末端をリン酸化し、セルフライゲーションした。得られたプラスミドを制限酵素BamHIとXbaIで処理し、変異nagE遺伝子を含む断片を得た。この断片を、同じ制限酵素で切断したpK18mobSacBの断片と連結することによりpK18msNagE G265Rを得た。
 C.necator NSDG株の染色体上でnagR遺伝子を欠失させるための相同性組換え用プラスミドpK18msΔnagRは以下のように作製した。まず、C.necator H16株のゲノムDNAを鋳型、下記の配列19と配列20のオリゴヌクレオチドをプライマーとしたPCR法によって、nagR遺伝子とその上下流それぞれ約1kbpを含む領域を増幅した。
 配列19:TGCAGTTCGTATGCGACCGCATCGA(配列番号23)
 配列20:GGAATTCAGGTGCGCTTCGACAAGTCATACTTT(配列番号24)
 増幅した断片の5’-末端をリン酸化し、汎用プラスミドpUC118のHincII部位に挿入した。このプラスミドを鋳型、下記の配列21と配列22のオリゴヌクレオチドをプライマーとしたインバースPCR法によって、nagR遺伝子を含まない領域を増幅した。
 配列21:TGCCCGGCACGCCCGGCAACCGGCGGCTCGA(配列番号25)
 配列22:TGCGAATCCTCGTAGGTACCAGAGTGTGGA(配列番号26)
 増幅した断片の5’-末端をリン酸化し、セルフライゲーションした。得られたプラスミドを制限酵素EcoRIとHindIIIで処理し、nagR遺伝子が欠失して上下流が連結された断片を得た。同じ制限酵素で切断したpK18mobSacBの断片と連結することによりpK18msΔnagRを得た。
(2)大腸菌由来glpFK導入用プラスミドベクターの作製
 C.necator NSDG株のグリセロール資化能の強化は、大腸菌由来のglpF-glpK(以下、glpFKとする)遺伝子をC.necator NSDG株の染色体上の機能未知遺伝子であるh16 A2858の上流に挿入することで行った。このための相同性組換え用プラスミドpK18msglpFK-A2858は以下のように作製した。まず、C.necator H16株のゲノムDNAを鋳型、下記の配列23と配列24のオリゴヌクレオチドをプライマーとしたPCR法によって、h16 A2858遺伝子の開始コドンの上下流それぞれ約750bpを含む領域を増幅した。
 配列23:ATACCGTCGACGGTGCTGGCTCCGGAAGGTTT(配列番号27)
 配列24:CTGCAGTCGACCCTGCGCGCCCACGCCGCTTT(配列番号28)
 増幅した断片を制限酵素SalIで処理し、pK18mobSacBのSalI部位に挿入した。得られたプラスミドを鋳型、下記の配列25と配列26のオリゴヌクレオチドをプライマーとしたインバースPCR法によって、h16 A2858遺伝子の開始コドンで開環した断片を増幅した
 配列25:GCGGGCAACGGATGGAGGTAAGCA(配列番号29)
 配列26:CTTACCTCCATCCGTTGCCCGCTTCG(配列番号30)
 一方、大腸菌MG1655株のゲノムDNAを鋳型、下記の配列27と配列28のオリゴヌクレオチドをプライマーとしたPCR法によって、glpFK遺伝子領域を増幅した。
 配列27:ATGAGTCAAACATCAACCTT(配列番号31)
 配列28:TTATTCGTCGTGTTCTTCCCAC(配列番号32)
 増幅したglpFK遺伝子領域断片の5’-末端をリン酸化し、上記のインバースPCR法によってh16 A2858遺伝子の開始コドンで開環した断片と連結した。h16 A2858遺伝子の上流にglpFK遺伝子がh16 A2858遺伝子と同じ向きに連結されたプラスミドを選抜し、pK18msglpFK-A2858を得た。
(3)PhaB1欠失用プラスミドベクターの作製
 C.necator NSDG株染色体上のphaオペロンからアセトアセチル-CoA還元酵素1をコードするphaB1Cn遺伝子を破壊するためのプラスミドpK18msAR2は、以前に作製したpK18msNSDG-AB(WO2011/105379)を基に、以下のように作製した。まずC.necator H16株のゲノムDNAをテンプレート、下記の配列29と配列30のオリゴヌクレオチドをプライマーとしたPCR法によってphaB1Cn遺伝子下流の領域約1kbpを増幅した。
 配列29:TCGACCGGCGCCGACTTCTC(配列番号33)
 配列30:GCATGCCAGTGTCTTACTTCT(配列番号34)
 得られたDNA断片を制限酵素NdeI及びSphIで処理し、同様に制限酵素NdeI及びSphIで切断したpK18msNSDG-ABのプラスミド骨格を含む断片と連結することでpK18msC’Rを得た。また、C.necator H16株のゲノムDNAをテンプレート、下記の配列31と配列32のオリゴヌクレオチドをプライマーとしたPCR法によって、制限酵素NdeIの認識配列を両末端に有するβ-ケトチオラーゼ遺伝子phaACnを増幅した。
 配列31:CGCCGCATGACGCTTGCATA(配列番号35)
 配列32:CCATATGCGGCCCCGGAAAACCCC(配列番号36)
 得られたphaACn断片をNdeIで切断し、pK18msC’RのNdeI部位に挿入することでpK18msC’ARを得た。このプラスミドを制限酵素SbfI及びBamHIで切断することでphaCNSDG遺伝子を除去し、平滑末端化の後にセルフライゲーションを行うことでpK18msAR2を得た。
(4)接合伝達及び相同性組換えによるC.necatorの形質転換
 上記で作製したpK18mobSacBベースの相同性組換え用ベクターのC.necatorへの導入、及び相同性組換え株の選抜は実施例1と同様の方法で行った。NSDG株を初発の宿主とし、pK18msNagE G265R、pK18msΔnagR、pK18msglpFK-A2858、pK18msAR2を順次、接合伝達により導入して目的とする相同性組換え株を選抜することで、グルコース資化能付与・グリセロール資化能強化・PhaB1Cn欠失のC.necator NSDGΔB-GG株を作製した。さらに、P(3HB-co-3HHx)生合成経路を確立するためのプラスミドpBPP-ccrMe-phaJ4a-emdMmを接合伝達によりNSDGΔB-GG株に導入した。
(5)グルコース原料、フルクトース原料、グリセロール原料からのPHA生合成
 作製した組換え株によるPHA生合成は1.0重量%のフルクトース、グルコース、グリセロールを唯一の炭素源とする窒素源制限無機塩培地で培養することにより行った。培養時間はフルクトース、グルコースの場合は72時間、グリセロールの場合は96時間とした。菌体内に蓄積されたPHAはガスクロマトグラフ法により蓄積率及び組成を決定した。
Figure JPOXMLDOC01-appb-T000005
 C.necator NSDGΔB-GG株にpBPP-ccrMeJ4a-emdを導入した株を培養した結果を表5に示す。フルクトース濃度を1重量%としたところ、高い3HHx分率(24mol%)のP(3HB-co-3HHx)を蓄積率71%、PHA生産量2.34g/Lと効率的に生合成した。グルコースでは同濃度のフルクトースと比較して生産量はやや低いものの、22mol%のP(3HB-co-3HHx)を1.96g/Lで生合成した。グリセロールを炭素源とした場合ではPHA生産量は0.36g/Lと低下したが、3HHx分率13.1mol%のP(3HB-co-3HHx)が生合成された。すなわち、グルコースやグリセロールを原料とした共重合ポリエステルの生産も可能であった。また、このように利用したい原料を資化できる微生物を宿主として本発明によるP(3HB-co-3HHx)生合成経路を構築することで、多様な原料からの共重合ポリエステルの生産が可能であることが示された。
 C.necatorの遺伝子組換えによりアセチル-CoAから3HBユニットと3HHxユニットを生成する新規な代謝経路を構築することによって、糖質やグリセロールを出発原料として、3HHx分率の高いP(3HH-co-3HHx)を高い蓄積率で生産する方法を提供することができる。
 本明細書に引用する全ての刊行物及び特許文献は、参照により全体として本明細書中に援用される。なお、例示を目的として、本発明の特定の実施形態を本明細書において説明したが、本発明の精神及び範囲から逸脱することなく、種々の改変が行われる場合があることは、当業者に容易に理解されるであろう。

Claims (12)

  1.  ポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)生産能を付与した組換えCupriavidus necator(クプリアヴィダス・ネカトール)株の染色体に、クロトニル-CoA還元酵素遺伝子、(R)-特異的エノイル-CoAヒドラターゼ遺伝子、及びエチルマロニル-CoA脱炭酸酵素遺伝子を相同性組換えによって形質転換し、又は前記株に該遺伝子が組み込まれた自律複製ベクターを導入することによって形質転換し、炭素源として糖質及び/又はグリセロールを含有する培地で形質転換体を増殖させることを含む、ポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)を製造する方法。
  2.  ポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)生産能を付与した組換えC.necator株の染色体上のアセトアセチル-CoA還元酵素をコードする遺伝子を欠失させた組換え株の染色体に、クロトニル-CoA還元酵素遺伝子を相同性組換えによって形質転換し、又は前記株に該遺伝子が組み込まれた自律複製ベクターを導入することによって形質転換し、炭素源として糖質及び/又はグリセロールを含有する培地で形質転換体を増殖させることを含む、ポリ(3-ヒドロキシブタン酸-co-3-ヒドロキシヘキサン酸)を製造する方法。
  3.  前記形質転換体において、(R)-特異的エノイルCoAヒドラターゼ遺伝子を相同性組換えによって形質転換し、又は該遺伝子が組み込まれた自律複製ベクターの導入によって形質転換することをさらに含む、請求項2に記載の方法。
  4.  前記形質転換体において、エチルマロニル-CoA脱炭酸酵素遺伝子を相同性組換えによって形質転換し、又は該遺伝子が組み込まれた自律複製ベクターの導入によって形質転換することをさらに含む、請求項2又は3に記載の方法。
  5.  C.necatorが、JMP134株(DSM4058)又はH16株(DSM428)である、請求項1~4のいずれか1項に記載の方法。
  6.  組換えC.necator株が、MF01株、NSDG株、又はNSDGΔA株である、請求項1~5のいずれか1項に記載の方法。
  7.  クロトニル-CoA還元酵素遺伝子が放線菌Streptomyces cinnamonensis(ストレプトミセス・シナモネンシス)由来である、請求項1~6のいずれか1項に記載の方法。
  8.  クロトニル-CoA還元酵素遺伝子が、
    (a)配列番号1で表される塩基配列を含む核酸;又は
    (b)配列番号1で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつクロトニル-CoAからブチリル-CoAを生成する触媒活性を有するタンパク質をコードする核酸
    からなる、請求項7に記載の方法。
  9.  クロトニル-CoA還元酵素遺伝子がメタノール資化性菌Methylobacterium extorquens(メチロバクテリウム・エクストークエンス)由来である、請求項1~6のいずれか1項に記載の方法。
  10.  クロトニル-CoA還元酵素遺伝子が、
    (a)配列番号2で表される塩基配列を含む核酸;又は
    (b)配列番号2で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつクロトニル-CoAからブチリル-CoAを生成する触媒活性を有するタンパク質をコードする核酸
    からなる、請求項9に記載の方法。
  11.  (R)-特異的エノイル-CoAヒドラターゼ遺伝子が、C.necator由来であり、
    (a)配列番号3で表される塩基配列を含む核酸;又は
    (b)配列番号3で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつ脂肪酸β-酸化経路中間体である2-エノイル-CoAを(R)-3-ヒドロキシアシル-CoAに変換する活性を有するタンパク質をコードする核酸
    からなる、請求項1~10のいずれか1項に記載の方法。
  12.  エチルマロニル-CoA脱炭酸酵素遺伝子が、
    (a)配列番号4で表される塩基配列を含む核酸;又は
    (b)配列番号4で表される塩基配列を含む核酸とストリンジェントな条件下でハイブリダイズし、かつエチルマロニル-CoAを脱炭酸し、ブチリル-CoAを生成する触媒活性を有するタンパク質をコードする核酸
    からなる、請求項1~11のいずれか1項に記載の方法。
PCT/JP2015/072107 2014-08-04 2015-08-04 糖質原料からの共重合ポリヒドロキシアルカン酸の製造法 WO2016021604A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580040495.3A CN106574279A (zh) 2014-08-04 2015-08-04 自糖质原料制造共聚合聚羟基链烷酸的方法
EP15830587.0A EP3187590B1 (en) 2014-08-04 2015-08-04 Method for producing polyhydroxyalkanoate copolymer from saccharide raw material
JP2016540249A JP6755515B2 (ja) 2014-08-04 2015-08-04 糖質原料からの共重合ポリヒドロキシアルカン酸の製造法
US15/501,512 US10538791B2 (en) 2014-08-04 2015-08-04 Method for producing polyhydroxyalkanoate copolymer from saccharide raw material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-158398 2014-08-04
JP2014158398 2014-08-04

Publications (1)

Publication Number Publication Date
WO2016021604A1 true WO2016021604A1 (ja) 2016-02-11

Family

ID=55263866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/072107 WO2016021604A1 (ja) 2014-08-04 2015-08-04 糖質原料からの共重合ポリヒドロキシアルカン酸の製造法

Country Status (5)

Country Link
US (1) US10538791B2 (ja)
EP (1) EP3187590B1 (ja)
JP (1) JP6755515B2 (ja)
CN (1) CN106574279A (ja)
WO (1) WO2016021604A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104722A1 (ja) * 2015-12-16 2017-06-22 株式会社カネカ スクロース資化性を有するpha生産微生物、及び該微生物を用いたphaの製造方法
WO2018216726A1 (ja) * 2017-05-25 2018-11-29 株式会社カネカ グリセロールキナーゼ活性を強化したpha産生微生物とそれを用いたphaの製造方法
WO2020218565A1 (ja) * 2019-04-26 2020-10-29 株式会社フューエンス ポリヒドロキシアルカン酸及びその製造方法
CN116376856A (zh) * 2022-04-06 2023-07-04 深圳蓝晶生物科技有限公司 表达乙酰乙酰辅酶a还原酶变体的工程化微生物及提高pha产量的方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7001596B2 (ja) * 2016-07-26 2022-02-03 株式会社カネカ 3hh単位含有共重合phaを生産する形質転換体、及び当該phaの製造方法
US20230313240A1 (en) * 2019-04-26 2023-10-05 Fuence Co., Ltd. Gene for synthesizing high molecular weight copolymer
CN111979163B (zh) * 2019-05-24 2022-05-06 深圳蓝晶生物科技有限公司 一种重组罗氏真氧菌及其制备方法和应用
CN117683802B (zh) * 2024-02-02 2024-07-05 中国农业科学院北京畜牧兽医研究所 一种通过甲基苹果酸途径生产异亮氨酸的罗尔斯通氏菌工程菌株及其构建与生产方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029218A (ja) * 2006-07-26 2008-02-14 Kaneka Corp 酵素活性を低下させた微生物を用いる共重合ポリエステルの製造方法
WO2011060048A2 (en) * 2009-11-11 2011-05-19 Massachusetts Institute Of Technology Methods for producing polyhydroxyalkanoate copolymer with high medium chain length monomer content

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2777757B2 (ja) 1991-09-17 1998-07-23 鐘淵化学工業株式会社 共重合体およびその製造方法
JPH07265065A (ja) 1994-03-29 1995-10-17 Kanegafuchi Chem Ind Co Ltd 共重合体の合成遺伝子による形質転換体および共重合体の製造方法
US5959179A (en) * 1996-03-13 1999-09-28 Monsanto Company Method for transforming soybeans
JP3062459B2 (ja) 1996-08-14 2000-07-10 理化学研究所 ポリエステル重合酵素遺伝子及びポリエステルの製造方法
JP2008086238A (ja) 2006-09-29 2008-04-17 Kaneka Corp ポリヒドロキシアルカノエートの製造方法
US20110091948A1 (en) * 2008-05-26 2011-04-21 Kaneka Corporation Microorganism capable of producing improved polyhydroxyalkanoate and method of producing polyhydroxyalkanoate by using the same
US20130071892A1 (en) 2010-02-26 2013-03-21 Tokyo Institute Of Technology PROCESS FOR PRODUCTION OF POLYHYDROXYALKANOIC ACID USING GENETICALLY MODIFIED MICROORGANISM HAVING ENOYL-CoA HYDRATASE GENE INTRODUCED THEREIN
WO2012099934A2 (en) * 2011-01-18 2012-07-26 The Regents Of The University Of California Butanol production by microorganisms having nadh coupling
WO2012135731A2 (en) 2011-04-01 2012-10-04 The Regents Of The University Of California Alcohol production from recombinant microorganisms
EP2963119A4 (en) * 2013-02-28 2016-11-09 Tokyo Inst Tech PROCESS FOR THE PRODUCTION OF POLYHYDROXYALCANOATE COPOLYMER USING A GENETICALLY MODIFIED STRAIN OF THE FATTY ACID OXIDATION PATHWAY

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008029218A (ja) * 2006-07-26 2008-02-14 Kaneka Corp 酵素活性を低下させた微生物を用いる共重合ポリエステルの製造方法
WO2011060048A2 (en) * 2009-11-11 2011-05-19 Massachusetts Institute Of Technology Methods for producing polyhydroxyalkanoate copolymer with high medium chain length monomer content

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ERB, TOBIAS J ET AL.: "Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, vol. 106, no. 22, 2009, pages 8871 - 8876, XP055398095, ISSN: 0027-8424 *
FUKUI, TOSHIAKI ET AL.: "Engineering of Ralstonia eutropha for Production of Poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) from Fructose and Solid-State Properties of the Copolymer", BIOMACROMOLECULES, vol. 3, 2002, pages 618 - 624, XP002538853, ISSN: 1525-7797, DOI: doi:10.1021/BM02555084 *
INSOMPHUN, CHAYATIP ET AL.: "Improved artificial pathway for biosynthesis of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha", METABOLIC ENGINEERING, vol. 27, October 2014 (2014-10-01), pages 38 - 45, XP055301725, ISSN: 1096-7176 *
LINSTER, CAROLE L. ET AL.: "Ethylmalonyl-CoA Decarboxylase, a New Enzyme Involved in Metabolite Proofreading", JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 286, no. 50, 2011, pages 42992 - 43003, XP055398097, ISSN: 0021-9258 *
See also references of EP3187590A4 *
TOSHIAKI FUKUI: "Microbial synthesis of optically active polyesters and 3- hydroxyalkanoic acids", FINE CHEMICALS, vol. 38, no. 5, 2009, pages 32 - 42, XP008166919 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017104722A1 (ja) * 2015-12-16 2017-06-22 株式会社カネカ スクロース資化性を有するpha生産微生物、及び該微生物を用いたphaの製造方法
JPWO2017104722A1 (ja) * 2015-12-16 2018-10-04 株式会社カネカ スクロース資化性を有するpha生産微生物、及び該微生物を用いたphaの製造方法
WO2018216726A1 (ja) * 2017-05-25 2018-11-29 株式会社カネカ グリセロールキナーゼ活性を強化したpha産生微生物とそれを用いたphaの製造方法
JPWO2018216726A1 (ja) * 2017-05-25 2020-03-26 株式会社カネカ グリセロールキナーゼ活性を強化したpha産生微生物とそれを用いたphaの製造方法
JP7256740B2 (ja) 2017-05-25 2023-04-12 株式会社カネカ グリセロールキナーゼ活性を強化したpha産生微生物とそれを用いたphaの製造方法
WO2020218565A1 (ja) * 2019-04-26 2020-10-29 株式会社フューエンス ポリヒドロキシアルカン酸及びその製造方法
JPWO2020218565A1 (ja) * 2019-04-26 2021-09-27 株式会社 フューエンス ポリヒドロキシアルカン酸及びその製造方法
JP7063513B2 (ja) 2019-04-26 2022-05-09 株式会社 フューエンス ポリヒドロキシアルカン酸及びその製造方法
JP2022093402A (ja) * 2019-04-26 2022-06-23 株式会社 フューエンス ポリヒドロキシアルカン酸及びその製造方法
CN116376856A (zh) * 2022-04-06 2023-07-04 深圳蓝晶生物科技有限公司 表达乙酰乙酰辅酶a还原酶变体的工程化微生物及提高pha产量的方法
CN116376856B (zh) * 2022-04-06 2023-11-03 深圳蓝晶生物科技有限公司 表达乙酰乙酰辅酶a还原酶变体的工程化微生物及提高pha产量的方法

Also Published As

Publication number Publication date
JP6755515B2 (ja) 2020-09-16
CN106574279A (zh) 2017-04-19
EP3187590B1 (en) 2020-02-26
JPWO2016021604A1 (ja) 2017-05-18
EP3187590A1 (en) 2017-07-05
US10538791B2 (en) 2020-01-21
EP3187590A4 (en) 2018-01-24
US20170218411A1 (en) 2017-08-03

Similar Documents

Publication Publication Date Title
Mitra et al. Current developments on polyhydroxyalkanoates synthesis by using halophiles as a promising cell factory
WO2016021604A1 (ja) 糖質原料からの共重合ポリヒドロキシアルカン酸の製造法
JP5807878B2 (ja) エノイル−CoAヒドラターゼ遺伝子を導入した組換え微生物によるポリヒドロキシアルカン酸の製造法
JP5473927B2 (ja) 新規代謝経路による再生可能な原料からの発酵によるアセトン生産
De Almeida et al. Effects of granule-associated protein PhaP on glycerol-dependent growth and polymer production in poly (3-hydroxybutyrate)-producing Escherichia coli
Zhang et al. Engineering of Ralstonia eutropha for the production of poly (3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose
CN101679983A (zh) 能够产生聚乳酸酯或其共聚物的重组微生物和使用该重组微生物制备聚乳酸酯或其共聚物的方法
CN102066560B (zh) 使用重组微生物制造共聚聚酯的方法
JP4960033B2 (ja) 酵素活性を低下させた微生物を用いる共重合ポリエステルの製造方法
Hölscher et al. Production of the chiral compound (R)-3-hydroxybutyrate by a genetically engineered methylotrophic bacterium
JP2008086238A (ja) ポリヒドロキシアルカノエートの製造方法
KR102311152B1 (ko) 메탄으로부터 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체(poly(3HB-co-3HP)) 생산능을 가지는 형질전환 메탄자화균 및 이를 이용한 3-하이드록시부티레이트-3-하이드록시프로피오네이트 공중합체의 제조방법
WO2014133088A1 (ja) 脂肪酸β-酸化経路改変株による共重合体ポリヒドロキシアルカン酸の製造法
WO2015133468A1 (ja) ポリエステル顆粒結合タンパク質遺伝子座を改変した組換え株による共重合ポリエステルの製造法
EP2935599B1 (en) Preparation of long-chain length poly(hydroxyfatty acids)
JP2011527367A (ja) 微生物を用いたグリコール酸の重合方法
JP2009207420A (ja) メタノールを原料としたポリヒドロキシアルカン酸共重合の製造法
JP5103619B2 (ja) 共重合ポリエステルの製造法
CN111363713A (zh) 一种提高聚羟基丁酸乳酸酯中乳酸组分含量的基因工程大肠杆菌的构建方法及应用
WO2009145840A2 (en) Cellular production of hydroxyvalerates from levulinate
CN106801063B (zh) 一种形态改变的工程大肠杆菌的构建方法、工程大肠杆菌及应用
JP2023128089A (ja) ポリ(3-ヒドロキシブタン酸-co-4-ヒドロキシブタン酸)共重合の製造法
Galehdari et al. Cloning of poly (3-Hydroxybutyrate) synthesis genes from Azotobacter vinelandii into Escherichia coli
JP2009225775A (ja) ポリヒドロキシアルカン酸の製造方法
Joemark Studies on alginate lyases from an alginolytic bacterium Hydrogenophaga sp. strain UMI-18 that produces poly (3-hydroxybutylate)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016540249

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15501512

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015830587

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015830587

Country of ref document: EP