WO2015199461A1 - 전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파 차폐용 가스켓 - Google Patents

전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파 차폐용 가스켓 Download PDF

Info

Publication number
WO2015199461A1
WO2015199461A1 PCT/KR2015/006487 KR2015006487W WO2015199461A1 WO 2015199461 A1 WO2015199461 A1 WO 2015199461A1 KR 2015006487 W KR2015006487 W KR 2015006487W WO 2015199461 A1 WO2015199461 A1 WO 2015199461A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone resin
resin composition
conductive
conductive silicone
gasket
Prior art date
Application number
PCT/KR2015/006487
Other languages
English (en)
French (fr)
Inventor
유재성
변현호
정재훈
이우택
유민수
Original Assignee
욱성화학 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 욱성화학 주식회사 filed Critical 욱성화학 주식회사
Priority to EP15811964.4A priority Critical patent/EP3163583A4/en
Priority to CN201580041651.8A priority patent/CN106537517A/zh
Priority to US15/321,724 priority patent/US20170137610A1/en
Priority to JP2017520844A priority patent/JP2017523296A/ja
Publication of WO2015199461A1 publication Critical patent/WO2015199461A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/18Conductive material dispersed in non-conductive inorganic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/14Carbides

Definitions

  • the present invention relates to a conductive silicone resin composition and an electromagnetic wave shielding gasket prepared therefrom, and more particularly, to a thermosetting silicone resin composition, including silicon carbide conductive particles coated with a metal, to maintain electromagnetic shielding efficiency while maintaining electromagnetic wave shielding efficiency.
  • the present invention relates to a conductive silicone resin composition having excellent deformation resistance and thermal conductivity and an electromagnetic shielding gasket prepared therefrom.
  • a finger strip method is used as a method for filling and sealing the gaps between the ribs of each part. Because of this, a new method has been sought, and a form in place has been adopted and widely used as a method for satisfying this.
  • a conductive paste is dispensed using a robot in the field and then cured at a high temperature (150 ° C.) to form a gasket.
  • the performance required for the conductive paste used in this system is high conductivity, high adhesion, high elasticity, high uniform dispersion, durability and the like.
  • the gasket is used to connect the gaps between the ribs of each case of the electronic device.
  • high conductivity may be a very important property in terms of shielding properties of a product as it is applied for electromagnetic shielding purposes, and high elasticity is very important in mechanical properties of a coated product.
  • Korean Patent Registration No. 10-0585944 discloses an electromagnetic shielding gasket using a room temperature moisture curable one-component silicone resin composition.
  • moisture-curable silicone resins lack mechanical properties such as elongation and tensile strength than thermosetting silicone resins, and thus there has been a continuous demand for developing gaskets that have improved these properties.
  • thermosetting silicone resin when the present inventors use silicon carbide conductive particles coated with a thermosetting silicone resin and a metal in the thermosetting silicone resin composition, corrosion resistance, deformation resistance, thermal conductivity, and mechanical properties are greatly improved while maintaining electromagnetic shielding efficiency. It was confirmed that the present invention was completed.
  • Another object of the present invention is to provide an electromagnetic shielding gasket manufactured using the silicon paste composition.
  • the present invention (a) silicon carbide (SiC) conductive particles coated with a metal; (b) thermosetting silicone resins; And (c) a solvent; provides a conductive silicone resin composition comprising a.
  • the present invention also provides an electromagnetic shielding gasket manufactured using the conductive silicone resin composition described above.
  • 1 is a graph showing the thermal conductivity test results of the specimen prepared using the conductive silicone resin composition according to an embodiment of the present invention.
  • Figure 2 is a graph showing the thermal conductivity test results of the specimen prepared using the conductive silicone resin composition according to Comparative Example 1 of the present invention.
  • Figure 3 is a graph showing the thermal conductivity test results of the specimen prepared using the conductive silicone resin composition according to Comparative Example 3 of the present invention.
  • FIG. 4 is a graph showing the plane wave shielding effect of the specimen prepared by using the conductive silicone resin composition according to an embodiment of the present invention.
  • FIG. 5 is a photograph of a device for measuring a plane wave shielding effect of a specimen prepared using a conductive silicone resin composition according to an embodiment of the present invention.
  • FIG. 6 is a photograph of a specimen prepared using a conductive silicone resin composition according to an embodiment of the present invention.
  • thermosetting silicone resin composition includes silicon carbide conductive particles coated with a thermosetting silicone resin and a metal, thereby improving corrosion resistance, deformation resistance, and thermal conductivity while maintaining electromagnetic shielding efficiency and mechanical properties.
  • the present invention in one aspect, (a) silicon carbide (SiC) conductive particles coated with a metal; (b) a thermosetting silicone resin; And (c) a solvent; relates to a conductive silicone resin composition comprising.
  • the component (b) is 30 to 150 parts by weight, the component (c) is 5 to 35 parts by weight, and the component (b) is 50 to 120 parts by weight based on 100 parts by weight of the (a) conductive particles. And (c) component adds 10-30 weight part.
  • the content of the components in the above range can exhibit a suitable resistance and electromagnetic shielding effect, and secure mechanical properties such as elongation, when the content is outside the above range, the lack of resistance and mechanical properties or uncured phenomenon may occur. .
  • the particle size (particle size) of the conductive particles (a) may be 10 to 300 ⁇ m, preferably 70 to 180 ⁇ m, and in the above range, it is possible to secure suitable dischargeability and resistance.
  • the metal of the conductive particles (a) may be at least one selected from the group consisting of silver (Ag), nickel (Ni), copper (Cu), and aluminum (Al).
  • the conductive particles usually use a coated metal, and a variety of kinds thereof include silver coated copper, silver coated silicon carbide, and silver coated nickel.
  • the silicon carbide which is a core metal of the silver-coated silicon carbide used in the present invention, has a thermal expansion coefficient of 4.4 ⁇ 10 ⁇ 6 m / ° C. and a thermal shock coefficient of less than 16.6 ⁇ 10 ⁇ 6 m / ° C. of the copper, which is a core metal of silver coated copper. It is more stable in the test (reliability test applying temperature change from -40 °C to 85 °C), and silver coated silicon carbide is more resistant to corrosion than other conductive particles such as nickel and copper. This property can increase durability when exposed to the external environment.
  • the gasket is used to connect the gap between the ribs of each case of the electronic device, the heat generated in the electronic device is also spread to each case through the gasket to cool the heat easily.
  • This thermal conductivity depends on the core metal of the conductive particles, and the silver coated silicon carbide used in the present invention has a higher thermal conductivity as compared with silver coated copper and nickel coated graphite.
  • the metal of the (a) conductive particles may be from 2 to 40% by weight, preferably from 5 to 30% by weight, and when out of the above range, the high silver coating may show a low resistance effect compared to the high price. There is a problem that the low silver coating can not effectively wrap the silicon carbide.
  • the said (a) electroconductive particle is metal powder, such as copper (Cu), nickel (Ni), silver (Ag), gold (Au), cobalt (Co); Or a plated metal such as Ag-plated Cu; Alternatively, an alloy of aluminum and silicon (Al-Si alloy), zinc-ferrite (Zn-ferrite), Monel (Monel) and the like may be further included to further improve the electromagnetic shielding effect.
  • metal powder such as copper (Cu), nickel (Ni), silver (Ag), gold (Au), cobalt (Co); Or a plated metal such as Ag-plated Cu;
  • Al-Si alloy aluminum and silicon
  • Zn-ferrite zinc-ferrite
  • Monel Monel
  • thermosetting silicone resin (b) may be a thermosetting one-component or two-component silicone resin, and preferably a thermosetting one-component silicone resin is used.
  • thermosetting silicone resin (b) may be non-flowing to 3000 cps.
  • the thermosetting silicone resin (b) may further include a small amount of a curing agent or a curing catalyst in the silicone polymer.
  • the curing agent may be a hexane-based compound or a peroxide-based compound
  • the curing catalyst may be a platinum-based hydrogen phosphine or imidazole-based catalyst, but is not limited thereto.
  • the solvent (c) may be a hydrocarbon solvent such as toluene, xylene, cyclohexane, or the like; Halogenated hydrocarbon solvents such as chloroform and carbon tetrachloride; Ester solvents such as ethyl acetate and butyl acetate; Long-chain siloxane solvents such as hexanemethyldisiloxane, octamethyltrisiloxane, and decamethyltetrasiloxane; Cyclic siloxane solvents such as hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, heptamethylphenylcyclotetrasiloxane, heptamethylvinylcyclotetrasiloxane, decamethylcyclopentasiloxane can be used, but are not limited thereto.
  • Hydrocarbon solvent such as toluene, xylene, cyclohexan
  • Liquid (c) may be used as the solvent (c). It is preferable that the viscosity is 3.7 to 4.5 centipoise (cP), and an organic group selected from the group consisting of chloropropyl group, phenylethyl group, C 6 -C 20 alkyl group, trichloropropyl group, epoxy group and cyano group It is preferable that it contains and is volatile.
  • Liquid silicone oil has a molecular structure in which silicon, in which organic groups are bonded, is connected by siloxane bonds (Si-O-Si). Not only excellent insulation, but also serves as a binder (binder). In addition, the liquid silicone oil has a small surface tension and has antifoaming properties.
  • the present invention relates to an electromagnetic shielding gasket manufactured using the conductive silicone resin composition described above from another viewpoint.
  • Silicon carbide (Ag / SiC) coated by silver (manufacturer: INCO, trade name: SNP-950) was used as the conductive particles.
  • Thermosetting 1-component silicone resin (manufacturer: Dow Corning, trade name: SE 1775) 45 minutes by weight, 50% by weight of silicon carbide coated with silver containing 15% by weight of silver, and 5% by weight of silicon oil, The mixture was uniformly stirred by preliminary mixing.
  • Example 2 The same procedure as in Example 1 was conducted except that 45 wt% of the thermosetting one-component silicone resin, 50 wt% of copper coated with silver having a silver content of 5 wt%, and 5 wt% of the silicone oil were added.
  • Comparative Example 1 was carried out in the same manner as in Comparative Example 1 except that the copper coated with silver having a silver content of 18% by weight.
  • Example 2 The procedure was the same as in Example 1 except that 45 wt% of the thermosetting one-component silicone resin, 50 wt% of graphite coated with nickel having a nickel content of 70 wt%, and 5 wt% of the silicone oil were added.
  • Example 2 The same procedure as in Example 1 was performed except that 45 wt% of the water-curable one-component silicone resin, 50 wt% of silicon carbide coated with silver having a silver content of 15 wt%, and 5 wt% of silicon oil were added.
  • Example 1 Using the compositions prepared in Example 1 and Comparative Examples 1 to 4 to prepare a sheet through a thermosetting process using a press molding process, for each sheet prepared as described above, the corrosion resistance, thermal shock, thermal conductivity and Electromagnetic shielding efficiency was measured.
  • Pyroceram was used as a standard material and was measured by scintillation specific heat measurement using a thermal diffusion measuring apparatus (Netzsch, LFA447) at a temperature of 25 °C.
  • ⁇ (T) ⁇ (T) ⁇ C P (T) ⁇ ⁇ (T)
  • thermal diffusivity the specific heat, and the density were measured, and then converted into thermal conductivity.
  • Silver coated silicon carbide according to Example 1 from Table 2 (Fig. 1) is 22.4% more thermal conductivity, compared with the silver coated copper of Comparative Example 1 (Fig. 2) and nickel coated graphite of Fig. 3 (Fig. 3) was found to be high.
  • the measurement conditions are as follows.
  • Atmospheric pressure (100.6 ⁇ 1) kPa
  • the measuring equipment is as follows (Fig. 5).
  • Attenuator (272.4210.50, Rohde & Schwarz): DC-18 GHz, 10 dB, 2EA
  • the silver-coated silicon carbide according to Example 1 showed the highest shielding efficiency of 80dB or more at 250.50MHz ⁇ 1500.00MHz and the lowest shielding efficiency of 65.5dB at 30.00MHz.
  • thermosetting silicone KS M ISO 37: 2002
  • KS M ISO 37: 2002 thermosetting silicone
  • dumbbell No. 4 specimens are shown in Table 4 below.
  • the compression set was measured using a compression plate (KS M ISO 815: 2002), a specimen having a diameter of 13 mm and a thickness of 6.3 mm. Indicated. The lower the compression set, the better the physical properties.
  • Example 1 thermosetting
  • Comparative Example 4 Melisture Curing
  • the conductive silicone resin composition including the thermosetting silicone resin according to Example 1 has excellent mechanical properties such as elongation and permanent compression ratio, when compared with Comparative Example 4 including a moisture-curable silicone resin. It can be seen that.
  • the conductive silicone resin composition according to an embodiment of the present invention has excellent durability such as corrosion resistance and thermal shock and high conductivity when exposed to the external environment by using silicon carbide coated with metal, and also has excellent electromagnetic shielding properties. It was confirmed that the high efficiency of the electromagnetic wave shielding gasket of the electronic device.
  • Electromagnetic shielding gasket manufactured using the conductive silicone resin composition according to the present invention is excellent in durability, such as corrosion resistance and thermal shock to the external environment, and has a very excellent high conductivity characteristics and electromagnetic shielding properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Sealing Material Composition (AREA)

Abstract

본 발명에 의한 전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파 차폐용 가스켓은 열경화형 실리콘 수지 조성물에 금속으로 코팅된 실리콘카바이드 도전성 입자를 포함함으로써 전자파 차폐 효율을 유지하면서 내부식성, 내변형성 및 열전도율이 매우 우수한 효과가 있다.

Description

전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파 차폐용 가스켓
본 발명은 전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파 차폐용 가스켓에 관한 것으로서, 더욱 상세하게는 열경화형 실리콘 수지 조성물에 금속으로 코팅된 실리콘카바이드 도전성 입자를 포함하여 전자파 차폐 효율을 유지하면서 내부식성, 내변형성 및 열전도율이 매우 우수한 전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파 차폐용 가스켓에 관한 것이다.
정보화 사회를 살고 있는 현대인에게 있어 각종 전자기기의 사용은 필수이며 이에 따라 필연적으로 발생하는 전자파에 노출되기 마련이다. 최근 다양한 방식의 디스플레이가 상용화되면서 이러한 디스플레이로부터 발생되는 전자기적인 노이즈의 방해현상(Electromagnetic Interference, EMI라 함)으로 인한 인체의 유해성 및 기기의 오작동 등이 큰 문제점으로 대두되고 있으며, 현재 거의 대부분의 전자기기에 있어 회로 측면에서의 전자파 발생 억제의 노력이 지속적으로 이어지고 있다. 또한 제품 및 회로를 보호하는 케이스(case) 측면에서는 케이스 내면에 전기 전도성 물질을 코팅함으로써 전자기기 내외부적으로 전자파로부터의 영향을 최소화하려는 노력이 시도되어 왔다. 그러나 이러한 케이스는 여러 파트로 구성되며 이들 파트들 조립시리브(rib)와 리브간의 틈새(gap)가 필연적으로 발생함으로써 전자파 유입 및 유출의 경로를 제공하는 문제가 발생하게 된다.
상기 문제를 해결하기 위해 각 파트의 리브간의 틈새를 메워 실링하기 위한 방법으로서 핑거 스트립(finger strip) 방식을 채택하여 사용하였으나 과도한 수작업에 의한 작업성 저하 및 비용 증가, 고주파수 대역에서의 전자파 차폐 성능 미달로 인하여 새로운 방식을 모색하게 되었고, 이를 충족시키는 방법으로서 현장 성형 방식(form in place)이 채택되어 널리 이용되고 있다. 이 방식은 도전성 페이스트를 현장에서 로봇을 이용하여 디스펜싱한 후 고온(150℃)에서 경화시켜 가스켓을 형성하는 방법이다. 이 방식에 사용되는 도전성 페이스트에 있어 요구되는 성능은 고전도성, 고부착성, 고탄성, 고균일분산성, 내구성 등이다. 가스켓은 전자기기의 각 케이스의 리브 간의 틈새를 이어주는 것으로 사용되는데, 이 때 전자기기에서 발생되는 열 또한 가스켓을 통해 각 케이스로 퍼져야 열이 쉽게 식게 된다. 그러므로, 고전도성의 경우 전자파 차폐 목적으로 도포하는 만큼 제품의 차폐 물성 측면에서 매우 중요한 특성이라 할 수 있으며, 고탄성의 경우 도포된 제품의 기계적 물성에서 매우 중요하다.
한국특허등록 제 10-0585944호에서는 상온 수분 경화형 1액형 실리콘 수지 조성물을 이용한 전자파 차폐용 가스켓이 기재되어 있다. 하지만 수분 경화형 실리콘 수지는 열경화형 실리콘 수지보다 연신율 및 인장강도 등 기계적 물성이 부족하여 이를 개선한 가스켓 개발이 지속적으로 요청되어 왔다.
여기에서 본 발명자는 열경화형 실리콘 수지 조성물에 열경화형 실리콘 수지와 금속으로 코팅된 실리콘카바이드 도전성 입자를 포함하여 사용할 경우, 전자파 차폐 효율을 유지하면서 내부식성, 내변형성, 열전도율 및 기계적 물성이 매우 향상되는 것을 확인하고 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 목적은 우수한 전자파 차폐 성능 및 기계적 물성과 함께 보다 향상된 내부식성 및 열전도율 가진 전자파 차폐 가스켓의 제조를 가능케 하는 실리콘 페이스트 조성물을 제공하는데 있다.
본 발명의 다른 목적은 상기 실리콘 페이스트 조성물을 이용하여 제조된 전자파 차폐 가스켓을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 금속으로 코팅된 실리콘카바이드(SiC) 도전성 입자; (b) 열경화형 실리콘 수지; 및 (c) 용매;를 포함하는 전도성 실리콘 수지 조성물을 제공한다.
본 발명은 또한 상기한 전도성 실리콘 수지 조성물을 사용하여 제조된 전자파 차폐용 가스켓을 제공한다.
도 1은 본 발명의 일 실시예에 따른 전도성 실리콘 수지 조성물을 이용하여 제조한 시편의 열전도도 시험 결과를 나타낸 그래프이다.
도 2는 본 발명의 비교예 1에 따른 전도성 실리콘 수지 조성물을 이용하여 제조한 시편의 열전도도 시험 결과를 나타낸 그래프이다.
도 3은 본 발명의 비교예 3에 따른 전도성 실리콘 수지 조성물을 이용하여 제조한 시편의 열전도도 시험 결과를 나타낸 그래프이다.
도 4는 본 발명의 일 실시예에 따른 전도성 실리콘 수지 조성물을 이용하여 제조한 시편의 평면파 차폐 효과를 나타낸 그래프이다.
도 5는 본 발명의 일 실시예에 따른 전도성 실리콘 수지 조성물을 이용하여 제조한 시편의 평면파 차폐 효과를 측정한 장치의 사진이다.
도 6은 본 발명의 일 실시예에 따른 전도성 실리콘 수지 조성물을 이용하여 제조한 시편의 사진이다.
발명의 상세한 설명 및 구체적인 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명에서는 열경화형 실리콘 수지 조성물에열경화형 실리콘 수지와 금속으로 코팅된 실리콘카바이드 도전성 입자를 포함함으로써 전자파 차폐 효율 및 기계적 물성을 유지하면서 내부식성, 내변형성 및 열전도율을 향상시킬 수 있었다.
따라서, 본 발명은 일 관점에서, (a) 금속으로 코팅된 실리콘카바이드(SiC) 도전성 입자;(b) 열경화형 실리콘 수지; 및 (c) 용매;를 포함하는 전도성 실리콘 수지 조성물에 관한 것이다.
상기 (a) 도전성 입자 100중량부에 대하여 상기 (b) 성분은 30 내지 150중량부이며, 상기 (c) 성분은 5 내지 35중량부이고, 바람직하게는 (b) 성분은 50 내지 120중량부이며, (c) 성분은 10 내지 30중량부를 첨가한다. 상기 성분들의 함량이 상기 범위일 경우에 적합한 저항과 전자파 차폐 효과를 나타내고 연신율 등의 기계적 물성을 확보할 수 있으며, 함량이 상기 범위 외일 경우에는 저항 및 기계적 물성의 부족 또는 미경화 현상이 발생할 수 있다.
상기 (a) 도전성 입자의 입자크기(입도)는 10 내지 300㎛, 바람직하게는 70 내지 180㎛일 수 있으며, 상기 범위일 경우, 적합한 토출성과 저항을 확보할 수 있다.
상기 (a) 도전성 입자의 금속은 은(Ag), 니켈(Ni), 구리(Cu) 및 알루미늄(Al)으로 구성된 군에서 선택되는 1종 이상일 수 있다.
도전성 실리콘 수지 조성물에서 도전성 입자는 보통 코팅된 금속을 사용하게 되는데, 그 종류는 은 코팅 구리, 은 코팅 실리콘카바이드, 은 코팅 니켈 등 그 종류가 다양하다. 이 때, 코어 메탈의 종류에 따라, 그 메탈의 특성 또한 달라지게 되는데, 그로 인한 변하는 물성의 대표적인 것이 내부식성 및 내변형성이다. 본 발명에서 사용하는 은코팅 실리콘카바이드의 코어 메탈인 실리콘카바이드는 열팽창계수가 4.4×10-6m/℃로서 은 코팅 구리의 코어 메탈인 구리의 열팽창계수 16.6×10-6m/℃보다 작아 열충격 테스트(-40℃에서 85℃까지 온도변화를 가하는 신뢰성시험)에서 더욱 안정하며, 은 코팅 실리콘카바이드는 니켈, 구리 등 다른 도전성 입자보다 부식에 강하다. 이러한 특성은 외부환경에 노출되었을 때, 내구성을 증가시킬 수 있게 된다.
한편, 가스켓은 전자기기의 각 케이스의 리브간의 틈새를 이어주는 것으로 사용되는데, 이때 전자기기에서 발생 되는 열 또한 가스켓을 통해 각 케이스로 퍼져야 열이 쉽게 식게 된다. 이러한 열전도도는 도전성 입자의 코어 메탈에 따라 달라지며, 본 발명에서 사용하는 은 코팅 실리콘카바이드는 은 코팅 구리, 니켈 코팅 그라파이트와 비교할 때 열전도도가 더 높다.
상기 (a) 도전성 입자의 금속은 2 내지 40중량%일 수 있으며, 바람직하게는 5 내지 30중량%일 수 있으며, 상기 범위 외일 경우, 높은 은코팅은 고가의 가격에 비해 낮은 저항 효과를 볼 수 없으며, 낮은 은코팅은 실리콘카바이드를 효과적으로 감쌀 수 없다는 문제점이 있다.
상기 (a) 도전성 입자는 구리(Cu), 니켈(Ni), 은(Ag), 금(Au), 코발트(Co) 등의 금속 파우더; 또는 은으로 도금된 구리(Ag-plated Cu) 등의 도금금속; 또는 알루미늄과 실리콘의 합금(Al-Si alloy), 아연-페라이트(Zn-ferrite), 몬넬(Monel) 등의 합금금속을 추가로 포함하여 사용하여 전자파 차폐 효과를 더욱 향상시킬 수 있다.
상기 (b) 열경화형 실리콘 수지는 열경화형 일액형 또는 이액형 실리콘 수지일 수 있으며, 바람직하게는 열경화형 일액형 실리콘 수지를 사용한다.
상기 (b) 열경화형 실리콘 수지의 점도가 비흐름성 내지 3000cps일 수 있다.
상기 (b) 열경화형 실리콘 수지는 실리콘 고분자에 소량의 경화제 또는 경화촉매를 추가로 포함할 수 있다. 경화제는 헥산계 화합물 또는 과산화물계 화합물을 사용하며, 경화 촉매로는 백금계 인화수소(phosphine)계 또는 이미다졸(imidazole)계 촉매를 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 (c) 용매는 톨루엔, 크실렌, 사이클로헥산 등과 같은 탄화수소 용제; 클로로포름, 사염화탄소 등과 같은 할로겐화 탄화수소계 용제; 초산에틸, 초산부틸 등의 에스테르계 용제; 헥산메틸디실록산, 옥타메틸트리실록산, 데카메틸테트라실록산 등의 쇄장실록산계 용제; 헥사메틸사이클로트리실록산, 옥타메틸사이클로테트라실록산, 헵타메틸페닐사이클로테트라실록산, 헵타메틸비닐사이클로테트라실록산, 데카메틸사이클로펜타실록산 등의 환형 실록산계 용제를 사용할 수 있으나, 이에 한정되는 것은 아니다.
상기 (c) 용매로는 액상 실리콘 오일을 사용할 수 있다. 점도가 3.7∼4.5 센티포이즈(cP)인 것이 바람직하고, 클로로프로필기, 페닐에틸기, C6-C20 알킬기, 트리클로로프로필기, 에폭시기 및 시아노기로 이루어진 군으로부터 선택되는 유기기(organic group)를 함유하며 휘발성인 것이 바람직하다. 액상 실리콘 오일은 유기기(organic group)가 결합되어 있는 규소가 실록산 결합(Si-O-Si)에 의해 연결된 분자구조를 가진 것으로서, 점도조절이 용이하고, 온도에 따른 점도 변화가 작으며, 전기절연성이 우수할 뿐만 아니라 바인더(binder)로서의 역할을 한다. 또한, 액상 실리콘 오일은 표면장력이 작고, 소포성을 갖는다.
본 발명은 다른 관점에서 상기한 전도성 실리콘 수지 조성물을 사용하여 제조된 전자파 차폐용 가스켓에 관한 것이다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예
실시예 1
도전성 입자로는 은으로 코팅된 실리콘카바이드(Ag/SiC)(제조사:INCO, 상품명:SNP-950)를 사용하였다. 열경화형 1액형 실리콘 수지(제조사: 다우코닝, 상품명: SE 1775) 45중량%, 은의 함량이 15중량%인 은으로 코팅된 실리콘카바이드 50중량%, 및 실리콘오일 5중량%를 첨가하여 3분간 핸드 믹싱으로 예비 교반하여 균일하게 혼합하였다.
비교예 1
열경화형 1액형 실리콘 수지 45중량%, 은의 함량이 5중량%인 은으로 코팅된 구리 50중량%, 및 실리콘오일 5중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
비교예 2
비교예 1에서 은의 함량이 18중량%인 은으로 코팅된 구리를 사용한 것을 제외하고는 비교예 1과 동일하게 실시하였다.
비교예 3
열경화형 1액형 실리콘 수지 45중량%, 니켈의 함량이 70중량%인 니켈로 코팅된 그라파이트 50중량%, 및 실리콘오일 5중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
비교예 4
수분경화형 1액형 실리콘 수지 45중량%, 은의 함량이 15 중량%인 은으로 코팅된 실리콘카바이드 50중량%, 및 실리콘오일 5중량%를 첨가한 것을 제외하고는 실시예 1과 동일하게 실시하였다.
시험예
실시예 1 및 비교예 1 내지 4에서 제조된 조성물을 사용하여 프레스 성형 공정을 이용한 열경화 과정을 통하여 시트를 제조하였으며, 이와 같이 제조된 각 시트에 대하여 하기와 같이 내부식성, 열충격, 열전도도 및 전자파 차폐 효율을 측정하였다.
1. 내부식성 측정
도전성 입자의 고온고습 환경에서 신뢰성을 확인하기 위하여, 85℃의 온도와 85%의 습도에서 120시간 동안 방치한 후에 저항 변화를 확인하였다(KS C 0222-1969). 항온항습기를 사용하여 약 2mm의 폭, 10cm의 길이로 사출한 각 가스켓의 저항 변화를 측정하여 하기 표 1에 나타내었다.
2. 열충격 측정
도전성 입자의 저온과 고온을 통한 온도변화에서 신뢰성을 확인하기 위하여 85℃, 1hr → -40℃, 1hr → 85℃, 1hr의 1cycle로 총 30cycle을 진행하였으며(KS C 0225:2001), 열충격 테스트기를 사용하여 약 2mm의 폭, 10cm의 길이로 사출한 각 가스켓의 저항 변화를 측정하여 하기 표 1에 나타내었다.
표 1
단위 비교예1 비교예2 실시예1 비교예3
내부식성 Ω 19 10 100 125
Ω(%) 170(895%) 22(220%) 132(32%) 3050(2440%)
열충격 Ω 19 10 100 125
Ω(%) 71(370%) 19(90%) 119(19%) 128(3%)
열팽창계수 106m/℃ Cu_166.6 SiC_- Graphite_7.9
인장찬성계수 Gpa Cu_108 SiC_- Graphite_5~15
3. 열전도도 측정(한국고분자시험연구소 의뢰)
가스켓의 열전도율을 확인하기 위하여 상온에서 각 시편의 열전도도를 측정하였다(ASTM-E1461).
3-1. 밀도 시험
- 시험기기: Gravimetric analysis (Precisa, XB220A)
- 시험방법: (23±2)℃에서 ASTM D792에 준하여 비중 측정 후 밀도로 환산하였다(Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement).
3-2. 비열(specific heat) 측정
파이로세람(pyroceram)을 표준물질로 사용하여 25℃의 온도에서 열확산측정장비(Netzsch, LFA447)를 이용한 섬광법 비열 측정방법으로 측정하였다.
3-3. 열확산계수 및 열전도도 측정
- 시험기기: Thermal diffusivity measurements (NETZSCH, LFA 447 NanoFlash)
- 시험방법: 25℃에서 InSb 센서를 사용하여 ASTM E1461(Standard Test Method for Thermal Diffusivity by the Flash Method)에 따른 방법으로 측정하였다.
λ(T) = α(T) × CP(T) × ρ(T)
λ: 열전도도
α: 열확산율
CP: 비열
ρ: 밀도
상기 식에서 열확산율, 비열, 밀도를 측정한 후에 열전도도로 환산하였으며, 상기 항목에 해당하는 물성을 측정하였으며, 계산된 열전도도를 표 2에 나타내었다.
표 2
Figure PCTKR2015006487-appb-T000001
주 1) Standard deviation
2) Coefficient of variation = (SD/average) × 100
상기 표 2로부터 실시예 1에 의한 은 코팅 실리콘카바이드(도 1)는 비교예 1의 은 코팅 구리(도 2) 및 비교예 3의 니켈 코팅 그라파이트(도 3)와 비교할 때, 22.4% 더 열전도도가 높은 것으로 확인되었다.
4. 전자파 차폐 효율 측정
상온에서 각 시편(도 6)의 30MHz ~ 1.5GHz 주파수범위의 전자파 차폐력을 측정하여(ASTM D4935-10, "Standard Test Method for Measuring the electromagnetic Shielding Effectiveness of Planar Materials"), 하기 표 3 및 도 4에 나타내었다.
측정조건은 다음과 같다.
- 온도: (23 ± 1)℃
- 습도: (51 ± 1)%
- 대기압력: (100.6 ± 1)kPa
- 측정주파수범위: 30MHz~1.5GHz
- 인가장: 평면파
측정 장비는 다음과 같다(도 5).
- Network Analyzer (E5071B, Agilent): 300kHz~8.5GHz
- Far Field Test Fixture(B-01-N, W.E. Measurement): 30MHz~1.5GHz
- Attenuator(272.4210.50, Rohde & Schwarz): DC~18GHz, 10dB, 2EA
표 3
최고 차폐효과 최저 차폐효과
실시예1 Ag/SiC 80dB 이상(250.50MHz~1500.00MHz) 65.5dB(30.00MHz)
* 이상: 측정 장비를 통해 확보될 수 있는 최대 측정 범위 영역까지의 차폐 효과보다 더 높은 차폐 효과가 기대될 수 있음을 의미한다.
상기 표 3 및 도 4에 나타난 바와 같이 실시예 1에 의한 은 코팅 실리콘카바이드는 250.50MHz~1500.00MHz에서 80dB 이상의 최고 차폐 효율 및 30.00MHz에서 65.5dB의 최저 차폐 효율을 보였다.
5. 연신율(파낙스이엠 자체 기구 이용 및 측정)
열경화형 실리콘의 연신율(elongation)을 측정하기 위해 만능 재료 시험기(universal testing machine)를 이용하여(KS M ISO 37:2002), 아령형 4호 시편으로 연신율을 측정하여 하기 표 4에 나타내었다.
6. 영구압축줄음율(파낙스이엠 자체 기구 이용 및 측정)
열경화형 실리콘의 영구압축줄음율(compression set)을 측정하기 위해 압축판을 이용하여(KS M ISO 815:2002), 지름 13mm, 두께 6.3mm인 시편으로 영구압축줄음율을 측정하여 하기 표 4에 나타내었다. 영구압축줄음율(compression set)은 낮을수록 우수한 물성을 나타낸다.
표 4
run 단위 실시예1(열경화형) 비교예4(수분경화)
연신율 1 140 70
2 138 65
3 135 66
평균 137 67
영구압축줄음율 1 30 55
2 28 50
3 30 50
평균 29 51
상기 표 4에 나타난 바와 같이 실시예 1에 의한 열경화형 실리콘 수지를 포함하는 전도성 실리콘 수지 조성물은 수분경화 실리콘 수지를 포함하는 비교예 4와 비교하였을 때, 연신율 및 영구압축줄음율의 기계적 물성이 우수한 것을 알 수 있다.
본 발명의 실시예에 의한 전도성 실리콘 수지 조성물은 금속으로 코팅된 실리콘카바이드를 사용함으로써 외부 환경에 노출되었을 때 내부식성 및 열충격 등의 내구성 등이 우수하고 고전도성 특성을 발휘할 뿐만 아니라 전자파 차폐 특성 또한 우수하여, 전자기기의 전자파 차폐용 가스켓으로 효용성이 높은 것을 확인할 수 있었다.
본 발명에 따른 전도성 실리콘 수지 조성물을 이용하여 제조된 전자파 차폐용 가스켓은 외부 환경에 대한 내부식성 및 열충격 등의 내구성이 우수하고 고전도성 특성 및 전자파 차폐 특성이 매우 우수한 효과가 있다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.

Claims (9)

  1. (a) 금속으로 코팅된 실리콘카바이드(SiC) 도전성 입자;
    (b) 열경화형 실리콘 수지; 및
    (c) 용매;를
    포함하는 것을 특징으로 하는 전도성 실리콘 수지 조성물.
  2. 제1항에 있어서,
    상기 (a) 도전성 입자 100중량부에 대하여 상기 (b) 성분은 30 내지 150중량부이며, 상기 (c) 성분은 5 내지 35중량부인 것을 특징으로 하는 전도성 실리콘 수지 조성물.
  3. 제1항에 있어서,
    상기 (a) 도전성 입자의 입도가 10 내지 300㎛인 것을 특징으로 하는 전도성 실리콘 수지 조성물.
  4. 제1항에 있어서,
    상기 (a) 도전성 입자의 금속은 은(Ag), 니켈(Ni), 구리(Cu) 및 알루미늄(Al)으로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 하는 전도성 실리콘 수지 조성물.
  5. 제1항에 있어서,
    상기 (a) 도전성 입자의 금속은 2 내지 40중량%인 것을 특징으로 하는 전도성 실리콘 수지 조성물.
  6. 제1항에 있어서,
    상기 (b) 열경화형 실리콘 수지는 열경화형 일액형 또는 이액형 실리콘 수지인 것을 특징으로 하는 전도성 실리콘 수지 조성물.
  7. 제1항에 있어서,
    상기 (b) 열경화형 실리콘 수지의 점도가 비흐름성 내지 3000cps인 것을 특징으로 하는 전도성 실리콘 수지 조성물.
  8. 제1항에 있어서,
    상기 (c) 용매는 실리콘 오일, 탄화수소, 할로겐화 탄화수소, 에스테르 및 실록산으로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 하는 전도성 실리콘 수지 조성물.
  9. 제1항의 전도성 실리콘 수지 조성물을 사용하여 제조된 전자파 차폐용 가스켓.
PCT/KR2015/006487 2014-06-26 2015-06-25 전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파 차폐용 가스켓 WO2015199461A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15811964.4A EP3163583A4 (en) 2014-06-26 2015-06-25 Conductive silicone resin composition and gasket for electromagnetic wave shielding manufactured from same
CN201580041651.8A CN106537517A (zh) 2014-06-26 2015-06-25 传导性有机硅树脂组合物和由其制备的用于屏蔽电磁波的衬垫材料
US15/321,724 US20170137610A1 (en) 2014-06-26 2015-06-25 Conductive silicone resin composition and gasket for electromagnetic wave shielding manufactured from same
JP2017520844A JP2017523296A (ja) 2014-06-26 2015-06-25 伝導性シリコン樹脂組成物及びこれからなる電磁波遮蔽用ガスケット

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0079021 2014-06-26
KR1020140079021A KR101640218B1 (ko) 2014-06-26 2014-06-26 전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파 차폐용 가스켓

Publications (1)

Publication Number Publication Date
WO2015199461A1 true WO2015199461A1 (ko) 2015-12-30

Family

ID=54938459

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/006487 WO2015199461A1 (ko) 2014-06-26 2015-06-25 전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파 차폐용 가스켓

Country Status (6)

Country Link
US (1) US20170137610A1 (ko)
EP (1) EP3163583A4 (ko)
JP (1) JP2017523296A (ko)
KR (1) KR101640218B1 (ko)
CN (2) CN105315669A (ko)
WO (1) WO2015199461A1 (ko)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110294940A (zh) * 2019-06-28 2019-10-01 深圳市飞荣达科技股份有限公司 屏蔽衬垫及其制备方法
US20210154609A1 (en) * 2019-11-25 2021-05-27 The Boeing Company Systems and methods for anti-microbial purification of air
CN111320965B (zh) * 2020-03-27 2022-03-29 无锡市百合花胶粘剂厂有限公司 一种耐高温胶粘剂、其制备方法及应用
KR102399677B1 (ko) 2020-09-11 2022-05-19 주식회사 대영하이켐 내구성이 향상된 초고온용 실리콘 고무 가스켓 조성물 및 이의 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390638B1 (ko) * 2001-07-09 2003-07-07 남애전자 주식회사 도전성 실리콘 페이스트
KR100525667B1 (ko) * 2002-09-03 2005-11-02 이찬우 전자파 차폐용 도전성 러버 조성물 및 그의 제조방법
KR100585944B1 (ko) * 2003-05-20 2006-06-01 제일모직주식회사 전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파차폐용 가스켓
KR20060071524A (ko) * 2004-12-22 2006-06-27 재단법인 포항산업과학연구원 도전성 일액형 상온 경화형 실리콘 페이스트 조성물 및 그제조방법
KR20080107195A (ko) * 2007-06-05 2008-12-10 주식회사 엘지화학 전자파 저감용 조성물 및 이를 포함하는 시트

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3312741C2 (de) * 1982-04-08 1985-07-04 Ricoh Co., Ltd., Tokio/Tokyo Trägerteilchen für elektrostatographische Entwickler und deren Verwendung
DE4334827C1 (de) * 1993-10-08 1994-10-06 Mannesmann Ag Verfahren zur Verminderung der Verkokung von Wärmetauschflächen
US6350493B1 (en) * 1994-03-01 2002-02-26 Lockheed Martin Corporation Method of dispersing fibers in electromagnetic-attenuating coating materials
US5599624A (en) * 1995-07-03 1997-02-04 General Electric Company Amorphous silicon oxycarbide coated silicon carbide or carbon fibers
US20070241303A1 (en) * 1999-08-31 2007-10-18 General Electric Company Thermally conductive composition and method for preparing the same
US6555211B2 (en) * 2001-01-10 2003-04-29 Albany International Techniweave, Inc. Carbon composites with silicon based resin to inhibit oxidation
JP4375968B2 (ja) * 2001-04-06 2009-12-02 ワールド プロパティーズ インク. 導電性シリコーンおよびその製造方法
JP3999994B2 (ja) * 2002-04-03 2007-10-31 東レ・ダウコーニング株式会社 導電性シリコーンゴム組成物
JP2007043042A (ja) * 2005-07-07 2007-02-15 Sumitomo Electric Ind Ltd ウェハ保持体およびその製造方法、ならびにそれを搭載したウェハプローバ及び半導体加熱装置
KR100700346B1 (ko) * 2005-08-05 2007-03-29 쓰리엠 이노베이티브 프로퍼티즈 캄파니 기능성을 갖는 방열 점착테이프
CN100591644C (zh) * 2005-12-23 2010-02-24 中国科学院金属研究所 一种高导热、高强高密的SiC/Cu复相泡沫材料及其制备方法
ES2862460T3 (es) * 2007-06-19 2021-10-07 Flexible Ceramics Inc A California Corp Materiales compuestos de resina de silicona para aplicaciones de materiales compuestos elásticos duraderos de alta temperatura
US7858194B2 (en) * 2008-05-27 2010-12-28 Innovation & Infinity Global Corp. Extreme low resistivity light attenuation anti-reflection coating structure in order to increase transmittance of blue light and method for manufacturing the same
CN101439973A (zh) * 2008-12-23 2009-05-27 四川大学 一种铜包覆碳化硅复合材料及其制备
US20120202069A1 (en) * 2009-10-09 2012-08-09 Yoshitaka Aoki Method of producing silicon carbide-coated carbon material
JP2012021131A (ja) * 2010-06-18 2012-02-02 Mitsubishi Chemicals Corp 半導体発光デバイス部材用2液型硬化性ポリオルガノシロキサン組成物、該組成物を硬化させてなるポリオルガノシロキサン硬化物及びその製造方法
DE112012004803B4 (de) * 2011-11-17 2022-03-03 Gentherm Inc. Thermoelektrische Vorrichtung mit Grenzflächenmaterialien und Verfahren zur Herstellung derselben
WO2013187303A1 (ja) * 2012-06-12 2013-12-19 三菱瓦斯化学株式会社 樹脂組成物、プリプレグ、金属箔張積層板及びプリント配線板
CN103571215A (zh) * 2012-07-18 2014-02-12 天瑞企业股份有限公司 高导热及emi遮蔽的高分子复合材
WO2014027552A1 (ja) * 2012-08-13 2014-02-20 株式会社村田製作所 Esd保護装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390638B1 (ko) * 2001-07-09 2003-07-07 남애전자 주식회사 도전성 실리콘 페이스트
KR100525667B1 (ko) * 2002-09-03 2005-11-02 이찬우 전자파 차폐용 도전성 러버 조성물 및 그의 제조방법
KR100585944B1 (ko) * 2003-05-20 2006-06-01 제일모직주식회사 전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파차폐용 가스켓
KR20060071524A (ko) * 2004-12-22 2006-06-27 재단법인 포항산업과학연구원 도전성 일액형 상온 경화형 실리콘 페이스트 조성물 및 그제조방법
KR20080107195A (ko) * 2007-06-05 2008-12-10 주식회사 엘지화학 전자파 저감용 조성물 및 이를 포함하는 시트

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3163583A4 *

Also Published As

Publication number Publication date
EP3163583A1 (en) 2017-05-03
CN106537517A (zh) 2017-03-22
EP3163583A4 (en) 2018-02-07
JP2017523296A (ja) 2017-08-17
KR101640218B1 (ko) 2016-07-18
US20170137610A1 (en) 2017-05-18
KR20160001790A (ko) 2016-01-07
CN105315669A (zh) 2016-02-10

Similar Documents

Publication Publication Date Title
WO2015199461A1 (ko) 전도성 실리콘 수지 조성물 및 이로부터 제조된 전자파 차폐용 가스켓
US8044330B2 (en) Electrically conductive adhesive
JP4935592B2 (ja) 熱硬化型導電性ペースト
JP4150877B2 (ja) 導電性樹脂組成物及びこれを用いた電子部品
CN110291848B (zh) 电路基板用树脂组合物及使用其的金属基底电路基板
WO2013100502A1 (ko) Mccl용 절연 접착제 조성물, 이를 이용한 도장 금속판 및 그 제조방법
WO2021125726A1 (ko) 실란화 보론 나이트라이드 복합체 및 이의 제조 방법
WO2014119930A1 (ko) 반도체칩 접착용 실리콘 고무 조성물
CN103351839A (zh) 单组分脱胺型高导电硅橡胶及其制备方法
CN113412321A (zh) 一种有机硅树脂导电胶及其制备方法和应用
JP3219852B2 (ja) 導電性ペースト
CN110257022B (zh) 一种绝缘的电磁屏蔽导热硅胶垫及其制备方法
CN106497067A (zh) 一种高导电率、高机械强度复合材料
WO2019172493A1 (ko) 전자파 차폐용 도전성 조성물, 이로부터 제조된 전자파 차폐층, 이를 포함하는 회로기판 적층체 및 전자파 차폐층 형성방법
WO2016117719A1 (en) Electromagnetic wave shielding film and manufacturing method thereof
WO2020017940A1 (ko) 전자파 차폐용 가스켓 제조용 조성물 및 전자파 차폐용 가스켓
WO2017014414A1 (ko) 이방 도전성 필름용 조성물, 이방 도전성 필름 및 이를 이용한 디스플레이 장치
CN113789058A (zh) 一种低应力导热硅胶及其制备方法、电子仪器
WO2016199983A1 (ko) 화학식 1 또는 2의 고분자 수지, 이를 포함하는 접착 필름 및 상기 접착 필름에 의해 접속된 디스플레이 장치
WO2016117720A1 (en) Electromagnetic wave shielding sheet and manufacturing method of the same
WO2013042894A2 (ko) 에폭시 수지 조성물, 이를 이용한 접착시트, 이를 포함하는 회로기판 및 이의 제조방법
CN112457706A (zh) 一种散热油墨、制备方法及散热屏蔽罩的制备方法
WO2023224174A1 (ko) 전기전도도 향상을 위한 저온 경화형 실리콘 전기 전도성 접착제 조성물
WO2018093030A1 (ko) 방열성이 우수한 실리콘 조성물
WO2015057012A1 (ko) 인체에 무해한 이방 도전성 필름용 조성물, 이방 도전성 필름, 및 상기 필름에 의해 접속된 반도체 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15811964

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15321724

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017520844

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015811964

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015811964

Country of ref document: EP