WO2022018860A1 - 受光器 - Google Patents

受光器 Download PDF

Info

Publication number
WO2022018860A1
WO2022018860A1 PCT/JP2020/028458 JP2020028458W WO2022018860A1 WO 2022018860 A1 WO2022018860 A1 WO 2022018860A1 JP 2020028458 W JP2020028458 W JP 2020028458W WO 2022018860 A1 WO2022018860 A1 WO 2022018860A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor layer
light absorption
semiconductor
receiver
Prior art date
Application number
PCT/JP2020/028458
Other languages
English (en)
French (fr)
Inventor
達郎 開
慎治 松尾
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022538556A priority Critical patent/JP7435786B2/ja
Priority to PCT/JP2020/028458 priority patent/WO2022018860A1/ja
Priority to US18/002,809 priority patent/US20230253516A1/en
Publication of WO2022018860A1 publication Critical patent/WO2022018860A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/131Integrated optical circuits characterised by the manufacturing method by using epitaxial growth
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/1127Devices with PN heterojunction gate
    • H01L31/1129Devices with PN heterojunction gate the device being a field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12061Silicon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12035Materials
    • G02B2006/12078Gallium arsenide or alloys (GaAs, GaAlAs, GaAsP, GaInAs)
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12097Ridge, rib or the like
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12178Epitaxial growth
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12195Tapering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements

Definitions

  • the present invention relates to a waveguide type receiver.
  • Si optical integrated circuit configured based on Si is a technology that realizes an optical signal processing circuit using near-infrared light on an inexpensive Si substrate, and is used in the fields of optical communication and optical computing. It is a key technology.
  • One of the elemental components of the Si optical integrated circuit is a light receiver, and a p-in photodiode is widely used. Since the Si layer on which the optical waveguide is formed has the physical characteristics of transmitting near infrared rays, Ge has been widely used as the absorption layer of the photodiode.
  • Sensitivity defined by the ratio of input light intensity and photocurrent is one of the performance indexes of photodiodes, and higher sensitivity is required.
  • the conventional p-in photodiode has a quantum efficiency limit (about 1.2 A / W for a wavelength of 1.55 ⁇ m), so that high sensitivity is difficult. It is possible to increase the sensitivity by avalanche amplification, but the operating voltage is large and it is difficult to reduce power consumption.
  • Non-Patent Document 1 a technique for realizing a photoreceiver having a high gain by using the gate of the MOSFET with a Si channel as an optical absorption layer has been reported (see Non-Patent Document 1).
  • this receiver when the light guided through the optical waveguide configured under the gate is absorbed by the gate, the gate voltage changes according to the intensity of the light, and the current flowing between the source and drain. (Drain current) also changes. Due to the high gain of the MOSFET, a large change in drain current occurs with respect to a slight change in incident light intensity, so that high-sensitivity operation is possible.
  • the Si channel MOSFET can achieve both high sensitivity and low voltage by using mature miniaturization technology. Although the band of this receiver is smaller than that of the p-in photodiode, gigahertz-class operation and high sensitivity exceeding 100 A / W are realized.
  • Ge is used as an absorption layer (gate material) for near-infrared light, which is a communication wavelength band.
  • Ge has a small absorption coefficient in the long wavelength region of 1.5 ⁇ m or more. Therefore, the absorption length is lengthened in order to obtain sufficient light absorption, and the size of the MOSFET becomes large.
  • the Ge gate also needs to be an n-type semiconductor, but it is generally difficult to reduce the contact resistance of the contact between the n-type Ge and the metal by Fermi-level pinning or the like. These are factors that hinder the miniaturization and low resistance of the element.
  • the present invention has been made to solve the above problems, and an object thereof is to reduce the size and resistance of a light receiver having a MOSFET gate as an optical absorption layer.
  • the light receiver according to the present invention is made of p-type silicon formed on a clad layer, and has a first semiconductor layer and a first semiconductor layer to which an optical waveguide is optically connected to one end side in the waveguide direction.
  • a second semiconductor layer and a third semiconductor layer made of n-type silicon formed on the clad layer sandwiched therein, and an n-type III-V group compound formed on the first semiconductor layer via an insulating layer.
  • a light absorbing layer made of a semiconductor, a first electrode electrically connected to the light absorbing layer other than the region above the first semiconductor layer, a second electrode electrically connected to the second semiconductor layer, and a third semiconductor. It is provided with a third electrode that is electrically connected to the layer.
  • the photoreceiver having the gate of the MOSFET as the light absorption layer can be downsized and reduced in resistance. realizable.
  • FIG. 1A is a cross-sectional view showing the configuration of a light receiver according to an embodiment of the present invention.
  • FIG. 1B is a plan view showing the configuration of a receiver according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the configuration of another receiver according to the embodiment of the present invention.
  • FIG. 3 is a characteristic diagram showing a calculation result of the sensitivity of the receiver 100.
  • FIG. 4 is a plan view showing the configuration of another receiver according to the embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing the configuration of another receiver according to the embodiment of the present invention.
  • the receiver 100 according to the embodiment of the present invention will be described with reference to FIGS. 1A and 1B.
  • the light receiver 100 is placed on the clad layer 102 with the clad layer 102 formed on the substrate 101, the first semiconductor layer 103 formed on the clad layer 102, and the first semiconductor layer 103 interposed therebetween.
  • the formed second semiconductor layer 104 and the third semiconductor layer 105 are provided.
  • the first semiconductor layer 103 is made of p-type silicon.
  • the first semiconductor layer 103 has, for example, a thickness of 220 nm.
  • the optical waveguide 120 is optically connected to one end side of the first semiconductor layer 103 in the waveguide direction.
  • the second semiconductor layer 104 and the third semiconductor layer 105 are made of n-type silicon.
  • the second semiconductor layer 104 and the third semiconductor layer 105 are continuously formed on the first semiconductor layer 103, and have a thickness of, for example, 220 nm.
  • the light receiving receiver 100 includes a light absorption layer 107 made of an n-type III-V group compound semiconductor formed on the first semiconductor layer 103 via an insulating layer 106.
  • the light absorption layer 107 can be made of a group III-V compound semiconductor having a bandgap energy that absorbs near-infrared light, such as InGaAs.
  • the light absorption layer 107 is preferably made of a III-V compound semiconductor capable of absorbing near-infrared light having a communication wavelength band of 1.3 ⁇ m or more, and may be made of InAs, for example. InAs has a higher absorption coefficient than InGaAs.
  • the light absorption layer 107 has a thickness of 200 nm.
  • the light absorbing layer 107 has a cross section perpendicular to the waveguide direction, and the width in the direction parallel to the plane of the clad layer 102 has a dimension (for example, 400 nm) that substantially matches the single mode condition of the optical waveguide 120. .. This width corresponds to the gate length of the MOSFET structure described later.
  • the insulating layer 106 can be made of, for example, SiO 2 . Further, the insulating layer 106 can have a thickness of about 10 nm. As will be described later, the insulating layer 106 as the gate insulating layer can be made thinner than 10 nm or made of a material having a higher dielectric constant to obtain a higher gate electric field at a lower gate voltage. As will be described later, the high sensitivity of the light receiver 100 can be obtained at a low voltage.
  • the light receiver 100 has an n-channel MOSFET structure having a first semiconductor layer 103 as a channel layer, a second semiconductor layer 104 as a source, a third semiconductor layer 105 as a drain, and a light absorption layer 107 as a gate. ing.
  • the insulating layer 106 is a gate insulating layer.
  • a so-called rib-type optical waveguide is configured by the first semiconductor layer 103 in which the light absorption layer 107 is arranged at the top, the second semiconductor layer 104, and the third semiconductor layer 105.
  • the distance between the first semiconductor layer 103 and the light absorption layer 107 can be optically coupled to each other in the thickness direction when viewed from the clad layer 102, and an electric field from the light absorption layer 107 is applied to the first semiconductor layer 103. It is important to be possible.
  • grooves 131 are formed on both sides of the light absorption layer 107 in the waveguide direction, and the second semiconductor layer 104 and the third semiconductor layer in this portion are formed.
  • the 105 thinner, high optical confinement to the first semiconductor layer 103 becomes possible.
  • it is possible to reduce the characteristic variation due to the positional deviation between the grooves 131 on both sides of the first semiconductor layer 103 and the light absorption layer 107 in the cross section perpendicular to the waveguide direction.
  • the light receiver 100 has a first electrode 112 that is electrically connected to the light absorption layer 107 in a contact region 111 other than the region above the first semiconductor layer 103, and a second electrode that is electrically connected to the second semiconductor layer 104. It includes two electrodes 108 and a third electrode 109 that is electrically connected to the third semiconductor layer 105.
  • the first electrode 112, the second electrode 108, and the third electrode 109 are made of metal.
  • the first semiconductor layer 103 may be in a state where the potential is not fixed (floating). Therefore, it is also possible to provide the first semiconductor layer 103 with electrodes that are electrically connected in a region (not shown) to fix the potential of the first semiconductor layer 103.
  • the optical waveguide 120 by the core 121 made of silicon (Si) is optically connected to one end side of the first semiconductor layer 103 in the waveguide direction.
  • the core 121 is formed continuously on the first semiconductor layer 103, for example, to have a thickness of 220 nm and a core width of 400 nm.
  • the optical waveguide 120 with the core 121 of this dimension can be in single mode.
  • the optical waveguide formed by the first semiconductor layer 103 in the light receiver 100 can be optically coupled to the optical waveguide 120 in the single mode.
  • the regions other than the first semiconductor layer 103, the second semiconductor layer 104, the third semiconductor layer 105, and the second electrode 108 and the third electrode 109 on the core 121 are covered with the insulating layer 110.
  • the insulating layer 110 is continuously formed on the insulating layer 106.
  • an upper clad layer (not shown) may be provided on the core 121 via the insulating layer 110.
  • the insulating layer 110 can be made thicker to form an upper clad layer.
  • the thickness of the core 121 is not limited to 220 nm, and can be in the range of 100 to 300 nm film thickness in which the optical waveguide 120 is in the single mode. Depending on the size (thickness) of the core 121, the width and thickness of the light absorption layer 107 that enables low-loss coupling with the optical waveguide 120 is determined.
  • a well-known SOI (Silicon on Insulator) substrate is prepared.
  • the substrate portion of the SOI substrate becomes the substrate 101, and the embedded insulating layer becomes the clad layer 102.
  • the surface silicon layer of the SOI substrate is patterned by a known lithography technique and etching technique to form portions of the first semiconductor layer 103, the second semiconductor layer 104, the third semiconductor layer 105, and the core 121.
  • impurities such as phosphorus and arsenic are introduced into the second semiconductor layer 104 and the third semiconductor layer 105 by a well-known ion implantation method or the like, and the second semiconductor layer 104 and the third semiconductor layer 105 are n-type.
  • impurities such as phosphorus and arsenic are introduced into the second semiconductor layer 104 and the third semiconductor layer 105 by a well-known ion implantation method or the like, and the second semiconductor layer 104 and the third semiconductor layer 105 are n-type.
  • an insulating material such as silicon oxide
  • a substrate made of InP or the like is prepared, and a compound semiconductor layer made of n-type InGaAs is formed on the substrate.
  • These formations can be carried out by epitaxial growth by a known organic metal vapor phase growth method or molecular beam epitaxial growth method.
  • another substrate is attached to the substrate 101 by joining the surface of the compound semiconductor layer and the surface of the insulating layer 110 (insulating layer 106) by, for example, a surface activation bonding method.
  • another substrate was thinned from the back surface side by a well-known polishing method, and then the other substrate was removed to form a compound semiconductor layer on the insulating layer 110 (insulating layer 106). Make it a state.
  • the above-mentioned compound semiconductor layer is patterned by a known lithography technique and etching technique to form the light absorption layer 107 and the contact region 111.
  • a contact hole is formed in the insulating layer 110 at the position where the second electrode 108 and the third electrode 109 are formed.
  • the first electrode 112, the second electrode 108, and the third electrode 109 are formed by depositing a predetermined electrode material by a sputtering method, a vapor deposition method, or the like, and by a lift-off method or the like.
  • the light that has been guided through the optical waveguide 120 and incident on the light receiver 100 is absorbed by the light absorption layer 107 in the process of waveguide with the first semiconductor layer 103 as the center of the mode in a cross-sectional view.
  • the light absorption layer 107 is used as a gate and the third semiconductor layer 105 is used as a drain and a positive voltage is applied between them, the first semiconductor layer 103 and the insulating layer 106 on which the channel of the MOSFET structure described above is formed are formed. An inverted layer is formed at the interface with.
  • the gate electric field generated by the light absorption layer 107 to which the gate voltage is applied acts, the channel resistance between the second semiconductor layer 104 as the source and the third semiconductor layer 105 as the drain changes.
  • the gate voltage changes according to the intensity of the absorbed light.
  • the channel resistance between the second semiconductor layer 104 and the third semiconductor layer 105 as the drain changes, and the drain current also changes. Since the high gain of the MOSFET causes a large change in the drain current with respect to the change in the light intensity absorbed by the light absorption layer 107, the light receiver 100 enables high-sensitivity operation.
  • the photoreceiver 100 since the light absorption layer 107 is composed of the III-V compound semiconductor having an absorption coefficient higher than that of Ge, it can be absorbed with a short absorption length (gate width). Further, since the light absorption layer 107 is made of a group III-V compound semiconductor, it is easy to form a contact having a lower resistance than in the case of Ge. Such a contact forming technique between an electrode and a semiconductor layer is generally used in a semiconductor laser. Due to these features, the photoreceiver 100 has a structure that is easy to reduce in size and resistance as compared with the conventional technique of using a MOSFET using n-Ge as a photoreceiver.
  • FIG. 3 shows the calculation result of the sensitivity of the receiver 100.
  • the thickness of the insulating layer 106 is 10 nm, and the wavelength of the incident light is 1.55 ⁇ m.
  • the photocurrent is a current value obtained by subtracting the drain current in the dark state from the drain current at the time of light incident.
  • the incident light intensity is the light intensity incident on the optical waveguide 120, and the sensitivity is estimated including the coupling loss between the optical waveguide 120 and the optical waveguide in the MOSFET structure (receiver 100). In this calculation, the gate leak current due to the tunnel effect is not taken into consideration.
  • the voltage applied to the light absorption layer 107 (gate voltage) and the voltage applied between the second semiconductor layer 104 and the third semiconductor layer 105 (drain voltage) are both 4V.
  • the absorption length (gate width) which is the length of the light absorption layer 107 in the waveguide direction, was set to 5 ⁇ m, 10 ⁇ m, and 20 ⁇ m. According to the calculation results, the sensitivity decreases as the optical input increases, which is due to the non-linearity of the photovoltaic power. It can be seen that in the region where the optical power is low, a sensitivity close to 100 A / W is achieved even with an absorption length of about 5 ⁇ m.
  • a tapered portion 113 continuously formed in the light absorption layer 107 can be provided in the region of the optical waveguide 120 (upper part of the core 121).
  • the tapered portion 113 has the same thickness as the light absorption layer 107. Further, the tapered portion 113 has a shape in which the width in a plan view becomes narrower as the distance from the light absorbing layer 107 increases.
  • the tapered portion 113 can realize a lower loss optical coupling between the optical waveguide 120 and the light receiver 100.
  • the tapered portion 113 can be made of a group III-V compound semiconductor.
  • the tapered portion 113 does not have to be the same III-V compound semiconductor as the light absorption layer 107, but can be composed of a different III-V compound semiconductor lattice-matched to the light absorption layer 107.
  • the tapered portion 113 is preferably composed of a group III-V compound semiconductor having a bandgap energy that does not absorb the target incident light.
  • the light absorption layer 107 can be in a state where the density (concentration) of impurities (donors) increases as the distance from the clad layer 102 side increases in the thickness direction.
  • the donor density should be high in order to reduce the contact resistance with the first electrode 112 and the gate resistance in the light absorption layer 107.
  • the donor density and concentration can be low except for the uppermost layer that forms contact with the first electrode 112. This configuration can be realized by increasing the density of impurities in the light absorption layer 107 in the thickness direction toward the side of the clad layer 102.
  • the thickness of the depletion layer when the gate voltage is applied and the threshold value of the MOSFET change depending on the density of the insulating layer 106 of the light absorption layer 107 and the vicinity thereof, but these affect the sensitivity of the receiver 100.
  • the donor density of the light absorption layer 107 in the vicinity of the insulating layer 106 film is determined in consideration of the donor, the acceptor concentration and the operating voltage on the side of the clad layer 102.
  • the light absorption layer 107 can be in a state where the bandgap energy becomes larger as the distance from the clad layer 102 side increases.
  • This can be realized by forming the light absorption layer 107 from a ternary group III-V compound semiconductor such as InGaAs.
  • the above-mentioned bandgap energy distribution can be formed.
  • the distribution of the bandgap energy it is possible to control the absorption coefficient.
  • the composition of the bandgap energy having a high absorption coefficient can be formed in the vicinity of the insulating layer 106, and the layer above this can have a laminated structure having the bandgap energy having a low absorption coefficient.
  • the laminated structure of the III-V compound semiconductor having a plurality of band gaps makes it possible to control the photocarrier distribution.
  • the structure may have a multiple quantum well in a part of the light absorption layer 107.
  • the quantum confinement effect and distortion it becomes possible to control the light absorption coefficient of the light absorption layer 107.
  • both the donor density and the bandgap can be changed in the thickness direction to control the light absorption coefficient.
  • the photocarrier generated in the light absorption layer 107 cannot be extracted, so it is necessary to wait for the carrier to recombine. This limits the response speed.
  • This recombination rate can be controlled by the carrier concentration distribution in the light absorption layer 107. For example, when the light absorption layer 107 is made of an InP-based material, the higher the carrier concentration, the more remarkable the Auger recombination, and the higher the recombination rate.
  • the insulating layer 116 covering the light absorbing layer 107 may be provided, and the high defect density layer 117 formed at the interface between the light absorbing layer 107 and the insulating layer 116 may be introduced. ..
  • the high defect density layer 117 is a region where the defect density is higher than the inside of the light absorption layer 107. By using the high defect density layer 117, it is possible to increase the recombination rate on the surface of the light absorption layer 107.
  • an InP-based semiconductor material can have a high defect density between it and SiO 2, and by coating the light absorption layer 107 with an insulating layer 116 composed of SiO 2 and the like, the defect density is high.
  • Layer 117 can be introduced and is effective in increasing the recombination rate. This makes it possible to improve the operating speed. It should be noted that an increase in the recombination rate causes a deterioration in sensitivity, and is therefore designed in consideration of a trade-off between sensitivity and speed. If it is desired to reduce the recombination rate in order to improve the sensitivity, it is necessary to design the material and the forming method of the insulating layer 116 provided in contact with the light absorption layer 107.
  • the interface between the Al 2 O 3 layer formed by the atomic layer growth method and the layer of the InP-based semiconductor has a small defect density, and by using these materials, a light absorption layer is used.
  • the surface recombination rate of 107 can be reduced.
  • the receiver having the gate of the MOSFET as the light absorption layer can be downsized and reduced in resistance. Can be realized.
  • 100 Receiver, 101 ... Substrate, 102 ... Clad layer, 103 ... First semiconductor layer, 104 ... Second semiconductor layer, 105 ... Third semiconductor layer, 106 ... Insulation layer, 107 ... Light absorption layer, 108 ... Second Electrode, 109 ... third electrode, 110 ... insulating layer, 111 ... contact region, 112 ... first electrode, 120 ... optical waveguide, 121 ... core.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

受光器(100)は、基板(101)の上に形成されたクラッド層(102)と、クラッド層(102)の上に形成された第1半導体層(103)と、第1半導体層(103)を挟んでクラッド層(102)の上に形成された第2半導体層(104)および第3半導体層(105)とを備える。また、受光器(100)は、第1半導体層(103)の上に絶縁層(106)を介して形成されたn型のIII-V族化合物半導体からなる光吸収層(107)を備える。

Description

受光器
 本発明は、導波路型の受光器に関する。
 Siをベースに構成された光集積回路(Si光集積回路)は、近赤外光を用いた光信号処理回路を安価なSi基板上に実現する技術であり、光通信や光コンピューティング分野のキー技術である。Si光集積回路の要素部品の1つは受光器であり、p-i-nフォトダイオードが広く使われている。光導波路が形成されているであるSiの層は、近赤外を透過する物性であるため、フォトダイオードの吸収層にはGeが広く用いられてきた。
 フォトダイオードは、入力光強度と光電流の比で定義される感度(A/W)が性能指標の一つであり、高感度化が要求される。しかし、従来のp-i-nフォトダイオードは、量子効率限界(波長1.55μmに対して1.2A/W程度)を有するため、高感度が難しい。アバランシェ増幅により感度を増大させることも可能であるが、動作電圧が大きく、低消費電力化が難しい。
 これらに対して、SiチャネルによるMOSFETのゲートを光吸収層とすることで、高い利得を有する受光器を実現する技術が報告されている(非特許文献1参照)。この受光器は、ゲートの下側に構成されている光導波路を導波する光が、ゲートで吸収されると、この光の強度に応じてゲート電圧が変化し、ソース・ドレイン間に流れる電流(ドレイン電流)も変化する。MOSFETの高い利得により、わずかな入射光強度の変化に対して大きなドレイン電流の変化が生じるため、高感度動作が可能となる。SiチャネルMOSFETは、成熟した微細化技術による高感度化と低電圧化の両立が可能である。この受光器の帯域は、p-i-nフォトダイオードよりも小さいが、ギガヘルツ級の動作と100A/Wを超える高感度が実現されている。
R. W. Going et al., "Germanium Gate PhotoMOSFET Integrated to Silicon Photonics", IEEE Journal of Selected Topics in Quantum Electronics, vol. 20, no. 4, 8201607, 2014.
 従来技術では、通信波長帯である近赤外光の吸収層(ゲート材料)としてGeを用いている。しかし、Geは、1.5μm帯以上の長波長域における吸収係数が小さい。このため、十分な光吸収を得るために吸収長を長くすることになり、MOSFETのサイズが大きくなってしまう。また、移動度が高い電子をチャネルとする場合、Geゲートもn型半導体とする必要があるが、一般的にn型Geと金属とのコンタクトはフェルミレベルピニングなどによりコンタクト抵抗の低減が難しい。これらは、素子の小型化と低抵抗化を妨げる要因となっている。
 本発明は、以上のような問題点を解消するためになされたものであり、MOSFETのゲートを光吸収層とした受光器の、小型化および低抵抗化を目的とする。
 本発明に係る受光器は、クラッド層の上に形成されたp型のシリコンからなり、導波方向の一端側に光導波路が光学的に接続される第1半導体層と、第1半導体層を挟んでクラッド層の上に形成されたn型のシリコンからなる第2半導体層および第3半導体層と、第1半導体層の上に絶縁層を介して形成されたn型のIII-V族化合物半導体からなる光吸収層と、第1半導体層の上の領域以外で光吸収層に電気的に接続する第1電極と、第2半導体層に電気的に接続する第2電極と、第3半導体層に電気的に接続する第3電極とを備える。
 以上説明したように、本発明によれば、光吸収層をn型のIII-V族化合物半導体から構成したので、MOSFETのゲートを光吸収層とした受光器の、小型化および低抵抗化が実現できる。
図1Aは、本発明の実施の形態に係る受光器の構成を示す断面図である。 図1Bは、本発明の実施の形態に係る受光器の構成を示す平面図である。 図2は、本発明の実施の形態に係る他の受光器の構成を示す断面図である。 図3は、受光器100の感度の計算結果を示す特性図である。 図4は、本発明の実施の形態に係る他の受光器の構成を示す平面図である。 図5は、本発明の実施の形態に係る他の受光器の構成を示す断面図である。
 以下、本発明の実施の形態に係る受光器100について図1A,図1Bを参照して説明する。受光器100は、まず、基板101の上に形成されたクラッド層102と、クラッド層102の上に形成された第1半導体層103と、第1半導体層103を挟んでクラッド層102の上に形成された第2半導体層104および第3半導体層105とを備える。
 第1半導体層103は、p型のシリコンから構成されている。第1半導体層103は、例えば、厚さ220nmとされている。第1半導体層103の導波方向の一端側には、光導波路120が光学的に接続されるものとなる。第2半導体層104および第3半導体層105は、n型のシリコンから構成されている。第2半導体層104および第3半導体層105は、第1半導体層103に連続して形成され、例えば、厚さ220nmとされている。
 また、受光器100は、第1半導体層103の上に絶縁層106を介して形成されたn型のIII-V族化合物半導体からなる光吸収層107を備える。光吸収層107は、例えば、InGaAsなどの、近赤外光を吸収するバンドギャップエネルギーのIII-V族化合物半導体から構成することができる。なお、光吸収層107は、1.3μm帯以上の通信波長帯近赤外光を吸収できるIII-V族化合物半導体から構成することが望ましく、例えば、InAsから構成することもできる。InAsは、InGaAsよりも高い吸収係数を有する。光吸収層107は、厚さが200nmとされている。
 また、光吸収層107は、導波方向に垂直な断面において、クラッド層102の平面に平行な方向の幅が、光導波路120のシングルモード条件と概ね整合する寸法(例えば400nm)とされている。この幅は、後述するMOSFET構造のゲート長に対応するものである。絶縁層106は、例えば、SiO2から構成することができる。また、絶縁層106は、厚さ10nm程度とすることができる。なお、後述するようにゲート絶縁層とする絶縁層106は、10nmより薄くし、または、より高い誘電率の材料から構成することで、より低いゲート電圧で、より高いゲート電界を得ることができ、後述するように、低い電圧で、受光器100の高い感度を得ることができる。
 受光器100は、第1半導体層103をチャネル層とし、第2半導体層104をソースとし、第3半導体層105をドレインとし、光吸収層107をゲートとする、nチャネル型のMOSFET構造とされている。絶縁層106は、ゲート絶縁層となる。また、光吸収層107が上部に配置された第1半導体層103と、第2半導体層104、第3半導体層105により、いわゆるリブ型の光導波路が構成されている。クラッド層102から見て厚さ方向に、第1半導体層103と光吸収層107との距離は、互いに光結合可能とされ、また、光吸収層107からの電界が第1半導体層103に印加可能とされることが重要である。
 なお、上述した構成の光導波路において、例えば、図2に示すように、光吸収層107の導波方向両脇に、溝131を形成し、この部分における第2半導体層104,第3半導体層105を薄くすることで、第1半導体層103に対する高い光閉じ込めが可能となる。また、このような構造にすることで、導波方向に垂直な断面において、第1半導体層103の両脇の溝131と、光吸収層107との位置ずれによる特性ばらつきを低減できる。
 なお、受光器100は、第1半導体層103の上の領域以外のコンタクト領域111で光吸収層107に電気的に接続する第1電極112と、第2半導体層104に電気的に接続する第2電極108と、第3半導体層105に電気的に接続する第3電極109とを備える。第1電極112,第2電極108,第3電極109は、金属から構成されている。なお、第1半導体層103は、電位が固定されない(フローティング)状態となり得る。このため、第1半導体層103に、図示しない領域で電気的に接続する電極を設け、第1半導体層103の電位を固定することもできる。
 また、実施の形態では、第1半導体層103の導波方向の一端側に、シリコン(Si)からなるコア121による光導波路120が、光学的に接続されている。コア121は、例えば、第1半導体層103に連続して形成され、厚さ220nmとされ、コア幅が400nmとされている。この寸法のコア121による光導波路120は、シングルモードとすることができる。受光器100における第1半導体層103による光導波路は、シングルモードとした光導波路120に、光学的に結合することが可能である。
 なお、第1半導体層103、第2半導体層104、第3半導体層105、およびコア121の上の第2電極108,第3電極109以外の領域は、絶縁層110で覆われている。絶縁層110は、絶縁層106に連続して形成されている。また、光導波路120においては、コア121の上に、絶縁層110を介して上部のクラッド層(不図示)を設けることもできる。また、光導波路120の領域では、絶縁層110を厚くすることで、上部のクラッド層とすることもできる。なお、コア121の厚さは220nmに限るものではなく、光導波路120がシングルモードとなる100~300nm膜厚の範囲とすることができる。コア121の寸法(厚さ)に応じて、光導波路120と低損失な結合が可能となる光吸収層107の幅および厚さを決定する。
 受光器100の製造について簡単に説明すると、まず、よく知られたSOI(Silicon on Insulator)基板を用意する。SOI基板の基体部が基板101となり、埋め込み絶縁層がクラッド層102となる。SOI基板の表面シリコン層を、公知のリソグラフィー技術およびエッチング技術によりパターニングすることで、第1半導体層103、第2半導体層104、第3半導体層105、およびコア121の部分を形成する。
 次に、よく知られたイオン注入法などにより、第2半導体層104および第3半導体層105に、リンやヒ素などの不純物を導入し、第2半導体層104および第3半導体層105をn型とする。次に、第1半導体層103、第2半導体層104、第3半導体層105、およびコア121の上に、例えば、よく知られたCVD法などにより酸化シリコンなどの絶縁材料を堆積することで、絶縁層106および絶縁層110を形成する。
 一方、例えば、InPなどから構成された他基板を用意し、この上に、n型のInGaAsからなる化合物半導体層を形成する。これらの形成は、公知の有機金属気相成長法やは分子線エピタキシャル成長法により、エピタキシャル成長させることで実施できる。
 次に、化合物半導体層の表面と絶縁層110(絶縁層106)の表面とを、例えば表面活性化接合法により接合させることで、基板101に他基板を貼り合わせる。次に、例えば、よく知られた研磨法などにより、他基板を裏面側から薄層化し、次いで、他基板を取り除き、絶縁層110(絶縁層106)の上に、化合物半導体層が形成された状態とする。
 次に、上述した化合物半導体層を、公知のリソグラフィー技術およびエッチング技術によりパターニングすることで、光吸収層107、コンタクト領域111を形成する。次に、第2電極108、第3電極109を形成する箇所の絶縁層110に、コンタクトホールを形成する。この後、所定の電極材料のスパッタ法や蒸着法などによる堆積と、リフトオフ法などにより、第1電極112、第2電極108、第3電極109を形成する。
 次に、受光器100の動作について説明する。例えば、光導波路120を導波して受光器100に入射された光は、断面視で第1半導体層103をモードの中心として導波する過程で、光吸収層107に吸収される。光吸収層107をゲートとし、第3半導体層105をドレインとし、これらの間に正の電圧が印加されていると、上述したMOSFET構造のチャネルが形成される第1半導体層103と絶縁層106との界面に反転層が形成される。ここに、ゲート電圧が印加された光吸収層107によるゲート電界が作用すると、ソースとなる第2半導体層104とドレインとなる第3半導体層105との間のチャネル抵抗が変化する。
 一定のゲート電圧が光吸収層107に印加されている状態で、上述したように光吸収層107で光が吸収されると、吸収された光の強度に応じてゲート電圧が変化する。この結果、第2半導体層104とドレインとなる第3半導体層105との間のチャネル抵抗が変化してドレイン電流も変化する。MOSFETの高い利得により、光吸収層107で吸収される光強度の変化に対して大きなドレイン電流の変化が生じるため、受光器100では、高感度動作が可能となる。
 また、受光器100では、Geよりも高い吸収係数を有するIII-V族化合物半導体から光吸収層107を構成しているので、短い吸収長(ゲート幅)で吸収可能である。また、光吸収層107がIII-V族化合物半導体から構成されているので、Geの場合に比較して、より低抵抗なコンタクトを形成することが容易である。このような、電極と半導体層とのコンタクト形成技術は、半導体レーザで一般的に用いられている。これらの特長により、受光器100は、n-Geを用いたMOSFETを受光器として用いる従来の技術に比べて、小型化と低抵抗化が容易な構造である。
 受光器100の感度の計算結果について、図3に示す。絶縁層106の厚さは、10nmとし、入射される光の波長は、1.55μmとしている。光電流は、光入射時のドレイン電流から暗状態のドレイン電流を除いた電流値である。また、入射光強度は、光導波路120に入射された光強度としており、光導波路120とMOSFET構造(受光器100)における光導波路と間の結合損失を含んだ感度の見積もりとなっている。なお、この計算において、トンネル効果によるゲートリーク電流は考慮していない。
 光吸収層107に印加される電圧(ゲート電圧)、第2半導体層104と第3半導体層105との間に印加される電圧(ドレイン電圧)はいずれも4Vである。光吸収層107の導波方向の長さである吸収長(ゲート幅)は、5μm、10μm、および20μmの3種類を設定した。計算結果では、光入力の増大に伴い感度が減少するが、これは光起電力の非線形性に由来する。光パワーが低い域においては、5μm程度の吸収長においても100A/Wに近い感度が達成されていることがわかる。
 ところで、図4に示すように、光導波路120の領域(コア121の上部)に、光吸収層107に連続して形成されたテーパ部113を設けることができる。テーパ部113は、光吸収層107と同一の厚さとする。また、テーパ部113は、光吸収層107から離れるほど、平面視の幅が細くなる形状とされている。テーパ部113は、光導波路120と、受光器100との間の、より低損失な光結合を実現することができる。テーパ部113は、III-V族化合物半導体から構成することができる。テーパ部113は、光吸収層107と同じIII-V族化合物半導体である必要はなく、光吸収層107に格子整合する異なるIII-V族化合物半導体から構成することができる。テーパ部113は、対象とする入射光を吸収しないバンドギャップエネルギーのIII-V族化合物半導体から構成することが好ましい。
 また、光吸収層107は、厚さ方向に、クラッド層102の側から離れるほど不純物(ドナー)の密度(濃度)が高い状態とすることができる。例えば、ドナー密度は、第1電極112とのコンタクト抵抗、および光吸収層107におけるゲート抵抗の低減のために、高い方が良い。一方、有効質量が小さなIII-V族化合物半導体では、ドナー密度が高くなると顕著なバンドフィリングが生じ、実効的にバンドギャップが広がり、光吸収係数が小さくなる。このため、高い光吸収係数を維持するために、第1電極112とのコンタクトを形成する最上層以外は、低いドナー密度と濃度とすることができる。この構成は、光吸収層107における不純物の密度を、厚さ方向に、クラッド層102の側から離れるほど高くすることで実現できる。
 なお、光吸収層107の絶縁層106と付近のドナー密度により、ゲート電圧印加時の空乏層の厚さ、MOSFETの閾値が変わるが、これらは受光器100の感度に影響を与える。クラッド層102の側のドナー、アクセプタ濃度や動作電圧を考慮して、絶縁層106膜付近の光吸収層107のドナー密度を決定する。
 また、光吸収層107は、クラッド層102の側から離れるほどバンドギャップエネルギーが大きい状態とすることができる。これは、光吸収層107を、InGaAsなどの3元系のIII-V族化合物半導体から構成することで、実現できる。光吸収層107を構成する化合物半導体の組成を、例えばInP系材料と格子整合する範囲で変化さることで、上述したバンドギャップエネルギーの分布を形成することができる。このようなバンドギャップエネルギーの分布制御により、吸収係数を制御することが可能となる。
 例えば、絶縁層106の付近には、高い吸収係数のバンドギャップエネルギーの組成とし、これより上層は、低い吸収係数のバンドギャップエネルギーとした積層構造とすることができる。バンドギャップエネルギーが小さい方が、光吸収係数が高いので、上述した構成とすることで、絶縁層106付近の光吸収層107は低いバンドギャップエネルギーとなり、これより上層の領域は高いバンドギャップエネルギーとなる。この構成とすることで、空乏化する絶縁層106付近だけにキャリアを発生させるが可能である。このように、複数バンドギャップを有するIII-V族化合物半導体の積層構造により、フォトキャリア分布を制御することが可能となる。また、光吸収層107の一部に多重量子井戸を有する構成とすることできる。量子閉じ込め効果や歪の導入により、光吸収層107の光吸収係数を制御することが可能となる。当然、ドナー密度、バンドギャップの両方を、厚さ方向に変化させて、光吸収係数を制御することもできる。
 ところで、受光器100において、光吸収層107内で発生したフォトキャリアは引き抜くことができないため、キャリアの再結合を待つ必要がある。これが応答速度を制限する。光吸収層107におけるフォトキャリアの再結合レートが大きくなるほど、応答速度が向上する。この再結合レートは、光吸収層107内のキャリア濃度分布により制御可能である。例えば、光吸収層107をInP系材料から構成する場合、キャリア濃度が高いほどオージェ再結合が顕著になり、再結合レートが増大する。
 また、図5に示すように、光吸収層107を覆う絶縁層116を設け、光吸収層107と絶縁層116との界面に形成された高欠陥密度層117を導入する構成とすることもできる。高欠陥密度層117は、欠陥密度が光吸収層107の内部より多い領域となる。高欠陥密度層117を用いることで、光吸収層107の表面における再結合レートを増大させることが可能となる。
 例えば、InP系半導体材料は、SiO2との間に高い欠陥密度を存在させることが可能であり、光吸収層107を、SiO2などから構成した絶縁層116で被覆することで、高欠陥密度層117が導入でき、再結合レートの増大に有効である。これにより、動作速度の向上が可能である。なお、再結合レートの増大は、感度を劣化させる要因となるため、感度と速度がトレードオフとなることを考慮して設計される。感度を向上するために再結合レートを低減したい場合は、光吸収層107に接して設けられる絶縁層116の材料や形成方法を設計する必要がある。例えば、原子層成長法で成膜されたAl23の層と、InP系半導体の層との界面は、欠陥密度が小さいことが知られており、これら材料を用いることで、光吸収層107の表面再結合レートを低減させることができる。
 以上に説明したように、本発明によれば、光吸収層をn型のIII-V族化合物半導体から構成したので、MOSFETのゲートを光吸収層とした受光器の、小型化および低抵抗化が実現できる。
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。
 100…受光器、101…基板、102…クラッド層、103…第1半導体層、104…第2半導体層、105…第3半導体層、106…絶縁層、107…光吸収層、108…第2電極、109…第3電極、110…絶縁層、111…コンタクト領域、112…第1電極、120…光導波路、121…コア。

Claims (5)

  1.  クラッド層の上に形成されたp型のシリコンからなり、導波方向の一端側に光導波路が光学的に接続される第1半導体層と、
     前記第1半導体層を挟んで前記クラッド層の上に形成されたn型のシリコンからなる第2半導体層および第3半導体層と、
     前記第1半導体層の上に絶縁層を介して形成されたn型のIII-V族化合物半導体からなる光吸収層と、
     前記第1半導体層の上の領域以外で前記光吸収層に電気的に接続する第1電極と、
     前記第2半導体層に電気的に接続する第2電極と、
     前記第3半導体層に電気的に接続する第3電極と
     を備える受光器。
  2.  請求項1記載の受光器において、
     前記第1半導体層の一端側に光学的に接続する光導波路を備えることを特徴とする受光器。
  3.  請求項1または2記載の受光器において、
     前記光吸収層は、前記クラッド層の側から離れるほど不純物の密度が高い状態とされていることを特徴とする受光器。
  4.  請求項1~3のいずれか1項に記載の受光器において、
     前記光吸収層は、3元系のIII-V族化合物半導体から構成され、前記クラッド層の側から離れるほどバンドギャップエネルギーが大きい状態とされていることを特徴とする受光器。
  5.  請求項1~4のいずれか1項に記載の受光器において、
     前記光吸収層を覆って形成された絶縁層と、
     前記光吸収層と前記絶縁層との界面に形成された、欠陥密度が前記光吸収層の内部より多い高欠陥密度層と
     を備えることを特徴とする受光器。
PCT/JP2020/028458 2020-07-22 2020-07-22 受光器 WO2022018860A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022538556A JP7435786B2 (ja) 2020-07-22 2020-07-22 受光器
PCT/JP2020/028458 WO2022018860A1 (ja) 2020-07-22 2020-07-22 受光器
US18/002,809 US20230253516A1 (en) 2020-07-22 2020-07-22 Photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/028458 WO2022018860A1 (ja) 2020-07-22 2020-07-22 受光器

Publications (1)

Publication Number Publication Date
WO2022018860A1 true WO2022018860A1 (ja) 2022-01-27

Family

ID=79729147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028458 WO2022018860A1 (ja) 2020-07-22 2020-07-22 受光器

Country Status (3)

Country Link
US (1) US20230253516A1 (ja)
JP (1) JP7435786B2 (ja)
WO (1) WO2022018860A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284750A (ja) * 1997-04-01 1998-10-23 Hitachi Ltd 半導体受光素子および光電子集積回路素子
US9823497B1 (en) * 2016-04-11 2017-11-21 National Technology & Engineering Solutions Of Sandia, Llc Electroabsorption optical modulator
JP2017537454A (ja) * 2014-07-09 2017-12-14 キム,フン イメージセンサーの単位画素及びその受光素子
JP2019002852A (ja) * 2017-06-16 2019-01-10 株式会社豊田中央研究所 電磁波検出器およびその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10284750A (ja) * 1997-04-01 1998-10-23 Hitachi Ltd 半導体受光素子および光電子集積回路素子
JP2017537454A (ja) * 2014-07-09 2017-12-14 キム,フン イメージセンサーの単位画素及びその受光素子
US9823497B1 (en) * 2016-04-11 2017-11-21 National Technology & Engineering Solutions Of Sandia, Llc Electroabsorption optical modulator
JP2019002852A (ja) * 2017-06-16 2019-01-10 株式会社豊田中央研究所 電磁波検出器およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GOING RYAN W.; LOO JODI; LIU TSU-JAE KING; WU MING C.: "Germanium Gate PhotoMOSFET Integrated to Silicon Photonics", IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, vol. 20, no. 4, 1 July 2014 (2014-07-01), USA, pages 1 - 7, XP011537790, ISSN: 1077-260X, DOI: 10.1109/JSTQE.2013.2294470 *
KUO MING-HAO; LEE MORRIS M.; LI PEI-WEN: "High photoresponsivity germanium nanodot PhotoMOSFETs for monolithically-integrated Si optical interconnects", 2017 IEEE ELECTRON DEVICES TECHNOLOGY AND MANUFACTURING CONFERENCE (EDTM), 28 February 2017 (2017-02-28), pages 189 - 190, XP033106127, DOI: 10.1109/EDTM.2017.7947595 *

Also Published As

Publication number Publication date
US20230253516A1 (en) 2023-08-10
JPWO2022018860A1 (ja) 2022-01-27
JP7435786B2 (ja) 2024-02-21

Similar Documents

Publication Publication Date Title
US10199525B2 (en) Light-receiving element and optical integrated circuit
JP6793786B1 (ja) 半導体受光素子、光電融合モジュール及びアバランシェフォトダイオードの製造方法
WO2011083657A1 (ja) アバランシェフォトダイオード及びそれを用いた受信機
CN109075219B (zh) 光波导集成光接收元件及其制造方法
CN102782880A (zh) 具有改进响应度的基于硅的肖特基势垒探测器
Colace et al. Waveguide photodetectors for the near-infrared in polycrystalline germanium on silicon
US11978812B2 (en) Waveguide photodetector
JP3675223B2 (ja) アバランシェフォトダイオードとその製造方法
JPH09283786A (ja) 導波路型半導体受光素子とその製造方法
WO2022018860A1 (ja) 受光器
JPH05160430A (ja) キャリアの吐き出しの為の手段を有する光検出器及びそれを用いた光通信システム
JP5626897B2 (ja) フォトダイオード
JPH11330536A (ja) 半導体受光素子
CN111052405B (zh) 雪崩光电二极管及其制造方法
JPS58161366A (ja) 複合半導体装置
JP7452552B2 (ja) 受光素子の製造方法
JP3610910B2 (ja) 半導体受光素子
JPS59163878A (ja) 半導体受光装置
JP4284781B2 (ja) Msm型フォトダイオード
Giehl et al. Waveguide-based type-II heterostructure photodiode on InAs substrate with broad wavelength range photoresponse
JP2005086028A (ja) 半導体受光装置
JPH05175535A (ja) 量子化Si光半導体装置
JPH06112516A (ja) 半導体受光素子
Yao et al. Intersubband absorption based upon modulation doped transistor heterostructures
JPH09153636A (ja) 半導体受光素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20946369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022538556

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20946369

Country of ref document: EP

Kind code of ref document: A1