WO2023197939A1 - Ocv-soc标定及估算方法、装置、介质和车辆 - Google Patents

Ocv-soc标定及估算方法、装置、介质和车辆 Download PDF

Info

Publication number
WO2023197939A1
WO2023197939A1 PCT/CN2023/086791 CN2023086791W WO2023197939A1 WO 2023197939 A1 WO2023197939 A1 WO 2023197939A1 CN 2023086791 W CN2023086791 W CN 2023086791W WO 2023197939 A1 WO2023197939 A1 WO 2023197939A1
Authority
WO
WIPO (PCT)
Prior art keywords
ocv
soc
battery
discharge
curve
Prior art date
Application number
PCT/CN2023/086791
Other languages
English (en)
French (fr)
Inventor
康文蓉
何佳昕
Original Assignee
长城汽车股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长城汽车股份有限公司 filed Critical 长城汽车股份有限公司
Publication of WO2023197939A1 publication Critical patent/WO2023197939A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/387Determining ampere-hour charge capacity or SoC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of battery technology, and in particular to a battery OCV-SOC function relationship calibration method, SOC estimation method, device, medium and vehicle.
  • SOC battery state of charge
  • OCV open circuit voltage
  • the battery The voltage at both ends is the open circuit voltage.
  • the open circuit voltage is not affected by the charge and discharge current and is related to the battery material and SOC. At a certain temperature, there is a one-to-one correspondence between the battery's SOC and its open circuit voltage.
  • the SOC-OCV curve of the battery is an important basic curve for lithium batteries. It is mainly used to collect the open circuit voltage to estimate the SOC of the battery. That is, by measuring the OCV, the remaining power of the battery can be known. Therefore, accurately obtaining the SOC-OCV curve of the battery is a basic task in formulating a battery SOC estimation strategy.
  • the present disclosure aims to propose a battery OCV-SOC function relationship calibration method, SOC estimation method, device, medium and vehicle to solve the problem of inaccurate battery discharge OCV-SOC curve due to the hysteresis characteristics of the battery. question.
  • a battery OCV-SOC function relationship calibration method includes:
  • the charge and discharge OCV-SOC curve, the charging OCV-SOC curve and the discharge OCV-SOC curve of the battery are respectively fitted to obtain the charge and discharge OCV-SOC function relationship formula and the charging OCV-SOC function relationship formula. and discharge OCV-SOC function relationship formula;
  • the charge and discharge OCV-SOC curve of the battery is drawn.
  • the charging of the battery intermittently includes:
  • the battery After each charge, the battery is left to stand for a second preset period of time, and then the battery is charged the next time.
  • the length of the second preset period of time is: after each charge, wait for the OCV of the battery to decrease. Then reduce the required time.
  • U charge and discharge is the value of OCV
  • X is the value of SOC
  • P refers to the coefficient
  • the charging OCV-SOC function relationship is:
  • U charge is the value of OCV
  • X is the value of SOC
  • P' refers to the coefficient
  • U discharge is the value of OCV
  • X is the value of SOC
  • P refers to the coefficient
  • U is the value of OCV
  • discharging the battery intermittently according to the second preset current rate includes:
  • the next discharge to the battery is performed at intervals according to the second preset current rate.
  • drawing the charge and discharge OCV-SOC curve of the battery based on multiple pairs of OCV values and SOC values obtained by multiple discharges includes:
  • the charge and discharge OCV-SOC curve of the battery is drawn.
  • discharging the battery intermittently according to the second preset current rate includes:
  • the battery is discharged intermittently according to the second preset current rate until the SOC value of the battery drops to 0%.
  • the battery OCV-SOC function relationship calibration method described in this disclosure has the following advantages:
  • the calibration method described in this disclosure by considering the impact of the hysteresis effect caused by the battery's charge state and discharge state, fits the charge and discharge OCV-SOC curve, the charge OCV-SOC curve and the discharge
  • the OCV-SOC curve establishes the functional relationship between the hysteresis parameter and SOC, thereby obtaining the OCV-SOC function relationship.
  • This method avoids the problem that the OCV drops significantly due to the hysteresis characteristics of the battery after being fully charged, and reduces the impact of the battery's hysteresis characteristics.
  • the obtained OCV-SOC function relationship can be used to calculate the corresponding OCV after measuring the battery's OCV. SOC value, and compared with the existing technology that only uses the discharge OCV-SOC curve to calculate SOC, the results obtained by the present disclosure are more accurate.
  • Another object of the present disclosure is to propose a battery SOC estimation method to solve the problem of inaccurate discharge OCV-SOC curve of the battery due to the hysteresis characteristics of the battery.
  • the technical solution of the present disclosure is implemented as follows:
  • a battery SOC estimation method including:
  • the OCV-SOC function relationship of the battery obtained based on the above-mentioned battery OCV-SOC function relationship calibration method is queried to obtain the target SOC value.
  • the battery SOC estimation method has the same advantages as the above-mentioned battery OCV-SOC function relationship calibration method over the existing technology, and will not be described again here.
  • Another object of the present disclosure is to propose a battery OCV-SOC function relationship calibration device to solve the problem of inaccurate discharge OCV-SOC curve of the battery due to the hysteresis characteristics of the battery.
  • the technical solution of the present disclosure is implemented as follows:
  • a battery OCV-SOC function relationship calibration device including:
  • Curve measurement module used to obtain the charge and discharge OCV-SOC curve, charging OCV-SOC curve and discharge OCV-SOC curve of the battery
  • a fitting module used to fit the charging OCV-SOC functional relationship, the discharging OCV-SOC functional relationship, and the charging and discharging OCV-SOC functional relationship, to obtain the hysteresis coefficient of the battery.
  • Target OCV-SOC function relationship used to fit the charging OCV-SOC functional relationship, the discharging OCV-SOC functional relationship, and the charging and discharging OCV-SOC functional relationship, to obtain the hysteresis coefficient of the battery.
  • the battery OCV-SOC function relationship calibration device and the above-mentioned battery OCV-SOC function relationship calibration method have the same advantages over the existing technology, and will not be described again here.
  • Another object of the present disclosure is to propose a battery SOC estimation device to solve the problem of inaccurate discharge OCV-SOC curve of the battery due to the hysteresis characteristics of the battery.
  • the technical solution of the present disclosure is implemented as follows:
  • a battery SOC estimation device including:
  • a detection module used to detect the OCV value of the battery
  • a query module configured to query the OCV-SOC function relationship of the battery obtained based on the above battery OCV-SOC function relationship calibration method according to the OCV value, and obtain the target SOC value.
  • the battery SOC estimation device and the above-mentioned battery OCV-SOC function relationship calibration method have the same advantages over the existing technology, and will not be described again here.
  • Another object of the present disclosure is to provide a computer-readable storage medium to solve the problem of inaccurate discharge OCV-SOC curve of the battery due to the hysteresis characteristics of the battery.
  • the technical solution of the present disclosure is implemented as follows:
  • a computer-readable storage medium has computer program instructions stored thereon, and the program instructions are executed by a processor to implement the steps of the above-mentioned battery OCV-SOC function relationship calibration method or the above-mentioned battery SOC estimation method.
  • the computer-readable storage medium has the same advantages as the above-mentioned battery OCV-SOC function relationship calibration method over the existing technology, which will not be described again here.
  • Another object of the present disclosure is to provide an electronic device to solve the problem of inaccurate discharge OCV-SOC curve of the battery due to the hysteresis characteristics of the battery.
  • the technical solution of the present disclosure is implemented as follows:
  • a vehicle includes an electronic device, the electronic device includes a memory and a processor, the memory is used to store information including program instructions, the processor is used to control the execution of the program instructions, the program instructions are loaded by the processor and During execution, the above battery OCV-SOC function relationship calibration method or the above battery SOC estimation method is implemented.
  • the electronic equipment and the battery OCV-SOC function relationship calibration method have the same advantages over the existing technology, and will not be described again here.
  • Figure 1 is a step flow chart of a battery OCV-SOC function relationship calibration method according to an embodiment of the present disclosure
  • Figure 2 is a step flow chart of a battery charging and discharging OCV-SOC curve calibration method according to an embodiment of the present disclosure
  • Figure 3 is a battery charging and discharging OCV-SOV curve according to the embodiment of the present disclosure, a schematic diagram of the charging OCV-SOV curve and the discharging OCV-SOV curve;
  • Figure 4 schematically illustrates a block diagram of an electronic device for performing a method according to the present disclosure.
  • Figure 5 schematically shows a storage unit for holding or carrying program code implementing a method according to the present disclosure.
  • A-charge and discharge OCV-SOC curve B-charge OCV-SOC curve
  • C- Discharge OCV-SOC curve C- Discharge OCV-SOC curve.
  • ampere-hour integration method Kalman filter method
  • artificial neural network method artificial neural network method
  • open circuit voltage method open circuit voltage method.
  • the main principle of the ampere-hour integration method is that it does not consider the external structure and chemical reactions of the battery, but only records and detects the current flowing through the battery continuously for a long time and integrates it to calculate the remaining power.
  • the ampere-hour integration method is accurate. The performance is closely related to the initial capacity of the battery and the accuracy of current detection. When the discharge current detection is unstable or even fluctuates violently, the measurement error is large. At the same time, as the discharge time increases, the cumulative error occurs and increases, and the initial capacity in the later period Large errors will occur, and the final SOC estimate will deviate seriously from the actual value.
  • Kalman filter is an optimized autoregressive data processing algorithm, a data processing technology proposed by Kalman to restore real data.
  • the basic principle is to regard the battery as a power system and SOC as an internal state quantity.
  • SOC an internal state quantity.
  • this method requires high computing power of the processor.
  • this method is rarely used on microcontrollers.
  • the artificial neural network method estimates battery SOC, the voltage and current of the battery are usually used as input layer samples.
  • the open circuit voltage method means that the battery is first constant capacity at a specific current at the temperature to be measured. Based on the constant capacity, the SOC of the battery is adjusted at certain intervals with a certain capacity, and the open circuit voltage of the battery is measured after it has been allowed to stand for a long time. Until the battery reaches the empty state, each point corresponds one to one, which becomes the SOC-OCV curve of the battery at that temperature. However, the hysteresis effect caused by the polarization process of the battery will cause the measured OCV to be inaccurate, which is also the reason why the obtained SOC-OCV curve is not accurate enough.
  • Figure 1 is a step flow chart of the method. As shown in Figure 1, the method includes:
  • the charge and discharge OCV-SOC curve, charge OCV-SOC curve and discharge OCV-SOC curve of the battery are respectively fitted to obtain the charge and discharge OCV-SOC function relationship, the charge OCV-SOC function relationship and the discharge OCV-SOC function. relational expression;
  • the charge and discharge OCV-SOC curve refers to the charge and discharge OCV-SOC curve intermittently through a small rate current. After the battery is fully charged slowly and steadily, it is then discharged at a certain SOC. After a period of resting in this state, the battery OCV after resting is recorded, and then each point is corresponded one by one to make the charge and discharge.
  • the charging OCV-SOC curve refers to the charging OCV-SOC curve obtained by charging to a specific SOC value according to a small rate current, and then measuring the corresponding battery OCV value after leaving one end for a while; the described
  • the discharge OCV-SOC curve is mainly to charge the battery with a constant current and let it sit for a period of time until it stabilizes. Then it completes the discharge at a certain SOC. After a period of rest in this state, record the battery after resting. OCV, and then make a one-to-one correspondence between each point to create a discharge SOC-OCV curve.
  • the battery has a hysteresis effect, that is, the OCV voltage of the battery is not only related to the SOC, but also whether the battery is in a charged state or a discharged state before standing still, making these three curves different.
  • the above three curves into three functional relationship expressions (with charging hysteresis coefficient, discharge hysteresis coefficient and charge and discharge hysteresis coefficient respectively), and then fitting them, a curve of OCV and SOC with hysteresis coefficient is obtained.
  • the functional relationship formula establishes the functional relationship between the hysteresis parameter and OCV and SOC, thereby reducing the impact of the battery's hysteresis characteristics when testing the SOC value.
  • the charging and discharging OCV-SOC function relationship is:
  • U charge and discharge is the value of OCV
  • X is the value of SOC
  • P refers to the coefficient
  • the charging OCV-SOC function relationship is:
  • U charge is the value of OCV
  • X is the value of SOC
  • P' refers to the coefficient
  • U discharge is the value of OCV
  • X is the value of SOC
  • P refers to the coefficient
  • the target OCV-SOC function relationship is:
  • U is the value of OCV
  • Figure 2 is a schematic diagram of the calibration process of the charge and discharge OCV-SOC curve. As shown in Figure 2, the charge and discharge OCV-SOC curve of the battery is obtained, including:
  • the charge and discharge OCV-SOC curve of the battery is drawn.
  • the current rate refers to the current value output by the battery when it releases its rated capacity within a specified period of time, and can be used to indicate the charging rate. What needs to be known is that the current rate during the charging process will also affect the hysteresis effect of the battery. Specifically, when the battery is charged with constant current at a larger current rate, the battery will be fully charged quickly. However, the resulting hysteresis effect is strong, and the OCV of the battery will slowly decrease for a period of time after being fully charged. Even after a long period of rest, the battery OCV cannot be stabilized.
  • the battery is charged at intervals with a relatively small current rate, that is, charging is completed at a certain SOC, and then it is left to stand for a period of time and then charged again until the battery is fully charged, in this way the battery is fully charged slowly and steadily. , the resulting hysteresis effect is weak, and the OCV value of the battery is stable enough after being fully charged without significant decline.
  • the OCV and SOC values of the battery are in a one-to-one correspondence. Specifically, the OCV of the battery will decrease as the SOC decreases. Therefore, by intermittently discharging the battery, reducing the SOC by a certain amount each time, and then leaving the battery to stabilize, the OCV value of the battery is measured. In this way, multiple pairs of OCV and SOC values are obtained, and the charge and discharge OCV-SOC can be plotted. curve.
  • the battery by controlling the first preset current rate during charging, the battery is charged at intervals, so that the battery is filled slowly and steadily, which can weaken the hysteresis effect of the battery, that is, after the battery is fully charged , the battery OCV is stable enough and will not occur Significant reduction. And slowing down the battery charging process can effectively reduce the battery heating effect caused by charging, avoiding the impact of battery temperature changes on the battery's SOC and OCV measurements.
  • charging the battery intermittently includes:
  • the battery After each charge, the battery is left to stand for a second preset period of time, and then the battery is charged the next time.
  • the length of the second preset period of time is: after each charge, wait for the OCV of the battery to decrease. Then reduce the required time.
  • the battery is allowed to stand for a second preset period of time, thereby eliminating the hysteresis effect caused by this charging and making the OCV more stable after the battery is left standing. Therefore, when setting the duration of the second preset time period of the battery, the main consideration is whether the OCV of the battery can be stabilized.
  • the duration of the second preset time period is in the range of 1-3 hours.
  • the second preset time is too short, the hysteresis effect of the battery will still be strong and accumulated through multiple charges. After the battery is fully charged, the OCV will decrease, ultimately resulting in the resulting charge and discharge OCV. -The SOC curve is not accurate enough; if the second preset time is too long, the charging process will be too lengthy and the calibration efficiency of the curve will be reduced.
  • charging the battery intermittently includes increasing the SOC of the battery by the same amount with each charge.
  • the SOC of the battery can be increased by 1% or 2% with each charge. SOC or 5% SOC, which is not limited here.
  • the first preset current rate is: a current rate required when the temperature of the battery is within the allowable temperature change range during each charging period.
  • the size of the first preset current magnification during charging can be controlled to prevent the temperature from rising significantly during charging due to the current magnification being too large, resulting in an increase in variables and affecting the accuracy of subsequent curve calibration results. sex. Specifically, the temperature change can be limited to no more than 0.5°C or 0.1°C, and there is no restriction here.
  • the first preset current magnification is in the range of 1/3C-1C.
  • discharge the battery intermittently according to the second preset current rate including:
  • the next discharge to the battery is performed at intervals according to the second preset current rate.
  • the discharge OCV-SOC curve means that according to the open circuit voltage method, the battery is first fully charged with a constant current, then allowed to stand fully (there is an OCV drop), and then the battery is discharged at intervals, that is, every time it is used The battery reduces the SOC by the same amount, then leaves it alone. Then the OCV value of the battery is measured and the SOC value is recorded until the battery reaches an empty state. Each point corresponds to a one-to-one correspondence, which becomes the SOC-OCV curve of the battery at that temperature.
  • the hysteresis effect when the battery is fully charged will cause the measured OCV to be inaccurate when the SOC is high. This is also the reason why the discharge SOC-OCV curve obtained is not accurate enough.
  • Figure 3 is a schematic diagram of a charging and discharging OCV-SOC curve, a charging OCV-SOC curve and a discharging OCV-SOC curve according to the embodiment of the present disclosure.
  • the abscissa represents SOC
  • the ordinate represents OCV
  • the curve A is the charge and discharge OCV-SOC curve of the battery
  • curve B is the charge OCV-SOC curve of the battery
  • curve C is the discharge OCV-SOC curve of the battery.
  • the battery When the battery is fully charged, according to the battery OCV-SOC function relationship calibration method provided in this embodiment, the battery will not be affected by the hysteresis effect and cause the OCV to drop significantly. Therefore, the OCV of the OCV-SOC curve will be high when fully charged. OCV based on the discharge OCV-SOC curve. In the process of intermittent discharge, as the SOC decreases, the impact of the hysteresis effect at full charge weakens, and the difference between the two curves becomes smaller, and eventually they overlap.
  • the intermittently discharging the battery includes reducing the SOC of the battery by an equal amount each time.
  • each discharge can reduce the SOC of the battery by 1%. 2% SOC or 5% SOC, there is no limit on it here.
  • drawing the OCV-SOC curve of the battery based on multiple pairs of OCV values and SOC values obtained from multiple discharges includes:
  • the charge and discharge OCV-SOC curve of the battery is drawn.
  • discharging the battery intermittently according to the second preset current rate includes:
  • the battery is discharged intermittently according to the second preset current rate until the SOC value of the battery drops to 0%.
  • the The battery is discharged intermittently until the SOC value of the battery drops to 0%, so that a complete charge-discharge OCV-SOC curve with SOC in the range of 0-100% can be obtained.
  • the embodiment of the present disclosure obtains the charge and discharge OCV-SOC curve, the charging OCV-SOC curve and the discharge OCV-SOC curve of the battery; and respectively fits the above curves to obtain the charge and discharge OCV-SOC function relationship formula, charging OCV-SOC Functional relationship and discharge OCV-SOC functional relationship; then fit the above OCV-SOC functional relationship to obtain the target OCV-SOC functional relationship with hysteresis coefficient of the battery.
  • the calibration method described in this disclosure considers the hysteresis effect caused by the battery's charge state and discharge state, fits the charge and discharge OCV-SOC curve, the charging OCV-SOC curve and the discharge OCV-SOC curve, and establishes the hysteresis parameter and The functional relationship between OCV and SOC is derived from the OCV-SOC functional relationship. This method reduces the impact of battery hysteresis characteristics, and the OCV-SOC curve drawn thereby is more accurate.
  • embodiments of the present disclosure also provide a battery SOC estimation method, including:
  • the OCV-SOC function relationship of the battery obtained based on the above-mentioned battery OCV-SOC function relationship calibration method is queried to obtain the target SOC value.
  • embodiments of the present disclosure also provide a battery OCV-SOC function relationship calibration device, including:
  • Curve measurement module used to obtain the charge and discharge OCV-SOC curve, charging OCV-SOC curve and discharge OCV-SOC curve of the battery
  • a fitting module used to fit the charging OCV-SOC functional relationship, the discharging OCV-SOC functional relationship, and the charging and discharging OCV-SOC functional relationship, to obtain the hysteresis coefficient of the battery.
  • Target OCV-SOC function relationship used to fit the charging OCV-SOC functional relationship, the discharging OCV-SOC functional relationship, and the charging and discharging OCV-SOC functional relationship, to obtain the hysteresis coefficient of the battery.
  • a battery SOC estimation device including:
  • a detection module used to detect the OCV value of the battery
  • the target SOC value is obtained by using the OCV-SOC function relationship equation of the battery obtained by the equation calibration method.
  • embodiments of the present disclosure also provide a computer-readable storage medium on which computer program instructions are stored.
  • the program instructions are executed by the processor to implement the above-mentioned OCV-SOC function relationship calibration method or the above-mentioned SOC of the battery. Steps in the estimation method.
  • an embodiment of the present disclosure also provides an electronic device, including a memory and a processor.
  • the memory is used to store information including program instructions.
  • the processor is used to control the execution of program instructions.
  • the program instructions are When loaded and executed by the processor, the above battery OCV-SOC function relationship calibration method or the above battery SOC estimation method is implemented.
  • Step 1 Charge the battery at intervals according to a current of 1/3C. Every time the SOC of the battery increases by 5%, let it sit for 1 hour. After the battery is fully charged, let it sit for 1 hour, discharge it at intervals according to 1% SOC, let it stand for 1 hour after each discharge, and measure the corresponding OCV value until the SOC value drops to 0. Based on the recorded multiple sets of OCV and SOC data, the charge and discharge OCV-SOC curve of the battery is drawn.
  • Step 2 Charge the battery at a current of 1/3C so that the SOC of the battery increases by 1%. After leaving it alone for 1 hour, measure the corresponding OCV value until the SOC rises to 100%. Based on the recorded multiple sets of OCV and SOC data, the charging OCV-SOC curve of the battery is drawn.
  • Step 3 Charge the battery with a constant current at a current of 1/3C. After the battery is fully charged, let it sit for 1 hour. Discharge it at intervals according to 1% SOC. After each discharge, let it stand for 1 hour and measure the corresponding OCV value. Until the SOC value drops to 0. Based on the recorded multiple sets of OCV and SOC data, the discharge OCV-SOC curve of the battery is drawn.
  • Step 4 Fit the three obtained OCV-SOC curves into the charge and discharge OCV-SOC function relationship, the charge OCV-SOC function relationship and the discharge OCV-SOC function relationship;
  • U charge and discharge is the value of OCV
  • X is the value of SOC
  • P refers to the coefficient
  • the charging OCV-SOC function relationship is:
  • U charge is the value of OCV
  • X is the value of SOC
  • P' refers to the coefficient
  • U discharge is the value of OCV
  • X is the value of SOC
  • P refers to the coefficient
  • Step 5 Fit the above OCV-SOC function relationship to obtain the target OCV-SOC function relationship with hysteresis coefficient of the battery:
  • U is the value of OCV
  • the present disclosure provides a battery OCV-SOC function relationship calibration method, SOC estimation method, device, medium and vehicle, by obtaining the charge and discharge OCV-SOC curve, charging OCV-SOC curve and discharge OCV-SOC curve of the battery. ; Respectively fit the above curves to obtain the charge and discharge OCV-SOC function relationship, the charging OCV-SOC function relationship and the discharge OCV-SOC function relationship; then fit the above OCV-SOC function relationship to obtain the above The battery's target OCV-SOC function relationship with hysteresis coefficient.
  • This disclosure fits the obtained OCV-SOC curves into charging and discharging OCV-SOC functional relationships, charging OCV-SOC functional relationships and discharging OCV-SOC functional relationships; each functional relationship has a corresponding Hysteresis coefficients P, P' and P".
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • Various component embodiments of the present disclosure may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some or all components in the electronic device according to embodiments of the present disclosure.
  • DSP digital signal processor
  • the present disclosure may also be implemented as an apparatus or apparatus program (eg, computer program and computer program product) for performing part or all of the methods described herein.
  • Such a program implementing the present disclosure may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from an Internet website, or provided on a carrier signal, or in any other form.
  • Figure 4 shows an electronic device that can implement methods according to the present disclosure.
  • the electronic device conventionally includes a processor 1010 and a computer program product or computer-readable medium in the form of memory 1020 .
  • Memory 1020 may be electronic memory such as flash memory, EEPROM (Electrically Erasable Programmable Read Only Memory), EPROM, hard disk, or ROM.
  • the memory 1020 has a storage space 1030 for program code 1031 for executing any method steps in the above-mentioned methods.
  • the storage space 1030 for program codes may include individual program codes 1031 respectively used to implement various steps in the above method. These program codes can be read from or written into one or more computer program products.
  • These computer program products include program code carriers such as hard disks, compact disks (CDs), memory cards or floppy disks. Such computer program products are typically portable or fixed storage units as described with reference to FIG. 5 .
  • the storage unit may have storage segments, storage spaces, etc. arranged similarly to the memory 1020 in the electronic device of FIG. 4 .
  • the program code may, for example, be compressed in a suitable form.
  • the storage unit includes computer readable code 1031', ie code that can be read by, for example, a processor such as 1010, which code, when executed by an electronic device, causes the electronic device to perform each of the methods described above. step steps.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种电池OCV-SOC函数关系式标定方法、SOC估算方法、装置、介质和车辆,属于电池技术领域。方法包括:获取电池的充放电、充电和放电OCV-SOC曲线(S1);分别对上述曲线进行拟合得到三条对应的OCV-SOC函数关系式(S2);然后将上述函数关系式进行拟合,得到电池的带迟滞系数的目标OCV-SOC函数关系式(S3)。本标定方法通过考虑电池的充电状态和放电状态带来的迟滞效应的影响,拟合充放电、充电和放电OCV-SOC曲线,建立迟滞参数与OCV、SOC的函数关系,由此得到OCV-SOC函数关系式,减少了电池迟滞特性带来的影响,由此通过测量OCV得到的SOC值更加准确。

Description

OCV-SOC标定及估算方法、装置、介质和车辆
相关申请的交叉引用
本公开要求在2022年04月14日提交中国专利局、申请号为202210391552.4、名称为“OCV-SOC标定及估算方法、装置、介质和车辆”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及电池技术领域,特别是涉及电池OCV-SOC函数关系式标定方法、SOC估算方法、装置、介质和车辆。
背景技术
在电池管理系统中,电池荷电状态(SOC)是一项非常重要的电池参数。SOC代表电池组剩余荷电量的百分比值,用于衡量电池组当前剩余的可用容量。准确的SOC的估算,可以保障整车的相关策略、电池的安全性、驾乘人员的体验感。通过SOC值可以知道电池当前状态的剩余电量,便于电池管理系统对电池发出各种指令。开路电压,即电池在开路状态下的端电压,用OCV(open circuit voltage)表示,一般认为电池在充电或放电后经过长时间的静置,电池已消除极化影响达到稳定状态,这个时候电池两端的电压即为开路电压,开路电压不受充放电电流影响,与电池材料和SOC有关。在一定的温度下,电池的SOC与开路电压呈现一一对应的关系。
电池的SOC-OCV曲线是锂电池一条重要的基础曲线,主要用于采集开路电压估算电池的SOC,即通过测量OCV便可得知电池的剩余电量。因此准确地获得电池的SOC-OCV曲线是制定电池SOC估算策略的一项基本任务。
然而,由于电池的迟滞特性,电池在静置并测试OCV之前,是处于充电状态还是放电状态都会对该电池的OCV值造成影响。并且,在电池充满后,即使是长时间的静置也无法完全使电池的OCV回落为放电OCV,这导致放电SOC-OCV曲线不够准确,从而造成锂离子电池SOC的估算误差。
发明内容
有鉴于此,本公开旨在提出一种电池OCV-SOC函数关系式标定方法、SOC估算方法、装置、介质和车辆,以解决由于电池的迟滞特性导致的电池的放电OCV-SOC曲线不准确的问题。
为达到上述目的,本公开的技术方案是这样实现的:
一种电池OCV-SOC函数关系式标定方法,所述方法包括:
获取所述电池的充放电OCV-SOC曲线、充电OCV-SOC曲线和放电OCV-SOC曲线;
分别对所述电池的所述充放电OCV-SOC曲线、所述充电OCV-SOC曲线和所述放电OCV-SOC曲线进行拟合得到充放电OCV-SOC函数关系式、充电OCV-SOC函数关系式和放电OCV-SOC函数关系式;
将所述充电OCV-SOC函数关系式、所述放电OCV-SOC函数关系式和所述充放电OCV-SOC函数关系式进行拟合,得到所述电池的带迟滞系数的目标OCV-SOC函数关系式。
进一步的,获取所述电池的充放电OCV-SOC曲线,包括:
按照第一预设电流倍率,间隔性地向电池进行充电,直至所述电池充满;
按照第二预设电流倍率,间隔性地向所述电池进行放电,每放电一次静置所述电池第一预设时间段后,测量所述电池的OCV值并记录对应的SOC值;
根据多次放电所得到的多对OCV值和SOC值,绘制所述电池的充放电OCV-SOC曲线。
进一步的,所述间隔性地向电池进行充电,包括:
每充电一次静置所述电池第二预设时间段后,再向所述电池进行下一次充电,所述第二预设时间段的时长为:在每次充电后等待所述电池的OCV不再降低所需的时长。
进一步的,所述充放电OCV-SOC函数关系式为:
U充放电=P6*X^6+P5*X^5+P4*X^4+P3*X^3+P2*X^2+P1*X^1+P0
其中,U充放电为OCV的值,X为SOC的值,P指系数;
所述充电OCV-SOC函数关系式为:
U充电=P’6*X^6+P’5*X^5+P’4*X^4+P’3*X^3+P’2*X^2+P’1*X^1+P’0
其中,U充电为OCV的值,X为SOC的值,P’指系数;
所述放电OCV-SOC函数关系式为:
U放电=P”6*X^6+P”5*X^5+P”4*X^4+P”3*X^3+P”2*X^2+P”1*X^1+P”0
其中,U放电为OCV的值,X为SOC的值,P”指系数。
进一步的,所述目标OCV-SOC函数关系式为:
其中,U为OCV的值,X为SOC的值,P指充放电OCV-SOC函数中的系数,P’指充电OCV-SOC函数中的系数,P”指放电OCV-SOC函数中的系数。
进一步的,按照第二预设电流倍率,间隔性地向所述电池进行放电,包括:
每放电一次后,将本次放电所得到的一对OCV值和SOC值与所述电池的放电OCV-SOC曲线比较;
在本次放电所得到的一对OCV值和SOC值与所述电池的放电OCV-SOC曲线重合的情况下,停止向所述电池进行放电;
在本次放电所得到的一对OCV值和SOC值与所述电池的放电OCV-SOC曲线不重合的情况下,按照第二预设电流倍率,间隔性地向所述电池进行下一次放电。
进一步的,所述根据多次放电所得到的多对OCV值和SOC值,绘制所述电池的充放电OCV-SOC曲线,包括:
根据多次放电所得到的多对OCV值和SOC值,以及所述电池的放电OCV-SOC曲线,绘制所述电池的充放电OCV-SOC曲线。
进一步的,所述按照第二预设电流倍率,间隔性地向所述电池进行放电,包括:
按照第二预设电流倍率,间隔性地向所述电池进行放电,直至所述电池的SOC值降为0%。
相对于现有技术,本公开所述的一种电池OCV-SOC函数关系式标定方法,具有以下优势:
本公开所述的标定方法,通过考虑电池的充电状态和放电状态带来的迟滞效应的影响,拟合充放电OCV-SOC曲线、充电OCV-SOC曲线和放电 OCV-SOC曲线,建立迟滞参数与SOC的函数关系,由此得到OCV-SOC函数关系式。该方法避免了在充满后电池因为迟滞特性而导致OCV明显回落的问题,减少了电池迟滞特性带来的影响,得到的OCV-SOC函数关系式可以用于在测得电池的OCV后计算对应的SOC值,并且相比于现有技术中仅利用放电OCV-SOC曲线来计算SOC,本公开得到的结果更加准确。
本公开的另一目的在于提出一种电池的SOC估算方法,以解决由于电池的迟滞特性导致的电池的放电OCV-SOC曲线不准确的问题。为达到上述目的,本公开的技术方案是这样实现的:
一种电池的SOC估算方法,包括:
检测电池的OCV值;
根据所述OCV值查询基于上述一种电池OCV-SOC函数关系式标定方法得到的所述电池的OCV-SOC函数关系式,得到目标SOC值。
所述电池的SOC估算方法与上述电池OCV-SOC函数关系式标定方法相对于现有技术所具有的优势相同,在此不再赘述。
本公开的另一目的在于提出一种电池OCV-SOC函数关系式标定装置,以解决由于电池的迟滞特性导致的电池的放电OCV-SOC曲线不准确的问题。为达到上述目的,本公开的技术方案是这样实现的:
一种电池OCV-SOC函数关系式标定装置,包括:
曲线测定模块,用于获取所述电池的充放电OCV-SOC曲线、充电OCV-SOC曲线和放电OCV-SOC曲线;
计算模块,用于分别对所述电池的所述充放电OCV-SOC曲线、所述充电OCV-SOC曲线和所述放电OCV-SOC曲线进行拟合得到充放电OCV-SOC函数关系式、充电OCV-SOC函数关系式和放电OCV-SOC函数关系式;
拟合模块,用于将所述充电OCV-SOC函数关系式、所述放电OCV-SOC函数关系式和所述充放电OCV-SOC函数关系式进行拟合,得到所述电池的带迟滞系数的目标OCV-SOC函数关系式。
所述电池OCV-SOC函数关系式标定装置与上述电池OCV-SOC函数关系式标定方法相对于现有技术所具有的优势相同,在此不再赘述。
本公开的另一目的在于提出一种电池的SOC估算装置,以解决由于电池的迟滞特性导致的电池的放电OCV-SOC曲线不准确的问题。为达到上述目的, 本公开的技术方案是这样实现的:
一种电池的SOC估算装置,包括:
检测模块,用于检测所述电池的OCV值;
查询模块,用于根据所述OCV值查询基于上述电池OCV-SOC函数关系式标定方法得到的所述电池的OCV-SOC函数关系式,得到目标SOC值。
所述电池的SOC估算装置与上述电池OCV-SOC函数关系式标定方法相对于现有技术所具有的优势相同,在此不再赘述。
本公开的另一目的在于提出一种计算机可读存储介质,以解决由于电池的迟滞特性导致的电池的放电OCV-SOC曲线不准确的问题。为达到上述目的,本公开的技术方案是这样实现的:
一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行以实现上述电池OCV-SOC函数关系式标定方法或上述电池的SOC估算方法的步骤。
所述计算机可读存储介质与上述电池OCV-SOC函数关系式标定方法相对于现有技术所具有的优势相同,在此不再赘述。
本公开的另一目的在于提出一种电子设备,以解决由于电池的迟滞特性导致的电池的放电OCV-SOC曲线不准确的问题。为达到上述目的,本公开的技术方案是这样实现的:
一种车辆,包括电子设备,所述电子设备包括存储器和处理器,所述存储器用于存储包括程序指令的信息,所述处理器用于控制程序指令的执行,所述程序指令被处理器加载并执行时实现上述电池OCV-SOC函数关系式标定方法或上述电池的SOC估算方法。
所述电子设备与上述电池OCV-SOC函数关系式标定方法相对于现有技术所具有的优势相同,在此不再赘述。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例的描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开实施例所述的一种电池OCV-SOC函数关系式标定方法的步骤流程图;
图2是本公开实施例所述的一种电池充放电OCV-SOC曲线标定方法的步骤流程图;
图3是本公开实施例所述的一种电池充放电OCV-SOV曲线,充电OCV-SOV曲线和放电OCV-SOV曲线示意图;
图4示意性地示出了用于执行根据本公开的方法的电子设备的框图;并且
图5示意性地示出了用于保持或者携带实现根据本公开的方法的程序代码的存储单元。
附图标记说明:A-充放电OCV-SOC曲线,B-充电OCV-SOC曲线,C-
放电OCV-SOC曲线。
具体实施例
下面将结合本公开实施例中的附图更详细地描述本公开的示例性实施例。虽然附图中显示了本公开的示例性实施例,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
为方便理解本公开的技术方案,先对本公开涉及的相关技术进行说明:
目前,对SOC的估计方法主要有四大类:安时积分法、卡尔曼滤波法、人工神经网络法和开路电压法。安时积分法的主要原理是不考虑电池的外部结构和化学反应,仅仅通过对流过电池的电流进行长时间持续的记录和检测并对其进行积分计算得到的剩余电量,安时积分法的准确性与电池初始容量和电流检测的准确性密切相关,在放电电流检测不稳定甚至是波动剧烈时,测量误差较大,同时随着放电时间的增长,累积误差产生并增大,到后期初始容量会出现较大的误差,最终SOC的估计值与实际值会有严重的偏差。卡尔曼滤波器是一种最优化自回归数据处理算法,由卡尔曼提出的针对还原真实数据的数据处理技术。其基本原理是将电池看作动力系统,将SOC作为内部状态量,在算法的不断运行过程中不断预测更新实现最小方差意义上的最 优估计,但在卡尔曼滤波算法运算过程中,存在大量的数据运算,所以该方法对处理器的计算能力要求很高。在模型参数辨识过程中,参数出现漂移同时带来的巨大的运算量,因此该方法很少运用在单片机上。人工神经网络法在估算电池SOC时,通常将电池的电压和电流作为输入层样本,只有选择了恰当的训练算法及足够数量的训练样本后,输入任何数据均能得到相应的SOC的值,人工神经网络法虽然拥有较高的精度,却对训练数据以及训练方法的依赖性较大,由于训练样本数量庞大同时会带来较大的工作量,对硬件要求较高。开路电压法是指,先以特定电流,在待测温度下对电池进行定容,以定容容量为基准,每间隔一定容量,调整电池的SOC,充分静置后测量一次电池的开路电压,直至电池达到空电状态,每个点一一对应,即成为电池在该温度下的SOC-OCV曲线。然而,电池的极化过程带来的迟滞效应,会导致测得的OCV不够准确,这也是得到的SOC-OCV曲线不够精确的原因。
锂离子电池在充放循环的过程中,存在SOC相同时,OCV却收敛于不同值的现象,研究人员称之为迟滞现象。由于迟滞效应的存在,电池的OCV-SOC函数关系并不是一一对应的,根据电流大小、环境温度、充放电历史等因素的不同,同一SOC点,可能会得到不同的与之对应的开路电压值。电池的迟滞效应主要体现在,依赖于电池先前是充电还是放电状态。通常充电过程中的OCV值会大于相同SOC状态下的放电过程中的OCV值。
基于以上说明,对本公开实施例的技术方案介绍如下。
一种电池OCV-SOC函数关系式标定方法,图1是所述方法的步骤流程图,如图1所示,所述方法包括:
获取所述电池的充放电OCV-SOC曲线、充电OCV-SOC曲线和放电OCV-SOC曲线;
分别对所述电池的充放电OCV-SOC曲线、充电OCV-SOC曲线和放电OCV-SOC曲线进行拟合得到充放电OCV-SOC函数关系式、充电OCV-SOC函数关系式和放电OCV-SOC函数关系式;
将所述充电OCV-SOC函数关系式、所述放电OCV-SOC函数关系式和所述充放电OCV-SOC函数关系式进行拟合,得到所述电池的带迟滞系数的目标OCV-SOC函数关系式。
在本实施例中,所述充放电OCV-SOC曲线是指通过小倍率电流间隔性地 缓慢且稳定地将电池充满后,然后每隔一定的SOC完成一次放电,在该状态下经过一段时间的静置,记录静置后的电池OCV,然后将每个点一一对应做成充放电SOC-OCV曲线;所述充电OCV-SOC曲线,是指按照小倍率电流充电至特定SOC值,静置一端时间后测得对应的电池OCV值,由此得到的充电OCV-SOC曲线;所述放电OCV-SOC曲线,主要是将电池以恒定电流充满后静置一段时间待其稳定,然后每隔一定的SOC完成一次放电,在该状态下经过一段时间的静置,记录静置后的电池OCV,然后将每个点一一对应做成放电SOC-OCV曲线。
由于电池具有迟滞效应,即电池的OCV电压不仅与SOC有关,还与电池在静置前是充电状态还是放电状态有关,使得这三条曲线各有不同。本实施例通过将上述三条曲线转化成三条函数关系式(分别带有充电迟滞系数、放电迟滞系数和充放电迟滞系数),然后进行拟合,由此得到一条带有迟滞系数的OCV与SOC的函数关系式,建立了迟滞参数与OCV、SOC的函数关系,从而减少了在测试SOC数值时,电池的迟滞特性带来的影响。
可选的,所述充放电OCV-SOC函数关系式为:
U充放电=P6*X^6+P5*X^5+P4*X^4+P3*X^3+P2*X^2+P1*X^1+P0
其中,U充放电为OCV的值,X为SOC的值,P指系数;
所述充电OCV-SOC函数关系式为:
U充电=P’6*X^6+P’5*X^5+P’4*X^4+P’3*X^3+P’2*X^2+P’1*X^1+P’0
其中,U充电为OCV的值,X为SOC的值,P’指系数;
所述放电OCV-SOC函数关系式为:
U放电=P”6*X^6+P”5*X^5+P”4*X^4+P”3*X^3+P”2*X^2+P”1*X^1+P”0
其中,U放电为OCV的值,X为SOC的值,P”指系数。
可选的,所述目标OCV-SOC函数关系式为:
其中,U为OCV的值,X为SOC的值,P指充放电OCV-SOC函数中的系数,P’指充电OCV-SOC函数中的系数,P”指放电OCV-SOC函数中的系数。
通过将得到的OCV-SOC曲线分别拟合成为充放电OCV-SOC函数关系式、 充电OCV-SOC函数关系式和放电OCV-SOC函数关系式;在每个函数关系式中都带有对应的迟滞系数P、P’和P”。然后再将上述三个函数关系式拟合成为一个包括P、P’和P”迟滞系数在内的OCV-SOC函数关系式,得到的OCV-SOC函数关系式,相比于现有的充电OCV-SOC曲线或放电OCV-SOC曲线而言,充分考虑到了迟滞效应给电池的OCV带来的影响,将迟滞系数引入了函数关系式中,从而使得通过测量电压得到的SOC数值更加精确。
可选的,图2为充放电OCV-SOC曲线的标定流程示意图,如图2所示,获取所述电池的充放电OCV-SOC曲线,包括:
按照第一预设电流倍率,间隔性地向电池进行充电,直至所述电池充满;
按照第二预设电流倍率,间隔性地向所述电池进行放电,每放电一次静置所述电池第一预设时间段后,测量所述电池的OCV值并记录对应的SOC值;
根据多次放电所得到的多对OCV值和SOC值,绘制所述电池的充放电OCV-SOC曲线。
所述电流倍率是指电池在规定的时间内放出其额定容量所输出的电流值,可以用于表示充电的速率快慢。需要知道的是,充电过程中的电流倍率大小同样会影响到电池的迟滞效应。具体的,当以一较大的电流倍率对电池进行恒流充电时,电池会迅速被充满,然而,由此产生的迟滞效应较强,充满后的一段时间内,电池的OCV会缓慢下降,即使经过长时间的静置,也无法使电池OCV稳定下来。如果以一偏小的电流倍率,间隔性地对电池进行充电,即每隔一定的SOC完成一次充电,然后静置一段时间再进行一次充电,直至将电池充满,这样缓慢且稳定的将电池充满,由此产生的迟滞效应微弱,充满后电池的OCV值足够稳定,不会出现明显下降的情况。
当电池处于稳定状态下,没有迟滞效应的影响时,电池的OCV与SOC数值是一一对应的关系。具体的,电池的OCV会随SOC的降低而降低。所以通过间歇性的对电池进行放电,每次降低一定量的SOC,然后静置电池使其稳定,测量电池的OCV值,这样得到多对OCV与SOC值,就可以绘制出充放电OCV-SOC曲线。所以,按照本实施例提供的方法,通过控制充电时的第一预设电流倍率,间隔性的给电池充电,这样缓慢且稳定地将电池充满,可以削弱电池的迟滞效应,即在电池充满后,电池OCV足够稳定,不会发生 明显的降低。并且放缓电池的充电过程可以有效降低充电造成的电池升温效果,避免了电池温度变化对电池的SOC和OCV测量造成影响。
可选的,所述间隔性地向电池进行充电,包括:
每充电一次静置所述电池第二预设时间段后,再向所述电池进行下一次充电,所述第二预设时间段的时长为:在每次充电后等待所述电池的OCV不再降低所需的时长。
在本实施例中,每充电一次,使所述电池静置第二预设时间段,由此可以消除此次充电造成的迟滞效果,使电池在完成静置后,OCV更加稳定。所以在设置该电池的第二预设时间段的时长时,主要是考虑到是否能够使该电池的OCV稳定下来。
可选的,所述第二预设时间段的时长在1-3h范围内。如上述说明,若第二预设时长过短,会导致电池的迟滞效应仍然较强,并通过多次充电进行积累,在电池充满后,会因此发生OCV的降低,最终导致得到的充放电OCV-SOC曲线不够准确;若第二预设时长过长,则会导致该充电过程过于冗长,降低曲线的标定效率。
在一种实施例中,所述间隔性地向电池进行充电,包括,每一次充电使该电池增加等量的SOC,示例性的,可以每一次充电使该电池增加1%的SOC、2%的SOC或5%的SOC,在此不对其进行限制。
可选的,所述第一预设电流倍率为:在每次充电期间,所述电池的温度在允许的温度变化范围内所需的电流倍率。
电池在充电过程中,会产生热能,导致电池温度上升,但是电池温度又会影响到电池的充放电效率、OCV以及SOC等。所以在本实施例中,可以通过控制充电时的第一预设电流倍率的大小,以避免由于电流倍率过大,导致充电时温度上升明显,使得变量增多,影响到后续的曲线标定结果的准确性。具体的,可以限制在温度变化不超过0.5℃、0.1℃,在此不做任何限制。
可选的,所述第一预设电流倍率在1/3C-1C范围内。
在本实施例中,对于充电过程中的第一预设电流倍率,既需要考虑到充电的效率问题,电流倍率过小会使得充电过程缓慢,效率低下;还需要考虑到充电时产生的迟滞效应和热量问题,电流倍率过大会导致迟滞效应强且电池温度上升。
可选的,按照第二预设电流倍率,间隔性地向所述电池进行放电,包括:
每放电一次后,将本次放电所得到的一对OCV值和SOC值与所述电池的放电OCV-SOC曲线比较;
在本次放电所得到的一对OCV值和SOC值与所述电池的放电OCV-SOC曲线重合的情况下,停止向所述电池进行放电;
在本次放电所得到的一对OCV值和SOC值与所述电池的放电OCV-SOC曲线不重合的情况下,按照第二预设电流倍率,间隔性地向所述电池进行下一次放电。
所述放电OCV-SOC曲线是指,按照开路电压法,先以恒定电流将该电池一次性充满后,充分静置(存在OCV回降),然后间隔性对该电池进行放电,即每次使该电池降低等量的SOC,再静置,然后测量电池的OCV值并记录SOC值,直至电池达到空电状态,每个点一一对应,即成为电池在该温度下的SOC-OCV曲线。然而,电池充满时的迟滞效应,会导致在SOC偏高时,测得的OCV不够准确,这也是得到的放电SOC-OCV曲线不够精确的原因。
图3是所述本公开实施例的一种充放电OCV-SOC曲线、充电OCV-SOC曲线与放电OCV-SOC曲线的示意图,如图3所示,横坐标表示SOC,纵坐标表示OCV,曲线A为该电池的充放电OCV-SOC曲线,曲线B为该电池的充电OCV-SOC曲线,曲线C为该电池的放电OCV-SOC曲线。其中,图3中的曲线A充放电OCV-SOC曲线是在以下实验条件下得到的:1)通过小倍率电流间隔性地缓慢且稳定地从SOC=0%充电至SOC=50%,间隔10%的SOC完成一次充电,在该状态下静置3小时;2)电池以2A恒流放电,间隔10%的SOC完成一次放电,在该状态下静置3小时,记录静置后的电池OCV;3)重复步骤2),直至电池SOC=10%。图3中的曲线C放电OCV-SOC曲线是在以下实验条件下得到的:1)通过小倍率电流间隔性地缓慢且稳定地从SOC=0%充电至SOC=50%;2)电池以2A恒流放电,间隔10%的SOC完成一次放电,在该状态下静置3小时,记录静置后的电池OCV;3)重复步骤2),直至电池SOC=10%。图3中的曲线B充电OCV-SOC曲线是在以下实验条件下得到的:1)通过小倍率电流缓慢且稳定地从SOC=0%充电至SOC=50%,间隔10%的SOC完成一次充电,在该状态下静置3小时,记录静置后的电池OCV;2)重复步骤1),直至电池SOC=50%。
当电池充满后,按照本实施例所提供的电池OCV-SOC函数关系式标定方法,电池不会受迟滞效应的影响而使得OCV明显回降,所以OCV-SOC曲线在满充时的OCV会高于放电OCV-SOC曲线的OCV。而在间隔性放电的过程中,随SOC的降低,满充时的迟滞效应带来的影响减弱,两条曲线之间的差值变小,最终发生重合。所以,在本实施例中,在已经得知带电池的放电OCV-SOC曲线的情况下,当检测到某次放电静置后的一对OCV值和SOC值与放电OCV-SOC曲线重合,则意味着迟滞效应造成的误差变小,后续的OCV值和SOC值,都会同样落在放电OCV-SOC曲线上。所以,可以停止后续的放电和测量操作,直接参考对应的放电OCV-SOC曲线的数据,减少不必要的流程,提高效率。
在一种实施例中,所述间隔性地向所述电池进行放电,包括,每一次放电使该电池降低等量的SOC,示例性的,可以每一次放电使该电池降低1%的SOC、2%的SOC或5%的SOC,在此不对其进行限制。
可选的,所述根据多次放电所得到的多对OCV值和SOC值,绘制所述电池的OCV-SOC曲线,包括:
根据多次放电所得到的多对OCV值和SOC值,以及所述电池的放电OCV-SOC曲线,绘制所述电池的充放电OCV-SOC曲线。
如上述说明,示例性的,当所述电池SOC为40%,OCV为3.2V时,且该点同样在该电池的放电OCV-SOC曲线上时,停止后续的放电和测量操作。然后根据多次放电所得到的多对OCV值和SOC值,绘制出SOC在40%-100%的部分曲线,并将其与放电OCV-SOC曲线上SOC在0-40%部分的曲线结合,得到该电池的充放电OCV-SOC曲线。在本实施例中,在已经得知带电池的放电OCV-SOC曲线的情况下,由于充放电OCV-SOC曲线与放电OCV-SOC曲线部分重叠,所以可以省去测量重叠部分的数据的操作,可以减少不必要的流程,提高曲线的标定效率。
可选的,所述按照第二预设电流倍率,间隔性地向所述电池进行放电,包括:
按照第二预设电流倍率,间隔性地向所述电池进行放电,直至所述电池的SOC值降为0%。
在本实施例中,如果还没有检测该电池的放电OCV-SOC曲线,那么对该 电池进行间隔性放电,直至该电池的SOC值降为0%,这样才能够得到一条完整的SOC在0-100%范围内的充放电OCV-SOC曲线。
本公开实施例通过获取所述电池的充放电OCV-SOC曲线、充电OCV-SOC曲线和放电OCV-SOC曲线;分别对上述曲线进行拟合得到充放电OCV-SOC函数关系式、充电OCV-SOC函数关系式和放电OCV-SOC函数关系式;然后将上述OCV-SOC函数关系式进行拟合,得到所述电池的带迟滞系数的目标OCV-SOC函数关系式。本公开所述的标定方法,通过考虑电池的充电状态和放电状态带来的迟滞效应的影响,拟合充放电OCV-SOC曲线、充电OCV-SOC曲线和放电OCV-SOC曲线,建立迟滞参数与OCV、SOC的函数关系,由此得到OCV-SOC函数关系式。该方法减少了电池迟滞特性带来的影响,由此绘制得到的OCV-SOC曲线更加准确。
基于同一发明构思,本公开实施例还提供一种电池的SOC估算方法,包括:
检测电池的OCV值;
根据所述OCV值查询基于上述电池OCV-SOC函数关系式标定方法得到的所述电池的OCV-SOC函数关系式,得到目标SOC值。
基于同一发明构思,本公开实施例还提供一种电池OCV-SOC函数关系式标定装置,包括:
曲线测定模块,用于获取所述电池的充放电OCV-SOC曲线、充电OCV-SOC曲线和放电OCV-SOC曲线;
计算模块,用于分别对所述电池的所述充放电OCV-SOC曲线、所述充电OCV-SOC曲线和所述放电OCV-SOC曲线进行拟合得到充放电OCV-SOC函数关系式、充电OCV-SOC函数关系式和放电OCV-SOC函数关系式;
拟合模块,用于将所述充电OCV-SOC函数关系式、所述放电OCV-SOC函数关系式和所述充放电OCV-SOC函数关系式进行拟合,得到所述电池的带迟滞系数的目标OCV-SOC函数关系式。
基于同一发明构思,本公开实施例还提供一种电池的SOC估算装置,包括:
检测模块,用于检测所述电池的OCV值;
查询模块,用于根据所述OCV值查询基于上述电池OCV-SOC函数关系 式标定方法得到的所述电池的OCV-SOC函数关系式,得到目标SOC值。
基于同一发明构思,本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行以实现上述OCV-SOC函数关系式标定方法或上述电池的SOC估算方法的步骤。
基于同一发明构思,本公开实施例还提供一种电子设备,包括存储器和处理器,所述存储器用于存储包括程序指令的信息,所述处理器用于控制程序指令的执行,所述程序指令被处理器加载并执行时实现上述电池OCV-SOC函数关系式标定方法或上述电池的SOC估算方法。
根据上述实施例,在此通过一个具体的实验例对本公开的一种电池OCV-SOC函数关系式标定方法进行示例性说明。
步骤1,按照1/3C的电流对该电池进行间隔性充电,该电池的SOC每增加5%,静置1h。将电池充满后,静置1h,按照1%SOC间隔性地放电,每次放电后静置1h,并测量对应的OCV值,直至SOC值降为0。根据记录的多组OCV与SOC数据,绘制得到该电池的充放电OCV-SOC曲线。
步骤2,按照1/3C的电流对该电池进行充电,使得该电池的SOC每升高1%,静置1h后,测量对应的OCV值,直至SOC升至100%。根据记录的多组OCV与SOC数据,绘制得到该电池的充电OCV-SOC曲线。
步骤3,按照1/3C的电流对该电池进行恒流充电,将电池充满后,静置1h,按照1%SOC间隔性地放电,每次放电后静置1h,并测量对应的OCV值,直至SOC值降为0。根据记录的多组OCV与SOC数据,绘制得到该电池的放电OCV-SOC曲线。
步骤4,将获得的三条OCV-SOC曲线分别拟合成为充放电OCV-SOC函数关系式、充电OCV-SOC函数关系式和放电OCV-SOC函数关系式;
具体的,充放电OCV-SOC函数关系式为:
U充放电=P6*X^6+P5*X^5+P4*X^4+P3*X^3+P2*X^2+P1*X^1+P0
其中,U充放电为OCV的值,X为SOC的值,P指系数,
P6=-4.6518*10-11P5=1.6891*10-8P4=-2.3685*10-6P3=0.000161664
P2=-0.005556P1=0.090494295P0=2.7319507;
充电OCV-SOC函数关系式为:
U充电=P’6*X^6+P’5*X^5+P’4*X^4+P’3*X^3+P’2*X^2+P’1*X^1+P’0
其中,U充电为OCV的值,X为SOC的值,P’指系数,
P’6=-3.9232012*10-11P’5=1.493615878*10-8P’4=-2.17576541*10-6
P’3=0.000153255P’2=-0.0054010751P’1=0.089239190P’0=2.7334217;
所述放电OCV-SOC函数关系式为:
U放电=P”6*X^6+P”5*X^5+P”4*X^4+P”3*X^3+P”2*X^2+P”1*X^1+P”0
其中,U放电为OCV的值,X为SOC的值,P”指系数,
P”6=-5.7773457*10-11P”5=2.07702*10-8P”4=-2.89299178*10-6P”3=0.000196675P”2=-0.0067352639P”1=0.1080163P”0=2.6694041;
步骤5,将上述OCV-SOC函数关系式进行拟合,得到所述电池的带迟滞系数的目标OCV-SOC函数关系式:
其中,U为OCV的值,X为SOC的值,P指充放电OCV-SOC函数中的系数,P’指充电OCV-SOC函数中的系数,P”指放电OCV-SOC函数中的系数。
在计算该电池的SOC数值时,可以通过测量该电池的OCV数值,将该OCV数值代入目标OCV-SOC函数关系式的U中,由此得到的X的数值,即为该电池对应的SOC值。
本公开提供了一种电池OCV-SOC函数关系式标定方法、SOC估算方法、装置、介质和车辆,通过获取所述电池的充放电OCV-SOC曲线、充电OCV-SOC曲线和放电OCV-SOC曲线;分别对上述曲线进行拟合得到充放电OCV-SOC函数关系式、充电OCV-SOC函数关系式和放电OCV-SOC函数关系式;然后将上述OCV-SOC函数关系式进行拟合,得到所述电池的带迟滞系数的目标OCV-SOC函数关系式。本公开将得到的OCV-SOC曲线分别拟合成为充放电OCV-SOC函数关系式、充电OCV-SOC函数关系式和放电OCV-SOC函数关系式;在每个函数关系式中都带有对应的迟滞系数P、P’和P”。然后再将上述三个函数关系式拟合成为一个包括P、P’和P”迟滞系数在内的OCV-SOC函数关系式,得到的OCV-SOC函数关系式,相比于现有的充电OCV-SOC曲线或放电OCV-SOC曲线而言,充分考虑到了迟滞效应给电池的OCV带来的影响,将迟滞系数引入了函数关系式中,从而使得通过测量电压 得到的SOC数值更加精确。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
本公开的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本公开实施例的电子设备中的一些或者全部部件的一些或者全部功能。本公开还可以实现为用于执行这里所描述的方法的一部分或者全部的设备或者装置程序(例如,计算机程序和计算机程序产品)。这样的实现本公开的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
例如,图4示出了可以实现根据本公开的方法的电子设备。该电子设备传统上包括处理器1010和以存储器1020形式的计算机程序产品或者计算机可读介质。存储器1020可以是诸如闪存、EEPROM(电可擦除可编程只读存储器)、EPROM、硬盘或者ROM之类的电子存储器。存储器1020具有用于执行上述方法中的任何方法步骤的程序代码1031的存储空间1030。例如,用于程序代码的存储空间1030可以包括分别用于实现上面的方法中的各种步骤的各个程序代码1031。这些程序代码可以从一个或者多个计算机程序产品中读出或者写入到这一个或者多个计算机程序产品中。这些计算机程序产品包括诸如硬盘,紧致盘(CD)、存储卡或者软盘之类的程序代码载体。这样的计算机程序产品通常为如参考图5所述的便携式或者固定存储单元。该存储单元可以具有与图4的电子设备中的存储器1020类似布置的存储段、存储空间等。程序代码可以例如以适当形式进行压缩。通常,存储单元包括计算机可读代码1031’,即可以由例如诸如1010之类的处理器读取的代码,这些代码当由电子设备运行时,导致该电子设备执行上面所描述的方法中的各个步 骤。
本说明书中每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。
尽管已描述了本公开实施例的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例做出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开实施例范围的所有变更和修改。
最后,还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者终端设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者终端设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者终端设备中还存在另外的相同要素。
以上对本公开所提供的一种电池OCV-SOC函数关系式标定方法、SOC估算方法、装置、介质和车辆进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。

Claims (14)

  1. 一种电池OCV-SOC函数关系式标定方法,其特征在于,所述方法包括:
    获取所述电池的充放电OCV-SOC曲线、充电OCV-SOC曲线和放电OCV-SOC曲线;
    分别对所述电池的所述充放电OCV-SOC曲线、所述充电OCV-SOC曲线和所述放电OCV-SOC曲线进行拟合得到充放电OCV-SOC函数关系式、充电OCV-SOC函数关系式和放电OCV-SOC函数关系式;
    将所述充电OCV-SOC函数关系式、所述放电OCV-SOC函数关系式和所述充放电OCV-SOC函数关系式进行拟合,得到所述电池的带迟滞系数的目标OCV-SOC函数关系式。
  2. 根据权利要求1所述标定方法,其特征在于,获取所述电池的充放电OCV-SOC曲线,包括:
    按照第一预设电流倍率,间隔性地向所述电池进行充电,直至所述电池充满;
    按照第二预设电流倍率,间隔性地向所述电池进行放电,每放电一次静置所述电池第一预设时间段后,测量所述电池的OCV值并记录对应的SOC值;
    根据多次放电所得到的多对OCV值和SOC值,绘制所述电池的充放电OCV-SOC曲线。
  3. 根据权利要求2所述标定方法,其特征在于,所述间隔性地向所述电池进行充电,包括:
    每充电一次静置所述电池第二预设时间段后,再向所述电池进行下一次充电,所述第二预设时间段的时长为:在每次充电后等待所述电池的OCV不再降低所需的时长。
  4. 根据权利要求1所述标定方法,其特征在于,所述充放电OCV-SOC函数关系式为:
    U充放电=P6*X^6+P5*X^5+P4*X^4+P3*X^3+P2*X^2+P1*X^1+P0
    其中,U充放电为OCV的值,X为SOC的值,P指系数;
    所述充电OCV-SOC函数关系式为:
    U充电=P’6*X^6+P’5*X^5+P’4*X^4+P’3*X^3+P’2*X^2+P’1*X^1+P’0
    其中,U充电为OCV的值,X为SOC的值,P’指系数;
    所述放电OCV-SOC函数关系式为:
    U放电=P”6*X^6+P”5*X^5+P”4*X^4+P”3*X^3+P”2*X^2+P”1*X^1+P”0
    其中,U放电为OCV的值,X为SOC的值,P”指系数。
  5. 根据权利要求4所述标定方法,其特征在于,所述目标OCV-SOC函数关系式为:
    其中,U为OCV的值,X为SOC的值,P指充放电OCV-SOC函数中的系数,P’指充电OCV-SOC函数中的系数,P”指放电OCV-SOC函数中的系数。
  6. 根据权利要求2所述标定方法,其特征在于,按照第二预设电流倍率,间隔性地向所述电池进行放电,包括:
    每放电一次后,将本次放电所得到的一对OCV值和SOC值与所述电池的放电OCV-SOC曲线比较;
    在本次放电所得到的一对OCV值和SOC值与所述电池的放电OCV-SOC曲线重合的情况下,停止向所述电池进行放电;
    在本次放电所得到的一对OCV值和SOC值与所述电池的放电OCV-SOC曲线不重合的情况下,按照第二预设电流倍率,间隔性地向所述电池进行下一次放电。
  7. 根据权利要求6所述标定方法,其特征在于,所述根据多次放电所得到的多对OCV值和SOC值,绘制所述电池的充放电OCV-SOC曲线,包括:
    根据多次放电所得到的多对OCV值和SOC值,以及所述电池的放电OCV-SOC曲线,绘制所述电池的充放电OCV-SOC曲线。
  8. 根据权利要求2所述标定方法,其特征在于,所述按照第二预设电流倍率,间隔性地向所述电池进行放电,包括:
    按照第二预设电流倍率,间隔性地向所述电池进行放电,直至所述电池的SOC值降为0%。
  9. 一种电池的SOC估算方法,其特征在于,包括:
    检测电池的OCV值;
    根据所述OCV值查询基于权利要求1-8中任一的所述标定方法得到的所述电池的OCV-SOC函数关系式,得到目标SOC值。
  10. 一种电池OCV-SOC曲线标定装置,其特征在于,包括:
    曲线测定模块,用于获取所述电池的充放电OCV-SOC曲线、充电OCV-SOC曲线和放电OCV-SOC曲线;
    计算模块,用于分别对所述电池的所述充放电OCV-SOC曲线、所述充电OCV-SOC曲线和所述放电OCV-SOC曲线进行拟合得到充放电OCV-SOC函数关系式、充电OCV-SOC函数关系式和放电OCV-SOC函数关系式;
    拟合模块,用于将所述充电OCV-SOC函数关系式、所述放电OCV-SOC函数关系式和所述充放电OCV-SOC函数关系式进行拟合,得到所述电池的带迟滞系数的目标OCV-SOC函数关系式。
  11. 一种电池的SOC估算装置,其特征在于,包括:
    检测模块,用于检测所述电池的OCV值;
    查询模块,用于根据所述OCV值查询基于权利要求1-8中任一的所述标定方法得到的所述电池的OCV-SOC函数关系式,得到目标SOC值。
  12. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该程序指令被处理器执行以实现权利要求1-8中任一项所述电池OCV-SOC函数关系式标定方法或权利要求9所述一种电池的SOC估算方法的步骤。
  13. 一种车辆,包括电子设备,所述电子设备包括存储器和处理器,所述存储器用于存储包括程序指令的信息,所述处理器用于控制程序指令的执行,其特征在于,所述程序指令被处理器加载并执行时实现权利要求1-8中任一项所述电池OCV-SOC函数关系式标定的方法或权利要求9所述一种电池的SOC估算方法。
  14. 一种计算机程序产品,包括计算机可读代码,当所述计算机可读代码在电子设备上运行时,导致所述电子设备执行根据权利要求1-8中任一项所述电池OCV-SOC函数关系式标定的方法或权利要求9所述一种电池的SOC估算方法。
PCT/CN2023/086791 2022-04-14 2023-04-07 Ocv-soc标定及估算方法、装置、介质和车辆 WO2023197939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210391552.4 2022-04-14
CN202210391552.4A CN115308616A (zh) 2022-04-14 2022-04-14 Ocv-soc标定及估算方法、装置、介质和车辆

Publications (1)

Publication Number Publication Date
WO2023197939A1 true WO2023197939A1 (zh) 2023-10-19

Family

ID=83855756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/086791 WO2023197939A1 (zh) 2022-04-14 2023-04-07 Ocv-soc标定及估算方法、装置、介质和车辆

Country Status (2)

Country Link
CN (1) CN115308616A (zh)
WO (1) WO2023197939A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117269774A (zh) * 2023-11-20 2023-12-22 羿动新能源科技有限公司 一种动力电池的soc的修正方法
CN117665597A (zh) * 2024-01-31 2024-03-08 云储新能源科技有限公司 一种锂电池ocv估值方法、系统、电子设备及介质
CN118259160A (zh) * 2024-05-31 2024-06-28 长江三峡集团实业发展(北京)有限公司 同时进行电池soc-ocv和hppc优化测试方法、装置、设备和介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115308616A (zh) * 2022-04-14 2022-11-08 长城汽车股份有限公司 Ocv-soc标定及估算方法、装置、介质和车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108829911A (zh) * 2018-04-16 2018-11-16 西南科技大学 一种开路电压与soc函数关系优化方法
CN109856542A (zh) * 2018-10-23 2019-06-07 许继集团有限公司 一种锂电池soc-ocv曲线簇的标定方法、soc校正方法及装置
CN112415399A (zh) * 2020-10-16 2021-02-26 欣旺达电子股份有限公司 电池单体ocv-soc曲线修正方法、设备及存储介质
JP2021071415A (ja) * 2019-10-31 2021-05-06 株式会社Gsユアサ 蓄電量推定装置、蓄電量推定方法及びコンピュータプログラム
CN115308616A (zh) * 2022-04-14 2022-11-08 长城汽车股份有限公司 Ocv-soc标定及估算方法、装置、介质和车辆

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108829911A (zh) * 2018-04-16 2018-11-16 西南科技大学 一种开路电压与soc函数关系优化方法
CN109856542A (zh) * 2018-10-23 2019-06-07 许继集团有限公司 一种锂电池soc-ocv曲线簇的标定方法、soc校正方法及装置
JP2021071415A (ja) * 2019-10-31 2021-05-06 株式会社Gsユアサ 蓄電量推定装置、蓄電量推定方法及びコンピュータプログラム
CN112415399A (zh) * 2020-10-16 2021-02-26 欣旺达电子股份有限公司 电池单体ocv-soc曲线修正方法、设备及存储介质
CN115308616A (zh) * 2022-04-14 2022-11-08 长城汽车股份有限公司 Ocv-soc标定及估算方法、装置、介质和车辆

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DENG-FANG BAN, ,ZHENG YAN-PING, CHANG CHENG-CHENG, SUN WEI-MING: "Study on hysteresis characteristics of lithium iron phosphate battery", CHINESE JOURNAL OF POWER SOURCES, vol. 43, no. 7, 20 July 2021 (2021-07-20), pages 1121 - 1124, XP093098839 *
QIANG GUO ,, SUN WEI-MING: "Research on SOC estimation method of lead-acid battery based on LPV theory", CHINESE BATTERY INDUSTRY, vol. 22, no. 3, 25 June 2018 (2018-06-25), pages 115 - 119, XP093098832 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117269774A (zh) * 2023-11-20 2023-12-22 羿动新能源科技有限公司 一种动力电池的soc的修正方法
CN117269774B (zh) * 2023-11-20 2024-04-12 羿动新能源科技有限公司 一种动力电池的soc的修正方法
CN117665597A (zh) * 2024-01-31 2024-03-08 云储新能源科技有限公司 一种锂电池ocv估值方法、系统、电子设备及介质
CN117665597B (zh) * 2024-01-31 2024-04-12 云储新能源科技有限公司 一种锂电池ocv估值方法、系统、电子设备及介质
CN118259160A (zh) * 2024-05-31 2024-06-28 长江三峡集团实业发展(北京)有限公司 同时进行电池soc-ocv和hppc优化测试方法、装置、设备和介质

Also Published As

Publication number Publication date
CN115308616A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2023197939A1 (zh) Ocv-soc标定及估算方法、装置、介质和车辆
CN111812531B (zh) 电池状态检测方法、设备及存储介质
EP3764114B1 (en) Method, device, system for estimating remaining charging time and storage medium
CN108646190B (zh) 电池剩余充电时间估算方法、装置和设备
CN110967636B (zh) 电池的荷电状态修正方法、装置、系统和存储介质
WO2020259096A1 (zh) 电池的许用功率估算方法、装置、系统和存储介质
CN111781424B (zh) 电动车绝缘电阻测量方法、装置、车辆及存储介质
CN109991554B (zh) 一种电池电量检测方法、装置及终端设备
CN109143102B (zh) 一种安时积分估算锂电池soc方法
CN110506215A (zh) 一种确定电池内短路的方法及装置
CN103797374A (zh) 用于电池监控的系统和方法
CN101535827A (zh) 用于在电池非平衡时确定电池的荷电状态的设备和方法
CN113359044A (zh) 测量电池剩余容量的方法、装置及设备
JP2023541417A (ja) バッテリの充電状態を推定する方法
CN108693473B (zh) 电池健康状态soh的检测方法及装置
Lavety et al. A dynamic battery model and parameter extraction for discharge behavior of a valve regulated lead-acid battery
CN114609523A (zh) 一种电池容量的在线检测方法、电子设备及存储介质
CN112946482A (zh) 一种基于模型的电池电压估算方法、装置、设备及存储介质
CN114371408A (zh) 电池荷电状态的估算方法、充电曲线的提取方法及装置
CN115469239A (zh) 电池系统的电荷状态一致性评价方法、装置及电子设备
CN117250514A (zh) 一种动力电池系统全生命周期soc的修正方法
CN112130077A (zh) 一种不同工况下动力电池组的soc估算方法
CN115754774A (zh) 锂电池混联系统的soc电量预测方法、装置及计算机设备
CN116047339A (zh) 基于热电耦合模型的锂离子电池组soc估计方法及装置
CN113447826B (zh) 一种基于稳态等效电路模型的soc确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23787584

Country of ref document: EP

Kind code of ref document: A1