WO2015188610A1 - 电池荷电状态估算方法和装置 - Google Patents

电池荷电状态估算方法和装置 Download PDF

Info

Publication number
WO2015188610A1
WO2015188610A1 PCT/CN2015/000125 CN2015000125W WO2015188610A1 WO 2015188610 A1 WO2015188610 A1 WO 2015188610A1 CN 2015000125 W CN2015000125 W CN 2015000125W WO 2015188610 A1 WO2015188610 A1 WO 2015188610A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
state
charge
parameters
estimation
Prior art date
Application number
PCT/CN2015/000125
Other languages
English (en)
French (fr)
Inventor
张彩萍
姜久春
王乐一
李雪
张维戈
王占国
龚敏明
吴健
孙丙香
时玮
赵婷
牛利勇
李景新
黄彧
黄勤河
鲍谚
Original Assignee
北京交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410258544.8A external-priority patent/CN104007395B/zh
Priority claimed from CN201410319719.1A external-priority patent/CN104076293B/zh
Application filed by 北京交通大学 filed Critical 北京交通大学
Priority to CN201580031120.0A priority Critical patent/CN106716158B/zh
Publication of WO2015188610A1 publication Critical patent/WO2015188610A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]

Definitions

  • the invention relates to the technical field of energy storage devices, in particular to a state detection technology for rechargeable batteries.
  • the U.S. Advanced Battery Consortium defines the state of charge (SOC) of a battery as a percentage of the remaining capacity and actual capacity in its "Electric Vehicle Battery Experiment Manual.”
  • SOC state of charge
  • the SOC of the power battery is used to reflect the remaining available power of the battery, and it plays the role of the traditional fuel vehicle oil meter for electric vehicles.
  • Accurate and reliable SOC estimation not only enhances the user's handling and comfort for electric vehicles, but also serves as an indispensable decision factor for electric vehicle energy management systems. It also optimizes electric vehicle energy management, improves battery capacity and energy efficiency. Important parameters to prevent overcharging and overdischarging of the battery, and to ensure the safety and service life of the battery during use.
  • the so-called integration method means that if the initial state of charge and discharge is recorded as SOC 0 , then the current state SOC is: Where C N is the rated capacity of the battery, I is the battery current, and ⁇ is the charge and discharge efficiency. If the current measurement is not accurate in the application of the ampere-time integral method, it will cause SOC calculation error, long-term accumulation, and the error is getting larger and larger. In addition, the ampere-time integration method needs to consider the battery charge and discharge efficiency, and the high-temperature state and the current fluctuation are severe. Next, the error is large. Another example is that the open circuit voltage method needs to fully dispose the battery, so this method cannot meet the needs of online estimation.
  • electrochemical methods require the support of dedicated test equipment.
  • the neural network method requires a lot of experiment and data training, and the adaptability of the model has certain limits. Impedance analysis is susceptible to factors such as temperature and aging.
  • the Kalman filter method is difficult to eliminate the error caused by the change of the model and its parameters due to the battery temperature and aging.
  • the method has higher requirements on the processor data processing capability, and when the battery is connected in series, if the battery pack is viewed As a whole, the accuracy of the estimation will decrease as the difference between the batteries increases. Since the actual effect of these methods is not ideal, in order to improve the accuracy of the real-time online estimation of the battery SOC, it is necessary to improve the measurement means and the accuracy of the battery model parameters.
  • Observer-based battery SOC estimation method is to estimate the state quantity through the process output, and add the error feedback of the output quantity to correct the battery SOC estimation by the ampere-time integration method, overcome the error accumulation of the ampere-hour integral method and need to know the SOC initial
  • the shortcomings of the value greatly improve the estimation accuracy of the battery SOC, and the error of the battery SOC estimation can reach 3% or less, but the accuracy of the estimation of the method is guaranteed by the accuracy of the model parameters, if the identification of the model parameters is not accurate enough. , or changes in the model parameters of the battery during battery life may cause errors.
  • the object of the present invention is to overcome the deficiencies of the battery SOC estimation method in the prior art, and continuously update the model parameters of the battery during the SOC estimation process, so as to improve the accuracy of the observer-based battery SOC estimation method and reduce the battery SOC estimation. error.
  • a method for estimating a state of charge of a battery comprising the steps of:
  • E. Newton iteration method is used to establish the update equation for the key parameters, and the update equation is combined with the observer to estimate the state of charge state to estimate the state of charge of the battery.
  • step D Adjust the parameters of the state equation in step D, observe the influence on the accuracy of the state of charge estimation, and obtain the influence of the basic parameters of the battery and the coefficients of the open circuit voltage expression on the accuracy of the state of charge estimation to obtain the key parameters.
  • the influence of the accuracy of the state of charge estimation is determined by the following formula:
  • ⁇ R is always the total internal resistance error of the battery.
  • L 2 is the gain coefficient of the error feedback amount of the first derivative of the state of charge of the battery
  • Soc(t) is the relationship between battery state and time.
  • i is the battery current
  • the method for obtaining the basic parameters of the battery includes:
  • y is the open circuit voltage of the battery
  • s is the state of charge of the battery
  • a, b, c are the key parameters
  • is a constant.
  • the battery state equation is established based on the battery equivalent circuit model:
  • x k is the battery status
  • U p is the battery polarization voltage
  • s k is the battery state of charge.
  • I k is the current flowing through the battery
  • R p and C p are the polarization resistance and polarization capacitance of the battery, respectively;
  • D k R 0 , R 0 is the ohmic internal resistance of the battery
  • u k is equal to I k .
  • ⁇ i [a i ,b i ,c i ] T is a vector consisting of key parameters after the ith iteration;
  • the initial value of the key parameter vector ⁇ 0 [a 0 ,b 0 ,c 0 ] T is a random number, ⁇ is the set step size, and y k is the actual value of the terminal voltage of the battery at time k.
  • the Jacobian matrix is the key parameter and has:
  • the number of iterations of the Newton iteration method is 500 or more.
  • R p and C p are the polarization resistance and polarization capacitance of the battery, respectively.
  • L 1 is the gain coefficient of the error feedback amount of the first derivative of the battery polarization voltage
  • L 2 is the gain coefficient of the error feedback amount to the first derivative of the state of charge of the battery.
  • a battery state of charge estimating device comprising:
  • a basic parameter analysis unit for obtaining basic battery parameters
  • a battery model acquisition unit for fitting a relationship model between a battery open circuit voltage and a state of charge
  • a state equation determining unit for establishing a state equation of the battery based on a battery equivalent circuit model
  • the parameter analysis unit is used to adjust the parameters of the state equation, observe the influence on the accuracy of the state of charge estimation, and obtain the influence of the basic parameters of the battery and the coefficients in the open circuit voltage expression on the accuracy of the state of charge estimation, and obtain key parameters;
  • the battery state of charge estimation unit is used to establish an update equation for the key parameters by Newton iteration method, and the update equation is combined with the observer to estimate the state of charge state to estimate the state of charge of the battery.
  • the state equation determination unit establishes a state equation for the battery:
  • x k is the battery status
  • U p is the battery polarization voltage
  • s k is the battery state of charge.
  • I k is the current flowing through the battery, and R p and C p are the polarization resistance and polarization capacitance of the battery, respectively;
  • D k R 0 , R 0 is the ohmic internal resistance of the battery
  • u k is equal to I k ;
  • the battery state of charge estimation unit is configured to establish an update equation for the key parameters by using a Newton iteration method:
  • ⁇ i [a i ,b i ,c i ] T is a vector consisting of key parameters after the ith iteration;
  • the initial value of the key parameter ⁇ 0 [a 0 ,b 0 ,c 0 ] T is a random number, ⁇ is the set step size, and y k is the actual value of the terminal voltage of the battery at time k.
  • the Jacobian matrix is the key parameter and has:
  • the battery state of charge estimation unit uses the update equation and the observer to estimate the state of charge to jointly estimate the state of charge of the battery as:
  • R p and C p are the polarization resistance and polarization capacitance of the battery, respectively.
  • L 1 is the gain coefficient of the error feedback amount of the first derivative of the battery polarization voltage
  • L 2 is the gain coefficient of the error feedback amount to the first derivative of the state of charge of the battery.
  • the Newton iterative method can be used to establish an update equation for the key parameters, and the update equation is combined with the observer to estimate the state of charge state to estimate the state of charge of the battery, thereby improving the estimation accuracy.
  • Beneficial effect By the method and device for estimating the state of charge of the battery of the present invention, the Newton iterative method can be used to establish an update equation for the key parameters, and the update equation is combined with the observer to estimate the state of charge state to estimate the state of charge of the battery, thereby improving the estimation accuracy. Beneficial effect.
  • FIG. 1 is a schematic flow chart of a method for estimating a state of charge of a battery according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a first-order Thevenin model of a battery in an embodiment of the present invention.
  • 3 is a model analysis diagram showing the relationship between the battery open circuit voltage OCV and the state of charge SOC.
  • Fig. 4 is a graph showing the estimated state of the state of charge of the battery obtained after the key parameters are updated by different iterations in the case of constant current.
  • Fig. 5 is a graph showing the estimation results of the state of charge of the battery obtained after the key parameters of the dynamic stress test (DST) condition are updated by different iterations.
  • Figure 6 is a graph showing the estimated SOC state of the battery state after the critical parameters of the DST condition are updated 500 times.
  • Figure 7 is a comparison of the effects of different factors of the battery on the estimation error of the battery SOC.
  • Figure 8 is a comparison of the effect of different magnifications on the estimation error of the battery SOC.
  • Fig. 1 is a flow chart showing the method of estimating the SOC of a battery according to the present invention, which is based on an observer-based battery SOC estimation method.
  • FIG. 2 is a schematic diagram of a first-order Thevenin model of a battery in an embodiment of the present invention, from the electrical relationship in the figure and the principle of the observer-based battery SOC estimation method:
  • U P is the voltage across the polarization resistor R P or the polarization capacitor C P
  • I is the current flowing through the battery
  • U o is the terminal voltage of the battery
  • U OCV is the open circuit voltage of the battery
  • R o is the ohmic resistance of the battery .
  • L 1 is the gain coefficient of the error feedback amount of the first derivative of the battery polarization voltage
  • L 2 is the gain coefficient of the error feedback amount of the first derivative of the state of charge of the battery, which are the gain coefficients of the observer, depending on the observation The device itself, for example based on the gain factor of a sliding mode observer, a Longberg observer, etc.
  • Q is the battery capacity.
  • the steady-state expression of the SOC estimation error can be obtained by using the differential final value theorem:
  • the influence degree of the four influence parameters listed in FIG. 7 on the estimation accuracy of the battery SOC is closely related to the capacity of the battery itself and the magnitude of the charge and discharge current.
  • the degree of influence of each influence parameter on the estimation accuracy of the battery SOC is ranked as: ⁇ a i > ⁇ b i > ⁇ R total > ⁇ Q.
  • OCV has the greatest influence on the SOC estimation error.
  • ⁇ a i slope error
  • ⁇ b i intercept error
  • mapping relationship between the open circuit voltage OCV of the battery in the normal state of the state of charge SOC [0.15, 0.9] and the state of charge SOC is expressed as follows:
  • y is the open circuit voltage of the battery
  • v is the terminal voltage of the battery
  • R p is the polarization internal resistance of the battery
  • R 0 is the ohmic internal resistance of the battery
  • i is the current flowing through the battery
  • s is the state of charge of the battery
  • a, b, c are the parameters to be determined
  • is a constant, which is generally obtained by fitting the actual measurement results.
  • the parameters a, b, and c are used as key coefficients affecting the estimation accuracy of the battery SOC in the embodiment of the present invention, and are generally referred to as key parameters in the present invention.
  • the method for estimating the state of charge of the battery of the present invention comprises the following steps:
  • E. Newton iteration method is used to establish the update equation for the key parameters, and the update equation is combined with the observer to estimate the state of charge state to estimate the state of charge of the battery.
  • step E the Newton iteration method is used to establish an update equation for the key parameters, and the update equation is combined with the observer to estimate the state of charge state to estimate the state of charge of the battery. Therefore, the battery SOC estimation method in the embodiment of the present invention improves the accuracy of battery SOC estimation.
  • the basic parameters of the battery depend on the model of the battery.
  • the basic parameters of the battery are the polarization resistance R P , the polarization capacitance C P and the ohmic resistance R o of the battery. .
  • the purpose of obtaining these basic parameters is to serve as the basis for the subsequent battery SOC estimation process. Therefore, although conventional methods for obtaining basic battery parameters are also available in the conventional art, the present invention discloses specific ones in order to improve the accuracy of SOC estimation.
  • the basic parameters of the battery are determined. Specifically, in one embodiment, the basic parameters of the battery are obtained by:
  • A1 Select a battery sample of a specific capacity, for example, a battery sample having a capacity of 90 Ah;
  • the first predetermined time and the second predetermined time for the battery to stand still are mainly for stabilizing the state, and avoiding a false signal, for example, the first predetermined time is more than 3 hours, and the second predetermined time is more than 1 hour. .
  • the limitation of the predetermined ratio is mainly the number of reference points in the fitting process of the relationship between the subsequent battery OCV and the SOC. For example, when the predetermined ratio is 5%, the mapping relationship between the open circuit voltage OCV and the state of charge SOC of the 20 sets of batteries can be obtained.
  • the basic parameters of the battery are accurately obtained, which provides a good foundation for the battery SOC estimation method.
  • the battery OCV and SOC relationship model After obtaining the basic parameters of the battery, the battery OCV and SOC relationship model can be obtained.
  • the relationship between the battery OCV and SOC relationship model and the actual measurement result is shown in Fig. 3.
  • the battery OCV and SOC The relationship model is very close to the actual measurement results, indicating that the identification of the basic parameters of the battery is very accurate and effective.
  • x k is the battery status
  • U p is the battery polarization voltage
  • s k is the battery state of charge.
  • I k is the current flowing through the battery, and R p and C p are the polarization resistance and polarization capacitance of the battery, respectively;
  • D k R 0 , R 0 is the ohmic internal resistance of the battery
  • u k is equal to I k .
  • the battery terminal voltage y k at the time k is obtained by measurement.
  • the parameters of the state equation are adjusted to observe the state of charge
  • the influence of the accuracy is estimated, and the influence of the basic parameters of the battery and the coefficients in the open circuit voltage expression on the accuracy of the state of charge estimation is obtained to obtain the key parameters.
  • the influence of each parameter on the estimation error of the state of charge is determined by the following formula:
  • ⁇ R is always the total internal resistance error of the battery.
  • L 2 is the gain coefficient of the error feedback amount of the first derivative of the state of charge of the battery
  • Soc(t) is the relationship between battery state and time.
  • i is the battery current
  • the parameters a, b, and c in the battery OCV-SOC relational model are parameters that have the most significant influence on the SOC estimation accuracy, and thus the above parameters are determined as key parameters in the embodiment of the present invention.
  • a Newton iteration method is employed to establish an update equation for key parameters.
  • the update equation of the Newton iterative method updates the key parameters (a, b, and c) of the relationship model between the open circuit voltage and the state of charge based on the battery terminal voltage measurement y k at time instant:
  • is the set step size, for example 0.1 or other values can be taken.
  • y k is the actual value of the terminal voltage of the battery at time k,
  • the Jacobian matrix is the key parameter and satisfies the following relationship:
  • the update equation is combined with the observer estimation state of charge method to estimate the state of charge of the battery:
  • x k and x k+1 are the state of the battery at time k and time k+1, respectively.
  • R p and C p are the polarization resistance and polarization capacitance of the battery, respectively.
  • L 1 is the gain coefficient of the error feedback amount of the first derivative of the battery polarization voltage
  • L 2 is the gain coefficient of the error feedback amount of the first derivative of the state of charge of the battery. As described above, these gain coefficients depend on the observer. itself.
  • the updated key parameters a', b' and c' are obtained, and after the battery is in the state x k+1 at time k+1, the terminal voltage at time k+1 is re-estimated as an input for error comparison by the observer.
  • s k+1 is the state of charge of the battery at time k+1.
  • x k+1 is the state of the battery at time k+1.
  • D k+1 R 0
  • R o is the ohmic internal resistance of the battery
  • u k+1 is the current flowing through the battery at time k+1.
  • the update equation is combined with the observer to estimate the state of charge state to estimate the state of charge of the battery.
  • the accuracy of the battery SOC estimation method is improved, and the key parameters in the SOC estimation process of the prior art are kept fixed, so the error is gradually Increased defects.
  • the key to affecting the estimation accuracy is the number of iterations in the iterative process.
  • the battery SOC estimation results caused by the key parameter updating process of 100 times, 300 times, and 500 times, respectively, are applied in a constant current charging condition. It can be seen from Fig. 4 that when the number of iterations is 100, the battery SOC estimation result has a large error with the actual situation, and the more the iterative update times of the key parameters, the closer the state of charge SOC estimation value is to the true value. When the number of iterations reaches 500, the difference between the battery SOC estimate and the real situation is small.
  • Fig. 5 is a graph showing the estimation results of the state of charge of the battery state obtained after the key parameters are updated 100 times, 300 times and 500 times in the DST condition. As can be seen from Fig. 5, also when the number of iterations is 500 or more, the battery SOC estimation value is very close to the real situation.
  • the present invention further includes a battery state of charge estimation device, the device comprising:
  • a basic parameter analysis unit for obtaining basic battery parameters
  • a battery model acquisition unit for fitting a relationship model between a battery open circuit voltage and a state of charge
  • a state equation determining unit for establishing a state equation of the battery based on a battery equivalent circuit model
  • the parameter analysis unit is used to adjust the parameters of the state equation, observe the influence on the accuracy of the state of charge estimation, and obtain the influence of the basic parameters of the battery and the coefficients in the open circuit voltage expression on the accuracy of the state of charge estimation, and obtain key parameters;
  • the battery state of charge estimation unit is used to establish an update equation for the key parameters by Newton iteration method, and the update equation is combined with the observer to estimate the state of charge state to estimate the state of charge of the battery.
  • the state equation determination unit establishes a state equation for the battery:
  • x k is the battery status
  • U p is the battery polarization voltage
  • s k is the battery state of charge.
  • I k is the current flowing through the battery, and R p and C p are the polarization resistance and polarization capacitance of the battery, respectively;
  • D k R 0 , R 0 is the ohmic internal resistance of the battery
  • u k is equal to I k ;
  • the battery state of charge estimation unit is configured to establish a key parameter of the update equation for the key parameters by using the Newton iteration method:
  • ⁇ i [a i ,b i ,c i ] T is a vector consisting of key parameters after the ith iteration;
  • the initial value of the key parameter ⁇ 0 [a 0 ,b 0 ,c 0 ] T is a random number, ⁇ is the set step size, and y k is the actual value of the terminal voltage of the battery at time k.
  • the Jacobian matrix is the key parameter and has:
  • the battery state of charge estimation unit uses the update equation and the observer to estimate the state of charge to jointly estimate the state of charge of the battery as:
  • R p and C p are the polarization resistance and polarization capacitance of the battery, respectively.
  • L 1 is the gain coefficient of the error feedback amount of the first derivative of the battery polarization voltage
  • L 2 is the gain coefficient of the error feedback amount to the first derivative of the state of charge of the battery.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池荷电状态估算方法和装置。所述方法包括步骤:A、获取电池基本参数;B、拟合电池OCV与SOC之间的关系模型;C、基于电池等效电路模型,建立电池的状态方程;D、调整状态方程的参数,观察对SOC估算精度的影响,得出电池基本参数以及OCV表达式中的系数对SOC估计精度的影响,获得关键参数;E、采用牛顿迭代法对关键参数建立更新方程,将更新方程与观测器估算SOC方法联合应用估算电池SOC。通过本发明的电池SOC估算方法和装置,能够在利用观测器估算电池SOC过程中,更新对于电池SOC估算精度造成影响的关键参数来修正电池SOC估算方法,因此提高SOC估算精度。

Description

电池荷电状态估算方法和装置 技术领域
本发明涉及储能设备技术领域,特别是涉及到可充电电池的状态检测技术。
背景技术
美国先进电池联合会(U.S.Advanced Battery Consortium,USABC)在其《电动汽车电池实验手册》中将电池的荷电状态(State of Charge,SOC)定义为剩余电量与实际容量的百分比。电池SOC的估算在电动汽车和智能电网的应用领域变得越来越必要,动力电池的SOC被用来反映电池的剩余可用电量状况,对电动汽车而言起着传统燃油汽车油表的作用,精确可靠的SOC估算值,不仅可以增强用户对电动汽车的操控性和舒适度,同时其作为电动汽车能量管理系统不可或缺的决策因素,也是优化电动汽车能量管理、提高电池容量和能量利用率、防止电池过充电和过放电、保障电池在使用过程中的安全性和使用寿命的重要参数。
对于纯电动汽车而言,电池管理系统是电动汽车中的一个重要部件,在线估算出电池的荷电状态是电池管理系统的关键问题之一。如果能够精确的估算出电池的SOC,就能为使用者提供电池剩余能量、续航里程等信息,同时也能够做到合理利用电池,避免对电池的损害,延长电池组的使用寿命。现有技术中,对于SOC的估算方法包括开路电压法、安时积分法、阻抗分析法、神经网络法、卡尔曼滤波法以及基于滑模观测器、龙伯格(Luenberger)观测器等基于观测器的估算方法等。
这些方法均存一些问题。例如所谓安时积分法,是指如果充放电起始状态 记为SOC0,那么当前状态的SOC为:
Figure PCTCN2015000125-appb-000001
其中CN为电池额定容量,I为电池电流,η为充放电效率。安时积分法应用中若电流测量不准,将造成SOC计算误差,长期积累,误差越来越大;另外,安时积分法需要考虑电池充放电效率,且在高温状态和电流波动剧烈的情况下,误差较大。又如开路电压法需要将电池充分静置,因此该方法不能满足在线估算的需要。或者电化学方法则需要专用测试设备的支持。神经网络法需要大量试验和数据训练,且模型的自适应性有一定的限度。阻抗分析法容易受到温度和老化等因素的影响。卡尔曼滤波法难于消除由于电池温度和老化导致模型及其参数自身变化带来的误差,此外,该方法对处理器数据处理能力要求较高,应用于串联成组电池时,如果将电池组看作是一个整体,估算精度会随着电池之间差异性增加而下降。由于这些方法的实际效果并不理想,要想提高电池SOC实时在线估算的精度,需要在测量手段、电池模型参数准确性等方面进行改善。
基于观测器的电池SOC估算方法是通过过程输出量来估算状态量,并且加入输出量的误差反馈,对安时积分法估算电池SOC进行修正,克服了安时积分法误差积累和需要知道SOC初值的缺点,极大提高了电池SOC的估算精度,电池SOC估算的误差可达到3%以内,但该方法估算的精确性是由模型参数的准确性来保证的,如果模型参数的辨识不够准确,或者在电池寿命过程中电池的模型参数发生了变化,则可能会引起误差。
发明内容
鉴于此,本发明的目的在于克服现有技术中电池SOC估算方法的不足,在SOC估算过程中不断更新电池的模型参数,以便于提高基于观测器的电池SOC估算方法的精度,降低电池SOC估算误差。
为了实现此目的,本发明采取的技术方案为如下。
一种电池荷电状态估算方法,所述方法包括步骤:
A、获取电池基本参数;
B、拟合电池开路电压与荷电状态之间的关系模型;
C、基于电池等效电路模型,建立电池的状态方程;
D、调整状态方程的参数,观察对荷电状态估算精度的影响,得出电池基本参数以及开路电压表达式中的系数对荷电状态估计精度的影响,获得关键参数;
E、采用牛顿迭代法对关键参数建立更新方程,将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态。
步骤D中调整状态方程的参数,观察对荷电状态估算精度的影响,得出电池基本参数以及开路电压表达式中的系数对荷电状态估计精度的影响以得到关键参数,所述各参数对荷电状态估算精度的影响作用由下式确定:
Figure PCTCN2015000125-appb-000002
其中
Figure PCTCN2015000125-appb-000003
为电池荷电状态稳态估算误差,
ΔR为电池总内阻误差,
L2为对电池荷电状态一阶导数的误差反馈量的增益系数,
Δai为斜率误差,
Δbi为截距误差,
Q为电池容量,
soc(t)为电池荷电状态与时间的关系,
Figure PCTCN2015000125-appb-000004
为斜率估计值,
i为电池电流。
其中,获取所述电池基本参数的方法包括:
A1、选取特定容量的电池样本;
A2、将电池样本电量放空后静置第一预定时间;
A3、对电池样本充电,每当充入的电量达到其容量预定比例后,停止充电并静置第二预定时间,静置后测量电池的开路电压;
A4、根据电池开路电压与荷电状态的对应关系,获取电池的基本参数。
另外,所述电池开路电压与荷电状态之间的关系模型的表达式为:
y=a-b×(-ln(s))α+cs,
其中y为电池的开路电压,s为电池的荷电状态,a、b、c为所述关键参数,α为常数。
所述基于电池等效电路模型,建立电池状态方程为:
Figure PCTCN2015000125-appb-000005
其中
Figure PCTCN2015000125-appb-000006
为电池端电压估算值,
xk为电池状态,
Figure PCTCN2015000125-appb-000007
Up为电池极化电压,sk为电池荷电状态,
其中
Figure PCTCN2015000125-appb-000008
Ik为流过电池的电流,Rp、Cp分别为电池的极化电阻和极化电容;
Figure PCTCN2015000125-appb-000009
f(sk)为电池开路电压,f(sk)=a-b×(-ln(sk))α+csk
Dk=R0,R0为电池欧姆内阻;
uk等于Ik
另外,所述采用牛顿迭代法对关键参数建立更新方程为::
Figure PCTCN2015000125-appb-000010
其中θi=[ai,bi,ci]T为第i次迭代后的关键参数组成的向量;
关键参数向量的初值θ0=[a0,b0,c0]T为随机数,μ为设定步长,yk为时刻k电池的端电压实际值,
Figure PCTCN2015000125-appb-000011
为关键参数的雅可比矩阵且有:
Figure PCTCN2015000125-appb-000012
qj为电池充电过程中任意连续N个时段中第j个时段充入电池的电量,j=1,2,...,N,N为预定值,Q为电池的容量。
特别地,所述牛顿迭代法迭代次数为500次以上。
所述将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态为:
Figure PCTCN2015000125-appb-000013
其中xk和xk+1分别为此时刻和下一时刻的电池状态,
Figure PCTCN2015000125-appb-000014
其中Rp、Cp分别为电池的极化电阻和极化电容,
Figure PCTCN2015000125-appb-000015
其中Q为电池容量,
yk
Figure PCTCN2015000125-appb-000016
分别为此时刻电池端电压的测量值和估算值;
Figure PCTCN2015000125-appb-000017
L1为对电池极化电压一阶导数的误差反馈量的增益系数,L2为对电池荷电状态一阶导数的误差反馈量的增益系数。
一种电池荷电状态估算装置,所述装置包括:
基本参数分析单元,用于获取电池基本参数;
电池模型获取单元,用于拟合电池开路电压与荷电状态之间的关系模型;
状态方程确定单元,用于基于电池等效电路模型,建立电池的状态方程;
参数分析单元,用于调整状态方程的参数,观察对荷电状态估算精度的影响,得出电池基本参数以及开路电压表达式中的系数对荷电状态估计精度的影响,获得关键参数;
电池荷电状态估算单元,用于采用牛顿迭代法对关键参数建立更新方程,将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态。
所述电池模型获取单元根据y=a-b×(-ln(s))α+cs来拟合电池开路电压与荷电状态之间的关系模型其中y为电池的开路电压,s为电池的荷电状态,a、b、c为所述关键参数,α为常数;
所述状态方程确定单元建立电池的状态方程:
Figure PCTCN2015000125-appb-000018
其中
Figure PCTCN2015000125-appb-000019
为电池端电压估算值,
xk为电池状态,
Figure PCTCN2015000125-appb-000020
Up为电池极化电压,sk为电池荷电状态,
Figure PCTCN2015000125-appb-000021
Ik为流过电池的电流,Rp、Cp分别为电池的极化电阻和极化电容;
Figure PCTCN2015000125-appb-000022
f(sk)为开路电压,f(sk)=a-b×(-ln(sk))α+csk
Dk=R0,R0为电池欧姆内阻;
uk等于Ik
所述电池荷电状态估算单元,用于采用牛顿迭代法对关键参数建立更新方程为:
Figure PCTCN2015000125-appb-000023
其中θi=[ai,bi,ci]T为第i次迭代后的关键参数组成的向量;
关键参数的初值θ0=[a0,b0,c0]T为随机数,μ为设定步长,yk为时刻k电池的端电压实际值,
Figure PCTCN2015000125-appb-000024
为关键参数的雅可比矩阵且有:
Figure PCTCN2015000125-appb-000025
qj为电池充电过程中任意连续N个时段中第j个时段充入电池的电量,j=1,2,...,N,N为预定值,Q为电池的容量;
所述电池荷电状态估算单元将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态为:
Figure PCTCN2015000125-appb-000026
其中xk和xk+1分别为此时刻和下一时刻的电池状态,
Figure PCTCN2015000125-appb-000027
其中Rp、Cp分别为电池的极化电阻和极化电容,
Figure PCTCN2015000125-appb-000028
其中Q为电池容量,
yk
Figure PCTCN2015000125-appb-000029
分别为此时刻电池端电压的测量值和估算值;
Figure PCTCN2015000125-appb-000030
L1为对电池极化电压一阶导数的误差反馈量的增益系数,L2为对电池荷电状态一阶导数的误差反馈量的增益系数。
通过本发明的电池荷电状态估算方法和装置,能够采用牛顿迭代法对关键参数建立更新方程,将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态,因此实现提高估算精度的有益效果。
附图说明
图1是本发明实施方式电池荷电状态估算方法的流程示意图。
图2是本发明实施方式中电池的一阶戴维宁模型的示意图。
图3是电池开路电压OCV与荷电状态SOC的关系模型分析图。
图4是恒流情况下关键参数经过不同迭代次数的更新后得到的电池荷电状态SOC估算结果图。
图5是动态应力测试(Dynamic Stress Test,DST)工况下关键参数经过不同迭代次数的更新后得到的电池荷电状态SOC估算结果图。
图6是DST工况下关键参数经过500次迭代更新后电池荷电状态SOC估算结果图。
图7是电池不同因子对于电池SOC估算误差的影响结果对比。
图8是不同倍率对于电池SOC估算误差的影响结果对比。
具体实施方式
下面结合附图,对本发明作详细说明。
以下公开详细的示范实施例。然而,此处公开的具体结构和功能细节仅仅是出于描述示范实施例的目的。
然而,应该理解,本发明不局限于公开的具体示范实施例,而是覆盖落入本公开范围内的所有修改、等同物和替换物。在对全部附图的描述中,相同的附图标记表示相同的元件。
同时应该理解,如在此所用的术语“和/或”包括一个或多个相关的列出项的任意和所有组合。另外应该理解,当部件或单元被称为“连接”或“耦接”到另一部件或单元时,它可以直接连接或耦接到其他部件或单元,或者也可以存在中间部件或单元。此外,用来描述部件或单元之间关系的其他词语应该按照相同的方式理解(例如,“之间”对“直接之间”、“相邻”对“直接相邻”等)。
图1是本发明电池SOC估算方法的流程示意图,该流程是以基于观测器的电池SOC估算方法为基础进行的。
在说明本发明电池SOC估算方法之前,首先简要介绍本发明的技术方案的原理,这些原理说明仅仅是示例性的,本领域技术人员可以根据其说明对本发明的技术实质产生了解,但不能理解为这些说明对发明的保护范围造成了不必要的限制。
图2是本发明实施方式中电池的一阶戴维宁模型的示意图,从图中的电气关系以及基于观测器的电池SOC估算方法的原理可知:
Figure PCTCN2015000125-appb-000031
以及
Figure PCTCN2015000125-appb-000032
其中UP是极化电阻RP或极化电容CP两端的电压,I是流过电池的电流,Uo是电池的端电压,UOCV是电池的开路电压,Ro是电池的欧姆电阻。
另一方面,
Figure PCTCN2015000125-appb-000033
Figure PCTCN2015000125-appb-000034
Figure PCTCN2015000125-appb-000035
OCV=ai·SOC+bi
C=[1 ai],
D=Ro
Figure PCTCN2015000125-appb-000036
其中L1为对电池极化电压一阶导数的误差反馈量的增益系数,L2为对电池荷电状态一阶导数的误差反馈量的增益系数,都是观测器的增益系数,取决于观测器本身,例如基于滑模观测器、龙伯格观测器等的增益系数,Q为电池容量。
根据图1中所示的电池SOC估算方法的框图,可以得到电池SOC的状态方 程为:
Figure PCTCN2015000125-appb-000037
其中Uo
Figure PCTCN2015000125-appb-000038
分别是电池端电压的测量值和估算值,u是流过电池的电流。
以e为电池状态的估算值与实际值的误差有:
Figure PCTCN2015000125-appb-000039
Figure PCTCN2015000125-appb-000040
Figure PCTCN2015000125-appb-000041
其中
Figure PCTCN2015000125-appb-000042
Figure PCTCN2015000125-appb-000043
分别是A、B、C、D和bi的估算值。ΔA、ΔB、ΔC、ΔD和Δbi分别为A、B、C、D和bi的误差。
进一步对e和A、B、C、D展开有:
Figure PCTCN2015000125-appb-000044
Figure PCTCN2015000125-appb-000045
Figure PCTCN2015000125-appb-000046
进一步展开有:
Figure PCTCN2015000125-appb-000047
Figure PCTCN2015000125-appb-000048
Figure PCTCN2015000125-appb-000049
利用微分终值定理即可得到SOC估算误差的稳态表达式为:
Figure PCTCN2015000125-appb-000050
接下来,分别对不同变量因子,不同容量,不同倍率电流充放电的电池SOC估算误差进行对比分析。
(1)例如容量为90Ah的电池,设R=1.5毫欧,当实际辨识时,总内阻误差会达到0.15~0.3毫欧(10%~20%)甚至更多,以SOC为55%处的OCV-SOC线性化结果为例,取其斜率为0.4,截距为3.786,电流取1/3C,观测器系数按照仿真取0.01。在变量取不同误差时,电池的状态估算值与实际值之间的误差e1,e2,e3,e4的结果如附图7所示。
(2)例如对容量为90Ah的电池,考虑不同充放电倍率情况的对比,由于只有e1,e2受电流大小影响,故只对这两项进行比较,电池的状态估算值与实际值之间的误差对比结果如附图8所示。
由以上列出的计算结果和分析可知,图7中所列出的四个影响参数对电池SOC估算精度的影响程度大小与电池本身容量和充放电流大小密切相关。综合各影响参数实际中能够达到的误差分析可知,各影响参数对电池SOC估算精度的影响程度排序为:Δai>Δbi>ΔR>ΔQ。其中OCV对SOC估算误差影响最大,实际中,OCV-SOC曲线线性化后,Δai(斜率误差)可能达到百分之几十,Δbi(截距误差)可能达到百分之零点几,因此OCV对SOC估算精度有很大影响,其中斜率的影响更大,所以准确测量OCV-SOC曲线及分段线性化精度的提高对 减小误差很有帮助。电池总内阻误差ΔR对SOC估算精度的影响其次,容量误差ΔQ对估算的影响最小。但是,充放电电流倍率变大时,这两者对估算精度的影响会变大,电池总内阻误差ΔR的影响尤为明显,一些情况下甚至会超过OCV对电池SOC估算精度的影响。通过对不同容量大小的电池对比的结果可知,容量误差ΔQ的影响相对最小,但实际容量值越小时,容量误差ΔQ对电池SOC估算精度的影响越大。
接下来说明确定影响电池荷电状态SOC估算精度的关键参数。电池的开路电压OCV在荷电状态SOC常用区间[0.15,0.9]与荷电状态SOC的映射关系用函数关系表达如下:
y=v-(Rp+R0)×i=a-b×(-ln(s))α+cs,
其中,y为电池的开路电压,v为电池的端电压,Rp为电池的极化内阻,R0为电池的欧姆内阻,i为流过电池的电流,s为电池的荷电状态,a、b、c为待定参数,α为常数,一般根据对实际测量结果进行拟合得出。
经过分析参数a、参数b、参数c、容量Q、极化电阻Rp和欧姆内阻R0对荷电状态SOC估算精度的影响,发现参数a、b、c的值对SOC估算精度的影响很大。因此,本发明实施方式中将参数a、b和c作为影响电池SOC估算精度的关键系数,在本发明中被通称为关键参数。
通过以上分析,明确了电池SOC估算过程中需要重点关注的关键参数,本发明实施方式中也正是在利用观测器估算电池SOC过程中,不断更新这些关键参数来修正电池SOC估算方法,因此实现提高估算精度的有益效果。
因此本发明的电池荷电状态估算方法包括以下步骤:
A、获取电池基本参数;
B、拟合电池开路电压与荷电状态之间的关系模型;
C、基于电池等效电路模型,建立电池的状态方程;
D、调整状态方程的参数,观察对荷电状态估算精度的影响,得出电池基本参数以及开路电压表达式中的系数对荷电状态估计精度的影响,获得关键参数;
E、采用牛顿迭代法对关键参数建立更新方程,将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态。
从步骤E中可以看出,采用牛顿迭代法对关键参数建立更新方程,将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态。因此本发明实施方式中的电池SOC估算方法提高了电池SOC估算的精度。
步骤A中,电池的基本参数取决于电池的模型,例如使用图2所示的一阶戴维宁模型时,电池的基本参数为极化电阻RP、极化电容CP和电池的欧姆电阻Ro
得到这些基本参数的目的是作为后续电池SOC估算过程的基础,因此虽然常规技术中也有得到电池基本参数的通常方法,但本发明为了提高SOC估算的精度,还是在具体实施方式中揭示了特定的电池基本参数确定方法。具体而言,在一个具体实施方式中,通过以下方式来获取电池的基本参数:
A1、选取特定容量的电池样本,例如容量为90Ah的电池样本;
A2、将电池样本电量放空后静置第一预定时间;
A3、对电池样本充电,每当充入的电量达到其容量预定比例后,停止充电并静置第二预定时间,静置后测量电池的开路电压;
A4、根据电池开路电压与荷电状态的对应关系,获取电池的基本参数。
对电池静置的第一预定时间和第二预定时间主要是为了让其状态稳定,避免出现虚假信号,例如所述第一预定时间为3小时以上,而所述第二预定时间为1小时以上。
对预定比例进行限定主要是后续电池OCV与SOC关系的拟合过程中的基准点数目,例如预定比例为5%时,则可以得到20组电池的开路电压OCV和荷电状态SOC的映射关系。
通过以上具体实施方式,准确地获取了电池的基本参数,为电池SOC估算方法提供了良好的基础。
获取了电池的基本参数后,可以以此得到电池OCV与SOC关系模型,电池OCV与SOC的关系模型与实际测量结果的对比如图3所示,从图中可以看出,电池OCV与SOC的关系模型与实际测量的结果非常接近,说明了电池基本参数的辨识非常准确有效。
接下来,基于电池等效电路模型,建立电池的状态方程为:
Figure PCTCN2015000125-appb-000051
其中
Figure PCTCN2015000125-appb-000052
为电池端电压估算值,
xk为电池状态,
Figure PCTCN2015000125-appb-000053
Up为电池极化电压,sk为电池荷电状态,
Figure PCTCN2015000125-appb-000054
Ik为流过电池的电流,Rp、Cp分别为电池的极化电阻和极化电容;
Figure PCTCN2015000125-appb-000055
f(sk)为开路电压,f(sk)=a-b×(-ln(sk))α+csk
Dk=R0,R0为电池欧姆内阻;
uk等于Ik
并且进一步地,通过测量获得时刻k的电池端电压yk
在本发明的一个具体实施方式中,调整状态方程的参数,观察对荷电状态 估算精度的影响,得出电池基本参数以及开路电压表达式中的系数对荷电状态估计精度的影响以得到关键参数,所述各参数对荷电状态估算误差的影响作用由下式确定:
Figure PCTCN2015000125-appb-000056
其中
Figure PCTCN2015000125-appb-000057
为电池荷电状态稳态估算误差,
ΔR为电池总内阻误差,
L2为对电池荷电状态一阶导数的误差反馈量的增益系数,
Δai为斜率误差,
Δbi为截距误差,
Q为电池容量,
soc(t)为电池荷电状态与时间的关系,
Figure PCTCN2015000125-appb-000058
为斜率估计值,
i为电池电流。
通过前述分析内容我们已知,电池OCV-SOC关系模型中的参数a、b和c是对SOC估算精度具有最显著影响的参数,因此在本发明实施方式中以上参数被确定为关键参数。
在本发明一实施方式中,采用牛顿迭代法来对关键参数建立更新方程。
所述牛顿迭代方法的更新方程根据时刻k电池端电压测量值yk更新电池开路电压与荷电状态之间的关系模型的关键参数(a,b和c):
Figure PCTCN2015000125-appb-000059
其中θi=[ai,bi,ci]T为第i次迭代后的关键参数组成的向量;关键参数的初值 θ0=[a0,b0,c0]T为随机数。μ为设定步长,例如可以取0.1或其他数值。而yk为时刻k电池的端电压实际值,
Figure PCTCN2015000125-appb-000060
为关键参数的雅可比矩阵且满足以下关系:
Figure PCTCN2015000125-appb-000061
qj为电池充电过程中任意连续N个时段中第j个时段充入电池的电量,j=1,2,...,N,N为预定值,是随机选取的,Q为电池的容量。
并且在本发明实施方式中,将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态为:
Figure PCTCN2015000125-appb-000062
其中xk和xk+1分别为时刻k和时刻k+1的电池状态,
Figure PCTCN2015000125-appb-000063
其中Rp、Cp分别为电池的极化电阻和极化电容,
Figure PCTCN2015000125-appb-000064
其中Q为电池容量,
yk
Figure PCTCN2015000125-appb-000065
分别为时刻k电池端电压的测量值和估算值;
Figure PCTCN2015000125-appb-000066
L1为对电池极化电压一阶导数的误差反馈量的增益系数,L2为对电池荷电状态一阶导数的误差反馈量的增益系数,如前所述,这些增益系数取决于观测器本身。
得到了更新后的关键参数a′、b′和c′,以及电池于时刻k+1的状态xk+1之后,重新估算时刻k+1的端电压,作为观测器进行误差比较的输入。
重新估算时刻k+1的端电压的具体方法为:
Figure PCTCN2015000125-appb-000067
其中
Figure PCTCN2015000125-appb-000068
为时刻k+1电池的端电压估算值,
Figure PCTCN2015000125-appb-000069
且根据OCV-SOC模型有f(sk+1)=a′-b′×(-ln(sk+1))α+c′sk+1,a′、b′和c′分别为经过更新后的关键参数,sk+1为时刻k+1电池的荷电状态。xk+1为时刻k+1电池的状态。Dk+1=R0,Ro为电池的欧姆内阻,uk+1为时刻k+1流过电池的电流。
这样将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态,电池SOC估算方法的精度得到了提高,克服了现有技术中电池SOC估算过程中的关键参数保持固定,因此误差逐步增大的缺陷。
在关键参数更新过程中,影响估算精度的关键是迭代过程中的迭代次数。例如图4中所示,分别为迭代次数为100次、300次和500次的关键参数更新过程所导致的电池SOC估算结果,其应用背景是恒流充电工况。从图4中可以看出,当迭代次数为100次时,电池SOC估算结果与实际情况具有较大误差,而随着关键参数迭代更新次数越多,荷电状态SOC估算值越接近于真实值,当迭代次数达到了500次时,电池SOC估算值与真实情况之间的差距很小。
图5为DST工况下,关键参数分别经过100次、300次和500次迭代次数的更新后得到的电池荷电状态SOC估算结果图。从图5中可以看出,同样当迭代次数为500次或以上时,电池SOC估算值与真实情况非常接近。
在DST工况下,将关键参数经500次迭代更新后的结果代入电池SOC估计的状态方程中,得到不同时间尺度参数与电池SOC估计效果如图6所示。从图中可以看出,经过一定时间后,电池SOC估计的误差保持在1%以下,说明了 本发明实施方式具有很高的精确性。
为了实现本发明实施方式中的电池SOC估算方法,本发明还包括一种电池荷电状态估算装置,所述装置包括:
基本参数分析单元,用于获取电池基本参数;
电池模型获取单元,用于拟合电池开路电压与荷电状态之间的关系模型;
状态方程确定单元,用于基于电池等效电路模型,建立电池的状态方程;
参数分析单元,用于调整状态方程的参数,观察对荷电状态估算精度的影响,得出电池基本参数以及开路电压表达式中的系数对荷电状态估计精度的影响,获得关键参数;
电池荷电状态估算单元,用于采用牛顿迭代法对关键参数建立更新方程,将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态。
其中,
所述电池模型获取单元根据y=a-b×(-ln(s))α+cs来拟合电池开路电压与荷电状态之间的关系模型其中y为电池的开路电压,s为电池的荷电状态,a、b、c为所述关键参数,α为常数;
所述状态方程确定单元建立电池的状态方程:
Figure PCTCN2015000125-appb-000070
其中
Figure PCTCN2015000125-appb-000071
为电池端电压估算值,
xk为电池状态,
Figure PCTCN2015000125-appb-000072
Up为电池极化电压,sk为电池荷电状态,
Figure PCTCN2015000125-appb-000073
Ik为流过电池的电流,Rp、Cp分别为电池的极化电阻和极化电容;
Figure PCTCN2015000125-appb-000074
f(sk)为开路电压,f(sk)=a-b×(-ln(sk))α+csk
Dk=R0,R0为电池欧姆内阻;
uk等于Ik
所述电池荷电状态估算单元,用于采用牛顿迭代法对关键参数建立更新方程关键参数为:
Figure PCTCN2015000125-appb-000075
其中θi=[ai,bi,ci]T为第i次迭代后的关键参数组成的向量;
关键参数的初值θ0=[a0,b0,c0]T为随机数,μ为设定步长,yk为时刻k电池的端电压实际值,
Figure PCTCN2015000125-appb-000076
为关键参数的雅可比矩阵且有:
Figure PCTCN2015000125-appb-000077
qj为电池充电过程中任意连续N个时段中第j个时段充入电池的电量,j=1,2,...,N,N为预定值,Q为电池的容量;
所述所述电池荷电状态估算单元将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态为:
Figure PCTCN2015000125-appb-000078
其中xk和xk+1分别为此时刻和下一时刻的电池状态,
Figure PCTCN2015000125-appb-000079
其中Rp、Cp分别为电池的极化电阻和极化电容,
Figure PCTCN2015000125-appb-000080
其中Q为电池容量,
yk
Figure PCTCN2015000125-appb-000081
分别为此时刻电池端电压的测量值和估算值;
Figure PCTCN2015000125-appb-000082
L1为对电池极化电压一阶导数的误差反馈量的增益系数,L2为对电池荷电状态一阶导数的误差反馈量的增益系数。
需要说明的是,上述实施方式仅为本发明较佳的实施方案,不能将其理解为对本发明保护范围的限制,在未脱离本发明构思前提下,对本发明所做的任何微小变化与修饰均属于本发明的保护范围。

Claims (10)

  1. 一种电池荷电状态估算方法,所述方法包括步骤:
    A、获取电池基本参数;
    B、拟合电池开路电压与荷电状态之间的关系模型;
    C、基于电池等效电路模型,建立电池的状态方程;
    D、调整状态方程的参数,观察对荷电状态估算精度的影响,得出电池基本参数以及开路电压表达式中的系数对荷电状态估计精度的影响,获得关键参数;
    E、采用牛顿迭代法对关键参数建立更新方程,将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态。
  2. 根据权利要求1中所述的电池荷电状态估算方法,其特征在于,步骤D中调整状态方程的参数,观察对荷电状态估算精度的影响,得出电池基本参数以及开路电压表达式中的系数对荷电状态估计精度的影响以得到关键参数,所述各参数对荷电状态估算精度的影响作用由下式确定:
    Figure PCTCN2015000125-appb-100001
    其中
    Figure PCTCN2015000125-appb-100002
    为电池荷电状态稳态估算误差,
    ΔR为电池总内阻误差,
    L2为对电池荷电状态一阶导数的误差反馈量的增益系数,
    Δai为斜率误差,
    Δbi为截距误差,
    Q为电池容量,
    soc(t)为电池荷电状态与时间的关系,
    Figure PCTCN2015000125-appb-100003
    为斜率估计值,
    i为电池电流。
  3. 根据权利要求1中所述的电池荷电状态估算方法,其特征在于,获取所述电池基本参数的方法包括:
    A1、选取特定容量的电池样本;
    A2、将电池样本电量放空后静置第一预定时间;
    A3、对电池样本充电,每当充入的电量达到其容量预定比例后,停止充电并静置第二预定时间,静置后测量电池的开路电压;
    A4、根据电池开路电压与荷电状态的对应关系,获取电池的基本参数。
  4. 根据权利要求1中所述的电池荷电状态估算方法,其特征在于,所述电池开路电压与荷电状态之间的关系模型的表达式为:
    y=a-b×(-ln(s))α+cs,
    其中y为电池的开路电压,s为电池的荷电状态,a、b、c为所述关键参数,α为常数。
  5. 根据权利要求4中所述的电池荷电状态估算方法,其特征在于,所述基于电池等效电路模型,建立电池状态方程为:
    Figure PCTCN2015000125-appb-100004
    其中
    Figure PCTCN2015000125-appb-100005
    为电池端电压估算值,
    xk为电池状态,
    Figure PCTCN2015000125-appb-100006
    Up为电池极化电压,sk为电池荷电状态,
    其中
    Figure PCTCN2015000125-appb-100007
    Ik为流过电池的电流,Rp、Cp分别为电池的极化电阻和极化电容;
    Figure PCTCN2015000125-appb-100008
    f(sk)为电池开路电压,f(sk)=a-b×(-ln(sk))α+csk
    Dk=R0,R0为电池欧姆内阻,
    uk等于Ik
  6. 根据权利要求4中所述的电池荷电状态估算方法,其特征在于,所述采用牛顿迭代法对关键参数建立更新方程为::
    Figure PCTCN2015000125-appb-100009
    其中θi=[ai,bi,ci]T为第i次迭代后的关键参数组成的向量;
    关键参数向量的初值θ0=[a0,b0,c0]T为随机数,μ为设定步长,yk为时刻k电池的端电压实际值,
    Figure PCTCN2015000125-appb-100010
    为关键参数的雅可比矩阵且有:
    Figure PCTCN2015000125-appb-100011
    qj为电池充电过程中任意连续N个时段中第j个时段充入电池的电量,j=1,2,...,N,N为预定值,Q为电池的容量。
  7. 根据权利要求6中所述的电池荷电状态估算方法,其特征在于,所述牛顿迭代法迭代次数为500次以上。
  8. 根据权利要求4中所述的电池荷电状态估算方法,其特征在于,所述将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态为:
    Figure PCTCN2015000125-appb-100012
    其中xk和xk+1分别为此时刻和下一时刻的电池状态,
    Figure PCTCN2015000125-appb-100013
    其中Rp、Cp分别为电池的极化电阻和极化电容,
    Figure PCTCN2015000125-appb-100014
    其中Q为电池容量,
    yk
    Figure PCTCN2015000125-appb-100015
    分别为此时刻电池端电压的测量值和估算值;
    Figure PCTCN2015000125-appb-100016
    L1为对电池极化电压一阶导数的误差反馈量的增益系数,L2为对电池荷电状态一阶导数的误差反馈量的增益系数。
  9. 一种电池荷电状态估算装置,所述装置包括:
    基本参数分析单元,用于获取电池基本参数;
    电池模型获取单元,用于拟合电池开路电压与荷电状态之间的关系模型;
    状态方程确定单元,用于基于电池等效电路模型,建立电池的状态方程;
    参数分析单元,用于调整状态方程的参数,观察对荷电状态估算精度的影响,得出电池基本参数以及开路电压表达式中的系数对荷电状态估计精度的影响,获得关键参数;
    电池荷电状态估算单元,用于采用牛顿迭代法对关键参数建立更新方程,将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态。
  10. 根据权利要求9中所述的电池荷电状态估算装置,其特征在于:
    所述电池模型获取单元根据y=a-b×(-ln(s))α+cs来拟合电池开路电压与荷电状态之间的关系模型其中y为电池的开路电压,s为电池的荷电状态,a、b、c为所述关键参数,α为常数;
    所述状态方程确定单元建立电池的状态方程:
    Figure PCTCN2015000125-appb-100017
    其中
    Figure PCTCN2015000125-appb-100018
    为电池端电压估算值,
    xk为电池状态,
    Figure PCTCN2015000125-appb-100019
    Up为电池极化电压,sk为电池荷电状态,
    Figure PCTCN2015000125-appb-100020
    Ik为流过电池的电流,Rp、Cp分别为电池的极化电阻和极化电容;
    Figure PCTCN2015000125-appb-100021
    f(sk)为开路电压,f(sk)=a-b×(-ln(sk))α+csk
    Dk=R0,R0为电池欧姆内阻;
    uk等于Ik
    所述电池荷电状态估算单元,用于采用牛顿迭代法对关键参数建立更新方程为:
    Figure PCTCN2015000125-appb-100022
    其中θi=[ai,bi,ci]T为第i次迭代后的关键参数组成的向量;
    关键参数的初值θ0=[a0,b0,c0]T为随机数,μ为设定步长,yk为时刻k电池的端电压实际值,
    Figure PCTCN2015000125-appb-100023
    为关键参数的雅可比矩阵且有:
    Figure PCTCN2015000125-appb-100024
    qj为电池充电过程中任意连续N个时段中第j个时段充入电池的电量, j=1,2,...,N,N为预定值,Q为电池的容量;
    所述电池荷电状态估算单元将更新方程与观测器估算荷电状态方法联合应用估算电池荷电状态为:
    Figure PCTCN2015000125-appb-100025
    其中xk和xk+1分别为此时刻和下一时刻的电池状态,
    Figure PCTCN2015000125-appb-100026
    其中Rp、Cp分别为电池的极化电阻和极化电容,
    Figure PCTCN2015000125-appb-100027
    其中Q为电池容量,
    yk
    Figure PCTCN2015000125-appb-100028
    分别为此时刻电池端电压的测量值和估算值;
    Figure PCTCN2015000125-appb-100029
    L1为对电池极化电压一阶导数的误差反馈量的增益系数,L2为对电池荷电状态一阶导数的误差反馈量的增益系数。
PCT/CN2015/000125 2014-06-11 2015-02-28 电池荷电状态估算方法和装置 WO2015188610A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580031120.0A CN106716158B (zh) 2014-06-11 2015-02-28 电池荷电状态估算方法和装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410258544.8A CN104007395B (zh) 2014-06-11 2014-06-11 锂离子电池荷电状态与参数自适应联合估计方法
CN201410258544.8 2014-06-11
CN201410319719.1 2014-07-07
CN201410319719.1A CN104076293B (zh) 2014-07-07 2014-07-07 基于观测器的锂电池soc估算误差的定量分析方法

Publications (1)

Publication Number Publication Date
WO2015188610A1 true WO2015188610A1 (zh) 2015-12-17

Family

ID=54832852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000125 WO2015188610A1 (zh) 2014-06-11 2015-02-28 电池荷电状态估算方法和装置

Country Status (2)

Country Link
CN (1) CN106716158B (zh)
WO (1) WO2015188610A1 (zh)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107139762A (zh) * 2017-06-05 2017-09-08 吉林大学 一种电动汽车优化充电控制方法及其系统
CN110348062A (zh) * 2019-06-14 2019-10-18 湖北锂诺新能源科技有限公司 锂离子电池等效电路模型的构建方法
CN110361653A (zh) * 2019-07-25 2019-10-22 北方民族大学 一种基于混合储能装置的soc估算方法及系统
CN111033930A (zh) * 2017-08-24 2020-04-17 罗伯特·博世有限公司 电池和电池包的荷电状态的估计方法及利用此荷电状态估计方法的电池管理系统、电池以及电动汽车
CN111090963A (zh) * 2019-12-05 2020-05-01 重庆大学 一种基于用户需求的自适应多段恒流恒压充电方法
CN111177992A (zh) * 2019-12-16 2020-05-19 中车工业研究院有限公司 基于电化学理论和等效电路模型的电池模型及其构建方法
CN111191398A (zh) * 2019-12-06 2020-05-22 云南电网有限责任公司玉溪供电局 基于svr的变电站直流系统蓄电池退化趋势预测方法
CN111929581A (zh) * 2020-06-05 2020-11-13 西安理工大学 一种动力锂电池内外部温度预测方法
CN111965547A (zh) * 2020-09-27 2020-11-20 哈尔滨工业大学(威海) 一种基于参数辨识法的电池系统传感器故障诊断方法
CN112213653A (zh) * 2019-10-30 2021-01-12 蜂巢能源科技有限公司 动力电池的电芯荷电状态估算方法及电池管理系统
CN112345942A (zh) * 2020-11-09 2021-02-09 阳光三星(合肥)储能电源有限公司 一种电池系统及其bms和满充满放soc校准方法
CN112485680A (zh) * 2020-11-27 2021-03-12 浙江零跑科技有限公司 一种电池soc估算方法
CN112649746A (zh) * 2019-10-10 2021-04-13 西南科技大学 一种结合电路等效和递推迭代的荷电状态估计方法
CN113203952A (zh) * 2020-01-15 2021-08-03 通用汽车环球科技运作有限责任公司 采用电压斜率容量和动态锚的电池容量估算方法与系统
CN113447824A (zh) * 2021-06-28 2021-09-28 三一重型装备有限公司 电池最大充放电电流的估算方法、装置及存储介质
CN113447821A (zh) * 2021-06-30 2021-09-28 国网北京市电力公司 评估电池荷电状态的方法
CN113777510A (zh) * 2021-09-07 2021-12-10 国网江苏省电力有限公司电力科学研究院 一种锂电池荷电状态估计方法及装置
CN113868996A (zh) * 2021-10-19 2021-12-31 青岛科技大学 基于递阶牛顿辨识算法的光伏太阳能模型参数估计方法
CN114035082A (zh) * 2021-12-10 2022-02-11 厦门金龙联合汽车工业有限公司 一种新能源车辆电池系统异常电芯快速诊断方法
CN114035049A (zh) * 2021-11-08 2022-02-11 东软睿驰汽车技术(沈阳)有限公司 Soh精度的计算方法、装置和电子设备
CN114089207A (zh) * 2021-11-08 2022-02-25 北京国家新能源汽车技术创新中心有限公司 一种电池容量特征提取方法
CN114252771A (zh) * 2021-12-13 2022-03-29 北京经纬恒润科技股份有限公司 一种电池参数在线辨识方法及系统
CN114280485A (zh) * 2021-12-27 2022-04-05 湖北亿纬动力有限公司 Soc估算及一致性评估方法、装置、计算机设备
CN114818561A (zh) * 2022-04-11 2022-07-29 合肥工业大学 一种锂离子电池荷电状态多环模型估计方法
CN114910806A (zh) * 2022-05-16 2022-08-16 盐城工学院 一种并联型电池系统建模方法
EP3565731B1 (en) 2017-01-09 2022-10-19 Volvo Truck Corporation A method and arrangement for determining the state of charge of a battery pack
CN115327385A (zh) * 2022-07-29 2022-11-11 武汉理工大学 一种动力电池soc值估算方法及系统
CN115544813A (zh) * 2022-11-29 2022-12-30 苏州易来科得科技有限公司 电池电性能的计算方法
CN116184248A (zh) * 2023-04-24 2023-05-30 广东石油化工学院 一种串联电池组的微小短路故障检测方法
CN116203435A (zh) * 2023-05-06 2023-06-02 广汽埃安新能源汽车股份有限公司 一种电池参数获取方法、装置、电子设备及存储介质
CN116298991A (zh) * 2023-05-25 2023-06-23 湖南锂汇通新能源科技有限责任公司 一种退役电池容量快速检测评估方法及系统
CN116500457A (zh) * 2023-06-26 2023-07-28 西北工业大学 一种神经元网络融合rc等效电路模型估计电池soc的方法
CN116643193A (zh) * 2023-06-14 2023-08-25 北京智芯微电子科技有限公司 电池数据估计方法、装置、存储介质及电子设备
CN116840699A (zh) * 2023-08-30 2023-10-03 上海泰矽微电子有限公司 一种电池健康状态估算方法、装置、电子设备和介质

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108318819A (zh) * 2017-01-16 2018-07-24 上海蓝诺新能源技术有限公司 一种估算电池荷电状态的方法
IT201700058171A1 (it) * 2017-05-29 2018-11-29 Magneti Marelli Spa Metodo di stima della corrente e dello stato di carica di un pacco batteria o cella, senza rilevazione diretta di corrente in condizioni operative
CN107340479B (zh) * 2017-06-16 2020-10-09 山东大学 一种提高电动汽车动力电池soc计算精度的方法及系统
CN108490361B (zh) * 2018-03-22 2020-07-24 深圳库博能源科技有限公司 一种基于云端反馈的荷电状态SoC计算方法
US20190308630A1 (en) * 2018-04-10 2019-10-10 GM Global Technology Operations LLC Battery state estimation based on open circuit voltage and calibrated data
JPWO2020012720A1 (ja) * 2018-07-10 2021-08-12 住友電気工業株式会社 二次電池パラメータ推定装置、二次電池パラメータ推定方法及びプログラム
CN109031147B (zh) * 2018-08-21 2020-12-01 湖南兴业绿色电力科技有限公司 一种磷酸铁锂电池组的soc估算方法
CN110244237A (zh) * 2019-06-20 2019-09-17 广东志成冠军集团有限公司 海岛电源储能电池估算方法、模型及系统
CN110673037B (zh) * 2019-09-11 2022-02-22 国网河北省电力有限公司石家庄供电分公司 基于改进模拟退火算法的电池soc估算方法及系统
JP6960488B2 (ja) * 2020-03-03 2021-11-05 本田技研工業株式会社 電動車両、表示方法
CN113466722B (zh) * 2020-03-31 2022-11-11 比亚迪股份有限公司 确定电池荷电状态测量精度的方法及装置,电子设备
CN111830418B (zh) * 2020-07-09 2021-05-11 南京航空航天大学 一种考虑软包电池外部环境影响的soc估计方法
CN112265472A (zh) * 2020-10-29 2021-01-26 长城汽车股份有限公司 车辆的动力电池荷电状态值的确定方法和装置
CN114764967A (zh) * 2021-01-14 2022-07-19 新智数字科技有限公司 联合学习框架下设备故障报警的方法
CN113300016B (zh) * 2021-05-21 2022-12-13 广州小鹏汽车科技有限公司 一种电池充放电控制方法和装置
CN114043875B (zh) * 2021-11-16 2024-01-26 江苏爱玛车业科技有限公司 基于大数据的剩余里程预估偏差分析方法和系统
CN115524629B (zh) * 2022-11-23 2023-02-24 陕西汽车集团股份有限公司 一种车辆动力电池系统健康状态的评估方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040162683A1 (en) * 2003-02-18 2004-08-19 Verbrugge Mark W. Method and apparatus for generalized recursive least-squares process for battery state of charge and state of health
CN101598769A (zh) * 2009-06-29 2009-12-09 杭州电子科技大学 一种基于采样点卡尔曼滤波的电池剩余电量估计方法
CN101813754A (zh) * 2010-04-19 2010-08-25 清华大学 一种用于汽车起动照明型铅酸蓄电池的状态估算方法
CN102608542A (zh) * 2012-04-10 2012-07-25 吉林大学 动力电池荷电状态估计方法
CN103792495A (zh) * 2014-01-29 2014-05-14 北京交通大学 基于德尔菲法和灰色关联理论的电池性能评价方法
CN104007395A (zh) * 2014-06-11 2014-08-27 北京交通大学 锂离子电池荷电状态与参数自适应联合估计方法
CN104076293A (zh) * 2014-07-07 2014-10-01 北京交通大学 基于观测器的锂电池soc估算误差的定量分析方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10335928B4 (de) * 2003-08-06 2006-11-09 Vb Autobatterie Gmbh Verfahren zur Ermittlung einer von der Elektrolytkonzentration und/oder Elektrolytverteilung abhängigen auf den Ladezustand einer Speicherbatterie bezogenen Kenngröße
CN100492751C (zh) * 2007-03-09 2009-05-27 清华大学 基于标准电池模型的镍氢动力电池荷电状态的估计方法
CN102680795B (zh) * 2012-05-29 2014-11-05 哈尔滨工业大学 一种二次电池内阻的实时在线估计方法
CN103018679A (zh) * 2012-12-10 2013-04-03 中国科学院广州能源研究所 一种铅酸电池初始荷电状态soc0的估算方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040162683A1 (en) * 2003-02-18 2004-08-19 Verbrugge Mark W. Method and apparatus for generalized recursive least-squares process for battery state of charge and state of health
CN101598769A (zh) * 2009-06-29 2009-12-09 杭州电子科技大学 一种基于采样点卡尔曼滤波的电池剩余电量估计方法
CN101813754A (zh) * 2010-04-19 2010-08-25 清华大学 一种用于汽车起动照明型铅酸蓄电池的状态估算方法
CN102608542A (zh) * 2012-04-10 2012-07-25 吉林大学 动力电池荷电状态估计方法
CN103792495A (zh) * 2014-01-29 2014-05-14 北京交通大学 基于德尔菲法和灰色关联理论的电池性能评价方法
CN104007395A (zh) * 2014-06-11 2014-08-27 北京交通大学 锂离子电池荷电状态与参数自适应联合估计方法
CN104076293A (zh) * 2014-07-07 2014-10-01 北京交通大学 基于观测器的锂电池soc估算误差的定量分析方法

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3565731B1 (en) 2017-01-09 2022-10-19 Volvo Truck Corporation A method and arrangement for determining the state of charge of a battery pack
CN107139762A (zh) * 2017-06-05 2017-09-08 吉林大学 一种电动汽车优化充电控制方法及其系统
CN111033930A (zh) * 2017-08-24 2020-04-17 罗伯特·博世有限公司 电池和电池包的荷电状态的估计方法及利用此荷电状态估计方法的电池管理系统、电池以及电动汽车
CN111033930B (zh) * 2017-08-24 2024-03-05 罗伯特·博世有限公司 电池和电池包的荷电状态的估计方法及利用此荷电状态估计方法的电池管理系统
CN110348062A (zh) * 2019-06-14 2019-10-18 湖北锂诺新能源科技有限公司 锂离子电池等效电路模型的构建方法
CN110348062B (zh) * 2019-06-14 2023-05-26 湖北锂诺新能源科技有限公司 一种锂离子电池等效电路模型的构建方法
CN110361653A (zh) * 2019-07-25 2019-10-22 北方民族大学 一种基于混合储能装置的soc估算方法及系统
CN110361653B (zh) * 2019-07-25 2024-05-03 郑柏阳 一种基于混合储能装置的soc估算方法及系统
CN112649746A (zh) * 2019-10-10 2021-04-13 西南科技大学 一种结合电路等效和递推迭代的荷电状态估计方法
CN112213653B (zh) * 2019-10-30 2023-05-16 蜂巢能源科技有限公司 动力电池的电芯荷电状态估算方法及电池管理系统
CN112213653A (zh) * 2019-10-30 2021-01-12 蜂巢能源科技有限公司 动力电池的电芯荷电状态估算方法及电池管理系统
CN111090963A (zh) * 2019-12-05 2020-05-01 重庆大学 一种基于用户需求的自适应多段恒流恒压充电方法
CN111191398A (zh) * 2019-12-06 2020-05-22 云南电网有限责任公司玉溪供电局 基于svr的变电站直流系统蓄电池退化趋势预测方法
CN111177992B (zh) * 2019-12-16 2024-03-29 中车工业研究院有限公司 基于电化学理论和等效电路模型的电池模型及其构建方法
CN111177992A (zh) * 2019-12-16 2020-05-19 中车工业研究院有限公司 基于电化学理论和等效电路模型的电池模型及其构建方法
CN113203952A (zh) * 2020-01-15 2021-08-03 通用汽车环球科技运作有限责任公司 采用电压斜率容量和动态锚的电池容量估算方法与系统
CN111929581A (zh) * 2020-06-05 2020-11-13 西安理工大学 一种动力锂电池内外部温度预测方法
CN111929581B (zh) * 2020-06-05 2022-10-21 西安理工大学 一种动力锂电池内外部温度预测方法
CN111965547A (zh) * 2020-09-27 2020-11-20 哈尔滨工业大学(威海) 一种基于参数辨识法的电池系统传感器故障诊断方法
CN112345942B (zh) * 2020-11-09 2024-02-23 阳光储能技术有限公司 一种电池系统及其bms和满充满放soc校准方法
CN112345942A (zh) * 2020-11-09 2021-02-09 阳光三星(合肥)储能电源有限公司 一种电池系统及其bms和满充满放soc校准方法
CN112485680A (zh) * 2020-11-27 2021-03-12 浙江零跑科技有限公司 一种电池soc估算方法
CN112485680B (zh) * 2020-11-27 2024-04-23 浙江零跑科技股份有限公司 一种电池soc估算方法
CN113447824A (zh) * 2021-06-28 2021-09-28 三一重型装备有限公司 电池最大充放电电流的估算方法、装置及存储介质
CN113447821A (zh) * 2021-06-30 2021-09-28 国网北京市电力公司 评估电池荷电状态的方法
CN113777510A (zh) * 2021-09-07 2021-12-10 国网江苏省电力有限公司电力科学研究院 一种锂电池荷电状态估计方法及装置
CN113868996B (zh) * 2021-10-19 2024-05-07 青岛科技大学 基于递阶牛顿辨识算法的光伏太阳能模型参数估计方法
CN113868996A (zh) * 2021-10-19 2021-12-31 青岛科技大学 基于递阶牛顿辨识算法的光伏太阳能模型参数估计方法
CN114089207A (zh) * 2021-11-08 2022-02-25 北京国家新能源汽车技术创新中心有限公司 一种电池容量特征提取方法
CN114035049A (zh) * 2021-11-08 2022-02-11 东软睿驰汽车技术(沈阳)有限公司 Soh精度的计算方法、装置和电子设备
CN114035082A (zh) * 2021-12-10 2022-02-11 厦门金龙联合汽车工业有限公司 一种新能源车辆电池系统异常电芯快速诊断方法
CN114252771B (zh) * 2021-12-13 2024-05-07 北京经纬恒润科技股份有限公司 一种电池参数在线辨识方法及系统
CN114252771A (zh) * 2021-12-13 2022-03-29 北京经纬恒润科技股份有限公司 一种电池参数在线辨识方法及系统
CN114280485A (zh) * 2021-12-27 2022-04-05 湖北亿纬动力有限公司 Soc估算及一致性评估方法、装置、计算机设备
CN114280485B (zh) * 2021-12-27 2023-07-28 湖北亿纬动力有限公司 Soc估算及一致性评估方法、装置、计算机设备
CN114818561A (zh) * 2022-04-11 2022-07-29 合肥工业大学 一种锂离子电池荷电状态多环模型估计方法
CN114818561B (zh) * 2022-04-11 2024-02-09 合肥工业大学 一种锂离子电池荷电状态多环模型估计方法
CN114910806B (zh) * 2022-05-16 2024-05-07 盐城工学院 一种并联型电池系统建模方法
CN114910806A (zh) * 2022-05-16 2022-08-16 盐城工学院 一种并联型电池系统建模方法
CN115327385A (zh) * 2022-07-29 2022-11-11 武汉理工大学 一种动力电池soc值估算方法及系统
CN115544813A (zh) * 2022-11-29 2022-12-30 苏州易来科得科技有限公司 电池电性能的计算方法
CN116184248B (zh) * 2023-04-24 2023-07-07 广东石油化工学院 一种串联电池组的微小短路故障检测方法
CN116184248A (zh) * 2023-04-24 2023-05-30 广东石油化工学院 一种串联电池组的微小短路故障检测方法
CN116203435A (zh) * 2023-05-06 2023-06-02 广汽埃安新能源汽车股份有限公司 一种电池参数获取方法、装置、电子设备及存储介质
CN116298991A (zh) * 2023-05-25 2023-06-23 湖南锂汇通新能源科技有限责任公司 一种退役电池容量快速检测评估方法及系统
CN116298991B (zh) * 2023-05-25 2023-09-12 湖南锂汇通新能源科技有限责任公司 一种退役电池容量快速检测评估方法及系统
CN116643193A (zh) * 2023-06-14 2023-08-25 北京智芯微电子科技有限公司 电池数据估计方法、装置、存储介质及电子设备
CN116500457A (zh) * 2023-06-26 2023-07-28 西北工业大学 一种神经元网络融合rc等效电路模型估计电池soc的方法
CN116500457B (zh) * 2023-06-26 2023-09-19 西北工业大学 一种神经元网络融合rc等效电路模型估计电池soc的方法
CN116840699B (zh) * 2023-08-30 2023-11-17 上海泰矽微电子有限公司 一种电池健康状态估算方法、装置、电子设备和介质
CN116840699A (zh) * 2023-08-30 2023-10-03 上海泰矽微电子有限公司 一种电池健康状态估算方法、装置、电子设备和介质

Also Published As

Publication number Publication date
CN106716158A (zh) 2017-05-24
CN106716158B (zh) 2019-05-17

Similar Documents

Publication Publication Date Title
WO2015188610A1 (zh) 电池荷电状态估算方法和装置
CN107991623B (zh) 一种考虑温度和老化程度的电池安时积分soc估计方法
WO2020216082A1 (zh) 电池健康状态修正方法、装置、管理系统以及存储介质
WO2020238583A1 (zh) Soc修正方法和装置、电池管理系统和存储介质
WO2016134496A1 (zh) 锂离子电池荷电状态估算方法和装置
WO2015106691A1 (zh) 一种混合动力车用动力电池soc估算方法
CN105277898B (zh) 一种电池荷电状态的检测方法
CN110709717B (zh) 基于松弛电压估计移动设备的电池健康的方法
CN107677965B (zh) 一种锂电池能量状态估算方法
CN111220920B (zh) 基于h∞无迹卡尔曼滤波算法的退役锂离子电池荷电状态计算方法
WO2020259096A1 (zh) 电池的许用功率估算方法、装置、系统和存储介质
CN108445422B (zh) 基于极化电压恢复特性的电池荷电状态估算方法
CN112595979B (zh) 一种考虑非充分激励的锂电池参数在线辨识方法及系统
CN107817448B (zh) 一种适用于复杂工况的在线实时监测电池电量的方法
WO2016106501A1 (zh) 一种电池等效电路模型
CN118251603A (zh) 电池健康状态推定系统、用于其的参数提取系统及方法
WO2018188321A1 (zh) 一种增强电池状态估计鲁棒性的方法
CN115494400B (zh) 一种基于集成学习的锂电池析锂状态在线监控方法
US20230236252A1 (en) Methods and devices for estimating state of charge of battery, and extracting charging curve of battery
Hu et al. Study on SOC estimation of lithium battery based on improved BP neural network
CN115327415A (zh) 基于限定记忆递推最小二乘算法的锂电池soc估算方法
CN115656848A (zh) 一种基于容量修正的锂电池soc估算方法
CN107402356B (zh) 一种基于动态参数辨识的ekf估算铅酸电池soc方法
CN116930794A (zh) 电池容量更新方法、装置、电子设备及存储介质
WO2021035500A1 (zh) 用于48v轻混汽车锂离子电池的荷电状态在线估算系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15805917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15805917

Country of ref document: EP

Kind code of ref document: A1