WO2020259096A1 - 电池的许用功率估算方法、装置、系统和存储介质 - Google Patents

电池的许用功率估算方法、装置、系统和存储介质 Download PDF

Info

Publication number
WO2020259096A1
WO2020259096A1 PCT/CN2020/089370 CN2020089370W WO2020259096A1 WO 2020259096 A1 WO2020259096 A1 WO 2020259096A1 CN 2020089370 W CN2020089370 W CN 2020089370W WO 2020259096 A1 WO2020259096 A1 WO 2020259096A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
state
charge
allowable power
value
Prior art date
Application number
PCT/CN2020/089370
Other languages
English (en)
French (fr)
Inventor
李世超
汤慎之
杜明树
阮见
卢艳华
张伟
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2020259096A1 publication Critical patent/WO2020259096A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery

Definitions

  • This application relates to the field of battery technology, in particular to a method, device, system and storage medium for estimating allowable power of a battery.
  • the battery's allowable power indicates the battery's ability to withstand charge and discharge power.
  • SOP allowable power
  • Common allowable power methods based on voltage limit include: offline look-up table method, that is, through offline calibration of allowable power under different states of charge and battery temperature, and check the table to determine the allowable battery in real vehicle operation Power; but for battery systems with hysteresis characteristics, the open circuit voltage cannot be accurately calculated due to the influence of historical operating conditions, which leads to the inability to accurately estimate the allowable power of the battery.
  • the embodiments of the present application provide a battery allowable power estimation method, device, system and storage medium, which can improve the accuracy of estimating the allowable power of a battery with hysteresis characteristics.
  • an embodiment of the present application provides a battery allowable power estimation method, including:
  • an embodiment of the present application provides a battery allowable power estimation device, including:
  • the battery parameter determination module is used to determine the current state of charge value of the battery and the current battery temperature; the working condition data acquisition module is used to obtain the working condition operating data of the battery; the first estimation module is used to process the working condition operating data to obtain the battery
  • the hysteresis coefficient of the battery is used to estimate the allowable power of the battery according to the corresponding relationship between the allowable power of the battery and the current state of charge value, the current battery temperature, and the hysteresis coefficient.
  • an embodiment of the present application provides a battery allowable power estimation system, including: a memory and a processor; the memory is used to store a program; the processor is used to read the executable program code stored in the memory to execute the foregoing The first aspect of the battery allowable power estimation method.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the instructions run on a computer, the computer executes the allowable power of the battery in the first aspect. Estimate method.
  • an embodiment of the present application provides a method for estimating allowable power of a battery, including:
  • an embodiment of the present application provides a battery allowable power estimation device, including:
  • the battery parameter determination module is used to determine the current state of charge value of the battery and the current battery temperature;
  • the operating condition data acquisition module is used to obtain the historical state of charge value of the battery from the operating data of the battery;
  • the second estimation module It is used to estimate the model component by using the preset open circuit voltage to process the current state of charge value, current battery temperature and historical state of charge value to obtain the allowable power of the battery.
  • an embodiment of the present application provides a battery allowable power estimation system, including: a memory and a processor; the memory is used to store a program; the processor is used to read the executable program code stored in the memory to execute the foregoing The fourth aspect of the battery allowable power estimation method.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions in the computer-readable storage medium.
  • the instructions When the instructions are run on a computer, the computer executes the allowable power of the battery in the fourth aspect. Estimate method.
  • the state of charge and battery temperature of the battery can be used in combination with the operating data of the battery. Estimate the allowable power of the battery, consider the influence of the allowable power estimation by the working conditions in the estimation process, and improve the accuracy of the allowable power estimation.
  • Fig. 1 shows a schematic diagram of a hysteresis characteristic curve of an open circuit voltage of a battery according to an embodiment of the present application
  • FIG. 2 shows a flowchart of a method for estimating allowable power of a battery according to an embodiment of the present application
  • FIG. 3 shows a flowchart of a method for estimating allowable power of a battery according to another embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of a battery allowable power estimation device according to an embodiment of the present application
  • Fig. 5 shows a schematic structural diagram of a battery allowable power estimation device according to another embodiment of the present application.
  • FIG. 6 shows a structural diagram of an exemplary hardware architecture of a computing device that can implement the method and apparatus for estimating the allowable power of a battery according to the embodiments of the present application.
  • the battery in the embodiment of the present application is used to store power, and both the positive electrode and the negative electrode of the battery can escape and receive energy-carrying particles.
  • the battery in the embodiment of the present application may include a power battery and an energy storage battery.
  • the power battery may be applied to the fields of electric vehicles, electric bicycles and other electric tools, for example, and the energy storage battery may be applied to energy storage power stations, Renewable energy grid-connected and micro-grid fields.
  • the battery can be, but not limited to, a lithium iron phosphate system battery or a silicon-added battery system.
  • the lithium iron phosphate system battery is a lithium ion battery with a positive electrode active material containing lithium iron phosphate.
  • the silicon system battery is a lithium ion battery in which the negative electrode active material contains silicon.
  • the battery can be a single battery cell, a battery module or a battery pack, which is not specifically limited in the embodiments of the present application.
  • the hysteresis characteristic refers to the open circuit voltage and discharge voltage corresponding to the same state of charge after the battery is charged and discharged with the same current.
  • the phenomenon of different open circuit voltages. This phenomenon is called the hysteresis characteristic of the battery. Therefore, the open circuit voltage hysteresis characteristic curve of the battery can describe the characteristics of the battery's open circuit voltage curve affected by historical operating conditions. When using the open circuit voltage to estimate the allowable power of the battery, the influence of the hysteresis characteristic on the allowable power of the battery needs to be considered.
  • Fig. 1 shows a schematic diagram of a hysteresis characteristic curve of an open circuit voltage of a battery according to an embodiment of the present application.
  • the OCV curve can be used to describe the correspondence between the open circuit voltage and the state of charge of the battery.
  • the OCV curve of the battery may include a charge OCV curve and a discharge OCV curve.
  • the charging OCV curve can be used to describe the corresponding relationship between the OCV and SOC of the battery in the charged state
  • the discharging OCV curve can be used to describe the corresponding relationship between the OCV and SOC of the battery in the discharged state.
  • the OCV interval of the battery is divided into a hysteretic OCV interval and a non-hysteresis OCV interval.
  • the charge OCV curve and the discharge OCV curve do not overlap, while in the non-hysteresis voltage interval, that is, the voltage interval outside the hysteresis voltage interval, the charge OCV curve and the discharge OCV curve overlap.
  • the open circuit voltage value in the hysteresis voltage interval can satisfy: the state of charge value in the state of charge when the state of charge value in the state of charge of the battery is equal to the state of charge value in the state of discharge The corresponding open circuit voltage value is different from the open circuit voltage value corresponding to the state of charge value in the discharge state.
  • the state of charge value in the hysteresis state of charge interval can satisfy: when the state of charge value of the battery after charging and the state of charge value of discharge are equal, the open circuit voltage of the charged battery and the discharged battery The open circuit voltage is different. Since the charge OCV curve in the non-hysteresis voltage interval as shown in Figure 1 overlaps with the discharge OCV curve in the non-hysteresis voltage interval, the charging OCV curve in the non-hysteresis voltage interval or the discharge OCV curve in the non-hysteresis voltage interval can be changed , Referred to as the non-hysteretic OCV-SOC curve.
  • Fig. 2 is a schematic flowchart showing a method for estimating allowable power of a battery according to an embodiment of the present application. As shown in Figure 2, the method for estimating the allowable power of the battery in the embodiment of the present application may include the following steps:
  • Step S210 Determine the current state of charge value of the battery and the current battery temperature.
  • Step S220 Obtain the operating data of the battery.
  • Step S230 Process the operating data to obtain the hysteresis coefficient of the battery, so as to estimate the allowable power of the battery according to the correspondence between the allowable power of the battery and the current state of charge value, the current battery temperature, and the hysteresis coefficient.
  • the allowable power of the battery can be estimated through the state of charge value of the battery and the battery temperature, combined with the operating data of the battery, In the estimation process, it is considered that the allowable power estimation is affected by the working conditions, and the accuracy of the allowable power estimation is improved.
  • the operating data of the battery includes a pre-recorded historical charge capacity and a pre-recorded historical discharge capacity.
  • the step of processing operating data in step S230 to obtain the hysteresis coefficient of the battery may specifically include:
  • Step S231 Calculate the accumulative charge capacity of the battery according to the historical charge capacity, and calculate the accumulative discharge capacity of the battery according to the historical discharge capacity.
  • Step S232 Calculate the ratio of the accumulated charge capacity to the accumulated discharge capacity to obtain the hysteresis coefficient of the battery.
  • the fixed cumulative throughput in a specified time period before the battery reaches the current state of charge value can be obtained, and the ratio of the cumulative charge capacity and the cumulative discharge capacity in the fixed cumulative throughput can be used to obtain the hysteresis coefficient of the battery .
  • the step of estimating the allowable power of the battery according to the corresponding relationship between the allowable power of the battery and the current state of charge value, the current battery temperature, and the hysteresis coefficient in step S230 may specifically include:
  • Step S233 when the first calibration condition is met, determine the allowable power lower limit of the battery corresponding to the specified battery temperature and the specified state of charge through the battery power performance test method to establish the allowable power lower limit of the battery Correspondence between the limit and battery temperature and state of charge.
  • the battery power performance test method may include, for example, a current test method, a power test method, or a hybrid pulse power characteristic (Hybrid Pulse Power Characteristic, HPPC) test method.
  • a current test method a power test method
  • a hybrid pulse power characteristic Hybrid Pulse Power Characteristic, HPPC
  • the test current method is a characterization method used to determine the pulse charge and discharge performance of a battery.
  • the SOC target value is used to perform a specified pulse width such as 10s pulse discharge, and after standing for a specified time, at a specified one or more current values such as I1, I2, I3,..., Im( m is an integer greater than or equal to 1) the specified pulse width, for example, 10s pulse discharge, if a certain current value of the above one or more current values can reach the cut-off voltage during discharge, the current value is the SOC target value Limit current, and can determine the DC resistance of the SOC target value.
  • This method can test the ability of the entire battery to discharge pulse power and return pulse power under different SOC states and different pulse cycles.
  • the power test method is also a characterization method used to determine the pulse charge and discharge performance of the battery.
  • a specified pulse width such as 10s pulse discharge with the SOC target value.
  • P1, P2, P3, ..., Pt( t is an integer greater than or equal to 1) perform the specified pulse width such as 10s pulse discharge, if a certain power value among the above one or more power values can reach the cut-off voltage during the discharge process, the power value is the SOC target value Allowable power, and can determine the DC resistance of the SOC target value, this method can test the ability of the entire battery to discharge pulse power and return pulse power under different SOC states and different pulse cycles.
  • HPPC is a feature used to reflect the pulse charge and discharge performance of a battery.
  • a pulse discharge with a specified pulse width such as 10 s
  • a target SOC value such as 10 s
  • pulse discharge with the specified pulse width such as 10 s
  • the pulse current is generally determined according to the characteristics of the battery under test, and the SOC target point can be adjusted according to specific needs.
  • the first calibration condition includes: adjusting the state of charge of the battery to a preset state of charge value through charging at a preset battery temperature.
  • Step S234 When the second calibration condition is met, the battery power performance test method is used to determine the allowable power upper limit value of the battery corresponding to the specified battery temperature and the specified state of charge to establish the allowable power upper limit of the battery. Correspondence between the limit and battery temperature and state of charge.
  • the second calibration condition includes: adjusting the state of charge of the battery to a preset state of charge value by discharging at a preset battery temperature.
  • Step S235 Using the current state of charge value and the current battery temperature, determine the lower limit of the allowable power of the battery according to the correspondence between the lower limit of the allowable power of the battery and the battery temperature and the state of charge.
  • Step S236 Using the current state of charge value and the current battery temperature, determine the allowable power upper limit of the battery according to the correspondence between the battery's allowable power upper limit and the battery temperature and the state of charge.
  • the following operations can be performed for each battery SOC and battery temperature that need to be calibrated: at a fixed temperature, the state of charge of the battery is adjusted to a specified state of charge through discharge, through test current, test power or HPPC Method to obtain the allowable power at different state of charge values and different temperatures, such as Pdis1; when the state of charge of the battery is adjusted to a specified SOC through charging, the test current, test power or HPPC method is used to obtain different SOCs and different temperatures
  • the hysteresis coefficient corresponding to the lower limit of the allowable power of the battery is -1, and the hysteresis coefficient corresponding to the upper limit of the allowable power of the battery is 1.
  • the value range of the hysteresis coefficient of the battery is [-1, 1].
  • Step S237 weighting the allowable power lower limit and the allowable power upper limit based on the hysteresis coefficient to obtain the allowable power of the battery.
  • the hysteresis coefficient is used as the weight of the allowable power upper limit of the battery, and the difference between 100% and the hysteresis coefficient is used as the weight of the allowable power lower limit of the battery.
  • the allowable power upper limit value and the allowable power lower limit value weight are used to sum the allowable power upper limit value and the allowable power lower limit value to obtain the allowable power of the battery.
  • the allowable power upper limit value is P1
  • the allowable power lower limit is P2.
  • the weighting process uses the allowable power at this moment as: 0.1% ⁇ P1+(1-0.1%) ⁇ P2.
  • the method for estimating the allowable power of the battery in the above embodiment for a battery with a hysteresis effect, that is, when the state of charge of the battery is within the hysteresis state of charge interval, or the open circuit voltage of the battery is within the hysteresis voltage interval, consider The accumulative charge capacity and accumulative discharge capacity within the fixed accumulative throughput in the specified time period in the operating condition data, calculate the hysteresis coefficient of the battery.
  • the process of determining the allowable power of the battery considers at least the three parameters of the battery temperature, the battery state of charge and the hysteresis coefficient, that is, considering that the allowable power estimation is affected by the actual operating conditions of the battery, the allowable power of the battery with hysteresis characteristics is improved. Use power estimation accuracy.
  • the offline look-up table method can be used, for example, the allowable power under different states of charge and battery temperature can be calibrated offline. , And determine the allowable power of the battery by looking up the meter in the actual vehicle operation.
  • the method for estimating the allowable power of the battery may further include:
  • step S340 the open circuit voltage estimation model component is used to process the current state of charge value and the historical state of charge value of the battery to obtain the open circuit voltage of the battery.
  • step S341 when the open circuit voltage is in a voltage interval outside the hysteresis voltage interval, set the historical charge capacity to zero and set the historical discharge capacity to zero, and re-record the historical charge capacity of the battery and the historical discharge capacity of the battery.
  • the open circuit voltage value corresponding to the state of charge value in the state of charge is different from that of discharge The open circuit voltage value corresponding to the state of charge value in the state.
  • the historical charging capacity and historical discharging capacity of the battery can be recorded from a specified time point in the actual operating condition of the battery. Since the open circuit voltage value of the battery is in the voltage range outside the hysteresis voltage range, the battery can not be affected by the hysteresis effect. If the operating data of the working condition statistics the battery's historical charging capacity and the voltage range outside the hysteresis voltage range The historical discharge capacity will affect the accuracy of the estimated allowable power when the open circuit voltage of the battery is within the hysteresis voltage range.
  • the open circuit voltage value of the battery when the open circuit voltage value of the battery is outside the hysteresis voltage interval, that is, the open circuit voltage value of the battery is greater than or equal to the upper limit of the hysteresis voltage interval, or the open circuit voltage value is less than or equal to the hysteresis voltage interval.
  • the pre-recorded historical charge capacity value and the pre-recorded historical discharge capacity value can be cleared, so that the accumulated charge capacity and accumulated discharge capacity can be cleared, and the accumulated charge capacity can be cleared or accumulated discharge
  • the historical charge capacity of the battery and the historical discharge capacity of the battery are re-recorded, so as to ensure that the recorded historical charge capacity and historical discharge capacity are the historical operating condition data of the battery under the influence of the hysteresis effect.
  • the accuracy of the estimated allowable power when the open circuit voltage of the battery is within the hysteresis voltage range.
  • Fig. 3 shows a flowchart of a method for estimating allowable power of a battery according to another embodiment of the present application.
  • the allowable power estimation method of the battery may include:
  • Step S310 Determine the current state of charge value of the battery and the current battery temperature.
  • Step S320 Obtain the historical state of charge value of the battery from the operating data of the battery.
  • Step S330 Use the preset open circuit voltage estimation model component to process the current state of charge value, the current battery temperature and the historical state of charge value to obtain the allowable power of the battery.
  • step S330 may specifically include:
  • Step S331 Use the preset open circuit voltage estimation model component to process the current state of charge value and the historical state of charge value to obtain the open circuit voltage of the battery.
  • the open circuit voltage estimation model component is used to characterize the correspondence between the current estimated value of the open circuit voltage of the battery and the current state of charge value and the historical state of charge value; the battery voltage estimation model component is used to characterize the battery A model of the correspondence between voltage, battery temperature rise, discharge time, and battery open circuit voltage, battery temperature, discharge current or discharge power, battery internal resistance, and preset thermodynamic parameters.
  • the historical state-of-charge value includes: the N state-of-charge values corresponding to the battery when the current direction changes N times, and the Nth state-of-charge value is for the current state-of-charge value.
  • Step S332 Determine the battery internal resistance of the battery by using the current battery temperature and the current state of charge according to the corresponding relationship between the battery internal resistance, the battery temperature and the state of charge value.
  • the battery system can be tested and calculated to determine multiple battery temperature values and battery internal resistances of multiple battery SOCs, and construct a battery representing the corresponding relationship between battery internal resistance, battery SOC and battery temperature Internal resistance check value table.
  • Step S333 Determine the voltage difference formed by the open circuit voltage and the preset battery voltage lower limit, and calculate the ratio of the voltage difference to the battery internal resistance to obtain the battery limit current corresponding to the current state of charge value and battery temperature .
  • the limit current of the battery can be calculated by the following expression (1):
  • Current limit represents the limit current of the battery
  • OCV is the open circuit voltage of the battery estimated by the open circuit voltage estimation model component
  • V limit is the lower limit voltage value of the battery
  • DCR is the battery internal resistance of the battery.
  • the lower limit voltage value of the battery may be a preset voltage value, and the lower limit voltage value of the battery may be obtained through experimental values and/or empirical values.
  • Step S334 Determine the allowable power of the battery corresponding to the current state of charge value and the battery temperature by using the limit current and the lower limit of the voltage.
  • the product of the limit current of the battery and the lower limit value of the battery voltage can be used to obtain the allowable power of the battery corresponding to the current state of charge value and the battery temperature.
  • the method for estimating the allowable power of the battery further includes:
  • the open circuit voltage value corresponding to the state of charge value in the state of charge is different from the value of the state of charge in the discharge state.
  • the open circuit voltage value corresponding to the electrical state value is different from the value of the state of charge in the discharge state.
  • the open circuit voltage value of the battery lies outside the hysteresis voltage interval, that is, the open circuit voltage value of the battery is greater than or equal to the upper limit of the hysteresis voltage interval, or the open circuit voltage value is less than or equal to the hysteresis voltage interval.
  • the pre-recorded historical state of charge value can be cleared, and the historical state of charge of the battery can be re-recorded from the cleared time point to ensure that the recorded historical state of charge value is
  • the historical operating condition data under the influence of hysteresis effect ensures the accuracy of the estimated allowable power when the open circuit voltage of the battery is within the hysteresis voltage range.
  • the voltage estimation model component is used to process the current state of charge value and the historical state of charge value, and the open circuit voltage of the battery is obtained, for example, 3.5V, the current state of charge value is 40%, and the lower limit voltage of the battery It is 2.5V, and the current battery temperature is 25DegC; the internal resistance of the battery at the first time point, for example, 10S, is 0.003 ⁇ , and the battery internal resistance at the second time point, 30S, is 0.005 ⁇ .
  • the preset open circuit voltage estimation model component is used to process the historical state of charge value of the battery, and the historical state of charge value reflects the battery's The state of charge recorded every time the direction of the current changes in the operating data of the operating conditions, through the open circuit voltage estimation model component, the historical state of charge value of the battery in the operating data of the operating conditions can be processed to obtain the estimated value of the open circuit voltage of the battery ; Calculate the limit current of the battery according to the lower limit voltage value of the battery and the internal resistance of the battery; thereby using the limit current and the lower limit voltage to determine the allowable power of the battery corresponding to the current state of charge value and battery temperature.
  • the estimation process fully considers the influence of the operating data of the battery on the allowable power estimation, so as to obtain the allowable power of the battery that is more in line with the actual operating conditions of the battery, and increase the allowable Use power estimation accuracy.
  • Fig. 4 shows a schematic structural diagram of a battery allowable power estimation device according to an embodiment of the present application.
  • the battery allowable power estimation device 400 includes:
  • the battery parameter determination module 410 is used to determine the current state of charge value of the battery and the current battery temperature.
  • the working condition data obtaining module 420 is used to obtain the working condition operating data of the battery.
  • the first estimation module 430 is used to process the operating data to obtain the hysteresis coefficient of the battery, so as to estimate the allowable power of the battery according to the corresponding relationship between the current state of charge value, the current battery temperature, and the hysteresis coefficient. Use power.
  • the operating condition data includes pre-recorded historical charge capacity and pre-recorded historical discharge capacity.
  • the first estimation module 430 may specifically include:
  • the charge and discharge capacity calculation unit is used to determine the accumulative charge capacity of the battery according to the historical charge capacity, and to determine the accumulative discharge capacity of the battery according to the historical discharge capacity.
  • the hysteresis coefficient calculation unit is used to calculate the ratio of the accumulated charge capacity and the accumulated discharge capacity to obtain the hysteresis coefficient of the battery.
  • the first estimation module 430 may specifically further include:
  • the first correspondence determination unit is used to determine the allowable power lower limit value of the battery corresponding to the specified battery temperature and the specified state of charge through the method of battery power performance test under the condition that the first calibration condition is satisfied, to establish The corresponding relationship between the battery's allowable power lower limit and the battery temperature and state of charge.
  • the second correspondence determination unit is used to determine the allowable power upper limit value of the battery corresponding to the specified battery temperature and the specified state of charge through the method of battery power performance test under the condition that the second calibration condition is satisfied, to establish The correspondence between the upper limit of the allowable power of the battery, the battery temperature and the state of charge.
  • the allowable power lower limit determination unit is used to use the current state of charge value and the current battery temperature to determine the allowable power of the battery according to the correspondence between the lower limit of the battery allowable power and the battery temperature and the state of charge lower limit.
  • the allowable power upper limit determination unit is used to use the current state of charge value and the current battery temperature to determine the allowable power of the battery according to the correspondence between the allowable power upper limit of the battery and the battery temperature and the state of charge Upper limit.
  • the allowable power determining unit is used for weighting the allowable power lower limit and the allowable power upper limit based on the hysteresis coefficient to obtain the allowable power of the battery.
  • the first calibration condition includes: adjusting the state of charge of the battery to a preset state of charge value through charging at a preset battery temperature.
  • the second calibration condition includes: adjusting the state of charge of the battery to a preset state of charge value by discharging at a preset battery temperature.
  • the hysteresis coefficient corresponding to the lower limit of the allowable power of the battery is -1, and the hysteresis coefficient corresponding to the upper limit of the allowable power of the battery is 1.
  • the operating data of the battery may also include the historical state of charge value of the battery.
  • the allowable power estimation device 400 may further include:
  • the open circuit voltage determination module is used to use a preset open circuit voltage estimation model component to process the current state of charge value and the historical state of charge value of the battery to obtain the open circuit voltage value of the battery.
  • the historical charging and discharging capacity re-recording module is used to set the historical charging capacity to zero and the historical discharge capacity to zero when the open circuit voltage value is outside the hysteresis voltage range, to re-record the battery’s historical charging capacity and The historical discharge capacity of the battery.
  • the open circuit voltage value corresponding to the state of charge value in the state of charge is different from The open circuit voltage value corresponding to the state of charge value in the discharge state.
  • Fig. 5 shows a schematic structural diagram of an allowable power estimation device according to an embodiment of the present application.
  • the allowable power estimation device 500 may include:
  • the battery parameter determination module 510 is used to determine the current state of charge value of the battery and the current battery temperature.
  • the operating condition data obtaining module 520 is used to obtain the historical state of charge value of the battery from the operating data of the battery.
  • the second estimation module 530 is configured to use the preset open circuit voltage estimation model component to process the current state of charge value, the current battery temperature and the historical state of charge value to obtain the allowable power of the battery.
  • the second estimation module 530 may specifically include:
  • the open circuit voltage determination unit is used to use the preset open circuit voltage estimation model component to process the current state of charge value and the historical state of charge value of the battery to obtain the open circuit voltage of the battery.
  • the battery internal resistance determining unit is used to determine the battery internal resistance of the battery by using the current battery temperature and the current state of charge according to the corresponding relationship between the battery internal resistance and the battery temperature and the state of charge value.
  • the limit current calculation unit is used to determine the voltage difference formed by the open circuit voltage and the preset battery voltage lower limit, and calculate the ratio of the voltage difference to the battery internal resistance to obtain the current state of charge value and battery temperature corresponding The limit current of the battery.
  • the allowable power calculation unit is used to determine the allowable power of the battery corresponding to the current state of charge value and battery temperature by using the limit current and the lower limit of the voltage.
  • the historical state-of-charge value includes: the N state-of-charge values corresponding to the battery when the current direction changes N times, and the Nth state-of-charge value is for the current state-of-charge value.
  • the allowable power estimation device 500 may further include:
  • the open circuit voltage determination module is used to estimate the model component by using the open circuit voltage to process the current state of charge value and the historical state of charge value of the battery to obtain the open circuit voltage value of the battery.
  • the historical state-of-charge re-recording module is used to re-record the historical state-of-charge of the battery when the open circuit voltage value is outside the voltage interval of the hysteresis voltage interval.
  • the open circuit voltage value corresponding to the state of charge value in the state of charge is different from that of discharge The open circuit voltage value corresponding to the state of charge value in the state.
  • the estimation process fully considers the influence of the operating data of the battery on the allowable power estimation, thereby obtaining the allowable power of the battery that is more in line with the actual operating conditions of the battery and increasing the allowable power. Use power estimation accuracy.
  • Fig. 6 is a structural diagram showing an exemplary hardware architecture of a computing device capable of implementing the method and device for estimating the allowable power of a battery according to an embodiment of the present application.
  • the computing device 600 includes an input device 601, an input interface 602, a central processing unit 603, a memory 604, an output interface 605, and an output device 606.
  • the input interface 602, the central processing unit 603, the memory 604, and the output interface 605 are connected to each other through the bus 610, and the input device 601 and the output device 606 are connected to the bus 610 through the input interface 602 and the output interface 605, respectively, and then to the computing device 600 The other components are connected.
  • the input device 601 receives input information from the outside (for example, a temperature sensor), and transmits the input information to the central processing unit 603 through the input interface 602; the central processing unit 603 performs input based on the computer executable instructions stored in the memory 604 The information is processed to generate output information, the output information is temporarily or permanently stored in the memory 604, and then the output information is transmitted to the output device 606 through the output interface 605; the output device 606 outputs the output information to the outside of the computing device 600 for the user use.
  • the outside for example, a temperature sensor
  • the central processing unit 603 performs input based on the computer executable instructions stored in the memory 604
  • the information is processed to generate output information, the output information is temporarily or permanently stored in the memory 604, and then the output information is transmitted to the output device 606 through the output interface 605; the output device 606 outputs the output information to the outside of the computing device 600 for the user use.
  • the computing device 600 shown in FIG. 6 may be implemented as a battery allowable power calculation system.
  • the battery allowable power estimation system may include: a memory configured to store a program; a processor, It is configured to run a program stored in the memory to execute the allowable power estimation method of the battery described in the above embodiment.
  • the process described above with reference to the flowchart can be implemented as a computer software program.
  • the embodiments of the present application include a computer program product, which includes a computer program tangibly contained on a machine-readable medium, and the computer program includes program code for executing the method shown in the flowchart.
  • the computer program may be downloaded and installed from the network, and/or installed from a removable storage medium.
  • the computer program product includes one or more computer instructions, which when run on a computer, cause the computer to execute the methods described in the above-mentioned various embodiments.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website site, computer, server or data center via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium, (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state hard disk).
  • the device embodiments described above are merely illustrative.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in One place, or it can be distributed to multiple network units. Some or all of the modules may be selected according to actual needs to achieve the objectives of the solutions of the embodiments. Those of ordinary skill in the art can understand and implement it without creative work.

Abstract

一种电池的许用功率估算方法、装置、系统和存储介质。该方法包括:确定电池的当前荷电状态值和当前电池温度(S210);获取电池的工况运行数据(S220);处理工况运行数据得到电池的滞回系数,以根据电池的许用功率与当前荷电状态值、当前电池温度、以及滞回系数的对应关系,估算电池的许用功率(S230)。许用功率估算方法可以提高估算具有滞回特性的电池的许用功率的准确性。

Description

电池的许用功率估算方法、装置、系统和存储介质
相关申请的交叉引用
本申请要求享有于2019年06月24日提交的名称为“电池的许用功率估算方法、装置、系统和存储介质”的中国专利申请201910547769.8的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池的许用功率估算方法、装置、系统和存储介质。
背景技术
在电动汽车的电池管理系统中,电池的许用功率(State OF Power)表示电池对充放电功率的承受能力,当电池的电压过低或过高时,可能导致电池的寿命减少甚至存在安全风险,因此需要基于电压限制估算Pack中电池许用功率(SOP)以保护电池不超过电压的上下限。
常见的基于电压限制的许用功率方法包括:线下查表法,即通过线下标定不同荷电状态和电池温度下的许用功率,并在实车运行中通过查表确定电池的许用功率;但是对于具有滞回特性的电池体系而言,会因为历史工况的影响而不能准确计算开路电压,从而导致无法准确估算电池的许用功率。
发明内容
本申请实施例提供一种电池的许用功率估算方法、装置、系统和存储介质,可以提高估算具有滞回特性的电池的许用功率的准确性。
第一方面,本申请实施例提供一种电池的许用功率估算方法,包括:
确定电池的当前荷电状态值和当前电池温度;获取电池的工况运行数 据;处理工况运行数据得到电池的滞回系数,以根据电池的许用功率与当前荷电状态值、当前电池温度、以及滞回系数的对应关系,估算电池的许用功率。
第二方面,本申请实施例提供一种电池的许用功率估算装置,包括:
电池参数确定模块,用于确定电池的当前荷电状态值和当前电池温度;工况数据获取模块,用于获取电池的工况运行数据;第一估算模块,用于处理工况运行数据得到电池的滞回系数,以根据电池的许用功率与当前荷电状态值、当前电池温度、以及滞回系数的对应关系,估算电池的许用功率。
第三方面,本申请实施例提供一种电池的许用功率估算系统,包括:存储器和处理器;该存储器用于存储程序;该处理器用于读取存储器中存储的可执行程序代码以执行上述第一方面的电池的许用功率估算方法。
第四方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行上述第一方面的电池的许用功率估算方法。
第五方面,本申请实施例提供一种电池的许用功率估算方法,包括:
确定电池的当前荷电状态值和当前电池温度;从电池的工况运行数据中获取电池的历史荷电状态值;利用预设的开路电压估算模型组件,处理当前荷电状态值、当前电池温度和历史荷电状态值,得到电池的许用功率。
第六方面,本申请实施例提供一种电池的许用功率估算装置,包括:
电池参数确定模块,用于确定电池的当前荷电状态值和当前电池温度;工况数据获取模块,用于从电池的工况运行数据中获取电池的历史荷电状态值;第二估算模块,用于利用预设的开路电压估算模型组件,处理当前荷电状态值、当前电池温度和历史荷电状态值,得到电池的许用功率。
第七方面,本申请实施例提供一种电池的许用功率估算系统,包括:存储器和处理器;该存储器用于存储程序;该处理器用于读取存储器中存储的可执行程序代码以执行上述第四方面的电池的许用功率估算方法。
第八方面,本申请实施例提供了一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行上述第四方面的电池的许用功率估算方法。
根据本申请实施例中的电池的许用功率估算方法、装置、系统和存储介质,对于具有滞回效应的电池,可以通过电池的荷电状态和电池温度,并结合电池的工况运行数据,估算电池的许用功率,估算过程中考虑许用功率估算受到工况的影响,提高许用功率估算的准确性。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出根据本申请一实施例的电池的开路电压滞回特性曲线示意图;
图2示出根据本申请一实施例的电池的许用功率估算方法的流程图;
图3示出根据本申请另一实施例的电池的许用功率估算方法的流程图;
图4示出根据本申请一实施例的电池的许用功率估算装置的结构示意图;
图5示出根据本申请另一实施例的电池的许用功率估算装置的结构示意图;
图6示出可以实现根据本申请实施例的电池的许用功率估算方法和装置的计算设备的示例性硬件架构的结构图。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例,为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细描述。应理解,此处所描述的具体实施例仅被配置为解释本申请,并不被配置为限定本申请。对于本领域技术人员来说,本 申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请更好的理解。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
本申请实施例中的电池用于存储电量,且电池的正极和负极均能脱出且接收载能粒子。按照电池的应用场景,本申请实施例中的电池可以包括动力电池和储能电池,动力电池例如可以应用于电动汽车、电动自行车以及其它电动工具领域,储能电池例如可以应用于储能电站、可再生能源并网以及微电网等领域。以动力电池为例,从电池种类而言,该电池可以但不限于是磷酸铁锂体系电池或加硅体系的电池,磷酸铁锂体系电池为正极活性物含磷酸铁锂的锂离子电池,加硅体系电池为负极活性物含硅的锂离子电池。从电池规模而言,该电池可以是电芯单体,也可以是电池模组或电池包,在本申请实施例中不做具体限定。
在本申请实施例中,由于电池充电特性和放电特性的不同,滞回特性是指电池以相同的电流分别充电和放电结束后,相同的荷电状态对应的充电后的开路电压和放电后的开路电压不同的现象。这一现象被称为电池的滞回特性。因此,电池的开路电压滞回特性曲线可以描述电池的开路电压曲线受历史工况影响的特性,使用开路电压估算电池的许用功率时,需要考虑滞回特性对电池的许用功率的影响。
图1示出了本申请一个实施例的电池的开路电压滞回特性曲线示意图。如图1所示,在本申请实施例中,OCV曲线可以用于描述电池的开路电压与荷电状态之间的对应关系。
在图1中,电池的OCV曲线可以包括充电OCV曲线和放电OCV曲线。其中,充电OCV曲线可以用于描述充电状态下的电池的OCV与SOC之间的对应关系,放电OCV曲线可以用于描述放电状态下的电池的OCV与SOC之间的对应关系。
继续参考图1,根据充电OCV曲线和放电OCV曲线的不同,将电池的OCV区间划分为滞回OCV区间和非滞回OCV区间。在滞回电压区间,充电OCV曲线和放电OCV曲线不重合,而在非滞回电压区间,即滞回电压区间以外的电压区间,充电OCV曲线和放电OCV曲线重合。
在本说明书的实施例中,滞回电压区间内的开路电压值可以满足:电池的充电状态时的荷电状态值和放电状态时的荷电状态值相等时,充电状态时的荷电状态值对应的开路电压值不同于放电状态时的荷电状态值对应的开路电压值。
通过图1可知,滞回荷电状态区间内的荷电状态值可以满足:电池充电后的荷电状态值和放电的荷电状态值相等时,该充电后电池的开路电压和该放电后电池的开路电压不同。由于如图1所示的非滞回电压区间的充电OCV曲线与非滞回电压区间的放电OCV曲线发生重合,可以将非滞回电压区间的充电OCV曲线或非滞回电压区间的放电OCV曲线,简称为非滞回的OCV-SOC曲线。
为了更好的理解本申请,下面将结合附图,详细描述根据本申请实施例的电池的许用功率估算方法、装置、系统和存储介质,应注意,这些实施例并不是用来限制本申请公开的范围。
图2是示出根据本申请实施例的电池的许用功率估算方法的流程示意图。如图2所示,本申请实施例中的电池的许用功率估算方法,可以包括以下步骤:
步骤S210,确定电池的当前荷电状态值和当前电池温度。
步骤S220,获取电池的工况运行数据。
步骤S230,处理工况运行数据得到电池的滞回系数,以根据电池的许用功率与当前荷电状态值、当前电池温度、以及滞回系数的对应关系,估算电池的许用功率。
根据本申请实施例的电池的许用功率估算方法,对于具有滞回效应的电池,可以通过电池的荷电状态值和电池温度,并结合电池的工况运行数据,估算电池的许用功率,估算过程中考虑许用功率估算受到工况的影响,提高许用功率估算的准确性。
在一个实施例中,电池的工况运行数据包括预先记录的历史充电容量和预先记录的历史放电容量。在该实施例中,步骤S230中处理工况运行数据得到电池的滞回系数的步骤,具体可以包括:
步骤S231,根据历史充电容量计算电池的累计充电容量,以及根据历史放电容量计算电池的累计放电容量。
步骤S232,计算累计充电容量和累计放电容量的比值,得到电池的滞回系数。
在一个实施例中,可以获取电池达到当前荷电状态值之前的指定时间段内的固定累计吞吐量,利用该固定累计吞吐量内累计充电容量和累计放电容量的比值,得到电池的滞回系数。
在一个实施例中,步骤S230中根据电池的许用功率与当前荷电状态值、当前电池温度、以及滞回系数的对应关系,估算电池的许用功率的步骤,具体可以包括:
步骤S233,在满足第一标定条件的情况下,通过电池功率性能测试的方法,确定与指定电池温度和指定荷电状态对应的电池的许用功率下限值,以建立电池的许用功率下限值与电池温度和荷电状态之间的对应关系。
在一个实施例中,电池功率性能测试的方法例如可以包括试电流的方法、试功率的方法或者混合动力脉冲能力特性(Hybrid Pulse Power Characteristic,HPPC)测试的方法。
作为一个示例,试电流方法是用来确定电池的脉冲充放电性能的一种表征方法。在进行试电流方法测试时,例如以SOC目标值进行指定脉冲宽度例如10s脉冲放电,静置指定时间后,在分别以指定的一个或多个电流值例如I1,I2,I3,…,Im(m为大于等于1的整数)进行该指定脉冲宽度例如10s脉冲放电,如果上述一个或多个电流值中的某个电流值放电过 程中可以达到截止电压,则该电流值为该SOC目标值的极限电流,并可以确定该SOC目标值的直流电阻,以此方法可以测试得到整个电池在不同SOC状态下,不同脉冲周期下的放电脉冲功率的能力和回馈脉冲功率的能力。
作为一个示例,试功率方法也是用来确定电池的脉冲充放电性能的一种表征方法。在进行试功率方法测试时,例如以SOC目标值进行指定脉冲宽度例如10s脉冲放电,静置指定时间后,在分别以指定的一个或多个功率值例如P1,P2,P3,…,Pt(t为大于等于1的整数)进行该指定脉冲宽度例如10s脉冲放电,如果上述一个或多个功率值中的某个功率值放电过程中可以达到截止电压,则该功率值为该SOC目标值的许用功率,并可以确定该SOC目标值的直流电阻,以此方法可以测试得到整个电池在不同SOC状态下,不同脉冲周期下的放电脉冲功率的能力和回馈脉冲功率的能力。
作为一个示例,HPPC是用来体现电池脉冲充放电性能的一种特征。在进行HPPC测试时,例如以SOC目标值进行指定脉冲宽度例如10s脉冲放电,静置指定时间后,在进行该指定脉冲宽度例如10s脉冲放电。由此可以测得电池在该SOC目标值在充电方向和放电方向的直流内阻,以及整个电池在不同SOC状态下,不同脉冲周期下的放电脉冲功率的能力和回馈脉冲功率的能力。在HPPC测试中,脉冲电流一般根据被测电池特性决定,SOC目标点可以根据具体需要调整。
在一个实施例中,第一标定条件包括:在预设电池温度下,将电池的荷电状态通过充电调整到预设荷电状态值。
步骤S234,在满足第二标定条件的情况下,通过电池功率性能测试的方法,确定与指定电池温度和指定荷电状态对应的电池的许用功率上限值,以建立电池的许用功率上限值与电池温度和荷电状态之间的对应关系。
在一个实施例中,第二标定条件包括:在预设电池温度下,将电池的荷电状态通过放电调整到预设荷电状态值。
步骤S235,利用当前荷电状态值和当前电池温度,根据电池的许用功 率下限值与电池温度和荷电状态之间的对应关系,确定电池的许用功率下限值。
步骤S236,利用当前荷电状态值和当前电池温度,根据电池的许用功率上限值与电池温度和荷电状态之间的对应关系,确定电池的许用功率上限值。
在一个实施例中,可以对每一个需要标定的电池SOC与电池温度进行如下操作:在固定温度时,将电池的荷电状态通过放电调整到指定荷电状态,通过试电流、试功率或者HPPC方法,得到不同荷电状态值和不同温度下的许用功率例如Pdis1;将电池的荷电状态通过充电调整到指定SOC时,通过试电流、试功率或者HPPC方法,得到不同SOC和不同温度下的许用功率Pdis2;通过Pdis2标定电池的许用功率下限值,以及通过Pdis1标定电池的许用功率上限值。
在一个实施例中,电池的许用功率下限值对应的滞回系数为-1,电池的许用功率上限值对应的滞回系数为1。在该实施例中,电池的滞回系数的取值范围为[-1,1]。
步骤S237,基于滞回系数,对许用功率下限值和许用功率上限值进行加权处理,得到电池的许用功率。
在一个实施例中,将滞回系数作为电池的许用功率上限值的权值,将100%与滞回系数的差值,作为电池的许用功率下限值的权值。利用许用功率上限值的权值和许用功率下限值的权值对许用功率上限值和许用功率下限值加权求和,得到电池的许用功率。
作为一个示例,将电池累计放电至荷电状态小于等于1%时,当电池累计充电容量和累计放电容量的比值为0.1%时,即电池的滞回系数为0.1%。根据当前荷电状态值和当前电池温度的许用功率上限值为P1,许用功率的下限为P2,则基于该滞回系数,对许用功率下限值和许用功率上限值进行加权处理利用该时刻的许用功率为:0.1%×P1+(1-0.1%)×P2。
根据上述实施例中电池的许用功率估算方法,对于含滞回效应的电池,即电池的荷电状态位于滞回荷电状态区间内,或者电池的开路电压位 于滞回电压区间内时,考虑工况运行数据中指定时间段内固定累计吞吐量内累计充电容量和累计放电容量,计算电池的滞回系数。确定电池的许用功率的过程至少考虑电池温度,电池荷电状态和滞回系数三个参数,即考虑许用功率估算受到电池实际运行工况的影响,提高具有滞回特性的电池的许用功率的估算准确性。
在一个实施例中,对于滞回荷电状态区间以外的荷电状态区间的荷电状态值,可以通过线下查表法,例如通过线下标定不同荷电状态和电池温度下的许用功率,并在实车运行中通过查表确定电池的许用功率。
在一个实施例中,电池的许用功率估算方法,还可以包括:
步骤S340,利用开路电压估算模型组件,处理当前荷电状态值和电池的历史荷电状态值,得到电池的开路电压。
步骤S341,在开路电压位于滞回电压区间以外的电压区间的情况下,将历史充电容量设置为零以及将历史放电容量设置为零,重新记录电池的历史充电容量和电池的历史放电容量。
在该实施例中,在滞回电压区间,电池的充电状态时的荷电状态值和放电状态时的荷电状态值相等时,充电状态时的荷电状态值对应的开路电压值不同于放电状态时的荷电状态值对应的开路电压值。
在一个实施例中,可以从电池的实际运行工况中的指定时间点开始记录该电池的历史充电容量和历史放电容量。由于电池的开路电压值位于滞回电压区间以外的电压区间时,电池可以不受滞回效应的影响,如果工况运行数据中统计电池在滞回电压区间以外的电压区间时的历史充电容量和历史放电容量,会影响电池的开路电压在滞回电压区间内时估算的许用功率的准确性。
因此,在本申请实施例中,当电池的开路电压值位于滞回电压区间以外,即电池的开路电压值大于等于滞回电压区间的上限值,或者该开路电压值小于等于滞回电压区间的下限值时,可以将预先记录的历史充电容量值和预先记录的历史放电容量值清零,从而可将累计充电容量和累计放电容量清零,并可以从累计充电容量清零或累计放电容量清零的时间点开始,重新记录电池的历史充电容量和电池的历史放电容量,从而保证记录 的历史充电容量和历史放电容量,均为电池在滞回效应影响下的历史工况数据,保证电池的开路电压在滞回电压区间内时估算的许用功率的准确性。
图3示出了根据本申请另一实施例的电池的许用功率估算方法的流程图。如图3所示,电池的许用功率估算方法,可以包括:
步骤S310,确定电池的当前荷电状态值和当前电池温度。
步骤S320,从电池的工况运行数据中获取所述电池的历史荷电状态值。
步骤S330,利用预设的开路电压估算模型组件,处理当前荷电状态值、当前电池温度和历史荷电状态值,得到电池的许用功率。
在一个实施例中,步骤S330具体可以包括:
步骤S331,利用预设的开路电压估算模型组件,处理当前荷电状态值和历史荷电状态值,得到电池的开路电压。
在一个实施例中,开路电压估算模型组件,用于表征电池的当前开路电压估算值与当前荷电状态值和历史荷电状态值之间的对应关系;电池电压估算模型组件,用于表征电池电压、电池温升、放电时长,与电池开路电压、电池温度、放电所需电流或放电所需功率、电池内阻和预设热力学参数之间的对应关系的模型。
在一个实施例中,历史荷电状态值包括:预先依次记录的电池在N次电流方向发生变化时对应的N个荷电状态值,并且第N个荷电状态值是针对当前荷电状态值的前一次电流方向发生变化时的荷电状态值,其中,N为大于等于1的整数。
步骤S332,根据电池内阻与电池温度和荷电状态值的对应关系,利用当前电池温度和当前荷电状态,确定电池的电池内阻。
在一个实施例中,可以通过对电池系统进行试验和计算来确定多个电池温度值和多个电池SOC的电池内阻,并构建用于表示电池内阻与电池SOC和电池温度对应关系的电池内阻查值表。
步骤S333,确定开路电压与预设的电池的电压下限值形成的电压差值,并计算电压差值与电池内阻的比值,得到与当前荷电状态值和电池温 度对应的电池的极限电流。
在一个实施例中,可以通过下面的表达式(1)计算电池的极限电流:
Figure PCTCN2020089370-appb-000001
在上述表达式(1)中,Current limit表示电池的极限电流,OCV是通过开路电压估算模型组件估算得到的电池的开路电压,V limit是电池的下限电压值,DCR是电池的电池内阻。
在一个实施例中,电池的下限电压值可以为预先设定的电压值,可以通过实验值和/或经验值,得到电池的下限电压值。
步骤S334,利用极限电流和电压下限值,确定与当前荷电状态值和电池温度对应的电池的许用功率。
在该步骤中,可以利用电池的极限电流和电池的电压下限值的乘积,得到与当前荷电状态值和电池温度对应的电池的许用功率。
在一个实施例中,电池的许用功率估算方法还包括:
利用预设的开路电压估算模型组件,处理当前荷电状态值和电池的历史荷电状态值,得到电池的开路电压值;
在开路电压值位于滞回电压区间以外电压区间的情况下,重新记录电池的历史荷电状态;
其中,在滞回电压区间,电池的充电状态时的荷电状态值和放电状态时的荷电状态值相等时,充电状态时的荷电状态值对应的开路电压值不同于放电状态时的荷电状态值对应的开路电压值。
在该实施例中,当电池的开路电压值位于滞回电压区间以外的电压时,即电池的开路电压值大于等于滞回电压区间的上限值,或者该开路电压值小于等于滞回电压区间的下限值时,可以将预先记录的历史荷电状态值清零,并从该清零的时间点开始,重新记录电池的历史荷电状态,保证记录的历史荷电状态值均为电池在滞回效应影响下的历史工况数据,保证电池的开路电压在滞回电压区间内时估算的许用功率的准确性。
作为本申请实施例的一个示例,利用电压估算模型组件处理当前荷电状态值和历史荷电状态值,得到电池的开路电压例如为3.5V,当前荷电状 态值为40%,电池的下限电压为2.5V,当前电池温度为25DegC;第一时间点例如10S时间点的电池内阻为0.003Ω,第二时间点30S时间点的电池内阻为0.005Ω。
根据上述表达式(1),可以计算得到电池在第一时间点10S时间点的极限电流为:Current limit=(3.5-2.5)/0.003=333A,则电池在第一时间点10S时间点的许用功率为333A×2.5V=833W。
根据上述表达式(1),可以计算得到电池在第二时间点30S时间点的极限电流为Current limit=(3.5-2.5)/0.005=为200A,则电池在第二时间点30S时间点的许用功率为200A×2.5V=500W。
根据本申请实施例的电池的许用功率估算方法,针对含滞回效应的电池,利用预设的开路电压估算模型组件,处理电池的历史荷电状态值,历史荷电状态值体现了电池的工况运行数据中每次电流方向发生变化时记录的荷电状态,通过开路电压估算模型组件可以对工况运行数据中的电池的历史荷电状态值进行处理,得到电池的开路电压预估值;根据电池的下限电压值和电池内阻计算电池的极限电流;从而利用极限电流和电压下限值,确定与当前荷电状态值和电池温度对应的电池的许用功率。
根据本申请实施例的电池的许用功率估算方法,估算过程充分考虑电池的工况运行数据对许用功率估算的影响,从而得到更符合电池实际运行工况的电池的许用功率,提高许用功率的估算准确度。
下面结合附图,详细介绍根据本申请实施例的电池的许用功率估算装置。图4示出了根据本申请一实施例提供的电池的许用功率估算装置的结构示意图。如图4所示,电池的许用功率估算装置400包括:
电池参数确定模块410,用于确定电池的当前荷电状态值和当前电池温度。
工况数据获取模块420,用于获取电池的工况运行数据。
第一估算模块430,用于处理工况运行数据得到电池的滞回系数,以根据电池的许用功率与当前荷电状态值、当前电池温度、以及滞回系数的对应关系,估算电池的许用功率。
在一个实施例中,工况运行数据包括预先记录的历史充电容量和预先 记录的历史放电容量。
在该实施例中,第一估算模块430具体可以包括:
充放电容量计算单元,用于根据历史充电容量确定电池的累计充电容量,以及根据历史放电容量确定电池的累计放电容量。
滞回系数计算单元,用于计算累计充电容量和累计放电容量的比值,得到电池的滞回系数。
在该实施例中,第一估算模块430具体还可以包括:
第一对应关系确定单元,用于在满足第一标定条件的情况下,通过电池功率性能测试的方法,确定与指定电池温度和指定荷电状态对应的电池的许用功率下限值,以建立电池的许用功率下限值与电池温度和荷电状态之间的对应关系。
第二对应关系确定单元,用于在满足第二标定条件的情况下,通过电池功率性能测试的方法,确定与指定电池温度和指定荷电状态对应的电池的许用功率上限值,以建立电池的许用功率上限值与电池温度和荷电状态之间的对应关系。
许用功率下限值确定单元,用于利用当前荷电状态值和当前电池温度,根据电池的许用功率下限值与电池温度和荷电状态之间的对应关系,确定电池的许用功率下限值。
许用功率上限值确定单元,用于利用当前荷电状态值和当前电池温度,根据电池的许用功率上限值与电池温度和荷电状态之间的对应关系,确定电池的许用功率上限值。
许用功率确定单元,用于基于滞回系数,对许用功率下限值和许用功率上限值进行加权处理,得到电池的许用功率。
在一个实施例中,第一标定条件包括:在预设电池温度下,将电池的荷电状态通过充电调整到预设荷电状态值。第二标定条件包括:在预设电池温度下,将电池的荷电状态通过放电调整到预设荷电状态值。电池的许用功率下限值对应的滞回系数为-1,电池的许用功率上限值对应的滞回系数为1。
在一个实施例中,电池的工况运行数据还可以包括电池的历史荷电状 态值。在该实施例中,许用功率估算装置400,还可以包括:
开路电压确定模块,用于利用预设的开路电压估算模型组件,处理当前荷电状态值和电池的历史荷电状态值,得到电池的开路电压值。
历史充放电容量重新记录模块,用于在开路电压值位于滞回电压区间以外电压区间的情况下,将历史充电容量设置为零以及将历史放电容量设置为零,重新记录电池的历史充电容量和电池的历史放电容量。
在该实施例中,在该滞回电压区间,电池的充电状态时的荷电状态值和放电状态时的荷电状态值相等时,充电状态时的荷电状态值对应的开路电压值不同于放电状态时的荷电状态值对应的开路电压值。
图5示出了根据本申请一实施例的许用功率估算装置的结构示意图。如图5所示,在一个实施例中,许用功率估算装置500可以包括:
电池参数确定模块510,用于确定电池的当前荷电状态值和当前电池温度。
工况数据获取模块520,用于从电池的工况运行数据中获取电池的历史荷电状态值。
第二估算模块530,用于利用预设的开路电压估算模型组件,处理当前荷电状态值、当前电池温度和历史荷电状态值,得到电池的许用功率。
在一个实施例中,第二估算模块530具体可以包括:
开路电压确定单元,用于利用预设的开路电压估算模型组件,处理当前荷电状态值和电池的历史荷电状态值,得到电池的开路电压。
电池内阻确定单元,用于根据电池内阻与电池温度和荷电状态值的对应关系,利用当前电池温度和当前荷电状态,确定电池的电池内阻。
极限电流计算单元,用于确定开路电压与预设的电池的电压下限值形成的电压差值,并计算电压差值与电池内阻的比值,得到与当前荷电状态值和电池温度对应的电池的极限电流。
许用功率计算单元,用于利用极限电流和电压下限值,确定与当前荷电状态值和电池温度对应的电池的许用功率。
在一个实施例中,历史荷电状态值包括:预先依次记录的电池在N次电流方向发生变化时对应的N个荷电状态值,并且第N个荷电状态值是针 对当前荷电状态值的前一次电流方向发生变化时的荷电状态值,其中,N为大于等于1的整数。
在一个实施例中,许用功率估算装置500还可以包括:
开路电压确定模块,用于利用开路电压估算模型组件,处理当前荷电状态值和电池的历史荷电状态值,得到电池的开路电压值。
历史荷电状态重新记录模块,用于在开路电压值位于滞回电压区间以外电压区间的情况下,重新记录电池的历史荷电状态。
在该实施例中,在滞回电压区间,电池的充电状态时的荷电状态值和放电状态时的荷电状态值相等时,充电状态时的荷电状态值对应的开路电压值不同于放电状态时的荷电状态值对应的开路电压值。
根据本申请实施例的电池的许用功率估算装置,估算过程充分考虑电池的工况运行数据对许用功率估算的影响,从而得到更符合电池实际运行工况的电池的许用功率,提高许用功率的估算准确度。
需要明确的是,本申请并不局限于上文实施例中所描述并在图中示出的特定配置和处理。为了描述的方便和简洁,这里省略了对已知方法的详细描述,并且上述描述的系统、模块和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
图6是示出能够实现根据本申请实施例的电池的许用功率估算方法和装置的计算设备的示例性硬件架构的结构图。
如图6所示,计算设备600包括输入设备601、输入接口602、中央处理器603、存储器604、输出接口605、以及输出设备606。其中,输入接口602、中央处理器603、存储器604、以及输出接口605通过总线610相互连接,输入设备601和输出设备606分别通过输入接口602和输出接口605与总线610连接,进而与计算设备600的其他组件连接。具体地,输入设备601接收来自外部(例如,温度传感器)的输入信息,并通过输入接口602将输入信息传送到中央处理器603;中央处理器603基于存储器604中存储的计算机可执行指令对输入信息进行处理以生成输出信息,将输出信息临时或者永久地存储在存储器604中,然后通过输出接口605将输出信息传送到输出设备606;输出设备606将输出信息输出到计算设 备600的外部供用户使用。
在一个实施例中,图6所示的计算设备600可以被实现为一种电池的许用功率计算系统,该电池的许用功率估算系统可以包括:存储器,被配置为存储程序;处理器,被配置为运行存储器中存储的程序,以执行上述实施例描述的电池的许用功率估算方法。
根据本申请的实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本申请的实施例包括一种计算机程序产品,其包括有形地包含在机器可读介质上的计算机程序,计算机程序包含用于执行流程图所示的方法的程序代码。在这样的实施例中,该计算机程序可以从网络上被下载和安装,和/或从可拆卸存储介质被安装。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令,当其在计算机上运行时,使得计算机执行上述各个实施例中描述的方法。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘)等。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现 本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使对应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (16)

  1. 一种电池的许用功率估算方法,所述电池的许用功率估算方法包括:
    确定电池的当前荷电状态值和当前电池温度;
    获取所述电池的工况运行数据;
    处理所述工况运行数据得到所述电池的滞回系数,以根据所述电池的许用功率与所述当前荷电状态值、所述当前电池温度、以及所述滞回系数的对应关系,估算所述电池的许用功率。
  2. 根据权利要求1所述的电池的许用功率估算方法,所述工况运行数据包括预先记录的历史充电容量和预先记录的历史放电容量;
    所述处理所述工况运行数据得到所述电池的滞回系数,包括:
    根据所述历史充电容量确定所述电池的累计充电容量,以及根据所述历史放电容量确定所述电池的累计放电容量;
    计算所述累计充电容量和所述累计放电容量的比值,得到所述电池的滞回系数。
  3. 根据权利要求2所述的电池的许用功率估算方法,所述工况运行数据还包括所述电池的历史荷电状态值;
    所述电池的许用功率估算方法,还包括:
    利用预设的开路电压估算模型组件,处理所述当前荷电状态值和所述电池的历史荷电状态值,得到所述电池的开路电压值;
    在所述开路电压值位于滞回电压区间以外电压区间的情况下,将所述历史充电容量设置为零以及将所述历史放电容量设置为零,重新记录所述电池的历史充电容量和所述电池的历史放电容量;
    其中,在所述滞回电压区间,所述电池的充电状态时的荷电状态值和放电状态时的荷电状态值相等时,所述充电状态时的荷电状态值对应的开路电压值不同于所述放电状态时的荷电状态值对应的开路电压值。
  4. 根据权利要求1所述的电池的许用功率估算方法,所述根据所述电池的许用功率与所述当前荷电状态值、所述当前电池温度、以及所述滞回 系数的对应关系,估算所述电池的许用功率,包括:
    在满足第一标定条件的情况下,通过电池功率性能测试的方法,确定与指定电池温度和指定荷电状态对应的所述电池的许用功率下限值,以建立所述电池的许用功率下限值与电池温度和荷电状态之间的对应关系;
    在满足第二标定条件的情况下,通过电池功率性能测试的方法,确定与指定电池温度和指定荷电状态对应的所述电池的许用功率上限值,以建立所述电池的许用功率上限值与电池温度和荷电状态之间的对应关系;
    利用所述当前荷电状态值和所述当前电池温度,根据所述电池的许用功率下限值与电池温度和荷电状态之间的对应关系,确定所述电池的许用功率下限值;
    利用所述当前荷电状态值和所述当前电池温度,根据所述电池的许用功率上限值与电池温度和荷电状态之间的对应关系,确定所述电池的许用功率上限值;
    基于所述滞回系数,对所述许用功率下限值和所述许用功率上限值进行加权处理,得到所述电池的许用功率。
  5. 根据权利要求4所述的电池的许用功率估算方法,
    所述第一标定条件包括:在预设电池温度下,将所述电池的荷电状态通过充电调整到预设荷电状态值;
    所述第二标定条件包括:在预设电池温度下,将所述电池的荷电状态通过放电调整到预设荷电状态值;
    所述电池的许用功率下限值对应的滞回系数为-1,所述电池的许用功率上限值对应的滞回系数为1。
  6. 一种电池的许用功率估算方法,所述电池的许用功率估算方法包括:
    确定电池的当前荷电状态值和当前电池温度;
    从所述电池的工况运行数据中获取所述电池的历史荷电状态值;
    利用预设的开路电压估算模型组件,处理所述当前荷电状态值、所述当前电池温度和所述历史荷电状态值,得到所述电池的许用功率。
  7. 根据权利要求6所述的电池的许用功率估算方法,所述利用预设的 开路电压估算模型组件,处理所述当前荷电状态值、所述当前电池温度和所述历史荷电状态值,得到所述电池的许用功率,包括:
    利用所述开路电压估算模型组件,处理所述当前荷电状态值和所述电池的历史荷电状态值,得到所述电池的开路电压值;
    根据电池内阻与电池温度和荷电状态值的对应关系,利用所述当前电池温度和所述当前荷电状态,确定所述电池的电池内阻;
    确定所述开路电压值与预设的电池的电压下限值形成的电压差值,并计算所述电压差值与所述电池内阻的比值,得到与所述当前荷电状态值和所述电池温度对应的所述电池的极限电流;
    利用所述极限电流和所述电压下限值,确定与所述当前荷电状态值和所述电池温度对应的所述电池的许用功率。
  8. 根据权利要求6所述的电池的许用功率估算方法,所述电池的许用功率估算方法还包括:
    利用所述开路电压估算模型组件,处理所述当前荷电状态值和所述电池的历史荷电状态值,得到所述电池的开路电压值;
    在所述开路电压值位于滞回电压区间以外电压区间的情况下,重新记录所述电池的历史荷电状态;
    其中,在所述滞回电压区间,所述电池的充电状态时的荷电状态值和放电状态时的荷电状态值相等时,所述充电状态时的荷电状态值对应的开路电压值不同于所述放电状态时的荷电状态值对应的开路电压值。
  9. 根据权利要求6所述的电池的许用功率估算方法,
    所述历史荷电状态值包括:预先依次记录的所述电池在N次电流方向发生变化时对应的N个荷电状态值,并且第N个荷电状态值是针对所述当前荷电状态值的前一次电流方向发生变化时的荷电状态值,其中,N为大于等于1的整数。
  10. 一种电池的许用功率估算装置,所述电池的许用功率估算装置包括:
    电池参数确定模块,用于确定电池的当前荷电状态值和当前电池温度;
    工况数据获取模块,用于获取所述电池的工况运行数据;
    第一估算模块,用于处理所述工况运行数据得到所述电池的滞回系数,以根据所述电池的许用功率与所述当前荷电状态值、所述当前电池温度、以及所述滞回系数的对应关系,估算所述电池的许用功率。
  11. 根据权利要求10所述的电池的许用功率估算装置,所述工况运行数据包括预先记录的历史充电容量和预先记录的历史放电容量;所述第一估算模块包括:
    充放电容量计算单元,用于根据所述历史充电容量确定所述电池的累计充电容量,以及根据所述历史放电容量确定所述电池的累计放电容量;
    滞回系数计算单元,用于计算所述累计充电容量和所述累计放电容量的比值,得到所述电池的滞回系数。
  12. 根据权利要求10所述的电池的许用功率估算装置,所述第一估算模块,包括:
    第一对应关系确定单元,用于在满足第一标定条件的情况下,通过电池功率性能测试的方法,确定与指定电池温度和指定荷电状态对应的所述电池的许用功率下限值,以建立所述电池的许用功率下限值与电池温度和荷电状态之间的对应关系;
    第二对应关系确定单元,用于在满足第二标定条件的情况下,通过电池功率性能测试的方法,确定与指定电池温度和指定荷电状态对应的所述电池的许用功率上限值,以建立所述电池的许用功率上限值与电池温度和荷电状态之间的对应关系;
    许用功率下限值确定单元,用于利用所述当前荷电状态值和所述当前电池温度,根据所述电池的许用功率下限值与电池温度和荷电状态之间的对应关系,确定所述电池的许用功率下限值;
    许用功率上限值确定单元,用于利用所述当前荷电状态值和所述当前电池温度,根据所述电池的许用功率上限值与电池温度和荷电状态之间的对应关系,确定所述电池的许用功率上限值;
    许用功率确定单元,用于基于所述滞回系数,对所述许用功率下限值和所述许用功率上限值进行加权处理,得到所述电池的许用功率。
  13. 一种电池的许用功率估算装置,所述许用功率估算装置包括:
    电池参数确定模块,用于确定电池的当前荷电状态值和当前电池温度;
    工况数据获取模块,用于从所述电池的工况运行数据中获取所述电池的历史荷电状态值;
    第二估算模块,用于利用预设的开路电压估算模型组件,处理所述当前荷电状态值、所述当前电池温度和所述历史荷电状态值,得到所述电池的许用功率。
  14. 根据权利要求13所述的电池的许用功率估算装置,所述工况运行数据包括历史荷电状态;所述第二估算模块,包括:
    开路电压确定单元,用于利用所述开路电压估算模型组件,处理所述当前荷电状态值和所述电池的历史荷电状态值,得到所述电池的开路电压值;
    电池内阻确定单元,用于根据电池内阻与电池温度和荷电状态值的对应关系,利用所述当前电池温度和所述当前荷电状态,确定所述电池的电池内阻;
    极限电流计算单元,用于确定所述开路电压值与预设的电池的电压下限值形成的电压差值,并计算所述电压差值与所述电池内阻的比值,得到与所述当前荷电状态值和所述电池温度对应的所述电池的极限电流;
    许用功率计算单元,用于利用所述极限电流和所述电压下限值,确定与所述当前荷电状态值和所述电池温度对应的所述电池的许用功率。
  15. 一种电池的许用功率估算系统,包括存储器和处理器;
    所述存储器用于储存有可执行程序代码;
    所述处理器用于读取所述存储器中存储的可执行程序代码以执行权利要求1至5中任一项所述的电池的许用功率估算方法,或者权利要求6至9中任一项所述的电池的许用功率估算方法。
  16. 一种计算机可读存储介质,所述计算机可读存储介质包括指令,当所述指令在计算机上运行时,使得计算机执行如权利要求1至5中任一项所述的电池的许用功率估算方法,或者权利要求6至9中任一项所述的 电池的许用功率估算方法。
PCT/CN2020/089370 2019-06-24 2020-05-09 电池的许用功率估算方法、装置、系统和存储介质 WO2020259096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910547769.8A CN110967637B (zh) 2019-06-24 2019-06-24 电池的许用功率估算方法、装置、系统和存储介质
CN201910547769.8 2019-06-24

Publications (1)

Publication Number Publication Date
WO2020259096A1 true WO2020259096A1 (zh) 2020-12-30

Family

ID=70029505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/089370 WO2020259096A1 (zh) 2019-06-24 2020-05-09 电池的许用功率估算方法、装置、系统和存储介质

Country Status (2)

Country Link
CN (1) CN110967637B (zh)
WO (1) WO2020259096A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110967638B (zh) * 2019-06-24 2021-03-23 宁德时代新能源科技股份有限公司 电池的剩余可用能量估算方法、装置、系统和存储介质
CN110967637B (zh) * 2019-06-24 2020-12-29 宁德时代新能源科技股份有限公司 电池的许用功率估算方法、装置、系统和存储介质
CN111751730A (zh) * 2020-07-07 2020-10-09 无锡明恒混合动力技术有限公司 一种应用于hev的sop方法
CN112104047B (zh) * 2020-09-28 2023-07-28 恒大恒驰新能源汽车研究院(上海)有限公司 电池充电控制方法及装置、计算机可读存储介质
CN113572243B (zh) * 2021-09-26 2022-02-18 蜂巢能源科技有限公司 电池功率的控制方法、控制装置和电池系统
CN114614118B (zh) * 2022-03-09 2024-02-27 东莞新能安科技有限公司 电池功率处理方法、装置和电池管理系统
CN115480165B (zh) * 2022-09-16 2024-03-22 中国第一汽车股份有限公司 一种动力电池许用压差的计算方法及装置
CN117060553B (zh) * 2023-10-13 2024-01-02 快电动力(北京)新能源科技有限公司 储能系统的电池管理方法、装置、系统和部件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105301509A (zh) * 2015-11-12 2016-02-03 清华大学 锂离子电池荷电状态、健康状态与功率状态的联合估计方法
CN106842038A (zh) * 2016-12-14 2017-06-13 广东恒沃动力科技有限公司 一种电池最大放电功率在线估算方法
CN108072844A (zh) * 2017-12-15 2018-05-25 重庆长安汽车股份有限公司 一种车用动力电池可用功率估算方法
CN108196200A (zh) * 2018-01-28 2018-06-22 复旦大学 一种锂电池健康和荷电状态的联合模拟评估方法
CN108363009A (zh) * 2017-12-26 2018-08-03 浙江大学 一种实现锂离子电池最大允许功率在线预估的方法
US10073147B2 (en) * 2013-05-16 2018-09-11 Nec Corporation Battery state estimation device, battery state management system, battery, battery state estimation method, and non-transitory storage medium
CN110967637A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池的许用功率估算方法、装置、系统和存储介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107473732B (zh) * 2017-08-31 2020-10-27 陕西科技大学 一种钛酸锶基高储能密度和低介电损耗陶瓷材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10073147B2 (en) * 2013-05-16 2018-09-11 Nec Corporation Battery state estimation device, battery state management system, battery, battery state estimation method, and non-transitory storage medium
CN105301509A (zh) * 2015-11-12 2016-02-03 清华大学 锂离子电池荷电状态、健康状态与功率状态的联合估计方法
CN106842038A (zh) * 2016-12-14 2017-06-13 广东恒沃动力科技有限公司 一种电池最大放电功率在线估算方法
CN108072844A (zh) * 2017-12-15 2018-05-25 重庆长安汽车股份有限公司 一种车用动力电池可用功率估算方法
CN108363009A (zh) * 2017-12-26 2018-08-03 浙江大学 一种实现锂离子电池最大允许功率在线预估的方法
CN108196200A (zh) * 2018-01-28 2018-06-22 复旦大学 一种锂电池健康和荷电状态的联合模拟评估方法
CN110967637A (zh) * 2019-06-24 2020-04-07 宁德时代新能源科技股份有限公司 电池的许用功率估算方法、装置、系统和存储介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHENG ZE, XINGMIAN SUN, SILU CHENG: "Method for Estimation of State of Charge and Power Prediction of Lithium-Ion Battery", TRANSACTIONS OF CHINA ELECTROTECHNICAL SOCIETY, vol. 32, no. 15, 1 August 2017 (2017-08-01), pages 180 - 189, XP055771659, ISSN: 1000-6753, DOI: 10.19595/j.cnki.1000-6753.tces.160557 *

Also Published As

Publication number Publication date
CN110967637B (zh) 2020-12-29
CN110967637A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020259096A1 (zh) 电池的许用功率估算方法、装置、系统和存储介质
US11269011B2 (en) Method, device, system for estimating remaining charging time and storage medium
US10312699B2 (en) Method and system for estimating battery open cell voltage, state of charge, and state of health during operation of the battery
CN107991623B (zh) 一种考虑温度和老化程度的电池安时积分soc估计方法
WO2018196121A1 (zh) 一种确定电池内短路的方法及装置
CN111239611B (zh) 一种基于单体电池容量校准packsoc的计算方法
CN109991554B (zh) 一种电池电量检测方法、装置及终端设备
WO2014161325A1 (zh) 一种检测电池电量的方法、装置及终端
WO2020259007A1 (zh) 电池的剩余可用能量估算方法、装置、系统和存储介质
US11567137B2 (en) Battery management system, battery management method, battery pack and electric vehicle
WO2023197939A1 (zh) Ocv-soc标定及估算方法、装置、介质和车辆
US20220176845A1 (en) Battery management system, battery pack, electric vehicle, and battery management method
KR20220034543A (ko) 배터리의 충전상태를 추정하는 방법
CN108829911A (zh) 一种开路电压与soc函数关系优化方法
CN109613445A (zh) 一种估计动力电池的健康状态的方法和装置
Lavety et al. A dynamic battery model and parameter extraction for discharge behavior of a valve regulated lead-acid battery
CN114371408B (zh) 电池荷电状态的估算方法、充电曲线的提取方法及装置
WO2023044872A1 (zh) 确定电池包的显示荷电状态soc的方法与装置
US11579201B2 (en) Method and system for identifying third-order model parameters of lithium battery based on likelihood function
JP2010203935A (ja) 二次電池の入出力可能電力推定装置
Lai et al. A quantitative method for early-stage detection of the internal-short-circuit in Lithium-ion battery pack under float-charging conditions
CN112782598B (zh) 一种电量信息的计量方法、装置、设备及存储介质
CN117250514A (zh) 一种动力电池系统全生命周期soc的修正方法
CN117148187A (zh) 一种基于ocv校准的soh估算方法、系统及电子设备
TWI687701B (zh) 判斷電量狀態的方法及其電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20833059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20833059

Country of ref document: EP

Kind code of ref document: A1