WO2016011575A1 - 复合掩膜板及其制造方法、复合掩膜板组件 - Google Patents

复合掩膜板及其制造方法、复合掩膜板组件 Download PDF

Info

Publication number
WO2016011575A1
WO2016011575A1 PCT/CN2014/082614 CN2014082614W WO2016011575A1 WO 2016011575 A1 WO2016011575 A1 WO 2016011575A1 CN 2014082614 W CN2014082614 W CN 2014082614W WO 2016011575 A1 WO2016011575 A1 WO 2016011575A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
photoresist
support sheet
opening
openings
Prior art date
Application number
PCT/CN2014/082614
Other languages
English (en)
French (fr)
Inventor
孙尚传
Original Assignee
安徽省大富光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽省大富光电科技有限公司 filed Critical 安徽省大富光电科技有限公司
Priority to CN201480000657.6A priority Critical patent/CN105579610A/zh
Priority to PCT/CN2014/082614 priority patent/WO2016011575A1/zh
Priority to CN201420427240.5U priority patent/CN204325516U/zh
Publication of WO2016011575A1 publication Critical patent/WO2016011575A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/02Local etching
    • C23F1/04Chemical milling

Definitions

  • the invention relates to the technical field of mask manufacturing, in particular to a composite mask, a manufacturing method thereof and a composite mask assembly.
  • OLED organic light-emitting diodes are also known as organic electro-laser displays (Organic Electroluminecence) Display, OLED).
  • OLED illumination is to deposit an organic film between a transparent anode and a metal cathode, inject electrons and holes, and use it to recombine between organic films to convert energy into visible light. And with different organic materials, different colors of light can be emitted to achieve the demand for full color displays. Because OLED has self-illumination at the same time, it does not need backlight, high contrast, thin thickness, wide viewing angle, fast response speed, can be used for flexible panels, wide temperature range, simple structure and simple process, etc. The next generation of flat panel display emerging application technology.
  • OLED is a solid material
  • VTE vacuum thermal evaporation
  • the organic molecules in the vacuum chamber are slightly heated (evaporated), so that these molecules are condensed in the form of a thin film at a lower temperature base layer.
  • a high-precision mask assembly that is compatible with the accuracy of the OLED light-emitting display unit is required as a medium.
  • OLED devices require the evaporation of multiple layers of organic thin films in a high vacuum chamber.
  • the quality of the film is related to device quality and lifetime.
  • a plurality of evaporation boats for placing organic materials are provided, the evaporation boat is used to evaporate the organic materials, and the quartz crystal oscillator is used to control the film thickness.
  • the ITO glass substrate is placed on a heatable rotating sample holder, and a metal mask placed underneath controls the evaporation pattern.
  • Prior art masks produce mask patterns by etching or laser techniques, which can result in limited size of the openings in the mask pattern, thereby limiting the resolution of the final OLED product, which is incurred when laser technology produces mask patterns.
  • the longer time leads to a lower manufacturing efficiency of the mask.
  • the invention provides a composite mask, a manufacturing method thereof and a composite mask assembly, which can solve the limitation of the resolution of the OLED product caused by the etching process in the prior art and the mask manufacturing process caused by the laser process. Technical problems with low manufacturing efficiency.
  • the present invention provides a technical solution for providing a method for manufacturing a composite mask, wherein the manufacturing method includes: providing a support sheet, the support sheet having a first surface and the first a second surface opposite to the surface; a mask pattern is grown on the first surface of the support sheet by an electroforming process, wherein the mask pattern has a plurality of first openings; and a plurality of second portions are formed on the second surface of the support sheet An opening, wherein the second opening is in communication with the first opening to form a mask channel.
  • the step of growing the mask pattern by the electroforming process on the first surface of the support sheet comprises: forming a first photoresist layer on the first surface of the support sheet; and exposing the first photoresist layer to form a first photoresist region and a second photoresist region; removing the first photoresist region and retaining the second photoresist region, exposing the first surface of the support sheet corresponding to the first photoresist region; The process grows a mask pattern on the exposed first surface of the first photoresist region; the second photoresist region is removed to form a first opening.
  • the step of growing a mask pattern on the exposed first surface of the first photoresist region by an electroforming process comprises: electroforming a bonding layer on the exposed first surface of the first photoresist region; A first thickening layer is grown on the layer by an electroforming process; a resist layer is grown on the first thickening layer by an electroforming process; and a second thickening layer is grown on the resist layer by an electroforming process.
  • the bonding layer is impact nickel
  • the first thickening layer and the second thickening layer are thickened nickel
  • the material of the resist layer is ruthenium, rhodium, palladium, gold or the like.
  • the thickness of the bonding layer is 0.5 ⁇ m or less
  • the thickness of the first thickening layer is between 0.3 ⁇ m and 1.0 ⁇ m
  • the thickness of the second thickening layer is between 2 ⁇ m and 4 ⁇ m
  • the thickness of the resist layer is 0.5 ⁇ m. ⁇ 3 microns.
  • the thickness of the first photoresist layer is 5 micrometers or more.
  • the step of forming a plurality of second openings on the second surface of the support sheet comprises: forming a second photoresist layer on the second surface of the support sheet; and exposing the second photoresist layer to form a different one a third photoresist region and a fourth photoresist region; removing the third photoresist region and retaining the fourth photoresist region, exposing the second surface of the support sheet corresponding to the third photoresist region; A second opening is etched on the exposed second surface of the photoresist region; the fourth photoresist region is removed.
  • the step of forming a plurality of second openings on the second surface of the support sheet comprises: forming a second photoresist layer on the second surface of the support sheet; and exposing the second photoresist layer to form a different one a third photoresist region and a fourth photoresist region; removing the third photoresist region and retaining the fourth photoresist region, exposing the second surface of the support sheet corresponding to the third photoresist region; A second opening is etched on the exposed second surface of the photoresist region; the fourth photoresist region is removed.
  • width of the first opening is smaller than the width of the second opening, and each of the second openings communicates with the at least two first openings.
  • the width of the first opening is smaller than the width of the second opening, and each of the second openings communicates with a first opening.
  • another technical solution provided by the present invention is to provide a composite mask sheet, wherein the composite mask sheet includes a support sheet and is grown by an electroforming process on the first surface of the support sheet. a mask pattern, wherein the mask pattern has a plurality of first openings, and the second surface of the support sheet opposite to the first surface is formed with a plurality of second openings, and the second openings communicate with the first openings to form a mask Membrane channel.
  • the mask pattern comprises a bonding layer, a first thickening layer, a resist layer and a second thickening layer which are sequentially laminated on the first surface.
  • the bonding layer is impact nickel
  • the first thickening layer and the second thickening layer are thickened nickel
  • the material of the resist layer is ruthenium, rhodium, palladium, gold or the like.
  • the thickness of the bonding layer is 0.5 ⁇ m or less
  • the thickness of the first thickening layer is between 0.3 ⁇ m and 1.0 ⁇ m
  • the thickness of the second thickening layer is between 2 ⁇ m and 4 ⁇ m
  • the thickness of the resist layer is 0.5 ⁇ m. ⁇ 3 microns.
  • width of the first opening is smaller than the width of the second opening, and each of the second openings communicates with the at least two first openings.
  • the width of the first opening is smaller than the width of the second opening, and each of the second openings communicates with a first opening.
  • the material of the support sheet is Invar.
  • another technical solution provided by the present invention is to provide a composite mask plate assembly, wherein the composite mask plate assembly comprises an outer frame and a composite mask plate fixed on the outer frame, and the composite mask
  • the diaphragm includes a support sheet and a mask pattern grown by an electroforming process on the first surface of the support sheet, wherein the mask pattern has a plurality of first openings, the second surface of the support sheet opposite the first surface A plurality of second openings are formed, and the second openings are in communication with the first openings to form a mask channel.
  • the mask pattern comprises a bonding layer, a first thickening layer, a resist layer and a second thickening layer which are sequentially laminated on the first surface.
  • the bonding layer is impact nickel
  • the first thickening layer and the second thickening layer are thickened nickel
  • the material of the resist layer is ruthenium, rhodium, palladium, gold or the like.
  • the beneficial effects of the present invention are: different from the prior art, the present invention grows a mask pattern by using an electroforming process on the supporting sheet, and the forming speed is higher due to the electroforming process, so that the production efficiency of the mask is higher. And the electroforming process enables the first opening size on the mask pattern to be made smaller and the mask pattern to be finer, thereby improving the resolution of the final OLED product.
  • FIG. 1 is a flow chart showing a method of manufacturing a composite mask of the present invention
  • FIG. 2 is a flow chart showing the specific steps of steps S12 and S13 in Figure 1;
  • FIG. 3 is a schematic view showing the first photoresist layer formed on the first surface of the support sheet of the present invention
  • FIG. 4 is a schematic view showing exposure processing of a first photoresist layer according to the present invention.
  • FIG. 5 is a schematic view of the present invention for removing a first photoresist region and retaining a second photoresist region;
  • Figure 6 is a schematic view of a growth mask pattern of the present invention.
  • FIG. 7 is a schematic view showing the specific structure of a growth mask pattern of the present invention.
  • Figure 8 is a schematic view of the second photoresist region removed by the present invention.
  • Figure 9 is a schematic view showing the formation of a second photoresist layer on the second surface of the support sheet of the present invention.
  • FIG. 10 is a schematic view showing exposure processing of a second photoresist layer according to the present invention.
  • FIG. 11 is a schematic view of the present invention for removing a third photoresist region and retaining a fourth photoresist region;
  • Figure 12 is a schematic view of the second etching of the second surface of the present invention.
  • Figure 13 is a schematic view of the fourth photoresist region removed by the present invention.
  • Figure 14 is a schematic view showing the specific structure of a mask pattern of the present invention.
  • Figure 15 is a schematic view showing another structure of the composite mask of the present invention.
  • Figure 16 is a plan view of the composite mask assembly of the present invention.
  • Figure 17 is a schematic view of the composite mask of the present invention used in vapor deposition.
  • FIG. 1 is a flow chart of a method for manufacturing a composite mask according to the present invention.
  • the manufacturing method of the composite mask includes:
  • Step S11 providing a support sheet having a first surface and a second surface opposite to the first surface.
  • the material of the support sheet may be Invar.
  • Step S12 growing a mask pattern by an electroforming process on the first surface of the support sheet, wherein the mask pattern has a plurality of first openings.
  • Step S13 forming a plurality of second openings on the second surface of the support sheet, wherein the second openings communicate with the first openings to form a mask channel.
  • the material of the support sheet is Invar, and the Invar alloy has a small expansion coefficient, is strong in magnetic properties, is not easily deformed by temperature, and has high internal stress and high structural strength, so that during etching or Deformation is less likely to occur after etching to form the second opening.
  • the electroforming process is adopted so that the precision of the first opening grown is preferably in the range of plus or minus 1 micrometer, and the precision is high.
  • FIG. 2 is a flow chart of specific steps of steps S12 and S13 in FIG.
  • step S12 includes step S21 - step S25
  • step S13 includes step S26 - step S30, as follows:
  • Step S21 forming a first photoresist layer on the first surface of the support sheet.
  • FIG. 3 is a schematic view showing the formation of the first photoresist layer on the first surface of the support sheet of the present invention.
  • the support sheet 12 has a first surface 21 and a second surface 11 opposite the first surface 21.
  • the support sheet 12 is preferably an alloy sheet 12, and more preferably, the support sheet 12 is an Invar sheet 12, and the first photoresist layer 11 is coated or pressed against the first surface 21 by the photopolymer 11 .
  • the first photoresist layer has a thickness of 5 microns or more.
  • Step S22 performing exposure processing on the first photoresist layer to form different first photoresist regions and second photoresist regions.
  • FIG. 4 is a schematic diagram of exposure processing of the first photoresist layer according to the present invention.
  • the first photoresist layer 11 is exposed in accordance with a preset exposure file, and after exposure, includes the passed second photoresist region 112 and the unexposed first photoresist region 111.
  • Step S23 removing the first photoresist region and leaving the second photoresist region to expose the first surface of the support sheet corresponding to the first photoresist region.
  • FIG. 5 is a schematic diagram of the present invention for removing the first photoresist region and retaining the second photoresist region.
  • the first photoresist layer 11 is subjected to development processing to remove the first photoresist region 111 and to retain the second photoresist region 112.
  • Step S24 growing a mask pattern on the exposed first surface of the first photoresist region by an electroforming process.
  • step S24 please refer to FIG. 6, which is a schematic diagram of a growth mask pattern of the present invention.
  • a mask pattern 31 is grown on the exposed first surface 21 of the first photoresist region 111 by an electroforming process.
  • FIG. 7 is a schematic structural diagram of a growth mask pattern of the present invention.
  • the step of growing a mask pattern on the exposed first surface of the first photoresist region 111 by an electroforming process comprises: electroforming a bonding layer on the exposed first surface of the first photoresist region 111 311; growing a first thickening layer 312 on the bonding layer 311 by an electroforming process; growing a resist layer 313 on the first thickening layer 312 by an electroforming process; growing on the resist layer 313 by an electroforming process A second thickened layer 314 is exited.
  • the bonding layer 311 is impact nickel
  • the first thickening layer 312 and the second thickening layer 314 are thickened nickel
  • the material of the resist layer 313 is germanium, antimony, palladium, gold, etc.
  • the thickness of the bonding layer is 0.5 ⁇ m or less
  • the thickness of the first thickening layer is between 0.3 ⁇ m and 1.0 ⁇ m
  • the thickness of the second thickening layer is between 2 ⁇ m and 4 ⁇ m
  • the thickness of the resist layer is 0.5 ⁇ m. 3 microns.
  • the thickness of the first photoresist layer is 5 micrometers or more.
  • the bonding layer may be a nickel-plated current with a current greater than the normal nickel plating current, used to remove the oxide film that may exist on the exposed first surface, to prevent poor bonding, and to be impacted by the nickel chloride plating solution.
  • the electroforming active surface is provided with a coating having good adhesion; for example, the first thickening layer 312 and the second thickening layer 314 may be formed by electroforming using nickel sulfamate as a plating solution; and the resist layer 313 is formed by electroforming. Layers of tantalum, niobium, palladium or gold have high stability and are not etched when the second opening is etched.
  • Step S25 removing the second photoresist region to form a first opening.
  • FIG. 8 is a schematic diagram of removing the second photoresist region according to the present invention.
  • a film removal treatment is performed to remove the previously exposed photopolymer, i.e., the second photoresist region 112.
  • the electroforming process is grown in such a manner that the mask pattern 31 is finer, that is, the size of the first opening 32 can be made smaller, thereby improving the resolution of the final OLED product, and the composite mask is fast due to the electroforming process.
  • the board is more productive.
  • Step S26 forming a second photoresist layer on the second surface of the support sheet.
  • FIG. 9 is a schematic view showing the formation of a second photoresist layer on the second surface of the support sheet according to the present invention.
  • the second photoresist layer 13 is formed by coating or pressing the photopolymer 13 on the second surface 22.
  • Step S27 performing exposure processing on the second photoresist layer to form different third photoresist regions and fourth photoresist regions.
  • FIG. 10 is a schematic diagram of exposure processing of the second photoresist layer according to the present invention.
  • the second photoresist layer 13 is exposed in accordance with a preset exposure file, and after exposure, includes the exposed fourth photoresist region 132 and the unexposed third photoresist region 131.
  • Step S28 removing the third photoresist region and leaving the second photoresist region to expose the second surface of the support sheet corresponding to the third photoresist region.
  • FIG. 11 is a schematic diagram of removing the third photoresist region and retaining the fourth photoresist region according to the present invention.
  • the second photoresist layer 13 is subjected to development processing to remove the third photoresist region 131 and to retain the fourth photoresist region 132.
  • Step S29 etching a second opening on the exposed second surface of the third photoresist region by an etching process.
  • FIG. 12 is a schematic diagram of the second opening etched on the second surface of the present invention.
  • the second opening 121 is etched on the exposed second surface 22 of the third photoresist region 131 by an etching process. It should be noted that in the present embodiment, the width of the second opening 121 may be gradually increased from top to bottom, so that the organic material enters from the lower end of the first opening 32, and the upper and lower widths in the figure are only schematic.
  • Step S30 removing the fourth photoresist region.
  • step S30 please refer to FIG. 13, which is a schematic diagram of the fourth photoresist region removed by the present invention.
  • a film removal treatment is performed to remove the photopolymer of the previously exposed region, that is, the fourth photoresist region 132.
  • the composite mask obtained in the step S30 is the composite mask of the present invention.
  • the composite mask includes a support sheet 12 and a mask pattern 31 grown by the electroforming process on the first surface 21 of the support sheet 12, wherein the mask pattern 31 has a plurality of first openings 32.
  • the second surface 22 of the support sheet 12 opposite to the first surface 21 is formed with a plurality of second openings 121, and the second openings 121 communicate with the first openings 32 to form a mask passage.
  • the precision of the first opening 32 is preferably in the range of plus or minus 1 micron to form a more precise mask channel.
  • the material of the support sheet 12 is Invar alloy, Invar alloy has small expansion coefficient, strong magnetic property, and is not easily deformed by temperature, so deformation is not easy to occur during etching or after forming the second opening 121. .
  • the width of the second opening 121 may be gradually increased from top to bottom, so that the organic material enters from the lower end of the first opening 32, and the upper and lower widths in the figure are only schematic.
  • the mask pattern 31 includes a bonding layer 311, a first thickening layer 312, a resist layer 313, and a second thickening layer 314 which are sequentially laminated on the first surface.
  • the bonding layer 311 is impact nickel
  • the first thickening layer 312 and the second thickening layer 314 are thickened nickel
  • the material of the resist layer 313 is germanium, antimony, palladium, gold, or the like.
  • the thickness of the bonding layer is 0.5 ⁇ m or less
  • the thickness of the first thickening layer is between 0.3 ⁇ m and 1.0 ⁇ m
  • the thickness of the second thickening layer is between 2 ⁇ m and 4 ⁇ m
  • the thickness of the resist layer is 0.5 ⁇ m. ⁇ 3 microns.
  • the bonding layer 311 may be a nickel-plated current with a current greater than the normal nickel plating current for removing the oxide film that may exist on the surface of the plating member to prevent poor bonding force, and the nickel chloride plating solution is used as the impact current.
  • the first thickening layer 312 and the second thickening layer 314 may be formed by electroforming using nickel sulfamate as a plating solution;
  • the resist layer 313 is a layer formed by electroforming Niobium, tantalum, palladium or gold, etc., have high stability and are not etched when the second opening is etched.
  • FIG. 15 is a schematic diagram showing another structure of the composite mask of the present invention.
  • the width of the first opening 32 is smaller than the width of the second opening 121, and each second opening 121 is connected. A first opening 32.
  • FIG. 16 is a top plan view of the composite mask assembly of the present invention.
  • the composite mask assembly of the present invention comprises an outer frame 40 and a composite mask 41 fixed to the outer frame, wherein the composite mask 41 is a composite mask according to any of the above embodiments.
  • the first openings 32 are arranged in a matrix on the composite mask 41.
  • FIG. 17 is a schematic view of the composite mask of the present invention used in vapor deposition.
  • the evaporation source 50 evaporates the organic material (the material constituting the RGB three primary colors), and the organic material sequentially passes through the second opening 121 and the first opening 32 (mask passage), and finally adheres to the base layer 51 and is formed on the base layer 51 at the first opening 32.
  • the width of the second opening 121 may be gradually increased from top to bottom, so that the organic material enters from the lower end of the first opening 32, and the upper and lower widths in the figure are only schematic.
  • the present invention grows a mask pattern by using an electroforming process on a support sheet, and the molding process is faster because the molding process is fast, and the electroforming process can make the mask
  • the first opening size on the pattern can be made smaller, and the mask pattern is finer, thereby improving the resolution of the final OLED product.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种复合掩膜板的制造方法、复合掩膜板及复合掩膜板组件,复合掩膜板的制造方法包括:提供支撑片材(12),所述支撑片材(12)具有第一表面(21)和与所述第一表面(21)相对的第二表面(11);在支撑片材(12)的第一表面(21)通过电铸工艺生长出掩膜图案(31),其中掩膜图案(31)具有多个第一开口(32);在支撑片材(12)的与第一表面(21)相对的第二表面(11)形成多个第二开口(121),其中第二开口(121)与第一开口(32)连通,进而形成掩膜通道。通过上述方式,能够使得掩膜图案(31)上的第一开口(32)尺寸可以做的更小,掩膜图案(31)更加精细,从而可以提高最终的OLED产品的分辨率。

Description

复合掩膜板及其制造方法、复合掩膜板组件
【技术领域】
本发明涉及掩膜板制造技术领域,特别是涉及一种复合掩膜板及其制造方法、复合掩膜板组件。
【背景技术】
OLED有机发光二极管又称为有机电激光显示(Organic Electroluminecence Display, OLED)。OLED发光原理是在透明阳极与金属阴极间蒸镀有机薄膜,注入电子与电洞,并利用其在有机薄膜间复合,将能量转成可见光。并且可搭配不同的有机材料,发出不同颜色的光,来达成全彩显示器的需求。由于OLED同时具备自发光,不需背光源、对比度高、厚度薄、视角广、反应速度快、可用于挠曲性面板、使用温度范围广、构造及制程较简单等优异之特性,被认为是下一代的平面显示器新兴应用技术。OLED生产过程中最重要的一环节是将有机层按照驱动矩阵的要求敷涂到基层上,形成关键的发光显示单元。OLED是一种固体材料,其高精度涂覆技术的发展是制约OLED产品化的关键。目前完成这一工作,主要采用真空沉积或真空热蒸发(VTE)的方法,其是将位于真空腔体内的有机物分子轻微加热(蒸发),使得这些分子以薄膜的形式凝聚在温度较低的基层上。在这一过程中需要与OLED发光显示单元精度相适应的高精密掩模板组件作为媒介。OLED器件需要在高真空腔室中蒸镀多层有机薄膜,薄膜的质量关系到器件质量和寿命。在高真空腔室中设有多个放置有机材料的蒸发舟,加热蒸发舟蒸镀有机材料,并利用石英晶体振荡器来控制膜厚。ITO玻璃基层放置在可加热的旋转样品托架上,其下面放置的金属掩膜板控制蒸镀图案。
现有技术的掩膜板通过蚀刻或者镭射技术产生掩膜图案,蚀刻技术会导致掩膜图案中的开口尺寸大小受到限制,从而限制最终OLED产品的分辨率,而镭射技术产生掩膜图案时花费的时间较长导致掩膜板的制造效率较低。
因此,需要提供一种复合掩膜板及其制造方法、复合掩膜板组件,以解决上述问题。
【发明内容】
本发明提供一种复合掩膜板及其制造方法、复合掩膜板组件,可以解决现有技术中蚀刻工艺制造掩膜板导致的OLED产品的分辨率受到限制以及镭射工艺制造掩膜板导致的制造效率低的技术问题。
为解决上述技术问题,本发明提供的一种技术方案是:提供一种复合掩膜板的制造方法,其中,该制造方法包括:提供支撑片材,支撑片材具有第一表面和与第一表面相对的第二表面;在支撑片材的第一表面通过电铸工艺生长出掩膜图案,其中,掩膜图案具有多个第一开口;在支撑片材的第二表面形成多个第二开口,其中,第二开口与第一开口连通,进而形成掩膜通道。
其中,在支撑片材的第一表面通过电铸工艺生长出掩膜图案的步骤包括:在支撑片材的第一表面形成第一光阻层;对第一光阻层进行曝光处理,以形成相异的第一光阻区和第二光阻区;去除第一光阻区且保留第二光阻区,以外露第一光阻区所对应的支撑片材的第一表面;通过电铸工艺在第一光阻区所外露的第一表面上生长出掩膜图案;去除第二光阻区,以形成第一开口。
其中,通过电铸工艺在第一光阻区所外露的第一表面上生长出掩膜图案的步骤包括:在第一光阻区所外露的第一表面上电铸生长出结合层;在结合层上通过电铸工艺生长出第一加厚层;在第一加厚层上通过电铸工艺生长出抗蚀层;在抗蚀层上通过电铸工艺生长出第二加厚层。
其中,结合层为冲击镍,第一加厚层和第二加厚层为加厚镍,抗蚀层的材料为钌、铑、钯、金等。
其中,结合层的厚度为0.5微米以下,第一加厚层的厚度0.3微米~1.0微米之间,第二加厚层的厚度在2微米~4微米之间,抗蚀层的厚度为0.5微米~3微米。
其中,第一光阻层的厚度在5微米以上。
其中,在支撑片材的第二表面形成多个第二开口的步骤包括:在支撑片材的第二表面形成第二光阻层;对第二光阻层进行曝光处理,以形成相异的第三光阻区和第四光阻区;去除第三光阻区且保留第四光阻区,以外露第三光阻区所对应的支撑片材的第二表面;通过蚀刻工艺在第三光阻区所外露的第二表面上蚀刻出第二开口;去除第四光阻区。
其中,在支撑片材的第二表面形成多个第二开口的步骤包括:在支撑片材的第二表面形成第二光阻层;对第二光阻层进行曝光处理,以形成相异的第三光阻区和第四光阻区;去除第三光阻区且保留第四光阻区,以外露第三光阻区所对应的支撑片材的第二表面;通过蚀刻工艺在第三光阻区所外露的第二表面上蚀刻出第二开口;去除第四光阻区。
其中,第一开口的宽度小于第二开口的宽度,且每一第二开口连通至少两个第一开口。
其中,第一开口的宽度小于第二开口的宽度,且每一第二开口连通一个第一开口。
为解决上述技术问题,本发明提供的另一种技术方案是:提供一种复合掩膜板,其中,该复合掩膜板包括支撑片材以及在支撑片材的第一表面通过电铸工艺生长出的掩膜图案,其中掩膜图案具有多个第一开口,支撑片材的与第一表面相对的第二表面形成有多个第二开口,第二开口与第一开口连通,进而形成掩膜通道。
其中,掩膜图案包括依次层叠在第一表面的结合层、第一加厚层、抗蚀层以及第二加厚层。
其中,结合层为冲击镍,第一加厚层和第二加厚层为加厚镍,抗蚀层的材料为钌、铑、钯、金等。
其中,结合层的厚度为0.5微米以下,第一加厚层的厚度0.3微米~1.0微米之间,第二加厚层的厚度在2微米~4微米之间,抗蚀层的厚度为0.5微米~3微米。
其中,第一开口的宽度小于第二开口的宽度,且每一第二开口连通至少两个第一开口。
其中,第一开口的宽度小于第二开口的宽度,且每一第二开口连通一个第一开口。
其中,支撑片材的材料为因瓦合金。
为解决上述技术问题,本发明提供的又一种技术方案是:提供一种复合掩膜板组件,其中,该复合掩膜板组件包括外框和固定在外框上的复合掩膜板,复合掩膜板包括支撑片材以及在支撑片材的第一表面通过电铸工艺生长出的掩膜图案,其中掩膜图案具有多个第一开口,支撑片材的与第一表面相对的第二表面形成有多个第二开口,第二开口与第一开口连通,进而形成掩膜通道。
其中,掩膜图案包括依次层叠在第一表面的结合层、第一加厚层、抗蚀层以及第二加厚层。
其中,结合层为冲击镍,第一加厚层和第二加厚层为加厚镍,抗蚀层的材料为钌、铑、钯、金等。
本发明的有益效果是:区别于现有技术的情况,本发明通过在支撑片材上采用电铸工艺生长出掩膜图案,由于电铸工艺成型速度快,使得掩膜板的生产效率更高,且电铸工艺能够使得掩膜图案上的第一开口尺寸可以做的更小,掩膜图案更加精细,从而可以提高最终的OLED产品的分辨率。
【附图说明】
图1是本发明复合掩膜板的制造方法的流程图;
图2是图1中步骤S12和S13的具体步骤流程图;
图3是本发明在支撑片材的第一表面形成第一光阻层的示意图;
图4是本发明对第一光阻层进行曝光处理的示意图;
图5是本发明去除第一光阻区且保留第二光阻区的示意图;
图6是本发明生长掩膜图案的示意图;
图7是本发明生长掩膜图案的具体结构示意图;
图8是本发明去除第二光阻区的示意图;
图9是本发明在支撑片材的第二表面形成第二光阻层的示意图;
图10是本发明对第二光阻层进行曝光处理的示意图;
图11是本发明去除第三光阻区且保留第四光阻区的示意图;
图12是本发明在第二表面上蚀刻出第二开口的示意图;
图13是本发明去除第四光阻区的示意图;
图14是本发明掩膜图案的具体结构示意图。
图15是本发明复合掩膜板的另一种结构的示意图;
图16是本发明的复合掩膜板组件的俯视图;
图17是本发明的复合掩膜板在蒸镀使用时的示意图。
【具体实施方式】
下面结合附图和实施例对本发明进行详细说明。
请参阅图1,图1是本发明复合掩膜板的制造方法的流程图。在本实施例中,复合掩膜板的制造方法包括:
步骤S11:提供支撑片材,支撑片材具有第一表面和与第一表面相对的第二表面。
在步骤S11中,例如,支撑片材的材料可以为因瓦合金。
步骤S12:在支撑片材的第一表面通过电铸工艺生长出掩膜图案,其中掩膜图案具有多个第一开口。
步骤S13:在支撑片材的的第二表面形成多个第二开口,其中第二开口与第一开口连通,进而形成掩膜通道。
在步骤S13中,例如,支撑片材的材料为因瓦合金,而因瓦合金的膨胀系数小,磁性强,不容易受温度影响而变形,内应力大结构强度高,因此蚀刻的过程中或者蚀刻形成第二开口后均不易发生形变。本实施例采用电铸工艺使得生长出的第一开口的精密度优选在正负1微米范围内,精度高。
请参阅图2,图2是图1中步骤S12和S13的具体步骤流程图。在本实施例中,步骤S12包括步骤S21-步骤S25,步骤S13包括步骤S26-步骤S30,具体如下:
步骤S21:在支撑片材的第一表面形成第一光阻层。
在步骤S21中,请参阅图3,图3是本发明在支撑片材的第一表面形成第一光阻层的示意图。支撑片材12具有第一表面21和与第一表面21相对的第二表面11。支撑片材12优选为合金片材12,更优选的,支撑片材12为因瓦合金片材12,第一光阻层11由感光聚合物11涂布或压贴在第一表面21上形成。优选地,第一光阻层的厚度在5微米以上。
步骤S22:对第一光阻层进行曝光处理,以形成相异的第一光阻区和第二光阻区。
在步骤S22中,请参阅图4,图4是本发明对第一光阻层进行曝光处理的示意图。将第一光阻层11按照预设的曝光文件进行曝光,曝光后包括经过了的第二光阻区112和未经过曝光的第一光阻区111。
步骤S23:去除第一光阻区且保留第二光阻区,以外露第一光阻区所对应的支撑片材的第一表面。
在步骤S23中,请参阅图5,图5是本发明去除第一光阻区且保留第二光阻区的示意图。对第一光阻层11进行显影处理以去除第一光阻区111且保留第二光阻区112。
步骤S24:通过电铸工艺在第一光阻区所外露的第一表面上生长出掩膜图案。
在步骤S24中,请参阅图6,图6是本发明生长掩膜图案的示意图。通过电铸工艺在第一光阻区111所外露的第一表面21上生长出掩膜图案31。请进一步参阅图7,图7是本发明生长掩膜图案的具体结构示意图。优选地,通过电铸工艺在第一光阻区111所外露的第一表面上生长出掩膜图案的步骤包括:在第一光阻区111所外露的第一表面上电铸生长出结合层311;在结合层311上通过电铸工艺生长出第一加厚层312;在第一加厚层312上通过电铸工艺生长出抗蚀层313;在抗蚀层313上通过电铸工艺生长出第二加厚层314。更优选地,其中,结合层311为冲击镍,第一加厚层312和第二加厚层314为加厚镍,抗蚀层313的材料为钌、铑、钯、金等,其中,其中,结合层的厚度为0.5微米以下,第一加厚层的厚度0.3微米~1.0微米之间,第二加厚层的厚度在2微米~4微米之间,抗蚀层的厚度为0.5微米~3微米。其中,第一光阻层的厚度在5微米以上。例如,结合层可以是镀镍时先加上一个大于正常镀镍电流的电流,用于清除外露的第一表面可能存在的氧化膜,防止产生结合力不良,以二氯化镍镀液做冲击电铸活化表面得到良好附著力之镀层;例如第一加厚层312和第二加厚层314可以是以氨基磺酸镍作为镀液电铸形成;抗蚀层313为电铸工艺形成的一层钌、铑、钯或金等,其稳定性较高且不会在蚀刻第二开口时被蚀刻。
步骤S25:去除第二光阻区,以形成第一开口。
在步骤S25中,请参阅图8,图8是本发明去除第二光阻区的示意图。进行褪膜处理,将之前经过曝光的感光聚合物,即第二光阻区112去除。电铸工艺生长的方式使得掩膜图案31更为精细,即第一开口32的尺寸可以做的更加小,从而可以提升最终OLED产品的分辨率,由于电铸工艺成型速度快,使得复合掩膜板的生产效率更高。
步骤S26:在支撑片材的第二表面形成第二光阻层。
在步骤S26中,请参阅图9,图9是本发明在支撑片材的第二表面形成第二光阻层的示意图。第二光阻层13由感光聚合物13涂布或压贴在第二表面22上形成。
步骤S27:对第二光阻层进行曝光处理,以形成相异的第三光阻区和第四光阻区。
在步骤S27中,请参阅图10,图10是本发明对第二光阻层进行曝光处理的示意图。将第二光阻层13按照预设的曝光文件进行曝光,曝光后包括经过了曝光的第四光阻区132和未经过曝光的第三光阻区131。
步骤S28:去除第三光阻区且保留第二光阻区,以外露第三光阻区所对应的支撑片材的第二表面。
在步骤S28中,请参阅图11,图11是本发明去除第三光阻区且保留第四光阻区的示意图。对第二光阻层13进行显影处理以去除第三光阻区131且保留第四光阻区132。
步骤S29:通过蚀刻工艺在第三光阻区所外露的第二表面上蚀刻出第二开口。
在步骤S29中,请参阅图12,图12是本发明在第二表面上蚀刻出第二开口的示意图。通过蚀刻工艺在第三光阻区131所外露的第二表面22上蚀刻出第二开口121。值得注意的是,在本实施例中,第二开口121的宽度可以是由上至下逐渐增大,以便于有机材料从第一开口32下端进入,图中上下宽度相等的结构仅为示意。
步骤S30:去除第四光阻区。
在步骤S30中,请参阅图13,图13是本发明去除第四光阻区的示意图。进行褪膜处理,将之前曝光区域的感光聚合物,即第四光阻区132去除。
经过步骤S30后得到的即为本发明的复合掩膜板。在本实施例中,复合掩膜板包括支撑片材12以及在支撑片材12的第一表面21通过电铸工艺生长出的掩膜图案31,其中掩膜图案31具有多个第一开口32,支撑片材12的与第一表面21相对的第二表面22形成有多个第二开口121,第二开口121与第一开口32连通,进而形成掩膜通道。优选地,第一开口32的精密度优选在正负1微米范围内进而形成更为精密的掩膜通道。优选地,支撑片材12的材料为因瓦合金,因瓦合金的膨胀系数小,磁性强,不容易受温度影响而变形,因此蚀刻的过程中或者蚀刻形成第二开口121后均不易发生形变。
值得注意的是,在本实施例中,第二开口121的宽度可以是由上至下逐渐增大,以便于有机材料从第一开口32下端进入,图中上下宽度相等的结构仅为示意。
请参阅图14,图14是本发明掩膜图案的具体结构示意图。优选地,掩膜图案31包括依次层叠在第一表面的结合层311、第一加厚层312、抗蚀层313以及第二加厚层314。优选地,结合层311为冲击镍,第一加厚层312和第二加厚层314为加厚镍,抗蚀层313的材料为钌、铑、钯、金等。其中,结合层的厚度为0.5微米以下,第一加厚层的厚度0.3微米~1.0微米之间,第二加厚层的厚度在2微米~4微米之间,抗蚀层的厚度为0.5微米~3微米。例如,结合层311可以是镀镍时先加上一个大于正常镀镍电流的电流,用于清除镀件表面可能存在的氧化膜,防止产生结合力不良,以二氯化镍镀液做冲击电铸活化表面得到良好附著力之镀层;例如第一加厚层312和第二加厚层314可以是以氨基磺酸镍作为镀液电铸形成;抗蚀层313为电铸工艺形成的一层钌、铑、钯或金等,其稳定性较高且不会在蚀刻第二开口时被蚀刻。
通过设定第一光阻层11和第二光阻层13的曝光文件,可得到预期的第二光阻区112和第四光阻区132的形状和尺寸,进而可以得到预期的第一开口32和第二开口121的大小和尺寸,在本实施例中,如图12所示,第一开口32的宽度小于第二开口121的宽度,且每一第二开口121连通至少两个第一开口32。在其他实施例中,请参阅图15,图15是本发明复合掩膜板的另一种结构的示意图,第一开口32的宽度小于第二开口121的宽度,且每一第二开口121连通一个第一开口32。
请参阅图16,图16是本发明的复合掩膜板组件的俯视图。本发明复合掩膜板组件包括外框40和固定在外框上的复合掩膜板41,其中,复合掩膜板41为上述任意一实施例所述的复合掩膜板。优选地,第一开口32以矩阵方式排列于复合掩膜板41上。
请参阅图17,图17是本发明的复合掩膜板在蒸镀使用时的示意图。蒸发源50蒸发有机材料(构成RGB三原色的材料),有机材料依次通过第二开口121和第一开口32(掩膜通道),最终附着在基层51上并在基层51上形成于第一开口32相对应的图案。值得注意的是,在本实施例中,第二开口121的宽度可以是由上至下逐渐增大,以便于有机材料从第一开口32下端进入,图中上下宽度相等的结构仅为示意。
区别于现有技术,本发明通过在支撑片材上采用电铸工艺生长出掩膜图案,由于电铸工艺成型速度快,使得掩膜板的生产效率更高,且电铸工艺能够使得掩膜图案上的第一开口尺寸可以做的更小,掩膜图案更加精细,从而可以提高最终的OLED产品的分辨率。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (20)

  1. 一种复合掩膜板的制造方法,其中,所述制造方法包括:
    提供支撑片材,所述支撑片材具有第一表面和与所述第一表面相对的第二表面;
    在支撑片材的第一表面通过电铸工艺生长出掩膜图案,其中,所述掩膜图案具有多个第一开口;
    在所述支撑片材的第二表面形成多个第二开口,其中,所述第二开口与所述第一开口连通,进而形成掩膜通道。
  2. 根据权利要求1所述的制造方法,其中,所述在支撑片材的第一表面通过电铸工艺生长出掩膜图案的步骤包括:
    在所述支撑片材的所述第一表面形成第一光阻层;
    对所述第一光阻层进行曝光处理,以形成相异的第一光阻区和第二光阻区;
    去除所述第一光阻区且保留所述第二光阻区,以外露所述第一光阻区所对应的所述支撑片材的所述第一表面;
    通过所述电铸工艺在所述第一光阻区所外露的所述第一表面上生长出所述掩膜图案;
    去除所述第二光阻区,以形成所述第一开口。
  3. 根据权利要求1所述的制造方法,其中,所述通过所述电铸工艺在所述第一光阻区所外露的所述第一表面上生长出所述掩膜图案的步骤包括:
    在所述第一光阻区所外露的所述第一表面上电铸生长出结合层;
    在所述结合层上通过电铸工艺生长出第一加厚层;
    在所述第一加厚层上通过电铸工艺生长出抗蚀层;
    在所述抗蚀层上通过电铸工艺生长出第二加厚层。
  4. 根据权利要求3所述的制造方法,其中,所述结合层为冲击镍,所述第一加厚层和第二加厚层为加厚镍,所述抗蚀层的材料为钌、铑、钯、金等。
  5. 根据权利要求4所述的制造方法,其中,所述结合层的厚度为0.5微米以下,所述第一加厚层的厚度0.3微米~1.0微米之间,所述第二加厚层的厚度在2微米~4微米之间,所述抗蚀层的厚度为0.5微米~3微米。
  6. 根据权利要求2所述的制造方法,其中,所述第一光阻层的厚度在5微米以上。
  7. 根据权利要求1所述的制造方法,其中,所述在所述支撑片材的第二表面形成多个第二开口的步骤包括:
    在所述支撑片材的第二表面形成第二光阻层;
    对所述第二光阻层进行曝光处理,以形成相异的第三光阻区和第四光阻区;
    去除所述第三光阻区且保留所述第四光阻区,以外露所述第三光阻区所对应的所述支撑片材的所述第二表面;
    通过蚀刻工艺在所述第三光阻区所外露的所述第二表面上蚀刻出所述第二开口;
    去除所述第四光阻区。
  8. 根据权利要求2所述的制造方法,其中,所述在所述支撑片材的第二表面形成多个第二开口的步骤包括:
    在所述支撑片材的第二表面形成第二光阻层;
    对所述第二光阻层进行曝光处理,以形成相异的第三光阻区和第四光阻区;
    去除所述第三光阻区且保留所述第四光阻区,以外露所述第三光阻区所对应的所述支撑片材的所述第二表面;
    通过蚀刻工艺在所述第三光阻区所外露的所述第二表面上蚀刻出所述第二开口;
    去除所述第四光阻区。
  9. 根据权利要求1所述的制造方法,其中,所述第一开口的宽度小于所述第二开口的宽度,且每一所述第二开口连通至少两个所述第一开口。
  10. 根据权利要求1所述的制造方法,其中,所述第一开口的宽度小于所述第二开口的宽度,且每一所述第二开口连通一个所述第一开口。
  11. 一种复合掩膜板,其中,所述复合掩膜板包括支撑片材以及在所述支撑片材的第一表面通过电铸工艺生长出的掩膜图案,其中所述掩膜图案具有多个第一开口,所述支撑片材的与所述第一表面相对的第二表面形成有多个第二开口,所述第二开口与所述第一开口连通,进而形成掩膜通道。
  12. 根据权利要求11所述的复合掩膜板,其中,所述掩膜图案包括依次层叠在所述第一表面的结合层、第一加厚层、抗蚀层以及第二加厚层。
  13. 根据权利要求12所述的复合掩膜板,其中,所述结合层为冲击镍,所述第一加厚层和第二加厚层为加厚镍,所述抗蚀层的材料为钌、铑、钯、金等。
  14. 根据权利要求13所述的复合掩膜板,其中,所述结合层的厚度为0.5微米以下,所述第一加厚层的厚度0.3微米~1.0微米之间,所述第二加厚层的厚度在2微米~4微米之间,所述抗蚀层的厚度为0.5微米~3微米。
  15. 根据权利要求11所述的复合掩膜板,其中,所述第一开口的宽度小于所述第二开口的宽度,且每一所述第二开口连通至少两个所述第一开口。
  16. 根据权利要求11所述的复合掩膜板,其中,所述第一开口的宽度小于所述第二开口的宽度,且每一所述第二开口连通一个所述第一开口。
  17. 根据权利要求11所述的复合掩膜板,其中,所述支撑片材的材料为因瓦合金。
  18. 一种复合掩膜板组件,其中,所述复合掩膜板组件包括外框和固定在所述外框上的复合掩膜板,所述复合掩膜板包括支撑片材以及在所述支撑片材的第一表面通过电铸工艺生长出的掩膜图案,其中所述掩膜图案具有多个第一开口,所述支撑片材的与所述第一表面相对的第二表面形成有多个第二开口,所述第二开口与所述第一开口连通,进而形成掩膜通道。
  19. 根据权利要求18所述的复合掩膜板组件,其中,所述掩膜图案包括依次层叠在所述第一表面的结合层、第一加厚层、抗蚀层以及第二加厚层。
  20. 根据权利要求19所述的复合掩膜板组件,其中,所述结合层为冲击镍,所述第一加厚层和第二加厚层为加厚镍,所述抗蚀层的材料为钌、铑、钯、金等。
PCT/CN2014/082614 2014-07-21 2014-07-21 复合掩膜板及其制造方法、复合掩膜板组件 WO2016011575A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480000657.6A CN105579610A (zh) 2014-07-21 2014-07-21 复合掩膜板及其制造方法、复合掩膜板组件
PCT/CN2014/082614 WO2016011575A1 (zh) 2014-07-21 2014-07-21 复合掩膜板及其制造方法、复合掩膜板组件
CN201420427240.5U CN204325516U (zh) 2014-07-21 2014-07-30 复合掩膜板、复合掩膜板组件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/082614 WO2016011575A1 (zh) 2014-07-21 2014-07-21 复合掩膜板及其制造方法、复合掩膜板组件

Publications (1)

Publication Number Publication Date
WO2016011575A1 true WO2016011575A1 (zh) 2016-01-28

Family

ID=55162383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/082614 WO2016011575A1 (zh) 2014-07-21 2014-07-21 复合掩膜板及其制造方法、复合掩膜板组件

Country Status (2)

Country Link
CN (1) CN105579610A (zh)
WO (1) WO2016011575A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752889A (zh) * 2022-03-21 2022-07-15 京东方科技集团股份有限公司 掩膜板及其制作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100101919A (ko) * 2009-03-10 2010-09-20 삼성모바일디스플레이주식회사 박막 증착용 마스크 프레임 조립체 및 이를 이용한 유기 발광 표시 장치의 제조 방법
US20110220019A1 (en) * 2010-03-09 2011-09-15 Lee Choong-Ho Mask frame assembly for thin film deposition and method of assembling the same
CN103572206A (zh) * 2013-11-08 2014-02-12 昆山允升吉光电科技有限公司 一种复合掩模板组件的制作方法
CN103682171A (zh) * 2012-09-07 2014-03-26 昆山允升吉光电科技有限公司 一种复合掩模板
CN103668048A (zh) * 2012-09-07 2014-03-26 昆山允升吉光电科技有限公司 一种复合掩模板组件的制作方法
CN103668052A (zh) * 2012-09-07 2014-03-26 昆山允升吉光电科技有限公司 一种复合掩模板组件

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW589917B (en) * 2001-08-31 2004-06-01 Sanyo Electric Co Method for making electroluminescence element and vapor deposition mask
KR101135544B1 (ko) * 2009-09-22 2012-04-17 삼성모바일디스플레이주식회사 마스크 조립체, 이의 제조 방법 및 이를 이용한 평판표시장치용 증착 장치
KR101854796B1 (ko) * 2011-09-15 2018-05-09 삼성디스플레이 주식회사 마스크 제조 방법
CN103451598B (zh) * 2013-09-05 2016-03-02 中山新诺科技有限公司 一种oled显示面板生产用新型精细金属掩膜版及制作方法
CN204325516U (zh) * 2014-07-21 2015-05-13 安徽省大富光电科技有限公司 复合掩膜板、复合掩膜板组件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100101919A (ko) * 2009-03-10 2010-09-20 삼성모바일디스플레이주식회사 박막 증착용 마스크 프레임 조립체 및 이를 이용한 유기 발광 표시 장치의 제조 방법
US20110220019A1 (en) * 2010-03-09 2011-09-15 Lee Choong-Ho Mask frame assembly for thin film deposition and method of assembling the same
CN103682171A (zh) * 2012-09-07 2014-03-26 昆山允升吉光电科技有限公司 一种复合掩模板
CN103668048A (zh) * 2012-09-07 2014-03-26 昆山允升吉光电科技有限公司 一种复合掩模板组件的制作方法
CN103668052A (zh) * 2012-09-07 2014-03-26 昆山允升吉光电科技有限公司 一种复合掩模板组件
CN103572206A (zh) * 2013-11-08 2014-02-12 昆山允升吉光电科技有限公司 一种复合掩模板组件的制作方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114752889A (zh) * 2022-03-21 2022-07-15 京东方科技集团股份有限公司 掩膜板及其制作方法

Also Published As

Publication number Publication date
CN105579610A (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
TWI623632B (zh) 蒸鍍用磁性掩模板的製作方法
WO2011090262A2 (ko) 경사 증착을 이용한 리소그래피 방법
CN103572206B (zh) 一种复合掩模板组件的制作方法
WO2019100523A1 (zh) 一种柔性触控显示屏的制作方法
TWI591424B (zh) 蒸鍍用複合磁性掩模板的製作方法
CN204325516U (zh) 复合掩膜板、复合掩膜板组件
WO2020181849A1 (zh) 微型精密掩膜板及其制作方法和amoled显示器件
WO2014126298A1 (en) Method of manufacturing graphene film and graphene film manufactured thereby
WO2017156803A1 (zh) 一种石墨烯薄膜晶体管的制备方法
WO2013116995A1 (zh) 一种薄膜晶体管阵列基板及其制作方法
WO2019047357A1 (zh) 一种oled显示面板及其制程
US20100316870A1 (en) Manufacturing method for display device and display device
CN102427061B (zh) 有源矩阵有机发光显示器的阵列基板制造方法
WO2017071054A1 (zh) 一种显示面板及其制造方法
WO2016061776A1 (zh) 一种柔性衬底基板的制作方法
WO2019056524A1 (zh) 一种oled显示面板及其制作方法
WO2014036894A1 (zh) 一种大尺寸oled蒸镀用掩模板组件
WO2019019231A1 (zh) 一种显示面板的切割方法以及显示面板
WO2016011575A1 (zh) 复合掩膜板及其制造方法、复合掩膜板组件
WO2019051955A1 (zh) Oled 显示面板及其制备方法
WO2023191403A1 (ko) 탄소계 박막 쉐도우 마스크 및 그 제조방법
WO2019041554A1 (zh) Amoled基板的制作方法及amoled基板
WO2016114501A2 (ko) 대면적 단일 도메인으로 배열된 유기분자의 수직원기둥 또는 라멜라 구조체의 제조방법
WO2013166668A1 (zh) 一种薄膜晶体管阵列基板及其制作方法
CN110767806A (zh) 一种有机薄膜晶体管及其制备方法和显示器件

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480000657.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14898234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14898234

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14898234

Country of ref document: EP

Kind code of ref document: A1