WO2015194216A1 - モータ - Google Patents

モータ Download PDF

Info

Publication number
WO2015194216A1
WO2015194216A1 PCT/JP2015/057527 JP2015057527W WO2015194216A1 WO 2015194216 A1 WO2015194216 A1 WO 2015194216A1 JP 2015057527 W JP2015057527 W JP 2015057527W WO 2015194216 A1 WO2015194216 A1 WO 2015194216A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
brush
coil
teeth
segment
Prior art date
Application number
PCT/JP2015/057527
Other languages
English (en)
French (fr)
Inventor
尚大 橋詰
俊輔 高橋
邦明 田中
圭祐 齊藤
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to US15/319,485 priority Critical patent/US20170324313A1/en
Priority to JP2016529110A priority patent/JPWO2015194216A1/ja
Priority to CN201580032817.XA priority patent/CN106464112B/zh
Priority to DE112015002853.6T priority patent/DE112015002853T5/de
Publication of WO2015194216A1 publication Critical patent/WO2015194216A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/26DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by the armature windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/02DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting
    • H02K23/04DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors characterised by arrangement for exciting having permanent magnet excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K13/00Structural associations of current collectors with motors or generators, e.g. brush mounting plates or connections to windings; Disposition of current collectors in motors or generators; Arrangements for improving commutation
    • H02K13/006Structural associations of commutators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings

Definitions

  • the present invention relates to a motor with a brush.
  • Japanese Unexamined Patent Application Publication No. 2008-79413 discloses a motor in which a pair of magnets are arranged in a cylindrical yoke so that magnetic poles having the same polarity face each other.
  • a pair of magnetic poles having a polarity opposite to the magnetic pole is formed at a pair of portions located between the pair of magnets in the circumferential direction.
  • a so-called pseudo four-pole motor is configured.
  • torque can be improved as compared with a motor in which a pair of magnets are arranged so that magnetic poles having different polarities face each other.
  • twelve teeth are provided. A coil is formed by distributed winding on these teeth.
  • in-vehicle motors and the like are required to be miniaturized in order to expand the interior space.
  • the number of windings of the conductive wire for each tooth increases in order to ensure a constant torque, and it is not easy to reduce the size of the motor.
  • concentrated winding is employed in the motor disclosed in Japanese Patent Application Laid-Open No. 2008-79413, 12 coils are formed for 12 teeth.
  • each magnetic pole is formed at an interval of 90 degrees, whereas the angular range in the circumferential direction of one coil is about 30 degrees. It will be enough.
  • the object of the present invention is to easily manufacture a small and high torque motor.
  • An exemplary motor includes a stationary part, a rotating part, and a bearing part that rotatably supports the rotating part around a central axis, and the rotating part is provided on a central axis.
  • a shaft extending along the shaft, an armature core having six teeth attached to the shaft and extending radially in the radial direction, and a coil formed by concentrically winding a conductive wire around one tooth
  • a coil group which is 6.n (where n is 1 or 2) concentrated winding coils provided on the six teeth, and a commutator electrically connected to the coil group
  • the stationary part has a pair of field magnets with the same polarity of magnetic poles facing each other across the armature core, and a cylindrical yoke that houses the pair of field magnets,
  • a pair of portions opposed to each other between the pair of field magnets in the circumferential direction at the center are a pair of magnetic poles having a polarity opposite to the polarity and directly
  • a small and high torque motor can be easily manufactured.
  • FIG. 1 is a perspective view of a motor.
  • FIG. 2 is a front view of the motor.
  • FIG. 3 is a cross-sectional view of the motor.
  • FIG. 4 is a plan view showing a part of the motor.
  • FIG. 5 is a diagram showing the relationship between the angle range of the field magnet and the torque of the motor.
  • FIG. 6 is a plan view showing a part of the motor.
  • FIG. 7 is a diagram showing a simplified positional relationship between a coil pair, a segment, and a brush group.
  • FIG. 8 is a diagram showing a connection structure between a coil and a segment.
  • FIG. 9 is a diagram showing a connection structure between a coil and a segment.
  • FIG. 10 is a diagram illustrating a connection state of coils.
  • FIG. 1 is a perspective view of a motor.
  • FIG. 2 is a front view of the motor.
  • FIG. 3 is a cross-sectional view of the motor.
  • FIG. 11 is a diagram illustrating a connection state of coils.
  • FIG. 12 is a diagram showing the positional relationship among the coils, segments, and brush groups in a simplified manner.
  • FIG. 13 is a diagram showing a connection structure between a coil and a segment.
  • FIG. 14 is a diagram illustrating a connection structure between a coil and a segment.
  • FIG. 15 is a diagram illustrating a connection state of coils.
  • FIG. 16 is a diagram illustrating a connection state of coils.
  • FIG. 17 is a diagram illustrating a connection state of coils.
  • FIG. 18 is a diagram showing the results of a vibration test of the motor.
  • FIG. 19 is a diagram showing the results of a vibration test of the motor.
  • FIG. 20 is a diagram showing the results of a vibration test of the motor.
  • FIG. 21 is a diagram showing the results of a vibration test of the motor.
  • the output side of the shaft is simply referred to as “upper side” and the opposite side is simply referred to as “lower side”.
  • the expressions “upper” and “lower” do not necessarily coincide with the direction of gravity.
  • the radial direction centered on the central axis J1 is simply referred to as “radial direction”
  • the circumferential direction centered on the central axis J1 is simply referred to as “circumferential direction”
  • the direction parallel to the central axis J1 is simply referred to as “axial direction”.
  • FIG. 1 is a perspective view of a motor 1 according to an exemplary embodiment of the present invention
  • FIG. 2 is a front view of the motor 1.
  • FIG. 3 is a longitudinal sectional view of the motor 1 at the position of the arrow AA in FIG.
  • the motor 1 is a motor with a brush. In FIG. 3, parallel oblique lines are omitted for details of the cross section.
  • the motor 1 includes a stationary part 2, a rotating part 3, and a bearing part 4.
  • the bearing portion 4 supports the rotating portion 3 so as to be rotatable with respect to the stationary portion 2 around a central axis J1 facing in the vertical direction.
  • the stationary part 2 includes a housing 21, a pair of field magnets 22, a brush group 23, and a cover part 25.
  • the housing 21 has a substantially cylindrical shape with a bottom.
  • the cover part 25 closes the upper part of the housing 21.
  • the pair of field magnets 22 are disposed on the inner peripheral surface of the cylindrical portion of the housing 21.
  • the brush group 23 is disposed on the lower surface of the cover portion 25.
  • the rotating unit 3 includes a shaft 31, an armature core 32, a coil group 33, and a commutator 34.
  • the shaft 31 extends along the central axis J1.
  • the armature core 32 is formed by laminating thin electromagnetic steel plates.
  • the armature core 32 is attached to the shaft 31.
  • the central axis of the shaft 31 and the central axis of the armature core 32 coincide with the central axis J1 of the motor 1.
  • the bearing unit 4 includes two bearing elements 41 and 42.
  • the bearing element 42 is attached to the housing 21.
  • the bearing element 41 is attached to the cover portion 25.
  • the bearing elements 41 and 42 are, for example, ball bearings or sliding bearings.
  • the bearing portion 4 may be a single bearing element.
  • the rotating portion 3 is supported by the bearing portion 4 so as to be rotatable about the central axis J1.
  • FIG. 4 is a plan view showing the motor 1 with the cover 25 removed.
  • the housing 21 includes a yoke 211.
  • the yoke 211 includes a pair of flat portions 212 and a pair of arc portions 213.
  • Each arc portion 213 has an arc shape extending in the circumferential direction in plan view.
  • the pair of arc portions 213 are located on the same circumference centered on the central axis J1, and have the same radius of curvature.
  • the pair of arc portions 213 face each other across the armature core 32.
  • Each flat portion 212 is linear in plan view.
  • the pair of flat portions 212 are parallel to each other and face each other across the armature core 32.
  • Each flat portion 212 is located inside the circumference where the pair of arc portions 213 are arranged. Each flat portion 212 connects the ends of the pair of arc portions 213. Thereby, a pair of flat part 212 and a pair of circular arc part 213 are connected annularly. That is, the yoke 211 has a cylindrical shape surrounding the armature core 32.
  • Each field magnet 22 has an arc shape extending in the circumferential direction.
  • the field magnet 22 is attached to the radially inner surface of the arc portion 213 and is accommodated in the yoke 211.
  • the field magnet 22 has a symmetrical shape with respect to a plane including the center of the arc portion 213 in the circumferential direction and the central axis J1.
  • the pair of field magnets 22 oppose each other with the armature core 32 interposed therebetween.
  • the center of one field magnet 22 is 180 degrees away from the center of the other field magnet 22.
  • both end portions of each field magnet 22 face the pair of flat portions 212 with a gap therebetween.
  • the surfaces of the both end portions, that is, both end surfaces are parallel to the radial direction.
  • magnetic poles having the same polarity face each other.
  • a pair of magnetic poles are formed in a pair of portions 214 that face each other between the pair of field magnets 22 in the circumferential direction.
  • the part 214 is referred to as a “magnetic pole component 214”.
  • the pair of magnetic pole constituting portions 214 is included in the pair of flat portions 212, respectively.
  • the magnetic pole component 214 has a polarity opposite to the polarity of the magnetic pole on the central axis J1 side in the field magnet 22. No magnet is provided between the magnetic pole component 214 and the armature core 32. That is, the magnetic pole component 214 directly faces a later-described tooth 321 of the armature core 32.
  • the field magnets 22 and the magnetic pole constituent portions 214 are alternately arranged in the circumferential direction, and the number of magnetic poles is four. Thereby, the pseudo four-pole motor 1 is configured.
  • the armature core 32 includes an annular core back 320 (see FIG. 3) and a plurality of teeth 321.
  • the shaft 31 is inserted into the core back 320.
  • Each tooth 321 extends radially outward from the core back 320 in the radial direction. In the present embodiment, the number of teeth 321 is six. Some of the teeth 321 and the field magnet 22 face each other in the radial direction.
  • Each tooth 321 includes a winding portion 322 and a tip portion 323. Winding portion 322 has a linear shape extending in the radial direction.
  • the tip 323 extends from the radially outer end of the winding part 322 to both sides in the circumferential direction.
  • the angular range of the distal end portion 323 in the circumferential direction is smaller than the angular range of the field magnet 22.
  • both ends and the center in the circumferential direction include an outer peripheral surface located on the same circumference centered on the central axis J1. Between both ends and the center in the circumferential direction, a groove portion that is recessed inward in the radial direction is provided.
  • the distal end portion 323 includes a protruding portion 324 that protrudes radially outward at the center in the circumferential direction.
  • the motor 1 is designed such that the cogging torque is reduced by the protrusion 324.
  • the width of the air gap which is the shortest distance between the teeth 321 when facing the field magnet 22 in the radial direction, and the width of the air gap when the teeth 321 are facing the magnetic pole component 214 in the radial direction equal.
  • the coil group 33 is composed of 12 concentrated winding coils, with a coil formed by intensively winding a conducting wire around one tooth 321 as a concentrated winding coil.
  • each winding part 322 two concentrated winding coils are formed as one coil pair 330. That is, each coil pair 330 is a first concentrated winding coil 331 and a second concentrated winding coil 332 (see FIGS. 8 and 9 described later).
  • the conducting wire is wound in a certain winding direction.
  • the conducting wire is wound in a direction opposite to the winding direction of the first concentrated winding coil 331.
  • first concentrated winding coils 331 are respectively provided on the six teeth 321, and six second concentrated winding coils 332 are respectively provided on the six teeth 321.
  • torque about the central axis J ⁇ b> 1 is generated between the rotating unit 3, the field magnet 22, and the magnetic pole component 214.
  • the commutator 34 is electrically connected to the coil group 33.
  • the commutator 34 includes twelve segments 342 arranged in the circumferential direction.
  • the number of segments 342 is twice the number of teeth 321.
  • the segment 342 is electrically connected to the lead wires from the concentrated winding coils 331 and 332.
  • Each segment 342 can contact the brush group 23.
  • the brush group 23 is a first brush 231 and a second brush 232.
  • the first brush 231 and the second brush 232 are disposed at positions 90 degrees apart in the circumferential direction. Further, the first brush 231 and the second brush 232 are arranged at different circumferential positions from the circumferential center of the field magnet 22 or the circumferential center of the magnetic pole component 214.
  • the first brush 231 or the second brush 232 is disposed at a position different from the circumferential position where the commutator 34 and the magnetic pole component 214 are closest to each other. Accordingly, the first brush 231 or the second brush 232 can be disposed without increasing the distance between the pair of flat portions 212. Alternatively, the first brush 231 or the second brush 232 can be enlarged in the radial direction, and the life can be extended. In particular, the first brush 231 and the second brush are disposed in a region between a line connecting one circumferential end of the arc portion 213 and the center and a line connecting the other end of the arc portion 213 to the center. When the brush 232 is disposed, the radial sizes of the first brush 231 and the second brush 232 can be increased.
  • the number of teeth 321 is an odd number in the pseudo 4-pole motor 1.
  • a magnetic attractive force acts on the rotating unit 3 at a biased position in the circumferential direction, and vibration and noise during rotation increase.
  • the number of teeth 321 is 8, 10, or 12
  • the angular range in the circumferential direction of one coil becomes small, and torque cannot be generated efficiently in a pseudo 4-pole motor.
  • the number of the teeth 321 is 4, the positional relationship with respect to the magnetic poles of all the teeth 321 is the same, so that the cogging torque is increased.
  • the number of teeth 321 is six.
  • the angular range of the circumferential direction of a coil can be enlarged to some extent.
  • torque can be generated efficiently and a high torque motor 1 can be realized.
  • an increase in cogging torque can be prevented.
  • a magnetic attraction force acts on the rotating part 3 at an equal position in the circumferential direction, vibration and noise during rotation can be reduced.
  • the concentrated winding coils 331 and 332 are formed on the teeth 321, the motor 1 can be reduced in size. Since the width of the teeth 321 in the circumferential direction can be increased to some extent, it is possible to easily wind the conducting wire at a high speed during coil formation. As a result, the motor 1 can be easily manufactured.
  • FIG. 5 is a diagram showing the relationship between the angular range, which is the width of the field magnet 22 in the circumferential direction, and the torque in the motor 1.
  • the vertical axis in FIG. 5 represents torque
  • the horizontal axis represents the angle ⁇ shown in FIG.
  • the angle ⁇ is an angle formed by a line connecting the center of the magnetic pole component 214 and the central axis J1 in the circumferential direction and a line connecting the end surface of the field magnet 22 and the central axis J1 in the circumferential direction.
  • the angle ⁇ decreases, the angle range of the field magnet 22 in the circumferential direction increases.
  • the average torque is indicated by a solid line denoted by reference numeral L1
  • the torque ripple is indicated by a broken line denoted by reference numeral L2.
  • the torque ripple is a torque fluctuation range in the rotation of the motor 1.
  • the angle ⁇ is not less than 31 degrees and not more than 68 degrees, that is, the angle range of the field magnet 22 is not less than 44 degrees and not more than 118 degrees.
  • a torque ripple becomes below an average torque.
  • the angle ⁇ is 40 degrees or more, that is, when the angle range of the field magnet 22 is 100 degrees or less, the end portions of the field magnets 22 and the flat portions 212 are not in contact with each other in the circumferential direction. It becomes. In this case, an increase in torque ripple due to a short circuit of the magnetic flux of the field magnet 22 to the flat portion 212 is prevented.
  • the angle ⁇ is preferably 45 degrees or more, that is, the angle range of each field magnet 22 is preferably 90 degrees or less.
  • the average torque gradually decreases as the angle ⁇ increases, except when the angle ⁇ is 30 degrees or less.
  • the angle ⁇ is preferably 60 degrees or less, that is, the angle range of the field magnet 22 is preferably 60 degrees or more.
  • FIG. 4 a state is assumed in which the winding portion 322 in one tooth 321 is opposed to the center of one field magnet 22 in the circumferential direction in the radial direction. In this state, when the angle range of the field magnet 22 is 60 degrees or more, a part of the tip 323 of each of the two teeth 321 adjacent to the teeth 321 on both sides in the circumferential direction is Oppositely facing the magnet 22 in the radial direction.
  • the angle range of the field magnet 22 is 70 degrees or more.
  • FIG. 6 a state is assumed in which one tooth 321 faces the center in the circumferential direction of one magnetic pole component 214 in the radial direction.
  • a magnetic attractive force between one of the two teeth 321 and the field magnet 22 and a magnetic repulsive force between the other of the two teeth 321 and the field magnet 22 are obtained.
  • the torque in the motor 1 can be increased.
  • FIG. 7 is a diagram showing the positional relationship among the coil pair 330, the segment 342, and the brush group 23 in a simplified manner.
  • numbers 1 to 6 are assigned to the six coil pairs 330 counterclockwise. Twelve segments 342 are numbered 1-12.
  • the circumferential position of the coil pair 330 coincides with the circumferential position of the teeth 321.
  • the central axis of the coil pair 330 extends in the radial direction and coincides with the circumferential center of one segment 342. Specifically, the central axis of the first coil pair 330 overlaps with the circumferential center of the third segment 342.
  • the central axis of the first coil pair 330 is in relation to the boundary between the first segment 342 and the second segment 342.
  • the position is 45 degrees apart in the circumferential direction.
  • the first coil pair 330 faces directly below in FIG. 7, that is, the circumferential center of the one field magnet 22.
  • the central axis of the second coil pair 330 is positioned 45 degrees away from the boundary between the third segment 342 and the fourth segment 342 in the circumferential direction.
  • the first brush 231 is pressed toward the segment 342 by the elastic portion 233.
  • the first brush 231 contacts the 12th segment 342.
  • the second brush 232 contacts the third segment 342.
  • the first brush 231 and the second brush 232 are connected to the positive electrode and the negative electrode of the power source, respectively.
  • the potential of the first brush 231 is a predetermined first potential, and the first potential is applied to the segment 342.
  • the potential of the second brush 232 is a second potential different from the first potential, and the second potential is applied to the different segment 342.
  • FIG. 8 and 9 are diagrams showing a connection structure between the coil and the segment 342.
  • FIG. The circle surrounding the number indicates the segment 342.
  • the squares surrounding the numbers indicate the first concentrated winding coil 331 or the second concentrated winding coil 332 of the coil pair 330 or the teeth 321.
  • the conductive wire is wound around the teeth 321 in a clockwise direction when viewed from the outside in the radial direction, and “CW” is shown on the right of the square surrounding the numeral.
  • CW is shown on the right of the square surrounding the numeral.
  • a conductive wire is wound around the teeth 321 counterclockwise when viewed from the outside in the radial direction, and “CCW” is shown on the right of the square surrounding the numeral.
  • connection structure between the coil pair 330 and the segment 342 is referred to as a “winding structure”. 8 and 9, the winding structure is shown in two stages, but as shown by the broken lines, these are successively connected by one conductive wire in order.
  • the conducting wire is hung on the first segment 342 and then hung on the seventh segment 342.
  • the conductor being hung on the segment 342 means that the conductor is electrically connected to the segment 342.
  • the conducting wire is wound around the fourth tooth 321 in the clockwise direction to form the first concentrated winding coil 331 of the fourth coil pair 330.
  • the conducting wire is hung from the fourth tooth 321 to the eighth segment 342 and the second segment 342 in order.
  • the conducting wire is wound around the third tooth 321 counterclockwise to form the second concentrated winding coil 332 of the third coil pair 330.
  • hooking of the conducting wire to the segment 342 and winding around the teeth 321 are repeatedly performed, and three first concentrated winding coils 331 and three second concentrated winding coils 332 are formed.
  • the lead is hung on the first segment 342.
  • the conducting wire is hung on the seventh segment 342 and then hung on the first segment 342.
  • the conducting wire is wound clockwise around the first tooth 321 to form the first concentrated winding coil 331 of the first coil pair 330.
  • the conducting wire is hung from the first tooth 321 to the second segment 342 and the eighth segment 342 in order.
  • the 6th teeth 321 are wound counterclockwise, and the second concentrated winding coil 332 of the 6th coil pair 330 is formed.
  • the conductor is hooked on the segment 342 and wound around the teeth 321 repeatedly to form three first concentrated winding coils 331 and three second concentrated winding coils 332.
  • the conductor is hung on the seventh segment 342.
  • the first brush 231 and the second brush 232 are disposed at positions 90 degrees apart in the circumferential direction.
  • the 12 segments 342 are arranged at intervals of 30 degrees in the circumferential direction. Therefore, at least one segment 342 is always positioned between the segment 342 that contacts the first brush 231 and the segment 342 that contacts the second brush 232 during the rotation of the rotating unit 3.
  • the segment 342 positioned between the segment 342 that contacts the first brush 231 and the segment 342 that contacts the second brush 232 is referred to as an “intermediate segment 342”.
  • the potential of the segment 342 that contacts the first brush 231 is the same first potential as that of the first brush 231.
  • the potential of the segment 342 that contacts the second brush 232 is the second potential similar to that of the second brush 232.
  • the first concentrated coil 331 and the second concentrated coil are connected between the first potential segment 342 and the second potential segment 342 via at least one intermediate segment 342.
  • a wound coil 332 is connected in series. Accordingly, the potential of the at least one intermediate segment 342 is between the first potential and the second potential.
  • the potential of the segment 342 that is 180 degrees away from the segment 342 that contacts the first brush 231 in the circumferential direction is the first potential.
  • the potential of the segment 342 that is 180 degrees away from the segment 342 in contact with the second brush 232 in the circumferential direction is the second potential. Therefore, when viewed along the circumferential direction, the potential of the segment 342 gradually varies between the first potential and the second potential in a cycle of 180 degrees.
  • the connection state is as shown in FIG.
  • the sixth, first, and second coils connected in series and the fifth, fourth, and third coils connected in series are connected in parallel.
  • the third, fourth, and fifth coils connected in series and the second, first, and sixth coils connected in series are connected in parallel.
  • the upper circuit portion and the lower circuit portion of FIG. 10 are also connected in parallel.
  • the connection state of the two concentrated winding coils 331 and 332 is as shown in FIG.
  • the 6th and 1st coils connected in series and the 4th and 3rd coils connected in series are connected in parallel.
  • the third and fourth coils connected in series and the first and sixth coils connected in series are connected in parallel.
  • the upper circuit portion and the lower circuit portion of FIG. 11 are also connected in parallel.
  • the positions of the first and second brushes 231 and 232 rotate in the circumferential direction, but actually, the coil pair 330 and the segment 342 rotate with respect to the first and second brushes 231 and 232.
  • the angle between the first brush 231 and the second brush 232 in the circumferential direction is an integral multiple of the angle between the adjacent segments 342.
  • the first and second brushes 231 and 232 are always in contact with only one segment 342, or the first and second brushes 231 and 232 are in contact with two segments 342 at all times. Either.
  • the connection states of the first and second concentrated winding coils 331 and 332 corresponding to FIGS. 10 and 11 are sequentially repeated.
  • FIG. 12 is a diagram showing a simplified positional relationship among the coil, the segment 342, and the brush group 23 in the motor 1a.
  • FIG. 12 corresponds to FIG.
  • one first concentrated winding coil 331 is provided for each tooth 321 and the second concentrated winding coil 332 is not provided.
  • the motor 1 a includes six first concentrated winding coils 331 and six segments 342.
  • a preferable angle range of the field magnet 22 in the motor 1 a is the same as that of the motor 1. Only one second concentrated winding coil 332 may be provided for each tooth 321.
  • FIGS. 13 and 14 are diagrams showing a connection structure between the coil 331 and the segment 342.
  • FIG. 13 the conducting wire is hung on the first segment 342 and then hung on the fourth segment 342.
  • the conducting wire is wound clockwise around the fourth tooth 321 to form the first concentrated winding coil 331.
  • the conducting wire is hung from the fourth tooth 321 to the fifth segment 342 and the second segment 342 in order.
  • the conducting wire is wound around the second tooth 321 in the clockwise direction, and the first concentrated winding coil 331 is formed.
  • the conducting wire is hooked on the segment 342 and wound around the teeth 321, and three first concentrated winding coils 331 are formed.
  • the lead is hung on the first segment 342.
  • the conducting wire is hung on the fourth segment 342 and then hung on the first segment 342.
  • the conducting wire is wound clockwise around the first tooth 321 to form the first concentrated winding coil 331.
  • the conducting wire is hung from the first tooth 321 to the second segment 342 and the fifth segment 342 in order.
  • the conducting wire is wound clockwise around the fifth tooth 321 to form the first concentrated winding coil 331.
  • the conducting wire is hooked on the segment 342 and wound around the teeth 321, and three first concentrated winding coils 331 are formed.
  • the lead is hung on the fourth segment 342.
  • connection state of the first concentrated coil 331 is as shown in FIG. It will be like 15.
  • the connection state is as shown in FIG.
  • the connection state of the first concentrated coil 331 is as shown in FIG. It becomes like 17.
  • the connection state of the first concentrated winding coil 331 corresponding to FIGS. 15, 16, and 17 is sequentially repeated as the rotating unit 3 rotates.
  • the potential of the segment 342 gradually changes in the circumferential direction, so that the potential difference between the segments 342 is smaller than that of the motor 1 a of FIG. 12.
  • the spark generated between the brush and the segment is reduced, so that the wear of the brush can be reduced and the life of the brush can be improved.
  • the motor 1 of FIG. 7 there are two contact patterns between the brushes 231 and 232 and the segment 342, that is, two coil connection states, whereas in the motor 1a of FIG. 12, there are three coil connection states. It becomes.
  • electromagnetic noise is generated due to self-induction of the coil.
  • the frequency band of the generated electromagnetic noise differs depending on the coil connection state before and after switching. Therefore, in the motor 1 of FIG. 7, it is possible to suppress radio wave interference (EMI (Electro Magnetic Interference)) using a filter corresponding to a frequency band narrower than the motor 1a of FIG.
  • EMI Electro Magnetic Interference
  • the resistance value of one coil is larger than the resistance value R of the other coil by ⁇ .
  • the resistance value of the fourth first concentrated winding coil 331 is (R + ⁇ ).
  • the ratio of the resistance value between the circuit element including the first concentrated coil 331 and the circuit element including the first and second concentrated coils 331 is (R + ⁇ ) vs. 2R.
  • the resistance value of the fourth first concentrated winding coil 331 is (R + ⁇ ). In this case, in the upper circuit portion of FIG.
  • the circuit elements including the fourth first concentrated winding coil 331 and the third second concentrated winding coil 332, the sixth first concentrated winding coil 331 and the first concentrated winding coil 332 The ratio of the resistance value with respect to the circuit element including the second concentrated winding coil 332 is (2R + ⁇ ) to 2R.
  • the ratio of the resistance values affects the current value flowing through the two circuit elements and the magnetic attraction force of the coil in the two circuit elements.
  • the motor 1 is less affected by fluctuations in the resistance value of the coil than the motor 1a. Therefore, the variation in the magnetic attractive force of the coil due to the fluctuation of the resistance value of the coil becomes smaller than that of the motor 1a, and vibration and noise are reduced.
  • FIG. 18 and FIG. 19 are diagrams showing the results of a vibration test for the motor 1 including 12 segments 342.
  • 20 and 21 are diagrams showing the results of a vibration test on the motor 1a including six segments 342.
  • FIG. In these vibration tests vibrations of the motors 1 and 1a are measured when the rotating unit 3 is rotated clockwise or counterclockwise by an external drive mechanism without energizing the coil.
  • 18 and 20 show the results of rotating the rotating unit 3 clockwise
  • FIGS. 19 and 21 show the results of rotating the rotating unit 3 counterclockwise. From FIG. 18 to FIG. 21, it can be seen that even in the case of external driving, the motor 1 including 12 segments 342 reduces vibration compared to the motor 1 a including 6 segments 342.
  • the coil group 33 in the motors 1 and 1a is 6 ⁇ n (where n is 1 or 2) concentrated winding coils provided in the six teeth 321.
  • the connection structure between the coil and the segment 342 may be changed as appropriate.
  • the shape of the yoke 211 may also be changed as appropriate in accordance with the use of the motors 1 and 1a.
  • the present invention can be used for motors for various purposes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc Machiner (AREA)

Abstract

静止部と回転部とを備えたモータにおいて、回転部は、シャフトと、前記シャフトに取り付けられ、径方向に向かって放射状に延びる6個のティースを有するアーマチュアコアと、前記6個のティースに設けられる6・n個(ただし、nは1または2)の集中巻きコイルであるコイル群と、前記コイル群に電気的に接続されるコミュテータと、を備え、静止部は、前記アーマチュアコアを挟んで、同じ極性の磁極が互いに対向する一対の界磁用磁石と、前記一対の界磁用磁石を収容する筒状のヨークを有し、前記ヨークにおいて周方向における前記一対の界磁用磁石の間にて互いに対向する一対の部位が、前記極性とは反対の極性を有するとともに前記アーマチュアコアのティースと直接的に対向する一対の磁極であるハウジングと、前記コミュテータと接触するブラシ群と、を備える。

Description

モータ
 本発明は、ブラシ付きモータに関する。
 特開2008-79413号公報では、同じ極性の磁極が互いに対向するように、筒状のヨーク内に一対のマグネットを配置したモータが開示されている。当該ヨークにおいて、周方向における一対のマグネットの間に位置する一対の部位には、上記磁極とは反対の極性となる一対の磁極が形成される。これにより、いわゆる、擬似4極のモータが構成される。このようなモータでは、異なる極性の磁極が互いに対向するように、一対のマグネットを配置したモータに比べて、トルクを向上させることができる。また、特開2008-79413号公報のモータでは、12個のティースが設けられる。これらのティースに対して、分布巻きによりコイルが形成される。
特開2008-79413号公報
 ところで、車載用のモータ等では、車内スペースの拡充のために、小型化を図ることが求められている。ところが、分布巻きが採用される特開2008-79413号公報のモータでは、一定のトルクを確保するために、各ティースに対する導線の巻数が多くなり、モータの小型化が容易ではない。仮に、特開2008-79413号公報のモータにおいて集中巻きを採用する場合、12個のティースに対して12個のコイルが形成される。この場合、擬似4極のモータにおいては各磁極が90度間隔で形成されるのに対して、1つのコイルの周方向の角度範囲が約30度となるため、コイルへ鎖交する磁束が不十分となる。そのため、このようなモータにおいてはトルクを効率よく発生させることが困難となる。また、ティースの幅が非常に小さいため、導線を高速に巻回するとティースが変形してしまう虞がある。よって、導線を低速で巻回する必要が生じ、生産性の向上が課題となる。
 本発明は、小型かつ高トルクのモータを容易に製造することを目的とする。
 本発明の一の側面に係る例示的なモータは、静止部と、回転部と、中心軸を中心として前記回転部を回転可能に支持する軸受部と、備え、前記回転部が、中心軸に沿って延びるシャフトと、前記シャフトに取り付けられ、径方向に向かって放射状に延びる6個のティースを有するアーマチュアコアと、一のティースに対して導線を集中的に巻回することにより形成されるコイルを集中巻きコイルとして、前記6個のティースに設けられる6・n個(ただし、nは1または2)の集中巻きコイルであるコイル群と、前記コイル群に電気的に接続されるコミュテータと、を備え、前記静止部が、前記アーマチュアコアを挟んで、同じ極性の磁極が互いに対向する一対の界磁用磁石と、前記一対の界磁用磁石を収容する筒状のヨークを有し、前記ヨークにおいて周方向における前記一対の界磁用磁石の間にて互いに対向する一対の部位が、前記極性とは反対の極性を有するとともに前記アーマチュアコアのティースと直接的に対向する一対の磁極であるハウジングと、前記コミュテータと接触するブラシ群と、を備える。
 本発明によれば、小型かつ高トルクのモータを容易に製造することができる。
図1は、モータの斜視図である。 図2は、モータの正面図である。 図3は、モータの断面図である。 図4は、モータの一部を示す平面図である。 図5は、界磁用磁石の角度範囲と、モータのトルクとの関係を示す図である。 図6は、モータの一部を示す平面図である。 図7は、コイル対、セグメントおよびブラシ群の位置関係を簡略化して示す図である。 図8は、コイルとセグメントとの接続構造を示す図である。 図9は、コイルとセグメントとの接続構造を示す図である。 図10は、コイルの接続状態を示す図である。 図11は、コイルの接続状態を示す図である。 図12は、コイル、セグメントおよびブラシ群の位置関係を簡略化して示す図である。 図13は、コイルとセグメントとの接続構造を示す図である。 図14は、コイルとセグメントとの接続構造を示す図である。 図15は、コイルの接続状態を示す図である。 図16は、コイルの接続状態を示す図である。 図17は、コイルの接続状態を示す図である。 図18は、モータの振動試験の結果を示す図である。 図19は、モータの振動試験の結果を示す図である。 図20は、モータの振動試験の結果を示す図である。 図21は、モータの振動試験の結果を示す図である。
 本明細書では、図3の中心軸J1に平行な方向において、シャフトの出力側を単に「上側」、反対側を単に「下側」と呼ぶ。「上側」および「下側」という表現は、必ずしも重力方向と一致する必要はない。また、中心軸J1を中心とする径方向を単に「径方向」、中心軸J1を中心とする周方向を単に「周方向」、中心軸J1に平行な方向を単に「軸方向」と呼ぶ。
 図1は、本発明の例示的な一の実施形態に係るモータ1の斜視図であり、図2は、モータ1の正面図である。図3は、図2の矢印A-Aの位置におけるモータ1の縦断面図である。モータ1はブラシ付きモータである。図3では、断面の細部については平行斜線を省略している。モータ1は、静止部2と、回転部3と、軸受部4と、を含む。軸受部4は、上下方向を向く中心軸J1を中心に回転部3を静止部2に対して回転可能に支持する。
 静止部2は、ハウジング21と、一対の界磁用磁石22と、ブラシ群23と、カバー部25と、を含む。ハウジング21は、有底略筒状である。カバー部25は、ハウジング21の上部を閉塞する。一対の界磁用磁石22は、ハウジング21の筒部の内周面上に配置される。ブラシ群23は、カバー部25の下面上に配置される。
 回転部3は、シャフト31と、アーマチュアコア32と、コイル群33と、コミュテータ34と、を含む。シャフト31は、中心軸J1に沿って延びる。アーマチュアコア32は、薄板状の電磁鋼板が積層されたものである。アーマチュアコア32は、シャフト31に取り付けられる。シャフト31の中心軸およびアーマチュアコア32の中心軸は、モータ1の中心軸J1に一致する。
 軸受部4は、2つの軸受要素41,42である。軸受要素42は、ハウジング21に取り付けられる。軸受要素41は、カバー部25に取り付けられる。軸受要素41,42は、例えば、玉軸受や滑り軸受である。軸受部4は、1つの軸受要素であってもよい。軸受部4により、回転部3は、中心軸J1を中心として回転可能に支持される。
 図4は、カバー部25を取り外した状態のモータ1を示す平面図である。ハウジング21は、ヨーク211を含む。ヨーク211は、一対の平坦部212と、一対の円弧部213と、を含む。各円弧部213は、平面視において周方向に延びる円弧状である。一対の円弧部213は、中心軸J1を中心とする同一の円周上に位置し、同じ曲率半径を有する。一対の円弧部213は、アーマチュアコア32を挟んで互いに対向する。各平坦部212は、平面視において直線状である。一対の平坦部212は、互いに平行であり、アーマチュアコア32を挟んで互いに対向する。各平坦部212は、一対の円弧部213が配置される円周の内側に位置する。各平坦部212は、一対の円弧部213の端部を連結する。これにより、一対の平坦部212および一対の円弧部213は環状に接続される。すなわち、ヨーク211は、アーマチュアコア32を囲む筒状である。
 各界磁用磁石22は、周方向に延びる円弧状である。界磁用磁石22は、円弧部213の径方向内側の面に取り付けられ、ヨーク211に収容される。界磁用磁石22は、周方向における円弧部213の中央と中心軸J1とを含む面に関して対称な形状である。一対の界磁用磁石22は、アーマチュアコア32を挟んで互いに対向する。周方向において一方の界磁用磁石22の中央は、他方の界磁用磁石22の中央に対して180度離れる。周方向に関して、各界磁用磁石22の両端部は、間隙を介して一対の平坦部212とそれぞれ対向する。当該両端部の面、すなわち、両端面は、径方向に平行である。一対の界磁用磁石22では、同じ極性の磁極が互いに対向する。
 ヨーク211において、周方向における一対の界磁用磁石22の間にて互いに対向する一対の部位214には、一対の磁極が形成される。以下、部位214を「磁極構成部214」と呼ぶ。一対の磁極構成部214は、一対の平坦部212にそれぞれ含まれる。磁極構成部214は、界磁用磁石22における中心軸J1側の磁極の極性とは反対の極性を有する。磁極構成部214とアーマチュアコア32との間には、マグネットは設けられない。すなわち、磁極構成部214は、アーマチュアコア32の後述のティース321と直接的に対向する。モータ1では、界磁用磁石22および磁極構成部214が周方向に交互に配置され、磁極数は4である。これにより、擬似4極のモータ1が構成される。
 アーマチュアコア32は、環状のコアバック320(図3参照)と、複数のティース321を含む。コアバック320には、シャフト31が挿入される。各ティース321は、コアバック320から径方向外方に向かって放射状に延びる。本実施形態では、ティース321の数は6個である。一部のティース321と界磁用磁石22とは径方向に対向する。各ティース321は、巻線部322と、先端部323と、を含む。巻線部322は、径方向に延びる直線状である。先端部323は、巻線部322の径方向外側の端部から周方向両側に広がる。先端部323の周方向における角度範囲は、界磁用磁石22の角度範囲よりも小さい。先端部323において、周方向における両端および中央は、中心軸J1を中心とする同一円周上に位置する外周面を含む。周方向における両端と中央との間には、径方向内側に窪む溝部が設けられる。換言すると、先端部323は、周方向における中央において径方向外方に突出する突出部324を含む。モータ1では、突出部324によりコギングトルクが低減される設計となっている。ティース321が界磁用磁石22と径方向に対向する際における両者間の最短距離であるエアギャップの幅と、ティース321が磁極構成部214と径方向に対向する際におけるエアギャップの幅とは等しい。
 一のティース321に対して導線を集中的に巻回することにより形成されるコイルを集中巻きコイルとして、コイル群33は、12個の集中巻きコイルである。各巻線部322には、2個の集中巻きコイルが1つのコイル対330として形成される。すなわち、各コイル対330は、第1集中巻きコイル331および第2集中巻きコイル332である(後述の図8および図9参照)。第1集中巻きコイル331では、一定の巻回方向に導線が巻回される。第2集中巻きコイル332では、第1集中巻きコイル331の巻回方向とは逆方向に導線が巻回される。コイル群33では、6個の第1集中巻きコイル331が6個のティース321にそれぞれ設けられ、6個の第2集中巻きコイル332が6個のティース321にそれぞれ設けられる。コイル群33に電流が流れることにより、回転部3と界磁用磁石22および磁極構成部214との間に中心軸J1を中心とするトルクが発生する。
 コミュテータ34は、コイル群33に電気的に接続される。コミュテータ34は、周方向に配列された12個のセグメント342を含む。セグメント342の個数は、ティース321の個数の2倍である。セグメント342は、集中巻きコイル331,332からの導線に電気的に接続される。各セグメント342は、ブラシ群23に接触可能である。ブラシ群23は、第1ブラシ231および第2ブラシ232である。第1ブラシ231と第2ブラシ232とは周方向に90度離れた位置に配置される。また、第1ブラシ231と第2ブラシ232は、界磁用磁石22の周方向中心、または、磁極構成部214の周方向中心とは、異なる周方向位置に配置される。好ましくは、コミュテータ34と磁極構成部214とが最も近接する周方向位置とは異なる位置に第1ブラシ231または第2ブラシ232が配置される。これにより、一対の平坦部212間の距離を大きくすることなく、第1ブラシ231または第2ブラシ232を配置することができる。または、第1ブラシ231または第2ブラシ232を径方向に大きくすることができ、寿命を延ばすことができる。特に、円弧部213の一方の周方向端部と中心を結んだ線と、円弧部213の他方の周方向端部と中心を結んだ線と、の間の領域に第1ブラシ231と第2ブラシ232とが配置されると、第1ブラシ231と第2ブラシ232の径方向の大きさを大きくすることが可能となる。
 ここで、擬似4極のモータ1において、仮にティース321の個数が奇数である場合を想定する。この場合、周方向における偏った位置にて回転部3に対して磁気的吸引力が作用し、回転時における振動や騒音が増大する。また、ティース321の個数が8個、10個または12個である場合には、1つのコイルの周方向の角度範囲が小さくなり、擬似4極のモータにおいて、トルクを効率よく発生させることができない。さらに、ティース321の個数が4個である場合には、全てのティース321の磁極に対する位置関係が同じとなるため、コギングトルクが大きくなってしまう。
 これに対し、図4のモータ1では、ティース321の個数が6個である。これにより、コイルの周方向の角度範囲をある程度大きくすることができる。その結果、擬似4極のモータ1において、トルクを効率よく発生させ、高トルクのモータ1を実現することができる。また、コギングトルクの増大も防止することができる。さらに、周方向において均等な位置にて回転部3に対して磁気的吸引力が作用するため、回転時における振動や騒音を低減することができる。各ティース321に集中巻きコイル331,332が形成されることにより、モータ1の小型化を図ることができる。周方向におけるティース321の幅をある程度大きくすることができるため、コイル形成時に導線を高速に巻回することが容易に可能となる。その結果、モータ1を容易に製造することができる。
 図5は、周方向における界磁用磁石22の幅である角度範囲と、モータ1におけるトルクとの関係を示す図である。図5の縦軸はトルクを示し、横軸は図4に示す角度θを示す。角度θは、周方向における磁極構成部214の中央と中心軸J1とを結ぶ線と、周方向における界磁用磁石22の端面と中心軸J1とを結ぶ線とがなす角度である。角度θが小さくなると、周方向における界磁用磁石22の角度範囲が増大する。図5では、符号L1を付す実線にて平均トルクを示し、符号L2を付す破線にてトルクリップルを示す。トルクリップルは、モータ1の回転におけるトルクの変動幅である。
 好ましくは、角度θが31度以上かつ68度以下である、すなわち、界磁用磁石22の角度範囲が44度以上かつ118度以下である。これにより、トルクリップルが平均トルク以下となる。また、角度θが40度以上である、すなわち、界磁用磁石22の角度範囲が100度以下である場合に、周方向に関して、各界磁用磁石22の端部と平坦部212とが非接触となる。この場合、界磁用磁石22の磁束が平坦部212に短絡することによるトルクリップルの増大が防止される。より低いトルクリップルを確保するには、角度θは45度以上である、すなわち、各界磁用磁石22の角度範囲が90度以下であることが好ましい。界磁用磁石22の角度範囲を小さくすることにより、界磁用磁石22における磁性材料の使用量の削減、モータ1の軽量化、および、モータ1の製造コストの削減も可能となる。
 図5では、角度θが30度以下である場合を除き、角度θが大きくなるに従って、平均トルクは漸次減少する。ある程度高い平均トルクを確保するには、角度θは60度以下である、すなわち、界磁用磁石22の角度範囲が60度以上であることが好ましい。ここで、図4のように、周方向における一の界磁用磁石22の中央に対して、一のティース321における巻線部322が径方向に対向する状態を想定する。この状態において、界磁用磁石22の角度範囲を60度以上とすると、当該ティース321に対して周方向の両側に隣接する2個のティース321のそれぞれにおける先端部323の一部が、界磁用磁石22と径方向におよそ対向する。これにより、当該2個のティース321の一方と界磁用磁石22との間の磁気的吸引力、および、当該2個のティース321の他方と界磁用磁石22との間の磁気的反発力を大きくすることができる。その結果、モータ1におけるトルクを高くすることができる。より好ましくは、界磁用磁石22の角度範囲は70度以上である。これにより、一のティース321が界磁用磁石22に対向する状態において、当該ティース321に対して周方向に隣接するティース321の先端部323と、界磁用磁石22とが径方向に対向する範囲が大きくなり、トルクをさらに高くすることができる。
 また、図6のように、一の磁極構成部214における周方向の中央に対して、一のティース321が径方向に対向する状態を想定する。この状態において、当該ティース321に対して周方向の両側に隣接する2個のティース321のそれぞれの少なくとも一部が、いずれかの界磁用磁石22と径方向に対向することが好ましい。これにより、当該2個のティース321の一方と界磁用磁石22との間の磁気的吸引力、および、当該2個のティース321の他方と界磁用磁石22との間の磁気的反発力を大きくすることができる。その結果、モータ1におけるトルクを高くすることができる。
 図7は、コイル対330、セグメント342およびブラシ群23の位置関係を簡略化して示す図である。図7では、6個のコイル対330に反時計回りに番号1ないし6を付す。12個のセグメント342に番号1ないし12を付す。コイル対330の周方向の位置はティース321の周方向の位置に一致する。コイル対330の中心軸は径方向に延び、一のセグメント342の周方向中心と一致する。具体的には、1番コイル対330の中心軸は、3番セグメント342の周方向中心に重なる。後述するように、12個のセグメント342は周方向に等角度間隔にて配置されるため、1番コイル対330の中心軸は、1番セグメント342と2番セグメント342との間の境界に対して周方向に45度離れた位置となる。1番セグメント342および2番セグメント342の双方が第1ブラシ231に接触する際に、1番コイル対330が図7中の真下、すなわち、一の界磁用磁石22の周方向中心と対向する。同様に、2番コイル対330の中心軸は、3番セグメント342と4番セグメント342との間の境界に対して周方向に45度離れた位置となる。
 図3に示すように、第1ブラシ231は、弾性部233によりセグメント342に向かって押圧される。第2ブラシ232も同様である。図7中に実線にて示す状態では、第1ブラシ231は、12番セグメント342に接触する。第2ブラシ232は、3番セグメント342に接触する。第1ブラシ231および第2ブラシ232は、電源の正極および負極にそれぞれ接続される。第1ブラシ231の電位は所定の第1の電位であり、セグメント342に第1の電位を与える。第2ブラシ232の電位は、第1の電位とは異なる第2の電位であり、異なるセグメント342に第2の電位を与える。
 図8および図9は、コイルとセグメント342との接続構造を示す図である。数字を囲む丸はセグメント342を示す。数字を囲む四角は、コイル対330またはティース321の第1集中巻きコイル331または第2集中巻きコイル332を示す。ここでは、第1集中巻きコイル331は、径方向外側から見て時計回りに導線がティース321に巻回されるものであり、数字を囲む四角の右に「CW」を示す。第2集中巻きコイル332は、径方向外側から見て反時計回りに導線がティース321に巻回されるものであり、数字を囲む四角の右に「CCW」を示す。以下、コイル対330とセグメント342との接続構造を「巻線構造」と呼ぶ。図8および図9では、巻線構造を2段にて示しているが、破線にて示すように、これらは順に1本の導線にて連続している。
 図8の接続構造では、導線は、1番セグメント342に掛けられた後、7番セグメント342に掛けられる。導線がセグメント342に掛けられるとは、導線がセグメント342に電気的に接続されることである。次に、導線は、4番ティース321に時計回りに巻回され、4番コイル対330の第1集中巻きコイル331が形成される。導線は、4番ティース321から8番セグメント342、2番セグメント342に順に掛けられる。次に、導線は、3番ティース321に反時計回りに巻回され、3番コイル対330の第2集中巻きコイル332が形成される。以後、図8に示すように、導線のセグメント342への引っ掛けおよびティース321への巻回が繰り返し行われ、3個の第1集中巻きコイル331および3個の第2集中巻きコイル332が形成される。最後に、導線は、1番セグメント342に掛けられる。
 図9の接続構造では、導線は、7番セグメント342に掛けられた後、1番セグメント342に掛けられる。次に、導線は、1番ティース321に時計回りに巻回され、1番コイル対330の第1集中巻きコイル331が形成される。導線は、1番ティース321から2番セグメント342、8番セグメント342に順に掛けられる。次に、6番ティース321に反時計回りに巻回され、6番コイル対330の第2集中巻きコイル332が形成される。以後、図9に示すように、導線のセグメント342への引っ掛けおよびティース321への巻回が繰り返し行われ、3個の第1集中巻きコイル331および3個の第2集中巻きコイル332が形成される。最後に、導線は、7番セグメント342に掛けられる。
 図7に示すように、第1ブラシ231と第2ブラシ232とは周方向に90度離れた位置に配置される。一方、12個のセグメント342は、周方向に30度間隔で配置される。したがって、回転部3の回転中において、第1ブラシ231に接触するセグメント342と、第2ブラシ232に接触するセグメント342との間に、常時、少なくとも1つのセグメント342が位置する。以下、第1ブラシ231に接触するセグメント342と、第2ブラシ232に接触するセグメント342との間に位置するセグメント342を、「中間セグメント342」と呼ぶ。
 また、第1ブラシ231に接触するセグメント342の電位は、第1ブラシ231と同様の第1の電位である。第2ブラシ232に接触するセグメント342の電位は、第2ブラシ232と同様の第2の電位である。図8および図9の接続構造では、第1の電位のセグメント342と、第2の電位のセグメント342との間において、少なくとも1つの中間セグメント342を介して第1集中巻きコイル331および第2集中巻きコイル332が直列に接続される。したがって、少なくとも1つの中間セグメント342の電位は、第1の電位と第2の電位との間である。実際には、第1ブラシ231に接触するセグメント342から周方向に180度離れたセグメント342の電位は、第1の電位である。第2ブラシ232に接触するセグメント342から周方向に180度離れたセグメント342の電位は、第2の電位である。したがって、周方向に沿って見た場合、180度の周期でセグメント342の電位は第1の電位と第2の電位との間で漸次変動する。
 図7中に実線にて示すように、第1ブラシ231が12番セグメント342に接触し、第2ブラシ232が3番セグメント342に接触する場合、第1および第2集中巻きコイル331,332の接続状態は、図10のようになる。図10の上段の回路部分では、直列に接続された6番、1番および2番のコイルと、直列に接続された5番、4番および3番のコイルとが並列に接続される。図10の下段の回路部分では、直列に接続された3番、4番および5番のコイルと、直列に接続された2番、1番および6番のコイルとが並列に接続される。図10の上段の回路部分と下段の回路部分も並列に接続される。
 図7中に二点鎖線にて示すように、第1ブラシ231が12番および1番セグメント342に接触し、第2ブラシ232が3番および4番セグメント342に接触する場合、第1および第2集中巻きコイル331,332の接続状態は、図11のようになる。図11の上段の回路部分では、直列に接続された6番および1番のコイルと、直列に接続された4番および3番のコイルとが並列に接続される。図11の下段の回路部分では、直列に接続された3番および4番のコイルと、直列に接続された1番および6番のコイルとが並列に接続される。図11の上段の回路部分と下段の回路部分も並列に接続される。
 図7では、第1および第2ブラシ231,232の位置が周方向に回転しているが、実際には、コイル対330およびセグメント342が第1および第2ブラシ231,232に対して回転する。周方向における第1ブラシ231と第2ブラシ232との間の角度は、互いに隣接するセグメント342間の角度の整数倍である。モータ1では、常時、第1および第2ブラシ231,232のそれぞれが1つのセグメント342のみに接触する状態、または、第1および第2ブラシ231,232のそれぞれが2つのセグメント342に接触する状態のいずれかとなる。回転部3の回転に伴って、図10および図11にそれぞれ対応する第1および第2集中巻きコイル331,332の接続状態が順次繰り返される。
 ここで、他の例に係るモータ1aについて述べる。図12は、モータ1aにおけるコイル、セグメント342およびブラシ群23の位置関係を簡略化して示す図である。図12は、図7に対応する。モータ1aでは、各ティース321に対して1つの第1集中巻きコイル331が設けられ、第2集中巻きコイル332は設けられない。モータ1aは、6個の第1集中巻きコイル331と、6個のセグメント342と、を含む。なお、モータ1aにおける界磁用磁石22の好ましい角度範囲は、モータ1と同様である。各ティース321に対して1つの第2集中巻きコイル332のみが設けられてもよい。
 図13および図14は、コイル331とセグメント342との接続構造を示す図である。図13の接続構造では、導線は、1番セグメント342に掛けられた後、4番セグメント342に掛けられる。次に、導線は、4番ティース321に時計回りに巻回され、第1集中巻きコイル331が形成される。導線は、4番ティース321から5番セグメント342、2番セグメント342に順に掛けられる。次に、導線は、2番ティース321に時計回りに巻回され、第1集中巻きコイル331が形成される。以後、図13に示すように、導線のセグメント342への引っ掛けおよびティース321への巻回が行われ、3個の第1集中巻きコイル331が形成される。最後に、導線は、1番セグメント342に掛けられる。
 図14の接続構造では、導線は、4番セグメント342に掛けられた後、1番セグメント342に掛けられる。次に、導線は、1番ティース321に時計回りに巻回され、第1集中巻きコイル331が形成される。導線は、1番ティース321から2番セグメント342、5番セグメント342に順に掛けられる。次に、導線は、5番ティース321に時計回りに巻回され、第1集中巻きコイル331が形成される。以後、図14に示すように、導線のセグメント342への引っ掛けおよびティース321への巻回が行われ、3個の第1集中巻きコイル331が形成される。最後に、導線は、4番セグメント342に掛けられる。
 図12中に実線にて示すように、第1ブラシ231が1番セグメント342に接触し、第2ブラシ232が2番セグメント342に接触する場合、第1集中巻きコイル331の接続状態は、図15のようになる。図12中に二点鎖線にて示すように、第1ブラシ231が1番セグメント342に接触し、第2ブラシ232が2番および3番セグメント342に接触する場合、第1集中巻きコイル331の接続状態は、図16のようになる。図12中に破線にて示すように、第1ブラシ231が1番セグメント342に接触し、第2ブラシ232が3番セグメント342に接触する場合、第1集中巻きコイル331の接続状態は、図17のようになる。上記のように、図12のモータ1aでは、回転部3の回転に伴って、図15、図16および図17にそれぞれ対応する第1集中巻きコイル331の接続状態が順次繰り返される。
 図7のモータ1では、周方向においてセグメント342の電位が漸次変化することにより、図12のモータ1aに比べて、セグメント342間における電位の差が小さくなる。その結果、ブラシとセグメントとの間に生じるスパークが小さくなり、ブラシの摩耗を低減してブラシの寿命を向上することができる。また、図7のモータ1では、ブラシ231,232とセグメント342との接触パターン、すなわち、コイルの接続状態が2通りであるのに対し、図12のモータ1aでは、コイルの接続状態が3通りとなる。コイルの接続状態が切り替わる際には、コイルの自己誘導に起因して電磁ノイズが発生する。また、切り替わり前後におけるコイルの接続状態によって、発生する電磁ノイズの周波数帯が相違する。したがって、図7のモータ1では、図12のモータ1aよりも狭い周波数帯に対応するフィルタを用いて、電波障害(EMI(Electro Magnetic Interference))を抑制することが可能となる。
 ここで、1つのコイルの抵抗値が、他のコイルの抵抗値Rよりもαだけ大きくなった場合を想定する。例えば、モータ1aにおいて、4番の第1集中巻きコイル331の抵抗値が(R+α)であるとする。この場合、図15の上段の回路部分では、4番の第1集中巻きコイル331を含む回路要素と、6番および2番の第1集中巻きコイル331を含む回路要素との抵抗値の比は(R+α)対2Rとなる。一方、モータ1において、4番の第1集中巻きコイル331の抵抗値が(R+α)であるとする。この場合、図11の上段の回路部分では、4番の第1集中巻きコイル331および3番の第2集中巻きコイル332を含む回路要素と、6番の第1集中巻きコイル331および1番の第2集中巻きコイル332を含む回路要素との抵抗値の比は(2R+α)対2Rとなる。抵抗値の比は、2つの回路要素に流れる電流値、および、当該2つの回路要素におけるコイルの磁気的吸引力に影響を及ぼす。上記のように、モータ1では、モータ1aよりも、コイルの抵抗値の変動の影響が小さい。したがって、コイルの抵抗値の変動に起因するコイルの磁気的吸引力のばらつきが、モータ1aよりも小さくなり、振動や騒音が低減される。
 図18および図19は、12個のセグメント342を含むモータ1に対する振動試験の結果を示す図である。図20および図21は、6個のセグメント342を含むモータ1aに対する振動試験の結果を示す図である。これらの振動試験では、コイルに対して通電することなく、外部の駆動機構により回転部3を、時計回りまたは反時計回りに回転させた場合におけるモータ1,1aの振動を測定している。図18および図20では、時計回りに回転部3を回転した結果を示し、図19および図21では、反時計回りに回転部3を回転した結果を示す。図18ないし図21から、外部駆動の場合でも、12個のセグメント342を含むモータ1では、6個のセグメント342を含むモータ1aと比較して振動が低減されることが判る。
 上述のように、モータ1,1aでは、各巻線部322に、1個または2個の集中巻きコイルが形成される。換言すると、モータ1,1aにおけるコイル群33は、6個のティース321に設けられる6・n個(ただし、nは1または2)の集中巻きコイルである。なお、コイルとセグメント342との接続構造は適宜変更されてよい。ヨーク211の形状も、モータ1,1aの用途等に合わせて、適宜変更されてよい。
 上記実施形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。
 本発明は、様々な用途のモータに利用することができる。
 1,1a  モータ
 2  静止部
 3  回転部
 4  軸受部
 21  ハウジング
 22  界磁用磁石
 23  ブラシ群
 31  シャフト
 32  アーマチュアコア
 33  コイル群
 34  コミュテータ
 211  ヨーク
 212  平坦部
 213  円弧部
 214  磁極構成部
 231,232  ブラシ
 321  ティース
 322  巻線部
 323  先端部
 324  突出部
 331,332  集中巻きコイル
 342  セグメント
 J1  中心軸

Claims (8)

  1.  静止部と、
     回転部と、
     中心軸を中心として前記回転部を回転可能に支持する軸受部と、
    を備え、
     前記回転部が、
     中心軸に沿って延びるシャフトと、
     前記シャフトに取り付けられ、径方向に向かって放射状に延びる6個のティースを有するアーマチュアコアと、
     一のティースに対して導線を集中的に巻回することにより形成されるコイルを集中巻きコイルとして、前記6個のティースに設けられる6・n個(ただし、nは1または2)の集中巻きコイルであるコイル群と、
     前記コイル群に電気的に接続されるコミュテータと、
    を備え、
     前記静止部が、
     前記アーマチュアコアを挟んで、同じ極性の磁極が互いに対向する一対の界磁用磁石と、
     前記一対の界磁用磁石を収容する筒状のヨークを有し、前記ヨークにおいて周方向における前記一対の界磁用磁石の間にて互いに対向する一対の部位が、前記極性とは反対の極性を有するとともに前記アーマチュアコアのティースと直接的に対向する一対の磁極であるハウジングと、
     前記コミュテータと接触するブラシ群と、
    を備える、モータ。
  2.  前記一対の磁極のそれぞれにおける周方向の中央に対して、一のティースが径方向に対向する状態において、前記ティースに対して周方向の両側に隣接する2個のティースのそれぞれの少なくとも一部が、前記一対の界磁用磁石のいずれかと径方向に対向する、請求項1に記載のモータ。
  3.  前記一対の界磁用磁石のそれぞれが、90度以下の角度範囲にて周方向に延びる円弧状であり、
     前記6個のティースのそれぞれが、
     集中巻きコイルが形成される巻線部と、
     前記巻線部の径方向外側の端部から周方向両側に広がる先端部と、
    を備え、
     周方向における一の界磁用磁石の中央に対して、一のティースにおける前記巻線部が径方向に対向する状態において、前記ティースに対して周方向の両側に隣接する2個のティースのそれぞれにおける前記先端部の一部が、前記界磁用磁石と径方向に対向する、請求項1または2に記載のモータ。
  4.  前記先端部が、周方向における中央において径方向外方に突出する突出部を備える、請求項3に記載のモータ。
  5.  前記コミュテータが、周方向に配列されて前記ブラシ群に接触可能な12個のセグメントを備え、
     前記ブラシ群が、第1の電位の第1ブラシおよび第2の電位の第2ブラシであり、
     前記回転部の回転中において、前記第1ブラシに接触するセグメントと、前記第2ブラシに接触するセグメントとの間に、常時、少なくとも1つのセグメントが位置し、前記少
    なくとも1つのセグメントの電位が、前記第1の電位と前記第2の電位との間である、請求項1ないし4のいずれかに記載のモータ。
  6.  前記第1ブラシと前記第2ブラシとが周方向に90度離れた位置に配置される、請求項5に記載のモータ。
  7.  前記コイル群が、
     前記6個のティースにそれぞれ設けられ、一定の巻回方向に導線が巻回された6個の第1集中巻きコイルと、
     前記6個のティースにそれぞれ設けられ、前記一定の巻回方向とは逆方向に導線が巻回された6個の第2集中巻きコイルと、
    を備える、請求項5または6に記載のモータ。
  8.  前記ヨークが、
     前記一対の磁極を含み、互いに平行な一対の平坦部と、
     前記一対の界磁用磁石が取り付けられる一対の円弧部と、
    を備え、
     前記一対の平坦部および前記一対の円弧部が環状に接続され、
     周方向に関して、前記一対の界磁用磁石の両端部が、間隙を介して前記一対の平坦部とそれぞれ対向する、請求項1ないし7のいずれかに記載のモータ。
PCT/JP2015/057527 2014-06-19 2015-03-13 モータ WO2015194216A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/319,485 US20170324313A1 (en) 2014-06-19 2015-03-13 Motor
JP2016529110A JPWO2015194216A1 (ja) 2014-06-19 2015-03-13 モータ
CN201580032817.XA CN106464112B (zh) 2014-06-19 2015-03-13 马达
DE112015002853.6T DE112015002853T5 (de) 2014-06-19 2015-03-13 Motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-126243 2014-06-19
JP2014126243 2014-06-19

Publications (1)

Publication Number Publication Date
WO2015194216A1 true WO2015194216A1 (ja) 2015-12-23

Family

ID=54935213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057527 WO2015194216A1 (ja) 2014-06-19 2015-03-13 モータ

Country Status (5)

Country Link
US (1) US20170324313A1 (ja)
JP (1) JPWO2015194216A1 (ja)
CN (1) CN106464112B (ja)
DE (1) DE112015002853T5 (ja)
WO (1) WO2015194216A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107612173A (zh) * 2017-08-31 2018-01-19 易助电机(苏州)有限公司 一种四级电机转子及其绕组的绕线方法
JP6928563B2 (ja) * 2018-01-10 2021-09-01 株式会社ミツバ モータ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152240A (ja) * 1984-01-18 1985-08-10 Sankyo Seiki Mfg Co Ltd 回転電機
JPS62193539A (ja) * 1986-02-17 1987-08-25 Sankyo Seiki Mfg Co Ltd 直流モ−タ
JPH10174403A (ja) * 1996-12-13 1998-06-26 Denso Corp 直流機
JP2007028853A (ja) * 2005-07-20 2007-02-01 Yamaha Motor Co Ltd 回転電機及び電動車椅子
JP2007189874A (ja) * 2006-01-16 2007-07-26 Mitsuba Corp モータ及びモータ用ヨーク
JP2010029061A (ja) * 2008-07-18 2010-02-04 Johnson Electric Sa 電気モータ
WO2014034554A1 (ja) * 2012-08-30 2014-03-06 株式会社ミツバ 電動モータ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3970086B2 (ja) * 2002-04-30 2007-09-05 三洋電機株式会社 ブラシ付き小型モータ
JP4025250B2 (ja) * 2003-06-17 2007-12-19 ヤマハモーターエレクトロニクス株式会社 直流電動機
DE10361811A1 (de) * 2003-12-30 2005-07-28 Robert Bosch Gmbh Elektrische Maschine mit Kommutatorläufer
WO2005076442A1 (ja) * 2004-02-10 2005-08-18 Mitsuba Corporation 電動モータ
JP4886469B2 (ja) * 2006-10-30 2012-02-29 株式会社ミツバ 直流モータのアーマチュア、直流モータ及び直流モータのアーマチュア巻線方法
JP4961197B2 (ja) * 2006-11-22 2012-06-27 株式会社ミツバ 直流モータのアーマチュア及び直流モータ
JP5006713B2 (ja) * 2007-06-28 2012-08-22 株式会社ミツバ ブラシ付き電動モータ
JP2009183114A (ja) * 2008-01-31 2009-08-13 Mitsuba Corp 電動モータ
KR101242680B1 (ko) * 2011-05-18 2013-03-12 주식회사 아모텍 방수구조를 갖는 스테이터, 이를 이용한 워터펌프 모터 및 워터펌프
JP6091058B2 (ja) * 2011-07-27 2017-03-08 株式会社ミツバ 電動モータ
EP2849321B1 (en) * 2012-05-11 2019-12-11 Mabuchi Motor Co., Ltd. Armature and dc motor
CN103812292A (zh) * 2012-11-14 2014-05-21 德昌电机(深圳)有限公司 具有可检测转子转速功能的电机
CN203278450U (zh) * 2013-04-03 2013-11-06 德昌电机(深圳)有限公司 电机及其转子

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152240A (ja) * 1984-01-18 1985-08-10 Sankyo Seiki Mfg Co Ltd 回転電機
JPS62193539A (ja) * 1986-02-17 1987-08-25 Sankyo Seiki Mfg Co Ltd 直流モ−タ
JPH10174403A (ja) * 1996-12-13 1998-06-26 Denso Corp 直流機
JP2007028853A (ja) * 2005-07-20 2007-02-01 Yamaha Motor Co Ltd 回転電機及び電動車椅子
JP2007189874A (ja) * 2006-01-16 2007-07-26 Mitsuba Corp モータ及びモータ用ヨーク
JP2010029061A (ja) * 2008-07-18 2010-02-04 Johnson Electric Sa 電気モータ
WO2014034554A1 (ja) * 2012-08-30 2014-03-06 株式会社ミツバ 電動モータ

Also Published As

Publication number Publication date
CN106464112B (zh) 2019-03-26
DE112015002853T5 (de) 2017-03-02
JPWO2015194216A1 (ja) 2017-07-06
US20170324313A1 (en) 2017-11-09
CN106464112A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
US8378547B2 (en) Electric motor
JP4735210B2 (ja) モータ
CN107852045B (zh) 旋转电动机
JP6388066B2 (ja) ブラシレスモータ
JP3207654U (ja) 単相永久磁石モータ
US20080231137A1 (en) Armature, dynamo-electric machine and winding method
JP5764393B2 (ja) 直流モータ
US9787165B2 (en) Motor with simplified winding and reduced brush wear
JP4685516B2 (ja) 回転電機のアーマチュア
WO2015194216A1 (ja) モータ
JP4770434B2 (ja) モータ
US10574102B2 (en) Rotary electrical machine with configuration minimizing torque undulations
KR20190074467A (ko) 분할 고정자를 갖는 모터
JP6485046B2 (ja) 直流モータ
JP2014082903A (ja) ブラシレスモータ
JP7327947B2 (ja) モータ
JP2018023273A (ja) 単相モータ
WO2023281892A1 (ja) モータ
JP5865663B2 (ja) 永久磁石電気モータ
JP6417883B2 (ja) ブラシ付き電動モータ
JP5292329B2 (ja) 外側電機子モータのロータ構造
JP2016100979A (ja) モータ
JP2016073026A (ja) コミテータ、ロータおよびモータ
JP2006074995A (ja) 回転電機
JP2015080282A (ja) 回転子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15808888

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15319485

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112015002853

Country of ref document: DE

ENP Entry into the national phase

Ref document number: 2016529110

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15808888

Country of ref document: EP

Kind code of ref document: A1