WO2015190499A1 - 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤 - Google Patents

光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤 Download PDF

Info

Publication number
WO2015190499A1
WO2015190499A1 PCT/JP2015/066666 JP2015066666W WO2015190499A1 WO 2015190499 A1 WO2015190499 A1 WO 2015190499A1 JP 2015066666 W JP2015066666 W JP 2015066666W WO 2015190499 A1 WO2015190499 A1 WO 2015190499A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
meth
curable resin
acrylate
light
Prior art date
Application number
PCT/JP2015/066666
Other languages
English (en)
French (fr)
Inventor
彰 結城
高橋 徹
拓身 木田
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to KR1020217038829A priority Critical patent/KR102664999B1/ko
Priority to KR1020167013447A priority patent/KR102410694B1/ko
Priority to JP2015530804A priority patent/JP6043433B2/ja
Priority to CN201580005025.3A priority patent/CN105916886B/zh
Publication of WO2015190499A1 publication Critical patent/WO2015190499A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/08Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated side groups
    • C08F290/14Polymers provided for in subclass C08G
    • C08F290/147Polyurethanes; Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/302Water
    • C08G18/307Atmospheric humidity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5415Silicon-containing compounds containing oxygen containing at least one Si—O bond
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a light moisture curable resin composition having excellent adhesiveness and reliability in a high temperature environment and a high temperature and high humidity environment. Moreover, this invention relates to the adhesive agent for electronic components and the adhesive agent for display elements which use this optical moisture hardening type resin composition.
  • liquid crystal display elements In recent years, liquid crystal display elements, organic EL display elements, and the like are widely used as display elements having features such as thinness, light weight, and low power consumption.
  • a photocurable resin composition is usually used for sealing a liquid crystal or a light emitting layer, bonding a substrate, an optical film, a protective film, or various members.
  • a frame is being made (hereinafter also referred to as a narrow frame design).
  • a photocurable resin composition may be applied to a portion where light does not reach sufficiently, and as a result, the photocurable resin composition applied to a portion where light does not reach is cured.
  • a photothermosetting resin composition is used as a resin composition that can be sufficiently cured even when applied to a portion where light does not reach, and photocuring and thermosetting are also used in combination. There was a possibility of adversely affecting the elements and the like by heating.
  • Patent Document 1 discloses a thermosetting adhesive containing an epoxy compound having a number average molecular weight of 600 to 1,000.
  • the thermosetting adhesive as disclosed in Patent Document 1 is not suitable for bonding electronic components that may be damaged by heat.
  • Patent Document 2 discloses a light containing a urethane prepolymer having at least one isocyanate group and at least one (meth) acryloyl group in the molecule.
  • a method of using a moisture curable resin composition in combination with photocuring and moisture curing is disclosed.
  • the adhesiveness when an adherend such as a substrate is adhered, and reliability in a high temperature environment or a high temperature and high humidity environment (Especially creep resistance) may be insufficient.
  • the present invention is an optical moisture curable resin composition containing a radical polymerizable compound, a moisture curable urethane resin, a photo radical polymerization initiator, and a coupling agent.
  • a radical polymerizable compound e.g., a radical polymerizable compound, a moisture curable urethane resin, a photo radical polymerization initiator, and a coupling agent.
  • the present invention is described in detail below.
  • the present inventors have formulated a coupling agent into a photo-moisture curable resin composition containing a radical polymerizable compound and a moisture curable urethane resin.
  • the present inventors have found that a light moisture curable resin composition excellent in reliability under a high temperature and high humidity environment can be obtained, and the present invention has been completed.
  • the light moisture curable resin composition of the present invention contains a coupling agent.
  • the said coupling agent has a role which improves the adhesiveness and creep resistance of the optical moisture hardening type resin composition obtained.
  • the coupling agent exceeds an appropriate amount, the reaction of the moisture curable urethane resin may be hindered, the elastic modulus of the cured product may be reduced, and sufficient adhesive strength may not be ensured.
  • the above coupling agent not only improves adhesiveness, but also improves reliability in high-temperature and high-humidity environments, especially reliability in high-temperature and high-humidity environments. In terms of improvement, it exhibits particularly excellent effects.
  • the coupling agent preferably has a reactive functional group capable of reacting with a radical polymerizable compound and / or a moisture curable urethane resin.
  • the coupling agent is incorporated into a cured product obtained by curing the light moisture curable resin composition of the present invention, and as a result, adhesion and creep resistance are further improved. To do.
  • the reactive functional group examples include a group having an unsaturated double bond such as a (meth) acryloyl group, an epoxy group, an isocyanate group, a thiol group, and an amino group.
  • a group having an unsaturated double bond, an epoxy group, and an isocyanate group are preferred because of excellent effects of improving adhesiveness and creep resistance.
  • the “(meth) acryloyl” means acryloyl or methacryloyl.
  • a silane coupling agent As said coupling agent, a silane coupling agent, a titanate coupling agent, a zirconate coupling agent etc. are mentioned, for example. Among these, a silane coupling agent is preferable because it is particularly excellent in the effect of improving adhesiveness and creep resistance.
  • the said coupling agent may be used independently and 2 or more types may be used in combination.
  • silane coupling agent examples include 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 2- (3,4-epoxycyclohexyl).
  • titanate coupling agent examples include titanium diisopropoxybis (acetylacetonate), titanium tetraacetylacetonate, titanium diisopropoxybis (ethylacetoacetate), and the like.
  • zirconate coupling agent examples include zirconium tetranormal propoxide, silconium tetranormal butoxide, and the like.
  • the content of the coupling agent is preferably 0.05 parts by weight with a preferred lower limit and 5 parts by weight with respect to a total of 100 parts by weight of the radical polymerizable compound and the moisture-curable urethane resin.
  • the content of the coupling agent is within this range, not only the adhesiveness but also the effect of improving the reliability in a high temperature environment and a high temperature and high humidity environment (especially reliability in a high temperature and high humidity environment) is excellent. It will be a thing.
  • content of the said coupling agent exceeds 5 weight part, the optical moisture hardening type resin composition obtained may be inferior to storage stability.
  • the minimum with more preferable content of the said coupling agent is 0.5 weight part, and a more preferable upper limit is 1.5 weight part.
  • the light moisture curable resin composition of the present invention contains a radically polymerizable compound.
  • the radical polymerizable compound is not particularly limited as long as it is a photopolymerizable radical polymerizable compound and is a compound having a radical polymerizable group in the molecule, but the radical polymerizable group is an unsaturated double bond.
  • a compound having a (meth) acryloyl group (hereinafter, also referred to as “(meth) acrylic compound”) is preferable from the viewpoint of reactivity.
  • the “(meth) acryl” means acryl or methacryl.
  • Examples of the (meth) acrylic compound include an ester compound obtained by reacting a compound having a hydroxyl group with (meth) acrylic acid, and an epoxy (meth) acrylic obtained by reacting (meth) acrylic acid with an epoxy compound.
  • the “(meth) acrylate” means acrylate or methacrylate.
  • all the isocyanate groups of the isocyanate compound used as the raw material of the said urethane (meth) acrylate are used for formation of a urethane bond, and the said urethane (meth) acrylate does not have a residual isocyanate group.
  • Examples of the monofunctional compounds of the ester compounds include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, Isobutyl (meth) acrylate, t-butyl (meth) acrylate, isooctyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-methoxyethyl (meth) ) Acrylate, methoxyethylene glycol (meth) acrylate, 2-ethoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, benzyl (meth) acrylate, ethylcal Tall (meth) acrylate, meth
  • bifunctional ester compound examples include 1,4-butanediol di (meth) acrylate, 1,3-butanediol di (meth) acrylate, and 1,6-hexanediol di (meth).
  • ester compound having three or more functional groups examples include pentaerythritol tri (meth) acrylate, trimethylolpropane tri (meth) acrylate, propylene oxide-added trimethylolpropane tri (meth) acrylate, and ethylene oxide-added trimethylol.
  • Examples of the epoxy (meth) acrylate include those obtained by reacting an epoxy compound and (meth) acrylic acid in the presence of a basic catalyst according to a conventional method.
  • Examples of the epoxy compound as a raw material for synthesizing the epoxy (meth) acrylate include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, and 2,2′-diallyl bisphenol A type epoxy resin. , Hydrogenated bisphenol type epoxy resin, propylene oxide added bisphenol A type epoxy resin, resorcinol type epoxy resin, biphenyl type epoxy resin, sulfide type epoxy resin, diphenyl ether type epoxy resin, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, phenol Novolac epoxy resin, orthocresol novolac epoxy resin, dicyclopentadiene novolac epoxy resin, biphenyl novolac epoxy resin, naphtha Ren phenol novolak type epoxy resin, glycidyl amine type epoxy resin, alkyl polyol type epoxy resin, rubber modified epoxy resin, glycidyl ester compounds, bisphenol A type episulfide resins.
  • Examples of commercially available bisphenol A type epoxy resins include Epicoat 828EL, Epicoat 1001, Epicoat 1004 (all manufactured by Mitsubishi Chemical Corporation), Epicron 850-S (manufactured by DIC Corporation), and the like.
  • Epicoat 806, Epicoat 4004 all are Mitsubishi Chemical Corporation make) etc. are mentioned, for example.
  • Epicron EXA1514 made by DIC Corporation
  • Examples of commercially available 2,2′-diallylbisphenol A type epoxy resins include RE-810NM (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available diphenyl ether type epoxy resins include YSLV-80DE (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available dicyclopentadiene type epoxy resins include EP-4088S (manufactured by ADEKA).
  • Examples of commercially available naphthalene type epoxy resins include Epicron HP4032, Epicron EXA-4700 (both manufactured by DIC) and the like.
  • Examples of commercially available phenol novolac epoxy resins include Epicron N-770 (manufactured by DIC).
  • Examples of the ortho-cresol novolac type epoxy resin that are commercially available include epiclone N-670-EXP-S (manufactured by DIC).
  • Examples of commercially available biphenyl novolac epoxy resins include NC-3000P (manufactured by Nippon Kayaku Co., Ltd.).
  • Examples of commercially available naphthalene phenol novolac type epoxy resins include ESN-165S (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.).
  • Examples of commercially available glycidylamine epoxy resins include Epicoat 630 (manufactured by Mitsubishi Chemical), Epicron 430 (manufactured by DIC), and TETRAD-X (manufactured by Mitsubishi Gas Chemical).
  • alkyl polyol type epoxy resins examples include ZX-1542 (manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), Epiklon 726 (manufactured by DIC), Epolite 80MFA (manufactured by Kyoeisha Chemical Co., Ltd.), Denacol EX-611. (Manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available rubber-modified epoxy resins include YR-450, YR-207 (both manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.) and Epolide PB (manufactured by Daicel Chemical Industries, Ltd.).
  • Examples of commercially available glycidyl ester compounds include Denacol EX-147 (manufactured by Nagase ChemteX Corporation).
  • Examples of commercially available bisphenol A type episulfide resins include Epicoat YL-7000 (manufactured by Mitsubishi Chemical Corporation).
  • Other commercially available epoxy resins include, for example, YDC-1312, YSLV-80XY, YSLV-90CR (all manufactured by Nippon Steel & Sumikin Chemical Co., Ltd.), XAC4151 (manufactured by Asahi Kasei Co., Ltd.), Epicoat 1031 and Epicoat 1032. (All manufactured by Mitsubishi Chemical), EXA-7120 (manufactured by DIC), TEPIC (manufactured by Nissan Chemical) and the like.
  • Examples of commercially available epoxy (meth) acrylates include EBECRYL860, EBECRYL3200, EBECRYL3201, EBECRYL3412, EBECRYL3600, EBECRYL3700, EBECRYL3701, EBECRYL3702, EBECRY370R ), EA-1010, EA-1020, EA-5323, EA-5520, EA-CHD, EMA-1020 (all manufactured by Shin-Nakamura Chemical Co., Ltd.), epoxy ester M-600A, epoxy ester 40EM, epoxy ester 70PA, Epoxy ester 200PA, Epoxy ester 80MF Epoxy ester 3002M, Epoxy ester 3002A, Epoxy ester 1600A, Epoxy ester 3000M, Epoxy ester 3000A, Epoxy ester 200EA, Epoxy ester 400EA (all manufactured by Kyoeisha Chemical Co., Ltd.), Denacol acrylate DA-141, Denacol acrylate DA-3
  • the urethane (meth) acrylate can be obtained, for example, by reacting a (meth) acrylic acid derivative having a hydroxyl group with an isocyanate compound in the presence of a catalytic amount of a tin-based compound.
  • isocyanate compound used as the raw material for the urethane (meth) acrylate examples include isophorone diisocyanate, 2,4-tolylene diisocyanate, 2,6-tolylene diisocyanate, hexamethylene diisocyanate, trimethylhexamethylene diisocyanate, and diphenylmethane-4,4.
  • MDI '-Diisocyanate
  • hydrogenated MDI polymeric MDI, 1,5-naphthalene diisocyanate, norbornane diisocyanate, tolidine diisocyanate, xylylene diisocyanate (XDI), hydrogenated XDI, lysine diisocyanate, triphenylmethane triisocyanate, tris (isocyanate) Phenyl) thiophosphate, tetramethylxylene diisocyanate, 1,6,11-undecanetriiso Aneto and the like.
  • isocyanate compound examples include those obtained by reacting a polyol such as ethylene glycol, glycerin, sorbitol, trimethylolpropane, propylene glycol, carbonate diol, polyether diol, polyester diol, and polycaprolactone diol with an excess of an isocyanate compound. It is also possible to use chain-extended isocyanate compounds.
  • Examples of the (meth) acrylic acid derivative having a hydroxyl group, which is a raw material of the urethane (meth) acrylate include, for example, ethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, and 1,4-butane.
  • Examples include epoxy (meth) acrylates such as epoxy (meth) acrylate.
  • Examples of commercially available urethane (meth) acrylates include M-1100, M-1200, M-1210, M-1600 (all manufactured by Toagosei Co., Ltd.), EBECRYL230, EBECRYL270, EBECRYL4858, EBECRYL8402, EBECRYL8411, EBECRYL8412, EBECRYL8413, EBECRYL8804, EBECRYL8803, EBECRYL8807, EBECRYL9260, EBECRYL1290, EBECRYL5129, EBECRYL4842, EBECRYL210, EBECRYL4827, EBECRYL6700, EBECRYL220, EBECRYL2220, KRM7735, KRM-8295 (both manufactured by Daicel Orunekusu, Inc.
  • radical polymerizable compounds other than those described above can be used as appropriate.
  • the other radical polymerizable compounds include N, N-dimethyl (meth) acrylamide, N- (meth) acryloylmorpholine, N-hydroxyethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N -(Meth) acrylamide compounds such as isopropyl (meth) acrylamide and N, N-dimethylaminopropyl (meth) acrylamide, and vinyl compounds such as styrene, ⁇ -methylstyrene, N-vinylpyrrolidone and N-vinylcaprolactone. It is done.
  • the radical polymerizable compound preferably contains a monofunctional radical polymerizable compound and a polyfunctional radical polymerizable compound from the viewpoint of adjusting curability.
  • a monofunctional radical polymerizable compound When only a monofunctional radically polymerizable compound is used, the resulting light moisture curable resin composition may be inferior in curability, and when only a polyfunctional radically polymerizable compound is used, the resulting light moisture cured
  • the mold resin composition may be inferior in tackiness.
  • the polyfunctional radically polymerizable compound is preferably bifunctional or trifunctional, and more preferably bifunctional.
  • the radical polymerizable compound contains the monofunctional radical polymerizable compound and the polyfunctional radical polymerizable compound
  • the content of the polyfunctional radical polymerizable compound is the same as the monofunctional radical polymerizable compound and the polyfunctional radical polymerizable compound.
  • a preferable lower limit is 2 parts by weight and a preferable upper limit is 45 parts by weight with respect to a total of 100 parts by weight with the functional radical polymerizable compound.
  • the content of the polyfunctional radically polymerizable compound is less than 2 parts by weight, the resulting light moisture curable resin composition may be inferior in curability.
  • content of the said polyfunctional radically polymerizable compound exceeds 45 weight part, the optical moisture hardening type resin composition obtained may become inferior to tack property.
  • the minimum with more preferable content of the said polyfunctional radically polymerizable compound is 5 weight part, and a more preferable upper limit is 35 weight part.
  • the content of the radical polymerizable compound is such that the preferred lower limit is 10 parts by weight and the preferred upper limit is 80 parts by weight with respect to a total of 100 parts by weight of the radical polymerizable compound and the moisture curable urethane resin.
  • the resulting light moisture curable resin composition may be inferior in photocurability.
  • the resulting optical moisture curable resin composition may be inferior in moisture curability.
  • a more preferred lower limit of the content of the radical polymerizable compound is 25 parts by weight, a more preferred upper limit is 70 parts by weight, a still more preferred lower limit is 30 parts by weight, and a still more preferred upper limit is 59 parts by weight.
  • the optical moisture curable resin composition of the present invention contains a moisture curable urethane resin.
  • the isocyanate group in the molecule is cured by reacting with moisture in the air or in the adherend.
  • the moisture curable urethane resin preferably has an isocyanate group, and may have only one isocyanate group in one molecule, or may have two or more. Of these, urethane prepolymers having isocyanate groups at both ends are preferred.
  • the urethane prepolymer can be obtained by reacting a polyol compound having two or more hydroxyl groups in one molecule with a polyisocyanate compound having two or more isocyanate groups in one molecule.
  • polyol compound the well-known polyol compound normally used for manufacture of a polyurethane can be used, For example, polyester polyol, polyether polyol, polyalkylene polyol, polycarbonate polyol etc. are mentioned. These polyol compounds may be used alone or in combination of two or more.
  • polyester polyol examples include a polyester polyol obtained by a reaction between a polyvalent carboxylic acid and a polyol, and a poly- ⁇ -caprolactone polyol obtained by ring-opening polymerization of ⁇ -caprolactone.
  • polyvalent carboxylic acid used as a raw material for the polyester polyol examples include terephthalic acid, isophthalic acid, 1,5-naphthalic acid, 2,6-naphthalic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, and suberin.
  • examples include acid, azelaic acid, sebacic acid, decamethylene dicarboxylic acid, dodecamethylene dicarboxylic acid and the like.
  • polyester polyol examples include ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,5-pentanediol, and 1,6-hexane.
  • Diol, diethylene glycol, cyclohexanediol, etc. are mentioned.
  • polyether polyol examples include ring-opening polymers of ethylene glycol, propylene glycol, tetrahydrofuran, 3-methyltetrahydrofuran, random copolymers or block copolymers of these and their derivatives, and bisphenol-type polyoxy An alkylene modified body etc. are mentioned.
  • the modified bisphenol-type polyoxyalkylene is a polyether polyol obtained by addition reaction of alkylene oxide (for example, ethylene oxide, propylene oxide, butylene oxide, isobutylene oxide, etc.) to the active hydrogen portion of the bisphenol-type molecular skeleton, A random copolymer or a block copolymer may be used.
  • the modified bisphenol-type polyoxyalkylene preferably has one or more alkylene oxides added to both ends of the bisphenol-type molecular skeleton. It does not specifically limit as a bisphenol type, A type, F type, S type etc. are mentioned, Preferably it is bisphenol A type.
  • polyalkylene polyol examples include polybutadiene polyol, hydrogenated polybutadiene polyol, and hydrogenated polyisoprene polyol.
  • polycarbonate polyol examples include polyhexamethylene carbonate polyol and polycyclohexane dimethylene carbonate polyol.
  • polyisocyanate compound examples include diphenylmethane diisocyanate, a liquid modified product of diphenylmethane diisocyanate, polymeric MDI (methane diisocyanate), tolylene diisocyanate, naphthalene-1,5-diisocyanate, and the like.
  • diphenylmethane diisocyanate and its modified products are preferred from the viewpoint of low vapor pressure, low toxicity, and ease of handling.
  • the said polyisocyanate compound may be used independently and may be used in combination of 2 or more type.
  • the said moisture hardening type urethane resin is obtained using the polyol compound which has a structure represented by following formula (1).
  • a polyol compound having a structure represented by the following formula (1) it is possible to obtain a composition excellent in adhesiveness and a cured product that is flexible and has good elongation, and is compatible with the radical polymerizable compound. It will be excellent.
  • a polyether polyol made of propylene glycol a ring-opening polymerization compound of a tetrahydrofuran (THF) compound, or a ring-opening polymerization compound of a tetrahydrofuran compound having a substituent such as a methyl group are preferable.
  • THF tetrahydrofuran
  • a ring-opening polymerization compound of a tetrahydrofuran compound having a substituent such as a methyl group are preferable.
  • R represents hydrogen, a methyl group, or an ethyl group
  • n is an integer of 1 to 10
  • L is an integer of 0 to 5
  • m is an integer of 1 to 500.
  • n is preferably 1 to 5
  • L is preferably 0 to 4
  • m is preferably 50 to 200.
  • L is 0 means the case where carbon bonded to R is directly bonded to oxygen.
  • the moisture curable urethane resin may have a radical polymerizable group.
  • the radical polymerizable group that the moisture-curable urethane resin may have is preferably a group having an unsaturated double bond, and more preferably a (meth) acryloyl group from the viewpoint of reactivity.
  • the moisture curable urethane resin having a radical polymerizable group is not included in the radical polymerizable compound and is treated as a moisture curable urethane resin.
  • the preferable lower limit of the weight average molecular weight of the moisture curable urethane resin is 800, and the preferable upper limit is 10,000.
  • the weight average molecular weight of the moisture curable urethane resin is less than 800, the crosslink density increases and flexibility may be impaired.
  • the weight average molecular weight of the moisture curable urethane resin exceeds 10,000, the resulting light moisture curable resin composition may have poor applicability.
  • the more preferable lower limit of the weight average molecular weight of the moisture curable urethane resin is 2000, the more preferable upper limit is 8000, the still more preferable lower limit is 2500, and the further preferable upper limit is 6000.
  • the said weight average molecular weight is a value calculated
  • GPC gel permeation chromatography
  • Examples of the column for measuring the weight average molecular weight in terms of polystyrene by GPC include Shodex LF-804 (manufactured by Showa Denko KK). Moreover, tetrahydrofuran etc. are mentioned as a solvent used by GPC.
  • the content of the moisture curable urethane resin is preferably 20 parts by weight with a preferred lower limit and 90 parts by weight with respect to a total of 100 parts by weight of the radical polymerizable compound and the moisture curable urethane resin.
  • the resulting optical moisture curable resin composition may be inferior in moisture curable property. If the content of the moisture curable urethane resin exceeds 90 parts by weight, the resulting light moisture curable resin composition may be inferior in photocurability.
  • the more preferable lower limit of the content of the moisture curable urethane resin is 30 parts by weight, the more preferable upper limit is 75 parts by weight, the still more preferable lower limit is 41 parts by weight, and the still more preferable upper limit is 70 parts by weight.
  • the light moisture curable resin composition of the present invention contains a radical photopolymerization initiator.
  • the photo radical polymerization initiator include benzophenone compounds, acetophenone compounds, acylphosphine oxide compounds, titanocene compounds, oxime ester compounds, benzoin ether compounds, thioxanthones, and the like.
  • photo radical polymerization initiators examples include IRGACURE 184, IRGACURE 369, IRGACURE 379, IRGACURE 651, IRGACURE 784, IRGACURE 819, IRGACURE 907, IRGACURE 2959, IRGACUREO BASF), benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether (all manufactured by Tokyo Chemical Industry Co., Ltd.) and the like.
  • the content of the photo radical polymerization initiator is preferably 0.01 parts by weight and preferably 10 parts by weight with respect to 100 parts by weight of the radical polymerizable compound.
  • the content of the radical photopolymerization initiator is less than 0.01 part by weight, the resulting light moisture curable resin composition may not be sufficiently photocured.
  • content of the said radical photopolymerization initiator exceeds 10 weight part, the storage stability of the obtained optical moisture hardening type resin composition may fall.
  • the minimum with more preferable content of the said radical photopolymerization initiator is 0.1 weight part, and a more preferable upper limit is 5 weight part.
  • the light moisture curable resin composition of the present invention may contain a filler from the viewpoint of adjusting the applicability and shape retention of the resulting light moisture curable resin composition.
  • the filler preferably has a primary particle diameter with a preferred lower limit of 1 nm and a preferred upper limit of 50 nm. When the primary particle diameter of the filler is less than 1 nm, the resulting light moisture curable resin composition may be inferior in applicability. When the primary particle diameter of the filler exceeds 50 nm, the resulting light moisture curable resin composition may be inferior in shape retention after coating.
  • the more preferable lower limit of the primary particle diameter of the filler is 5 nm, the more preferable upper limit is 30 nm, the still more preferable lower limit is 10 nm, and the still more preferable upper limit is 20 nm.
  • the primary particle size of the filler can be measured by dispersing the filler in a solvent (water, organic solvent, etc.) using NICOMP 380ZLS (manufactured by PARTICS SIZING SYSTEMS).
  • the filler may be present as secondary particles (a collection of a plurality of primary particles) in the light moisture curable resin composition of the present invention, and the preferred lower limit of the particle diameter of such secondary particles.
  • the particle diameter of the secondary particles of the filler can be measured by observing the optical moisture curable resin composition of the present invention or a cured product thereof using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the filler examples include silica, talc, titanium oxide, and zinc oxide.
  • silica is preferable because the obtained light moisture curable resin composition is excellent in UV light transmittance.
  • These fillers may be used independently and may be used in combination of 2 or more type.
  • the filler is preferably subjected to a hydrophobic surface treatment.
  • a hydrophobic surface treatment By the hydrophobic surface treatment, the resulting optical moisture curable resin composition is more excellent in shape retention after application.
  • the hydrophobic surface treatment include silylation treatment, alkylation treatment, and epoxidation treatment. Especially, since it is excellent in the effect which improves shape retainability, a silylation process is preferable and a trimethylsilylation process is more preferable.
  • Examples of the method for treating the filler with a hydrophobic surface include a method for treating the surface of the filler with a surface treatment agent such as a silane coupling agent.
  • a surface treatment agent such as a silane coupling agent.
  • the trimethylsilylated silica is prepared by, for example, synthesizing silica by a method such as a sol-gel method and spraying hexamethyldisilazane in a state where the silica is fluidized, or an organic solvent such as alcohol or toluene. It can be produced by a method in which silica is added, hexamethyldisilazane and water are added, and then water and an organic solvent are evaporated and dried with an evaporator.
  • the content of the filler is preferably 1 part by weight at a preferable lower limit and 20 parts by weight at a preferable upper limit in 100 parts by weight of the entire light moisture curable resin composition of the present invention.
  • the content of the filler is less than 1 part by weight, the resulting light moisture curable resin composition may be inferior in shape retention after coating.
  • content of the said filler exceeds 20 weight part, the optical moisture hardening type resin composition obtained may become inferior to applicability
  • the more preferred lower limit of the content of the filler is 2 parts by weight, the more preferred upper limit is 15 parts by weight, the still more preferred lower limit is 3 parts by weight, the still more preferred upper limit is 10 parts by weight, and the particularly preferred lower limit is 4 parts by weight. .
  • the light moisture curable resin composition of the present invention may contain a light shielding agent.
  • the optical moisture hardening type resin composition of this invention becomes the thing excellent in light-shielding property, and can prevent the light leak of a display element.
  • the “light-shielding agent” means a material having an ability of hardly transmitting light in the visible light region.
  • the light-shielding agent examples include iron oxide, titanium black, aniline black, cyanine black, fullerene, carbon black, and resin-coated carbon black.
  • the light-shielding agent may not be black, and the materials mentioned as fillers such as silica, talc, titanium oxide, etc., as long as the material has the ability to hardly transmit light in the visible light region. Included in sunscreen. Of these, titanium black is preferable.
  • Titanium black is a substance having a higher transmittance in the vicinity of the ultraviolet region, particularly for light having a wavelength of 370 to 450 nm, compared to the average transmittance for light having a wavelength of 300 to 800 nm. That is, the above-described titanium black sufficiently shields light having a wavelength in the visible light region, thereby imparting light shielding properties to the light moisture curable resin composition of the present invention, while transmitting light having a wavelength in the vicinity of the ultraviolet region. Is a light-shielding agent.
  • the light of the photo moisture curable resin composition of the present invention can be used. Curability can be further increased.
  • the light-shielding agent contained in the light moisture curable resin composition of the present invention is preferably a highly insulating material, and titanium black is also preferable as the highly insulating light-shielding agent.
  • the titanium black preferably has an optical density (OD value) of 3 or more, and more preferably 4 or more.
  • the titanium black preferably has a blackness (L value) of 9 or more, more preferably 11 or more. The higher the light shielding property of the titanium black, the better. There is no particular upper limit to the OD value of the titanium black, but it is usually 5 or less.
  • the above-mentioned titanium black exhibits a sufficient effect even if it is not surface-treated, but the surface is treated with an organic component such as a coupling agent, silicon oxide, titanium oxide, germanium oxide, aluminum oxide, oxidized Surface-treated titanium black such as those coated with an inorganic component such as zirconium or magnesium oxide can also be used. Especially, what is processed with the organic component is preferable at the point which can improve insulation more.
  • the display element manufactured using the light moisture curable resin composition of the present invention has a high contrast because there is no light leakage because the light moisture curable resin composition has sufficient light shielding properties. Image display quality.
  • the preferable lower limit of the specific surface area of the titanium black is 5 m 2 / g
  • the preferable upper limit is 40 m 2 / g
  • the more preferable lower limit is 10 m 2 / g
  • the more preferable upper limit is 25 m 2 / g.
  • the preferable lower limit of the sheet resistance of the titanium black is 10 9 ⁇ / ⁇ when mixed with a resin (70% blending), and the more preferable lower limit is 10 11 ⁇ / ⁇ .
  • titanium black examples include 12S, 13M, 13M-C, 13R-N (all manufactured by Mitsubishi Materials Corporation), Tilak D (manufactured by Ako Kasei Co., Ltd.), and the like.
  • the primary particle diameter of the light-shielding agent is appropriately selected depending on the application, such as the distance between the substrates of the display element, but the preferable lower limit is 30 nm and the preferable upper limit is 500 nm. It is. When the primary particle diameter of the light-shielding agent is less than 30 nm, the viscosity and thixotropy of the obtained light moisture-curable resin composition are greatly increased, and workability may be deteriorated.
  • the primary particle diameter of the light-shielding agent exceeds 500 nm, the dispersibility of the light-shielding agent in the obtained light moisture curable resin composition may be lowered, and the light-shielding property may be lowered.
  • the more preferable lower limit of the primary particle diameter of the light shielding agent is 50 nm, and the more preferable upper limit is 200 nm.
  • the particle size of the light shielding agent can be measured by using NICOMP 380ZLS (PARTICLE SIZING SYSTEMS) and dispersing the light shielding agent in a solvent (water, organic solvent, etc.).
  • content of the said light shielding agent in the whole optical moisture hardening type resin composition of this invention is not specifically limited, A preferable minimum is 0.05 weight% and a preferable upper limit is 10 weight%. If the content of the light shielding agent is less than 0.05% by weight, sufficient light shielding properties may not be obtained. When the content of the light-shielding agent is more than 10% by weight, the adhesiveness of the obtained light moisture curable resin composition to the substrate or the strength after curing may be lowered, or the drawing property may be lowered. A more preferable lower limit of the content of the light shielding agent is 0.1% by weight, a more preferable upper limit is 2% by weight, and a still more preferable upper limit is 1% by weight.
  • the light moisture curable resin composition of the present invention may further contain additives such as a colorant, an ionic liquid, a solvent, metal-containing particles, and a reactive diluent as necessary.
  • additives such as a colorant, an ionic liquid, a solvent, metal-containing particles, and a reactive diluent as necessary.
  • a method for producing the light moisture curable resin composition of the present invention for example, using a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, a three roll, And a method of mixing a moisture curable urethane resin, a radical photopolymerization initiator, a coupling agent, and an additive to be added as necessary.
  • a mixer such as a homodisper, a homomixer, a universal mixer, a planetary mixer, a kneader, a three roll, And a method of mixing a moisture curable urethane resin, a radical photopolymerization initiator, a coupling agent, and an additive to be added as necessary.
  • the preferable lower limit of the viscosity measured at 25 ° C. and 1 rpm using a cone plate viscometer is 50 Pa ⁇ s
  • the preferable upper limit is 500 Pa ⁇ s.
  • the optical moisture curable resin composition is applied to an adherend such as a substrate when used as an adhesive for electronic parts or an adhesive for display elements. The workability when doing so may deteriorate.
  • a more preferred lower limit of the viscosity is 80 Pa ⁇ s
  • a more preferred upper limit is 300 Pa ⁇ s
  • a still more preferred upper limit is 200 Pa ⁇ s.
  • the preferable lower limit of the thixotropic index of the light moisture curable resin composition of the present invention is 1.3, and the preferable upper limit is 5.0.
  • the thixotropic index is less than 1.3 or exceeds 5.0, an optical moisture curable resin composition is used as an adherend such as a substrate when used as an adhesive for electronic components or an adhesive for display elements. The workability at the time of applying to may be deteriorated.
  • the more preferable lower limit of the thixotropic index is 1.5, and the more preferable upper limit is 4.0.
  • the thixotropic index is a viscosity measured at 25 ° C. and 1 rpm using a cone plate viscometer, and measured at 25 ° C. and 10 rpm using a cone plate viscometer. It means the value divided by the viscosity.
  • Light moisture-curable resin composition of the present invention has a tensile preferred lower limit is 0.5 kgf / cm 2 in elastic modulus at 25 ° C. of the cured product, the desirable upper limit is 6 kgf / cm 2. If the tensile elastic modulus is less than 0.5 kgf / cm 2, it is too soft, the cohesive force is weak, and the adhesive force may be low. When the tensile elastic modulus exceeds 6 kgf / cm 2 , flexibility may be impaired. A more preferable lower limit of the tensile elastic modulus is 1 kgf / cm 2 , and a more preferable upper limit is 5 kgf / cm 2 .
  • tensile modulus is 50% elongation by pulling the cured product at a speed of 10 mm / min using a tensile tester (for example, “EZ-Graph” manufactured by Shimadzu Corporation). It means the value measured as the force of time.
  • Examples of adherends that can be bonded using the optical moisture type resin composition of the present invention include various adherends such as metal, glass, and plastic.
  • Examples of the shape of the adherend include a film shape, a sheet shape, a plate shape, a panel shape, a tray shape, a rod (rod-like body) shape, a box shape, and a housing shape.
  • Examples of the metal include steel, stainless steel, aluminum, copper, nickel, chromium, and alloys thereof.
  • Examples of the glass include alkali glass, non-alkali glass, and quartz glass.
  • Examples of the plastic include polyolefin resins such as high density polyethylene, ultra high molecular weight polyethylene, isotactic polypropylene, syndiotactic polypropylene, and ethylene propylene copolymer resin, nylon 6 (N6), nylon 66 (N66).
  • Nylon 46 N46
  • nylon 11 N11
  • nylon 12 N12
  • nylon 610 N610
  • nylon 612 N612
  • nylon 6/66 copolymer N6 / 66
  • Polyamide resins such as copolymers (N6 / 66/610), nylon MXD6 (MXD6), nylon 6T, nylon 6 / 6T copolymer, nylon 66 / PP copolymer, nylon 66 / PPS copolymer, Polybutylene terephthalate (PBT), polyethylene Terephthalate (PET), polyethylene isophthalate (PEI), PET / PEI copolymer, polyarylate (PAR), polybutylene naphthalate (PBN), liquid crystal polyester, polyoxyalkylene diimide diacid / polybutylate terephthalate copolymer
  • Aromatic polyester resins such as coalescence, polyacrylonitrile (PAN), polymethacrylonitrile, acrylonitrile /
  • Examples of the adherend include a composite material having a metal plating layer on the surface, and examples of the base material for plating the composite material include the metal, glass, and plastic described above. Furthermore, examples of the adherend include a material in which a metal film is passivated to form a passive film, and examples of the passivating treatment include heat treatment and anodizing treatment. It is done. In particular, in the case of an aluminum alloy or the like whose material is an international aluminum alloy name in the 6000 series, the adhesiveness can be improved by performing a sulfuric acid alumite treatment or a phosphoric acid alumite treatment as the passivation treatment.
  • a step of applying the light moisture curable resin composition of the present invention to a first member a step of applying the light moisture curable resin composition of the present invention to a first member
  • the step of irradiating the light moisture curable resin composition of the present invention applied to the member with light to cure the radical polymerizable compound in the light moisture curable resin composition of the present invention first curing step
  • a step (bonding step) of bonding the first member and the second member through the light moisture curable resin composition after the first curing step, and the light moisture curable type of the present invention after the bonding step a step of applying the light moisture curable resin composition of the present invention to a first member
  • the step of irradiating the light moisture curable resin composition of the present invention applied to the member with light to cure the radical polymerizable compound in the light moisture curable resin composition of the present invention first curing step
  • Examples include a method including a step (second curing step) in which the first member and the second member are bonded by moisture curing of the moisture-curable urethane resin in the resin composition, and the bonding step. It is preferable to include the process of irradiating light later. By including the step of irradiating light after the bonding step, the adhesiveness (initial adhesiveness) immediately after bonding to the adherend can be improved.
  • the first member and / or the second member is made of a material that transmits light, it is preferable to irradiate light through the first member and / or the second member that transmits light.
  • the first member and / or the second member is a material that does not easily transmit light
  • the first member and the second member are interposed via the light moisture curable resin composition. It is preferable to irradiate the side surface of the bonded structure, that is, the portion where the light moisture curable resin composition is exposed.
  • the light moisture curable resin composition of the present invention can be particularly suitably used as an adhesive for electronic parts or an adhesive for display elements.
  • An adhesive for electronic components using the light moisture curable resin composition of the present invention and a display element adhesive using the light moisture curable resin composition of the present invention are also included in the present invention. It is.
  • the optical moisture hardening type resin composition excellent in adhesiveness and the reliability in a high temperature environment and a high temperature and high humidity environment can be provided.
  • the adhesive for electronic components and the adhesive for display elements which use this optical moisture hardening type resin composition can be provided.
  • (A) is a schematic diagram which shows the case where the sample for adhesive evaluation is seen from the top
  • (b) is a schematic diagram which shows the case where the sample for adhesive evaluation is seen from the side.
  • Examples 1 to 16 Comparative Examples 1 and 2
  • each material was stirred with a planetary stirrer (manufactured by Shinky Co., Ltd., “Awatori Netaro”) and then mixed uniformly with a ceramic three roll.
  • the optical moisture curable resin compositions of Examples 1 to 16 and Comparative Examples 1 and 2 were obtained.
  • “urethane prepolymer A” is a urethane prepolymer having an isocyanate group at both ends described in Synthesis Example 1
  • urethane prepolymer B is both ends described in Synthesis Example 2.
  • the “urethane prepolymer C” is a urethane prepolymer having an isocyanate group and a methacryloyl group at the molecular end described in Synthesis Example 3.
  • FIG. 1 is a schematic diagram (FIG.
  • High temperature reliability (creep resistance test 1)) A high temperature reliability evaluation sample was prepared in the same manner as the adhesive evaluation sample in the evaluation of “(adhesiveness)”. The obtained high-temperature reliability evaluation sample was hung perpendicularly to the ground, put in a 100 ° C. oven with a 100 g weight suspended from the end of the polycarbonate substrate, and allowed to stand for 72 hours. “ ⁇ ” indicates that the polycarbonate substrate and the glass plate were not peeled after standing for 72 hours, and “ ⁇ ” indicates that the polycarbonate substrate and the glass plate were peeled off for 24 hours to less than 72 hours after standing.
  • indicates that the polycarbonate substrate and the glass plate are peeled off after 12 hours to less than 24 hours, and “ ⁇ ” indicates that the polycarbonate substrate and the glass plate are completely peeled off in less than 12 hours after standing. As described above, the high temperature reliability of the light moisture curable resin composition was evaluated.
  • a high temperature reliability evaluation sample was prepared in the same manner as the adhesive evaluation sample in the evaluation of “(adhesiveness)”.
  • the obtained high-temperature reliability evaluation sample was hung perpendicularly to the ground, and put in a 50 ° C. 60% RH oven with a 100 g weight hung on the end of the polycarbonate substrate, and allowed to stand for 72 hours.
  • “ ⁇ ” indicates that the polycarbonate substrate and the glass plate were not peeled after standing for 72 hours, and “ ⁇ ” indicates that the polycarbonate substrate and the glass plate were peeled off for 24 hours to less than 72 hours after standing.
  • indicates that the polycarbonate substrate and the glass plate are peeled off after 12 hours to less than 24 hours, and “ ⁇ ” indicates that the polycarbonate substrate and the glass plate are completely peeled off in less than 12 hours after standing.
  • the high-temperature and high-humidity reliability of the light moisture-curable resin composition was evaluated.
  • UV-LED Wavelength 365 nm
  • UV-LED wavelength 365 nm
  • EZ-Graph tensile tester
  • a test piece obtained by punching the obtained cured product into a dumbbell shape No. 6 defined by “JIS K 6251” was obtained.
  • Tensile force at a speed of 10 mm / sec and the force at 50% elongation were determined as the elastic modulus.
  • the optical moisture hardening type resin composition excellent in adhesiveness and the reliability in a high temperature environment and a high temperature and high humidity environment can be provided.
  • the adhesive for electronic components and the adhesive for display elements which use this optical moisture hardening type resin composition can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Polymerisation Methods In General (AREA)
  • Polyurethanes Or Polyureas (AREA)
  • Graft Or Block Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Liquid Crystal (AREA)

Abstract

本発明は、接着性、及び、高温環境下や高温高湿環境下における信頼性に優れる光湿気硬化型樹脂組成物を提供することを目的とする。また、本発明は、該光湿気硬化型樹脂組成物を用いてなる電子部品用接着剤及び表示素子用接着剤を提供することを目的とする。 本発明は、ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤と、カップリング剤とを含有する光湿気硬化型樹脂組成物である。

Description

光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
本発明は、接着性、及び、高温環境下や高温高湿環境下における信頼性に優れる光湿気硬化型樹脂組成物に関する。また、本発明は、該光湿気硬化型樹脂組成物を用いてなる電子部品用接着剤及び表示素子用接着剤に関する。
近年、薄型、軽量、低消費電力等の特徴を有する表示素子として、液晶表示素子や有機EL表示素子等が広く利用されている。これらの表示素子では、通常、液晶や発光層の封止、基板や光学フィルムや保護フィルムや各種部材の接着等に光硬化型樹脂組成物が用いられている。
ところで、携帯電話、携帯ゲーム機等、各種表示素子付きモバイル機器が普及している現代において、表示素子の小型化は最も求められている課題であり、小型化の手法として、画像表示部を狭額縁化することが行われている(以下、狭額縁設計ともいう)。しかしながら、狭額縁設計においては、充分に光の届かない部分に光硬化型樹脂組成物が塗布されることがあり、その結果、光の届かない部分に塗布された光硬化型樹脂組成物は硬化が不充分となるという問題があった。そこで、光の届かない部分に塗布された場合でも充分に硬化できる樹脂組成物として光熱硬化型樹脂組成物を用い、光硬化と熱硬化とを併用することも行われているが、高温での加熱により素子等に悪影響を与えるおそれがあった。
また、近年、半導体チップ等の電子部品では、高集積化、小型化が要求されており、例えば、接着剤層を介して複数の薄い半導体チップを接合して半導体チップの積層体とすることが行われている。このような半導体チップの積層体は、例えば、一方の半導体チップ上に接着剤を塗布した後、該接着剤を介して他方の半導体チップを積層し、その後、接着剤を硬化させる方法や、一定の間隔を空けて保持した半導体チップ間に接着剤を充填し、その後、接着剤を硬化させる方法等により製造されている。
このような電子部品の接着に用いられる接着剤として、例えば、特許文献1には、数平均分子量が600~1000であるエポキシ化合物を含有する熱硬化型の接着剤が開示されている。しかしながら、特許文献1に開示されているような熱硬化型の接着剤は、熱により損傷する可能性のある電子部品の接着には適さないものであった。
高温での加熱を行わずに樹脂組成物を硬化させる方法として、特許文献2には、分子中に少なくとも1つのイソシアネート基と少なくとも1つの(メタ)アクリロイル基とを有するウレタンプレポリマーを含有する光湿気硬化型樹脂組成物を用い、光硬化と湿気硬化とを併用する方法が開示されている。しかしながら、特許文献2に開示されているような光湿気硬化型樹脂組成物を用いた場合、基板等の被着体を接着した際の接着性や、高温環境下や高温高湿環境下における信頼性(特に耐クリープ性)が不充分となることがあった。
特開2000-178342号公報 特開2008-274131号公報
本発明は、接着性、及び、高温環境下や高温高湿環境下における信頼性に優れる光湿気硬化型樹脂組成物を提供することを目的とする。また、本発明は、該光湿気硬化型樹脂組成物を用いてなる電子部品用接着剤及び表示素子用接着剤を提供することを目的とする。
本発明は、ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤と、カップリング剤とを含有する光湿気硬化型樹脂組成物である。
以下に本発明を詳述する。
本発明者らは、驚くべきことに、カップリング剤を、ラジカル重合性化合物と湿気硬化型ウレタン樹脂とを含有する光湿気硬化型樹脂組成物に配合することにより、接着性、及び、高温環境下や高温高湿環境下における信頼性に優れる光湿気硬化型樹脂組成物を得ることができることを見出し、本発明を完成させるに至った。
本発明の光湿気硬化型樹脂組成物は、カップリング剤を含有する。
上記カップリング剤は、得られる光湿気硬化型樹脂組成物の接着性や耐クリープ性を向上させる役割を有する。上記カップリング剤は、適量を超えた場合、湿気硬化型ウレタン樹脂の反応を阻害し、硬化物の弾性率を低下させ、充分な接着力を確保できないことがある。上記カップリング剤は、単に接着性を向上させるだけでなく、光湿気硬化型樹脂組成物における、高温環境下や高温高湿環境下における信頼性、なかでも、高温高湿環境下における信頼性を向上させる点で、特に優れた効果を発揮する。
上記カップリング剤は、ラジカル重合性化合物及び/又は湿気硬化型ウレタン樹脂と反応し得る反応性官能基を有することが好ましい。上記反応性官能基を有することにより、本発明の光湿気硬化型樹脂組成物を硬化させて得られる硬化物中に上記カップリング剤が取り込まれ、その結果、接着性や耐クリープ性が更に向上する。
上記反応性官能基としては、例えば、(メタ)アクリロイル基等の不飽和二重結合を有する基、エポキシ基、イソシアネート基、チオール基、アミノ基等が挙げられる。なかでも、接着性や耐クリープ性を向上させる効果に優れることから、不飽和二重結合を有する基、エポキシ基、イソシアネート基が好ましい。
なお、本明細書において、上記「(メタ)アクリロイル」とは、アクリロイル又はメタクリロイルを意味する。
上記カップリング剤としては、例えば、シランカップリング剤、チタネート系カップリング剤、ジルコネート系カップリング剤等が挙げられる。なかでも、接着性や耐クリープ性を向上させる効果に特に優れることから、シランカップリング剤が好ましい。上記カップリング剤は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
上記シランカップリング剤としては、例えば、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリエトキシシラン、3-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルメチルジメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、3-イソシアネートプロピルメチルジエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリエトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、フェニルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、ヘキシルトリメトキシシラン、ヘキシルトリエトキシシラン、オクチルトリエトキシシラン、テジルトリメトキシシラン、1,6-ビス(トリメトキシリル)ヘキサン等が挙げられる。
上記チタネート系カップリング剤としては、例えば、チタンジイソプロポキシビス(アセチルアセトネート)、チタンテトラアセチルアセトネート、チタンジイソプロポキシビス(エチルアセトアセテート)等が挙げられる。
上記ジルコネート系カップリング剤としては、例えば、ジルコニウムテトラノルマルプロポキシド、シルコニウムテトラノルマルブトキシド、等が挙げられる。
上記カップリング剤の含有量は、ラジカル重合性化合物と湿気硬化型ウレタン樹脂との合計100重量部に対して、好ましい下限が0.05重量部、好ましい上限が5重量部である。上記カップリング剤の含有量がこの範囲であることにより、接着性だけでなく、高温環境下や高温高湿環境下における信頼性(特に高温高湿環境下における信頼性)を向上させる効果により優れるものとなる。また、上記カップリング剤の含有量が5重量部を超えると、得られる光湿気硬化型樹脂組成物が保存安定性に劣るものとなることがある。上記カップリング剤の含有量のより好ましい下限は0.5重量部、より好ましい上限は1.5重量部である。
本発明の光湿気硬化型樹脂組成物は、ラジカル重合性化合物を含有する。
上記ラジカル重合性化合物としては、光重合性を有するラジカル重合性化合物であればよく、分子中にラジカル重合性基を有する化合物であれば特に限定されないが、ラジカル重合性基として不飽和二重結合を有する化合物が好適であり、特に反応性の面から(メタ)アクリロイル基を有する化合物(以下、「(メタ)アクリル化合物」ともいう)が好適である。
なお、本明細書において、上記「(メタ)アクリル」は、アクリル又はメタクリルを意味する。
上記(メタ)アクリル化合物としては、例えば、(メタ)アクリル酸に水酸基を有する化合物を反応させることにより得られるエステル化合物、(メタ)アクリル酸とエポキシ化合物とを反応させることにより得られるエポキシ(メタ)アクリレート、イソシアネート化合物に水酸基を有する(メタ)アクリル酸誘導体を反応させることにより得られるウレタン(メタ)アクリレート等が挙げられる。
なお、本明細書において、上記「(メタ)アクリレート」とは、アクリレート又はメタクリレートを意味する。また、上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物のイソシアネート基は、全てウレタン結合の形成に用いられ、上記ウレタン(メタ)アクリレートは、残存イソシアネート基を有さない。
上記エステル化合物のうち単官能のものとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-メトキシエチル(メタ)アクリレート、メトキシエチレングリコール(メタ)アクリレート、2-エトキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ベンジル(メタ)アクリレート、エチルカルビトール(メタ)アクリレート、メトキシトリエチレングルコールアクリレート、フェノキシエチル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、1H,1H,5H-オクタフルオロペンチル(メタ)アクリレート、イミド(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、プロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソノニル(メタ)アクリレート、イソミリスチル(メタ)アクリレート、2-ブトキシエチル(メタ)アクリレート、2-フェノキシエチル(メタ)アクリレート、ビシクロペンテニル(メタ)アクリレート、イソデシル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルコハク酸、2-(メタ)アクリロイロキシエチルヘキサヒドロフタル酸、2-(メタ)アクリロイロキシエチル2-ヒドロキシプロピルフタレート、グリシジル(メタ)アクリレート、2-(メタ)アクリロイロキシエチルホスフェート、N-アクリロイルオキシエチルヘキサヒドロフタルイミド等のフタルイミドアクリレート類や各種イミドアクリレート等が挙げられる。
また、上記エステル化合物のうち2官能のものとしては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,3-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールAジ(メタ)アクリレート、エチレンオキシド付加ビスフェノールFジ(メタ)アクリレート、ジメチロールジシクロペンタジエニルジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、エチレンオキシド変性イソシアヌル酸ジ(メタ)アクリレート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピル(メタ)アクリレート、カーボネートジオールジ(メタ)アクリレート、ポリエーテルジオールジ(メタ)アクリレート、ポリエステルジオールジ(メタ)アクリレート、ポリカプロラクトンジオールジ(メタ)アクリレート、ポリブタジエンジオールジ(メタ)アクリレート等が挙げられる。
また、上記エステル化合物のうち3官能以上のものとしては、例えば、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、プロピレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加トリメチロールプロパントリ(メタ)アクリレート、カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート、エチレンオキシド付加イソシアヌル酸トリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、プロピレンオキシド付加グリセリントリ(メタ)アクリレート、トリス(メタ)アクリロイルオキシエチルフォスフェート等が挙げられる。
上記エポキシ(メタ)アクリレートとしては、例えば、エポキシ化合物と(メタ)アクリル酸とを、常法に従って塩基性触媒の存在下で反応させることにより得られるもの等が挙げられる。
上記エポキシ(メタ)アクリレートを合成するための原料となるエポキシ化合物としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、2,2’-ジアリルビスフェノールA型エポキシ樹脂、水添ビスフェノール型エポキシ樹脂、プロピレンオキシド付加ビスフェノールA型エポキシ樹脂、レゾルシノール型エポキシ樹脂、ビフェニル型エポキシ樹脂、スルフィド型エポキシ樹脂、ジフェニルエーテル型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、オルトクレゾールノボラック型エポキシ樹脂、ジシクロペンタジエンノボラック型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、ナフタレンフェノールノボラック型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、アルキルポリオール型エポキシ樹脂、ゴム変性型エポキシ樹脂、グリシジルエステル化合物、ビスフェノールA型エピスルフィド樹脂等が挙げられる。
上記ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート828EL、エピコート1001、エピコート1004(いずれも三菱化学社製)、エピクロン850-S(DIC社製)等が挙げられる。
上記ビスフェノールF型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート806、エピコート4004(いずれも三菱化学社製)等が挙げられる。
上記ビスフェノールS型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA1514(DIC社製)等が挙げられる。
上記2,2’-ジアリルビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、RE-810NM(日本化薬社製)等が挙げられる。
上記水添ビスフェノール型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンEXA7015(DIC社製)等が挙げられる。
上記プロピレンオキシド付加ビスフェノールA型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4000S(ADEKA社製)等が挙げられる。
上記レゾルシノール型エポキシ樹脂のうち市販されているものとしては、例えば、EX-201(ナガセケムテックス社製)等が挙げられる。
上記ビフェニル型エポキシ樹脂のうち市販されているものとしては、例えば、エピコートYX-4000H(三菱化学社製)等が挙げられる。
上記スルフィド型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-50TE(新日鉄住金化学社製)等が挙げられる。
上記ジフェニルエーテル型エポキシ樹脂のうち市販されているものとしては、例えば、YSLV-80DE(新日鉄住金化学社製)等が挙げられる。
上記ジシクロペンタジエン型エポキシ樹脂のうち市販されているものとしては、例えば、EP-4088S(ADEKA社製)等が挙げられる。
上記ナフタレン型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP4032、エピクロンEXA-4700(いずれもDIC社製)等が挙げられる。
上記フェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-770(DIC社製)等が挙げられる。
上記オルトクレゾールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンN-670-EXP-S(DIC社製)等が挙げられる。
上記ジシクロペンタジエンノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、エピクロンHP7200(DIC社製)等が挙げられる。
上記ビフェニルノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、NC-3000P(日本化薬社製)等が挙げられる。
上記ナフタレンフェノールノボラック型エポキシ樹脂のうち市販されているものとしては、例えば、ESN-165S(新日鉄住金化学社製)等が挙げられる。
上記グリシジルアミン型エポキシ樹脂のうち市販されているものとしては、例えば、エピコート630(三菱化学社製)、エピクロン430(DIC社製)、TETRAD-X(三菱ガス化学社製)等が挙げられる。
上記アルキルポリオール型エポキシ樹脂のうち市販されているものとしては、例えば、ZX-1542(新日鉄住金化学社製)、エピクロン726(DIC社製)、エポライト80MFA(共栄社化学社製)、デナコールEX-611(ナガセケムテックス社製)等が挙げられる。
上記ゴム変性型エポキシ樹脂のうち市販されているものとしては、例えば、YR-450、YR-207(いずれも新日鉄住金化学社製)、エポリードPB(ダイセル化学工業社製)等が挙げられる。
上記グリシジルエステル化合物のうち市販されているものとしては、例えば、デナコールEX-147(ナガセケムテックス社製)等が挙げられる。
上記ビスフェノールA型エピスルフィド樹脂のうち市販されているものとしては、例えば、エピコートYL-7000(三菱化学社製)等が挙げられる。
上記エポキシ樹脂のうちその他に市販されているものとしては、例えば、YDC-1312、YSLV-80XY、YSLV-90CR(いずれも新日鉄住金化学社製)、XAC4151(旭化成社製)、エピコート1031、エピコート1032(いずれも三菱化学社製)、EXA-7120(DIC社製)、TEPIC(日産化学社製)等が挙げられる。
上記エポキシ(メタ)アクリレートのうち市販されているものとしては、例えば、EBECRYL860、EBECRYL3200、EBECRYL3201、EBECRYL3412、EBECRYL3600、EBECRYL3700、EBECRYL3701、EBECRYL3702、EBECRYL3703、EBECRYL3800、EBECRYL6040、EBECRYL RDX63182(いずれもダイセル・オルネクス社製)、EA-1010、EA-1020、EA-5323、EA-5520、EA-CHD、EMA-1020(いずれも新中村化学工業社製)、エポキシエステルM-600A、エポキシエステル40EM、エポキシエステル70PA、エポキシエステル200PA、エポキシエステル80MFA、エポキシエステル3002M、エポキシエステル3002A、エポキシエステル1600A、エポキシエステル3000M、エポキシエステル3000A、エポキシエステル200EA、エポキシエステル400EA(いずれも共栄社化学社製)、デナコールアクリレートDA-141、デナコールアクリレートDA-314、デナコールアクリレートDA-911(いずれもナガセケムテックス社製)等が挙げられる。
上記ウレタン(メタ)アクリレートは、例えば、イソシアネート化合物に対して、水酸基を有する(メタ)アクリル酸誘導体を、触媒量のスズ系化合物存在下で反応させることによって得ることができる。
上記ウレタン(メタ)アクリレートの原料となるイソシアネート化合物としては、例えば、イソホロンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、ヘキサメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート(MDI)、水添MDI、ポリメリックMDI、1,5-ナフタレンジイソシアネート、ノルボルナンジイソシアネート、トリジンジイソシアネート、キシリレンジイソシアネート(XDI)、水添XDI、リジンジイソシアネート、トリフェニルメタントリイソシアネート、トリス(イソシアネートフェニル)チオフォスフェート、テトラメチルキシレンジイソシアネート、1,6,11-ウンデカントリイソシアネート等が挙げられる。
また、上記イソシアネート化合物としては、例えば、エチレングリコール、グリセリン、ソルビトール、トリメチロールプロパン、プロピレングリコール、カーボネートジオール、ポリエーテルジオール、ポリエステルジオール、ポリカプロラクトンジオール等のポリオールと過剰のイソシアネート化合物との反応により得られる鎖延長されたイソシアネート化合物も使用することができる。
上記ウレタン(メタ)アクリレートの原料となる、水酸基を有する(メタ)アクリル酸誘導体としては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ポリエチレングリコール等の二価のアルコールのモノ(メタ)アクリレートや、トリメチロールエタン、トリメチロールプロパン、グリセリン等の三価のアルコールのモノ(メタ)アクリレート又はジ(メタ)アクリレートや、ビスフェノールA型エポキシ(メタ)アクリレート等のエポキシ(メタ)アクリレート等が挙げられる。
上記ウレタン(メタ)アクリレートのうち市販されているものとしては、例えば、M-1100、M-1200、M-1210、M-1600(いずれも東亞合成社製)、EBECRYL230、EBECRYL270、EBECRYL4858、EBECRYL8402、EBECRYL8411、EBECRYL8412、EBECRYL8413、EBECRYL8804、EBECRYL8803、EBECRYL8807、EBECRYL9260、EBECRYL1290、EBECRYL5129、EBECRYL4842、EBECRYL210、EBECRYL4827、EBECRYL6700、EBECRYL220、EBECRYL2220、KRM7735、KRM-8295(いずれもダイセル・オルネクス社製)、アートレジンUN-9000H、アートレジンUN-9000A、アートレジンUN-7100、アートレジンUN-1255、アートレジンUN-330、アートレジンUN-3320HB、アートレジンUN-1200TPK、アートレジンSH-500B(いずれも根上工業社製)、U-2HA、U-2PHA、U-3HA、U-4HA、U-6H、U-6LPA、U-6HA、U-10H、U-15HA、U-122A、U-122P、U-108、U-108A、U-324A、U-340A、U-340P、U-1084A、U-2061BA、UA-340P、UA-4100、UA-4000、UA-4200、UA-4400、UA-5201P、UA-7100、UA-7200、UA-W2A(いずれも新中村化学工業社製)、AI-600、AH-600、AT-600、UA-101I、UA-101T、UA-306H、UA-306I、UA-306T(いずれも共栄社化学社製)等が挙げられる。
また、上述した以外のその他のラジカル重合性化合物も適宜使用することができる。
上記その他のラジカル重合性化合物としては、例えば、N,N-ジメチル(メタ)アクリルアミド、N-(メタ)アクリロイルモルホリン、N-ヒドロキシエチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N,N-ジメチルアミノプロピル(メタ)アクリルアミド等の(メタ)アクリルアミド化合物や、スチレン、α-メチルスチレン、N-ビニルピロリドン、N-ビニルカプロラクトン等のビニル化合物等が挙げられる。
上記ラジカル重合性化合物は、硬化性を調整する等の観点から、単官能ラジカル重合性化合物と多官能ラジカル重合性化合物とを含有することが好ましい。単官能ラジカル重合性化合物のみを用いた場合、得られる光湿気硬化型樹脂組成物が硬化性に劣るものとなることがあり、多官能ラジカル重合性化合物のみを用いた場合、得られる光湿気硬化型樹脂組成物がタック性に劣るものとなることがある。なかでも、上記単官能ラジカル重合性化合物として分子中に窒素原子を有する化合物と、上記多官能ラジカル重合性化合物としてウレタン(メタ)アクリレートとを組み合わせて用いることがより好ましい。また、上記多官能ラジカル重合性化合物は、2官能又は3官能であることが好ましく、2官能であることがより好ましい。
上記ラジカル重合性化合物が、上記単官能ラジカル重合性化合物と上記多官能ラジカル重合性化合物とを含有する場合、上記多官能ラジカル重合性化合物の含有量は、上記単官能ラジカル重合性化合物と上記多官能ラジカル重合性化合物との合計100重量部に対して、好ましい下限が2重量部、好ましい上限が45重量部である。上記多官能ラジカル重合性化合物の含有量が2重量部未満であると、得られる光湿気硬化型樹脂組成物が硬化性に劣るものとなることがある。上記多官能ラジカル重合性化合物の含有量が45重量部を超えると、得られる光湿気硬化型樹脂組成物がタック性に劣るものとなることがある。上記多官能ラジカル重合性化合物の含有量のより好ましい下限は5重量部、より好ましい上限は35重量部である。
上記ラジカル重合性化合物の含有量は、上記ラジカル重合性化合物と上記湿気硬化型ウレタン樹脂との合計100重量部に対して、好ましい下限が10重量部、好ましい上限が80重量部である。上記ラジカル重合性化合物の含有量が10重量部未満であると、得られる光湿気硬化型樹脂組成物が光硬化性に劣るものとなることがある。上記ラジカル重合性化合物の含有量が80重量部を超えると、得られる光湿気硬化型樹脂組成物が湿気硬化性に劣るものとなることがある。上記ラジカル重合性化合物の含有量のより好ましい下限は25重量部、より好ましい上限は70重量部であり、更に好ましい下限は30重量部、更に好ましい上限は59重量部である。
本発明の光湿気硬化型樹脂組成物は、湿気硬化型ウレタン樹脂を含有する。上記湿気硬化型ウレタン樹脂は、分子内のイソシアネート基が空気中又は被着体中の水分と反応して硬化する。
上記湿気硬化型ウレタン樹脂は、イソシアネート基を有することが好ましく、1分子中にイソシアネート基を1個のみ有していてもよいし、2個以上有していてもよい。なかでも、両末端にイソシアネート基を有するウレタンプレポリマーであることが好ましい。
上記ウレタンプレポリマーは、1分子中に2個以上の水酸基を有するポリオール化合物と、1分子中に2個以上のイソシアネート基を有するポリイソシアネート化合物とを反応させることにより、得ることができる。
上記ポリオール化合物と上記ポリイソシアネート化合物との反応は、通常、上記ポリオール化合物中の水酸基(OH)と上記ポリイソシアネート化合物中のイソシアネート基(NCO)とのモル比が[NCO]/[OH]=2.0~2.5となる範囲で行われる。
上記ポリオール化合物としては、ポリウレタンの製造に通常用いられている公知のポリオール化合物を使用することができ、例えば、ポリエステルポリオール、ポリエーテルポリオール、ポリアルキレンポリオール、ポリカーボネートポリオール等が挙げられる。これらのポリオール化合物は、単独で用いられてもよいし、2種以上が組み合わせて用いられてもよい。
上記ポリエステルポリオールとしては、例えば、多価カルボン酸とポリオールとの反応により得られるポリエステルポリオールや、ε-カプロラクトンを開環重合して得られるポリ-ε-カプロラクトンポリオール等が挙げられる。
上記ポリエステルポリオールの原料となる上記多価カルボン酸としては、例えば、テレフタル酸、イソフタル酸、1,5-ナフタル酸、2,6-ナフタル酸、琥珀酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカメチレンジカルボン酸、ドデカメチレンジカルボン酸等が挙げられる。
上記ポリエステルポリオールの原料となる上記ポリオールとしては、例えば、エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、シクロヘキサンジオール等が挙げられる。
上記ポリエーテルポリオールとしては、例えば、エチレングリコール、プロピレングリコール、テトラヒドロフラン、3-メチルテトラヒドロフランの開環重合物、及び、これらやその誘導体のランダム共重合体又はブロック共重合体や、ビスフェノール型のポリオキシアルキレン変性体等が挙げられる。
上記ビスフェノール型のポリオキシアルキレン変性体は、ビスフェノール型分子骨格の活性水素部分にアルキレンオキシド(例えば、エチレンオキシド、プロピレンオキシド、ブチレンオキシド、イソブチレンオキシド等)を付加反応させて得られるポリエーテルポリオールであり、ランダム共重合体であってもよいし、ブロック共重合体であってもよい。上記ビスフェノール型のポリオキシアルキレン変性体は、ビスフェノール型分子骨格の両末端に、1種又は2種以上のアルキレンオキシドが付加されていることが好ましい。ビスフェノール型としては特に限定されず、A型、F型、S型等が挙げられ、好ましくはビスフェノールA型である。
上記ポリアルキレンポリオールとしては、例えば、ポリブタジエンポリオール、水素化ポリブタジエンポリオール、水素化ポリイソプレンポリオール等が挙げられる。
上記ポリカーボネートポリオールとしては、例えば、ポリヘキサメチレンカーボネートポリオール、ポリシクロヘキサンジメチレンカーボネートポリオール等が挙げられる。
上記ポリイソシアネート化合物としては、例えば、ジフェニルメタンジイソシアネート、ジフェニルメタンジイソシアネートの液状変性物、ポリメリックMDI(メタンジイソシアネート)、トリレンジイソシアネート、ナフタレン-1,5-ジイソシアネート等が挙げられる。なかでも、蒸気圧や毒性の低い点、扱いやすさの点からジフェニルメタンジイソシアネート及びその変性物が好ましい。上記ポリイソシアネート化合物は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
また、上記湿気硬化型ウレタン樹脂は、下記式(1)で表される構造を有するポリオール化合物を用いて得られたものであることが好ましい。下記式(1)で表される構造を有するポリオール化合物を用いることにより、接着性に優れる組成物や、柔軟で伸びがよい硬化物を得ることができ、上記ラジカル重合性化合物との相溶性に優れるものとなる。
なかでも、プロピレングリコールや、テトラヒドロフラン(THF)化合物の開環重合化合物や、メチル基等の置換基を有するテトラヒドロフラン化合物の開環重合化合物からなるポリエーテルポリオールを用いたものが好ましい。
Figure JPOXMLDOC01-appb-C000001
式(1)中、Rは、水素、メチル基、又は、エチル基を表し、nは、1~10の整数、Lは、0~5の整数、mは、1~500の整数である。nは、1~5であることが好ましく、Lは、0~4であることが好ましく、mは、50~200であることが好ましい。
なお、Lが0の場合とは、Rと結合した炭素が直接酸素と結合している場合を意味する。
更に、上記湿気硬化型ウレタン樹脂は、ラジカル重合性基を有していてもよい。
上記湿気硬化型ウレタン樹脂が有していてもよいラジカル重合性基としては、不飽和二重結合を有する基が好ましく、特に反応性の面から(メタ)アクリロイル基がより好ましい。
なお、ラジカル重合性基を有する湿気硬化型ウレタン樹脂は、ラジカル重合性化合物には含まず、湿気硬化型ウレタン樹脂として扱う。
上記湿気硬化型ウレタン樹脂の重量平均分子量の好ましい下限は800、好ましい上限は1万である。上記湿気硬化型ウレタン樹脂の重量平均分子量が800未満であると、架橋密度が高くなり、柔軟性が損なわれることがある。上記湿気硬化型ウレタン樹脂の重量平均分子量が1万を超えると、得られる光湿気硬化型樹脂組成物が塗布性に劣るものとなることがある。上記湿気硬化型ウレタン樹脂の重量平均分子量のより好ましい下限は2000、より好ましい上限は8000、更に好ましい下限は2500、更に好ましい上限は6000である。
なお、本明細書において上記重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)で測定を行い、ポリスチレン換算により求められる値である。GPCによってポリスチレン換算による重量平均分子量を測定する際のカラムとしては、例えば、Shodex LF-804(昭和電工社製)等が挙げられる。また、GPCで用いる溶媒としては、テトラヒドロフラン等が挙げられる。
上記湿気硬化型ウレタン樹脂の含有量は、上記ラジカル重合性化合物と上記湿気硬化型ウレタン樹脂との合計100重量部に対して、好ましい下限が20重量部、好ましい上限が90重量部である。上記湿気硬化型ウレタン樹脂の含有量が20重量部未満であると、得られる光湿気硬化型樹脂組成物が湿気硬化性に劣るものとなることがある。上記湿気硬化型ウレタン樹脂の含有量が90重量部を超えると、得られる光湿気硬化型樹脂組成物が光硬化性に劣るものとなることがある。上記湿気硬化型ウレタン樹脂の含有量のより好ましい下限は30重量部、より好ましい上限は75重量部であり、更に好ましい下限は41重量部、更に好ましい上限は70重量部である。
本発明の光湿気硬化型樹脂組成物は、光ラジカル重合開始剤を含有する。
上記光ラジカル重合開始剤としては、例えば、ベンゾフェノン系化合物、アセトフェノン系化合物、アシルフォスフィンオキサイド系化合物、チタノセン系化合物、オキシムエステル系化合物、ベンゾインエーテル系化合物、チオキサントン等が挙げられる。
上記光ラジカル重合開始剤のうち市販されているものとしては、例えば、IRGACURE 184、IRGACURE 369、IRGACURE 379、IRGACURE 651、IRGACURE 784、IRGACURE 819、IRGACURE 907、IRGACURE 2959、IRGACURE OXE01、ルシリンTPO(いずれもBASF社製)、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル(いずれも東京化成工業社製)等が挙げられる。
上記光ラジカル重合開始剤の含有量は、上記ラジカル重合性化合物100重量部に対して、好ましい下限が0.01重量部、好ましい上限が10重量部である。上記光ラジカル重合開始剤の含有量が0.01重量部未満であると、得られる光湿気硬化型樹脂組成物を充分に光硬化させることができないことがある。上記光ラジカル重合開始剤の含有量が10重量部を超えると、得られる光湿気硬化型樹脂組成物の保存安定性が低下することがある。上記光ラジカル重合開始剤の含有量のより好ましい下限は0.1重量部、より好ましい上限は5重量部である。
本発明の光湿気硬化型樹脂組成物は、得られる光湿気硬化型樹脂組成物の塗布性や形状保持性を調整する等の観点から充填剤を含有してもよい。上記充填剤は、一次粒子径の好ましい下限が1nm、好ましい上限が50nmである。上記充填剤の一次粒子径が1nm未満であると、得られる光湿気硬化型樹脂組成物が塗布性に劣るものとなることがある。上記充填剤の一次粒子径が50nmを超えると、得られる光湿気硬化型樹脂組成物が塗布後の形状保持性に劣るものとなることがある。上記充填剤の一次粒子径のより好ましい下限は5nm、より好ましい上限は30nm、更に好ましい下限は10nm、更に好ましい上限は20nmである。なお、上記充填剤の一次粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記充填剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
また、上記充填剤は、本発明の光湿気硬化型樹脂組成物中において二次粒子(一次粒子が複数集まったもの)として存在する場合があり、このような二次粒子の粒子径の好ましい下限は5nm、好ましい上限は500nm、より好ましい下限は10nm、より好ましい上限は100nmである。上記充填剤の二次粒子の粒子径は、本発明の光湿気硬化型樹脂組成物又はその硬化物を、透過型電子顕微鏡(TEM)を用いて観察することにより測定することができる。
上記充填剤としては、例えば、シリカ、タルク、酸化チタン、酸化亜鉛等が挙げられる。なかでも、得られる光湿気硬化型樹脂組成物がUV光透過性に優れるものとなることから、シリカが好ましい。これらの充填剤は、単独で用いられてもよいし、2種以上を組み合わせて用いられてもよい。
上記充填剤は、疎水性表面処理がなされていることが好ましい。上記疎水性表面処理により、得られる光湿気硬化型樹脂組成物が塗布後の形状保持性により優れるものとなる。
上記疎水性表面処理としては、シリル化処理、アルキル化処理、エポキシ化処理等が挙げられる。なかでも、形状保持性を向上させる効果に優れることから、シリル化処理が好ましく、トリメチルシリル化処理がより好ましい。
上記充填剤を疎水性表面処理する方法としては、例えば、シランカップリング剤等の表面処理剤を用いて、充填剤の表面を処理する方法等が挙げられる。
具体的には例えば、上記トリメチルシリル化処理シリカは、例えば、シリカをゾルゲル法等の方法で合成し、シリカを流動させた状態でヘキサメチルジシラザンを噴霧する方法や、アルコール、トルエン等の有機溶媒中にシリカを加え、更に、ヘキサメチルジシラザンと水とを加えた後、水と有機溶媒とをエバポレーターで蒸発乾燥させる方法等により作製することができる。
上記充填剤の含有量は、本発明の光湿気硬化型樹脂組成物全体100重量部中において、好ましい下限が1重量部、好ましい上限が20重量部である。上記充填剤の含有量が1重量部未満であると、得られる光湿気硬化型樹脂組成物が塗布後の形状保持性に劣るものとなることがある。上記充填剤の含有量が20重量部を超えると、得られる光湿気硬化型樹脂組成物が塗布性に劣るものとなることがある。上記充填剤の含有量のより好ましい下限は2重量部、より好ましい上限は15重量部であり、更に好ましい下限は3重量部、更に好ましい上限は10重量部、特に好ましい下限は4重量部である。
本発明の光湿気硬化型樹脂組成物は、遮光剤を含有してもよい。上記遮光剤を含有することにより、本発明の光湿気硬化型樹脂組成物は、遮光性に優れるものとなって表示素子の光漏れを防止することができる。
なお、本明細書において、上記「遮光剤」は、可視光領域の光を透過させ難い能力を有する材料を意味する。
上記遮光剤としては、例えば、酸化鉄、チタンブラック、アニリンブラック、シアニンブラック、フラーレン、カーボンブラック、樹脂被覆型カーボンブラック等が挙げられる。また、上記遮光剤は、黒色を呈するものでなくてもよく、可視光領域の光を透過させ難い能力を有する材料であれば、シリカ、タルク、酸化チタン等、充填剤として挙げた材料も上記遮光剤に含まれる。なかでも、チタンブラックが好ましい。
上記チタンブラックは、波長300~800nmの光に対する平均透過率と比較して、紫外線領域付近、特に波長370~450nmの光に対する透過率が高くなる物質である。即ち、上記チタンブラックは、可視光領域の波長の光を充分に遮蔽することで本発明の光湿気硬化型樹脂組成物に遮光性を付与する一方、紫外線領域付近の波長の光は透過させる性質を有する遮光剤である。従って、光ラジカル重合開始剤として、上記チタンブラックの透過率の高くなる波長(370~450nm)の光によって反応を開始可能なものを用いることで、本発明の光湿気硬化型樹脂組成物の光硬化性をより増大させることができる。また一方で、本発明の光湿気硬化型樹脂組成物に含有される遮光剤としては、絶縁性の高い物質が好ましく、絶縁性の高い遮光剤としてもチタンブラックが好適である。
上記チタンブラックは、光学濃度(OD値)が、3以上であることが好ましく、4以上であることがより好ましい。また、上記チタンブラックは、黒色度(L値)が9以上であることが好ましく、11以上であることがより好ましい。上記チタンブラックの遮光性は高ければ高いほど良く、上記チタンブラックのOD値に好ましい上限は特に無いが、通常は5以下となる。
上記チタンブラックは、表面処理されていないものでも充分な効果を発揮するが、表面がカップリング剤等の有機成分で処理されているものや、酸化ケイ素、酸化チタン、酸化ゲルマニウム、酸化アルミニウム、酸化ジルコニウム、酸化マグネシウム等の無機成分で被覆されているもの等、表面処理されたチタンブラックを用いることもできる。なかでも、有機成分で処理されているものは、より絶縁性を向上できる点で好ましい。
また、本発明の光湿気硬化型樹脂組成物を用いて製造した表示素子は、光湿気硬化型樹脂組成物が充分な遮光性を有するため、光の漏れ出しがなく高いコントラストを有し、優れた画像表示品質を有するものとなる。
上記チタンブラックの比表面積の好ましい下限は5m/g、好ましい上限は40m/gであり、より好ましい下限は10m/g、より好ましい上限は25m/gである。
また、上記チタンブラックのシート抵抗の好ましい下限は、樹脂と混合された場合(70%配合)において、10Ω/□であり、より好ましい下限は1011Ω/□である。
上記チタンブラックのうち市販されているものとしては、例えば、12S、13M、13M-C、13R-N(いずれも三菱マテリアル社製)、ティラックD(赤穂化成社製)等が挙げられる。
本発明の光湿気硬化型樹脂組成物において、上記遮光剤の一次粒子径は、表示素子の基板間の距離以下等、用途に応じて適宜選択されるが、好ましい下限は30nm、好ましい上限は500nmである。上記遮光剤の一次粒子径が30nm未満であると、得られる光湿気硬化型樹脂組成物の粘度やチクソトロピーが大きく増大してしまい、作業性が悪くなることがある。上記遮光剤の一次粒子径が500nmを超えると、得られる光湿気硬化型樹脂組成物中における遮光剤の分散性が低下し、遮光性が低下することがある。上記遮光剤の一次粒子径のより好ましい下限は50nm、より好ましい上限は200nmである。なお、上記遮光剤の粒子径は、NICOMP 380ZLS(PARTICLE SIZING SYSTEMS社製)を用いて、上記遮光剤を溶媒(水、有機溶媒等)に分散させて測定することができる。
本発明の光湿気硬化型樹脂組成物全体における上記遮光剤の含有量は特に限定されないが、好ましい下限は0.05重量%、好ましい上限は10重量%である。上記遮光剤の含有量が0.05重量%未満であると、充分な遮光性が得られないことがある。上記遮光剤の含有量が10重量%を超えると、得られる光湿気硬化型樹脂組成物の基板等に対する接着性や硬化後の強度が低下したり、描画性が低下したりすることがある。上記遮光剤の含有量のより好ましい下限は0.1重量%、より好ましい上限は2重量%、更に好ましい上限は1重量%である。
本発明の光湿気硬化型樹脂組成物は、更に、必要に応じて、着色剤、イオン液体、溶剤、金属含有粒子、反応性希釈剤等の添加剤を含有してもよい。
本発明の光湿気硬化型樹脂組成物を製造する方法としては、例えば、ホモディスパー、ホモミキサー、万能ミキサー、プラネタリーミキサー、ニーダー、3本ロール等の混合機を用いて、ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤と、カップリング剤と、必要に応じて添加する添加剤とを混合する方法等が挙げられる。
本発明の光湿気硬化型樹脂組成物における、コーンプレート型粘度計を用いて25℃、1rpmの条件で測定した粘度の好ましい下限は50Pa・s、好ましい上限は500Pa・sである。上記粘度が50Pa・s未満であったり、500Pa・sを超えたりすると、電子部品用接着剤や表示素子用接着剤に用いる場合に光湿気硬化型樹脂組成物を基板等の被着体に塗布する際の作業性が悪くなることがある。上記粘度のより好ましい下限は80Pa・s、より好ましい上限は300Pa・s、更に好ましい上限は200Pa・sである。
本発明の光湿気硬化型樹脂組成物のチクソトロピックインデックスの好ましい下限は1.3、好ましい上限は5.0である。上記チクソトロピックインデックスが1.3未満であったり、5.0を超えたりすると、電子部品用接着剤や表示素子用接着剤に用いる場合に光湿気硬化型樹脂組成物を基板等の被着体に塗布する際の作業性が悪くなることがある。上記チクソトロピックインデックスのより好ましい下限は1.5、より好ましい上限は4.0である。
なお、本明細書において上記チクソトロピックインデックスとは、コーンプレート型粘度計を用いて25℃、1rpmの条件で測定した粘度を、コーンプレート型粘度計を用いて25℃、10rpmの条件で測定した粘度で除した値を意味する。
本発明の光湿気硬化型樹脂組成物は、硬化物の25℃における引張弾性率の好ましい下限が0.5kgf/cm、好ましい上限が6kgf/cmである。上記引張弾性率が0.5kgf/cm未満であると、柔らかすぎて、凝集力が弱く、接着力が低くなることがある。上記引張弾性率が6kgf/cmを超えると、柔軟性が損なわれることがある。上記引張弾性率のより好ましい下限は1kgf/cm、より好ましい上限は5kgf/cmである。
なお、本明細書において上記「引張弾性率」は、引張り試験機(例えば、島津製作所社製、「EZ-Graph」)を用いて、硬化物を10mm/minの速度で引張り、50%伸びた時の力として測定される値を意味する。
本発明の光湿気型樹脂組成物を用いて接着することが可能な被着体としては、金属、ガラス、プラスチック等の各種の被着体が挙げられる。
上記被着体の形状としては、例えば、フィルム状、シート状、板状、パネル状、トレイ状、ロッド(棒状体)状、箱体状、筐体状等が挙げられる。
上記金属としては、例えば、鉄鋼、ステンレス鋼、アルミニウム、銅、ニッケル、クロムやその合金等が挙げられる。
上記ガラスとしては、例えば、アルカリガラス、無アルカリガラス、石英ガラス等が挙げられる。
上記プラスチックとしては、例えば、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクチックポリプロピレン、シンジオタクチックポリプロピレン、エチレンプロピレン共重合体樹脂等のポリオレフィン系樹脂や、ナイロン6(N6)、ナイロン66(N66)、ナイロン46(N46)、ナイロン11(N11)、ナイロン12(N12)、ナイロン610(N610)、ナイロン612(N612)、ナイロン6/66共重合体(N6/66)、ナイロン6/66/610共重合体(N6/66/610)、ナイロンMXD6(MXD6)、ナイロン6T、ナイロン6/6T共重合体、ナイロン66/PP共重合体、ナイロン66/PPS共重合体等のポリアミド系樹脂や、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、ポリエチレンイソフタレート(PEI)、PET/PEI共重合体、ポリアリレート(PAR)、ポリブチレンナフタレート(PBN)、液晶ポリエステル、ポリオキシアルキレンジイミドジ酸/ポリブチレートテレフタレート共重合体等の芳香族ポリエステル系樹脂や、ポリアクリロニトリル(PAN)、ポリメタクリロニトリル、アクリロニトリル/スチレン共重合体(AS)、メタクリロニトリル/スチレン共重合体、メタクリロニトリル/スチレン/ブタジエン共重合体等のポリニトリル系樹脂や、ポリカーボネートや、ポリメタクリル酸メチル(PMMA)、ポリメタクリル酸エチル酢酸ビニル(EVA)等のポリメタクリレート系樹脂や、ポリビニルアルコール(PVA)、ビニルアルコール/エチレン共重合体(EVOH)、ポリ塩化ビニリデン(PVDC)、ポリ塩化ビニル(PVC)、塩化ビニル/塩化ビニリデン共重合体、塩化ビニリデン/メチルアクリレート共重合体等のポリビニル系樹脂等が挙げられる。
また、上記被着体としては、表面に金属メッキ層を有する複合材料も挙げられ、該複合材料のメッキの下地材としては、例えば、上述した、金属、ガラス、プラスチック等が挙げられる。
更に、上記被着体としては、金属表面を不動態化処理することにより不導態皮膜を形成した材料も挙げられ、該不動態化処理としては、例えば、加熱処理、陽極酸化処理等が挙げられる。特に、国際アルミニウム合金名が6000番台の材質であるアルミニウム合金等の場合は、上記不動態化処理として硫酸アルマイト処理やリン酸アルマイト処理を行うことで、接着性を向上させることができる。
本発明の光湿気硬化型樹脂組成物を用いて被着体を接着する方法としては、例えば、第1の部材に本発明の光湿気硬化型樹脂組成物を塗布する工程と、上記第1の部材に塗布された本発明の光湿気硬化型樹脂組成物に光を照射し、本発明の光湿気硬化型樹脂組成物中のラジカル重合性化合物を硬化させる工程(第1硬化工程)と、上記第1硬化工程後の光湿気硬化型樹脂組成物を介して上記1の部材と第2の部材とを貼り合せる工程(貼り合せ工程)と、上記貼り合せ工程後、本発明の光湿気硬化型樹脂組成物中の湿気硬化型ウレタン樹脂の湿気硬化により上記第1の部材と上記第2の部材とが接着される工程(第2硬化工程)とを含む方法等が挙げられ、上記貼り合せ工程後に光を照射する工程を含むことが好ましい。上記貼り合わせ工程後に光を照射する工程を含むことで、被着体との接着直後の接着性(初期接着性)を向上させることができる。上記第1の部材及び/又は上記第2の部材が光を透過する材質である場合は、光を透過する上記第1の部材及び/又は上記第2の部材越しに光を照射することが好ましく、上記第1の部材及び/又は上記第2の部材が光を透過しにくい材質である場合は、上記第1の部材と上記第2の部材とが上記光湿気硬化型樹脂組成物を介して接着された構造体の側面、即ち、光湿気硬化型樹脂組成物が露出された部分に光を照射することが好ましい。
本発明の光湿気硬化型樹脂組成物は、電子部品用接着剤や表示素子用接着剤として特に好適に用いることができる。本発明の光湿気硬化型樹脂組成物を用いてなる電子部品用接着剤、及び、本発明の光湿気硬化型樹脂組成物を用いてなる表示素子用接着剤もまた、それぞれ本発明の1つである。
本発明によれば、接着性、及び、高温環境下や高温高湿環境下における信頼性に優れる光湿気硬化型樹脂組成物を提供することができる。また、本発明によれば、該光湿気硬化型樹脂組成物を用いてなる電子部品用接着剤及び表示素子用接着剤を提供することができる。
(a)は、接着性評価用サンプルを上から見た場合を示す模式図であり、(b)は、接着性評価用サンプルを横から見た場合を示す模式図である。
以下に実施例を掲げて本発明を更に詳しく説明するが、本発明はこれら実施例のみに限定されない。
(合成例1(ウレタンプレポリマーAの作製))
ポリオール化合物として100重量部のポリテトラメチレンエーテルグリコール(三菱化学社製、「PTMG-2000」)と、0.01重量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、「Pure MDI」)26.5重量部を入れ、80℃で3時間撹拌し、反応させ、ウレタンプレポリマーA(重量平均分子量2700)を得た。
(合成例2(ウレタンプレポリマーBの作製))
ポリオール化合物として100重量部のポリプロピレングリコール(旭硝子社製、「EXCENOL 2020」)と、0.01重量部のジブチル錫ジラウレートとを500mL容のセパラブルフラスコに入れ、真空下(20mmHg以下)、100℃で30分間撹拌し、混合した。その後常圧とし、ポリイソシアネート化合物としてジフェニルメタンジイソシアネート(日曹商事社製、「Pure MDI」)26.5重量部を入れ、80℃で3時間撹拌し、反応させ、ウレタンプレポリマーB(重量平均分子量2900)を得た。
(合成例3(ウレタンプレポリマーCの作製))
合成例1と同様にして得られたウレタンプレポリマーAの入った反応容器に、ヒドロキシエチルメタクリレート1.3重量部と、重合禁止剤としてN-ニトロソフェニルヒドロキシルアミンアルミニウム塩(和光純薬工業社製、「Q-1301」)0.14重量部とを添加し、窒素気流下、80℃で1時間撹拌混合し、分子末端にイソシアネート基とメタクリロイル基とを有するウレタンプレポリマーC(重量平均分子量2900)を得た。
(実施例1~16、比較例1、2)
表1、2に記載された配合比に従い、各材料を、遊星式撹拌装置(シンキー社製、「あわとり練太郎」)にて撹拌した後、セラミック3本ロールにて均一に混合して実施例1~16、比較例1、2の光湿気硬化型樹脂組成物を得た。
なお、表1、2における「ウレタンプレポリマーA」は合成例1に記載した、両末端にイソシアネート基を有するウレタンプレポリマーであり、「ウレタンプレポリマーB」は合成例2に記載した、両末端にイソシアネート基を有するウレタンプレポリマーであり、「ウレタンプレポリマーC」は合成例3に記載した、分子末端にイソシアネート基とメタクリロイル基とを有するウレタンプレポリマーである。
<評価>
実施例及び比較例で得られた各光湿気硬化型樹脂組成物について以下の評価を行った。結果を表1、2に示した。なお、比較例2で得られた光湿気硬化型樹脂組成物については、基板貼り合わせ時に接着剤層が潰れ、各評価におけるサンプルの作製ができなかったため、以下の評価は行わなかった。
(接着性)
実施例及び比較例で得られた各光湿気硬化型樹脂組成物を、ディスペンス装置を用いて、ポリカーボネート基板に約2mmの幅で塗布した。その後、UV-LED(波長365nm)を用いて、紫外線を1000mJ/cm照射することによって、光湿気硬化型樹脂組成物を光硬化させた。その後、ポリカーボネート基板にガラス板を貼り合わせ、20gの重りを置き、一晩放置することにより湿気硬化させて、接着性評価用サンプルを得た。図1に接着性評価用サンプルを上から見た場合を示す模式図(図1(a))、及び、接着性評価用サンプルを横から見た場合を示す模式図(図1(b))を示した。
作製した接着性評価用サンプルを、引張り試験機(島津製作所社製、「Ez-Grapf」)を用いて、剪断方向に5mm/secの速度で引張り、ポリカーボネート基板とガラス板とが剥がれる際の強度を測定した。
(高温信頼性(耐クリープ性試験1))
上記「(接着性)」の評価における接着性評価用サンプルと同様にして高温信頼性評価用サンプルを作製した。得られた高温信頼性評価用サンプルを地面に対して垂直にぶら下げ、ポリカーボネート基板の端に100gの重りを吊るした状態で100℃のオーブンに入れ、72時間静置した。72時間静置後、ポリカーボネート基板とガラス板とが剥がれていなかった場合を「◎」、静置後24時間以上72時間未満で、ポリカーボネート基板とガラス板とが剥がれた場合を「○」、静置後12時間以上24時間未満で、ポリカーボネート基板とガラス板とが剥がれた場合を「△」、静置後12時間未満で、ポリカーボネート基板とガラス板とが完全に剥がれていた場合を「×」として、光湿気硬化型樹脂組成物の高温信頼性を評価した。
(高温高湿信頼性(耐クリープ性試験2))
上記「(接着性)」の評価における接着性評価用サンプルと同様にして高温信頼性評価用サンプルを作製した。得られた高温信頼性評価用サンプルを地面に対して垂直にぶら下げ、ポリカーボネート基板の端に100gの重りを吊るした状態で50℃60%RHのオーブンに入れ、72時間静置した。72時間静置後、ポリカーボネート基板とガラス板とが剥がれていなかった場合を「◎」、静置後24時間以上72時間未満で、ポリカーボネート基板とガラス板とが剥がれた場合を「○」、静置後12時間以上24時間未満で、ポリカーボネート基板とガラス板とが剥がれた場合を「△」、静置後12時間未満で、ポリカーボネート基板とガラス板とが完全に剥がれていた場合を「×」として、光湿気硬化型樹脂組成物の高温高湿信頼性を評価した。
(柔軟性)
UV-LED(波長365nm)を用いて、紫外線を1000mJ/cm照射することによって、実施例及び比較例で得られた光湿気硬化型樹脂組成物を光硬化させ、その後、一晩放置することにより湿気硬化させた。得られた硬化物をダンベル状(「JIS K 6251」で規定される6号形)に打ち抜いて得られた試験片を、引張り試験機(島津製作所社製、「EZ-Graph」)を用いて、10mm/secの速度で引張り、50%伸びた時の力を弾性率として求めた。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
本発明によれば、接着性、及び、高温環境下や高温高湿環境下における信頼性に優れる光湿気硬化型樹脂組成物を提供することができる。また、本発明によれば、該光湿気硬化型樹脂組成物を用いてなる電子部品用接着剤及び表示素子用接着剤を提供することができる。
1 ポリカーボネート基板
2 光湿気硬化型樹脂組成物
3 ガラス板

Claims (8)

  1. ラジカル重合性化合物と、湿気硬化型ウレタン樹脂と、光ラジカル重合開始剤と、カップリング剤とを含有することを特徴とする光湿気硬化型樹脂組成物。
  2. カップリング剤は、シランカップリング剤であることを特徴とする請求項1記載の光湿気硬化型樹脂組成物。
  3. カップリング剤は、ラジカル重合性化合物及び/又は湿気硬化型ウレタン樹脂と反応し得る反応性官能基を有することを特徴とする請求項1又は2記載の光湿気硬化型樹脂組成物。
  4. カップリング剤の含有量が、ラジカル重合性化合物と湿気硬化型ウレタン樹脂との合計100重量部に対して、0.05~5重量部であることを特徴とする請求項1、2又は3記載の光湿気硬化型樹脂組成物。
  5. 一次粒子径が1~50nmの充填剤を含有することを特徴とする請求項1、2、3又は4記載の光湿気硬化型樹脂組成物。
  6. 遮光剤を含有することを特徴とする請求項1、2、3、4又は5記載の光湿気硬化型樹脂組成物。
  7. 請求項1、2、3、4、5又は6記載の光湿気硬化型樹脂組成物を用いてなることを特徴とする電子部品用接着剤。
  8. 請求項1、2、3、4、5又は6記載の光湿気硬化型樹脂組成物を用いてなることを特徴とする表示素子用接着剤。
PCT/JP2015/066666 2014-06-11 2015-06-10 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤 WO2015190499A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020217038829A KR102664999B1 (ko) 2014-06-11 2015-06-10 광 습기 경화형 수지 조성물, 전자 부품용 접착제 및 표시 소자용 접착제
KR1020167013447A KR102410694B1 (ko) 2014-06-11 2015-06-10 광 습기 경화형 수지 조성물, 전자 부품용 접착제 및 표시 소자용 접착제
JP2015530804A JP6043433B2 (ja) 2014-06-11 2015-06-10 電子部品用接着剤、及び、表示素子用接着剤
CN201580005025.3A CN105916886B (zh) 2014-06-11 2015-06-10 光湿固化型树脂组合物、电子部件用粘接剂、以及显示元件用粘接剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014120794 2014-06-11
JP2014-120794 2014-06-11

Publications (1)

Publication Number Publication Date
WO2015190499A1 true WO2015190499A1 (ja) 2015-12-17

Family

ID=54833589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/066666 WO2015190499A1 (ja) 2014-06-11 2015-06-10 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤

Country Status (5)

Country Link
JP (2) JP6043433B2 (ja)
KR (2) KR102410694B1 (ja)
CN (1) CN105916886B (ja)
TW (1) TWI673571B (ja)
WO (1) WO2015190499A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076407A1 (ja) * 2014-11-13 2016-05-19 積水化学工業株式会社 硬化体、電子部品、及び、表示素子
WO2018087743A1 (ja) * 2016-11-14 2018-05-17 積水化学工業株式会社 湿気硬化型樹脂組成物及び組立部品
WO2019035411A1 (ja) * 2017-08-18 2019-02-21 積水化学工業株式会社 湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
WO2020149377A1 (ja) * 2019-01-18 2020-07-23 積水化学工業株式会社 硬化性樹脂組成物、及び硬化体

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107778834A (zh) * 2017-11-28 2018-03-09 广东聚航新材料研究院有限公司 一种用于提高tpu耐黄变性能的功能母粒
CN115216067B (zh) * 2022-08-19 2024-02-23 珠海科茂威新材料有限公司 一种用于透明橡胶的耐黄变防老剂及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261725A (ja) * 2000-03-21 2001-09-26 Showa Highpolymer Co Ltd 水反応性光硬化性ウレタン樹脂組成物,frpライニング用樹脂組成物,プライマー樹脂組成物及びそれらの硬化方法
JP2002037832A (ja) * 2000-07-24 2002-02-06 Asahi Kasei Corp 耐汚染性・耐タック性の優れたポリイソシアネート組成物
JP2008274131A (ja) * 2007-04-27 2008-11-13 Toagosei Co Ltd 一液湿気硬化型ウレタン系ホットメルト接着剤組成物及びその使用方法
JP2012017395A (ja) * 2010-07-07 2012-01-26 Yokohama Rubber Co Ltd:The 硬化性組成物及びそれを用いたシーリング材
JP2012153818A (ja) * 2011-01-27 2012-08-16 Autonetworks Technologies Ltd 紫外線硬化性組成物およびこれを用いた硬化物
JP2013104006A (ja) * 2011-11-15 2013-05-30 Nitto Denko Corp 粘着シート
JP2013523941A (ja) * 2010-04-06 2013-06-17 エルジー・ハウシス・リミテッド タッチパネル用粘着フィルム及びタッチパネル
WO2014038592A1 (ja) * 2012-09-10 2014-03-13 スリーボンドファインケミカル株式会社 湿気硬化性及び光硬化性樹脂組成物
JP2015038162A (ja) * 2010-04-20 2015-02-26 日本ビー・ケミカル株式会社 ポリエステル樹脂及びその用途

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2501149B2 (ja) * 1991-07-17 1996-05-29 東レ株式会社 半導体封止用エポキシ樹脂組成物
JP3116577B2 (ja) * 1992-07-17 2000-12-11 東レ株式会社 半導体封止用エポキシ組成物
JPH09255812A (ja) * 1996-03-21 1997-09-30 Toray Ind Inc 樹脂組成物
JP2000178342A (ja) 1998-12-17 2000-06-27 Sumitomo Bakelite Co Ltd 絶縁ペースト
JP2003277477A (ja) * 2002-03-27 2003-10-02 Kyocera Chemical Corp エポキシ樹脂組成物と樹脂封止型半導体装置
US7189781B2 (en) * 2003-03-13 2007-03-13 H.B. Fuller Licensing & Finance Inc. Moisture curable, radiation curable sealant composition
GB0707278D0 (en) * 2007-04-16 2007-05-23 Dow Corning Condensation curable compositions having improved self adhesion to substrates
KR100910184B1 (ko) * 2007-05-04 2009-07-31 (주) 큐리프 (메타)아크릴 변성 우레탄 폴리머의 합성방법, 그 합성물 및 그 합성물을 이용한 자외선 경화형 방습 접착제 조성물
JP4865891B1 (ja) * 2010-07-22 2012-02-01 古河電気工業株式会社 光ファイバ素線、光ファイバテープ心線および光ファイバケーブル
JP5093391B2 (ja) * 2011-01-25 2012-12-12 大日本印刷株式会社 ガスバリア性フィルムの製造方法
JP2012153835A (ja) * 2011-01-27 2012-08-16 Kaneka Corp Fpd貼り合わせ用光/湿分デュアルキュアー系硬化性組成物
US20140242322A1 (en) * 2011-07-22 2014-08-28 H.B. Fuller Company One component, dual-cure adhesive for use in electronics
JP6132125B2 (ja) * 2012-05-09 2017-05-24 セメダイン株式会社 画像表示装置の製造方法
KR102242601B1 (ko) * 2014-01-21 2021-04-20 세키스이가가쿠 고교가부시키가이샤 광 습기 경화형 수지 조성물, 전자 부품용 접착제, 및 표시 소자용 접착제

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001261725A (ja) * 2000-03-21 2001-09-26 Showa Highpolymer Co Ltd 水反応性光硬化性ウレタン樹脂組成物,frpライニング用樹脂組成物,プライマー樹脂組成物及びそれらの硬化方法
JP2002037832A (ja) * 2000-07-24 2002-02-06 Asahi Kasei Corp 耐汚染性・耐タック性の優れたポリイソシアネート組成物
JP2008274131A (ja) * 2007-04-27 2008-11-13 Toagosei Co Ltd 一液湿気硬化型ウレタン系ホットメルト接着剤組成物及びその使用方法
JP2013523941A (ja) * 2010-04-06 2013-06-17 エルジー・ハウシス・リミテッド タッチパネル用粘着フィルム及びタッチパネル
JP2015038162A (ja) * 2010-04-20 2015-02-26 日本ビー・ケミカル株式会社 ポリエステル樹脂及びその用途
JP2012017395A (ja) * 2010-07-07 2012-01-26 Yokohama Rubber Co Ltd:The 硬化性組成物及びそれを用いたシーリング材
JP2012153818A (ja) * 2011-01-27 2012-08-16 Autonetworks Technologies Ltd 紫外線硬化性組成物およびこれを用いた硬化物
JP2013104006A (ja) * 2011-11-15 2013-05-30 Nitto Denko Corp 粘着シート
WO2014038592A1 (ja) * 2012-09-10 2014-03-13 スリーボンドファインケミカル株式会社 湿気硬化性及び光硬化性樹脂組成物

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016076407A1 (ja) * 2014-11-13 2016-05-19 積水化学工業株式会社 硬化体、電子部品、及び、表示素子
TWI687444B (zh) * 2014-11-13 2020-03-11 日商積水化學工業股份有限公司 硬化體、電子零件及顯示元件
WO2018087743A1 (ja) * 2016-11-14 2018-05-17 積水化学工業株式会社 湿気硬化型樹脂組成物及び組立部品
KR20190077243A (ko) * 2016-11-14 2019-07-03 세키스이가가쿠 고교가부시키가이샤 습기 경화형 수지 조성물 및 조립 부품
JPWO2018087743A1 (ja) * 2016-11-14 2019-09-26 積水化学工業株式会社 湿気硬化型樹脂組成物及び組立部品
KR102458390B1 (ko) * 2016-11-14 2022-10-24 세키스이가가쿠 고교가부시키가이샤 습기 경화형 수지 조성물 및 조립 부품
WO2019035411A1 (ja) * 2017-08-18 2019-02-21 積水化学工業株式会社 湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JPWO2019035411A1 (ja) * 2017-08-18 2020-07-27 積水化学工業株式会社 湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP7088838B2 (ja) 2017-08-18 2022-06-21 積水化学工業株式会社 湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
WO2020149377A1 (ja) * 2019-01-18 2020-07-23 積水化学工業株式会社 硬化性樹脂組成物、及び硬化体
JPWO2020149377A1 (ja) * 2019-01-18 2021-11-25 積水化学工業株式会社 硬化性樹脂組成物、及び硬化体
JP7453905B2 (ja) 2019-01-18 2024-03-21 積水化学工業株式会社 硬化性樹脂組成物、及び硬化体

Also Published As

Publication number Publication date
CN105916886A (zh) 2016-08-31
JP6043433B2 (ja) 2016-12-14
CN105916886B (zh) 2019-09-24
TWI673571B (zh) 2019-10-01
KR20210149869A (ko) 2021-12-09
TW201604651A (zh) 2016-02-01
JPWO2015190499A1 (ja) 2017-04-20
JP2017031415A (ja) 2017-02-09
KR102410694B1 (ko) 2022-06-17
KR20170017862A (ko) 2017-02-15
JP6641255B2 (ja) 2020-02-05
KR102664999B1 (ko) 2024-05-14

Similar Documents

Publication Publication Date Title
JP6039080B2 (ja) 狭額縁設計表示素子用接着剤
JP5844504B1 (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP6243969B2 (ja) 硬化体、電子部品、及び、表示素子
WO2015056717A1 (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP6641255B2 (ja) 電子部品用接着剤、及び、表示素子用接着剤
JP6698524B2 (ja) 硬化体、電子部品、表示素子、及び、光湿気硬化型樹脂組成物
JP2016089174A (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP6798791B2 (ja) 電子部品用接着剤、及び、表示素子用接着剤
JP5824597B1 (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP2016074783A (ja) 光湿気硬化型樹脂組成物
JP7486414B2 (ja) 光湿気硬化性ウレタン系化合物、光湿気硬化性ウレタンプレポリマー、及び光湿気硬化性樹脂組成物
JP6789014B2 (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP6921535B2 (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP2016074893A (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤
JP2017190360A (ja) 光湿気硬化型樹脂組成物、電子部品用接着剤、及び、表示素子用接着剤

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015530804

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15807381

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167013447

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15807381

Country of ref document: EP

Kind code of ref document: A1