WO2017104722A1 - スクロース資化性を有するpha生産微生物、及び該微生物を用いたphaの製造方法 - Google Patents

スクロース資化性を有するpha生産微生物、及び該微生物を用いたphaの製造方法 Download PDF

Info

Publication number
WO2017104722A1
WO2017104722A1 PCT/JP2016/087292 JP2016087292W WO2017104722A1 WO 2017104722 A1 WO2017104722 A1 WO 2017104722A1 JP 2016087292 W JP2016087292 W JP 2016087292W WO 2017104722 A1 WO2017104722 A1 WO 2017104722A1
Authority
WO
WIPO (PCT)
Prior art keywords
gene
sucrose
pha
strain
microorganism
Prior art date
Application number
PCT/JP2016/087292
Other languages
English (en)
French (fr)
Inventor
尚志 有川
哲也 藤木
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2017556109A priority Critical patent/JP6853787B2/ja
Priority to US16/061,923 priority patent/US20180371509A1/en
Publication of WO2017104722A1 publication Critical patent/WO2017104722A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/62Carboxylic acid esters
    • C12P7/625Polyesters of hydroxy carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • C07K14/24Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Enterobacteriaceae (F), e.g. Citrobacter, Serratia, Proteus, Providencia, Morganella, Yersinia
    • C07K14/245Escherichia (G)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1025Acyltransferases (2.3)
    • C12N9/1029Acyltransferases (2.3) transferring groups other than amino-acyl groups (2.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • C12N9/1062Sucrose synthase (2.4.1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y204/00Glycosyltransferases (2.4)
    • C12Y204/01Hexosyltransferases (2.4.1)
    • C12Y204/01013Sucrose synthase (2.4.1.13)

Definitions

  • the present invention relates to a PHA-producing microorganism having sucrose utilization and a method for producing PHA using the microorganism.
  • PHA Polyhydroxyalkanoic acid
  • PHA is a polyester-type organic polymer produced by a wide range of microorganisms.
  • PHA is a biodegradable thermoplastic polymer and can be produced from renewable resources. For these reasons, attempts have been made to industrially produce PHA as an environmentally conscious material or a biocompatible material and use it in various industries.
  • the general name of the monomer unit constituting this PHA is hydroxyalkanoic acid.
  • hydroxyalkanoic acid include 3-hydroxybutyric acid (hereinafter sometimes referred to as 3HB), 3-hydroxyvaleric acid (hereinafter sometimes referred to as 3HV), 3-hydroxyhexanoic acid (hereinafter referred to as 3HH).
  • 3HB 3-hydroxybutyric acid
  • 3HV 3-hydroxyvaleric acid
  • 3HH 3-hydroxyhexanoic acid
  • 3-hydroxyoctanoic acid, 3-hydroxyalkanoic acid having a longer alkyl chain, 4-hydroxybutyric acid and the like are exemplified, and these are homopolymerized or copolymerized to form a polymer molecule PHA. Is formed.
  • PHA examples include poly-3-hydroxybutyric acid (hereinafter sometimes referred to as P (3HB)), which is a 3HB homopolymer.
  • P (3HB-co-3HV) a copolymer of 3HB and 3HV
  • P (3HB-co-3HH) a copolymer of 3HB and 3HH
  • PHBH a copolymer of 3HB and 3HH
  • 3HB And P (3HB-co-4HB) which is a copolymer of and 4HB.
  • PHBH can have a wide range of physical properties applicable from hard polymers to soft polymers by changing the composition ratio of 3HH.
  • PHBH is required to be flexible, such as a film using PHBH having a high 3HH composition ratio, from a thing that requires hardness, such as a TV casing using PHBH having a low 3HH composition ratio.
  • PHBH is required to be flexible, such as a film using PHBH having a high 3HH composition ratio, from a thing that requires hardness, such as a TV casing using PHBH having a low 3HH composition ratio.
  • glucose is often used as the main carbon source, but glucose is a relatively expensive carbon source. Therefore, when glucose is used as the main carbon source, it may be more expensive than the production price by the chemical synthesis method using crude oil as the main raw material, which makes it difficult to commercialize in terms of price competitiveness.
  • sucrose is known as a sugar raw material that is cheaper than glucose.
  • Sucrose is one of the disaccharides formed by glucose and fructose, and is a carbon source that is produced from all plants having photosynthesis ability and is abundant in nature. Furthermore, sucrose is the main component of molasses, and molasses is an attractive carbon source in terms of renewable resources that do not compete with food.
  • sucrose PTS Phosphoenolpyruvate: “Carbohydrate” Phosphotransferase ”System
  • sucrose non-PTS sucrose non-PTS
  • the microorganism takes sucrose as it is, and then breaks it down into glucose and fructose.
  • sucrose PTS Phosphoenolpyruvate: “Carbohydrate” Phosphotransferase ”System
  • sucrose non-PTS the microorganism phosphorylates sucrose when it takes up sucrose and converts it to sucrose-6-phosphate. And it decomposes into glucose-6-phosphate and fructose inside microbial cells.
  • sucrose is decomposed outside the microbial cells, and the resulting glucose and fructose may be assimilated.
  • Capriavidas Necatol strain H16 known as a PHA-producing microorganism, can assimilate fructose but cannot assimilate glucose and sucrose.
  • sucrose utilization-related genes sucrose permease enzyme gene and sucrose hydrolysis
  • Escherichia coli W strain sucrose permease enzyme gene and sucrose hydrolysis
  • sucrose utilization has become possible by introducing an enzyme gene).
  • the organism from which the gene is derived and the host to which the gene is introduced are the same species, the probability that the gene introduced by genetic recombination will function well is considered high.
  • Patent Document 2 discloses an example in which sucrose-assimilating bacteria are imparted to sucrose-non-assimilating Escherichia bacteria by introducing a sucrose PTS gene group. Furthermore, Patent Document 1 discloses an example in which sucrose utilization is imparted by introducing a sucrose phosphotransferase gene and a sucrose hydrolase gene.
  • An object of the present invention is to provide a PHA-producing microorganism capable of assimilating sucrose and a method for producing PHA by culturing the microorganism using sucrose as a carbon source.
  • microorganisms having the ability to produce PHA include a heterologous organism-derived gene encoding sucrose hydrolase (CscA) and a sucrose permease (CscB). It was found that by introducing both genes derived from heterologous organisms encoding sucrose, the ability to decompose sucrose and the ability to take up sucrose into cells is added to the microorganism, and PHA production using sucrose as a carbon source becomes possible. The invention has been completed.
  • the present invention relates to a PHA-producing microorganism having a PHA synthase gene and the following heterologous organism-derived genes (1) and (2).
  • a sucrose hydrolase gene encoding the amino acid sequence set forth in SEQ ID NO: 1 or a polypeptide having 90% or more sequence identity to the amino acid sequence and having sucrose hydrolase activity
  • Gene (2) A sucrose permease gene encoding the amino acid sequence shown in SEQ ID NO: 2, or a gene encoding a polypeptide having 90% or more sequence identity to the amino acid sequence and having sucrose permease activity
  • the microorganism is a transformant having a microorganism belonging to the genus Capriavidas as a host, and more preferably, the microorganism belonging to the genus Capriavidas is Capriavidas necatol.
  • the microorganism is imparted or enhanced with glucose utilization.
  • the PHA synthase gene is a PHA synthase gene capable of synthesizing P (3HB-co-3HH).
  • the microorganism further has a crotonyl-CoA reductase gene and an ethylmalonyl-CoA decarboxylase gene.
  • the microorganism has the acetoacetyl CoA reductase gene deleted or its expression level is suppressed.
  • the present invention also relates to a method for producing PHA, comprising a step of culturing the microorganism in a medium containing sucrose as a carbon source, and preferably relates to the production method wherein PHA is P (3HB-co-3HH).
  • a PHA-producing microorganism capable of assimilating sucrose can be provided. Further, PHA can be produced by fermentation by culturing the microorganism using sucrose as a carbon source.
  • Comparative Example 1 is a graph showing the sugar concentration changes in the growth and media in the sucrose-containing medium KNK005 ⁇ phaZ1,2,6 strain (solid line including ⁇ : OD 600; solid line including ⁇ : sucrose concentration; solid line including ⁇ : Glucose concentration; solid line including x: fructose concentration)
  • KNK005 ⁇ phaZ1,2,6 / nagEG793C is a graph showing the sugar concentration changes in the growth and media in the sucrose-containing medium dR strain (solid line including ⁇ : OD 600; solid line including ⁇ : sucrose concentration; Solid line including ⁇ : glucose concentration; Solid line including x: fructose concentration)
  • FIG. 7 is a graph showing the growth of pCUP2-lacUV5-cscA in KNK005 ⁇ phaZ1,2,6 in a sucrose-containing medium and the change in sugar concentration in the medium with respect to Comparative Example 3 (solid line including ⁇ : OD 600 ; solid line including ⁇ : sucrose) Concentration; solid line including ⁇ : glucose concentration; solid line including x: fructose concentration)
  • FIG. 7 shows the growth of pCUP2-lacUV5-cscA in KNK005 ⁇ phaZ1,2,6 in a sucrose-containing medium and the change in sugar concentration in the medium with respect to Comparative Example 3 (solid line including ⁇ : OD 600 ; solid line including ⁇ : sucrose) Concentration; solid line including ⁇ : glucose concentration; solid line including x: fructose concentration)
  • FIG. 6 is a graph showing the growth of pCUP2-lacUV5-cscB in KNK005 ⁇ phaZ1,2,6 in a sucrose-containing medium and the change in sugar concentration in the medium with respect to Comparative Example 4 (solid line including ⁇ : OD 600 ; solid line including ⁇ : sucrose) Concentration; solid line including ⁇ : glucose concentration; solid line including x: fructose concentration) BRIEF DESCRIPTION OF THE DRAWINGS FIG.
  • FIG. 1 is a graph showing the growth of pCUP2-lacUV5-cscAB in KNK005 ⁇ phaZ1,2,6 in a sucrose-containing medium and changes in sugar concentration in the medium with respect to Example 1 (solid line including ⁇ : OD 600 ; solid line including ⁇ : sucrose) Concentration; solid line including ⁇ : glucose concentration; solid line including x: fructose concentration)
  • FIG. 1 shows the growth of pCUP2-lacUV5-cscAB in KNK005 ⁇ phaZ1,2,6 in a sucrose-containing medium and changes in sugar concentration in the medium with respect to Example 1 (solid line including ⁇ : OD 600 ; solid line including ⁇ : sucrose) Concentration; solid line including ⁇ : glucose concentration; solid line including x: fructose concentration)
  • FIG. 5 is a graph showing growth of pCUP2-lacUV5-cscAB in KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR strain in a sucrose-containing medium and changes in sugar concentration in the medium with respect to Example 2
  • sucrose-producing microorganism imparted or enhanced with sucrose utilization ability both a sucrose hydrolase gene derived from a different organism and a sucrose permease gene derived from a different organism are compared with a microorganism having a PHA synthase gene. By introducing, sucrose utilization is imparted or enhanced, and a microorganism that produces PHA using sucrose as a carbon source is provided.
  • sucrose hydrolase gene is a gene encoding sucrose hydrolase (CscA), an enzyme that hydrolyzes sucrose to produce glucose and fructose.
  • sucrose permease gene used in the present specification is a gene encoding sucrose permease (CscB) having a function of taking sucrose into cells.
  • the microorganism to be the original strain (host) into which the sucrose hydrolase gene and the sucrose permease gene are introduced is not particularly limited as long as it has a PHA synthase gene and can produce PHA.
  • a PHA-producing microorganism having no sucrose utilization or low sucrose utilization Such PHA-producing microorganisms include not only wild strains that inherently have PHA synthase genes, but also mutant strains obtained by artificially mutating such wild strains, or PHA synthase genes.
  • microorganisms include bacteria, yeasts, filamentous fungi, and the like, preferably bacteria.
  • bacteria include the genus Ralstonia, the genus Capriavidus, the genus Wautersia, the genus Aeromonas, the genus Escherichia, the genus Alcaligeneson, and the genus Alcaligeneson. Bacteria belonging to it are listed as preferred examples.
  • a bacterium belonging to the genus Ralstonia, Capriavidas, Aeromonas, or Wauthercia more preferably a bacterium belonging to the genus Capriavidas or Aeromonas, still more preferably belonging to the genus Capriavidas.
  • the microorganism having the PHA synthase gene is a recombinant strain into which an exogenous PHA synthase gene has been introduced by a genetic engineering technique
  • examples of the exogenous PHA synthase gene include capriavidas nekatol H16 strain (C.I.
  • a PHA synthase gene encoding the amino acid sequence described in SEQ ID NO: 3, or a polyhedron having 85% or more sequence identity to the amino acid sequence and having PHA synthesis activity
  • a PHA synthase gene encoding a peptide, a PHA synthase gene possessed by Aeromonas caviae, or a sequence identity of 85% or more to the amino acid sequence, and having PHA synthesizing activity
  • Genetics of PHA synthase encoding polypeptides Although the like are not limited to, other PHA synthetase gene can also be suitably utilized.
  • the sequence identity is preferably 90% or more, more preferably 95% or more, and particularly preferably 99% or more.
  • PHA synthase gene capable of synthesizing PHBH is preferred as PHA, for example, a PHA synthase gene encoding a PHA synthase having the amino acid sequence shown in SEQ ID NO: 4 is more preferred.
  • the microorganism to be the original strain into which the sucrose hydrolase gene and sucrose permease gene are introduced is preferably a microorganism having a PHA synthase gene capable of synthesizing PHBH, and specific examples thereof include Capriavidas necatol.
  • a transformant into which a PHA synthase gene derived from Aeromonas caviae has been introduced is most preferred.
  • sucrose hydrolase gene is a gene encoding the amino acid sequence represented by SEQ ID NO: 1 derived from Escherichia coli, or having 90% or more sequence identity to the amino acid sequence, and sucrose hydrolyzing
  • SEQ ID NO: 1 derived from Escherichia coli
  • sucrose hydrolyzing it will not specifically limit if it is a gene which codes the polypeptide which has a degrading enzyme activity, As an example, the gene which has a base sequence of sequence number 5 is mentioned.
  • sucrose permease gene has a 90% or more sequence identity with respect to the gene which codes the amino acid sequence shown by sequence number 2 derived from Escherichia coli, or this amino acid sequence, and has sucrose permease activity Although it will not specifically limit if it is a gene which codes polypeptide, As an example, the gene which has a base sequence of sequence number 6 is mentioned.
  • the sequence homology is preferably 95% or more, more preferably 97% or more, and particularly preferably 99% or more.
  • the PHA synthase gene, sucrose hydrolase gene, and sucrose permease gene may be present on DNA such as chromosomes, plasmids, megaplasmids, etc. possessed by the host microorganism.
  • it may exist on DNA artificially integrated into a microorganism, such as on a plasmid vector or artificial chromosome.
  • it is preferably present on the chromosome or megaplasmid held by the microorganism, more preferably on the chromosome held by the microorganism.
  • a method for site-specific substitution or insertion of arbitrary DNA on DNA held by a microorganism is well known to those skilled in the art, and can be used in producing the microorganism of the present invention.
  • typical methods include a method using a transposon and a homologous recombination mechanism (Ohman et al., J. Bacteriol., Vol. 162: p1068 (1985)), a site generated by the homologous recombination mechanism.
  • a method based on the principle of specific integration and deletion by homologous recombination in the second stage Noti et al., Methods Enzymol., Vol.
  • the method for introducing a vector into a cell is not particularly limited, and examples thereof include a calcium chloride method, an electroporation method, a polyethylene glycol method, and a spheroplast method.
  • the promoter for expressing the sucrose hydrolase gene and the sucrose permease gene is not particularly limited.
  • the promoter of caprividas necatol phaC1 gene, promoter of phaP1 gene, lac promoter derived from E. coli, lacUV5 promoter, trc promoter, tic promoter, tac promoter and the like can be used.
  • the same promoter may be used for each gene, or different promoters may be used.
  • the lacUV5 promoter shown in SEQ ID NO: 7 is preferably used for both genes.
  • the glucose assimilability of the microorganism to which sucrose assimilation is imparted or enhanced by the above is low or not assimilating, the above-described methods such as gene mutation and destruction, enhancement of gene expression, introduction of foreign genes, etc. It is preferable to impart or enhance glucose utilization to microorganisms. Thereby, the sucrose utilization property of the microorganism can be further enhanced, and the PHA production amount can be improved when sucrose is used as a carbon source.
  • C.I. Necator H16 strain has no glucose uptake gene and cannot assimilate glucose.
  • the method of conferring glucose utilization to the necator H16 strain is not particularly limited, but as an example, the N-acetylglucosamine uptake gene nagE 793th base G is substituted with C, and a transcriptional regulator is added.
  • Examples include a method of imparting glucose utilization by destroying nagR, which is a gene to be encoded (Journal of Bioscience and Bioengineering, vol. 113, 63 (2012)).
  • Another example is a method for imparting glucose utilization by introducing a foreign gene encoding a glucose transporter (Japanese Patent Laid-Open No. 2009-225662).
  • a method for introducing a glucose kinase gene may be effective.
  • PHBH crotonyl-CoA reductase gene (ccr) and an ethylmalonyl-CoA decarboxylase gene (emd) into Capriavidas nekatol into which a PHA synthase gene capable of incorporating 3HH monomer has been introduced
  • ccr crotonyl-CoA reductase gene
  • emd ethylmalonyl-CoA decarboxylase gene
  • PHBH can be produced using fructose as a carbon source by further introducing a gene (phaJ) encoding (R) -specific enoyl-CoA hydratase (metabolic engineering, vol. 27, 38 (2015). )).
  • ccr and / or emd may be introduced in addition to the sucrose hydrolase gene and sucrose permease gene.
  • the synthesis route of (R) -3-hydroxyacyl-CoA having 6 carbon atoms is strengthened or made efficient when sugar is used as a carbon source, and the 3HH composition in PHBH produced is increased. The ratio can be improved.
  • the crotonyl-CoA reductase used in the present invention is an enzyme that generates butyryl-CoA by reducing crotonyl-CoA having 4 carbon atoms, which is an intermediate in the fatty acid ⁇ -oxidation pathway.
  • Butyryl-CoA is condensed with another molecule of acetyl-CoA by the action of ⁇ -ketothiolase (BktB) and further converted to provide (R) -3HHx-CoA having 6 carbon atoms. It is copolymerized with (R) -3HB-CoA by a specific polyester polymerization enzyme.
  • the ccr that can be used in the present invention is not particularly limited as long as the post-translation reductase has the above-described crotonyl-CoA reductase activity.
  • a gene encoding crotonyl-CoA reductase derived from cinnamonensis (GenBank Accession No. AF178673), methanol-utilizing bacteria M.
  • a gene encoding crotonyl-CoA reductase derived from extorquens NCBI-GeneID: 7990208
  • a gene encoding crotonyl-CoA reductase having the amino acid sequence set forth in SEQ ID NO: 40, or a poly having 90% or more sequence identity to the amino acid sequence and exhibiting crotonyl-CoA reductase activity A gene encoding a peptide.
  • the ethylmalonyl-CoA decarboxylase used in the present invention is an enzyme that catalyzes the decarboxylation of ethylmalonyl-CoA to butyryl-CoA produced by side reactions with crotonyl-CoA reductase or propionyl-CoA carboxylase.
  • the origin of ethylmalonyl-CoA decarboxylase is not particularly limited as long as it has this activity, and examples thereof include mouse-derived ethylmalonyl-CoA decarboxylase having the amino acid sequence shown in SEQ ID NO: 41.
  • Examples of the gene base sequence that codes for the amino acid sequence and can be used in Capriavidas necatol include, but are not limited to, the base sequence set forth in SEQ ID NO: 42.
  • a gene (phaJ) encoding the (R) -specific enoyl-CoA hydratase may be further introduced.
  • the biosynthesis ability of (R) -3HHx-CoA can be enhanced.
  • (R) -specific enoyl-CoA hydratase used in the present invention refers to 2-enoyl-CoA, which is a fatty acid ⁇ -oxidation intermediate, and (R) -3-hydroxyacyl, which is a PHA monomer.
  • phaJ Means an enzyme that converts to CoA;
  • the origin of phaJ is not particularly limited, but is preferably derived from Capriavidas necatol or Aeromonas caviae.
  • examples of the phaJ used in the present invention include phaJ4a (H16 A1070, NCBI-GeneID: 4248869) and phaJ4b (H16 B0397, NCBI-GeneID: 4454986) derived from Capriavidas Necatol, phaJ (GenBanks derived from Aeromonas cabie) ., BAA 21816) and the like.
  • a gene encoding acetoacetyl-CoA reductase is deleted or its expression is suppressed, whereby a PHBH having a higher 3HH composition ratio is obtained.
  • a gene encoding an acetoacetyl-CoA reductase that is deleted or suppresses expression may be a gene encoding an enzyme having a catalytic function to produce (R) -3HB-CoA using acetoacetyl-CoA as a substrate. That's fine.
  • examples thereof include phaB1 and phaB3 (NCBI-GeneID: 4249784, NCBI-GeneID: 4250155).
  • a deletion refers to an amino sequence in which a part or all of a target gene does not exist due to genetic manipulation or mutation, or a stop codon appears or codes due to addition or substitution of a base sequence. It is intended that some or all of the activity of the protein encoded by the gene is lost, such as as a result of a change.
  • Examples of a method for suppressing gene expression include, but are not limited to, modification of a nucleotide sequence in a promoter region upstream of a gene or a ribosome binding sequence.
  • ccr, emd, and phaJ may be present on DNA such as chromosomes, plasmids, megaplasmids, etc. possessed by the host microorganism, or may be artificially generated on plasmid vectors or artificial chromosomes. In particular, it may be present on DNA incorporated into the microorganism. However, from the viewpoint of holding the introduced DNA, it is preferably present on the chromosome or megaplasmid held by the microorganism, more preferably on the chromosome held by the microorganism.
  • the expression level of the gene can be increased by replacing, deleting, or adding the base sequence upstream of the originally retained gene. Good.
  • the promoter for expressing the above ccr, emd, and phaJ is not particularly limited.
  • the promoter of caprividas necatol phaC1 gene, promoter of phaP1 gene, lac promoter derived from E. coli, lacUV5 promoter, trc promoter, tic promoter, tac promoter and the like can be used.
  • the same promoter may be used for each gene, or different promoters may be used.
  • the trc promoter is preferably used for each gene.
  • Method for producing PHA PHA can be produced by culturing the microorganism of the present invention in a medium containing sucrose as a carbon source, and recovering the obtained PHA.
  • the microorganism is preferably cultured in a medium containing a carbon source, a nitrogen source that is a nutrient source other than the carbon source, inorganic salts, and other organic nutrient sources.
  • the carbon source only needs to contain sucrose, and examples of the carbon source containing sucrose include molasses rich in sucrose or molasses. Moreover, as long as it contains sucrose, other carbon sources may be contained, and sucrose and other carbon sources may be used in combination. As the other carbon source, any carbon source can be used as long as the microorganism of the present invention can be assimilated. However, sugars such as glucose and fructose, palm oil, palm kernel oil, corn oil, and palm are preferable.
  • oils and fats such as oil, olive oil, soybean oil, rapeseed oil, and Jatropha oil, and fractionated oils thereof, fatty acids such as lauric acid, oleic acid, stearic acid, palmitic acid, and myristic acid, and derivatives thereof.
  • Examples of the nitrogen source include ammonia; ammonium salts such as ammonium chloride, ammonium sulfate, and ammonium phosphate; peptone, meat extract, yeast extract, and the like.
  • Examples of the inorganic salts include potassium dihydrogen phosphate, disodium hydrogen phosphate, magnesium phosphate, magnesium sulfate, sodium chloride and the like.
  • Examples of other organic nutrient sources include amino acids such as glycine, alanine, serine, threonine, and proline, and vitamins such as vitamin B1, vitamin B12, and vitamin C.
  • Conditions for culturing the microorganism of the present invention such as culture temperature, culture time, culture pH, medium, etc., are the microorganisms used, such as Ralstonia, Capriavidas, Wautersia, Aeromonas, Escherichia, Alkaligenes, Pseudomonas Conditions normally used in culture of bacteria such as genera may be used.
  • the type of PHA produced in the present invention is not particularly limited as long as it is a PHA that can be produced by a microorganism.
  • one or more monomers selected from hydroxyalkanoic acids having 4 to 16 carbon atoms are used.
  • PHA obtained by polymerization is preferred.
  • 3HB homopolymer P (3HB), 3HB and 3HV copolymer P (3HB-co-3HV), 3HB and 3HH copolymer PHBH, 3HB and 4HB copolymer P (3HB-co -4HB) and the like but is not limited thereto.
  • PHBH is preferable from the viewpoint of wide application range as a polymer.
  • the type of PHA produced depends on the purpose, the type of PHA synthase gene possessed by the microorganism to be used or separately introduced, the type of metabolic system involved in the synthesis, the culture conditions, etc. It can be selected as appropriate.
  • the recovery of PHA from the microbial cells is not particularly limited, but can be performed by, for example, the following method.
  • the cells are separated from the culture solution with a centrifuge, and the cells are washed with distilled water, methanol, or the like and dried.
  • PHA is extracted from the dried cells using an organic solvent such as chloroform.
  • Cellular components are removed from the organic solvent solution containing PHA by filtration or the like, and a poor solvent such as methanol or hexane is added to the filtrate to precipitate PHA. Further, the supernatant is removed by filtration or centrifugation, and dried to recover PHA.
  • Analysis of the weight average molecular weight (Mw) of the obtained PHA and the monomer composition (mol%) such as 3HH can be performed by, for example, gel permeation chromatography, gas chromatography, nuclear magnetic resonance, or the like.
  • the overall genetic manipulation can be performed as described in Molecular Cloning (Cold Spring Harbor Laboratory Press (1989)).
  • enzymes, cloning hosts, etc. used for gene manipulation can be purchased from market suppliers and used according to the explanation.
  • the enzyme is not particularly limited as long as it can be used for gene manipulation.
  • the KNK005 ⁇ phaZ1,2,6 strain used in the following production examples, examples and comparative examples is C.I.
  • the phaZ1,2,6 gene on the chromosome of necator H16 strain was deleted, and the PHA synthase gene derived from Aeromonas caviae (the gene encoding the PHA synthase having the amino acid sequence described in SEQ ID NO: 4) was introduced It is a transformant and can be produced according to the method of International Publication No. 2014/065253.
  • PCR was performed using the primers represented by SEQ ID NO: 8 and SEQ ID NO: 9 using the chromosomal DNA of necator H16 strain as a template. PCR was first treated at 98 ° C. for 2 minutes, and then repeated 25 cycles of a reaction of 98 ° C. for 15 seconds, 60 ° C. for 30 seconds, and 68 ° C. for 2 minutes. The polymerase was KOD-plus- (Toyobo) Used). Similarly, PCR was performed using the primers represented by SEQ ID NO: 10 and SEQ ID NO: 11.
  • PCR was performed under the same conditions using the two DNA fragments obtained by the above PCR as templates and the primers shown in SEQ ID NOs: 8 and 11, and the obtained DNA fragments were digested with the restriction enzyme SwaI.
  • This DNA fragment was ligated with the vector pNS2X-sacB described in JP 2007-259708 A digested with SwaI with DNA ligase (Ligation High (manufactured by Toyobo)), upstream from the 793rd base of the nagE structural gene.
  • a plasmid vector for chromosome replacement pNS2X-sacB + nagEG793C having a base sequence downstream from the base sequence and having a base sequence in which the 793rd base of the nagE structural gene was replaced from G to C was prepared.
  • a chromosome-substituted strain KNK005 ⁇ phaZ1,2,6 / nagEG793C was prepared as follows.
  • Escherichia coli S17-1 strain (ATCC47055) was transformed with the plasmid vector pNS2X-sacB + nagEG793C for chromosome replacement, and mixed culture was carried out on KNK005 ⁇ phaZ1,2,6 strain on Nutrient Agar medium (Difco) and transferred.
  • the obtained culture broth was treated with Simmons agar medium containing 250 mg / L kanamycin (sodium citrate 2 g / L, sodium chloride 5 g / L, magnesium sulfate heptahydrate 0.2 g / L, ammonium dihydrogen phosphate 1 g / L L, dipotassium hydrogen phosphate 1 g / L, agar 15 g / L, pH 6.8), and the strain that has grown on the agar medium is selected.
  • the plasmid is on the chromosome of KNK005 ⁇ phaZ1,2,6 strain. Acquired stocks incorporated into.
  • This strain was cultured for 2 generations in Nutrient Broth medium (Difco), then diluted and applied onto Nutrient Agar medium containing 15% sucrose, and the growing strain was obtained as a strain from which the plasmid had dropped. Further, by analysis with a DNA sequencer, one strain was isolated in which G, which is the 793rd base of the nagE structural gene on the chromosome, was replaced with C. This mutagenized strain was designated as KNK005 ⁇ phaZ1,2,6 / nagEG793C strain. The obtained KNK005 ⁇ phaZ1,2,6 / nagEG793C strain was obtained from C.I.
  • the starter to stop codons of the phaZ6 gene and phaZ1 gene on the chromosome of necator H16 strain are deleted, and further, the 16th to the stop codons of phaZ2 gene are deleted.
  • This is a strain in which a gene encoding a PHA synthase having an amino acid sequence is introduced, and G, which is the 793rd base of the nagE structural gene, is substituted with C.
  • a plasmid for gene disruption was prepared. The production was performed as follows.
  • PCR was performed using the primers shown by SEQ ID NO: 12 and SEQ ID NO: 13 using the chromosomal DNA of necator H16 strain as a template. PCR was performed under the same reaction conditions as described above, and KOD-plus- (manufactured by Toyobo Co., Ltd.) was used as the polymerase. Similarly, PCR was performed using primers represented by SEQ ID NO: 14 and SEQ ID NO: 15. Furthermore, PCR was performed under the same conditions using the two DNA fragments obtained by the above PCR as templates and using the primers shown in SEQ ID NOS: 12 and 15, and the obtained DNA fragments were digested with the restriction enzyme SwaI.
  • This DNA fragment was ligated to the vector pNS2X-sacB described in JP-A-2007-259708 digested with SwaI with DNA ligase (Ligation High (manufactured by Toyobo Co., Ltd.)), and the nucleotide sequence upstream and downstream from the nagR structural gene.
  • a plasmid vector pNS2X-sacB + nagRUD for gene disruption was prepared.
  • a gene disruption strain KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR strain was prepared using the gene disruption plasmid vector pNS2X-sacB + nagRUD as follows.
  • Escherichia coli S17-1 strain (ATCC47055) is transformed with the plasmid vector for gene disruption pNS2X-sacB + nagRUD, mixed culture on the KNK005 ⁇ phaZ1,2,6 / nagEG793C strain obtained above and on Nutrient Agar medium (Difco). The joint transmission was performed.
  • the obtained culture broth was treated with Simmons agar medium containing 250 mg / L kanamycin (sodium citrate 2 g / L, sodium chloride 5 g / L, magnesium sulfate heptahydrate 0.2 g / L, ammonium dihydrogen phosphate 1 g / L L, dipotassium hydrogen phosphate 1 g / L, agar 15 g / L, pH 6.8), and the strain that has grown on the agar medium is selected, and the plasmid is KNK005 ⁇ phaZ1,2,6 / nagEG793C A strain integrated on the chromosome was obtained.
  • kanamycin sodium citrate 2 g / L, sodium chloride 5 g / L, magnesium sulfate heptahydrate 0.2 g / L, ammonium dihydrogen phosphate 1 g / L L, dipotassium hydrogen phosphate 1 g / L, agar 15 g / L, pH 6.8
  • This strain was cultured for 2 generations in Nutrient Broth medium (Difco), then diluted and applied onto Nutrient Agar medium containing 15% sucrose, and the growing strain was obtained as a strain from which the plasmid had dropped. Furthermore, by strain analysis using a DNA sequencer, one strain having a deletion from the start codon to the stop codon of the nagR gene on the chromosome was isolated. This gene-disrupted strain was designated as KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR strain. The KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR strain is a C.I.
  • the starter to stop codons of the phaZ6 gene and phaZ1 gene on the chromosome of necator H16 strain are deleted, and further, the 16th to the stop codons of phaZ2 gene are deleted.
  • This is a strain in which a gene encoding a PHA synthase having an amino acid sequence is introduced, G, which is the 793rd base of the nagE structural gene, is substituted with C, and the nagR gene is deleted from the start codon to the stop codon.
  • a plasmid into which the base sequence represented by SEQ ID NO: 16 containing the cscA and cscB genes was introduced was obtained by artificial gene synthesis.
  • This plasmid was digested with restriction enzymes MunI and SpeI, and the obtained DNA fragment containing the cscA and cscB genes was ligated with the plasmid vector pCUP2 described in International Publication No. 2007/049716 cut with MunI and SpeI.
  • the plasmid vector pCUP2-cscAB was obtained.
  • E. PCR was performed under the same conditions as in Production Example 1 using the genomic DNA of E. coli strain HB101 as a template and using the primers represented by SEQ ID NO: 17 and SEQ ID NO: 18.
  • a DNA fragment containing the lacUV5 promoter sequence obtained by PCR was digested with MunI. This DNA fragment was ligated with the plasmid vector pCUP2-cscAB cut with MunI.
  • plasmids a plasmid in which a DNA fragment containing a lacUV5 promoter sequence was inserted in a direction where cscA and cscB were located downstream of the lacUV5 promoter was selected by PCR to obtain a plasmid vector pCUP2-lacUV5-cscAB.
  • the plasmid vector pCUP2-lacUV5-cscAB was introduced into the KNK005 ⁇ phaZ1,2,6 strain to obtain a transformant pCUP2-lacUV5-cscAB in KNK005 ⁇ phaZ1,2,6.
  • the introduction of the plasmid vector into the cells was carried out by electric introduction as follows.
  • the gene introduction apparatus used was a gene pulser manufactured by Biorad, and the cuvette used was a gap 0.2 cm manufactured by Biorad. 400 ⁇ l of competent cells and 20 ⁇ l of expression vector were injected into a cuvette and set in a pulse device, and an electric pulse was applied under the conditions of electrostatic capacity 25 ⁇ F, voltage 1.5 kV, and resistance value 800 ⁇ . After the pulse, the bacterial solution in the cuvette was cultured with shaking on Nutrient Broth medium (manufactured by DIFCO) at 30 ° C.
  • the cultured transformant pCUP2-lacUV5-cscAB in KNK005 ⁇ phaZ1,2,6 was obtained by culturing for days.
  • PCR was performed under the same conditions as in Production Example 1 using the plasmid vector pCUP2-lacUV5-cscAB described in Production Example 2 as a template and the primers shown in SEQ ID NO: 19 and SEQ ID NO: 20.
  • the DNA fragment containing the cscA gene sequence obtained by PCR was digested with restriction enzymes MunI and SpeI, ligated with the plasmid vector pCUP2 described in International Publication No. 2007/049716 cut with MunI and SpeI, and plasmid vector pCUP2 -CscA was obtained.
  • E.I. PCR was performed under the same conditions as in Production Example 1 using the genomic DNA of E.
  • coli strain HB101 as a template and using the primers represented by SEQ ID NO: 17 and SEQ ID NO: 18.
  • a DNA fragment containing the lacUV5 promoter sequence obtained by PCR was digested with MunI. This DNA fragment was ligated with the plasmid vector pCUP2-cscA cut with MunI. From the obtained plasmid, a plasmid in which a DNA fragment containing the lacUV5 promoter sequence was inserted in the direction in which cscA was located downstream of the lacUV5 promoter was selected by PCR to obtain a plasmid vector pCUP2-lacUV5-cscA.
  • the plasmid vector pCUP2-lacUV5-cscA was introduced into KNK005 ⁇ phaZ1,2,6 strain in the same manner as in Production Example 2 to obtain transformant pCUP2-lacUV5-cscA in KNK005 ⁇ phaZ1,2,6 strain.
  • PCR was performed under the same conditions as in Production Example 1 using the plasmid vector pCUP2-lacUV5-cscAB described in Production Example 2 as a template and the primers shown in SEQ ID NO: 21 and SEQ ID NO: 22.
  • a DNA fragment containing the cscB gene sequence obtained by PCR was digested with restriction enzymes MunI and SpeI, ligated with the plasmid vector pCUP2 described in International Publication No. 2007/049716 and digested with MunI and SpeI, and plasmid vector pCUP2 -CscB was obtained.
  • E.I. PCR was performed under the same conditions as in Production Example 1 using the genomic DNA of E.
  • coli strain HB101 as a template and using the primers represented by SEQ ID NO: 17 and SEQ ID NO: 18.
  • a DNA fragment containing the lacUV5 promoter sequence obtained by PCR was digested with MunI. This DNA fragment was ligated with the plasmid vector pCUP2-cscB cut with MunI. From the obtained plasmid, a plasmid in which a DNA fragment containing the lacUV5 promoter sequence was inserted in the direction in which cscB was located downstream of the lacUV5 promoter was selected by PCR to obtain a plasmid vector pCUP2-lacUV5-cscB.
  • plasmid vector pCUP2-lacUV5-cscB was introduced into KNK005 ⁇ phaZ1,2,6 strain in the same manner as in Production Example 2 to obtain transformant pCUP2-lacUV5-cscB in KNK005 ⁇ phaZ1,2,6 strain.
  • Escherichia coli S17-1 strain (ATCC47055) was transformed with plasmid bAO / pBlu / SacB-Km, and KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR strain obtained in Production Example 1 and Nutrient Agar medium (manufactured by Difco) were used. Conjugate transmission was performed by mixed culture.
  • the obtained culture broth was treated with Simmons agar medium containing 250 mg / L kanamycin (sodium citrate 2 g / L, sodium chloride 5 g / L, magnesium sulfate heptahydrate 0.2 g / L, ammonium dihydrogen phosphate 1 g / L L, dipotassium hydrogen phosphate 1 g / L, agar 15 g / L, pH 6.8), and a strain that has grown on the agar medium is selected, and the plasmid is KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR A strain integrated on the chromosome of the strain was obtained.
  • Sonagar medium containing 250 mg / L kanamycin (sodium citrate 2 g / L, sodium chloride 5 g / L, magnesium sulfate heptahydrate 0.2 g / L, ammonium dihydrogen phosphate 1 g / L L, dipotassium hydrogen phosphat
  • This strain was cultured for 2 generations in Nutrient Broth medium (Difco), then diluted and applied onto Nutrient Agar medium containing 15% sucrose, and the growing strain was obtained as a strain from which the plasmid had dropped. Further, by analysis using a DNA sequencer, one strain was isolated in which a DNA having a nucleotide sequence including a promoter of phaC gene of A. Acaviae and a ribosome binding sequence was inserted immediately before the start codon of the bktB gene on the chromosome. This gene insertion strain was designated as ACP-bktB / ⁇ phaZ1,2,6 / nagEG793C, dR strain.
  • the ACP-bktB / ⁇ phaZ1,2,6 / nagEG793C, dR strain was obtained from C.I.
  • the starter to stop codons of the phaZ6 gene and phaZ1 gene on the chromosome of necator H16 strain are deleted, and further, the 16th to the stop codons of phaZ2 gene are deleted.
  • G which is the 793rd base of the nagE structural gene, was replaced with C
  • the nagR gene was deleted from the start codon to the stop codon
  • bktB ⁇ Ketothiolase
  • a promoter and ribosome binding sequence insertion strain ACP-bktB / ⁇ phaZ1,2,6 / nagEG793C, dR / trc-J4b was prepared as follows.
  • a plasmid for inserting a promoter and a ribosome binding sequence was prepared.
  • the production was performed as follows.
  • PCR was performed under the same conditions as in Production Example 1 using the chromosomal DNA of necator H16 strain as a template and the primers shown in SEQ ID NO: 23 and SEQ ID NO: 24. Similarly, PCR was performed under the same conditions using the primers represented by SEQ ID NO: 25 and SEQ ID NO: 26. Furthermore, PCR was performed under the same conditions using the plasmid pKK388-1 (manufactured by CLONTECH) as a template and the primers represented by SEQ ID NO: 27 and SEQ ID NO: 28.
  • PCR was carried out under the same conditions using the three types of DNA fragments obtained by the above PCR as templates and the primers shown in SEQ ID NO: 23 and SEQ ID NO: 26, and the resulting DNA fragments were digested with the restriction enzyme SwaI.
  • This DNA fragment was ligated with the vector pNS2X-sacB described in JP-A-2007-259708 digested with SwaI with DNA ligase (Ligation High (manufactured by Toyobo)), and the base sequence upstream of the phaJ4b structural gene, trc Plasmid vector pNS2X-sacB + phaJ4bU-trc-phaJ4b for insertion of promoter and ribosome binding sequence having promoter, ribosome binding sequence and phaJ4b structural gene sequence was prepared.
  • the ACP-bktB / ⁇ phaZ1,2,6 / nagEG793C, dR / trc-J4b strain was obtained from C.I.
  • the starter to stop codons of the phaZ6 gene and phaZ1 gene on the chromosome of necator H16 strain are deleted, and further, the 16th to the stop codons of phaZ2 gene are deleted.
  • a gene encoding a PHA synthase having an amino acid sequence was introduced, G, which is the 793rd base of the nagE structural gene, was replaced with C, the nagR gene was deleted from the start codon to the stop codon, and the start of the bktB gene
  • G which is the 793rd base of the nagE structural gene
  • C the nagR gene was deleted from the start codon to the stop codon
  • the start of the bktB gene A DNA consisting of a base sequence including a promoter and a ribosome binding sequence of the A. caviae phaC gene is inserted immediately before the codon, and a DNA consisting of a base sequence including a trc promoter and a ribosome binding sequence is inserted immediately before the start codon of the phaJ4b gene.
  • chromosome substitution strain KNK144S strain was prepared as follows.
  • KNK144S strain was prepared by performing conjugation transfer, selection on Simmons agar medium, and selection on Nutrient Agar medium containing 15% sucrose.
  • the KNK144S strain is a C.I.
  • the starter to stop codons of the phaZ6 gene and phaZ1 gene on the chromosome of necator H16 strain are deleted, and further, the 16th to the stop codons of phaZ2 gene are deleted.
  • a gene encoding a PHA synthase having an amino acid sequence was introduced, G, which is the 793rd base of the nagE structural gene, was replaced with C, the nagR gene was deleted from the start codon to the stop codon, and the start of the bktB gene
  • a DNA comprising a base sequence containing a promoter and a ribosome binding sequence of the phaC gene of A.
  • caviae is inserted immediately before the codon, and a DNA comprising a base sequence containing the trc promoter and the ribosome binding sequence is inserted immediately before the start codon of the phaJ4b gene, Furthermore, phaA structure remains A strain of restriction enzyme NheI cleavage site and the stop codon is produced in the children array.
  • the plasmid vector pCUP2-lacUV5-cscAB described in Production Example 2 was introduced into the KNK144S strain in the same manner as in Production Example 2 to obtain a transformant pCUP2-lacUV5-cscAB in KNK144S strain.
  • PCR was performed using the primers shown by SEQ ID NO: 29 and SEQ ID NO: 30 using the chromosomal DNA of necator H16 strain as a template. PCR was performed under the same reaction conditions as described above, and KOD-plus- (manufactured by Toyobo Co., Ltd.) was used as the polymerase. Similarly, PCR was performed using the primers represented by SEQ ID NO: 31 and SEQ ID NO: 32. Furthermore, PCR was performed under the same conditions using the two DNA fragments obtained by the above PCR as templates and using the primers shown in SEQ ID NOs: 29 and 32, and the obtained DNA fragments were digested with the restriction enzyme SwaI.
  • This DNA fragment was ligated with the vector pNS2X-sacB described in JP-A-2007-259708 digested with SwaI with DNA ligase (Ligation High (manufactured by Toyobo)), and the nucleotide sequence upstream and downstream from the phaZ2 structural gene.
  • a plasmid vector pNS2X-sacB + phaZ2MunISpeI having
  • plasmid into which the base sequence represented by SEQ ID NO: 33, including the ribosome binding sequence, ccr and emd, was introduced by artificial gene synthesis was obtained.
  • This plasmid was digested with restriction enzymes MunI and SpeI, and the resulting DNA fragment containing the ribosome binding sequence, ccr and emd genes was ligated with plasmid vector pNS2X-sacB + Z2UDMunISpeI digested with MunI and SpeI, and plasmid vector pNS2X- sacB + Z2U-ccr-emd-Z2D was obtained.
  • PCR was performed under the same conditions using the plasmid pKK388-1 (manufactured by CLONTECH) as a template and the primers represented by SEQ ID NO: 34 and SEQ ID NO: 35.
  • the DNA fragment containing trc promoter sequence obtained by PCR was digested with MunI. This DNA fragment was ligated with the plasmid vector pNS2X-sacB + Z2U-ccr-emd-Z2D cut with MunI.
  • a DNA fragment containing a trc promoter sequence inserted in the direction where ccr and emd are located downstream of the trc promoter is selected by PCR, and the promoter, ribosome binding sequence and gene insertion plasmid are selected.
  • the vector pNS2X-sacB + Z2U-trc-ccr-emd-Z2D was obtained.
  • the KNK144S strain is used as a parent strain, and the promoter and ribosome binding sequence insertion strain described in Production Example 6 is prepared.
  • conjugation transfer, selection on Simmons agar medium, and selection on Nutrient Agar medium containing 15% sucrose were performed to produce the KNK143S strain.
  • the KNK143S strain is a C.I.
  • the starter to stop codons of the phaZ6 gene and phaZ1 gene on the chromosome of necator H16 strain are deleted, and further, the 16th to the stop codons of phaZ2 gene are deleted.
  • a gene encoding a PHA synthase having an amino acid sequence was introduced, G, which is the 793rd base of the nagE structural gene, was replaced with C, the nagR gene was deleted from the start codon to the stop codon, and the start of the bktB gene
  • a DNA comprising a base sequence containing a promoter and a ribosome binding sequence of the phaC gene of A.
  • caviae is inserted immediately before the codon, and a DNA comprising a base sequence containing the trc promoter and the ribosome binding sequence is inserted immediately before the start codon of the phaJ4b gene, phaA structural gene distribution Restriction enzyme NheI cleavage site and the stop codon is produced in a further trc promoter at a position where there is phaZ2 gene originally strains ribosome binding sequence, ccr gene and emd gene inserted.
  • the plasmid vector pCUP2-lacUV5-cscAB described in Production Example 2 was introduced into the KNK143S strain by the method described in Production Example 2 to obtain a transformant pCUP2-lacUV5-cscAB in KNK143S strain.
  • PCR was performed under the same conditions as in Production Example 1, using the chromosomal DNA of KNK005 ⁇ phaZ1,2,6 as a template and using the primers represented by SEQ ID NO: 36 and SEQ ID NO: 37. Similarly, PCR was performed under the same conditions using the primers represented by SEQ ID NO: 38 and SEQ ID NO: 39. PCR was carried out under the same conditions using the two types of DNA fragments obtained by the above PCR as templates and using the primers represented by SEQ ID NO: 36 and SEQ ID NO: 39, and the resulting DNA fragments were digested with the restriction enzyme SwaI.
  • This DNA fragment was ligated with a vector pNS2X-sacB described in JP 2007-259708 A digested with SwaI with DNA ligase (Ligation High (manufactured by Toyobo)), and a base sequence upstream from the phaA structural gene, and A gene disruption plasmid vector pNS2X-sacB + phaAB1UD having a base sequence downstream from the structural gene for phaB1 (acetoacetyl CoA reductase) was prepared.
  • the KNK140S strain is a C.I.
  • the starter to stop codons of the phaZ6 gene and phaZ1 gene on the chromosome of necator H16 strain are deleted, and further, the 16th to the stop codons of phaZ2 gene are deleted.
  • a gene encoding a PHA synthase having an amino acid sequence was introduced, G, which is the 793rd base of the nagE structural gene, was replaced with C, the nagR gene was deleted from the start codon to the stop codon, and the start of the bktB gene
  • G which is the 793rd base of the nagE structural gene
  • the nagR gene was deleted from the start codon to the stop codon
  • the start of the bktB gene A DNA comprising a base sequence containing a promoter and a ribosome binding sequence of the phaC gene of A. caviae is inserted immediately before the codon, and a DNA comprising a base sequence containing the trc promoter and the ribosome binding sequence is inserted immediately before the start codon of the phaJ4b gene, Furthermore, phaA gene It is deleted strain to the stop codon of phaB1 gene from the start codon.
  • the plasmid vector pCUP2-lacUV5-cscAB described in Production Example 2 was introduced into the KNK140S strain by the method described in Production Example 2 to obtain a transformant pCUP2-lacUV5-cscAB in KNK140S strain.
  • a gene encoding a PHA synthase having an amino acid sequence was introduced, G, which is the 793rd base of the nagE structural gene, was replaced with C, the nagR gene was deleted from the start codon to the stop codon, and the start of the bktB gene
  • caviae is inserted immediately before the codon, and a DNA consisting of a base sequence including the trc promoter and the ribosome binding sequence is inserted immediately before the start codon of the phaJ4b gene, Originally phaZ2 gene trc promoter was position, ribosome binding sequences, is inserted ccr gene and emd gene, a further strain from the initiation codon to termination codon of phaB1 gene deleted of phaA gene.
  • the plasmid vector pCUP2-lacUV5-cscAB described in Production Example 2 was introduced into the KNK142S strain by the method described in Production Example 2 to obtain a transformant pCUP2-lacUV5-cscAB in KNK142S strain.
  • the composition of the production medium used for the sucrose utilization test and PHA production was 1.1 w / v% Na 2 HPO 4 ⁇ 12H 2 O, 0.19 w / v% KH 2 PO 4 , 0.13 w / v% (NH 4) 2 SO 4, 0.1w / v% MgSO 4 ⁇ 7H 2 O, 0.1v / v% trace metal salt solution (1.6 w in 0.1N HCl / v% FeCl 3 ⁇ 6H 2 O, 1w / v% CaCl 2 ⁇ 2H 2 O , dissolved 0.02w / v% CoCl 2 ⁇ 6H 2 O, 0.016w / v% CuSO 4 ⁇ 5H 2 O, the 0.012w / v% NiCl 2 ⁇ 6H 2 O Stuff.)
  • As the carbon source a 40 w / v% aqueous sucrose solution was used as a single carbon source, and was added to the medium so as to be
  • KNK005 ⁇ phaZ1,2,6 strain (see International Publication No. 2014/065253), KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR strain prepared in Production Example 1, pCUP2-lacUV5-cscA in KNK005, phaZ1,2 produced in Production Example 4 6 strains and each glycerol stock (50 ⁇ L) of pCUP2-lacUV5-cscB in KNK005 ⁇ phaZ1,2,6 strain prepared in Production Example 5 was inoculated into seed mother medium (5 mL), respectively, and cultured with shaking at 30 ° C. for 24 hours. The obtained culture broth was used as a seed mother.
  • sucrose utilization test and PHA production culture 1.0 v / v% of the seed mother was inoculated into a Sakaguchi flask containing 200 mL of production medium, and shake culture was performed at a culture temperature of 30 ° C.
  • the culture solution was sampled over time, and the growth of microbial cells (OD 600 ) and various sugar concentrations (sucrose, glucose, fructose) in the medium were measured.
  • the sugar concentration was measured using F-kit sucrose / D-glucose / fructose (JK International). The results are shown in FIGS.
  • the cells were collected by centrifugation, washed with methanol, freeze-dried, and the dry cell weight was measured.
  • the PHA production volume was calculated as follows. 100 mL of chloroform was added per 1 g of the obtained dried cells, and the mixture was stirred overnight at room temperature to extract PHA in the cells. The bacterial cell residue was filtered off, concentrated with an evaporator until the total volume became 1/3, hexane of 3 times the amount of the concentrated liquid was gradually added, and the mixture was allowed to stand for 1 hour with slow stirring. The precipitated PHA was filtered off and dried in vacuo at 50 ° C. for 3 hours. The weight of dry PHA was measured and the PHA production amount was calculated. The results are shown in Table 1.
  • the 3HH composition ratio of the produced PHA was measured by gas chromatography as follows. To 20 mg of dry PHA, 2 ml of sulfuric acid-methanol mixture (15:85) and 2 ml of chloroform were added and sealed, and heated at 100 ° C. for 140 minutes to obtain the methyl ester of the PHA decomposition product. After cooling, 1.5 g of sodium bicarbonate was added little by little to neutralize it, and the mixture was allowed to stand until the generation of carbon dioxide gas stopped. After 4 ml of diisopropyl ether was added and mixed well, the mixture was centrifuged, and the monomer unit composition of the PHA degradation product in the supernatant was analyzed by capillary gas chromatography.
  • the gas chromatograph used was Shimadzu Corporation GC-17A, and the capillary column used was GL Science NEUTRA BOND-1 (column length 25 m, column inner diameter 0.25 mm, liquid film thickness 0.4 ⁇ m). He was used as the carrier gas, the column inlet pressure was set to 100 kPa, and 1 ⁇ l of the sample was injected. As temperature conditions, the temperature was raised from the initial temperature of 100 to 200 ° C. at a rate of 8 ° C./min, and further from 200 to 290 ° C. at the rate of 30 ° C./min. As a result of analysis under the above conditions, the composition ratio of 3HH of the obtained PHA is shown in Table 1.
  • the KNK005 ⁇ phaZ1,2,6 strain, the KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR strain and the pCUP2-lacUV5-cscB in KNK005 ⁇ phaZ1,2,6 strains of Comparative Examples 1, 2, and 4 can grow using sucrose as a carbon source. There wasn't.
  • the pCUP2-lacUV5-cscA in KNK005 ⁇ phaZ1,2,6 strain of Comparative Example 3 grew slightly with sucrose as a carbon source, but the growth rate was very slow.
  • the PHA produced by the pCUP2-lacUV5-cscA in KNK005 ⁇ phaZ1,2,6 strain of Comparative Example 3 did not contain a 3HH monomer unit and was a PHB that is a 3HB homopolymer.
  • Example 1 Sucrose utilization, PHA productivity and its 3HH composition ratio in pCUP2-lacUV5-cscAB in KNK005 ⁇ phaZ1,2,6
  • the composition of the seed medium was the same as that described in Comparative Examples 1 to 4 .
  • kanamycin was added to the seed mother medium so as to have a final concentration of 100 ⁇ g / ml.
  • composition and carbon source of the production medium used for the sucrose utilization test and PHA production were the same as those described in Comparative Examples 1 to 4.
  • the pCUP2-lacUV5-cscAB in KNK005 ⁇ phaZ1,2,6 strain prepared in Production Example 2 was cultured in the same manner as in Comparative Examples 1 to 4, the culture solution was sampled over time, and cell growth (OD 600 ) and Various sugar concentrations (sucrose, glucose, fructose) in the medium were measured. The sugar concentration was measured in the same manner as in Comparative Examples 1 to 4. The results are shown in FIG.
  • the cells were collected by centrifugation, washed with methanol, freeze-dried, and the dry cell weight was measured.
  • the PHA production amount and 3HH composition ratio were calculated in the same manner as in Comparative Examples 1 to 4. The obtained PHA production amount and 3HH composition ratio are shown in Table 1.
  • PCUP2-lacUV5-cscAB in KNK005 ⁇ phaZ1,2,6 strains grew well using sucrose as a carbon source and produced PHA.
  • the PHA produced was PHB, a homopolymer.
  • Example 2 pCUP2-lacUV5-cscAB in KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR strain in sucrose, glucose, fructose utilization, PHA productivity and its 3HH composition ratio
  • the composition of the seed medium is Comparative Examples 1-4 It was the same as that of description.
  • kanamycin was added to the seed mother medium so as to have a final concentration of 100 ⁇ g / ml.
  • composition of the production medium used for the sucrose utilization test and PHA production was the same as that described in Comparative Examples 1 to 4.
  • the carbon source a 40 w / v% aqueous sucrose solution was used as a single carbon source, and was added to the medium so as to be 1.5 w / v%.
  • the pCUP2-lacUV5-cscAB in KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR strain prepared in Production Example 3 was cultured in the same manner as in Comparative Examples 1 to 4, and the culture solution was sampled over time, and cell growth ( OD 600) and various sugar concentrations (sucrose in the medium, glucose, fructose) were measured. The sugar concentration was measured in the same manner as in Comparative Examples 1 to 4. The results are shown in FIG.
  • the cells were collected by centrifugation, washed with methanol, freeze-dried, and the dry cell weight was measured.
  • the 3HH composition ratio of the produced PHA was calculated by the same method as in Comparative Examples 1 to 4.
  • Table 1 shows the 3HH composition ratio of the obtained PHA.
  • the pCUP2-lacUV5-cscAB in KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR strain showed particularly excellent growth ability and PHA productivity using sucrose as a carbon source.
  • the growth rate when sucrose is used as the carbon source is higher than that when glucose is used as the carbon source. This was equivalent to the case where the necator H16 strain was originally made of fructose, which can be capitalized, as a carbon source.
  • the PHA produced by pCUP2-lacUV5-cscAB in KNK005 ⁇ phaZ1,2,6 / nagEG793C, dR strain was PHB, which is a 3HB homopolymer.
  • Example 3 to 6 pCUP2-lacUV5-cscAB in KNK144S strain, pCUP2-lacUV5-cscAB in KNK143S strain, pCUP2-lacUV5-cscAB in KNK140S strain and pCUP2-lacUV5-cscAB in KNK142S Ratio
  • the composition of the seed medium was the same as that described in Comparative Examples 1 to 4.
  • kanamycin was added to the seed mother medium so as to have a final concentration of 100 ⁇ g / ml.
  • composition of the production medium and the carbon source used for PHA production were the same as those described in Comparative Examples 1 to 4.
  • PCUP2-lacUV5-cscAB in KNK144S strain pCUP2-lacUV5-cscAB in KNK143S strain
  • pCUP2-lacUV5-cscAB in KNK140S strain pCUP2-lacUV5-cscAB strain 4 in KNK142S strain in Comparative Examples 6-9
  • the cells were cultured in the same manner as above, and after culturing for 72 hours, the cells were collected by centrifugation, washed with methanol, freeze-dried, and the dry cell weight was measured.
  • the PHA produced by the pCUP2-lacUV5-cscAB in KNK144S strain of Example 3 and the pCUP2-lacUV5-cscAB in KNK140S strain of Example 5 is a PHBH slightly containing 3HH monomer, and the pCUP2-lacUV5- of Example 4 is used.
  • the PHA produced by cscAB in KNK143S strain was PHBH with a 3HH composition ratio of 2.3%.
  • the PHA produced by the pCUP2-lacUV5-cscAB in KNK142S strain of Example 6 was a very high PHBH with a 3HH composition ratio of 26.7%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Polymers & Plastics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本発明は、スクロースを資化することのできるPHA生産微生物、およびスクロースを炭素源として該微生物を培養することによるPHAの製造方法を提供することを課題とする。PHA合成酵素遺伝子と、下記(1)及び(2)の異種生物由来遺伝子とを有するPHA生産微生物。(1)配列番号1に記載のアミノ酸配列をコードするスクロース加水分解酵素遺伝子、又は該アミノ酸配列に対して90%以上の配列同一性を有し、スクロース加水分解酵素活性を有するポリペプチドをコードする遺伝子。(2)配列番号2に記載のアミノ酸配列をコードするスクロース透過酵素遺伝子、又は該アミノ酸配列に対して90%以上の配列同一性を有し、スクロース透過酵素活性を有するポリペプチドをコードする遺伝子。また、該微生物を、スクロースを炭素源として含む培地で培養する工程を含む、PHAの製造方法。

Description

スクロース資化性を有するPHA生産微生物、及び該微生物を用いたPHAの製造方法
 本発明は、スクロース資化性を有するPHA生産微生物と、該微生物を用いたPHAの製造方法に関する。
 ポリヒドロキシアルカン酸(以下、PHAと記すこともある)は、広範な微生物によって生成されるポリエステル型有機ポリマーである。PHAは生分解性を有する熱可塑性高分子であり、再生可能資源を原料として産生することができる。これらのことから、PHAを環境調和型素材または生体適合型素材として工業的に生産し、多様な産業へ利用する試みが行われている。
 このPHAを構成するモノマー単位の一般名は、ヒドロキシアルカン酸である。ヒドロキシアルカン酸には、具体的には3-ヒドロキシ酪酸(以下、3HBと記すこともある)、3-ヒドロキシ吉草酸(以下、3HVと記すこともある)、3-ヒドロキシヘキサン酸(以下、3HHと記すこともある)、3-ヒドロキシオクタン酸、よりアルキル鎖の長い3-ヒドロキシアルカン酸や、4-ヒドロキシ酪酸などが例示され、これらが単独重合または共重合することにより、ポリマー分子であるPHAが形成される。
 PHAの具体例として、3HBのホモポリマーであるポリ-3-ヒドロキシ酪酸(以下、P(3HB)と記すこともある)が挙げられる。また、3HBと3HVの共重合体であるP(3HB-co-3HV)、3HBと3HHの共重合体であるP(3HB-co-3HH)(以下、PHBHと記すこともある)や、3HBと4HBの共重合体であるP(3HB-co-4HB)なども挙げられる。この中でも特にPHBHは、3HH組成比を変えることで、硬質ポリマーから軟質ポリマーまで応用可能な幅広い物性を持たせることができる。そのため、PHBHは、低3HH組成比のPHBHを用いたテレビの筐体等のように硬さを要求されるものから、高3HH組成比のPHBHを用いたフィルム等のように柔軟性を要求されるものまで、幅広い分野への応用が期待できる。
 PHAのようなバルクケミカルの発酵生産において、生産コストにおける炭素源コストの占める割合は大きい。したがって、安価な炭素源を効率よく発酵に用いることが重要となる。
 微生物発酵による化学物質生産では、グルコースを主炭素源として行われる場合が多くみられるが、グルコースは比較的高価格の炭素源である。従って、グルコースを主炭素源とすると、原油を主原料物質とした化学合成法による生産価格よりも高価となる場合があり、価格競争力の面で商業化には困難がある。
 一方で、グルコースよりも安価な糖原料としてスクロースが知られている。スクロースは、グルコースとフルクトースで形成された二糖類の一つであり、光合成能を有する全ての植物から生産され、自然界に非常に豊富に存在する炭素源である。さらにスクロースは廃糖蜜の主成分であり、廃糖蜜は食料と競合しない再生可能資源という点でも魅力的な炭素源である。
 特許文献1によれば、微生物がスクロースを資化するメカニズムは、スクロースPTS(Phosphoenolpyruvate: Carbohydrate Phosphotransferase System)とスクロース非PTSの2つに大別される。スクロース非PTSを経由する場合、微生物はスクロースをそのままの形で取り込み、その後にグルコースとフルクトースに分解する。一方、スクロースPTSを経由する場合では、微生物はスクロースを取り込む際にスクロースをリン酸化し、スクロース-6-リン酸へと変換する。そして微生物細胞内部でグルコース-6-リン酸とフルクトースに分解する。あるいは、微生物細胞外でスクロースが分解され、生じたグルコースとフルクトースが資化される場合もある。
 しかしながら、すべての微生物がスクロースを資化できるわけではない。例えば、PHA生産微生物として知られるカプリアビダス・ネカトールH16株は、フルクトースは資化できるがグルコースとスクロースは資化することができない。
 これまでにスクロース非資化性の微生物に対して、遺伝子工学的手法によりスクロース資化性を付加するいくつかの研究が行われている。例えば、非特許文献1では、元来スクロース非資化性であるエシェリキア・コリK-12株に対して、エシェリキア・コリW株に由来するスクロース資化関連遺伝子(スクロース透過酵素遺伝子およびスクロース加水分解酵素遺伝子)を導入することによって、スクロース資化が可能となったことが示されている。この場合、遺伝子の由来生物と導入する宿主が同種の生物であるため、遺伝子組み換えによって導入された遺伝子がうまく機能する蓋然性は高いと考えられる。また、特許文献2では、スクロースPTS遺伝子群を導入することでスクロース非資化性のエシェリキア属細菌にスクロース資化性を付与した例が開示されている。さらに、特許文献1では、スクロースホスホトランスフェラーゼ遺伝子およびスクロース加水分解酵素遺伝子を導入することでスクロース資化性を付与した例が開示されている。
特表2011-505869号公報 特開2001-346578号公報
Appl. Environ .Microbiol. ,vol.79,478(2013)
 本発明は、スクロースを資化することができるPHA生産微生物、及び、スクロースを炭素源として該微生物を培養することによるPHAの製造方法を提供することを目的とする。
 本発明者らは上記課題を解決するために鋭意研究を重ねた結果、PHAを産生する能力を有する微生物に、スクロース加水分解酵素(CscA)をコードする異種生物由来遺伝子とスクロース透過酵素(CscB)をコードする異種生物由来遺伝子の両方を導入することによって、当該微生物にスクロース分解能力及び細胞内へのスクロース取り込み能力が付加され、スクロースを炭素源としたPHA生産が可能となることを見出し、本発明を完成するに至った。
 すなわち、本発明は、PHA合成酵素遺伝子と、下記(1)及び(2)の異種生物由来遺伝子とを有するPHA生産微生物に関する。
(1)配列番号1に記載のアミノ酸配列をコードするスクロース加水分解酵素遺伝子、又は該アミノ酸配列に対して90%以上の配列同一性を有し、スクロース加水分解酵素活性を有するポリペプチドをコードする遺伝子
(2)配列番号2に記載のアミノ酸配列をコードするスクロース透過酵素遺伝子、又は該アミノ酸配列に対して90%以上の配列同一性を有し、スクロース透過酵素活性を有するポリペプチドをコードする遺伝子
 好ましくは、前記微生物が、カプリアビダス属に属する微生物を宿主とする形質転換体であり、より好ましくは、前記カプリアビダス属に属する微生物が、カプリアビダス・ネカトールである。好ましくは、前記微生物はグルコース資化性が付与又は強化されている。好ましくは、前記PHA合成酵素遺伝子が、P(3HB-co-3HH)を合成可能なPHA合成酵素遺伝子である。好ましくは、前記微生物は、さらにクロトニル-CoA還元酵素遺伝子およびエチルマロニル-CoA脱炭酸酵素遺伝子を有する。好ましくは、前記微生物は、アセトアセチルCoA還元酵素遺伝子が欠失した、またはその発現量が抑制されている。
 また、本発明は、前記微生物を、スクロースを炭素源として含む培地で培養する工程を含む、PHAの製造方法に関し、好ましくはPHAがP(3HB-co-3HH)である前記製造方法に関する。
 本発明により、スクロースを資化することができるPHA生産微生物を提供することができる。また、炭素源としてスクロースを用いて該微生物を培養することでPHAを発酵生産することが可能となる。
比較例1に関し、KNK005ΔphaZ1,2,6株のスクロース含有培地における増殖および培地中の糖濃度変化を示すグラフである(●を含む実線:OD600;△を含む実線:スクロース濃度;■を含む実線:グルコース濃度;×を含む実線:フルクトース濃度) 比較例2に関し、KNK005ΔphaZ1,2,6/nagEG793C,dR株のスクロース含有培地における増殖および培地中の糖濃度変化を示すグラフである(●を含む実線:OD600;△を含む実線:スクロース濃度;■を含む実線:グルコース濃度;×を含む実線:フルクトース濃度) 比較例3に関し、pCUP2-lacUV5-cscA in KNK005ΔphaZ1,2,6株のスクロース含有培地における増殖および培地中の糖濃度変化を示すグラフである(●を含む実線:OD600;△を含む実線:スクロース濃度;■を含む実線:グルコース濃度;×を含む実線:フルクトース濃度) 比較例4に関し、pCUP2-lacUV5-cscB in KNK005ΔphaZ1,2,6株のスクロース含有培地における増殖および培地中の糖濃度変化を示すグラフである(●を含む実線:OD600;△を含む実線:スクロース濃度;■を含む実線:グルコース濃度;×を含む実線:フルクトース濃度) 実施例1に関し、pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6株のスクロース含有培地における増殖および培地中の糖濃度変化を示すグラフである(●を含む実線:OD600;△を含む実線:スクロース濃度;■を含む実線:グルコース濃度;×を含む実線:フルクトース濃度) 実施例2に関し、pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6/nagEG793C,dR株のスクロース含有培地における増殖および培地中の糖濃度変化を示すグラフである(●を含む実線:OD600;△を含む実線:スクロース濃度;■を含む実線:グルコース濃度;×を含む実線:フルクトース濃度) 実施例2に関し、pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6/nagEG793C,dR株のスクロース含有培地、グルコース含有培地、又はフルクトース含有培地における増殖および乾燥菌体重量、PHA生産量の変化を示すグラフである。(△を含む実線:スクロース含有培地における変化;■を含む実線:グルコース含有培地における変化;×を含む実線:フルクトース含有培地における変化)
 以下、本発明につき、さらに詳細に説明する。
 (1)スクロース資化性が付与または強化されたPHA生産微生物
 本発明では、PHA合成酵素遺伝子を有する微生物に対し、異種生物由来のスクロース加水分解酵素遺伝子と異種生物由来のスクロース透過酵素遺伝子の両方を導入することによって、スクロース資化性が付与または強化され、スクロースを炭素源としてPHAを生産する微生物を提供する。
 本明細書で使用する「スクロース加水分解酵素遺伝子」は、スクロースを加水分解し、グルコースとフルクトースを生じさせる酵素であるスクロース加水分解酵素(CscA)をコードする遺伝子である。また、本明細書で使用する「スクロース透過酵素遺伝子」は、スクロースを細胞内に取り込む働きを持つスクロース透過酵素(CscB)をコードする遺伝子である。
 本発明において、スクロース加水分解酵素遺伝子とスクロース透過酵素遺伝子が導入される元株(宿主)となる微生物は、PHA合成酵素遺伝子を有し、PHAを生産できる微生物である限り特に限定されないが、本来はスクロース資化性を持たない、又はスクロース資化性の低いPHA生産微生物が好ましい。このようなPHA生産微生物としては、PHA合成酵素遺伝子を本来的に有する野生株だけではなく、そのような野生株を人工的に突然変異処理して得られる変異株や、PHA合成酵素遺伝子を本来的に有しない微生物に対して遺伝子工学的手法により外来のPHA合成酵素遺伝子が導入された組み換え菌株であってもよい。
 そのような微生物として、具体的には、細菌、酵母、糸状菌などが例示され、好ましくは、細菌である。当該細菌としては、例えば、ラルストニア(Ralstonia)属、カプリアビダス(Cupriavidus)属、ワウテルシア(Wautersia)属、アエロモナス(Aeromonas)属、エシェリキア(Escherichia)属、アルカリゲネス(Alcaligenes)属、シュードモナス(Pseudomonas)属等に属する細菌類が好ましい例として挙げられる。安全性及び生産性の観点から、より好ましくはラルストニア属、カプリアビダス属、アエロモナス属、ワウテルシア属に属する細菌であり、さらに好ましくはカプリアビダス属又はアエロモナス属に属する細菌であり、さらにより好ましくはカプリアビダス属に属する微生物であり、特に好ましくはカプリアビダス・ネカトール(Cupriavidus necator)である。
 PHA合成酵素遺伝子を有する微生物が、遺伝子工学的手法により外来のPHA合成酵素遺伝子が導入された組み換え菌株である場合、前記外来のPHA合成酵素遺伝子としては、例えば、カプリアビダス・ネカトールH16株(C.necator H16株)が保有する配列番号3に記載するアミノ酸配列をコードするPHA合成酵素遺伝子、又は、該アミノ酸配列に対して85%以上の配列同一性を有し、且つ、PHA合成活性を有するポリペプチドをコードするPHA合成酵素遺伝子や、アエロモナス・キャビエ(Aeromonas caviae)が保有するPHA合成酵素遺伝子、又は、該アミノ酸配列に対して85%以上の配列同一性を有し、且つ、PHA合成活性を有するポリペプチドをコードするPHA合成酵素遺伝子などが挙げられるがこれらに限定されず、その他のPHA合成酵素遺伝子も好適に利用出来る。なお、上記配列同一性は好ましくは90%以上であり、より好ましくは95%以上、特に好ましくは99%以上である。これらの中でも、PHAとしてPHBHを合成可能なPHA合成酵素遺伝子が好ましく、例えば配列番号4に記載するアミノ酸配列を有するPHA合成酵素をコードするPHA合成酵素遺伝子がより好ましい。
 本発明においてスクロース加水分解酵素遺伝子とスクロース透過酵素遺伝子を導入される元株となる微生物としては、PHBHを合成可能なPHA合成酵素遺伝子を有する微生物が好ましく、その具体例としては、カプリアビダス・ネカトールに、アエロモナス・キャビエ由来のPHA合成酵素遺伝子が導入された形質転換体が最も好適である。
 本発明では、上記微生物に、当該微生物とは異種の生物に由来するスクロース加水分解酵素遺伝子とスクロース透過酵素遺伝子を導入する。ここで、スクロース加水分解酵素遺伝子としては、エシェリキア・コリ由来の配列番号1で示されるアミノ酸配列をコードする遺伝子、又は該アミノ酸配列に対して90%以上の配列同一性を有し、且つスクロース加水分解酵素活性を有するポリペプチドをコードする遺伝子であれば特に限定されないが、一例として、配列番号5に記載の塩基配列を有する遺伝子が挙げられる。スクロース透過酵素遺伝子については、エシェリキア・コリ由来の配列番号2で示されるアミノ酸配列をコードする遺伝子、又は該アミノ酸配列に対して90%以上の配列同一性を有し、且つスクロース透過酵素活性を有するポリペプチドをコードする遺伝子であれば特に限定されないが、一例として、配列番号6に記載の塩基配列を有する遺伝子が挙げられる。なお、上記配列相同性としては好ましくは95%以上であり、より好ましくは97%以上、特に好ましくは99%以上である。
 本発明のPHA生産微生物において、PHA合成酵素遺伝子や、スクロース加水分解酵素遺伝子及びスクロース透過酵素遺伝子は、宿主となる微生物が保有する染色体、プラスミド、メガプラスミドなどのDNA上に存在しても良いし、プラスミドベクター上や人工染色体上など人為的に微生物内に組み込まれたDNA上に存在しても良い。しかし、導入されたDNAの保持という観点から、微生物が保有する染色体あるいはメガプラスミド上に存在するのが好ましく、微生物が保有する染色体上に存在するのがより好ましい。
 微生物が保有するDNA上に任意のDNAを部位特異的に置換又は挿入する方法は当業者に周知であり、本発明の微生物を製造する際に使用できる。特に限定されないが、代表的な方法としては、トランスポゾンと相同組換えの機構を利用した方法(Ohman等, J.Bacteriol., vol.162:p1068(1985))、相同組換えの機構によって起こる部位特異的な組み込みと第二段階の相同組換えによる脱落を原理とした方法(Noti等, Methods Enzymol., vol.154, p197(1987))、Bacillus subtilis由来のsacB遺伝子を共存させて、第二段階の相同組換えによって遺伝子が脱落した微生物株をシュークロース添加培地耐性株として容易に単離する方法(Schweizer, Mol.Microbiol., vol.6, p1195 (1992)、 Lenz等, J.Bacteriol., vol.176, p4385(1994))等が挙げられる。また、細胞へのベクターの導入方法としても特に限定されないが、例えば、塩化カルシウム法、エレクトロポレーション法、ポリエチレングリコール法、スフェロプラスト法等が挙げられる。
 なお、遺伝子クローニングや遺伝子組み換え技術については、Sambrook, J.et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory Press(1989又は2001)などに記載される技術を利用することができる。
 上記スクロース加水分解酵素遺伝子、及びスクロース透過酵素遺伝子を発現させるためのプロモーターは特に限定されない。例えば、カプリアビダス・ネカトールのphaC1遺伝子のプロモーター、phaP1遺伝子のプロモーター、大腸菌に由来するlacプロモーター、lacUV5プロモーター、trcプロモーター、ticプロモーター、tacプロモーターなどが使用可能である。また、各遺伝子に対し同じプロモーターを使用してもよく、異なるプロモーターを使用してもよい。特に、配列番号7に示されるlacUV5プロモーターを両遺伝子に対し使用するのが好ましい。
 上記によりスクロース資化性が付与または強化された微生物のグルコース資化性が低い、または資化性を持たない場合、遺伝子変異や破壊、遺伝子発現の強化、外来遺伝子の導入などの方法によって、前記微生物にグルコース資化性を付与または強化することが好ましい。これによって、前記微生物のスクロース資化性をさらに強化し、スクロースを炭素源として用いた場合にPHA生産量を向上させることができる。例えば、C.necator H16株はグルコース取り込み系の遺伝子を持たないため、グルコースを資化することができない。C.necator H16株にグルコース資化性を付与する方法は特に限定されないが、一例として、N-アセチルグルコサミンの取り込み遺伝子であるnagEの793番目の塩基であるGをCに置換し、さらに転写制御因子をコードする遺伝子であるnagRを破壊することで、グルコース資化性を付与する方法(Journal of Bioscience and Bioengineering,vol.113,63(2012))が挙げられる。また、グルコーストランスポーターをコードする外来遺伝子を導入することで、グルコース資化性を付与する方法(特開2009-225662号公報)も挙げられる。さらに、グルコースリン酸化酵素遺伝子を導入する方法が有効な場合もある。
 従来の研究から、3HHモノマーを取り込み可能なPHA合成酵素遺伝子を導入したカプリアビダス・ネカトールに、クロトニル-CoA還元酵素遺伝子(ccr)およびエチルマロニル-CoA脱炭酸酵素遺伝子(emd)を導入することで、あるいは(R)-特異的エノイル-CoAヒドラターゼをコードする遺伝子(phaJ)をさらに導入することで、フルクトースを炭素源としてPHBHを生産できることが知られている(metabolic engineering,vol.27,38(2015))。本発明のPHA生産微生物において、前記スクロース加水分解酵素遺伝子及びスクロース透過酵素遺伝子に加えて、ccr及び/又はemdが導入されていても良い。ccr及び/又はemdの導入により、糖質を炭素源とする場合において、炭素数6の(R)-3-ヒドロキシアシル-CoAの合成経路が強化又は効率化され、生産されるPHBHにおける3HH組成比率を向上させることができる。
 本発明において使用されるクロトニル-CoA還元酵素とは、脂肪酸β-酸化経路の中間体である炭素数4のクロトニル-CoAを還元し、ブチリル-CoAを生成する酵素である。ブチリル-CoAがβ-ケトチオラーゼ(BktB)の作用によりもう1分子のアセチル-CoAと縮合し、さらに変換されることにより、炭素数6の(R)-3HHx-CoAが供給され、これが、広基質特異性を示すポリエステル重合酵素により(R)-3HB-CoAと共重合される。本発明において使用され得るccrは、翻訳後の該還元酵素が上記のクロトニル-CoA還元酵素活性を有する限り特に限定されないが、例えば、放線菌S.cinnamonensis由来のクロトニル-CoA還元酵素をコードする遺伝子(GenBank Accession No.AF178673)や、メタノール資化性菌M.extorquens由来のクロトニル-CoA還元酵素をコードする遺伝子(NCBI-GeneID:7990208)等が挙げられる。好ましくは配列番号40に記載のアミノ酸配列を有するクロトニル-CoA還元酵素をコードする遺伝子、又は該アミノ酸配列に対して90%以上の配列同一性を有し、且つクロトニル-CoA還元酵素活性を示すポリペプチドをコードする遺伝子である。
 本発明に使用されるエチルマロニル-CoA脱炭酸酵素とは、クロトニル-CoA還元酵素やプロピオニル-CoAカルボキシラーゼなどによる副反応で生じたエチルマロニル-CoAのブチリル-CoAへの脱炭酸反応を触媒する酵素を意味する。この活性を有する限りにおいては、エチルマロニル-CoA脱炭酸酵素の由来は特に限定されないが、例えば配列番号41に記載のアミノ酸配列を有するマウス由来のエチルマロニル-CoA脱炭酸酵素が挙げられる。該アミノ酸配列をコードし、カプリアビダス・ネカトールにおいて使用可能な遺伝子塩基配列としては、例えば、配列番号42に記載の塩基配列が挙げられるが、これに限定されるものではない。
 本発明によるPHBH生産微生物においては、上記ccrおよびemdの導入に加えて、上記(R)-特異的エノイル-CoAヒドラターゼをコードする遺伝子(phaJ)をさらに導入してもよい。これにより、(R)-3HHx-CoAの生合成能力を強化することができる。ここで、本発明に使用される(R)-特異的エノイル-CoAヒドラターゼとは、脂肪酸β-酸化系中間体である2-エノイル-CoAを、PHAモノマーである(R)-3-ヒドロキシアシル-CoAに変換する酵素を意味する。この活性を有する限りにおいては、phaJの由来は特に限定されないが、好ましくは、カプリアビダス・ネカトール又はアエロモナス・キャビエ由来である。本発明に使用されるphaJとして、例えば、カプリアビダス・ネカトール由来のphaJ4a(H16 A1070,NCBI-GeneID:4248689)やphaJ4b(H16 B0397,NCBI-GeneID:4454986)、アエロモナス・キャビエ由来のphaJ(GenBank Accession No.BAA21816)等が挙げられる。
 本発明のPHBH生産微生物においては、上記ccrおよびemdの導入に加えて、アセトアセチル-CoA還元酵素をコードする遺伝子を欠失させるか、その発現を抑制することで、より高い3HH組成比率のPHBHを生産することが可能となる。欠失させるかまたは発現を抑制するアセトアセチル-CoA還元酵素をコードする遺伝子としては、アセトアセチル-CoAを基質として(R)-3HB-CoAを生成する触媒機能を有する酵素をコードする遺伝子であればよい。特に限定されないが、例えば、phaB1やphaB3(NCBI-GeneID:4249784、NCBI-GeneID:4250155)が挙げられる。
 本明細書において欠失とは、遺伝子操作や突然変異によって、対象とする遺伝子の一部又は全部が存在しなくなった、あるいは塩基配列の追加や置換によって終止コドンが出現したりコードするアミノ配列が変化したなどの結果として、該遺伝子によってコードされたタンパク質の活性の一部又は全部が失われることを意図する。遺伝子発現を抑制する方法としては、遺伝子上流のプロモーター領域やリボソーム結合配列における塩基配列の改変などが挙げられるが、これに限定されない。
 本発明のPHA生産微生物において、ccr、emd、及びphaJは、宿主となる微生物が保有する染色体、プラスミド、メガプラスミドなどのDNA上に存在しても良いし、プラスミドベクター上や人工染色体上など人為的に微生物内に組み込まれたDNA上に存在しても良い。しかし、導入されたDNAの保持という観点から、微生物が保有する染色体あるいはメガプラスミド上に存在するのが好ましく、微生物が保有する染色体上に存在するのがより好ましい。また、宿主となる微生物がこれらの遺伝子を元々保有している場合には、元々保有する遺伝子の上流の塩基配列を置換、欠失または付加することなどにより、遺伝子の発現量を増加させてもよい。
 上記ccr、emd、及びphaJを発現させるためのプロモーターは特に限定されない。例えば、カプリアビダス・ネカトールのphaC1遺伝子のプロモーター、phaP1遺伝子のプロモーター、大腸菌に由来するlacプロモーター、lacUV5プロモーター、trcプロモーター、ticプロモーター、tacプロモーターなどが使用可能である。また、各遺伝子に対し同じプロモーターを使用してもよく、異なるプロモーターを使用してもよい。特に、trcプロモーターを各遺伝子に対し使用するのが好ましい。
 (2)PHAの製造方法
 本発明の微生物を、炭素源としてスクロースを含む培地で培養することで、PHAを生産させ、得られたPHAを回収することでPHAを製造することができる。
 本発明によるPHAの生産においては、炭素源、炭素源以外の栄養源である窒素源、無機塩類、そのほかの有機栄養源を含む培地において、前記微生物を培養することが好ましい。
 炭素源としてはスクロースを含有していれば良く、スクロースを含有する炭素源として、スクロースを豊富に含む糖蜜、または廃糖蜜が挙げられる。また、スクロースを含有していれば他の炭素源が含まれていてもよく、スクロースと他の炭素源を併用してもよい。他の炭素源としては、本発明の微生物が資化可能であればどんな炭素源でも使用可能であるが、好ましくは、グルコース、フルクトースなどの糖類、パーム油、パーム核油、コーン油、やし油、オリーブ油、大豆油、菜種油、ヤトロファ油などの油脂やその分画油類、ラウリン酸、オレイン酸、ステアリン酸、パルミチン酸、ミリンスチン酸などの脂肪酸やそれらの誘導体等が挙げられる。
 窒素源としては、例えば、アンモニア;塩化アンモニウム、硫酸アンモニウム、リン酸アンモニウム等のアンモニウム塩;ペプトン、肉エキス、酵母エキス等が挙げられる。無機塩類としては、例えば、リン酸2水素カリウム、リン酸水素2ナトリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム等が挙げられる。そのほかの有機栄養源としては、例えば、グリシン、アラニン、セリン、スレオニン、プロリン等のアミノ酸、ビタミンB1、ビタミンB12、ビタミンC等のビタミン等が挙げられる。
 本発明の微生物を培養する際の、培養温度、培養時間、培養時pH、培地等の条件は、使用する微生物、例えばラルストニア属、カプリアビダス属、ワウテルシア属、アエロモナス属、エシェリキア属、アルカリゲネス属、シュードモナス属等の細菌類の培養で通常使用されるような条件でよい。
 本発明において生産されるPHAの種類としては、微生物が生産することのできるPHAであれば特に限定されないが、好ましくは、炭素数4~16のヒドロキシアルカン酸から選択される1種以上のモノマーを重合して得られるPHAが好ましい。例えば、3HBのホモポリマーであるP(3HB)、3HBと3HVの共重合体P(3HB-co-3HV)、3HBと3HHの共重合体PHBH、3HBと4HBの共重合体P(3HB-co-4HB)などが挙げられるが、これらに限定されない。この中でも、ポリマーとしての応用範囲が広いという観点から、PHBHが好ましい。なお、生産されるPHAの種類は、その目的に応じて、使用する微生物の保有するあるいは別途導入されたPHA合成酵素遺伝子の種類や、その合成に関与する代謝系の遺伝子の種類、培養条件などによって適宜選択しうる。
 本発明において、微生物を培養した後、菌体からのPHAの回収は、特に限定されないが、例えば次のような方法により行うことができる。培養終了後、培養液から遠心分離機等で菌体を分離し、その菌体を蒸留水およびメタノール等により洗浄し、乾燥させる。この乾燥菌体から、クロロホルム等の有機溶剤を用いてPHAを抽出する。このPHAを含んだ有機溶剤溶液から、濾過等によって菌体成分を除去し、そのろ液にメタノールやヘキサン等の貧溶媒を加えてPHAを沈殿させる。さらに、濾過や遠心分離によって上澄み液を除去し、乾燥させてPHAを回収する。
 得られたPHAの重量平均分子量(Mw)や3HH等のモノマー組成(mol%)の分析は、例えば、ゲル浸透クロマトグラフィーやガスクロマトグラフ法、核磁気共鳴法等により行うことができる。
 以下に実施例で本発明を詳細に説明するが、本発明はこれら実施例によって何ら制限されるものではない。なお全体的な遺伝子操作は、Molecular Cloning(Cold Spring Harbor Laboratory Press (1989))に記載されているように行うことができる。また、遺伝子操作に使用する酵素、クローニング宿主等は、市場の供給者から購入し、その説明に従い使用することができる。なお、酵素としては、遺伝子操作に使用できるものであれば特に限定されない。
 また、以下の製造例、実施例、及び比較例で使用されるKNK005ΔphaZ1,2,6株は、C.necator H16株の染色体上のphaZ1,2,6遺伝子が欠失し、アエロモナス・キャビエ由来のPHA合成酵素遺伝子(配列番号4に記載のアミノ酸配列を有するPHA合成酵素をコードする遺伝子)が導入された形質転換体であり、国際公開第2014/065253号の方法に準じて作製することが出来る。
 (製造例1)KNK005ΔphaZ1,2,6/nagEG793C,dR株の作製
 まず、染色体置換用プラスミドの作製を行った。作製は以下のように行った。
 C.necator H16株の染色体DNAをテンプレートとして配列番号8及び配列番号9で示されるプライマーを用いて、PCRを行った。PCRは初めに98℃で2分の処理を行った後、98℃で15秒、60℃で30秒、68℃で2分の一連の反応を25サイクル繰り返し、ポリメラーゼはKOD-plus-(東洋紡社製)を用いた。また同様に、配列番号10及び配列番号11で示されるプライマーを用いて、PCRを行った。さらに、上記PCRで得られた2種類のDNA断片をテンプレートとして、配列番号8及び11で示されるプライマーを用いて同様の条件でPCRを行い、得られたDNA断片を制限酵素SwaIで消化した。このDNA断片を、SwaI消化した特開2007-259708号公報に記載のベクターpNS2X-sacBと、DNAリガーゼ(Ligation High(東洋紡社製))にて連結し、nagE構造遺伝子の793番目の塩基より上流および下流の塩基配列を有し、且つnagE構造遺伝子の793番目の塩基がGからCに置換された塩基配列を含む染色体置換用プラスミドベクターpNS2X-sacB+nagEG793Cを作製した。
 次に、染色体置換用プラスミドベクターpNS2X-sacB+nagEG793Cを用いて、以下のようにして染色体置換株KNK005ΔphaZ1,2,6/nagEG793C株の作製を行った。
 染色体置換用プラスミドベクターpNS2X-sacB+nagEG793Cで大腸菌S17-1株(ATCC47055)を形質転換し、KNK005ΔphaZ1,2,6株とNutrient Agar培地(Difco社製)上で混合培養して接合伝達を行った。
 得られた培養液を、250mg/Lのカナマイシンを含むシモンズ寒天培地(クエン酸ナトリウム2g/L、塩化ナトリウム5g/L、硫酸マグネシウム・7水塩0.2g/L、りん酸二水素アンモニウム1g/L、りん酸水素二カリウム1g/L、寒天15g/L、pH6.8)に播種し、当該寒天培地上で生育してきた菌株を選択して、前記プラスミドがKNK005ΔphaZ1,2,6株の染色体上に組み込まれた株を取得した。この株をNutrient Broth培地(Difco社製)で2世代培養した後、15%のシュークロースを含むNutrient Agar培地上に希釈して塗布し、生育してきた菌株をプラスミドが脱落した株として取得した。さらにDNAシーケンサーによる解析により、染色体上のnagE構造遺伝子の793番目の塩基であるGがCに置換された菌株1株を単離した。この変異導入株をKNK005ΔphaZ1,2,6/nagEG793C株と命名した。得られたKNK005ΔphaZ1,2,6/nagEG793C株はC.necator H16株の染色体上のphaZ6遺伝子及びphaZ1遺伝子の開始コドンから終止コドンまでを欠失し、さらにphaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、染色体上に配列番号4に記載のアミノ酸配列を有するPHA合成酵素をコードする遺伝子が導入され、さらにnagE構造遺伝子の793番目の塩基であるGがCに置換された株である。
 さらに、遺伝子破壊用プラスミドの作製を行った。作製は以下のように行った。
 C.necator H16株の染色体DNAをテンプレートとして配列番号12及び配列番号13で示されるプライマーを用いて、PCRを行った。PCRは上記と同様の反応条件で行い、ポリメラーゼはKOD-plus-(東洋紡社製)を用いた。また同様に、配列番号14及び配列番号15で示されるプライマーを用いて、PCRを行った。さらに、上記PCRで得られた2種類のDNA断片をテンプレートとして、配列番号12及び15で示されるプライマーを用いて同様の条件でPCRを行い、得られたDNA断片を制限酵素SwaIで消化した。このDNA断片を、SwaI消化した特開2007-259708号公報に記載のベクターpNS2X-sacBと、DNAリガーゼ(Ligation High(東洋紡社製))にて連結し、nagR構造遺伝子より上流および下流の塩基配列を有する遺伝子破壊用プラスミドベクターpNS2X-sacB+nagRUDを作製した。
 次に、遺伝子破壊用プラスミドベクターpNS2X-sacB+nagRUDを用いて、以下のようにして遺伝子破壊株KNK005ΔphaZ1,2,6/nagEG793C,dR株の作製を行った。
 遺伝子破壊用プラスミドベクターpNS2X-sacB+nagRUDで大腸菌S17-1株(ATCC47055)を形質転換し、上記で得られたKNK005ΔphaZ1,2,6/nagEG793C株とNutrient Agar培地(Difco社製)上で混合培養して接合伝達を行った。
 得られた培養液を、250mg/Lのカナマイシンを含むシモンズ寒天培地(クエン酸ナトリウム2g/L、塩化ナトリウム5g/L、硫酸マグネシウム・7水塩0.2g/L、りん酸二水素アンモニウム1g/L、りん酸水素二カリウム1g/L、寒天15g/L、pH6.8)に播種し、当該寒天培地上で生育してきた菌株を選択して、前記プラスミドがKNK005ΔphaZ1,2,6/nagEG793C株の染色体上に組み込まれた株を取得した。この株をNutrient Broth培地(Difco社製)で2世代培養した後、15%のシュークロースを含むNutrient Agar培地上に希釈して塗布し、生育してきた菌株をプラスミドが脱落した株として取得した。さらにDNAシーケンサーによる解析により、染色体上のnagR遺伝子の開始コドンから終止コドンまでを欠失した菌株1株を単離した。この遺伝子破壊株をKNK005ΔphaZ1,2,6/nagEG793C,dR株と命名した。KNK005ΔphaZ1,2,6/nagEG793C,dR株は、C.necator H16株の染色体上のphaZ6遺伝子及びphaZ1遺伝子の開始コドンから終止コドンまでを欠失し、さらにphaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、染色体上に配列番号4に記載のアミノ酸配列を有するPHA合成酵素をコードする遺伝子が導入され、nagE構造遺伝子の793番目の塩基であるGがCに置換され、さらにnagR遺伝子の開始コドンから終止コドンまでを欠失した株である。
 (製造例2)pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6株の作製
 まず、cscAおよびcscB遺伝子発現用プラスミドの作製を行った。作製は以下のように行った。
 人工遺伝子合成により、cscAおよびcscB遺伝子を含む、配列番号16で示される塩基配列が導入されたプラスミドを得た。このプラスミドを制限酵素MunIおよびSpeIで消化し、得られたcscAおよびcscB遺伝子を含むDNA断片を、国際公開第2007/049716号に記載のプラスミドベクターpCUP2をMunIおよびSpeIで切断したものと連結し、プラスミドベクターpCUP2-cscABを得た。
 さらに、E.coli HB101株のゲノムDNAをテンプレートとして配列番号17および配列番号18で示されるプライマーを用いて製造例1と同様の条件でPCRを行った。PCRで得られたlacUV5プロモーター配列を含むDNA断片をMunIで消化した。このDNA断片を、上記のプラスミドベクターpCUP2-cscABをMunIで切断したものと連結した。得られたプラスミドの中から、lacUV5プロモーターの下流にcscAおよびcscBが位置する向きに、lacUV5プロモーター配列を含むDNA断片が挿入されたものをPCRによって選別し、プラスミドベクターpCUP2-lacUV5-cscABを得た。
 次に、プラスミドベクターpCUP2-lacUV5-cscABをKNK005ΔphaZ1,2,6株へ導入し、形質転換体pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6株を得た。
 プラスミドベクターの細胞への導入は以下のように電気導入によって行った。遺伝子導入装置はBiorad社製のジーンパルサーを用い、キュベットは同じくBiorad社製のgap0.2cmを用いた。キュベットに、コンピテント細胞400μlと発現ベクター20μlを注入してパルス装置にセットし、静電容量25μF、電圧1.5kV、抵抗値800Ωの条件で電気パルスをかけた。パルス後、キュベット内の菌液をNutrientBroth培地(DIFCO社製)で30℃、3時間振とう培養し、選択プレート(NutrientAgar培地(DIFCO社製)、カナマイシン100mg/L)で、30℃にて2日間培養して、生育してきた形質転換体pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6株を取得した。
 (製造例3)pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6/nagEG793C,dR株の作製
 製造例2で作製したプラスミドベクターpCUP2-lacUV5-cscABを、製造例2と同様の方法で、製造例1で作製したKNK005ΔphaZ1,2,6/nagEG793C,dR株へ導入し、形質転換体pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6/nagEG793C,dR株を得た。
 (製造例4)pCUP2-lacUV5-cscA in KNK005ΔphaZ1,2,6株の作製
 まず、cscA遺伝子発現用プラスミドの作製を行った。作製は以下のように行った。
 製造例2に記載のプラスミドベクターpCUP2-lacUV5-cscABをテンプレートとして配列番号19及び配列番号20で示されるプライマーを用いて製造例1と同様の条件でPCRを行った。PCRで得られたcscA遺伝子配列を含むDNA断片を制限酵素MunIおよびSpeIで消化し、国際公開第2007/049716号に記載のプラスミドベクターpCUP2をMunIおよびSpeIで切断したものと連結し、プラスミドベクターpCUP2-cscAを得た。さらに、E.coli HB101株のゲノムDNAをテンプレートとして配列番号17および配列番号18で示されるプライマーを用いて製造例1と同様の条件でPCRを行った。PCRで得られたlacUV5プロモーター配列を含むDNA断片をMunIで消化した。このDNA断片を、上記のプラスミドベクターpCUP2-cscAをMunIで切断したものと連結した。得られたプラスミドの中から、lacUV5プロモーターの下流にcscAが位置する向きに、lacUV5プロモーター配列を含むDNA断片が挿入されたものをPCRによって選別し、プラスミドベクターpCUP2-lacUV5-cscAを得た。
 次に、プラスミドベクターpCUP2-lacUV5-cscAを、製造例2と同様の方法でKNK005ΔphaZ1,2,6株へ導入し、形質転換体pCUP2-lacUV5-cscA in KNK005ΔphaZ1,2,6株を得た。
 (製造例5)pCUP2-lacUV5-cscB in KNK005ΔphaZ1,2,6株の作製
 まず、cscB遺伝子発現用プラスミドの作製を行った。作製は以下のように行った。
 製造例2に記載のプラスミドベクターpCUP2-lacUV5-cscABをテンプレートとして配列番号21及び配列番号22で示されるプライマーを用いて製造例1と同様の条件でPCRを行った。PCRで得られたcscB遺伝子配列を含むDNA断片を制限酵素MunIおよびSpeIで消化し、国際公開第2007/049716号に記載のプラスミドベクターpCUP2をMunIおよびSpeIで切断したものと連結し、プラスミドベクターpCUP2-cscBを得た。さらに、E.coli HB101株のゲノムDNAをテンプレートとして配列番号17および配列番号18で示されるプライマーを用いて製造例1と同様の条件でPCRを行った。PCRで得られたlacUV5プロモーター配列を含むDNA断片をMunIで消化した。このDNA断片を、上記のプラスミドベクターpCUP2-cscBをMunIで切断したものと連結した。得られたプラスミドの中から、lacUV5プロモーターの下流にcscBが位置する向きに、lacUV5プロモーター配列を含むDNA断片が挿入されたものをPCRによって選別し、プラスミドベクターpCUP2-lacUV5-cscBを得た。
 次に、プラスミドベクターpCUP2-lacUV5-cscBを、製造例2と同様の方法でKNK005ΔphaZ1,2,6株へ導入し、形質転換体pCUP2-lacUV5-cscB in KNK005ΔphaZ1,2,6株を得た。
 (製造例6)pCUP2-lacUV5-cscAB in KNK144S株の作製
 まず、特開2013-9627号公報に記載のプラスミドbAO/pBlu/SacB-Kmを用いて、以下のようにしてプロモーターおよびリボソーム結合配列挿入株ACP-bktB/ΔphaZ1,2,6/nagEG793C,dR株の作製を行った。
 プラスミドbAO/pBlu/SacB-Kmで大腸菌S17-1株(ATCC47055)を形質転換し、製造例1で得られたKNK005ΔphaZ1,2,6/nagEG793C,dR株とNutrient Agar培地(Difco社製)上で混合培養して接合伝達を行った。
 得られた培養液を、250mg/Lのカナマイシンを含むシモンズ寒天培地(クエン酸ナトリウム2g/L、塩化ナトリウム5g/L、硫酸マグネシウム・7水塩0.2g/L、りん酸二水素アンモニウム1g/L、りん酸水素二カリウム1g/L、寒天15g/L、pH6.8)に播種し、当該寒天培地上で生育してきた菌株を選択して、前記プラスミドがKNK005ΔphaZ1,2,6/nagEG793C,dR株の染色体上に組み込まれた株を取得した。この株をNutrient Broth培地(Difco社製)で2世代培養した後、15%のシュークロースを含むNutrient Agar培地上に希釈して塗布し、生育してきた菌株をプラスミドが脱落した株として取得した。さらにDNAシーケンサーによる解析により、染色体上のbktB遺伝子の開始コドン直前にA. caviaeのphaC遺伝子のプロモーターおよびリボソーム結合配列を含む塩基配列からなるDNAが挿入された菌株1株を単離した。この遺伝子挿入株をACP-bktB/ΔphaZ1,2,6/nagEG793C,dR株と命名した。ACP-bktB/ΔphaZ1,2,6/nagEG793C,dR株は、C.necator H16株の染色体上のphaZ6遺伝子及びphaZ1遺伝子の開始コドンから終止コドンまでを欠失し、さらにphaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、染色体上に配列番号4に記載のアミノ酸配列を有するPHA合成酵素をコードする遺伝子が導入され、nagE構造遺伝子の793番目の塩基であるGがCに置換され、nagR遺伝子の開始コドンから終止コドンまでを欠失し、さらにbktB(βケトチオラーゼ)遺伝子の開始コドン直前にA. caviaeのphaC遺伝子のプロモーターおよびリボソーム結合配列を含む塩基配列からなるDNAが挿入された株である。
 さらに、以下のようにしてプロモーターおよびリボソーム結合配列挿入株ACP-bktB/ΔphaZ1,2,6/nagEG793C,dR/trc-J4b株の作製を行った。
 まず、プロモーターおよびリボソーム結合配列挿入用プラスミドの作製を行った。作製は以下のように行った。
 C.necator H16株の染色体DNAをテンプレートとして配列番号23及び配列番号24で示されるプライマーを用いて、製造例1と同様の条件でPCRを行った。また同様に、配列番号25及び配列番号26で示されるプライマーを用いて、同様の条件でPCRを行った。さらに、プラスミドpKK388-1(CLONTECH社製)をテンプレートとして配列番号27および配列番号28で示されるプライマーを用いて同様の条件でPCRを行った。上記PCRで得られた3種類のDNA断片をテンプレートとして、配列番号23及び配列番号26で示されるプライマーを用いて同様の条件でPCRを行い、得られたDNA断片を制限酵素SwaIで消化した。このDNA断片を、SwaI消化した特開2007-259708号公報に記載のベクターpNS2X-sacBと、DNAリガーゼ(Ligation High(東洋紡社製))にて連結し、phaJ4b構造遺伝子より上流の塩基配列、trcプロモーター、リボソーム結合配列、及びphaJ4b構造遺伝子配列を有するプロモーターおよびリボソーム結合配列挿入用プラスミドベクターpNS2X-sacB+phaJ4bU-trc-phaJ4bを作製した。
 次に、プロモーターおよびリボソーム結合配列挿入用プラスミドベクターpNS2X-sacB+phaJ4bU-trc-phaJ4bを用いて、ACP-bktB/ΔphaZ1,2,6/nagEG793C,dR株を親株として、上記のプロモーターおよびリボソーム結合配列挿入株の作製方法と同様に、接合伝達、シモンズ寒天培地での選択、及び、15%のシュークロースを含むNutrient Agar培地での選択を行い、ACP-bktB/ΔphaZ1,2,6/nagEG793C,dR/trc-J4b株を作製した。ACP-bktB/ΔphaZ1,2,6/nagEG793C,dR/trc-J4b株は、C.necator H16株の染色体上のphaZ6遺伝子及びphaZ1遺伝子の開始コドンから終止コドンまでを欠失し、さらにphaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、染色体上に配列番号4に記載のアミノ酸配列を有するPHA合成酵素をコードする遺伝子が導入され、nagE構造遺伝子の793番目の塩基であるGがCに置換され、nagR遺伝子の開始コドンから終止コドンまでを欠失し、bktB遺伝子の開始コドン直前にA. caviaeのphaC遺伝子のプロモーターおよびリボソーム結合配列を含む塩基配列からなるDNAが挿入され、さらにphaJ4b遺伝子の開始コドン直前にtrcプロモーターおよびリボソーム結合配列を含む塩基配列からなるDNAが挿入された株である。
 さらに、以下のようにして染色体置換株KNK144S株の作製を行った。
 特開2008-29218号公報に記載の染色体置換用ベクターpBlueASRUを用いて、ACP-bktB/ΔphaZ1,2,6/nagEG793C,dR/trc-J4b株を親株として、製造例1に記載の染色体置換株の作製と同様に、接合伝達、シモンズ寒天培地での選択、及び、15%のシュークロースを含むNutrient Agar培地での選択を行い、KNK144S株を作製した。KNK144S株はC.necator H16株の染色体上のphaZ6遺伝子及びphaZ1遺伝子の開始コドンから終止コドンまでを欠失し、さらにphaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、染色体上に配列番号4に記載のアミノ酸配列を有するPHA合成酵素をコードする遺伝子が導入され、nagE構造遺伝子の793番目の塩基であるGがCに置換され、nagR遺伝子の開始コドンから終止コドンまでを欠失し、bktB遺伝子の開始コドン直前にA. caviaeのphaC遺伝子のプロモーターおよびリボソーム結合配列を含む塩基配列からなるDNAが挿入され、phaJ4b遺伝子の開始コドン直前にtrcプロモーターおよびリボソーム結合配列を含む塩基配列からなるDNAが挿入され、さらにphaA構造遺伝子配列中に終止コドンと制限酵素NheI切断部位が生成した株である。
 次に、製造例2に記載のプラスミドベクターpCUP2-lacUV5-cscABを、製造例2と同様の方法でKNK144S株へ導入し、形質転換体pCUP2-lacUV5-cscAB in KNK144S株を得た。
 (製造例7)pCUP2-lacUV5-cscAB in KNK143S株の作製
 まず、プロモーター、リボソーム結合配列及び遺伝子挿入用プラスミドの作製を行った。作製は以下のように行った。
 C.necator H16株の染色体DNAをテンプレートとして配列番号29及び配列番号30で示されるプライマーを用いて、PCRを行った。PCRは上記と同様の反応条件で行い、ポリメラーゼはKOD-plus-(東洋紡社製)を用いた。また同様に、配列番号31及び配列番号32で示されるプライマーを用いて、PCRを行った。さらに、上記PCRで得られた2種類のDNA断片をテンプレートとして、配列番号29及び32で示されるプライマーを用いて同様の条件でPCRを行い、得られたDNA断片を制限酵素SwaIで消化した。このDNA断片を、SwaI消化した特開2007-259708号公報に記載のベクターpNS2X-sacBと、DNAリガーゼ(Ligation High(東洋紡社製))にて連結し、phaZ2構造遺伝子より上流および下流の塩基配列を有するプラスミドベクターpNS2X-sacB+phaZ2MunISpeIを作製した。
 次に、人工遺伝子合成により、リボソーム結合配列、ccrおよびemdを含む、配列番号33で示される塩基配列が導入されたプラスミドを得た。このプラスミドを制限酵素MunIおよびSpeIで消化し、得られたリボソーム結合配列、ccrおよびemd遺伝子を含むDNA断片を、プラスミドベクターpNS2X-sacB+Z2UDMunISpeIをMunIおよびSpeIで切断したものと連結し、プラスミドベクターpNS2X-sacB+Z2U-ccr-emd-Z2Dを得た。
 次に、プラスミドpKK388-1(CLONTECH社製)をテンプレートとして配列番号34および配列番号35で示されるプライマーを用いて同様の条件でPCRを行った。PCRで得られたtrcプロモーター配列を含むDNA断片をMunIで消化した。このDNA断片を、上記のプラスミドベクターpNS2X-sacB+Z2U-ccr-emd-Z2DをMunIで切断したものと連結した。得られたプラスミドの中から、trcプロモーターの下流にccrおよびemdが位置する向きに、trcプロモーター配列を含むDNA断片が挿入されたものをPCRによって選別し、プロモーター、リボソーム結合配列及び遺伝子挿入用プラスミドベクターpNS2X-sacB+Z2U-trc-ccr-emd-Z2Dを得た。
 次に、プロモーター、リボソーム結合配列及び遺伝子挿入用プラスミドベクターpNS2X-sacB+Z2U-trc-ccr-emd-Z2Dを用いて、KNK144S株を親株として、製造例6に記載のプロモーターおよびリボソーム結合配列挿入株の作製方法と同様に、接合伝達、シモンズ寒天培地での選択、及び、15%のシュークロースを含むNutrient Agar培地での選択を行い、KNK143S株を作製した。KNK143S株は、C.necator H16株の染色体上のphaZ6遺伝子及びphaZ1遺伝子の開始コドンから終止コドンまでを欠失し、さらにphaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、染色体上に配列番号4に記載のアミノ酸配列を有するPHA合成酵素をコードする遺伝子が導入され、nagE構造遺伝子の793番目の塩基であるGがCに置換され、nagR遺伝子の開始コドンから終止コドンまでを欠失し、bktB遺伝子の開始コドン直前にA. caviaeのphaC遺伝子のプロモーターおよびリボソーム結合配列を含む塩基配列からなるDNAが挿入され、phaJ4b遺伝子の開始コドン直前にtrcプロモーターおよびリボソーム結合配列を含む塩基配列からなるDNAが挿入され、phaA構造遺伝子配列中に終止コドンと制限酵素NheI切断部位が生成し、さらに元々はphaZ2遺伝子があった位置にtrcプロモーター、リボソーム結合配列、ccr遺伝子及びemd遺伝子が挿入された株である。
 次に、製造例2に記載のプラスミドベクターpCUP2-lacUV5-cscABを、製造例2に記載の方法でKNK143S株へ導入し、形質転換体pCUP2-lacUV5-cscAB in KNK143S株を得た。
 (製造例8)pCUP2-lacUV5-cscAB in KNK140S株の作製
 まず、遺伝子破壊用プラスミドの作製を行った。作製は以下のように行った。
 KNK005ΔphaZ1,2,6株の染色体DNAをテンプレートとして配列番号36及び配列番号37で示されるプライマーを用いて、製造例1と同様の条件でPCRを行った。また同様に、配列番号38及び配列番号39で示されるプライマーを用いて、同様の条件でPCRを行った。上記PCRで得られた2種類のDNA断片をテンプレートとして、配列番号36及び配列番号39で示されるプライマーを用いて同様の条件でPCRを行い、得られたDNA断片を制限酵素SwaIで消化した。このDNA断片を、SwaI消化した特開2007-259708号公報に記載のベクターpNS2X-sacBと、DNAリガーゼ(Ligation High(東洋紡社製))にて連結し、phaA構造遺伝子より上流の塩基配列、及びphaB1(アセトアセチルCoAレダクターゼ)構造遺伝子より下流の塩基配列を有する遺伝子破壊用プラスミドベクターpNS2X-sacB+phaAB1UDを作製した。
 次に、遺伝子破壊用プラスミドベクターpNS2X-sacB+phaAB1UDを用いて、KNK-144S株を親株として、製造例1に記載の染色体置換株の作製と同様に、接合伝達、シモンズ寒天培地での選択、及び、15%のシュークロースを含むNutrient Agar培地での選択を行い、KNK140S株を作製した。KNK140S株は、C.necator H16株の染色体上のphaZ6遺伝子及びphaZ1遺伝子の開始コドンから終止コドンまでを欠失し、さらにphaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、染色体上に配列番号4に記載のアミノ酸配列を有するPHA合成酵素をコードする遺伝子が導入され、nagE構造遺伝子の793番目の塩基であるGがCに置換され、nagR遺伝子の開始コドンから終止コドンまでを欠失し、bktB遺伝子の開始コドン直前にA. caviaeのphaC遺伝子のプロモーターおよびリボソーム結合配列を含む塩基配列からなるDNAが挿入され、phaJ4b遺伝子の開始コドン直前にtrcプロモーターおよびリボソーム結合配列を含む塩基配列からなるDNAが挿入され、さらにphaA遺伝子の開始コドンからphaB1遺伝子の終止コドンまでを欠失した株である。
 次に、製造例2に記載のプラスミドベクターpCUP2-lacUV5-cscABを、製造例2に記載の方法でKNK140S株へ導入し、形質転換体pCUP2-lacUV5-cscAB in KNK140S株を得た。
 (製造例9)pCUP2-lacUV5-cscAB in KNK142S株の作製
 製造例8に記載の遺伝子破壊用プラスミドベクターpNS2X-sacB+phaAB1UDを用いて、製造例7に記載のKNK-143S株を親株として、製造例1に記載の染色体置換株の作製と同様に、接合伝達、シモンズ寒天培地での選択、及び、15%のシュークロースを含むNutrient Agar培地での選択を行い、KNK142S株を作製した。KNK142S株はC.necator H16株の染色体上のphaZ6遺伝子及びphaZ1遺伝子の開始コドンから終止コドンまでを欠失し、さらにphaZ2遺伝子の16番目のコドンから終止コドンまでを欠失し、染色体上に配列番号4に記載のアミノ酸配列を有するPHA合成酵素をコードする遺伝子が導入され、nagE構造遺伝子の793番目の塩基であるGがCに置換され、nagR遺伝子の開始コドンから終止コドンまでを欠失し、bktB遺伝子の開始コドン直前にA. caviaeのphaC遺伝子のプロモーターおよびリボソーム結合配列を含む塩基配列からなるDNAが挿入され、phaJ4b遺伝子の開始コドン直前にtrcプロモーターおよびリボソーム結合配列を含む塩基配列からなるDNAが挿入され、元々はphaZ2遺伝子があった位置にtrcプロモーター、リボソーム結合配列、ccr遺伝子及びemd遺伝子が挿入され、さらにphaA遺伝子の開始コドンからphaB1遺伝子の終止コドンまでを欠失した株である。
 次に、製造例2に記載のプラスミドベクターpCUP2-lacUV5-cscABを、製造例2に記載の方法でKNK142S株へ導入し、形質転換体pCUP2-lacUV5-cscAB in KNK142S株を得た。
 (比較例1~4)KNK005ΔphaZ1,2,6株、KNK005ΔphaZ1,2,6/nagEG793C,dR株、pCUP2-lacUV5-cscA in KNK005ΔphaZ1,2,6株およびpCUP2-lacUV5-cscB in KNK005ΔphaZ1,2,6株におけるスクロースの資化性、PHA生産性およびその3HH組成比率
 種母培地の組成は1w/v% Meat-extract、1w/v% Bacto-Trypton、0.2w/v% Yeast-extract、0.9w/v% NaHPO・12HO、0.15w/v% KHPOとした。種母培地でプラスミドベクター導入株を培養する場合には、カナマイシンを最終濃度100μg/mlとなるように種母培地に添加した。
 スクロース資化性試験およびPHA生産に使用した生産培地の組成は1.1w/v% NaHPO・12HO、0.19w/v% KHPO、0.13w/v% (NHSO、0.1w/v% MgSO・7HO、0.1v/v%微量金属塩溶液(0.1N塩酸に1.6w/v% FeCl・6HO、1w/v% CaCl・2HO、0.02w/v% CoCl・6HO、0.016w/v%CuSO・5HO、0.012w/v% NiCl・6HOを溶かしたもの。)とした。炭素源は40w/v%スクロース水溶液を単一炭素源として用い、1.5w/v%となるように培地に添加した。
 KNK005ΔphaZ1,2,6株(国際公開第2014/065253号参照)、製造例1において作製したKNK005ΔphaZ1,2,6/nagEG793C,dR株、製造例4において作製したpCUP2-lacUV5-cscA in KNK005ΔphaZ1,2,6株および製造例5において作製したpCUP2-lacUV5-cscB in KNK005ΔphaZ1,2,6株の各グリセロールストック(50μL)をそれぞれ種母培地(5mL)に接種して培養温度30℃で24時間振とう培養し、得られた培養液を種母とした。
 スクロース資化性試験およびPHA生産培養では、200mLの生産培地を入れた坂口フラスコに前記種母を1.0v/v%接種し、培養温度30℃で振とう培養を行った。経時的に培養液をサンプリングし、菌体の増殖(OD600)および培地中の各種糖濃度(スクロース、グルコース、フルクトース)を測定した。糖濃度の測定はF-キット ショ糖/D-グルコース/果糖(株式会社 J.K.インターナショナル)を用いて行った。結果を図1~4に示した。
 72時間培養後、遠心分離によって菌体を回収、メタノールで洗浄、凍結乾燥し、乾燥菌体重量を測定した。
 PHA生産量は以下のように算出した。得られた乾燥菌体1gあたり100mLのクロロホルムを加え、室温で一昼夜攪拌して、菌体内のPHAを抽出した。菌体残渣をろ別後、エバポレーターで総容量が1/3になるまで濃縮後、濃縮液量の3倍量のヘキサンを徐々に加え、ゆっくり攪拌しながら、1時間放置した。析出したPHAをろ別後、50℃で3時間真空乾燥した。乾燥PHAの重量を測定し、PHA生産量を算出した。結果を表1に示した。
 生産されたPHAの3HH組成比率は以下のようにガスクロマトグラフィーによって測定した。乾燥PHAの約20mgに2mlの硫酸-メタノール混液(15:85)と2mlのクロロホルムを添加して密栓し、100℃で140分間加熱することでPHA分解物のメチルエステルを得た。冷却後、これに1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生がとまるまで放置した。4mlのジイソプロピルエーテルを添加してよく混合した後、遠心して、上清中のPHA分解物のモノマー単位組成をキャピラリーガスクロマトグラフィーにより分析した。ガスクロマトグラフは島津製作所GC-17A、キャピラリーカラムはGLサイエンス社製NEUTRA BOND-1(カラム長25m、カラム内径0.25mm、液膜厚0.4μm)を用いた。キャリアガスとしてHeを用い、カラム入口圧100kPaとし、サンプルは1μlを注入した。温度条件は、初発温度100~200℃まで8℃/分の速度で昇温し、さらに200~290℃まで30℃/分の速度で昇温した。上記条件にて分析した結果、得られたPHAの3HH組成比率を表1に示した。
 比較例1、2および4のKNK005ΔphaZ1,2,6株、KNK005ΔphaZ1,2,6/nagEG793C,dR株およびpCUP2-lacUV5-cscB in KNK005ΔphaZ1,2,6株は、スクロースを炭素源として増殖することができなかった。比較例3のpCUP2-lacUV5-cscA in KNK005ΔphaZ1,2,6株は、スクロースを炭素源としてわずかに増殖したが、その増殖速度は非常に遅かった。また、比較例3のpCUP2-lacUV5-cscA in KNK005ΔphaZ1,2,6株によって生産されたPHAは3HHモノマー単位を含有せず、3HBのホモポリマーであるPHBであった。
 (実施例1)pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6株におけるスクロース資化性、PHA生産性およびその3HH組成比率
 種母培地の組成は比較例1~4に記載のものと同様とした。種母培地でプラスミドベクター導入株を培養する場合には、カナマイシンを最終濃度100μg/mlとなるように種母培地に添加した。
 スクロース資化性試験およびPHA生産に使用した生産培地の組成および炭素源は比較例1~4に記載のものと同様とした。
 製造例2において作製したpCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6株を比較例1~4と同様の方法で培養し、経時的に培養液をサンプリングし、菌体の増殖(OD600)および培地中の各種糖濃度(スクロース、グルコース、フルクトース)を測定した。糖濃度の測定は比較例1~4と同様の方法で行った。結果を図5に示した。
 72時間培養後、遠心分離によって菌体を回収、メタノールで洗浄、凍結乾燥し、乾燥菌体重量を測定した。
 PHA生産量および3HH組成比率を比較例1~4と同様の方法で算出した。得られたPHA生産量および3HH組成比率を表1に示した。
 pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6株は、スクロースを炭素源として良好に増殖し、PHAを生産した。生産されたPHAはホモポリマーであるPHBであった。
 (実施例2)pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6/nagEG793C,dR株におけるスクロース、グルコース、フルクトース資化性、PHA生産性およびその3HH組成比率
 種母培地の組成は比較例1~4に記載のものと同様とした。種母培地でプラスミドベクター導入株を培養する場合には、カナマイシンを最終濃度100μg/mlとなるように種母培地に添加した。
 スクロース資化性試験およびPHA生産に使用した生産培地の組成は比較例1~4に記載のものと同様とした。炭素源は40w/v%スクロース水溶液を単一炭素源として用い、1.5w/v%となるように培地に添加した。
 製造例3において作製したpCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6/nagEG793C,dR株を比較例1~4と同様の方法で培養し、経時的に培養液をサンプリングし、菌体の増殖(OD600)および培地中の各種糖濃度(スクロース、グルコース、フルクトース)を測定した。糖濃度の測定は比較例1~4と同様の方法で行った。結果を図6に示した。
 72時間培養後、遠心分離によって菌体を回収、メタノールで洗浄、凍結乾燥し、乾燥菌体重量を測定した。
 PHA生産量および3HH組成比率を比較例1~4と同様の方法で算出した。結果を表1に示した。
 また、上記と同様の条件で炭素源をスクロース水溶液から同濃度のグルコース水溶液またはフルクトース水溶液に変更した生産培地において培養を行い、経時的に培養液をサンプリングし、菌体の増殖(OD600)、乾燥菌体重量、及び、PHA生産量を測定した。結果を図7に示した。
 生産されたPHAの3HH組成比率を比較例1~4と同様の方法で算出した。得られたPHAの3HH組成比率を表1に示した。
 pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6/nagEG793C,dR株は、スクロースを炭素源として、特に優れた増殖力およびPHA生産性を示した。スクロースを炭素源とした場合の増殖速度はグルコースを炭素源とした場合を上回り、C.necator H16株が元来資化可能なフルクトースを炭素源とした場合と同等であった。
 pCUP2-lacUV5-cscAB in KNK005ΔphaZ1,2,6/nagEG793C,dR株によって生産されたPHAは、3HBのホモポリマーであるPHBであった。
 (実施例3~6)pCUP2-lacUV5-cscAB in KNK144S株、pCUP2-lacUV5-cscAB in KNK143S株、pCUP2-lacUV5-cscAB in KNK140S株およびpCUP2-lacUV5-cscAB in KNK142S株におけるPHA生産性およびその3HH組成比率
 種母培地の組成は比較例1~4に記載のものと同様とした。種母培地でプラスミドベクター導入株を培養する場合には、カナマイシンを最終濃度100μg/mlとなるように種母培地に添加した。
 PHA生産に使用した生産培地の組成および炭素源は比較例1~4に記載のものと同様とした。製造例6~9において作製したpCUP2-lacUV5-cscAB in KNK144S株、pCUP2-lacUV5-cscAB in KNK143S株、pCUP2-lacUV5-cscAB in KNK140S株およびpCUP2-lacUV5-cscAB in KNK142S株をそれぞれ比較例1~4と同様の方法で培養し、72時間培養後、遠心分離によって菌体を回収、メタノールで洗浄、凍結乾燥し、乾燥菌体重量を測定した。
 PHA生産量および3HH組成比率を比較例1~4と同様の方法で算出した。結果を表1に示した。
 いずれの株も、スクロースを炭素源として良好に増殖し、PHAを生産した。実施例3のpCUP2-lacUV5-cscAB in KNK144S株および実施例5のpCUP2-lacUV5-cscAB in KNK140S株によって生産されたPHAは3HHモノマーを僅かに含有するPHBHであり、実施例4のpCUP2-lacUV5-cscAB in KNK143S株によって生産されたPHAは、3HH組成比率が2.3%のPHBHであった。実施例6のpCUP2-lacUV5-cscAB in KNK142S株によって生産されたPHAは、3HH組成比率が26.7%と非常に高いPHBHであった。
Figure JPOXMLDOC01-appb-T000001

Claims (9)

  1. PHA合成酵素遺伝子と、下記(1)及び(2)の異種生物由来遺伝子とを有するPHA生産微生物。
    (1)配列番号1に記載のアミノ酸配列をコードするスクロース加水分解酵素遺伝子、又は該アミノ酸配列に対して90%以上の配列同一性を有し、スクロース加水分解酵素活性を有するポリペプチドをコードする遺伝子
    (2)配列番号2に記載のアミノ酸配列をコードするスクロース透過酵素遺伝子、又は該アミノ酸配列に対して90%以上の配列同一性を有し、スクロース透過酵素活性を有するポリペプチドをコードする遺伝子
  2. 前記微生物が、カプリアビダス属に属する微生物を宿主とする形質転換体である、請求項1に記載の微生物。
  3. 前記カプリアビダス属に属する微生物が、カプリアビダス・ネカトールである、請求項2に記載の微生物。
  4. グルコース資化性が付与又は強化されている、請求項1~3いずれか1項に記載の微生物。
  5. 前記PHA合成酵素遺伝子が、P(3HB-co-3HH)を合成可能なPHA合成酵素遺伝子である、請求項1~4いずれか1項に記載の微生物。
  6. さらにクロトニル-CoA還元酵素遺伝子およびエチルマロニル-CoA脱炭酸酵素遺伝子を有する、請求項3~5いずれか1項に記載の微生物。
  7. アセトアセチルCoA還元酵素遺伝子が欠失した、またはその発現量が抑制されている、請求項6に記載の微生物。
  8. 請求項1~7いずれか1項に記載の微生物を、スクロースを炭素源として含む培地で培養する工程を含む、PHAの製造方法。
  9. PHAがP(3HB-co-3HH)である請求項8に記載の製造方法。
PCT/JP2016/087292 2015-12-16 2016-12-14 スクロース資化性を有するpha生産微生物、及び該微生物を用いたphaの製造方法 WO2017104722A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017556109A JP6853787B2 (ja) 2015-12-16 2016-12-14 スクロース資化性を有するpha生産微生物、及び該微生物を用いたphaの製造方法
US16/061,923 US20180371509A1 (en) 2015-12-16 2016-12-14 Pha-producing microorganism having sucrose assimilability, and method for producing pha using said microorganism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015245214 2015-12-16
JP2015-245214 2015-12-16

Publications (1)

Publication Number Publication Date
WO2017104722A1 true WO2017104722A1 (ja) 2017-06-22

Family

ID=59056918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/087292 WO2017104722A1 (ja) 2015-12-16 2016-12-14 スクロース資化性を有するpha生産微生物、及び該微生物を用いたphaの製造方法

Country Status (3)

Country Link
US (1) US20180371509A1 (ja)
JP (1) JP6853787B2 (ja)
WO (1) WO2017104722A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142717A1 (ja) * 2018-01-16 2019-07-25 株式会社カネカ 変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111979163B (zh) * 2019-05-24 2022-05-06 深圳蓝晶生物科技有限公司 一种重组罗氏真氧菌及其制备方法和应用
CN115261346B (zh) * 2022-04-06 2023-04-07 深圳蓝晶生物科技有限公司 表达乙酰乙酰辅酶a还原酶变体的工程化微生物及提高pha产量的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013025286A1 (en) * 2011-08-16 2013-02-21 E. I. Du Pont De Nemours And Company Recombinant bacteria having improved sucrose utilization
WO2014052923A2 (en) * 2012-09-28 2014-04-03 The Regents Of The University Of California Trophic conversion of photoautotrophic bacteria for improved diurnal properties
WO2014065253A1 (ja) * 2012-10-22 2014-05-01 株式会社カネカ 高分子量pha生産微生物とそれを用いた高分子量phaの製造方法
WO2016021604A1 (ja) * 2014-08-04 2016-02-11 国立大学法人東京工業大学 糖質原料からの共重合ポリヒドロキシアルカン酸の製造法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013025286A1 (en) * 2011-08-16 2013-02-21 E. I. Du Pont De Nemours And Company Recombinant bacteria having improved sucrose utilization
WO2014052923A2 (en) * 2012-09-28 2014-04-03 The Regents Of The University Of California Trophic conversion of photoautotrophic bacteria for improved diurnal properties
WO2014065253A1 (ja) * 2012-10-22 2014-05-01 株式会社カネカ 高分子量pha生産微生物とそれを用いた高分子量phaの製造方法
WO2016021604A1 (ja) * 2014-08-04 2016-02-11 国立大学法人東京工業大学 糖質原料からの共重合ポリヒドロキシアルカン酸の製造法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ARIFIN Y. ET AL.: "Metabolic engineering of sucrose utilizing Escherichia coli for polyhydroxybutyrate production.", JOURNAL OF BIOTECHNOLOGY, vol. 150S, 2010, pages S72 - S73 I.11, XP027489158 *
FRIEHS K. ET AL.: "Cloning and expression of the levanase gene in Alcaligenes eutrophus H16 enables the strain to hydrolyze sucrose.", JOURNAL OF BIOTECHNOLOGY, vol. 10, no. 3-4, 1989, pages 285 - 291, XP023619993 *
INSOMPHUN C. ET AL.: "Improved artificial pathway for biosynthesis of poly(3- hydroxybutyrate-co-3-hydroxyhexanoate) with high C6-monomer composition from fructose in Ralstonia eutropha.", METABOLIC ENGINEERING, vol. 27, 30 October 2014 (2014-10-30), pages 38 - 45, XP055301725 *
ORITA I. ET AL.: "Identification of mutation points in Cupriavidus necator NCIMB 11599 and genetic reconstitution of glucose-utilization ability in wild strain H16 for polyhydroxyalkanoate production.", JOURNAL OF BIOSCIENCE AND BIOENGINEERING, vol. 113, no. 1, 2012, pages 63 - 69, XP028123217 *
PARK S.J. ET AL.: "Metabolic Engineering of Ralstonia eutropha for the Production of Polyhydroxyalkanoates From Sucrose.", BIOTECHNOLOGY AND BIOENGINEERING, vol. 112, no. 3, 1 March 2015 (2015-03-01), pages 638 - 643, XP055394096 *
SABRI S. ET AL.: "Molecular Control of Sucrose Utilization in Escherichia coli W, an Efficient Sucrose-Utilizing Strain.", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 79, no. 2, 15 January 2013 (2013-01-15), pages 478 - 487, XP055394105 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019142717A1 (ja) * 2018-01-16 2019-07-25 株式会社カネカ 変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法
JPWO2019142717A1 (ja) * 2018-01-16 2021-02-04 株式会社カネカ 変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法
US11186831B2 (en) 2018-01-16 2021-11-30 Kaneka Corporation Mutant polyhydroxyalkanoate synthase, gene thereof and transformant, and method for producing polyhydroxyalkanoate
JP7360329B2 (ja) 2018-01-16 2023-10-12 株式会社カネカ 変異型ポリヒドロキシアルカン酸合成酵素、その遺伝子および形質転換体、並びに、ポリヒドロキシアルカン酸の製造方法

Also Published As

Publication number Publication date
US20180371509A1 (en) 2018-12-27
JPWO2017104722A1 (ja) 2018-10-04
JP6853787B2 (ja) 2021-03-31

Similar Documents

Publication Publication Date Title
US10829793B2 (en) Transformant that produces copolymerized PHA containing 3HH unit, and method for producing said PHA
US11453896B2 (en) Transformed microorganism for producing PHA copolymer comprising 3HH monomer unit at high composition rate and method for producing PHA using same
EP2295536B1 (en) Microorganism capable of producing improved polyhydroxyalkanoate and method of producing polyhydroxyalkanoate by using the same
JP7256740B2 (ja) グリセロールキナーゼ活性を強化したpha産生微生物とそれを用いたphaの製造方法
JPWO2005098001A1 (ja) 新規形質転換体
WO2015115619A1 (ja) R体特異的エノイル-CoAヒドラターゼ遺伝子の発現が調節された微生物及びそれを用いたポリヒドロキシアルカノエート共重合体の製造方法
Heinrich et al. From waste to plastic: synthesis of poly (3-hydroxypropionate) in Shimwellia blattae
WO2017104722A1 (ja) スクロース資化性を有するpha生産微生物、及び該微生物を用いたphaの製造方法
JP4960033B2 (ja) 酵素活性を低下させた微生物を用いる共重合ポリエステルの製造方法
EP4029946A1 (en) Transformed microorganism, and method for producing polyhydroxyalkanoic acid using said microorganism
JP2008086238A (ja) ポリヒドロキシアルカノエートの製造方法
CN114450416A (zh) 聚羟基烷酸酯的制造方法
US20090130731A1 (en) Microorganism capable of accumulating ultra high molecular weight polyester
EP3943605A1 (en) Transformed microorganism and production method of polyhydroxyalkanoic acid
JP5839854B2 (ja) 微生物の培養方法
JP2009225775A (ja) ポリヒドロキシアルカン酸の製造方法
JP7425783B2 (ja) 形質転換微生物、及びポリヒドロキシアルカン酸の製造方法
EP3960867A1 (en) Gene for synthesizing high molecular weight copolymer
WO2024058182A1 (ja) 形質転換微生物、及び、共重合ポリエステルの製造方法
KR20210114744A (ko) 3-하이드록시부티레이트-4-하이드록시부티레이트 공중합체 생산용 형질전환 메탄자화균 및 이의 용도
JP2021108581A (ja) 形質転換微生物、及びポリヒドロキシアルカン酸の製造方法
KR20170027578A (ko) 글루코즈를 이용한 락테이트-4-하이드록시부티레이트 중합체의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16875699

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16875699

Country of ref document: EP

Kind code of ref document: A1