WO2016006863A1 - 이미지 센서의 단위 화소 및 그 수광 소자 - Google Patents

이미지 센서의 단위 화소 및 그 수광 소자 Download PDF

Info

Publication number
WO2016006863A1
WO2016006863A1 PCT/KR2015/006768 KR2015006768W WO2016006863A1 WO 2016006863 A1 WO2016006863 A1 WO 2016006863A1 KR 2015006768 W KR2015006768 W KR 2015006768W WO 2016006863 A1 WO2016006863 A1 WO 2016006863A1
Authority
WO
WIPO (PCT)
Prior art keywords
light receiving
light
drain
source
sensitivity
Prior art date
Application number
PCT/KR2015/006768
Other languages
English (en)
French (fr)
Inventor
김훈
Original Assignee
김훈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김훈 filed Critical 김훈
Priority to CN201580037458.7A priority Critical patent/CN106663689B/zh
Priority to KR1020177000117A priority patent/KR101927006B1/ko
Priority to JP2017500830A priority patent/JP6555551B2/ja
Publication of WO2016006863A1 publication Critical patent/WO2016006863A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/1461Pixel-elements with integrated switching, control, storage or amplification elements characterised by the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor

Definitions

  • the present invention relates to a unit pixel of a image sensor and a light receiving element of a unit pixel.
  • a light receiving element of a unit pixel and a unit pixel of an image sensor capable of adjusting the light sensing sensitivity of the light receiver by adjusting a voltage applied to a gate functioning as a light receiving unit It is about.
  • An image sensor is a sensor that converts an optical signal into an electrical image signal. When light is irradiated to the light receiving unit within the unit pixel of the image sensor, it detects the light incident on each unit pixel and the amount thereof, converts and generates an optical signal into an electrical signal, and then to the analog and digital circuit unit for forming an image It is responsible for transmitting signals.
  • one electron-hole pair (EHP) is generated for each incident photon, and the generated electrons and holes are accumulated in the photodiode as the light receiving portion. .
  • the maximum accumulated capacitance of the photodiode is proportional to the light receiving area of the photodiode.
  • the area where the accompanying transistors are disposed is relatively wider than that of the CCD image sensor, so that there is a physical limitation in increasing the light receiving area.
  • a photodiode mainly used as a light receiving part of an image sensor has a relatively low capacitance, so that it is difficult to saturate the signal analogously since it is easily saturated even with a small amount of light.
  • the unit pixel of the CMOS image sensor requires a relatively long photocharge accumulation time in order to generate a minimum charge for signal processing through the limited light receiving region. Therefore, it is not easy to manufacture an image sensor of a high density / high speed frame by using the unit pixel having such a light receiving portion.
  • the threshold voltage for photoelectric conversion is determined by the concentration and polarity of ions doped in the floating gate and the device isolation well in the initial manufacturing process, and thus the sensitivity value of the image sensor is also in the manufacturing process. It is determined by the concentration and polarity of the doped ions.
  • the present invention has been made to solve the above-mentioned problems, and the unit pixel of the image sensor that can control the light sensitivity characteristics of the light receiving element by adjusting the threshold voltage of the channel by applying a voltage to the gate operating as the light receiving unit It aims to provide.
  • an object of the present invention is to provide a unit pixel of an image sensor capable of performing functions such as auto exposure and electric shutter.
  • the sensitivity control light-receiving element configured to apply a voltage to the light receiver;
  • the light receiving portion is doped with a first type impurity
  • the source and drain are doped with a second type impurity
  • the electrons excited by light incident on the light receiving portion are tunneled to the source or drain.
  • the current flow of the channel is controlled by the charge amount change of the light receiver, and the threshold voltage of the channel is adjusted by controlling the voltage applied through the sensitivity adjusting terminal.
  • the light receiving element is characterized in that the threshold voltage is adjusted by adjusting the interval between the Fermi level and the intrinsic level of the channel by adjusting the voltage applied through the sensitivity control terminal. .
  • the source and drain may be formed on a well doped with a first type impurity, and the well may be in a floating state.
  • the sensitivity control terminal may adjust the sensitivity of the light receiver by adjusting the magnitude of the voltage applied to the light receiver.
  • the tunneling may occur in an oxide region between any one of the source and the drain and the light receiving unit.
  • the sensitivity control terminal may apply a voltage greater than or equal to a set voltage to the light receiver to reset the light receiver.
  • a light receiving element for generating a current flow by using a change in the amount of charge due to incident light and outputs the current generated in the light receiving element to the unit pixel output terminal include an optional element, wherein
  • the light receiving element includes a light receiving unit that absorbs light, a source and a drain spaced apart from the light receiving unit by an oxide film, and a channel formed between the source and the drain to generate a flow of current between the source and the drain. and a sensitivity adjusting terminal for applying a voltage to the light receiving unit, wherein the light receiving element is formed by tunneling electrons excited by light incident on the light receiving unit to the source or drain.
  • the current flow of the channel is controlled based on the change in the charge amount of the light receiver, and the threshold voltage of the channel is controlled by adjusting the voltage applied through the sensitivity adjusting terminal.
  • the selection element may include a drain and a source connected to the light receiving element and the unit pixel output terminal, and a gate to which a selection signal is applied from the outside, and perform a switching operation based on the applied selection signal.
  • the light receiving device may adjust the threshold voltage by adjusting the voltage applied through the sensitivity control terminal to adjust the interval between the Fermi level and the intrinsic level of the channel.
  • the source of the light receiving element and the drain of the selection element may be formed on the same active region.
  • the light receiving element may suppress the image saturation caused by the sudden increase in the amount of photocurrent by adjusting the voltage applied to the sensitivity control terminal based on the amount of incident light.
  • the unit pixel of the image sensor according to another embodiment of the present invention, a light receiving element for generating a current flow by using a change in the amount of charge due to incident light, and outputs the current generated in the light receiving element to the unit pixel output terminal And a reset device to remove charges remaining in the light receiving device.
  • the light receiving element includes a light receiving unit that absorbs light, a source and a drain spaced apart from the light receiving unit by an oxide film, and a channel formed between the source and the drain to generate a flow of current between the source and the drain. and a sensitivity adjusting terminal for applying a voltage to the light receiving unit, wherein the light receiving element is formed by tunneling electrons excited by light incident on the light receiving unit to the source or drain.
  • the current flow of the channel is controlled based on a change in the charge amount of the light receiving unit, and the light receiving element adjusts a threshold voltage of the channel by adjusting a voltage applied through the sensitivity adjusting terminal.
  • the reset device may remove residual charge in a diffusion well in which the light receiving device is formed.
  • the diffusion region may be maintained in a floating state during the operation of the light receiving element.
  • the light receiving element may reset the unit pixel by applying a voltage higher than a set voltage through the sensitivity adjusting terminal to increase the threshold voltage of the channel.
  • the light receiving device may adjust the threshold voltage by adjusting the voltage applied through the sensitivity control terminal to adjust the interval between the Fermi level and the intrinsic level of the channel.
  • an optimal electric response may be obtained by applying an external electric field.
  • the sensitivity of the light receiving element may be adjusted on the circuit by adjusting the applied voltage, and process dependency on device characteristic values such as light sensitivity of the light receiving element may be reduced.
  • the magnitude of the photocurrent according to the incident light amount may be adjusted by adjusting the applied voltage, so that the automatic exposure control function, which is separately performed on the existing analog circuit, may be performed in each pixel unit.
  • each pixel may be reset by applying a reset voltage to the sensitivity value adjusting gate, and the electronic shutter function may be implemented without using a separate transistor.
  • FIG. 1 is a perspective view of a light receiving device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view for describing an operating principle of the light receiving element of FIG. 1.
  • FIG 3 is a view for explaining the structure of the sensitivity control light receiving device according to an embodiment of the present invention.
  • FIG. 4 is a view for explaining the principle of sensitivity control of the sensitivity light receiving device of FIG.
  • FIG. 5 is a diagram for describing an operation process of the sensitivity adjusting light receiving device of FIG. 3.
  • FIG. 6 is an example of a circuit diagram of a unit pixel using the sensitivity adjusting light receiving device of FIG. 3.
  • FIG. 7 is a cross-sectional view of a unit pixel using the sensitivity adjusting light receiving device of FIG. 6.
  • FIG. 8 is another example of a circuit diagram of a unit pixel using the sensitivity adjusting light receiving device of FIG. 3.
  • FIG. 9 is a cross-sectional view of a unit pixel using the sensitivity adjusting light receiving device of FIG. 8.
  • one component when one component is referred to as “connected” or “connected” with another component, the one component may be directly connected or directly connected to the other component, but in particular It is to be understood that, unless there is an opposite substrate, it may be connected or connected via another component in the middle.
  • FIG. 1 illustrates a light receiving element configuring a unit pixel of an image sensor according to an exemplary embodiment.
  • the light receiving device of the unit pixel is implemented using a tunnel junction device instead of a conventional photodiode.
  • the tunnel junction device is a structure in which a thin insulating layer is bonded between two conductors or semiconductors, and refers to a device that operates by using a tunneling effect generated in the insulating layer.
  • the light receiving device 100 may be implemented with, for example, an n-MOSFET structure.
  • the light receiving device 100 is formed on the P-type substrate 110 and includes an N + diffusion layer 120 corresponding to a source in a general NMOS electronic device and an N + diffusion layer 130 corresponding to a drain.
  • the N + diffusion layers 120 and 130 will be referred to as “source” and “drain” in the light receiving device, respectively.
  • Metal contacts 121 and 131 connected to external nodes are formed on the source 120 and the drain 130.
  • the metal contacts 121 and 131 are connected to the outside through metal lines 122 and 132, respectively.
  • a thin oxide layer 140 is formed between the source 120 and the drain 130, and a poly-silicon doped with a P-type impurity corresponding to a gate in a general NMOS structure is formed on the oxide layer 140. 150 is formed.
  • the polysilicon 150 functions as a light receiving unit that absorbs light from the light receiving element 100.
  • the polysilicon 150 will be referred to as a "light receiving unit”.
  • the light receiving unit 150 is spaced apart from the source 120 and the drain 130 by the oxide film 140. Tunneling is generated between the light receiver 150 and the source 120 or the drain 130. At this time, in order to facilitate the occurrence of the tunneling, the thickness of the oxide film 140 is preferably formed to 10nm or less.
  • the light receiving device 100 has a light blocking layer 170 formed on an upper portion of the remaining area except for the upper part 151 of the light receiving unit 150.
  • FIG. 2 is a cross-sectional view illustrating an operating principle of a light receiving device according to an embodiment of the present invention.
  • the light receiving device 100 of the present invention receives light through an upper portion of the light receiving unit 150.
  • a predetermined electric field is formed between the source 120 and the drain 130 and the light receiving unit 150 by incident light, and a channel 160 is formed between the source 120 and the drain 130 by the incident light.
  • EHPs electron-hole pairs
  • the electrons of the generated electron-hole pairs tunnel through the oxide layer 140 to obtain a source ( 120 or drain 130.
  • the amount of charge in the holes in the light receiving unit 150 is relatively increased.
  • the change in the amount of charge lowers the threshold voltage of the channel 160 so that current flows in the channel.
  • the light receiving device 100 may be formed in a light doped drain (LDD) structure.
  • LDD light doped drain
  • the light receiving device 100 is formed on the P-type substrate 110 and includes a source 120 and a drain 130 of a highly doped N-type diffusion layer. .
  • LDD regions 123 and 133 which are lightly doped N-type diffusion layers, are formed between the source 120 and the drain 130 adjacent to the source 120 and the drain 130, respectively.
  • the length of the light receiver 150 may be equal to or longer than the length between the LDD region 123 of the source and the LDD region 133 of the drain.
  • the separated electrons move freely outside the grain boundary of the polysilicon, which is the light receiving unit 150.
  • a voltage is applied to the source 120 or the drain 130, electrons are attracted to the edges of the LDD regions 123 and 133 of the source or drain.
  • the attracted electrons accumulate near the boundary of the light receiving portion 150 adjacent to the LDD regions 123 and 133 to form an electric field.
  • a relatively very strong electric field is formed.
  • the electron focusing phenomenon near the boundary of the light receiving part 150 is further accelerated.
  • the intensity of light irradiated to the light receiver 150 increases, more electron-hole pairs are generated, thereby forming a larger electric field.
  • Tunneling is performed near the boundary 141 where the distance between the LDD region 123 of the source and the light receiving unit 150 is closest, and near the boundary 142 where the distance between the LDD region 133 of the drain and the light receiving unit 150 is closest. It is easily generated. In the vicinity of the boundary 141, 142, the tunneling of the electrons occurs as soon as the energy level condition is met. By the tunneling, electrons focused at the boundaries 141 and 142 of the light receiving unit 150 are moved to the source 120 or the drain 130. This results in an increase in the amount of charges in the hole by the number of electrons lost, and a change in the amount of charges in the light receiving unit 150 leads to an effect of lowering a threshold voltage of the channel, which eventually enters the light receiving unit 150. The induced light induces a current in the channel 160 of the light receiving element 100.
  • the light receiving device having such a structure may generate a flow of photo currents of several hundred to several thousand times more than the same amount of light as compared with a conventional photodiode. Specifically, photodiodes distinguish brightness by only the amount of charge accumulated in the capacitance.
  • the light receiving device 100 may control the current flow of the channel by changing the amount of charge of the light receiving unit 150 by light acts as an electric field effect.
  • the unit pixel of the image sensor can be implemented without designing a separate signal amplification device, thereby miniaturizing it.
  • the light receiving element 100 is a light receiving unit during the manufacturing process such that the channel 160 is just before the pinch off (pinch off) state without applying an external voltage to the source 120 and drain 130 It is prepared by adjusting the doping concentration of 150.
  • the light receiving device is considered by considering not only the doping concentration of the light receiving unit 150 but also other characteristics such as the aspect ratio (W / L) of the gate, the type of the doped ions, the thickness of the oxide film, and the dielectric constant of the oxide film.
  • W / L aspect ratio
  • the doping concentration of the light receiving unit 150 is directly related to the displacement of the silicon (Si) surface potential corresponding to the channel 160, and the Fermi level and the intrinsic nature of the silicon interface are changed by the displacement of the surface potential.
  • Threshold voltage is adjusted by changing the Intrinsic Level.
  • the interval between the Fermi level and the intrinsic level may be too narrow or the two levels overlap with each other, and thus the channel may not be incident. Excessive dark current may flow at 160.
  • FIG. 3 illustrates a structure of a sensitivity adjusting light receiving device according to an embodiment of the present invention.
  • the sensitivity adjusting light receiving device 200 receives light through the light receiving unit 250 in the same manner as the light receiving device 100 of FIG. 1, and adjusts the threshold voltage of the channel using tunneling to flow through the channel. Generate photocurrent.
  • the sensitivity control light receiving element 200 is formed in a PMOS structure will be described as an example.
  • the sensitivity-controlled light receiving device 200 may have an NMOS structure. Description common to the light receiving element of FIG. 1 will be omitted.
  • the sensitivity adjusting light receiving device 200 is formed on the P-type substrate 210, and forms an N well 215 by injecting N-type impurities into the P-type substrate 210. Thereafter, a high concentration of P-type impurities are implanted into the formed N wells 215 to form the source 220 and the drain 230.
  • a thin oxide film 240 is formed on the source 220 and the drain 230, and the light receiving unit 250 is disposed on the oxide film 240 with the oxide film 240 interposed therebetween. Opposite to 230).
  • Metal contacts 221 and 231 are formed on the source 220 and the drain 230 to be connected to external nodes.
  • the source 220 is connected to the outside through a metal line 222 connected to the metal contact 221, and likewise, the drain 230 is connected to the outside through a metal line 232 connected to the metal contact 231.
  • the N well 215 is formed in a floating structure. By floating the N well 215, it is possible to more easily detect a change in the amount of charge in the light receiving unit 250 generated by the incident light.
  • the light receiver 250 may be formed of polysilicon doped with N-type or P-type impurities.
  • the sensitivity control terminal 252 is formed on one side of the light receiving unit 250.
  • the sensitivity adjusting terminal 252 is connected to the light receiving unit 250 through a metal terminal 251 formed in a region in which light is not received by the light receiving unit 250.
  • the light receiving device 200 adjusts the threshold voltage of the channel 260 by controlling an external voltage applied through the sensitivity adjusting terminal 252.
  • the light blocking layer 270 is formed on the remaining area of the light receiving element 200 except for the upper part of the light receiving unit 250.
  • the light blocking layer 270 blocks incidence of light in a region other than the light receiving unit 250.
  • Metallic impurities included in the light shielding layer 270 make it difficult to generate electron-hole pairs by light, and reflect a considerable amount of incident light to block absorption of light in a region other than the light receiving unit 250. This is to allow the photocharges of the light-receiving unit 250 that absorbed light to efficiently tunnel.
  • the light blocking layer 270 may be formed through a metal or silicide process, and the formation of the light blocking layer 270 on the light receiving unit 250 may be excluded through a mask.
  • FIG. 4 is a view for explaining the principle of sensitivity adjustment of the sensitivity light receiving device of Figure 3
  • Figure 5 is a view for explaining the operation process of the sensitivity light receiving device of FIG.
  • a case where the sensitivity adjusting light receiving element has a PMOS structure will be described as an example.
  • FIG. 4 is an energy band diagram of the sensitivity adjusting light receiving device 200 including the light receiving unit 250, the oxide film 240, and the silicon channel 260.
  • the sensitivity adjusting light receiving element 200 adjusts the threshold voltage condition of the channel by applying an arbitrary external voltage using the sensitivity adjusting terminal 252 connected to the light receiving unit 250.
  • an external voltage Vg equal to or greater than a set voltage is applied to the light receiver 250 through the sensitivity adjusting terminal 252 (for example, when 2.5 V is applied when the set voltage is 1.9 V).
  • the threshold voltage condition no current flows in the channel 260, and the light receiving element 200 is not in operation as the light receiving element regardless of whether light is applied, that is, in a reset state. This is similar to the case where the light receiving element 100 having the light receiving unit 150 as the floating gate of FIG. 1 is intrinsic without impurities or doped with N-type ions.
  • FIG. 4B illustrates an energy band diagram when a set voltage (for example, 1.9V in FIG. 4B) is applied to the light receiving unit 250 through the sensitivity adjusting terminal 252.
  • a set voltage for example, 1.9V in FIG. 4B
  • the channel 260 is in the state just before pinch-off.
  • the photo-excited electrons are tunneled to a drain or a source, thereby causing a threshold.
  • photocurrent flows through the channel.
  • the doping concentration and aspect ratio (W / L) of the P-type impurity of the light receiving portion 150 is approximated so that the Fermi level and the intrinsic level at the silicon interface are approximated in the light receiving element 100 having the light receiving portion 150 as the floating gate of FIG. 1. This is similar to the case where it is designed with proper adjustment. However, unlike the light receiving device 100 of FIG. 1, the sensitivity control light receiving device 200 needs to finely adjust the doping concentration of impurities, the polarity of the ions, the aspect ratio, etc. in the manufacturing process in order to bring the channel into the state just before pinching off. There is a big difference in that the threshold voltage of the channel 260 can be adjusted by applying an appropriate setting voltage through the sensitivity adjusting terminal 252.
  • FIG. 4C illustrates an energy band diagram in which an external voltage is applied to the light receiving unit 250 through a sensitivity adjusting terminal 252 at 0V.
  • a Fermi level and an intrinsic level overlap the silicon interface to form a hole accumulation regime potential, and a current flows through the channel at all times.
  • Most of the current flowing in the channel in this state is composed of dark current. Therefore, by setting the external voltage applied to the light receiving unit 250 through the sensitivity adjusting terminal 252 to 0 V or more, the light current sensing efficiency can be easily increased by reducing the dark current component and increasing the signal current component.
  • the external voltage applied to the light receiving unit 250 through the sensitivity adjusting terminal 252 needs to be set in consideration of dark current components as well as light sensing performance.
  • the external voltage applied through the sensitivity control terminal 252 can be reduced in size by appropriately adjusting the concentration of impurities doped to the light receiving unit 250, the polarity of the ions, the aspect ratio, and the like, thereby consuming the entire image sensor. You can save power.
  • the sensitivity adjusting light receiving element 200 adjusts the threshold voltage of the channel 260 by adjusting an external voltage applied to the sensitivity adjusting terminal 252.
  • the threshold voltage of the channel 260 is adjusted, the channel 260 is in a state immediately before pinching off, and a depletion layer 261 is formed around the source 220, the drain 230, and the channel 260. .
  • tunneling phenomenon continuously occurs near the boundary between the light receiver 250 and the source 220 or the light receiver 250 and the drain 230.
  • the stronger the light intensity the more important the tunneling on the drain 230 side, and the weaker the light intensity, the more important the tunneling on the source 220 side is to maintain the equilibrium state.
  • FIG. 6 is an example of a circuit diagram of a unit pixel using the sensitivity adjusting light receiving device of FIG. 3.
  • the unit pixel illustrated in FIG. 6 includes one sensitivity adjusting light receiving element 200 and one selection element 300.
  • the selection device may be implemented with various devices.
  • a selection device can be formed using a conventional MOSFET structure.
  • the sensitivity adjusting light receiving device 200 and the selection device 300 can be implemented at a time through a single MOSFET manufacturing process, the manufacturing cost is low and the manufacturing process can be simplified.
  • the drain 230 of the sensitivity adjusting light receiving device 200 is connected to the power supply voltage VDD and the source 220 is connected to the drain 330 of the selection device 300.
  • the light receiving unit 250 of the sensitivity adjusting light receiving element 200 is opened to allow light to be incident thereon, and a sensitivity adjusting terminal 252 for applying an external voltage is connected to an unopened area of the light receiving unit 250.
  • the body 210 of the sensitivity adjusting light receiving element 200 and the body 310 of the selection element 300 may be formed in a floated structure.
  • the switching function may be maintained by applying a voltage slightly higher than the power voltage VDD.
  • the source 320 of the selection device 300 is connected to a unit pixel output terminal (Pixel out) to control the switching of the output of the sensitivity control light receiving device 200.
  • a control signal (select) for on-off control of the selection element 300 is applied through the gate 350.
  • the unit pixels are arranged in an array to form an image sensor.
  • different voltages may be applied to the sensitivity control terminals for each unit pixel to drive the sensors having different sensitivity values.
  • the uniformity of the image sensor may be ensured by controlling the non-uniformity of the characteristics of each unit pixel by adjusting the sensitivity for each unit pixel.
  • FIG. 7 is a cross-sectional view of a unit pixel including the sensitivity adjusting light receiving device 200 and the selection device 300 of FIG. 6.
  • the sensitivity adjusting light receiving device 200 and the selection device 300 may both be implemented in a floating structure using the same substrate as a body.
  • the source 210 of the sensitivity adjusting light receiving element 200 and the drain 330 of the selection element 300 may be formed on the same active region, thereby simplifying the structure of the unit pixel and reducing the size of the unit pixel. have.
  • FIG. 8 illustrates another example of a circuit diagram of a unit pixel using the sensitivity adjusting light receiving device of FIG. 3.
  • the unit pixel illustrated in FIG. 8 includes one sensitivity adjusting light receiving device 400, one selection device 500, and one reset device 600.
  • the reset device 600 may be implemented in a MOSFET structure.
  • the sensitivity adjusting light receiving device 400, the selection device 500, and the reset device 600 included in a single unit pixel may be implemented at a time through a single MOSFET manufacturing process, thereby lowering manufacturing cost and manufacturing process. Can be simplified.
  • a drain of the sensitivity control light receiving device 400 is connected to a power supply voltage VDD, a source is connected to a drain of the selection device 500, and a source of the selection device 500 is connected to a unit pixel output terminal. do.
  • the drain of the reset device 600 is connected to the N well body of the sensitivity adjusting light receiving device 400, and a bias voltage for reset is applied to a source of the reset device 600.
  • the N well functions as an isolation device that separates adjacent devices.
  • the unit pixel is reset by the reset device 600. Specifically, when a bias voltage is applied to the source of the reset device 600, a predetermined voltage is applied to the N well of the sensitivity light receiving device 400 connected to the drain of the reset device 600 to remove residual charges of the N well. By initializing the sensitivity adjustment light receiving device 400.
  • the sensitivity control light receiving device 400 is operated by operating the selection device 500. Since all the charge remaining in the N-well floated before the operation of the sensitivity control light receiving device 400 is removed, it is possible to suppress the generation of dark current due to the remaining charge.
  • the drain of the reset device 600 is connected to the N well, but after the reset operation is completed, that is, in the state in which the sensitivity adjusting light receiving device 400 is operating while the selection device 500 is on. Since the N well is the same as the floated state, no photocurrent is lost.
  • FIG. 9 is a cross-sectional view of a unit pixel including the sensitivity adjusting light receiving device 400, the selection device 500, and the reset device 600 of FIG. 8.
  • the sensitivity light receiving device 400, the selection device 500, and the reset device 600 are all implemented by forming N wells directly on the same substrate, and the N wells are described above. As in the operation of the sensitivity control light receiving device 400 is maintained in a floating state.
  • the unit pixel is composed of only the sensitivity control light receiving device 400, the selection device 500, and the reset device 600 having a MOSFET structure, the structure is simple, and the unit pixel can be realized at a time through a single MOSFET manufacturing process. Thus the manufacturing process can be simplified.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Light Receiving Elements (AREA)

Abstract

감도조절이 가능한 수광 소자 및 이를 이용한 이미지 센서의 단위 화소가 개시된다. 상기 수광 소자는 빛을 흡수하는 수광부, 산화막에 의해 상기 수광부와 이격되는 소스(source) 및 드레인(drain), 상기 소스와 드레인 사이에 형성되어 상기 소스와 드레인 간에 전류의 흐름을 생성하는 채널(channel), 그리고 상기 수광부에 전압을 인가하는 감도조절 단자를 포함하며, 상기 수광부는 제1형 불순물로 도핑되고 상기 소스 및 드레인은 제2형 불순물로 도핑되고, 상기 수광부에 입사된 빛에 의해 여기된(excited) 전자가 상기 소스 또는 드레인으로 터널링(tunneling)됨에 따른 상기 수광부의 전하량 변화에 의해 상기 채널의 전류 흐름이 제어되며, 상기 감도조절 단자를 통해 인가되는 전압을 제어하여 상기 채널의 문턱 전압(threshold voltage)을 조절한다.

Description

이미지 센서의 단위 화소 및 그 수광 소자
본 발명은 이미지 센서의 단위 화소 및 단위 화소의 수광 소자에 관한 것으로서, 특히 수광부로 기능하는 게이트에 걸리는 전압을 조절하여 수광부의 광 감지 감도를 조절할 수 있는 이미지 센서의 단위 화소 및 단위 화소의 수광 소자에 관한 것이다.
이미지 센서는 광학적 신호를 전기적 영상 신호로 바꿔주는 센서이다. 이미지 센서의 단위 화소 내에 있는 수광부에 빛이 조사되면, 각 단위 화소들에 입사된 빛과 그 양을 감지하여 광 신호를 전기 신호로 변환 생성한 후, 영상을 형성하기 위한 아날로그 및 디지털 회로부로 전기적 신호를 전달하는 역할을 한다.
이미지 센서의 단위 화소의 수광부에 빛이 입사되면, 입사되는 광자 하나에 대해 하나의 전자-정공쌍(EHP, electron-hole pair)이 생성되고, 생성된 전자 및 정공들은 수광부인 포토 다이오드에 축적된다.
포토 다이오드의 최대축적 정전용량은 포토 다이오드의 수광 면적에 비례한다. 특히, CMOS 이미지 센서의 경우, 수반되는 트랜지스터들이 배치되는 영역이 CCD 이미지 센서에 비해 상대적으로 넓으므로, 수광 면적을 늘리는 것에는 물리적인 한계가 있다. 또한, 이미지 센서의 수광부로 주로 사용되는 포토 다이오드는 정전용량이 상대적으로 적어서 적은 광량에도 쉽게 포화되므로 신호를 아날로그적으로 세분화하기 어렵다.
따라서, CMOS 이미지 센서의 단위 화소는 한정된 수광 영역을 통해 신호처리를 위한 최소한의 전하를 생성하기 위하여 상대적으로 긴 광전하 축적 시간이 요구된다. 그러므로, 이러한 수광부를 가진 단위 화소를 이용하여 고밀도/고속 프레임의 이미지 센서의 제작이 용이하지 않다.
이러한 종래의 이미지 센서의 한계를 극복하기 위하여, 2011년 9월 2일자로 본원 출원인에 의해 출원된 미국 특허등록번호 US 8569806 B2의 “UNIT PIXEL OF IMAGE SENSOR AND PHOTO DETECTOR THEREOF” 에는, 플로팅된 게이트에서 소스 또는 드레인 전극으로의 전하의 터널링(tunneling)을 이용하여 채널(channel)의 문턱 전압(threshold voltage)을 조절하는 이미지 센서의 단위 화소가 개시되어 있다. 본원 명세서에서는 상기 US8569806 B2의 명세서 전체에 개시된 기술을 참고로서 원용한다.
하지만, 상기 US 8569806 B2의 수광 소자는 초기 제작 공정에서 플로팅 게이트와 소자분리용 웰에 도핑된 이온의 농도와 극성에 의해 광전변환용 문턱 전압이 결정되며, 따라서 이미지 센서의 감도값 또한 제작 공정 중에 도핑된 이온의 농도와 극성에 의해 정해진다.
결국, 상기 US 8569806 B2의 단위 화소의 광전류(photo current)의 크기, 암전류(dark current)의 크기 및 감도값이 제작 공정에서 미리 정해진 플로팅 게이트의 도핑 농도에 의해 주로 결정되기 때문에, 요구되는 사양에 맞는 최적의 문턱 전압 조건을 만족될 때까지 수 차례 반복적인 제작 과정이 요구되는 문제점이 있다.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 수광부로 동작하는 게이트에 전압을 인가하여 채널의 문턱 전압을 조절함으로써 수광 소자의 광감도 특성을 제어할 수 있는 이미지 센서의 단위 화소를 제공하는 것을 목적으로 한다.
또한, 본 발명은 자동 노출(Auto Exposure) 및 전자 셔터(Electric Shutter)와 같은 기능을 수행할 수 있는 이미지 센서의 단위 화소를 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명의 일 측면에 따른 감도 조절 수광 소자는, 빛을 흡수하는 수광부, 산화막에 의해 상기 수광부와 이격되는 소스(source) 및 드레인(drain), 상기 소스와 드레인 사이에 형성되어 상기 소스와 드레인 간에 전류의 흐름을 생성하는 채널(channel), 그리고 상기 수광부에 전압을 인가하는 감도조절 단자를 포함하며,
상기 수광부는 제1형 불순물로 도핑되고 상기 소스 및 드레인은 제2형 불순물로 도핑되고, 상기 수광부에 입사된 빛에 의해 여기된(excited) 전자가 상기 소스 또는 드레인으로 터널링(tunneling)됨에 따른 상기 수광부의 전하량 변화에 의해 상기 채널의 전류 흐름이 제어되며, 상기 감도조절 단자를 통해 인가되는 전압을 제어하여 상기 채널의 문턱 전압(threshold voltage)을 조절한다.
여기서, 상기 수광 소자는 상기 감도조절 단자를 통해 인가되는 전압의 조절을 통해 상기 채널의 페르미 준위(Fermi level)와 진성 준위(intrinsic level)의 간격이 조절되어 상기 문턱 전압이 조절되는 것을 특징으로 한다.
여기서, 상기 소스 및 드레인은 제1형 불순물이 도핑된 웰(well) 상에 형성되며, 상기 웰은 플로팅 상태일 수 있다.
여기서, 상기 감도조절 단자는 상기 수광부에 인가되는 전압의 크기를 조절하여 상기 수광부의 감도를 조절할 수 있다.
여기서, 상기 터널링은 상기 소스 및 드레인 중 어느 하나와 상기 수광부와의 사이의 산화막 영역에서 발생될 수 있다.
여기서, 상기 감도조절 단자는 설정 전압 이상의 전압을 상기 수광부에 인가하여 상기 수광부를 리셋시킬 수 있다.
또한, 본 발명의 다른 실시예에 따른 이미지 센서의 단위 화소는, 입사된 빛에 의한 전하량의 변화를 이용하여 전류의 흐름을 발생시키는 수광 소자 및 상기 수광 소자에서 발생된 전류를 단위 화소 출력단으로 출력시키는 선택 소자를 포함하되,
상기 수광 소자는 빛을 흡수하는 수광부와, 산화막에 의해 상기 수광부와 이격되는 소스(source) 및 드레인(drain)과, 상기 소스 및 드레인 사이에 형성되어 상기 소스와 드레인 간에 전류의 흐름을 생성하는 채널(channel)과, 상기 수광부에 전압을 인가하는 감도조절 단자를 포함하고, 상기 수광 소자는 상기 수광부에 입사된 빛에 의해 여기된(excited) 전자가 상기 소스 또는 드레인으로 터널링(tunneling)됨에 따른 상기 수광부의 전하량 변화에 기초하여 상기 채널의 전류 흐름을 제어하며, 상기 감도조절 단자를 통해 인가되는 전압을 조절하여 상기 채널의 문턱 전압(threshold voltage)를 조절한다.
여기서, 상기 선택 소자는, 상기 수광 소자 및 단위 화소 출력단에 각각 연결되는 드레인 및 소스와, 외부로부터 선택 신호가 인가되는 게이트를 포함하고, 상기 인가된 선택 신호에 기초하여 스위칭 동작을 수행할 수 있다.
여기서, 상기 수광 소자는, 상기 감도조절 단자를 통해 인가되는 전압을 조절하여 상기 채널의 페르미 준위(Fermi level)와 진성 준위(intrinsic level)의 간격을 조절함으로써 문턱 전압을 조절할 수 있다.
여기서, 상기 수광 소자의 소스와 상기 선택 소자의 드레인은 동일한 활성 영역 상에 형성될 수 있다.
여기서, 상기 수광 소자는, 입사 광량에 기초하여 상기 감도조절 단자로의 인가 전압을 조절하여, 광전류량의 급격한 증가로 인한 영상 포화를 억제할 수 있다.
또한, 본 발명의 다른 실시예에 따른 이미지 센서의 단위 화소는, 입사된 빛에 의한 전하량의 변화를 이용하여 전류의 흐름을 발생시키는 수광 소자, 상기 수광 소자에서 발생된 전류를 단위 화소 출력단으로 출력시키는 선택 소자 및 상기 수광 소자에 잔류된 전하를 제거하는 리셋 소자를 포함하되,
상기 수광 소자는 빛을 흡수하는 수광부와, 산화막에 의해 상기 수광부와 이격되는 소스(source) 및 드레인(drain)과, 상기 소스 및 드레인 사이에 형성되어 상기 소스와 드레인 간에 전류의 흐름을 생성하는 채널(channel)과, 상기 수광부에 전압을 인가하는 감도조절 단자를 포함하고, 상기 수광 소자는 상기 수광부에 입사된 빛에 의해 여기된(excited) 전자가 상기 소스 또는 드레인으로 터널링(tunneling)됨에 따른 상기 수광부의 전하량 변화에 기초하여 상기 채널의 전류 흐름을 제어하며, 상기 수광 소자는 상기 감도조절 단자를 통해 인가되는 전압을 조절하여 상기 채널의 문턱 전압(threshold voltage)를 조절한다.
여기서, 상기 리셋 소자는 상기 수광 소자가 형성된 확산 영역(diffusion well) 내의 잔류 전하를 제거할 수 있다.
여기서, 상기 확산 영역은 상기 수광 소자의 동작 중에 플로팅 상태로 유지될 수 있다.
여기서, 상기 수광 소자는 상기 감도조절 단자를 통해 설정 전압 이상의 전압을 인가하여 상기 채널의 문턱 전압을 높임으로써 상기 단위 화소를 리셋시킬 수 있다.
여기서, 상기 수광 소자는, 상기 감도조절 단자를 통해 인가되는 전압을 조절하여 상기 채널의 페르미 준위(Fermi level)와 진성 준위(intrinsic level)의 간격을 조절함으로써 문턱 전압을 조절할 수 있다.
상기 목적을 달성하기 위한 구체적인 사항들은 첨부된 도면과 함께 상세하게 후술된 실시예들을 참조하면 명확해질 것이다.
[유리한 효과]
본 발명의 실시예에 의하면, 이미지 센서의 수광 소자의 문턱 전압을 이온 주입을 통한 도핑농도로 조절하는 대신 외부 전계를 인가하여 조절함으로써 최적의 광 응답 특성을 얻을 수 있다.
또한, 인가 전압을 조절하여 회로상에서 수광 소자의 감도 특성을 조절할 수 있으며, 수광 소자의 광 감도 등의 소자 특성값들에 대한 공정 의존성을 줄일 수 있다.
또한, 포토 다이오드에 비하여 동일 광량 대비 월등히 높은 고감도 특성을 가지는 수광 소자를 구현할 수 있어서, 저조도 환경에서도 고속 동영상 촬영이 가능한 이미지 센서를 제조할 수 있다.
또한, 인가 전압을 조절하여 입사 광량에 따른 광전류의 크기를 조절할 수 있어서, 기존의 아날로그 회로 상에서 별도로 수행하던 자동노출 조절 기능을 각 화소 단위에서 수행할 수 있다.
또한, 감도값 조절용 게이트에 리셋 전압을 인가하여 각 화소를 리셋할 수 있으며, 별도의 트랜지스터를 사용하지 않고도 전자 셔터 기능을 구현할 수 있다.
도 1은 본 발명의 일 실시예에 따른 수광 소자의 사시도이다.
도 2는 도 1의 수광 소자의 동작 원리를 설명하기 위한 단면도이다.
도 3은 본 발명의 일 실시예에 따른 감도조절 수광 소자의 구조를 설명하기 위한 도면이다.
도 4는 도 3의 감도조절 수광 소자의 감도 조절 원리를 설명하기 위한 도면이다.
도 5는 도 3의 감도조절 수광 소자의 동작 과정을 설명하기 위한 도면이다.
도 6은 도 3의 감도조절 수광 소자를 이용한 단위 화소의 회로도의 일례이다.
도 7은 도 6의 감도조절 수광 소자를 이용한 단위 화소의 단면도이다.
도 8은 도 3의 감도조절 수광 소자를 이용한 단위 화소의 회로도의 다른 예이다.
도 9는 도 8의 감도조절 수광 소자를 이용한 단위 화소의 단면도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 이를 상세한 설명을 통해 상세히 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
본 발명을 설명함에 있어서, 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다. 또한, 본 명세서의 설명 과정에서 이용되는 숫자(예를 들어, 제1, 제2 등)는 하나의 구성요소를 다른 구성요소와 구분하기 위한 식별기호에 불과하다.
또한, 본 명세서에서, 일 구성요소가 다른 구성요소와 "연결된다" 거나 "접속된다" 등으로 언급된 때에는, 상기 일 구성요소가 상기 다른 구성요소와 직접 연결되거나 또는 직접 접속될 수도 있지만, 특별히 반대되는 기재가 존재하지 않는 이상, 중간에 또 다른 구성요소를 매개하여 연결되거나 또는 접속될 수도 있다고 이해되어야 할 것이다.
이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
이하에서, 첨부된 도면을 참조하여 본 발명의 감도 조절, 자동 노출 및 전자 셔터 기능이 가능한 이미지 센서의 단위 화소 및 상기 단위 화소의 수광 소자를 설명하기로 한다.
도 1 - 수광 소자의 구조
도 1은 본 발명의 일 실시예에 따른 이미지 센서의 단위 화소를 구성하는 수광 소자를 나타내고 있다.
도 1을 참조하면, 상기 단위 화소의 수광 소자는 종래의 포토 다이오드 대신 터널 접합(tunnel junction) 소자를 이용하여 구현된다. 상기 터널 접합 소자는 두 개의 도체나 반도체 사이에 얇은 절연층이 접합된 구조로서, 상기 절연층에서 발생하는 터널링 효과를 이용하여 동작하는 소자를 지칭한다.
상기 수광 소자(100)는 예를 들어 n-MOSFET 구조로 구현될 수 있다. 이 경우, 상기 수광 소자(100)는 P형 기판(110) 상에 형성되며, 일반적인 NMOS 전자 소자에서의 소스에 해당하는 N+ 확산층(120)과 드레인에 해당하는 N+ 확산층(130)을 포함한다. 이하, N+ 확산층(120, 130)을 각각 상기 수광 소자에서의 “소스” 및 “드레인”이라고 호칭하기로 한다.
상기 소스(120)와 드레인(130)의 상부에는 외부 노드와 연결되는 금속 접점(121, 131)이 형성된다. 상기 금속 접점(121, 131)은 각각 금속 라인(122, 132)을 통해 외부와 연결된다.
소스(120)와 드레인(130)의 사이에는 얇은 산화막(140)이 형성되며, 산화막(140)의 상부에는 일반적인 NMOS 구조에서의 게이트에 해당하는 P형의 불순물이 도핑된 폴리 실리콘(poly-silicon)(150)이 형성된다. 상기 폴리 실리콘(150)은 상기 수광 소자(100)에서 빛을 흡수하는 수광부로서 기능한다. 이하, 상기 폴리 실리콘(150)을 “수광부”라고 호칭하기로 한다.
상기 수광부(150)는 산화막(140)에 의해 상기 소스(120) 및 드레인(130)과 이격된다. 상기 수광부(150)와 상기 소스(120) 또는 드레인(130)의 사이에서 터널링(tunneling)이 발생된다. 이때, 상기 터널링의 발생을 용이하게 하기 위하여, 산화막(140)의 두께는 10nm 이하로 형성되는 것이 바람직하다.
일반적인 MOSFET 소자의 게이트와는 달리, 상기 수광 소자(100)는 상기 수광부(150)의 상부(151)를 제외한 나머지 영역의 상부에 차광층(170)이 형성된다.
도 2 - 수광 소자의 동작 원리
도 2는 본 발명의 일 실시예에 따른 수광 소자의 동작 원리를 설명하기 위한 단면도이다.
도 2를 참조하면, 본 발명의 수광 소자(100)는 수광부(150)의 상부를 통해 빛을 수용한다. 입사된 빛에 의해 소스(120) 및 드레인(130)과 수광부(150) 간에 일정 전계가 형성되고, 입사된 빛에 의해 소스(120)와 드레인(130) 사이에 채널(160)이 형성된다. 구체적으로, 수광부(150)에 입사된 빛에 의해 전자-정공쌍(electron-hole pair, EHP)이 생성되고, 생성된 전자-정공쌍의 전자는 산화막(140)을 터널링(tunneling)하여 소스(120) 또는 드레인(130)으로 방출된다.
수광부(150)에서 전자가 소실됨에 따라 수광부(150)에서의 정공의 전하량이 상대적으로 증가하게 된다. 이러한 전하량의 변화는 상기 채널(160)의 문턱 전압(threshold voltage)을 낮추게 되어 채널에 전류가 흐르게 된다.
한편, 상기 수광 소자(100)는 LDD(light doped drain) 구조로 형성될 수 있다. LDD 공정을 통해 수광 소자(100)를 구현하면 단채널 효과(short channel effect)로 인한 핫 캐리어(hot carrier)의 발생을 감소시킬 수 있다.
NMOS 방식의 수광 소자(100)를 예로 들면, 수광 소자(100)는 P형 기판(110) 상에 형성되며, 고농도로 도핑된 N형 확산층으로 된 소스(120) 및 드레인(130)을 포함한다. 소스(120) 및 드레인(130) 사이에 저농도로 도핑된 N형 확산층인 LDD 영역(123, 133)이 각각 소스(120) 및 드레인(130)에 인접하게 형성된다. 상기 수광부(150)의 길이는 소스의 LDD 영역(123)과 드레인의 LDD 영역(133) 간의 길이보다 같거나 길게 형성될 수 있다.
수광부(150)에 도핑된 불순물의 결합 에너지 및 폴리실리콘의 밴드 갭(band gap) 보다 큰 에너지를 가지는 빛이 조사되면, 수광부(150)에 광 여기로 인해 전자-정공쌍이 생성되고, 생성된 전자-정공쌍은 재결합되기 전까지 일정 시간 동안 전자와 정공의 상태로 각각 존재한다.
분리된 전자는 수광부(150)인 폴리 실리콘의 그레인 경계(grain boundary)의 외부에서 자유롭게 이동한다. 이때, 소스(120) 또는 드레인(130)에 전압을 인가하면, 전자는 소스 또는 드레인의 LDD 영역(123, 133)의 경계(edge) 부근으로 당겨진다. 당겨진 전자는 LDD 영역(123, 133)에 인접한 수광부(150)의 경계 부근에 축적되면서 전계를 형성한다. 집속되는 전자수가 증가할수록 상대적으로 매우 강한 전계가 형성된다. 이로 인해, 수광부(150)의 경계 부근에서의 전자의 집속 현상은 더욱 가속화된다. 수광부(150)에 조사되는 빛의 세기가 강할수록 더욱 많은 전자-정공쌍이 생성되어 더욱 큰 전계가 형성되게 된다.
소스의 LDD 영역(123)과 수광부(150) 사이의 거리가 가장 가까운 경계 부근(141) 및 드레인의 LDD 영역(133)과 수광부(150) 사이의 거리가 가장 가까운 경계 부근(142)에서 터널링이 용이하게 발생된다. 상기 경계 부근(141, 142)에서 에너지 준위 조건이 충족되는 순간 전자의 터널링이 발생된다. 터널링에 의해 수광부(150)의 경계 부근(141, 142)에 집속되어 있던 전자가 소스(120) 또는 드레인(130)으로 이동된다. 이로 인해 소실된 전자의 수만큼 정공의 전하량이 증가하는 효과가 발생하며, 수광부(150)에서의 전하량의 변화는 채널의 문턱 전압(threshold voltage)을 낮추는 효과로 이어져, 결국 수광부(150)에 입사된 빛에 의해 수광 소자(100)의 채널(160)에 전류가 유기된다.
이와 같은 구조의 수광 소자는 종래의 포토 다이오드에 비해 동일 광량 대비 수백~수천 배 이상의 광전류의 흐름을 발생시킬 수 있다. 구체적으로, 포토 다이오드는 정전 용량에 축적된 전하량만으로 밝기를 구분한다. 반면에, 상기 수광 소자(100)는 빛에 의한 수광부(150)의 전하량 변화가 전계 효과로 작용하여 채널의 전류 흐름을 제어할 수 있다. 또한, 필요한 전하는 드레인을 통해서 무한히 공급되므로 수광 소자 자체에서 신호를 증폭시키는 효과가 있다. 따라서, 별도의 신호 증폭 소자를 설계하지 않고 이미지 센서의 단위 화소를 구현할 수 있어서 소형화가 가능하다.
한편, 상기 수광 소자(100)는 소스(120) 및 드레인(130)에 외부 전압을 인가하지 않은 상태에서 상기 채널(160)이 핀치 오프(pinch?off) 직전의 상태가 되도록 제조 공정 과정에서 수광부(150)의 도핑 농도를 조절하여 제조된다.
이때, 최적의 문턱 전압 조건을 찾기 위해 수광부(150)의 도핑 농도 뿐만 아니라 게이트의 종횡비(W/L), 도핑되는 이온의 종류, 산화막의 두께, 산화막의 유전률 등 다른 특성들을 함께 고려하여 수광 소자(100)를 실험적으로 반복 제작한다. 구체적으로, 수광부(150)의 도핑 농도는 상기 채널(160)에 해당되는 실리콘(Si) 표면 포텐셜의 변위에 직접적으로 관계되며, 표면 포텐셜의 변위에 의해 실리콘 계면의 페르미 준위(Fermi Level)와 진성 준위(Intrinsic Level)의 간격이 바뀜으로 인해 문턱 전압이 조절된다.
이 경우, 제조 공정 상에서 수광부(150)에 불순물이 많이 도핑되면 상기 페르미 준위와 진성 준위의 간격이 적정 간격에 비해 지나치게 좁아지거나 두 준위가 겹쳐질 수 있으며, 이로 인해 빛이 입사되지 않는 상태에서도 채널(160)에 과도한 암전류(dark current)가 흐를 수 있다.
도 3 - 감도 조절 수광 소자의 구조
도 3은 본 발명의 일 실시예에 따른 감도조절 수광 소자의 구조를 도시하고 있다.
도 3을 참조하면, 감도조절 수광 소자(200)는 상기 도 1의 수광 소자(100)와 동일하게 수광부(250)를 통해 빛을 수광하고 터널링을 이용하여 채널의 문턱 전압을 조절하여 채널에 흐르는 광전류를 발생시킨다. 이하에서 상기 감도조절 수광 소자(200)가 PMOS 구조로 형성되는 경우를 예로서 설명한다. 물론 상기 감도조절 수광 소자(200)를 NMOS 구조로 할 수도 있음은 당연하다. 상기 도 1의 수광 소자와 공통되는 설명은 생략하기로 한다.
상기 감도조절 수광 소자(200)는 P형 기판(210) 상에 형성되며, P형 기판(210)에 N형 불순물을 주입하여 N웰(well)(215)을 형성한다. 이후, 형성된 N웰(215) 상에 고농도의 P형 불순물을 주입하여 소스(220)와 드레인(230)을 형성한다. 소스(220)와 드레인(230)의 상부에는 얇은 산화막(240)이 형성되며, 상기 산화막(240)의 상부에는 수광부(250)가 산화막(240)을 사이에 두고 상기 소스(220) 및 드레인(230)과 대향되게 형성된다.
소스(220)와 드레인(230)의 상부에는 외부 노드와 연결되는 금속 접점(221, 231)이 형성된다. 소스(220)는 금속 접점(221)에 연결된 금속 라인(222)을 통해 외부와 연결되며, 마찬가지로, 드레인(230)은 금속 접점(231)에 연결된 금속 라인(232)을 통해 외부와 연결된다.
상기 N웰(215)은 플로팅(floating)된 구조로 형성된다. N웰(215)이 플로팅됨으로써, 빛의 입사에 의해 발생되는 수광부(250) 내의 전하량의 변화를 보다 용이하게 감지할 수 있다.
상기 수광부(250)는 N형 또는 P형 불순물이 도핑된 폴리 실리콘으로 형성될 수 있다. 상기 수광부(250)의 일측에 감도조절 단자(252)가 형성된다. 상기 감도조절 단자(252)는 수광부(250)에서 빛을 받지 않는 영역에 형성된 금속 단자(251)를 통해 상기 수광부(250)에 연결된다. 상기 수광 소자(200)는 상기 감도조절 단자(252)를 통해 인가되는 외부 전압을 제어하여 채널(260)의 문턱 전압을 조절한다.
상기 수광부(250)의 상부를 제외한 수광 소자(200)의 나머지 영역에는 상부에 차광층(270)이 형성된다. 상기 차광층(270)은 수광부(250) 이외의 영역에서의 빛의 입사를 차단한다. 차광층(270)에 포함된 금속성 불순물이 빛에 의한 전자-정공쌍의 생성을 어렵게 하며, 입사되는 빛의 상당량을 반사시켜서 수광부(250) 이외의 영역에서 빛이 흡수되는 것을 차단한다. 이는 빛을 흡수한 수광부(250)의 광전하들이 효율적으로 터널링을 하도록 하기 위함이다. 또한, 주어진 채널(260) 이외의 기생 전하들의 발생을 억제함과 동시에 제어할 수 있는 광전류를 얻기 위함이다. 상기 차광층(270)은 금속 또는 실리사이드(silicide) 공정을 통해 형성될 수 있으며, 마스크를 통해 수광부(250)의 상부에 차광층(270)의 형성을 제외시킬 수 있다.
도 4, 도 5 - 감도 조절 원리
도 4는 도 3의 감도조절 수광 소자의 감도 조절 원리를 설명하기 위한 도면이며, 도 5는 도 3의 감도조절 수광 소자의 동작 과정을 설명하기 위한 도면이다. 이하에서, 상기 감도조절 수광 소자가 PMOS 구조인 경우를 예로서 설명하기로 한다.
도 4에는 수광부(250), 산화막(240), 실리콘 채널(260)로 구성된 상기 감도조절 수광 소자(200)의 에너지 밴드(energy band) 다이어그램이 도시되어 있다. 상기 감도조절 수광 소자(200)는 수광부(250)에 연결된 감도조절 단자(252)를 이용하여 임의의 외부 전압을 인가하여 채널의 문턱 전압 조건을 조절한다.
도 4(a)를 살펴보면, 상기 감도조절 단자(252)를 통해 수광부(250)에 설정 전압 이상의 외부 전압(Vg)(예를 들어, 설정 전압이 1.9V인 경우에 2.5V를 인가한 경우)이 인가되면, PMOS 채널이 형성될 수 있는 실리콘 계면의 포텐셜 상태가 핀치 오프(pinch-off) 조건인 ‘EF=Ei’ 보다 큰 문턱 전압 조건 ‘EF>Ei’ 이 된다. 상기 문턱 전압 조건에서는 채널(260)에 전류가 흐르지 않으며, 수광 소자(200)는 빛의 인가 유무에 관계없이 수광 소자로서 동작하지 않는 상태, 즉 리셋 상태가 된다. 이는 도 1의 플로팅 게이트로 된 수광부(150)를 구비한 수광 소자(100)에서 수광부(150)에 불순물이 도핑되지 않은 진성(intrinsic) 상태이거나 또는 N형 이온이 약하게 도핑된 경우와 유사하다.
한편 상기와 같이 설정 전압 이상의 외부 전압을 감도조절 단자(252)를 통해 이미지 센서의 모든 단위 화소의 수광부(250)에 인가하면, 전압이 인가됨과 동시에 모든 단위 화소는 리셋 상태가 된다. 이를 통해 별도의 트랜지스터 소자를 부가하지 않고도 전자 셔터 기능을 구현할 수 있게 된다.
도 4(b)에는 상기 감도조절 단자(252)를 통해 수광부(250)에 설정 전압(예를 들어, 도 4(b)에서는 1.9V)이 인가된 경우의 에너지 밴드 다이어그램이 도시되어 있다. 이 경우, 실리콘 계면의 포텐셜이 ‘EF = Ei’에 가깝게 되어 채널(260)이 핀치 오프(pinch-off) 직전의 상태가 된다. 또한, 이 상태에서는 수광부(250)에 빛이 입사되지 않으면 채널(260)에 광전류가 흐르지 않으며, 약간의 빛이라도 수광부(250)에 입사되면 광 여기된 전자들이 드레인 또는 소스로 터널링되고 이로 인해 문턱전압을 낮춰주어 채널에 광전류가 흐르게 된다. 이는 도 1의 플로팅 게이트로 된 수광부(150)를 구비한 수광 소자(100)에서 실리콘 계면에서의 페르미 준위와 진성 준위가 근사하도록 수광부(150)의 P형 불순물의 도핑 농도 및 종횡비(W/L)를 적절히 조절하여 설계된 경우와 유사하다. 다만, 도 1의 수광 소자(100)와 달리 상기 감도조절 수광 소자(200)는 채널을 핀치 오프 직전으로 상태로 만들기 위하여 제조 공정 상에서 불순물의 도핑 농도나 이온의 극성, 종횡비 등을 세밀하게 조절할 필요가 없이, 감도 조절 단자(252)를 통해서 적절한 설정 전압을 인가하여 채널(260)의 문턱 전압을 조절할 수 있다는 점에서 큰 차이가 있다. 또한, 상기 설정 전압이 인가된 상태에서 수광 소자에 많은 양의 빛이 짧은 시간 동안 입사되면 채널에 과도한 광전류가 흐르게 되어 영상이 포화 상태가 될 수 있다. 이를 방지하기 위하여, 많은 양의 빛이 갑자기 입사되는 경우에 상기 설정 전압을 다소 높게(예를 들어, 1.9V보다 다소 높게) 설정하여 인가함으로써 수광 소자에서의 영상 포화를 사전에 방지하도록 하는 자동 노출 기능이 구현될 수 있다.
도 4(c)에는 수광부(250)에 감도 조절 단자(252)를 통해 외부 전압을 0V로 인가한 상태의 에너지 밴드 다이어그램이 도시되어 있다. 이 경우, 실리콘 계면에는 페르미 준위와 진성 준위가 겹쳐져서 포텐셜적으로 정공 축적 영역(hole accumulation regime)이 형성되며, 항시 채널에는 전류가 흐르는 상태가 된다. 이 상태에서 채널에 흐르는 전류의 대부분은 암전류로 구성되어 있다. 따라서, 감도 조절 단자(252)를 통해 수광부(250)에 인가되는 외부 전압을 0V 이상으로 함으로써 암전류 성분을 줄이고 신호전류 성분을 늘려서 용이하게 수광 감지 효율을 증가시킬 수 있다.
이와 같이, 감도 조절 단자(252)를 통해 수광부(250)에 인가되는 외부 전압은 광 감지 성능 뿐만 아니라 암전류 성분도 고려하여 설정할 필요가 있다. 또한, 감도 조절 단자(252)를 통해 인가되는 외부 전압은 수광부(250)에 도핑되는 불순물의 농도나 이온의 극성, 종횡비 등을 적절히 조절함으로써 그 크기를 줄일 수 있으며, 이를 통해 이미지 센서 전체의 소비 전력을 절감시킬 수 있다.
도 5를 참조하면, 상기 감도조절 수광 소자(200)는 감도조절 단자(252)에 인가되는 외부 전압을 조절하여 채널(260)의 문턱 전압을 조절한다. 채널(260)의 문턱 전압이 조절되면 상기 채널(260)이 핀치 오프 직전의 상태가 되며, 상기 소스(220), 드레인(230) 및 채널(260)의 주위에는 공핍층(261)이 형성된다.
핀치 오프 직전의 상태에서 수광부(250)에 빛이 조사되면, 수광부(250)와 소스(220), 또는 수광부(250)와 드레인(230) 간의 경계 부근에서 터널링 현상이 지속적으로 발생한다. 이때, 빛의 세기가 강할수록 드레인(230) 쪽의 터널링이 보다 주요하게 작용하며, 빛의 세기가 약할수록 소스(220) 쪽의 터널링이 보다 주요하게 작용하게 되어 평형 상태를 유지하게 된다.
도 6, 도 7 - 단위 화소의 실시예
다음으로 상기 감도조절 수광 소자를 이용하여 구현되는 이미지 센서의 단위 화소의 바람직한 실시예들을 도면을 참조하여 설명하기로 한다.
도 6은 도 3의 감도조절 수광 소자를 이용한 단위 화소의 회로도의 일례이다. 도 6에 도시된 단위 화소는 하나의 감도조절 수광 소자(200)와 하나의 선택 소자(300)를 포함한다.
이때, 상기 선택 소자는 다양한 소자로 구현될 수 있다. 예를 들어, 종래의 MOSFET 구조를 이용하여 선택 소자를 형성할 수 있다. 이 경우, 감도조절 수광 소자(200)와 선택 소자(300)를 단일의 MOSFET 제조 공정을 통해 한번에 구현할 수 있어서, 제조 비용이 저렴하고 제조 공정이 단순화될 수 있다.
감도조절 수광 소자(200)의 드레인(230)은 전원전압(VDD)에 연결되며 소스(220)는 선택 소자(300)의 드레인(330)에 연결된다. 상기 감도조절 수광 소자(200)의 수광부(250)는 빛이 입사될 수 있도록 상부가 개방되며, 수광부(250)의 개방되지 않은 영역에 외부전압 인가를 위한 감도조절 단자(252)가 연결된다.
감도조절 수광 소자(200)의 바디(210) 및 선택 소자(300)의 바디(310)는 플로팅된 구조로 형성될 수 있다. 이 경우, 스위치로 동작하는 선택 소자(300)의 게이트 제어는 전운 전압(VDD)에 비해서 약간 높은 전압을 인가하는 방식으로 스위칭 기능이 유지될 수 있다.
선택 소자(300)의 소스(320)는 단위화소 출력단(Pixel out)에 연결되어 감도조절 수광 소자(200)의 출력을 스위칭 제어한다. 선택 소자(300)의 온-오프 제어를 위한 제어신호(select)는 게이트(350)를 통해 인가된다.
상기 단위 화소는 어레이 형태로 배치되어 이미지 센서를 구성하게 된다. 이때, 각각의 단위 화소별로 감도조절 단자에 서로 다른 전압을 인가하여 각각 다른 감도값을 가지는 센서로 구동할 수 있다. 또한, 단위 화소별 감도 조절을 통해 각각의 단위 화소별 특성의 불균일성을 회로적으로 조절하여 이미지 센서의 균일성을 보장할 수도 있다.
도 7은 도 6의 감도조절 수광 소자(200)와 선택 소자(300)로 구성된 단위 화소의 단면도이다.
도 7에 도시된 바와 같이, 감도조절 수광 소자(200)와 선택 소자(300)는 모두 동일한 기판을 바디로 하여 플로팅 구조로 구현될 수 있다. 이 경우, 감도조절 수광 소자(200)의 소스(210)와 선택 소자(300)의 드레인(330)이 동일한 활성 영역 상에 형성될 수 있어서 단위 화소의 구조가 단순하고 단위 화소의 크기를 줄일 수 있다.
도 8, 도 9 - 단위 화소의 다른 실시예
도 8은 도 3의 감도조절 수광 소자를 이용한 단위 화소의 회로도의 다른 예를 도시하고 있다. 도 8에 도시된 단위 화소는 하나의 감도조절 수광 소자(400)와 하나의 선택 소자(500), 그리고 하나의 리셋 소자(600)를 포함한다.
상기 감도조절 수광 소자(400) 및 선택 소자(500)와 동일하게, 상기 리셋 소자(600)는 MOSFET 구조로 구현될 수 있다. 이를 통해, 단일의 단위 화소에 포함된 감도조절 수광 소자(400), 선택 소자(500) 및 리셋 소자(600)를 단일의 MOSFET 제조 공정을 통해 한번에 구현할 수 있어서, 제조 비용이 저렴하고 제조 공정이 단순화될 수 있다.
상기 감도조절 수광 소자(400)의 드레인은 전원전압(VDD)에 연결되고 소스는 선택 소자(500)의 드레인에 연결되며, 상기 선택 소자(500)의 소스는 단위화소 출력단(Pixel out)에 연결된다.
상기 리셋 소자(600)의 드레인은 상기 감도조절 수광 소자(400)의 N웰 바디에 연결되고, 상기 리셋 소자(600)의 소스에는 리셋을 위한 바이어스 전압이 인가된다. 상기 N웰은 인접 소자들을 분리하는 소자분리 웰로써 기능한다.
Unselect 상태, 즉 선택 소자(500)가 오프(off)된 상태에서, 단위 화소는 상기 리셋 소자(600)에 의해 리셋된다. 구체적으로, 상기 리셋 소자(600)의 소스에 바이어스 전압이 인가되면, 리셋 소자(600)의 드레인에 연결된 감도조절 수광 소자(400)의 N웰에 일정 전압이 인가되어 N웰의 잔류 전하들을 제거하여 감도조절 수광 소자(400)를 초기화시킨다.
리셋 소자(600)의 초기화 과정이 종료되면, 선택 소자(500)를 동작시켜서 감도조절 수광 소자(400)를 동작시킨다. 감도조절 수광 소자(400)의 동작 전에 플로팅된 N웰에 남아있는 전하를 모두 제거하므로, 잔여 전하에 의한 암전류 발생을 억제할 수 있다.
상기 N웰에는 상기 리셋 소자(600)의 드레인이 연결되어 있지만, 리셋 동작이 완료된 후, 다시 말해 선택 소자(500)가 온(on) 상태에서 감도조절 수광 소자(400)가 동작 중인 상태에서는 상기 N웰이 플로팅된 상태와 동일하므로, 광전류가 유실되지 않는다.
도 9는 도 8의 감도조절 수광 소자(400), 선택 소자(500) 및 리셋 소자(600)로 구성된 단위 화소의 단면도이다.
도 9에 도시된 바와 같이, 상기 감도조절 수광 소자(400), 선택 소자(500) 및 리셋 소자(600)는 모두 동일한 기판 상에 직접 또는 N웰을 형성하여 구현되며, 상기 N웰은 이전 설명한 것처럼 감도조절 수광 소자(400)의 동작 과정에서 플로팅된 상태로 유지된다. 이 경우, 상기 단위 화소는 MOSFET 구조인 감도조절 수광 소자(400), 선택 소자(500), 리셋 소자(600) 만으로 구성되므로 구조가 단순하며, 단일의 MOSFET 제조 공정을 통해 단위 화소를 한번에 구현할 수 있어서 제조 공정이 단순화될 수 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.
따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다.
본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.

Claims (16)

  1. 감도 조절 수광 소자에 있어서,
    빛을 흡수하는 수광부;
    산화막에 의해 상기 수광부와 이격되는 소스(source) 및 드레인(drain);
    상기 소스와 드레인 사이에 형성되어 상기 소스와 드레인 간에 전류의 흐름을 생성하는 채널(channel); 및
    상기 수광부에 전압을 인가하는 감도조절 단자를 포함하며,
    상기 수광부는 제1형 불순물로 도핑되고 상기 소스 및 드레인은 제2형 불순물로 도핑되고,
    상기 수광부에 입사된 빛에 의해 여기된(excited) 전자가 상기 소스 또는 드레인으로 터널링(tunneling)됨에 따른 상기 수광부의 전하량 변화에 의해 상기 채널의 전류 흐름이 제어되며,
    상기 감도조절 단자를 통해 인가되는 전압을 제어하여 상기 채널의 문턱 전압(threshold voltage)을 조절하는 것을 특징으로 하는,
    감도 조절 수광 소자.
  2. 제 1 항에 있어서,
    상기 감도조절 단자를 통해 인가되는 전압의 조절을 통해 상기 채널의 페르미 준위(Fermi level)와 진성 준위(intrinsic level)의 간격이 조절되어 상기 문턱 전압이 조절되는 것을 특징으로 하는,
    감도 조절 수광 소자.
  3. 제 1 항에 있어서,
    상기 소스 및 드레인은 제1형 불순물이 도핑된 웰(well) 상에 형성되며,
    상기 웰은 플로팅 상태인 것을 특징으로 하는,
    감도 조절 수광 소자.
  4. 제 1 항에 있어서,
    상기 감도조절 단자는 상기 수광부에 인가되는 전압의 크기를 조절하여 상기 수광부의 감도를 조절하는,
    감도 조절 수광 소자.
  5. 제 1 항에 있어서,
    상기 터널링은 상기 소스 및 드레인 중 어느 하나와 상기 수광부와의 사이의 산화막 영역에서 발생되는,
    감도 조절 수광 소자.
  6. 제 1 항에 있어서,
    상기 감도조절 단자는 설정 전압 이상의 전압을 상기 수광부에 인가하여 상기 수광부를 리셋시키는,
    감도 조절 수광 소자.
  7. 이미지 센서의 단위 화소에 있어서,
    입사된 빛에 의한 전하량의 변화를 이용하여 전류의 흐름을 발생시키는 수광 소자; 및
    상기 수광 소자에서 발생된 전류를 단위 화소 출력단으로 출력시키는 선택 소자를 포함하되,
    상기 수광 소자는 빛을 흡수하는 수광부와, 산화막에 의해 상기 수광부와 이격되는 소스(source) 및 드레인(drain)과, 상기 소스 및 드레인 사이에 형성되어 상기 소스와 드레인 간에 전류의 흐름을 생성하는 채널(channel)과, 상기 수광부에 전압을 인가하는 감도조절 단자를 포함하고,
    상기 수광 소자는 상기 수광부에 입사된 빛에 의해 여기된(excited) 전자가 상기 소스 또는 드레인으로 터널링(tunneling)됨에 따른 상기 수광부의 전하량 변화에 기초하여 상기 채널의 전류 흐름을 제어하며,
    상기 수광 소자는 상기 감도조절 단자를 통해 인가되는 전압을 조절하여 상기 채널의 문턱 전압(threshold voltage)를 조절하는,
    이미지 센서의 단위 화소.
  8. 제 7 항에 있어서,
    상기 선택 소자는,
    상기 수광 소자 및 단위 화소 출력단에 각각 연결되는 드레인 및 소스와, 외부로부터 선택 신호가 인가되는 게이트를 포함하고, 상기 인가된 선택 신호에 기초하여 스위칭 동작을 수행하는,
    이미지 센서의 단위 화소.
  9. 제 7 항에 있어서,
    상기 수광 소자는,
    상기 감도조절 단자를 통해 인가되는 전압을 조절하여 상기 채널의 페르미 준위(Fermi level)와 진성 준위(intrinsic level)의 간격을 조절함으로써 문턱 전압을 조절하는,
    이미지 센서의 단위 화소.
  10. 제 7 항에 있어서,
    상기 수광 소자의 소스와 상기 선택 소자의 드레인은 동일한 활성 영역 상에 형성되는,
    이미지 센서의 단위 화소.
  11. 제 7 항에 있어서,
    상기 수광 소자는,
    입사 광량에 기초하여 상기 감도조절 단자로의 인가 전압을 조절하여, 광 전류량의 급격한 증가로 인한 영상 포화를 억제하는,
    이미지 센서의 단위 화소.
  12. 이미지 센서의 단위 화소에 있어서,
    입사된 빛에 의한 전하량의 변화를 이용하여 전류의 흐름을 발생시키는 수광 소자;
    상기 수광 소자에서 발생된 전류를 단위 화소 출력단으로 출력시키는 선택 소자; 및
    상기 수광 소자에 잔류된 전하를 제거하는 리셋 소자를 포함하되,
    상기 수광 소자는 빛을 흡수하는 수광부와, 산화막에 의해 상기 수광부와 이격되는 소스(source) 및 드레인(drain)과, 상기 소스 및 드레인 사이에 형성되어 상기 소스와 드레인 간에 전류의 흐름을 생성하는 채널(channel)과, 상기 수광부에 전압을 인가하는 감도조절 단자를 포함하고,
    상기 수광 소자는 상기 수광부에 입사된 빛에 의해 여기된(excited) 전자가 상기 소스 또는 드레인으로 터널링(tunneling)됨에 따른 상기 수광부의 전하량 변화에 기초하여 상기 채널의 전류 흐름을 제어하며,
    상기 수광 소자는 상기 감도조절 단자를 통해 인가되는 전압을 조절하여 상기 채널의 문턱 전압(threshold voltage)를 조절하는,
    이미지 센서의 단위 화소.
  13. 제 12 항에 있어서,
    상기 리셋 소자는 상기 수광 소자가 형성된 확산 영역(diffusion well) 내의 잔류 전하를 제거하는,
    이미지 센서의 단위 화소.
  14. 제 13 항에 있어서,
    상기 확산 영역은 상기 수광 소자의 동작 중에 플로팅 상태로 유지되는,
    이미지 센서의 단위 화소.
  15. 제 12 항에 있어서,
    상기 수광 소자는 상기 감도조절 단자를 통해 설정 전압 이상의 전압을 인가하여 상기 채널의 문턱 전압을 높임으로써 상기 단위 화소를 리셋시키는.
    이미지 센서의 단위 화소.
  16. 제 12 항에 있어서.
    상기 수광 소자는,
    상기 감도조절 단자를 통해 인가되는 전압을 조절하여 상기 채널의 페르미 준위(Fermi level)와 진성 준위(intrinsic level)의 간격을 조절함으로써 문턱 전압을 조절하는,
    이미지 센서의 단위 화소.
PCT/KR2015/006768 2014-07-09 2015-07-01 이미지 센서의 단위 화소 및 그 수광 소자 WO2016006863A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580037458.7A CN106663689B (zh) 2014-07-09 2015-07-01 图像传感器的单位像素及其受光元件
KR1020177000117A KR101927006B1 (ko) 2014-07-09 2015-07-01 이미지 센서의 단위 화소 및 그 수광 소자
JP2017500830A JP6555551B2 (ja) 2014-07-09 2015-07-01 イメージセンサーの単位画素及びその受光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US14/327,549 2014-07-09
US14/327,549 US10158041B2 (en) 2014-07-09 2014-07-09 Unit pixel of image sensor and photo detector using the same

Publications (1)

Publication Number Publication Date
WO2016006863A1 true WO2016006863A1 (ko) 2016-01-14

Family

ID=55064434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006768 WO2016006863A1 (ko) 2014-07-09 2015-07-01 이미지 센서의 단위 화소 및 그 수광 소자

Country Status (5)

Country Link
US (1) US10158041B2 (ko)
JP (1) JP6555551B2 (ko)
KR (1) KR101927006B1 (ko)
CN (1) CN106663689B (ko)
WO (1) WO2016006863A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101626121B1 (ko) * 2013-12-13 2016-06-13 주식회사 비욘드아이즈 이미지 센서의 단위 화소
MY174333A (en) * 2015-10-14 2020-04-08 Hoon Kim Image sensor with solar cell function
CN110740270B (zh) * 2019-10-22 2021-05-14 维沃移动通信有限公司 摄像头的调节方法、装置、电子设备及存储介质
US11302836B2 (en) * 2020-01-14 2022-04-12 Hoon Kim Plasmonic field-enhanced photodetector and image sensor using light absorbing layer having split conduction band and valence band
WO2022018860A1 (ja) * 2020-07-22 2022-01-27 日本電信電話株式会社 受光器
CN117238929B (zh) * 2023-11-10 2024-01-23 太原理工大学 低功耗全波段光通信芯片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100656346B1 (ko) * 2004-12-08 2006-12-11 한국전자통신연구원 이동 전하를 이용한 비휘발성 메모리 소자의 제조 방법
KR20090092019A (ko) * 2008-02-26 2009-08-31 주식회사 하이닉스반도체 트랜지스터
KR101152575B1 (ko) * 2010-05-10 2012-06-01 삼성모바일디스플레이주식회사 평판 표시 장치의 화소 회로 및 그의 구동 방법
KR101377648B1 (ko) * 2011-09-02 2014-03-25 김훈 이미지 센서의 단위 화소 및 수광 소자
KR20140047524A (ko) * 2012-10-12 2014-04-22 삼성전자주식회사 포토게이트 구조와 감지 트랜지스터를 포함하는 cmos 이미지 센서, 이의 동작 방법, 및 이를 포함하는 이미지 처리 시스템

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4197469A (en) * 1978-05-25 1980-04-08 Rockwell International Corporation Capacitively coupled array of photodetectors
JPH06283695A (ja) * 1993-03-29 1994-10-07 Matsushita Electric Ind Co Ltd 2次元固体撮像装置および撮像方式
JPH07115182A (ja) * 1993-10-15 1995-05-02 Matsushita Electric Ind Co Ltd メモリー機能付き光電変換素子および固体撮像装置
JP3442283B2 (ja) 1998-04-28 2003-09-02 セイコーインスツルメンツ株式会社 リニアイメージセンサ
US6906793B2 (en) * 2000-12-11 2005-06-14 Canesta, Inc. Methods and devices for charge management for three-dimensional sensing
US6870209B2 (en) * 2003-01-09 2005-03-22 Dialog Semiconductor Gmbh CMOS pixel with dual gate PMOS
KR100558527B1 (ko) 2003-12-03 2006-03-10 전자부품연구원 고감도 이미지 센서 및 그 제조방법
US7994465B1 (en) * 2006-02-06 2011-08-09 Microsoft Corporation Methods and devices for improved charge management for three-dimensional and color sensing
KR20090043737A (ko) 2007-10-30 2009-05-07 플래닛팔이 주식회사 씨모스 이미지 센서의 단위 픽셀
JP2011243704A (ja) 2010-05-17 2011-12-01 Panasonic Corp 固体撮像装置
CN103066097B (zh) * 2013-01-31 2015-05-06 南京邮电大学 一种高灵敏度固态彩色图像传感器件
MY174333A (en) * 2015-10-14 2020-04-08 Hoon Kim Image sensor with solar cell function
MY176378A (en) * 2015-10-14 2020-08-04 Hoon Kim Image sensor with solar cell function and electronic device thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100656346B1 (ko) * 2004-12-08 2006-12-11 한국전자통신연구원 이동 전하를 이용한 비휘발성 메모리 소자의 제조 방법
KR20090092019A (ko) * 2008-02-26 2009-08-31 주식회사 하이닉스반도체 트랜지스터
KR101152575B1 (ko) * 2010-05-10 2012-06-01 삼성모바일디스플레이주식회사 평판 표시 장치의 화소 회로 및 그의 구동 방법
KR101377648B1 (ko) * 2011-09-02 2014-03-25 김훈 이미지 센서의 단위 화소 및 수광 소자
KR20140047524A (ko) * 2012-10-12 2014-04-22 삼성전자주식회사 포토게이트 구조와 감지 트랜지스터를 포함하는 cmos 이미지 센서, 이의 동작 방법, 및 이를 포함하는 이미지 처리 시스템

Also Published As

Publication number Publication date
US20160013352A1 (en) 2016-01-14
CN106663689A (zh) 2017-05-10
US10158041B2 (en) 2018-12-18
KR20170037938A (ko) 2017-04-05
CN106663689B (zh) 2019-07-02
KR101927006B1 (ko) 2018-12-07
JP2017537454A (ja) 2017-12-14
JP6555551B2 (ja) 2019-08-07

Similar Documents

Publication Publication Date Title
WO2016006863A1 (ko) 이미지 센서의 단위 화소 및 그 수광 소자
WO2013032215A1 (ko) 이미지 센서의 단위 화소 및 수광 소자
WO2013032216A2 (ko) 이미지 센서의 단위 화소 및 수광 소자
WO2013032217A1 (ko) 컬러 이미지 센서의 단위 화소 및 이의 수광 소자
KR20160075391A (ko) 이미지 센서의 단위 화소
KR100275122B1 (ko) 씨모스 이미지센서 및 그 제조방법
KR20080023774A (ko) 씨모스 이미지 센서의 포토 다이오드
JP2007305925A (ja) 固体撮像装置
KR100558527B1 (ko) 고감도 이미지 센서 및 그 제조방법
KR20050038034A (ko) 이미지 센서, 이미지 센서를 포함하는 카메라 시스템 및 이미지 센서 제조 방법
KR20090098230A (ko) 누설전류를 감소시킨 시모스 이미지 센서
KR101493870B1 (ko) 신호 대 잡음 비가 개선된 이미지 소자 및 그 제조방법
KR100927582B1 (ko) 이미지 센서
KR100674917B1 (ko) Cmos 이미지 센서 및 그 제조 방법
US7291876B1 (en) Diffusion bias control for improving sensitivity of CMOS active pixel sensors
WO2024043677A1 (ko) 단일 광자 검출 소자, 전자 장치, 및 라이다 장치
KR0172853B1 (ko) 씨씨디 고체촬상소자
KR100325292B1 (ko) 고체 촬상 소자
KR100927862B1 (ko) 이미지센서
KR100871796B1 (ko) 이미지 센서 및 그 제조방법
KR100629232B1 (ko) 전송 게이트를 포함하는 pmosfet형 광검출기
KR20080059772A (ko) Ccd이미지 센서의 제조방법
KR20070049412A (ko) 이미지 센서 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15818232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177000117

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017500830

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15818232

Country of ref document: EP

Kind code of ref document: A1